3D Printing and Biofabrication for Load Bearing Tissue Engineering.
Jeong, Claire G; Atala, Anthony
2015-01-01
Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.
Cell-Based Strategies for Meniscus Tissue Engineering
Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi
2016-01-01
Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735
Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
Shadjou, Nasrin; Hasanzadeh, Mohammad
2016-05-01
Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science. © 2016 Wiley Periodicals, Inc.
Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.
Shadjou, Nasrin; Hasanzadeh, Mohammad
2015-10-01
Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.
Stem cell homing-based tissue engineering using bioactive materials
NASA Astrophysics Data System (ADS)
Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei
2017-06-01
Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.
Graphene-based materials for tissue engineering.
Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin; Khoshakhlagh, Parastoo; Akbari, Mohsen; Nasajpour, Amir; Zhang, Yu Shrike; Tamayol, Ali; Khademhosseini, Ali
2016-10-01
Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications. Published by Elsevier B.V.
MicroRNAs in liver tissue engineering - New promises for failing organs.
Raschzok, Nathanael; Sallmon, Hannes; Pratschke, Johann; Sauer, Igor M
2015-07-01
miRNA-based technologies provide attractive tools for several liver tissue engineering approaches. Herein, we review the current state of miRNA applications in liver tissue engineering. Several miRNAs have been implicated in hepatic disease and proper hepatocyte function. However, the clinical translation of these findings into tissue engineering has just begun. miRNAs have been successfully used to induce proliferation of mature hepatocytes and improve the differentiation of hepatic precursor cells. Nonetheless, miRNA-based approaches beyond cell generation have not yet entered preclinical or clinical investigations. Moreover, miRNA-based concepts for the biliary tree have yet to be developed. Further research on miRNA based modifications, however, holds the promise of enabling significant improvements to liver tissue engineering approaches due to their ability to regulate and fine-tune all biological processes relevant to hepatic tissue engineering, such as proliferation, differentiation, growth, and cell function. Copyright © 2015 Elsevier B.V. All rights reserved.
Microfluidic systems for stem cell-based neural tissue engineering.
Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R
2016-07-05
Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.
Potential for Imaging Engineered Tissues with X-Ray Phase Contrast
Appel, Alyssa; Anastasio, Mark A.
2011-01-01
As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604
Emergence of Scaffold-free Approaches for Tissue Engineering Musculoskeletal Cartilages
DuRaine, Grayson D.; Brown, Wendy E.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2014-01-01
This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages –for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc – are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well. PMID:25331099
Towards organ printing: engineering an intra-organ branched vascular tree.
Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir
2010-03-01
Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.
NASA Astrophysics Data System (ADS)
Garvin, Kelley A.
Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.
Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering
NASA Astrophysics Data System (ADS)
Kosztin, Ioan; Vunjak-Novakovic, Gordana; Forgacs, Gabor
2012-10-01
Tissue engineering is a rapidly evolving discipline that aims at building functional tissues to improve or replace damaged ones. To be successful in such an endeavor, ideally, the engineering of tissues should be based on the principles of developmental biology. Recent progress in developmental biology suggests that the formation of tissues from the composing cells is often guided by physical laws. Here a comprehensive computational-theoretical formalism is presented that is based on experimental input and incorporates biomechanical principles of developmental biology. The formalism is described and it is shown that it correctly reproduces and predicts the quantitative characteristics of the fundamental early developmental process of tissue fusion. Based on this finding, the formalism is then used toward the optimization of the fabrication of tubular multicellular constructs, such as a vascular graft, by bioprinting, a novel tissue engineering technology.
Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.
Shimizu, Tatsuya
2014-01-01
In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.
NASA Technical Reports Server (NTRS)
Khan, Mohammed Yusuf (Inventor); Laurencin, Cato T. (Inventor); Lu, Helen H. (Inventor); Botchwey, Edward (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor)
2012-01-01
Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.
Recent progress in interfacial tissue engineering approaches for osteochondral defects.
Castro, Nathan J; Hacking, S Adam; Zhang, Lijie Grace
2012-08-01
This review provides a brief synopsis of the anatomy and physiology of the osteochondral interface, scaffold-based and non-scaffold based approaches for engineering both tissues independently as well as recent developments in the manufacture of gradient constructs. Novel manufacturing techniques and nanotechnology will be discussed with potential application in osteochondral interfacial tissue engineering.
Protein-based hydrogels for tissue engineering
Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne J.
2017-01-01
The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with the promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types. PMID:27677513
Towards organ printing: engineering an intra-organ branched vascular tree
Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir
2013-01-01
Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061
Oligoaniline-based conductive biomaterials for tissue engineering.
Zarrintaj, Payam; Bakhshandeh, Behnaz; Saeb, Mohammad Reza; Sefat, Farshid; Rezaeian, Iraj; Ganjali, Mohammad Reza; Ramakrishna, Seeram; Mozafari, Masoud
2018-05-01
The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed the critical role of oligoaniline-based conductive biomaterials in tissue engineering. Research on aniline oligomers is growing today opening new scenarios that expand the potential of these biomaterials from "traditional" treatments to a new era of tissue engineering. The conductivity of this class of biomaterials can be tailored similar to that of tissues/organs. To the best of our knowledge, this is the first review article in which such issue is systematically reviewed and critically discussed in the light of the existing literature. Undoubtedly, investigations on the use of oligoaniline-based conductive biomaterials in tissue engineering need further advancement and a lot of critical questions are yet to be answered. In this review, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints for further development. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Image-based metrology of porous tissue engineering scaffolds
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Robb, Richard A.
2006-03-01
Tissue engineering is an interdisciplinary effort aimed at the repair and regeneration of biological tissues through the application and control of cells, porous scaffolds and growth factors. The regeneration of specific tissues guided by tissue analogous substrates is dependent on diverse scaffold architectural indices that can be derived quantitatively from the microCT and microMR images of the scaffolds. However, the randomness of pore-solid distributions in conventional stochastic scaffolds presents unique computational challenges. As a result, image-based characterization of scaffolds has been predominantly qualitative. In this paper, we discuss quantitative image-based techniques that can be used to compute the metrological indices of porous tissue engineering scaffolds. While bulk averaged quantities such as porosity and surface are derived directly from the optimal pore-solid delineations, the spatially distributed geometric indices are derived from the medial axis representations of the pore network. The computational framework proposed (to the best of our knowledge for the first time in tissue engineering) in this paper might have profound implications towards unraveling the symbiotic structure-function relationship of porous tissue engineering scaffolds.
Takahashi, Hironobu; Okano, Teruo
2015-11-18
In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
Design control for clinical translation of 3D printed modular scaffolds.
Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E
2015-03-01
The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion.
Design Control for Clinical Translation of 3D Printed Modular Scaffolds
Hollister, Scott J.; Flanagan, Colleen L.; Zopf, David A.; Morrison, Robert J.; Nasser, Hassan; Patel, Janki J.; Ebramzadeh, Edward; Sangiorgio, Sophia N.; Wheeler, Matthew B.; Green, Glenn E.
2015-01-01
The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115
Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R
2008-06-01
The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.
Singh, Milind; Berkland, Cory; Detamore, Michael S
2008-12-01
From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches.
Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.
Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V
2017-01-01
The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials
Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.
2015-01-01
Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347
Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities
Tamayol, Ali; Akbari, Mohsen; Annabi, Nasim; Paul, Arghya; Khademhosseini, Ali; Juncker, David
2013-01-01
Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the above mentioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice. PMID:23195284
Powder-based 3D printing for bone tissue engineering.
Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E
2016-01-01
Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Upadhyaya, Laxmi; Singh, Jay; Agarwal, Vishnu; Tewari, Ravi Prakash
2014-07-28
Over the last decade carboxymethyl chitosan (CMCS) has emerged as a promising biopolymer for the development of new drug delivery systems and improved scaffolds along with other tissue engineering devices for regenerative medicine that is currently one of the most rapidly growing fields in the life sciences. CMCS is amphiprotic ether, derived from chitosan, exhibiting enhanced aqueous solubility, excellent biocompatibility, controllable biodegradability, osteogenesis ability and numerous other outstanding physicochemical and biological properties. More strikingly, it can load hydrophobic drugs and displays strong bioactivity which highlight its suitability and extensive usage for preparing different drug delivery and tissue engineering formulations respectively. This review provides a comprehensive introduction to various types of CMCS based formulations for delivery of therapeutic agents and tissue regeneration and further describes their preparation procedures and applications in different tissues/organs. Detailed information of CMCS based nano/micro systems for targeted delivery of drugs with emphasis on cancer specific and organ specific drug delivery have been described. Further, we have discussed various CMCS based tissue engineering biomaterials along with their preparation procedures and applications in different tissues/organs. The article then, gives a brief account of therapy combining drug delivery and tissue engineering. Finally, identification of major challenges and opportunities for current and ongoing application of CMCS based systems in the field are summarised. Copyright © 2014 Elsevier B.V. All rights reserved.
Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering.
Hanson, Summer; D'Souza, Rena N; Hematti, Peiman
2014-08-01
Cell-based treatments are being developed as a novel approach for the treatment of many diseases in an effort to repair injured tissues and regenerate lost tissues. Interest in the potential use of multipotent progenitor or stem cells has grown significantly in recent years, specifically the use of mesenchymal stem cells (MSCs), for tissue engineering in combination with extracellular matrix-based scaffolds. An area that warrants further attention is the local or systemic host responses toward the implanted cell-biomaterial constructs. Such immunological responses could play a major role in determining the clinical efficacy of the therapeutic device or biomaterials used. MSCs, due to their unique immunomodulatory properties, hold great promise in tissue engineering as they not only directly participate in tissue repair and regeneration but also modulate the host foreign body response toward the engineered constructs. The purpose of this review was to summarize the current state of knowledge and applications of MSC-biomaterial constructs as a potential immunoregulatory tool in tissue engineering. Better understanding of the interactions between biomaterials and cells could translate to the development of clinically relevant and novel cell-based therapeutics for tissue reconstruction and regenerative medicine.
Adult mesenchymal stem cells and cell-based tissue engineering
Tuan, Rocky S; Boland, Genevieve; Tuli, Richard
2003-01-01
The identification of multipotential mesenchymal stem cells (MSCs) derived from adult human tissues, including bone marrow stroma and a number of connective tissues, has provided exciting prospects for cell-based tissue engineering and regeneration. This review focuses on the biology of MSCs, including their differentiation potentials in vitro and in vivo, and the application of MSCs in tissue engineering. Our current understanding of MSCs lags behind that of other stem cell types, such as hematopoietic stem cells. Future research should aim to define the cellular and molecular fingerprints of MSCs and elucidate their endogenous role(s) in normal and abnormal tissue functions. PMID:12716446
Tissue engineering of urinary bladder - current state of art and future perspectives.
Adamowicz, Jan; Kowalczyk, Tomasz; Drewa, Tomasz
2013-01-01
Tissue engineering and biomaterials science currently offer the technology needed to replace the urinary tract wall. This review addresses current achievements and barriers for the regeneration of the urinary blad- der based on tissue engineering methods. Medline was search for urinary bladder tissue engineering regenerative medicine and stem cells. Numerous studies to develop a substitute for the native urinary bladder wall us- ing the tissue engineering approach are ongoing. Stem cells combined with biomaterials open new treatment methods, including even de novo urinary bladder construction. However, there are still many issues before advances in tissue engineering can be introduced for clinical application. Before tissue engineering techniques could be recognize as effective and safe for patients, more research stud- ies performed on large animal models and with long follow-up are needed to carry on in the future.
In vivo tissue engineering of musculoskeletal tissues.
McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M
2011-10-01
Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.
Three-dimensional bioprinting in tissue engineering and regenerative medicine.
Gao, Guifang; Cui, Xiaofeng
2016-02-01
With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.
Review: Polymeric-Based 3D Printing for Tissue Engineering.
Wu, Geng-Hsi; Hsu, Shan-Hui
Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.
Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan
2016-05-01
Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.
Patrick, Charles W
2004-01-01
Tissue engineering has the potential to redefine rehabilitation for the breast cancer patient by providing a translatable strategy that restores the postmastectomy breast mound while concomitantly obviating limitations realized with contemporary reconstructive surgery procedures. The engineering design goal is to provide a sufficient volume of viable fat tissue based on a patient's own cells such that deficits in breast volume can be abrogated. To be sure, adipose tissue engineering is in its infancy, but tremendous strides have been made. Numerous studies attest to the feasibility of adipose tissue engineering. The field is now poised to challenge barriers to clinical translation that are germane to most tissue engineering applications, namely scale-up, large animal model development, and vascularization. The innovative and rapid progress of adipose engineering to date, as well as opportunities for its future growth, is presented.
Singh, Milind; Berkland, Cory
2008-01-01
From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field—biomimetic, interfacial, and functional tissue engineering—by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell–protein–biomaterial interactions in a more native tissue–like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches. PMID:18803499
Engineering Orthopedic Tissue Interfaces
Yang, Peter J.
2009-01-01
While a wide variety of approaches to engineering orthopedic tissues have been proposed, less attention has been paid to the interfaces, the specialized areas that connect two tissues of different biochemical and mechanical properties. The interface tissue plays an important role in transitioning mechanical load between disparate tissues. Thus, the relatively new field of interfacial tissue engineering presents new challenges—to not only consider the regeneration of individual orthopedic tissues, but also to design the biochemical and cellular composition of the linking tissue. Approaches to interfacial tissue engineering may be distinguished based on if the goal is to recreate the interface itself, or generate an entire integrated tissue unit (such as an osteochondral plug). As background for future efforts in engineering orthopedic interfaces, a brief review of the biology and mechanics of each interface (cartilage–bone, ligament–bone, meniscus–bone, and muscle–tendon) is presented, followed by an overview of the state-of-the-art in engineering each tissue, including advances and challenges specific to regenerating the interfaces. PMID:19231983
Zorlutuna, Pinar; Vrana, Nihal Engin; Khademhosseini, Ali
2013-01-01
The field of tissue engineering has been growing in the recent years as more products have made it to the market and as new uses for the engineered tissues have emerged, motivating many researchers to engage in this multidisciplinary field of research. Engineered tissues are now not only considered as end products for regenerative medicine, but also have emerged as enabling technologies for other fields of research ranging from drug discovery to biorobotics. This widespread use necessitates a variety of methodologies for production of tissue engineered constructs. In this review, these methods together with their non-clinical applications will be described. First, we will focus on novel materials used in tissue engineering scaffolds; such as recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the modular tissue engineering area will be discussed. Then scaffold-free production methods, based on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering and new methods that provide improved control over cell behavior such as pathway engineering and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we will summarize the emerging uses of engineered constructs such as model tissues for drug discovery, cancer research and biorobotics applications. PMID:23268388
Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering
Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo
2010-01-01
The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546
Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration
Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali
2016-01-01
Platelet rich blood derivatives have been widely used in different fields of medicine and stem cell based tissue engineering. They represent natural cocktails of autologous growth factor, which could provide an alternative for recombinant protein based approaches. Platelet rich blood derivatives, such as platelet rich plasma, have consistently shown to potentiate stem cell proliferation, migration, and differentiation. Here, we review the spectrum of platelet rich blood derivatives, discuss their current applications in tissue engineering and regenerative medicine, reflect on their effect on stem cells, and highlight current translational challenges. PMID:27047733
Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan
2018-04-27
Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.
Imaging Strategies for Tissue Engineering Applications
Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.
2015-01-01
Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069
Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues
Munarin, Fabiola; Kaiser, Nicholas J.; Kim, Tae Yun; Choi, Bum-Rak
2017-01-01
Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all. PMID:28457187
Monitoring sinew contraction during formation of tissue-engineered fibrin-based ligament constructs.
Paxton, Jennifer Z; Wudebwe, Uchena N G; Wang, Anqi; Woods, Daniel; Grover, Liam M
2012-08-01
The ability to study the gross morphological changes occurring during tissue formation is vital to producing tissue-engineered structures of clinically relevant dimensions in vitro. Here, we have used nondestructive methods of digital imaging and optical coherence tomography to monitor the early-stage formation and subsequent maturation of fibrin-based tissue-engineered ligament constructs. In addition, the effect of supplementation with essential promoters of collagen synthesis, ascorbic acid (AA) and proline (P), has been assessed. Contraction of the cell-seeded fibrin gel occurs unevenly within the first 5 days of culture around two fixed anchor points before forming a longitudinal ligament-like construct. AA+P supplementation accelerates gel contraction in the maturation phase of development, producing ligament-like constructs with a higher collagen content and distinct morphology to that of unsupplemented constructs. These studies highlight the importance of being able to control the methods of tissue formation and maturation in vitro to enable the production of tissue-engineered constructs with suitable replacement tissue characteristics for repair of clinical soft-tissue injuries.
Three-Dimensional Printing and Cell Therapy for Wound Repair.
van Kogelenberg, Sylvia; Yue, Zhilian; Dinoro, Jeremy N; Baker, Christopher S; Wallace, Gordon G
2018-05-01
Significance: Skin tissue damage is a major challenge and a burden on healthcare systems, from burns and other trauma to diabetes and vascular disease. Although the biological complexities are relatively well understood, appropriate repair mechanisms are scarce. Three-dimensional bioprinting is a layer-based approach to regenerative medicine, whereby cells and cell-based materials can be dispensed in fine spatial arrangements to mimic native tissue. Recent Advances: Various bioprinting techniques have been employed in wound repair-based skin tissue engineering, from laser-induced forward transfer to extrusion-based methods, and with the investigation of the benefits and shortcomings of each, with emphasis on biological compatibility and cell proliferation, migration, and vitality. Critical issues: Development of appropriate biological inks and the vascularization of newly developed tissues remain a challenge within the field of skin tissue engineering. Future Directions: Progress within bioprinting requires close interactions between material scientists, tissue engineers, and clinicians. Microvascularization, integration of multiple cell types, and skin appendages will be essential for creation of complex skin tissue constructs.
Ding, Jinping; Chen, Bo; Lv, Tao; Liu, Xia; Fu, Xin; Wang, Qian; Yan, Li; Kang, Ning; Cao, Yilin; Xiao, Ran
2016-08-01
: The regeneration of tissue-engineered cartilage in an immunocompetent environment usually fails due to severe inflammation induced by the scaffold and their degradation products. In the present study, we compared the tissue remodeling and the inflammatory responses of engineered cartilage constructed with bone marrow mesenchymal stem cells (BMSCs), chondrocytes, or both and scaffold group in pigs. The cartilage-forming capacity of the constructs in vitro and in vivo was evaluated by histological, biochemical, and biomechanical analyses, and the inflammatory response was investigated by quantitative analysis of foreign body giant cells and macrophages. Our data revealed that BMSC-based engineered cartilage suppressed in vivo inflammation through the alteration of macrophage phenotype, resulting in better tissue survival compared with those regenerated with chondrocytes alone or in combination with BMSCs. To further confirm the macrophage phenotype, an in vitro coculture system established by engineered cartilage and macrophages was studied using immunofluorescence, enzyme-linked immunosorbent assay, and gene expression analysis. The results demonstrated that BMSC-based engineered cartilage promoted M2 polarization of macrophages with anti-inflammatory phenotypes including the upregulation of CD206, increased IL-10 synthesis, decreased IL-1β secretion, and alterations in gene expression indicative of M1 to M2 transition. It was suggested that BMSC-seeded constructs have the potential to ameliorate scaffold-induced inflammation and improve cartilaginous tissue regeneration through M2 polarization of macrophages. Finding a strategy that can prevent scaffold-induced inflammation is of utmost importance for the regeneration of tissue-engineered cartilage in an immunocompetent environment. This study demonstrated that bone marrow mesenchymal stem cell (BMSC)-based engineered cartilage could suppress inflammation by increasing M2 polarization of macrophages, resulting in better tissue survival in a pig model. Additionally, the effect of BMSC-based cartilage on the phenotype conversion of macrophages was further studied through an in vitro coculture system. This study could provide further support for the regeneration of cartilage engineering in immunocompetent animal models and provide new insight into the interaction of tissue-engineered cartilage and macrophages. ©AlphaMed Press.
Wray, Lindsay S; Rnjak-Kovacina, Jelena; Mandal, Biman B; Schmidt, Daniel F; Gil, Eun Seok; Kaplan, David L
2012-12-01
In the field of tissue engineering and regenerative medicine there is significant unmet need for critically-sized, fully degradable biomaterial scaffold systems with tunable properties for optimizing tissue formation in vitro and tissue regeneration in vivo. To address this need, we have developed a silk-based scaffold platform that has tunable material properties, including localized and bioactive functionalization, degradation rate, and mechanical properties and that provides arrays of linear hollow channels for delivery of oxygen and nutrients throughout the scaffold bulk. The scaffolds can be assembled with dimensions that range from millimeters to centimeters, addressing the need for a critically-sized platform for tissue formation. We demonstrate that the hollow channel arrays support localized and confluent endothelialization. This new platform offers a unique and versatile tool for engineering 'tailored' scaffolds for a range of tissue engineering and regenerative medicine needs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microfluidic hydrogels for tissue engineering.
Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian
2011-03-01
With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.
Approaches to Neural Tissue Engineering Using Scaffolds for Drug Delivery
Willerth, Stephanie M.; Sakiyama-Elbert, Shelly E.
2007-01-01
This review seeks to give an overview of the current approaches to drug delivery from scaffolds for neural tissue engineering applications. The challenges presented by attempting to replicate the three types of nervous tissue (brain, spinal cord, and peripheral nerve) are summarized. Potential scaffold materials (both synthetic and natural) and target drugs are discussed with the benefits and drawbacks given. Finally, common methods of drug delivery, including degradable/diffusion-based delivery systems, affinity-based delivery systems, immobilized drug delivery systems, and electrically controlled drug delivery systems, are examined and critiqued. Based on the current body of work, suggestions for future directions of research in the field of neural tissue engineering are presented. PMID:17482308
Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms
Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah
2014-01-01
Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941
Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs.
An, Jia; Chua, Chee Kai; Yu, Ting; Li, Huaqiong; Tan, Lay Poh
2013-04-01
Nanobiomaterials, a field at the interface of biomaterials and nanotechnologies, when applied to tissue engineering applications, are usually perceived to resemble the cell microenvironment components or as a material strategy to instruct cells and alter cell behaviors. Therefore, they provide a clear understanding of the relationship between nanotechnologies and resulting cellular responses. This review will cover recent advances in nanobiomaterial research for applications in tissue engineering. In particular, recent developments in nanofibrous scaffolds, nanobiomaterial composites, hydrogel systems, laser-fabricated nanostructures and cell-based bioprinting methods to produce scaffolds with nanofeatures for tissue engineering are discussed. As in native niches of cells, where nanofeatures are constantly interacting and influencing cellular behavior, new generations of scaffolds will need to have these features to enable more desirable engineered tissues. Moving forward, tissue engineering will also have to address the issues of complexity and organization in tissues and organs.
Outlines on nanotechnologies applied to bladder tissue engineering.
Alberti, C
2012-01-01
Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to inhibit a carcinogenic relapse in bladder prosthetic material. Facing the future, a full success of bladder tissue engineering will mainly depend on the progress of both biomaterial nanotechnologies and stem cell biology research.
Tissue engineering: confronting the transplantation crisis.
Nerem, R M
2000-01-01
Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.
Streamlined bioreactor-based production of human cartilage tissues.
Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D
2016-05-27
Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.
PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications.
Siddiqui, Nadeem; Asawa, Simran; Birru, Bhaskar; Baadhe, Ramaraju; Rao, Sreenivasa
2018-05-14
Biomaterial-based scaffolds are important cues in tissue engineering (TE) applications. Recent advances in TE have led to the development of suitable scaffold architecture for various tissue defects. In this narrative review on polycaprolactone (PCL), we have discussed in detail about the synthesis of PCL, various properties and most recent advances of using PCL and PCL blended with either natural or synthetic polymers and ceramic materials for TE applications. Further, various forms of PCL scaffolds such as porous, films and fibrous have been discussed along with the stem cells and their sources employed in various tissue repair strategies. Overall, the present review affords an insight into the properties and applications of PCL in various tissue engineering applications.
Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans
Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul
2012-01-01
Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258
Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.
Freeman, Fiona E; McNamara, Laoise M
2017-04-01
Tissue engineering and regenerative medicine have significant potential to treat bone pathologies by exploiting the capacity for bone progenitors to grow and produce tissue constituents under specific biochemical and physical conditions. However, conventional tissue engineering approaches, which combine stem cells with biomaterial scaffolds, are limited as the constructs often degrade, due to a lack of vascularization, and lack the mechanical integrity to fulfill load bearing functions, and as such are not yet widely used for clinical treatment of large bone defects. Recent studies have proposed that in vitro tissue engineering approaches should strive to simulate in vivo bone developmental processes and, thereby, imitate natural factors governing cell differentiation and matrix production, following the paradigm recently defined as "developmental engineering." Although developmental engineering strategies have been recently developed that mimic specific aspects of the endochondral ossification bone formation process, these findings are not widely understood. Moreover, a critical comparison of these approaches to standard biomaterial-based bone tissue engineering has not yet been undertaken. For that reason, this article presents noteworthy experimental findings from researchers focusing on developing an endochondral-based developmental engineering strategy for bone tissue regeneration. These studies have established that in vitro approaches, which mimic certain aspects of the endochondral ossification process, namely the formation of the cartilage template and the vascularization of the cartilage template, can promote mineralization and vascularization to a certain extent both in vitro and in vivo. Finally, this article outlines specific experimental challenges that must be overcome to further exploit the biology of endochondral ossification and provide a tissue engineering construct for clinical treatment of large bone/nonunion defects and obviate the need for bone tissue graft.
Co-culture systems-based strategies for articular cartilage tissue engineering.
Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi
2018-03-01
Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.
MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA
2010-01-01
This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue regeneration, and discussed new biomaterials that can be used to develop new regenerative technologies. PMID:17518671
Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu
2015-01-01
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article. PMID:27877783
Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu
2015-06-01
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.
Stem Cells in Skeletal Tissue Engineering: Technologies and Models
Langhans, Mark T.; Yu, Shuting; Tuan, Rocky S.
2017-01-01
This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering is presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering. PMID:26423296
Additive manufacturing techniques for the production of tissue engineering constructs.
Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo
2015-03-01
'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.
2014-11-04
Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing tomore » their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.« less
Gelatin-Based Materials in Ocular Tissue Engineering.
Rose, James B; Pacelli, Settimio; Haj, Alicia J El; Dua, Harminder S; Hopkinson, Andrew; White, Lisa J; Rose, Felicity R A J
2014-04-17
Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.
Gelatin-Based Materials in Ocular Tissue Engineering
Rose, James B.; Pacelli, Settimio; El Haj, Alicia J.; Dua, Harminder S.; Hopkinson, Andrew; White, Lisa J.; Rose, Felicity R. A. J.
2014-01-01
Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology. PMID:28788609
NASA Astrophysics Data System (ADS)
Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.
2015-06-01
Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.
Development of hydrogels for regenerative engineering.
Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali
2017-05-01
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues.
Maghdouri-White, Yas; Bowlin, Gary L; Lemmon, Christopher A; Dréau, Didier
2016-02-01
In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.
Tissue engineering in endodontics.
Saber, Shehab El-Din M
2009-12-01
Tissue engineering is the science of design and manufacture of new tissues to replace impaired or damaged ones. The key ingredients for tissue engineering are stem cells, the morphogens or growth factors that regulate their differentiation, and a scaffold of extracellular matrix that constitutes the microenvironment for their growth. Recently, there has been increasing interest in applying the concept of tissue engineering to endodontics. The aim of this study was to review the body of knowledge related to dental pulp stem cells, the most common growth factors, and the scaffolds used to control their differentiation, and a clinical technique for the management of immature non-vital teeth based on this novel concept.
Non-genetic engineering of cells for drug delivery and cell-based therapy.
Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert
2015-08-30
Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.
Moimas, Silvia; Manasseri, Benedetto; Cuccia, Giuseppe; Stagno d'Alcontres, Francesco; Geuna, Stefano; Pattarini, Lucia; Zentilin, Lorena; Giacca, Mauro; Colonna, Michele R
2015-01-01
In regenerative medicine, new approaches are required for the creation of tissue substitutes, and the interplay between different research areas, such as tissue engineering, microsurgery and gene therapy, is mandatory. In this article, we report a modification of a published model of tissue engineering, based on an arterio-venous loop enveloped in a cross-linked collagen-glycosaminoglycan template, which acts as an isolated chamber for angiogenesis and new tissue formation. In order to foster tissue formation within the chamber, which entails on the development of new vessels, we wondered whether we might combine tissue engineering with a gene therapy approach. Based on the well-described tropism of adeno-associated viral vectors for post-mitotic tissues, a muscular flap was harvested from the pectineus muscle, inserted into the chamber and transduced by either AAV vector encoding human VEGF165 or AAV vector expressing the reporter gene β-galactosidase, as a control. Histological analysis of the specimens showed that muscle transduction by AAV vector encoding human VEGF165 resulted in enhanced tissue formation, with a significant increase in the number of arterioles within the chamber in comparison with the previously published model. Pectineus muscular flap, transduced by adeno-associated viral vectors, acted as a source of the proangiogenic factor vascular endothelial growth factor, thus inducing a consistent enhancement of vessel growth into the newly formed tissue within the chamber. In conclusion, our present findings combine three different research fields such as microsurgery, tissue engineering and gene therapy, suggesting and showing the feasibility of a mixed approach for regenerative medicine.
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P
2017-09-01
Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.
Treskes, Philipp; Cowan, Douglas B.; Stamm, Christof; Rubach, Martin; Adelmann, Roland; Wittwer, Thorsten; Wahlers, Thorsten
2015-01-01
Objective The effect of mechanical preconditioning on skeletal myoblasts in engineered tissue constructs was investigated to resolve issues associated with conduction block between skeletal myoblast cells and cardiomyocytes. Methods Murine skeletal myoblasts were used to generate engineered tissue constructs with or without application of mechanical strain. After in vitro myotube formation, engineered tissue constructs were co-cultured for 6 days with viable embryonic heart slices. With the use of sharp electrodes, electrical coupling between engineered tissue constructs and embryonic heart slices was assessed in the presence or absence of pharmacologic agents. Results The isolation and expansion procedure for skeletal myoblasts resulted in high yields of homogeneously desmin-positive (97.1% ± 0.1%) cells. Mechanical strain was exerted on myotubes within engineered tissue constructs during gelation of the matrix, generating preconditioned engineered tissue constructs. Electrical coupling between preconditioned engineered tissue constructs and embryonic heart slices was observed; however, no coupling was apparent when engineered tissue constructs were not subjected to mechanical strain. Coupling of cells from engineered tissue constructs to cells in embryonic heart slices showed slower conduction velocities than myocardial cells with the embryonic heart slices (preconditioned engineered tissue constructs vs embryonic heart slices: 0.04 ± 0.02 ms vs 0.10 ± 0.05 ms, P = .011), lower stimulation frequencies (preconditioned engineered tissue constructs vs maximum embryonic heart slices: 4.82 ± 1.42 Hz vs 10.58 ± 1.56 Hz; P = .0009), and higher sensitivities to the gap junction inhibitor (preconditioned engineered tissue constructs vs embryonic heart slices: 0.22 ± 0.07 mmol/L vs 0.93 ± 0.15 mmol/L; P = .0004). Conclusions We have generated skeletal myoblast–based transplantable grafts that electrically couple to myocardium. PMID:22980065
Digital design of scaffold for mandibular defect repair based on tissue engineering*
Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei
2011-01-01
Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future. PMID:21887853
Digital design of scaffold for mandibular defect repair based on tissue engineering.
Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei
2011-09-01
Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.
Engineering Replacement Tissues with Amniotic Stem Cells
2012-10-01
compression. J Biomech, 2010. 43(13): p. 2516-23. 17. Gadjanski, I., K. Spiller, and G. Vunjak- Novakovic , Time-dependent processes in stem cell-based...16. Gadjanski, I., K. Spiller, and G. Vunjak- Novakovic , Time-dependent processes in stem cell-based tissue engineering of articular cartilage. Stem
Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans
2016-05-17
Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.
Tissue Engineering: Step Ahead in Maxillofacial Reconstruction.
Rai, Raj; Raval, Rushik; Khandeparker, Rakshit Vijay Sinai; Chidrawar, Swati K; Khan, Abdul Ahad; Ganpat, Makne Sachin
2015-09-01
Within the precedent decade, a new field of "tissue engineering" or "tissue regeneration" emerge that offers an innovative and exhilarating substitute for maxillofacial reconstruction. It offers a new option to supplement existing treatment regimens for reconstruction/regeneration of the oral and craniofacial complex, which includes the teeth, periodontium, bones, soft tissues (oral mucosa, conjunctiva, skin), salivary glands, and the temporomandibular joint (bone and cartilage), as well as blood vessels, muscles, tendons, and nerves. Tissue engineering is based on harvesting the stem cells which are having potential to form an organ. Harvested cells are then transferred into scaffolds that are manufactured in a laboratory to resemble the structure of the desired tissue to be replaced. This article reviews the principles of tissue engineering and its various applications in oral and maxillofacial surgery.
NASA Astrophysics Data System (ADS)
Lynn, Aaron David
Tissue engineering hope to fill the donor gap between patient needing transplantation and donors able to provide organs. Many challenges exist in the engineering of replacement tissues such as cell sourcing and scaffold design. A particularly promising group of scaffolds used extensively in tissue engineering research are based on cross-linked poly(ethylene glycol) (PEG) hydrogels. Materials based on these gels have been selected for their tissue-like high water content, low cell toxicty, mild polymerization conditions and the ease with which their mechanical and chemical properties can be tuned. However, all materials which will ultimately be implanted into will elicit a host response. This reaction is initiated when a wound is created. It leads to bathing of the material in proteins from the blood, recruitment, attachment and interrogation of the material by macrophages, attempted degradation and phagocytosis, macrophage fusion into foreign body giant cells (FBGCs) and ultimately the "walling off" of the implant as a dense collagenous capsule surrounds the material restricting further interactions with the host. This foreign body response (FBR) is well studied and contributes significantly to premature failure of implanted medical devices. The research presented in this thesis aims to characterize the FBR to PEG-based tissue engineering scaffolds with the intention of uncovering mechanisms by which the response can be attenuated. To this end, implantation studies have been performed to gauge the severity of the foreign body response to these hydrogels and to establish to what degree modifications with the cell adhesion peptide alter this reaction in vivo. Additionally, in vitro models were established to study characteristics of the the early (< 1 week), middle (1-2 weeks) and late phases (> 2 weeks) of the FBR. Studies were performed to determine the potentially detrimental effects of macrophage interrogation of a PEG-based skin tissue engineering system containing encapsulated fibroblasts. Finally, preliminary work has been done on a strategy for manipulating macrophage interactions with tissue engineering hydrogels utilizing a novel hydrogel coating system. This provides some of the first correlations between in vivo host responses and in vitro macrophage responses to PEG-based tissue engineering materials.
Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration
Brown, Patrick T.; Handorf, Andrew M.; Jeon, Won Bae; Li, Wan-Ju
2014-01-01
The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation. PMID:23432679
Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.
Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R
2017-05-01
Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering
Boccaccio, A.; Ballini, A.; Pappalettere, C.; Tullo, D.; Cantore, S.; Desiate, A.
2011-01-01
Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014. Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance. In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated. PMID:21278921
[Application of silk-based tissue engineering scaffold for tendon / ligament regeneration].
Hu, Yejun; Le, Huihui; Jin, Zhangchu; Chen, Xiao; Yin, Zi; Shen, Weiliang; Ouyang, Hongwei
2016-03-01
Tendon/ligament injury is one of the most common impairments in sports medicine. The traditional treatments of damaged tissue repair are unsatisfactory, especially for athletes, due to lack of donor and immune rejection. The strategy of tissue engineering may break through these limitations, and bring new hopes to tendon/ligament repair, even regeneration. Silk is a kind of natural biomaterials, which has good biocompatibility, wide range of mechanical properties and tunable physical structures; so it could be applied as tendon/ligament tissue engineering scaffolds. The silk-based scaffold has robust mechanical properties; combined with other biological ingredients, it could increase the surface area, promote more cell adhesion and improve the biocompatibility. The potential clinical application of silk-based scaffold has been confirmed by in vivo studies on tendon/ligament repairing, such as anterior cruciate ligament, medial collateral ligament, achilles tendon and rotator cuff. To develop novel biomechanically stable and host integrated tissue engineered tendon/ligament needs more further micro and macro studies, combined with product development and clinical application, which will give new hope to patients with tendon/ligament injury.
Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology
Bodle, Josephine C.; Hanson, Ariel D.
2011-01-01
This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267
Ogawa, Munehiro; Tohma, Yasuaki; Ohgushi, Hajime; Takakura, Yoshinori; Tanaka, Yasuhito
2012-01-01
To establish the methods of demonstrating early fixation of metal implants to bone, one side of a Cobalt-Chromium (CoCr) based alloy implant surface was seeded with rabbit marrow mesenchymal cells and the other side was left unseeded. The mesenchymal cells were further cultured in the presence of ascorbic acid, β-glycerophosphate and dexamethasone, resulting in the appearance of osteoblasts and bone matrix on the implant surface. Thus, we succeeded in generating tissue-engineered bone on one side of the CoCr implant. The CoCr implants were then implanted in rabbit bone defects. Three weeks after the implantation, evaluations of mechanical test, undecalcified histological section and electron microscope analysis were performed. Histological and electron microscope images of the tissue engineered surface exhibited abundant new bone formation. However, newly formed bone tissue was difficult to detect on the side without cell seeding. In the mechanical test, the mean values of pull-out forces were 77.15 N and 44.94 N for the tissue-engineered and non-cell-seeded surfaces, respectively. These findings indicate early bone fixation of the tissue-engineered CoCr surface just three weeks after implantation.
Ogawa, Munehiro; Tohma, Yasuaki; Ohgushi, Hajime; Takakura, Yoshinori; Tanaka, Yasuhito
2012-01-01
To establish the methods of demonstrating early fixation of metal implants to bone, one side of a Cobalt-Chromium (CoCr) based alloy implant surface was seeded with rabbit marrow mesenchymal cells and the other side was left unseeded. The mesenchymal cells were further cultured in the presence of ascorbic acid, β-glycerophosphate and dexamethasone, resulting in the appearance of osteoblasts and bone matrix on the implant surface. Thus, we succeeded in generating tissue-engineered bone on one side of the CoCr implant. The CoCr implants were then implanted in rabbit bone defects. Three weeks after the implantation, evaluations of mechanical test, undecalcified histological section and electron microscope analysis were performed. Histological and electron microscope images of the tissue engineered surface exhibited abundant new bone formation. However, newly formed bone tissue was difficult to detect on the side without cell seeding. In the mechanical test, the mean values of pull-out forces were 77.15 N and 44.94 N for the tissue-engineered and non-cell-seeded surfaces, respectively. These findings indicate early bone fixation of the tissue-engineered CoCr surface just three weeks after implantation. PMID:22754313
Engineering β-sheet peptide assemblies for biomedical applications.
Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen
2016-03-01
Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.
Boeckel, Daniel Gonçalves; Shinkai, Rosemary Sadami Arai; Grossi, Márcio Lima; Teixeira, Eduardo Rolim
2012-09-01
Several biomaterials and techniques for bone grafting have been described in the literature for atresic bone tissue replacement caused by edentulism, surgical resectioning, and traumas. A new technique involves tissue engineering, a promising option to replace bone tissue and solve problems associated with morbidity of autogenous grafting. This literature review aims to describe tissue-engineering techniques using ex vivo cell culture as an alternative to repair bone maxillary atresias and discuss the concepts and potentials of bone regeneration through cell culture techniques as an option for restorative maxillofacial surgery.
Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.
Narayanan, Ganesh; Vernekar, Varadraj N; Kuyinu, Emmanuel L; Laurencin, Cato T
2016-12-15
Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Regenerative endodontics as a tissue engineering approach: past, current and future.
Malhotra, Neeraj; Mala, Kundabala
2012-12-01
With the reported startling statistics of high incidence of tooth decay and tooth loss, the current interest is focused on the development of alternate dental tissue replacement therapies. This has led to the application of dental tissue engineering as a clinically relevant method for the regeneration of dental tissues and generation of bioengineered whole tooth. Although, tissue engineering approach requires the three main key elements of stem cells, scaffold and morphogens, a conductive environment (fourth element) is equally important for successful engineering of any tissue and/or organ. The applications of this science has evolved continuously in dentistry, beginning from the application of Ca(OH)(2) in vital pulp therapy to the development of a fully functional bioengineered tooth (mice). Thus, with advances in basic research, recent reports and studies have shown successful application of tissue engineering in the field of dentistry. However, certain practical obstacles are yet to be overcome before dental tissue regeneration can be applied as evidence-based approach in clinics. The article highlights on the past achievements, current developments and future prospects of tissue engineering and regenerative therapy in the field of endodontics and bioengineered teeth (bioteeth). © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.
Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P
2016-08-01
Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.
Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui
2016-02-01
Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.
Lenas, Petros; Moreno, Angel; Ikonomou, Laertis; Mayer, Joerg; Honda, Hiroyuki; Novellino, Antonio; Pizarro, Camilo; Nicodemou-Lena, Eleni; Rodergas, Silvia; Pintor, Jesus
2008-09-01
Although tissue engineering uses powerful biological tools, it still has a weak conceptual foundation, which is restricted at the cell level. The design criteria at the cell level are not directly related with the tissue functions, and consequently, such functions cannot be implemented in bioartificial tissues with the currently used methods. On the contrary, the field of artificial organs focuses on the function of the artificial organs that are treated in the design as integral entities, instead of the optimization of the artificial organ components. The field of artificial organs has already developed and tested methodologies that are based on system concepts and mathematical-computational methods that connect the component properties with the desired global organ function. Such methodologies are needed in tissue engineering for the design of bioartificial tissues with tissue functions. Under the framework of biomedical engineering, artificial organs and tissue engineering do not present competitive approaches, but are rather complementary and should therefore design a common future for the benefit of patients.
Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt
2017-10-01
Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
Challenges in engineering osteochondral tissue grafts with hierarchical structures.
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
DENTAL PULP TISSUE ENGINEERING
Demarco, FF; Conde, MCM; Cavalcanti, B; Casagrande, L; Sakai, V; Nör, JE
2013-01-01
Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research. PMID:21519641
Koch, Thomas G.; Berg, Lise C.; Betts, Dean H.
2009-01-01
This paper provides a bird’s-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine. The understanding of equine stem cell biology, biofactors, and scaffolds, and their potential therapeutic use in horses are rudimentary at present. Mesenchymal stem cell isolation has been proclaimed from several equine tissues in the past few years. Based on the criteria of the International Society for Cellular Therapy, most of these cells are more correctly referred to as multipotent mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering — cells, biological factors, and biomaterials — are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources. The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently in controlled clinical trials in equine patients to be regarded as evidence-based medicine. In the meantime, the medical mantra “do no harm” should prevail, and the application of stem cell-based therapies in the horse should be done critically and cautiously, and treatment outcomes (good and bad) should be recorded and reported. Stem cell and tissue engineering research in the horse has exciting comparative and equine specific perspectives that most likely will benefit the health of horses and humans. Controlled, well-designed studies are needed to move this new equine research field forward. PMID:19412395
Hyaluronic acid-based scaffolds for tissue engineering.
Chircov, Cristina; Grumezescu, Alexandru Mihai; Bejenaru, Ludovic Everard
2018-01-01
Hyaluronic acid (HA) is a natural glycosaminoglycan found in the extracellular matrix of most connective tissues. Due to its chemical structure, HA is a hydrophilic polymer and it is characterized by a fast degradation rate. HA-based scaffolds for tissue engineering are intensively studied due to their increased biocompatibility, biodegradability and chemical modification. Depending on the processing technique, scaffolds can be prepared in the form of hydrogels, sponges, cryogels, and injectable hydrogels, all discussed in this review.
Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B
2017-08-01
Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.
Fabrication and Handling of 3D Scaffolds Based on Polymers and Decellularized Tissues.
Shpichka, Anastasia; Koroleva, Anastasia; Kuznetsova, Daria; Dmitriev, Ruslan I; Timashev, Peter
2017-01-01
Polymeric, ceramic and hybrid material-based three-dimensional (3D) scaffold or matrix structures are important for successful tissue engineering. While the number of approaches utilizing the use of cell-based scaffold and matrix structures is constantly growing, it is essential to provide a framework of their typical preparation and evaluation for tissue engineering. This chapter describes the fabrication of 3D scaffolds using two-photon polymerization, decellularization and cell encapsulation methods and easy-to-use protocols allowing assessing the cell morphology, cytotoxicity and viability in these scaffolds.
Silk fibroin-based scaffolds for tissue engineering
NASA Astrophysics Data System (ADS)
Li, Zi-Heng; Ji, Shi-Chen; Wang, Ya-Zhen; Shen, Xing-Can; Liang, Hong
2013-09-01
Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here.
Ng, Angela M H; Tan, K K; Phang, M Y; Aziyati, O; Tan, G H; Isa, M R; Aminuddin, B S; Naseem, M; Fauziah, O; Ruszymah, B H I
2008-05-01
Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering. Copyright 2007 Wiley Periodicals, Inc.
Lenas, Petros; Moos, Malcolm; Luyten, Frank P
2009-12-01
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
de Vries, Rob B M; Buma, Pieter; Leenaars, Marlies; Ritskes-Hoitinga, Merel; Gordijn, Bert
2012-12-01
The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.
Tissue engineering of reproductive tissues and organs.
Atala, Anthony
2012-07-01
Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Tissue engineering in dentistry.
Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C
2014-08-01
of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the interests of the patients who could possibly be helped by applying stem cell-based therapies should be carefully assessed against current ethical concerns regarding the moral status of the early embryo. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genetic engineering for skeletal regenerative medicine.
Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J
2007-01-01
The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.
Use of bioreactors in maxillofacial tissue engineering.
Depprich, Rita; Handschel, Jörg; Wiesmann, Hans-Peter; Jäsche-Meyer, Janine; Meyer, Ulrich
2008-07-01
Engineering of various oral tissues is a challenging issue in contemporary maxillofacial reconstructive research. In contrast to the classic biomaterial approach, tissue engineering is based on the understanding of cell driven tissue formation, and aims to generate new functional tissues, rather than just to implant non-living space holders. Researchers hope to reach this goal by combining knowledge from biology, physics, materials science, engineering, and medicine in an integrated manner. Several major technical advances have been made in this field during the last decade, and clinical application is at the stage of first clinical trials. A recent limitation of extracorporally engineered cellular substitutes is the problem of growing enlarged tissues ex vivo. One of the main research topics is therefore to scale up artificial tissue constructs for use in extended defect situations. To overcome the monolayer inherent two-dimensional cell assembly, efforts have been made to grow cells in a three-dimensional space. Bioreactors have therefore been in focus for a considerable time to build up enlarged tissues. The shift from the ex vivo approach of cell multiplication to the generation of a real tissue growth is mirrored by the development of bioreactors, enabling scientists to grow more complex tissue constructs. This present review intends to provide an overview of the current state of art in maxillofacial tissue engineering by the use of bioreactors, its limitations and hopes, as well as the future research trends.
Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.
Madhurakkat Perikamana, Sajeesh Kumar; Lee, Jinkyu; Lee, Yu Bin; Shin, Young Min; Lee, Esther J; Mikos, Antonios G; Shin, Heungsoo
2015-09-14
Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.
Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs
Costa, Pedro F.; Dias, Ana F.; Reis, Rui L.
2012-01-01
The aim of this work was to study the effect of cryopreservation over the functionality of tissue-engineered constructs, analyzing the survival and viability of cells seeded, cultured, and cryopreserved onto 3D scaffolds. Further, it also evaluated the effect of cryopreservation over the properties of the scaffold material itself since these are critical for the engineering of most tissues and in particular, tissues such as bone. For this purpose, porous scaffolds, namely fiber meshes based on a starch and poly(caprolactone) blend were seeded with goat bone marrow stem cells (GBMSCs) and cryopreserved for 7 days. Discs of the same material seeded with GBMSCs were also used as controls. After this period, these samples were analyzed and compared to samples collected before the cryopreservation process. The obtained results demonstrate that it is possible to maintain cell viability and scaffolds properties upon cryopreservation of tissue-engineered constructs based on starch scaffolds and goat bone marrow mesenchymal cells using standard cryopreservation methods. In addition, the outcomes of this study suggest that the greater porosity and interconnectivity of scaffolds favor the retention of cellular content and cellular viability during cryopreservation processes, when compared with nonporous discs. These findings indicate that it might be possible to prepare off-the-shelf engineered tissue substitutes and preserve them to be immediately available upon request for patients' needs. PMID:22676448
Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering
Ogueri, Kenneth S.; Escobar Ivirico, Jorge L.; Nair, Lakshmi S.; Allcock, Harry R.; Laurencin, Cato T.
2017-01-01
The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately, be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly (lactide-co-glycolide) (PLAGA). Laurencin and co-workers has demonstrated the exploitation of the synthetic flexibility of Polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues. Lay Summary Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of Polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering and as well as other biomedical applications. PMID:28596987
Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.
Ogueri, Kenneth S; Escobar Ivirico, Jorge L; Nair, Lakshmi S; Allcock, Harry R; Laurencin, Cato T
2017-03-01
The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately, be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly (lactide-co-glycolide) (PLAGA). Laurencin and co-workers has demonstrated the exploitation of the synthetic flexibility of Polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues. Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of Polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering and as well as other biomedical applications.
Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil
2017-12-01
A number of orthopedic disorders and bone defect issues are solved by scaffold-based therapy in tissue engineering. The biocompatibility of chitosan (polysaccharide) and its similarity with glycosaminoglycan makes it a bone-grafting material. The current work focus on the synthesis of chitosan and chitosan-gelatin scaffold for hard tissue engineering. The chitosan and chitosan-gelatin scaffold have shown improved specific surface area, density, porosity, mechanical properties, biodegradability and absorption. These scaffolds can lead to the development or artificial fabrication of hard tissue alternates. The porous scaffold samples were prepared by freeze-drying method. The microstructure, mechanical and degradable properties of chitosan and chitosan-gelatin scaffolds were analyzed and results revealed that the scaffolds prepared from chitosan-gelatin can be utilized as a useful matrix for tissue engineering.
Biomaterial based cardiac tissue engineering and its applications
Huyer, Locke Davenport; Montgomery, Miles; Zhao, Yimu; Xiao, Yun; Conant, Genevieve; Korolj, Anastasia; Radisic, Milica
2015-01-01
Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling. PMID:25989939
[Using of cell biocomposite material in tissue engineering of the urinary bladder].
Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M
2017-06-01
In a systematic review, to present an overview of the current situation in the field of tissue engineering of urinary bladder related to the use of cell lines pre-cultured on matrices. The selection of eligible publications was conducted according to the method described in the article Glybochko P.V. et al. "Tissue engineering of urinary bladder using acellular matrix." At the final stage, studies investigating the application of matrices with human and animal cell lines were analyzed. Contemporary approaches to using cell-based tissue engineering of the bladder were analyzed, including the formation of 3D structures from several types of cells, cell layers and genetic modification of injected cells. The most commonly used cell lines are urothelial cells, mesenchymal stem cells and fibroblasts. The safety and efficacy of any types of composite cell structures used in the cell-based bladder tissue engineering has not been proven sufficiently to warrant clinical studies of their usefulness. The results of cystoplasty of rat bladder are almost impossible to extrapolate to humans; besides, it is difficult to predict possible side effects. For the transition to clinical trials, additional studies on relevant animal models are needed.
Li, Hua; Zhang, Feng-Lan; Shi, Wen-Jie; Bai, Xue-Jia; Jia, Shu-Qin; Zhang, Chen-Guang; Ding, Wei
2015-01-01
The technology of virus-based genetic modification in tissue engineering has provided the opportunity to produce more flexible and versatile biomaterials for transplantation. Localizing the transgene expression with increased efficiency is critical for tissue engineering as well as a challenge for virus-based gene delivery. In this study, we tagged the VP2 protein of type 2 adeno-associated virus (AAV) with a 3×FLAG plasmid at the N-terminus and packaged a FLAG-tagged recombinant AAV2 chimeric mutant. The mutant AAVs were immobilized onto the tissue engineering scaffolds with crosslinked anti-FLAG antibodies by N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP). Cultured cells were seeded to scaffolds to form 3D transplants, and then tested for viral transduction both in vitro and in vivo. The results showed that our FLAG-tagged AAV2 exerted similar transduction efficiency compared with the wild type AAV2 when infected cultured cells. Following immobilization onto the scaffolds of PLGA or gelatin sponge with anti-FLAG antibodies, the viral mediated transgene expression was significantly improved and more localized. Our data demonstrated that the mutation of AAV capsid targeted for antibody-based immobilization could be a practical approach for more efficient and precise transgene delivery. It was also suggested that the immobilization of AAV might have attractive potentials in applications of tissue engineering involving the targeted gene manipulation in 3D tissue cultures.
Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering.
Li, Jiao Jiao; Ebied, Mohamed; Xu, Jen; Zreiqat, Hala
2018-03-01
The successful regeneration of bone tissue to replace areas of bone loss in large defects or at load-bearing sites remains a significant clinical challenge. Over the past few decades, major progress is achieved in the field of bone tissue engineering to provide alternative therapies, particularly through approaches that are at the interface of biology and engineering. To satisfy the diverse regenerative requirements of bone tissue, the field moves toward highly integrated approaches incorporating the knowledge and techniques from multiple disciplines, and typically involves the use of biomaterials as an essential element for supporting or inducing bone regeneration. This review summarizes the types of approaches currently used in bone tissue engineering, beginning with those primarily based on biology or engineering, and moving into integrated approaches in the areas of biomaterial developments, biomimetic design, and scalable methods for treating large or load-bearing bone defects, while highlighting potential areas for collaboration and providing an outlook on future developments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Xuelei; Dong, Fuhui
2011-12-01
To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.
Chitin Scaffolds in Tissue Engineering
Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi
2011-01-01
Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928
The biomaterials conundrum in tissue engineering.
Williams, David F
2014-04-01
The development of biomaterials for use in tissue engineering processes has not so far followed a scientifically valid pathway; there have been no properly constituted specifications for these biomaterials, whose choice has often been dictated by the perceived need to comply with prior FDA approval for use of the materials in nontissue engineering applications. This short essay discusses the difficulties that have resulted in this approach and provides both conceptual and practical solutions for the future, based on sound principles of biocompatibility and the need to use tissue engineering templates that replicate the niche of the target cells.
Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.
Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro
2011-09-01
Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.
Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review
Chaudhari, Atul A.; Vig, Komal; Baganizi, Dieudonné Radé; Sahu, Rajnish; Dixit, Saurabh; Dennis, Vida; Singh, Shree Ram; Pillai, Shreekumar R.
2016-01-01
Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts. PMID:27898014
Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review.
Chaudhari, Atul A; Vig, Komal; Baganizi, Dieudonné Radé; Sahu, Rajnish; Dixit, Saurabh; Dennis, Vida; Singh, Shree Ram; Pillai, Shreekumar R
2016-11-25
Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.
Tissue engineering of the bladder--reality or myth? A systematic review.
Sloff, Marije; Simaioforidis, Vasileios; de Vries, Rob; Oosterwijk, Egbert; Feitz, Wout
2014-10-01
We systematically reviewed preclinical studies in the literature to evaluate the potential of tissue engineering of the bladder. Study outcomes were compared to the available clinical evidence to assess the feasibility of tissue engineering for future clinical use. Preclinical studies of tissue engineering for bladder augmentation were identified through a systematic search of PubMed and Embase™ from January 1, 1980 to January 1, 2014. Primary studies in English were included if bladder reconstruction after partial cystectomy was performed using a tissue engineered biomaterial in any animal species, with cystometric bladder capacity as an outcome measure. Outcomes were compared to clinical studies available at http://www.clinicaltrials.gov and published clinical studies. A total of 28 preclinical studies are included, demonstrating remarkable heterogeneity in study characteristics and design. Studies in which preoperative bladder volumes were compared to postoperative volumes were considered the most clinically relevant (18 studies). Bladder augmentation through tissue engineering resulted in a normal bladder volume in healthy animals, with the influence of a cellular component being negligible. Furthermore, experiments in large animal models (pigs and dogs) approximated the desired bladder volume more accurately than in smaller species. The initial clinical experience was based on seemingly predictive healthy animal models with a promising outcome. Unfortunately these results were not substantiated in all clinical trials, revealing dissimilar outcomes in different clinical/disease backgrounds. Thus, the translational predictability of a model using healthy animals might be questioned. Through this systematic approach we present an unbiased overview of all published preclinical studies investigating the effect of bladder tissue engineering on cystometric bladder capacity. Preclinical research in healthy animals appears to show the feasibility of bladder augmentation by tissue engineering. However, in view of the disappointing clinical results based on healthy animal models new approaches should also be evaluated in preclinical models using dysfunctional/diseased bladders. This endeavor may aid in the development of clinically applicable tissue engineered bladder augmentation with satisfactory long-term outcome. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine
Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.
2009-01-01
Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462
Advances in tissue engineering through stem cell-based co-culture.
Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A
2015-05-01
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.
Lee, Geon Hui; Lee, Jae Seo; Wang, Xiaohong; Lee, Sang Hoon
2016-01-07
During the last decades, the engineering of well-defined 3D tissues has attracted great attention because it provides in vivo mimicking environment and can be a building block for the engineering of bioartificial organs. In this Review, diverse engineering methods of 3D tissues using microscale devices are introduced. Recent progress of microtechnologies has enabled the development of microplatforms for bottom-up assembly of diverse shaped 3D tissues consisting of various cells. Micro hanging-drop plates, microfluidic chips, and arrayed microwells are the typical examples. The encapsulation of cells in hydrogel microspheres and microfibers allows the engineering of 3D microtissues with diverse shapes. Applications of 3D microtissues in biomedical fields are described, and the future direction of microplatform-based engineering of 3D micro-tissues is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seifarth, Volker; Gossmann, Matthias; Janke, Heinz Peter; Grosse, Joachim O; Becker, Christoph; Heschel, Ingo; Artmann, Gerhard M; Temiz Artmann, Aysegül
2015-01-01
Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures. © 2015 S. Karger AG, Basel.
Methodology of citrate-based biomaterial development and application
NASA Astrophysics Data System (ADS)
Tran, M. Richard
Biomaterials play central roles in modern strategies of regenerative medicine and tissue engineering. Attempts to find tissue-engineered solutions to cure various injuries or diseases have led to an enormous increase in the number of polymeric biomaterials over the past decade. The breadth of new materials arises from the multiplicity of anatomical locations, cell types, and mode of application, which all place application-specific requirements on the biomaterial. Unfortunately, many of the currently available biodegradable polymers are limited in their versatility to meet the wide range of requirements for tissue engineering. Therefore, a methodology of biomaterial development, which is able to address a broad spectrum of requirements, would be beneficial to the biomaterial field. This work presents a methodology of citrate-based biomaterial design and application to meet the multifaceted needs of tissue engineering. We hypothesize that (1) citric acid, a non-toxic metabolic product of the body (Krebs Cycle), can be exploited as a universal multifunctional monomer and reacted with various diols to produce a new class of soft biodegradable elastomers with the flexibility to tune the material properties of the resulting material to meet a wide range of requirements; (2) the newly developed citrate-based polymers can be used as platform biomaterials for the design of novel tissue engineering scaffolding; and (3) microengineering approaches in the form thin scaffold sheets, microchannels, and a new porogen design can be used to generate complex cell-cell and cell-microenvironment interactions to mimic tissue complexity and architecture. To test these hypotheses, we first developed a methodology of citrate-based biomaterial development through the synthesis and characterization of a family of in situ crosslinkable and urethane-doped elastomers, which are synthesized using simple, cost-effective strategies and offer a variety methods to tailor the material properties to meet the needs of a particular application. Next, we introduced a new porogen generation technique, and showed the potential application of the newly developed materials through the fabrication and characterization of scaffold sheets, multiphasic small diameter vascular grafts, and multichanneled nerve guides. Finally, the in vivo applications of citrate-based materials are exemplified through the evaluation of peripheral nerve regeneration using multichanneled guides and the ability to assist in injection-based endoscopic mucosal resection therapy. The results presented in this work show that citric acid can be utilized as a cornerstone in the development of novel biodegradable materials, and combined with microengineering approaches to produce the next generation of tissue engineering scaffolding. These enabling new biomaterials and scaffolding strategies should address many of the existing challenges in tissue engineering and advance the field as a whole.
Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.
Wang, Ling; Wu, Yaobin; Hu, Tianli; Guo, Baolin; Ma, Peter X
2017-09-01
Mimicking the nanofibrous structure similar to extracellular matrix and conductivity for electrical propagation of native myocardium would be highly beneficial for cardiac tissue engineering and cardiomyocytes-based bioactuators. Herein, we developed conductive nanofibrous sheets with electrical conductivity and nanofibrous structure composed of poly(l-lactic acid) (PLA) blending with polyaniline (PANI) for cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Incorporating of varying contents of PANI from 0wt% to 3wt% into the PLA polymer, the electrospun nanofibrous sheets showed enhanced conductivity while maintaining the same fiber diameter. These PLA/PANI conductive nanofibrous sheets exhibited good cell viability and promoting effect on differentiation of H9c2 cardiomyoblasts in terms of maturation index and fusion index. Moreover, PLA/PANI nanofibrous sheets enhanced the cell-cell interaction, maturation and spontaneous beating of primary cardiomyocytes. Furthermore, the cardiomyocytes-laden PLA/PANI conductive nanofibrous sheets can form 3D bioactuators with tubular and folding shapes, and spontaneously beat with much higher frequency and displacement than that on cardiomyocytes-laden PLA nanofibrous sheets. Therefore, these PLA/PANI conductive nanofibrous sheets with conductivity and extracellular matrix like nanostructure demonstrated promising potential in cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Cardiomyocytes-based bioactuators have been paid more attention due to their spontaneous motion by integrating cardiomyocytes into polymer structures, but developing suitable scaffolds for bioactuators remains challenging. Electrospun nanofibrous scaffolds have been widely used in cardiac tissue engineering because they can mimic the extracellular matrix of myocardium. Developing conductive nanofibrous scaffolds by electrospinning would be beneficial for cardiomyocytes-based bioactuators, but such scaffolds have been rarely reported. This work presented a conductive nanofibrous sheet based on polylactide and polyaniline via electrospinning with tunable conductivity. These conductive nanofibrous sheets performed the ability to enhance cardiomyocytes maturation and spontaneous beating, and further formed cardiomyocytes-based 3D bioactuators with tubular and folding shapes, which indicated their great potential in cardiac tissue engineering and bioactuators applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
.... Knowledgeable in the areas of dental implants, dental materials, periodontology, tissue engineering, and dental... and tissue based products, regenerative medicine and combination products. Blood Products..., immunology, blood banking, surgery, internal medicine, biochemistry, engineering, biological and physical...
Engineering Lubrication in Articular Cartilage
McNary, Sean M.; Athanasiou, Kyriacos A.
2012-01-01
Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional tissue engineering of articular cartilage that begins to explore and incorporate methods of lubrication. PMID:21955119
Gorain, Bapi; Choudhury, Hira; Pandey, Manisha; Kesharwani, Prashant; Abeer, Muhammad Mustafa; Tekade, Rakesh Kumar; Hussain, Zahid
2018-08-01
Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Cell Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath
2017-07-01
to rapid joint degeneration (i.e., osteoarthritis). Tissue engineering approaches, including the combination of cells, scaffolds, and bioactive...nano/microfibers comprising engineered scaffolds can mimic the ultrastructure of the native meniscal extracellular matrix (ECM); when seeded with adult...explant and in vivo goat model. 2. KEYWORDS: Provide a brief list of keywords (limit to 20 words). Meniscus tissue engineering , electrospun
Osteochondral Interface Tissue Engineering Using Macroscopic Gradients of Bioactive Signals
Dormer, Nathan H.; Singh, Milind; Wang, Limin; Berkland, Cory J.; Detamore, Michael S.
2013-01-01
Continuous gradients exist at osteochondral interfaces, which may be engineered by applying spatially patterned gradients of biological cues. In the present study, a protein-loaded microsphere-based scaffold fabrication strategy was applied to achieve spatially and temporally controlled delivery of bioactive signals in three-dimensional (3D) tissue engineering scaffolds. Bone morphogenetic protein-2 and transforming growth factor-β1-loaded poly(d,llactic- co-glycolic acid) microspheres were utilized with a gradient scaffold fabrication technology to produce microsphere-based scaffolds containing opposing gradients of these signals. Constructs were then seeded with human bone marrow stromal cells (hBMSCs) or human umbilical cord mesenchymal stromal cells (hUCMSCs), and osteochondral tissue regeneration was assessed in gradient scaffolds and compared to multiple control groups. Following a 6-week cell culture, the gradient scaffolds produced regionalized extracellular matrix, and outperformed the blank control scaffolds in cell number, glycosaminoglycan production, collagen content, alkaline phosphatase activity, and in some instances, gene expression of major osteogenic and chondrogenic markers. These results suggest that engineered signal gradients may be beneficial for osteochondral tissue engineering. PMID:20379780
Recent Advances in Biomaterials for 3D Printing and Tissue Engineering
Jammalamadaka, Udayabhanu
2018-01-01
Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched. PMID:29494503
Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
Jammalamadaka, Udayabhanu; Tappa, Karthik
2018-03-01
Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.
Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.
Guex, Anne Géraldine; Puetzer, Jennifer L; Armgarth, Astrid; Littmann, Elena; Stavrinidou, Eleni; Giannelis, Emmanuel P; Malliaras, George G; Stevens, Molly M
2017-10-15
Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6±5.9µm and a total pore surface area of 7.72±1.7m 2 ·g -1 . The electrical conductivity, based on I-V curves, was measured to be 140µS·cm -1 with a reduced, but stable conductivity of 6.1µS·cm -1 after 28days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold based on PEDOT:PSS, and provide evidence that this purely synthetic material is a promising candidate for bone tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
Introduction A major hurdle in treating osteochondral (OC) defects are the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct-engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. Areas covered This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. Expert opinion A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens, and harnessing of inflammatory responses of the host will likely drive the further progress. PMID:26195329
Multilayer scaffolds in orthopaedic tissue engineering.
Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A
2016-07-01
The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.
Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors.
Cerino, Giulia; Gaudiello, Emanuele; Grussenmeyer, Thomas; Melly, Ludovic; Massai, Diana; Banfi, Andrea; Martin, Ivan; Eckstein, Friedrich; Grapow, Martin; Marsano, Anna
2016-01-01
Conventional tissue engineering strategies often rely on the use of a single progenitor cell source to engineer in vitro biological models; however, multi-cellular environments can better resemble the complexity of native tissues. Previous described co-culture models used skeletal myoblasts, as parenchymal cell source, and mesenchymal or endothelial cells, as stromal component. Here, we propose instead the use of adipose tissue-derived stromal vascular fraction cells, which include both mesenchymal and endothelial cells, to better resemble the native stroma. Percentage of serum supplementation is one of the crucial parameters to steer skeletal myoblasts toward either proliferation (20%) or differentiation (5%) in two-dimensional culture conditions. On the contrary, three-dimensional (3D) skeletal myoblast culture often simply adopts the serum content used in monolayer, without taking into account the new cell environment. When considering 3D cultures of mm-thick engineered tissues, homogeneous and sufficient oxygen supply is paramount to avoid formation of necrotic cores. Perfusion-based bioreactor culture can significantly improve the oxygen access to the cells, enhancing the viability and the contractility of the engineered tissues. In this study, we first investigated the influence of different serum supplementations on the skeletal myoblast ability to proliferate and differentiate during 3D perfusion-based culture. We tested percentages of serum promoting monolayer skeletal myoblast-proliferation (20%) and differentiation (5%) and suitable for stromal cell culture (10%) with a view to identify the most suitable condition for the subsequent co-culture. The 10% serum medium composition resulted in the highest number of mature myotubes and construct functionality. Co-culture with stromal vascular fraction cells at 10% serum also supported the skeletal myoblast differentiation and maturation, hence providing a functional engineered 3D muscle model that resembles the native multi-cellular environment. © 2015 Wiley Periodicals, Inc.
Agarose-based biomaterials for tissue engineering.
Zarrintaj, Payam; Manouchehri, Saeed; Ahmadi, Zahed; Saeb, Mohammad Reza; Urbanska, Aleksandra M; Kaplan, David L; Mozafari, Masoud
2018-05-01
Agarose is a natural polysaccharide polymer having unique characteristics that give reason to consider it for tissue engineering applications. Special characteristics of agarose such as its excellent biocompatibility, thermo-reversible gelation behavior and physiochemical features support its use as a biomaterial for cell growth and/or controlled/localized drug delivery. The resemblance of this natural carbohydrate polymer to the extracellular matrix results in attractive features that bring about a strong interest in its usage in the field. The scope of this review is to summarize the extensive researches addressing agarose-based biomaterials in order to provide an in-depth understanding of its tissue engineering-related applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nano scaffolds and stem cell therapy in liver tissue engineering
NASA Astrophysics Data System (ADS)
Montaser, Laila M.; Fawzy, Sherin M.
2015-08-01
Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.
Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.
Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S
2013-10-01
Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.
Microfabrication of Cell-Laden Hydrogels for Engineering Mineralized and Load Bearing Tissues.
Li, Chia-Cheng; Kharaziha, Mahshid; Min, Christine; Maas, Richard; Nikkhah, Mehdi
2015-01-01
Microengineering technologies and advanced biomaterials have extensive applications in the field of regenerative medicine. In this chapter, we review the integration of microfabrication techniques and hydrogel-based biomaterials in the field of dental, bone, and cartilage tissue engineering. We primarily discuss the major features that make hydrogels attractive candidates to mimic extracellular matrix (ECM), and we consider the benefits of three-dimensional (3D) culture systems for tissue engineering applications. We then focus on the fundamental principles of microfabrication techniques including photolithography, soft lithography and bioprinting approaches. Lastly, we summarize recent research on microengineering cell-laden hydrogel constructs for dental, bone and cartilage regeneration, and discuss future applications of microfabrication techniques for load-bearing tissue engineering.
Synthetic biodegradable functional polymers for tissue engineering: a brief review.
BaoLin, Guo; Ma, Peter X
2014-04-01
Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.
Riley, Thomas C; Mafi, Reza; Mafi, Pouya; Khan, Wasim S
2018-02-23
The incidence of knee ligament injury is increasing and represents a significant cost to healthcare providers. Current interventions include tissue grafts, suture repair and non-surgical management. These techniques have demonstrated good patient outcomes but have been associated graft rejection, infection, long term immobilization and reduced joint function. The limitations of traditional management strategies have prompted research into tissue engineering of knee ligaments. This paper aims to evaluate whether tissue engineering of knee ligaments offers a viable alternative in the clinical management of knee ligament injuries. A search of existing literature was performed using OVID Medline, Embase, AMED, PubMed and Google Scholar, and a manual review of citations identified within these papers. Silk, polymer and extracellular matrix based scaffolds can all improve graft healing and collagen production. Fibroblasts and stem cells demonstrate compatibility with scaffolds, and have been shown to increase organized collagen production. These effects can be augmented using growth factors and extracellular matrix derivatives. Animal studies have shown tissue engineered ligaments can provide the biomechanical characteristics required for effective treatment of knee ligament injuries. There is a growing clinical demand for a tissue engineered alternative to traditional management strategies. Currently, there is limited consensus regarding material selection for use in tissue engineered ligaments. Further research is required to optimize tissue engineered ligament production before clinical application. Controlled clinical trials comparing the use of tissue engineered ligaments and traditional management in patients with knee ligament injury could determine whether they can provide a cost-effective alternative. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Application of Sheet Technology in Cartilage Tissue Engineering.
Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei
2016-04-01
Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.
Gelatin as Biomaterial for Tissue Engineering.
Echave, Mari C; Saenz del Burgo, Laura; Pedraz, Jose L; Orive, Gorka
2017-01-01
Tissue engineering is considered one of the most important therapeutic strategies of regenerative medicine. The main objective of these new technologies is the development of substitutes made with biomaterials that are able to heal, repair or regenerate injured or diseased tissues and organs. These constructs seek to unlock the limited ability of human tissues and organs to regenerate. In this review, we highlight the convenient intrinsic properties of gelatin for the design and development of advanced systems for tissue engineering. Gelatin is a natural origin protein derived from collagen hydrolysis. We outline herein a state of the art of gelatin-based composites in order to overcome limitations of this polymeric material and modulate the properties of the formulations. Control release of bioactive molecules, formulations with conductive properties or systems with improved mechanical properties can be obtained using gelatin composites. Many studies have found that the use of calcium phosphate ceramics and diverse synthetic polymers in combination with gelatin improve the mechanical properties of the structures. On the other hand, polyaniline and carbon-based nanosubstrates are interesting molecules to provide gelatin-based systems with conductive properties, especially for cardiac and nerve tissue engineering. Finally, this review provides an overview of the different types of gelatin-based structures including nanoparticles, microparticles, 3D scaffolds, electrospun nanofibers and in situ gelling formulations. Thanks to the significant progress that has already been made, along with others that will be achieved in a near future, the safe and effective clinical implementation of gelatin-based products is expected to accelerate and expand shortly. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
Raeisdasteh Hokmabad, Vahideh; Davaran, Soodabeh; Ramazani, Ali; Salehi, Roya
2017-11-01
Current strategies of tissue engineering are focused on the reconstruction and regeneration of damaged or deformed tissues by grafting of cells with scaffolds and biomolecules. Recently, much interest is given to scaffolds which are based on mimic the extracellular matrix that have induced the formation of new tissues. To return functionality of the organ, the presence of a scaffold is essential as a matrix for cell colonization, migration, growth, differentiation and extracellular matrix deposition, until the tissues are totally restored or regenerated. A wide variety of approaches has been developed either in scaffold materials and production procedures or cell sources and cultivation techniques to regenerate the tissues/organs in tissue engineering applications. This study has been conducted to present an overview of the different scaffold fabrication techniques such as solvent casting and particulate leaching, electrospinning, emulsion freeze-drying, thermally induced phase separation, melt molding and rapid prototyping with their properties, limitations, theoretical principles and their prospective in tailoring appropriate micro-nanostructures for tissue regeneration applications. This review also includes discussion on recent works done in the field of tissue engineering.
Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine
Cui, Xiaofeng; Boland, Thomas; D’Lima, Darryl D.; Lotz, Martin K.
2013-01-01
With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting living systems and the bioprinting in tissue engineering field. PMID:22436025
Cohen, Shahar; Leshansky, Lucy; Zussman, Eyal; Burman, Michael; Srouji, Samer; Livne, Erella; Abramov, Natalie; Itskovitz-Eldor, Joseph
2010-10-01
The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.
Chen, Guobao; Lv, Yonggang
2015-01-01
Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.
Bryant, Stephanie J; Vernerey, Franck J
2018-01-01
Biomimetic and biodegradable synthetic hydrogels are emerging as a promising platform for cell encapsulation and tissue engineering. Notably, synthetic-based hydrogels offer highly programmable macroscopic properties (e.g., mechanical, swelling and transport properties) and degradation profiles through control over several tunable parameters (e.g., the initial network structure, degradation kinetics and behavior, and polymer properties). One component to success is the ability to maintain structural integrity as the hydrogel transitions to neo-tissue. This seamless transition is complicated by the fact that cellular activity is highly variable among donors. Thus, computational models provide an important tool in tissue engineering due to their unique ability to explore the coupled processes of hydrogel degradation and neo-tissue growth across multiple length scales. In addition, such models provide new opportunities to develop predictive computational tools to overcome the challenges with designing hydrogels for different donors. In this report, programmable properties of synthetic-based hydrogels and their relation to the hydrogel's structural properties and their evolution with degradation are reviewed. This is followed by recent progress on the development of computational models that describe hydrogel degradation with neo-tissue growth when cells are encapsulated in a hydrogel. Finally, the potential for predictive models to enable patient-specific hydrogel designs for personalized tissue engineering is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lenas, Petros; Moos, Malcolm; Luyten, Frank P
2009-12-01
Recent advances in developmental biology, systems biology, and network science are converging to poise the heretofore largely empirical field of tissue engineering on the brink of a metamorphosis into a rigorous discipline based on universally accepted engineering principles of quality by design. Failure of more simplistic approaches to the manufacture of cell-based therapies has led to increasing appreciation of the need to imitate, at least to some degree, natural mechanisms that control cell fate and differentiation. The identification of many of these mechanisms, which in general are based on cell signaling pathways, is an important step in this direction. Some well-accepted empirical concepts of developmental biology, such as path-dependence, robustness, modularity, and semiautonomy of intermediate tissue forms, that appear sequentially during tissue development are starting to be incorporated in process design.
Advances in Meniscal Tissue Engineering
Longo, Umile Giuseppe; Loppini, Mattia; Forriol, Francisco; Romeo, Giovanni; Maffulli, Nicola; Denaro, Vincenzo
2012-01-01
Meniscal tears are the most common knee injuries and have a poor ability of healing. In the last few decades, several techniques have been increasingly used to optimize meniscal healing. Current research efforts of tissue engineering try to combine cell-based therapy, growth factors, gene therapy, and reabsorbable scaffolds to promote healing of meniscal defects. Preliminary studies did not allow to draw definitive conclusions on the use of these techniques for routine management of meniscal lesions. We performed a review of the available literature on current techniques of tissue engineering for the management of meniscal tears. PMID:25098366
Bioactive glass in tissue engineering
Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.
2011-01-01
This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084
Induced Pluripotent Stem Cells and Periodontal Regeneration.
Du, Mi; Duan, Xuejing; Yang, Pishan
Periodontitis is a chronic inflammatory disease which leads to destruction of both the soft and hard tissues of the periodontium. Tissue engineering is a therapeutic approach in regenerative medicine that aims to induce new functional tissue regeneration via the synergistic combination of cells, biomaterials, and/or growth factors. Advances in our understanding of the biology of stem cells, including embryonic stem cells and mesenchymal stem cells, have provided opportunities for periodontal tissue engineering. However, there remain a number of limitations affecting their therapeutic efficiency. Due to the considerable proliferation and differentiation capacities, recently described induced pluripotent stem cells (iPSCs) provide a new way for cell-based therapies for periodontal regeneration. This review outlines the latest status of periodontal tissue engineering and highlights the potential use of iPSCs in periodontal tissue regeneration.
Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram
2011-04-01
Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.
A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage.
Kino-Oka, Masahiro; Maeda, Yoshikatsu; Yamamoto, Takeyuki; Sugawara, Katsura; Taya, Masahito
2005-03-01
For repairing articular cartilage defects, innovative techniques based on tissue engineering have been developed and are now entering into the practical stage of clinical application by means of grafting in vitro cultured products. A variety of natural and artificial materials available for scaffolds, which permit chondrocyte cells to aggregate, have been designed for their ability to promote cell growth and differentiation. From the viewpoint of the manufacturing process for tissue-engineered cartilage, the diverse nature of raw materials (seeding cells) and end products (cultured cartilage) oblige us to design a tailor-made process with less reproducibility, which is an obstacle to establishing a production doctrine based on bioengineering knowledge concerning growth kinetics and modeling as well as designs of bioreactors and culture operations for certification of high product quality. In this article, we review the recent advances in the manufacturing of tissue-engineered cartilage. After outlining the manufacturing processes for tissue-engineered cartilage in the first section, the second and third sections, respectively, describe the three-dimensional culture of chondrocytes with Aterocollagen gel and kinetic model consideration as a tool for evaluating this culture process. In the final section, culture strategy is discussed in terms of the combined processes of monolayer growth (ex vivo chondrocyte cell expansion) and three-dimensional growth (construction of cultured cartilage in the gel).
Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok
2010-02-01
Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Tabatabaei, Fahimeh Sadat; Tatari, Saeed; Samadi, Ramin; Moharamzadeh, Keyvan
2016-10-01
Dentin has become an interesting potential biomaterial for tissue engineering of oral hard tissues. It can be used as a scaffold or as a source of growth factors in bone tissue engineering. Different forms of dentin have been studied for their potential use as bone substitutes. Here, we systematically review different methods of dentin preparation and the efficacy of processed dentin in bone tissue engineering. An electronic search was carried out in PubMed and Scopus databases for articles published from 2000 to 2016. Studies on dentin preparation for application in bone tissue engineering were selected. The initial search yielded a total of 1045 articles, of which 37 were finally selected. Review of studies showed that demineralization was the most commonly used dentin preparation process for use in tissue engineering. Dentin extract, dentin particles (tooth ash), freeze-dried dentin, and denatured dentin are others method of dentin preparation. Based on our literature review, we can conclude that preparation procedure and the size and shape of dentin particles play an important role in its osteoinductive and osteoconductive properties. Standardization of these methods is important to draw a conclusion in this regard. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2616-2627, 2016. © 2016 Wiley Periodicals, Inc.
Emerging Technologies for Assembly of Microscale Hydrogels
Kavaz, Doga; Demirel, Melik C.; Demirci, Utkan
2013-01-01
Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications. PMID:23184717
Periosteum tissue engineering-a review.
Li, Nanying; Song, Juqing; Zhu, Guanglin; Li, Xiaoyu; Liu, Lei; Shi, Xuetao; Wang, Yingjun
2016-10-18
As always, the clinical therapy of critical size bone defects caused by trauma, tumor removal surgery or congenital malformation is facing great challenges. Currently, various approaches including autograft, allograft and cell-biomaterial composite based tissue-engineering strategies have been implemented to reconstruct injured bone. However, due to damage during the transplantation processes or design negligence of the bionic scaffolds, these methods expose vulnerabilities without the assistance of periosteum, a bilayer membrane on the outer surface of the bone. Periosteum plays a significant role in bone formation and regeneration as a store for progenitor cells, a source of local growth factors and a scaffold to recruit cells and growth factors, and more and more researchers have recognized its great value in tissue engineering application. Besides direct transplantation, periosteum-derived cells can be cultured on various scaffolds for osteogenesis or chondrogenesis application due to their availability. Research studies also provide a biomimetic methodology to synthesize artificial periosteum which mimic native periosteum in structure or function. According to the studies, these tissue-engineered periostea did obviously enhance the therapeutic effects of bone graft and scaffold engineering while they could be directly used as substitutes of native periosteum. Periosteum tissue engineering, whose related research studies have provided new opportunities for the development of bone tissue engineering and therapy, has gradually become a hot spot and there are still lots to consummate. In this review, tissue-engineered periostea were classified into four kinds and discussed, which might help subsequent researchers get a more systematic view of pseudo-periosteum.
Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping
2017-01-01
Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.
Biomaterial-mediated strategies targeting vascularization for bone repair.
García, José R; García, Andrés J
2016-04-01
Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.
Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.
Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy
2014-02-01
In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.
Rafiq, Qasim A; Ortega, Ilida; Jenkins, Stuart I; Wilson, Samantha L; Patel, Asha K; Barnes, Amanda L; Adams, Christopher F; Delcassian, Derfogail; Smith, David
2015-11-01
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.
Two-photon induced collagen cross-linking in bioartificial cardiac tissue
NASA Astrophysics Data System (ADS)
Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander
2011-08-01
Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.
3D printing of functional biomaterials for tissue engineering.
Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen
2016-08-01
3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran
2011-11-01
Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. Copyright © 2011 Elsevier Ltd. All rights reserved.
From stem to roots: Tissue engineering in endodontics
Kala, M.; Banthia, Priyank; Banthia, Ruchi
2012-01-01
The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon. Key words:Regenerative, tissue engineering, stem cells, scaffold. PMID:24558528
Dikina, Anna D; Strobel, Hannah A; Lai, Bradley P; Rolle, Marsha W; Alsberg, Eben
2015-06-01
There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ko, Hsu-Feng; Sfeir, Charles; Kumta, Prashant N.
2010-01-01
Recent developments in tissue engineering approaches frequently revolve around the use of three-dimensional scaffolds to function as the template for cellular activities to repair, rebuild and regenerate damaged or lost tissues. While there are several biomaterials to select as three-dimensional scaffolds, it is generally agreed that a biomaterial to be used in tissue engineering needs to possess certain material characteristics such as biocompatibility, suitable surface chemistry, interconnected porosity, desired mechanical properties and biodegradability. The use of naturally derived polymers as three-dimensional scaffolds has been gaining widespread attention owing to their favourable attributes of biocompatibility, low cost and ease of processing. This paper discusses the synthesis of various polysaccharide-based, naturally derived polymers, and the potential of using these biomaterials to serve as tissue engineering three-dimensional scaffolds is also evaluated. In this study, naturally derived polymers, specifically cellulose, chitosan, alginate and agarose, and their composites, are examined. Single-component scaffolds of plain cellulose, plain chitosan and plain alginate as well as composite scaffolds of cellulose–alginate, cellulose–agarose, cellulose–chitosan, chitosan–alginate and chitosan–agarose are synthesized, and their suitability as tissue engineering scaffolds is assessed. It is shown that naturally derived polymers in the form of hydrogels can be synthesized, and the lyophilization technique is used to synthesize various composites comprising these natural polymers. The composite scaffolds appear to be sponge-like after lyophilization. Scanning electron microscopy is used to demonstrate the formation of an interconnected porous network within the polymeric scaffold following lyophilization. It is also established that HeLa cells attach and proliferate well on scaffolds of cellulose, chitosan or alginate. The synthesis protocols reported in this study can therefore be used to manufacture naturally derived polymer-based scaffolds as potential biomaterials for various tissue engineering applications. PMID:20308112
Wallen, M; Pandit, A
2009-05-01
In addressing the task of developing an undergraduate module in the field of tissue engineering, the greatest challenge lies in managing to capture what is a growing and rapidly changing field. Acknowledging the call for the development of greater critical thinking and interpersonal skills among the next generation of engineers as well as encouraging students to engage actively with the dynamic nature of research in the field, the module was developed to include both project-based and cooperative-learning experiences. These learning activities include developing hypotheses for the application of newly introduced laboratory procedures, a collaborative mock grant submission, and debates on ethical issues in which students are assigned roles as various stakeholders. Feedback from module evaluations has indicated that, while students find the expectations challenging, they are able to gain an advanced insight into a dynamic field. More importantly, students develop research competencies by engaging in activities that require them to link current research directions with their own development of hypotheses for future tissue-engineering applications.
Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems.
Fisher, Robert J; Peattie, Robert A
2007-01-01
The reconstruction of tissues ex vivo and production of cells capable of maintaining a stable performance for extended time periods in sufficient quantity for synthetic or therapeutic purposes are primary objectives of tissue engineering. The ability to characterize and manipulate the cellular microenvironment is critical for successful implementation of such cell-based bioengineered systems. As a result, knowledge of fundamental biomimetics, transport phenomena, and reaction engineering concepts is essential to system design and development. Once the requirements of a specific tissue microenvironment are understood, the biomimetic system specifications can be identified and a design implemented. Utilization of novel membrane systems that are engineered to possess unique transport and reactive features is one successful approach presented here. The limited availability of tissue or cells for these systems dictates the need for microscale reactors. A capstone illustration based on cellular therapy for type 1 diabetes mellitus via encapsulation techniques is presented as a representative example of this approach, to stress the importance of integrated systems.
Mechanical Testing of Hydrogels in Cartilage Tissue Engineering: Beyond the Compressive Modulus
Xiao, Yinghua; Friis, Elizabeth A.; Gehrke, Stevin H.
2013-01-01
Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context. PMID:23448091
Liposomes in tissue engineering and regenerative medicine
Monteiro, Nelson; Martins, Albino; Reis, Rui L.; Neves, Nuno M.
2014-01-01
Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches. PMID:25401172
Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.
Gao, Guifang; Hubbell, Karen; Schilling, Arndt F; Dai, Guohao; Cui, Xiaofeng
2017-01-01
Bioprinting based on thermal inkjet printing is one of the most attractive enabling technologies for tissue engineering and regeneration. During the printing process, cells, scaffolds , and growth factors are rapidly deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations. Ideally, the bioprinted tissues are able to mimic the native anatomic structures in order to restore the biological functions. In this study, a bioprinting platform for 3D cartilage tissue engineering was developed using a commercially available thermal inkjet printer with simultaneous photopolymerization . The engineered cartilage demonstrated native zonal organization, ideal extracellular matrix (ECM ) composition, and proper mechanical properties. Compared to the conventional tissue fabrication approach, which requires extended UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression profile. Therefore, this platform is ideal for anatomic tissue engineering with accurate cell distribution and arrangement.
Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J
2008-07-01
This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.
Low-intensity pulsed ultrasound in dentofacial tissue engineering.
Tanaka, Eiji; Kuroda, Shingo; Horiuchi, Shinya; Tabata, Akira; El-Bialy, Tarek
2015-04-01
Oral and maxillofacial diseases affect millions of people worldwide and hence tissue engineering can be considered an interesting and clinically relevant approach to regenerate orofacial tissues after being affected by different diseases. Among several innovations for tissue regeneration, low-intensity pulsed ultrasound (LIPUS) has been used extensively in medicine as a therapeutic, operative, and diagnostic tool. LIPUS is accepted to promote bone fracture repair and regeneration. Furthermore, the effect of LIPUS on soft tissues regeneration has been paid much attention, and many studies have performed to evaluate the potential use of LIPUS to tissue engineering soft tissues. The present article provides an overview about the status of LIPUS stimulation as a tool to be used to enhance regeneration/tissue engineering. This review consists of five parts. Part 1 is a brief introduction of the acoustic description of LIPUS and mechanical action. In Part 2, biological problems in dentofacial tissue engineering are proposed. Part 3 explores biologic mechanisms of LIPUS to cells and tissues in living body. In Part 4, the effectiveness of LIPUS on cell metabolism and tissue regeneration in dentistry are summarized. Finally, Part 5 relates the possibility of clinical application of LIPUS in orthodontics. The present review brings out better understanding of the bioeffect of LIPUS therapy on orofacial tissues which is essential to the successful integration of management remedies for tissue regeneration/engineering. To develop an evidence-based approach to clinical management and treatment of orofacial degenerative diseases using LIPUS, we would like to be in full pursuit of LIPUS biotherapy. Still, there are many challenges for this relatively new strategy, but the up to date achievements using it promises to go far beyond the present possibilities.
Bone tissue engineering: state of the art and future trends.
Salgado, António J; Coutinho, Olga P; Reis, Rui L
2004-08-09
Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.
[Porous matrix and primary-cell culture: a shared concept for skin and cornea tissue engineering].
Auxenfans, C; Builles, N; Andre, V; Lequeux, C; Fievet, A; Rose, S; Braye, F-M; Fradette, J; Janin-Manificat, H; Nataf, S; Burillon, C; Damour, O
2009-06-01
Skin and cornea both feature an epithelium firmly anchored to its underlying connective compartment: dermis for skin and stroma for cornea. A breakthrough in tissue engineering occurred in 1975 when skin stem cells were successfully amplified in culture by Rheinwald and Green. Since 1981, they are used in the clinical arena as cultured epidermal autografts for the treatment of patients with extensive burns. A similar technique has been later adapted to the amplification of limbal-epithelial cells. The basal layer of the limbal epithelium is located in a transitional zone between the cornea and the conjunctiva and contains the stem cell population of the corneal epithelium called limbal-stem cells (LSC). These cells maintain the proper renewal of the corneal epithelium by generating transit-amplifying cells that migrate from the basal layer of the limbus towards the basal layer of the cornea. Tissue-engineering protocols enable the reconstruction of three-dimensional (3D) complex tissues comprising both an epithelium and its underlying connective tissue. Our in vitro reconstruction model is based on the combined use of cells and of a natural collagen-based biodegradable polymer to produce the connective-tissue compartment. This porous substrate acts as a scaffold for fibroblasts, thereby, producing a living dermal/stromal equivalent, which once epithelialized results into a reconstructed skin/hemicornea. This paper presents the reconstruction of surface epithelia for the treatment of pathological conditions of skin and cornea and the development of 3D tissue-engineered substitutes based on a collagen-GAG-chitosan matrix for the regeneration of skin and cornea.
Advanced Engineering Strategies for Periodontal Complex Regeneration.
Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Seol, Yang-Jo
2016-01-18
The regeneration and integration of multiple tissue types is critical for efforts to restore the function of musculoskeletal complex. In particular, the neogenesis of periodontal constructs for systematic tooth-supporting functions is a current challenge due to micron-scaled tissue compartmentalization, oblique/perpendicular orientations of fibrous connective tissues to the tooth root surface and the orchestration of multiple regenerated tissues. Although there have been various biological and biochemical achievements, periodontal tissue regeneration remains limited and unpredictable. The purpose of this paper is to discuss current advanced engineering approaches for periodontal complex formations; computer-designed, customized scaffolding architectures; cell sheet technology-based multi-phasic approaches; and patient-specific constructs using bioresorbable polymeric material and 3-D printing technology for clinical application. The review covers various advanced technologies for periodontal complex regeneration and state-of-the-art therapeutic avenues in periodontal tissue engineering.
Tailored Carbon Nanotubes for Tissue Engineering Applications
Veetil, Jithesh V.; Ye, Kaiming
2008-01-01
A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT-based tissue engineering applications. This review focuses on the recent developments of CNT-based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT’s biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenecity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials. PMID:19496152
Harnessing biomechanics to develop cartilage regeneration strategies.
Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C
2015-02-01
As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of chondrogenic cells. The challenging problem of enhanced integration of engineered cartilage with native cartilage is approached with both familiar and novel methods, such as lysyl oxidase (LOX). These diverse tissue engineering strategies all aim to build upon thorough biomechanical characterizations to produce functional neotissue that ultimately will help combat the pressing problem of cartilage degeneration. As our prior research is reviewed, we look to establish new pathways to comprehensively and effectively address the complex problems of musculoskeletal cartilage regeneration.
Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering
Hamzehlou, Sepideh
2017-01-01
Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs) have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers), in regards to repair and regenerate injured tissues of cardiac and pulmonary systems. PMID:29244726
Educational Modules in Tissue Engineering Based on the "How People Learn" Framework
ERIC Educational Resources Information Center
Birol, Gulnur; Liu, Shu Q.; Smith, H. David; Hirsch, Penny
2006-01-01
This paper describes an educational package for use in tertiary level tissue engineering education. Current learning science principles and theory were employed in the design process of these educational tools. Each module started with a challenge statement designed to motivate students and consisted of laboratory exercises centered on the "How…
Cell and Tissue Engineering for Liver Disease
Bhatia, Sangeeta N.; Underhill, Gregory H.; Zaret, Kenneth S.; Fox, Ira J.
2015-01-01
Despite the tremendous hurdles presented by the complexity of the liver’s structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near and long-term prospects for such cell-based therapies and the unique challenges for clinical translation. PMID:25031271
Thermal inkjet printing in tissue engineering and regenerative medicine.
Cui, Xiaofeng; Boland, Thomas; D'Lima, Darryl D; Lotz, Martin K
2012-08-01
With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting of living systems and the applications of bioprinting in tissue engineering field.
Griessl, Michael; Buchberger, Anna-Maria; Regn, Sybille; Kreutzer, Kilian; Storck, Katharina
2018-06-01
To find an alternative approach to contemporary techniques in tissue augmentation and reconstruction, tissue engineering strategies aim to involve adipose-derived stem and stromal cells (ASCs) harboring a strong differentiation potential into various tissue types such as bone, cartilage, and fat. Animal research. The stromal vascular fraction (SVF) was used directly as a cell source to provide a potential alternative to contemporary ASC-based adipose tissue engineering. Seeded in TissuCol fibrin, we applied ASCs or SVF cells to porous, degradable polyurethane (PU) scaffolds. We successfully demonstrated the in vivo generation of volume-stable, well-vascularized PU-based constructs containing host-derived mature fat pads. Seeded human stem cells served as modulators of host-cell migration rather than differentiating themselves. We further demonstrated that preliminary culture of SVF cells was not necessary. Our results bring adipose tissue engineering, together with automated processing devices, closer to clinical applicability. The time-consuming and cost-intensive culture and induction of the ASCs is not necessary. NA. Laryngoscope, 128:E206-E213, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.
Nanoparticles-Based Systems for Osteochondral Tissue Engineering.
Oliveira, Isabel; Vieira, Sílvia; Oliveira, J Miguel; Reis, Rui L
2018-01-01
Osteochondral lesions represent one of the major causes of disabilities in the world. These defects are due to degenerative or inflammatory arthritis, but both affect the articular cartilage and the underlying subchondral bone. Defects from trauma or degenerative pathology frequently cause severe pain, joint deformity, and loss of joint motion. Osteochondral defects are a significant challenge in orthopedic surgery, due to the cartilage complexity and unique structure, as well as its exposure to high pressure and motion. Although there are treatments routinely performed in the clinical practice, they present several limitations. Tissue engineering can be a suitable alternative for osteochondral defects since bone and cartilage engineering had experienced a notable advance over the years. Allied with nanotechnology, osteochondral tissue engineering (OCTE) can be leveled up, being possible to create advanced structures similar to the OC tissue. In this chapter, the current strategies using nanoparticles-based systems are overviewed. The results of the studies herein considered confirm that advanced nanomaterials will undoubtedly play a crucial role in the design of strategies for treatment of osteochondral defects in the near future.
Shie, Ming-You; Chang, Wen-Ching; Wei, Li-Ju; Huang, Yu-Hsin; Chen, Chien-Han; Shih, Cheng-Ting; Chen, Yi-Wen; Shen, Yu-Fang
2017-01-01
Diseases in articular cartilages have affected millions of people globally. Although the biochemical and cellular composition of articular cartilages is relatively simple, there is a limitation in the self-repair ability of the cartilage. Therefore, developing strategies for cartilage repair is very important. Here, we report on a new liquid resin preparation process of water-based polyurethane based photosensitive materials with hyaluronic acid with application of the materials for 3D printed customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics the mechanical properties of articular cartilages. It is suitable for culturing human Wharton’s jelly mesenchymal stem cells (hWJMSCs) and the cells in this case showed an excellent chondrogenic differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in customized tissue engineering and also facilitate the development of cartilage tissue engineering. PMID:28772498
Mutsenko, Vitalii V; Bazhenov, Vasilii V; Rogulska, Olena; Tarusin, Dmitriy N; Schütz, Kathleen; Brüggemeier, Sophie; Gossla, Elke; Akkineni, Ashwini R; Meißner, Heike; Lode, Anja; Meschke, Stephan; Ehrlich, Andre; Petović, Slavica; Martinović, Rajko; Djurović, Mirko; Stelling, Allison L; Nikulin, Sergey; Rodin, Sergey; Tonevitsky, Alexander; Gelinsky, Michael; Petrenko, Alexander Y; Glasmacher, Birgit; Ehrlich, Hermann
2017-11-01
The recently discovered chitin-based scaffolds derived from poriferans have the necessary prosperities for potential use in tissue engineering. Among the various demosponges of the Verongida order, Aplysina aerophoba is an attractive target for more in-depth investigations, as it is a renewable source of unique 3D microporous chitinous scaffolds. We found these chitinous scaffolds were cytocompatible and supported attachment, growth and proliferation of human mesenchymal stromal cells (hMSCs) in vitro. Cultivation of hMSCs on the scaffolds for 7days resulted in a two-fold increase in their metabolic activity, indicating increased cell numbers. Cells cultured onto chitin scaffolds in differentiation media were able to differentiate into the chondrogenic, adipogenic and osteogenic lineages, respectively. These results indicate A. aerophoba is a novel source of chitin scaffolds to futher hMSCs-based tissue engineering strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M
2009-06-01
Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.
Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.
2009-01-01
Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040
Porous titanium bases for osteochondral tissue engineering
Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.
2015-01-01
Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541
Porous titanium bases for osteochondral tissue engineering.
Nover, Adam B; Lee, Stephanie L; Georgescu, Maria S; Howard, Daniel R; Saunders, Reuben A; Yu, William T; Klein, Robert W; Napolitano, Anthony P; Ateshian, Gerard A; Hung, Clark T
2015-11-01
Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young's modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. Copyright © 2015. Published by Elsevier Ltd.
Bone Tissue Engineering: Recent Advances and Challenges
Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.
2013-01-01
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648
Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering
NASA Astrophysics Data System (ADS)
Kong, Lingjie; Tang, Jianyong; Cui, Meng
2016-03-01
To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.
Cell-based tissue engineering strategies used in the clinical repair of articular cartilage.
Huang, Brian J; Hu, Jerry C; Athanasiou, Kyriacos A
2016-08-01
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cell-based tissue engineering strategies used in the clinical repair of articular cartilage
Huang, Brian J.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2016-01-01
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. PMID:27177218
Small Molecule based Musculoskeletal Regenerative Engineering
Lo, Kevin W.-H.; Jiang, Tao; Gagnon, Keith A.; Nelson, Clarke; Laurencin, Cato T.
2014-01-01
Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past four years in the area of small bioactive molecule for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve. PMID:24405851
Zhang, Ming-Lei; Cheng, Ji; Xiao, Ye-Chen; Yin, Ruo-Feng; Feng, Xu
2017-02-25
Engineering novel scaffolds that can mimic the functional extracellular matrix (ECM) would be a great achievement in bone tissue engineering. This paper reports the fabrication of novel collagen/chitosan/β-tricalcium phosphate (CCTP) based tissue engineering scaffold. In order to improve the regeneration ability of scaffold, we have embedded raloxifene (RLX)-loaded PLGA microsphere in the CCTP scaffold. The average pore of scaffold was in the range of 150-200μm with ideal mechanical strength and swelling/degradation characteristics. The release rate of RLX from the microsphere (MS) embedded scaffold was gradual and controlled. Also a significantly enhanced cell proliferation was observed in RLX-MS exposed cell group suggesting that microsphere/scaffold could be an ideal biomaterial for bone tissue engineering. Specifically, RLX-MS showed a significantly higher Alizarin red staining indicating the higher mineralization capacity of this group. Furthermore, a high alkaline phosphatase (ALP) activity for RLX-MS exposed group after 15days incubation indicates the bone regeneration capacity of MC3T3-E1 cells. Overall, present study showed that RLX-loaded microsphere embedded scaffold has the promising potential for bone tissue engineering applications. Copyright © 2016. Published by Elsevier B.V.
X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants
Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.
2015-01-01
Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123
An integrated theoretical-experimental approach to accelerate translational tissue engineering.
Coy, Rachel H; Evans, Owen R; Phillips, James B; Shipley, Rebecca J
2018-01-01
Implantable devices utilizing bioengineered tissue are increasingly showing promise as viable clinical solutions. The design of bioengineered constructs is currently directed according to the results of experiments that are used to test a wide range of different combinations and spatial arrangements of biomaterials, cells and chemical factors. There is an outstanding need to accelerate the design process and reduce financial costs, whilst minimizing the required number of animal-based experiments. These aims could be achieved through the incorporation of mathematical modelling as a preliminary design tool. Here we focus on tissue-engineered constructs for peripheral nerve repair, which are designed to aid nerve and blood vessel growth and repair after peripheral nerve injury. We offer insight into the role that mathematical modelling can play within tissue engineering, and motivate the use of modelling as a tool capable of improving and accelerating the design of nerve repair constructs in particular. Specific case studies are presented in order to illustrate the potential of mathematical modelling to direct construct design. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Application of stem cells for cardiovascular grafts tissue engineering.
Wu, Kaihong; Liu, Ying Long; Cui, Bin; Han, Zhongchao
2006-06-01
Congenital and acquired heart diseases are leading causes of morbidity and mortality world-wide. Currently, the synthetic materials or bioprosthetic replacement devices for cardiovascular surgery are imperfect and subject patients to one or more ongoing risks including thrombosis, limited durability and need for reoperations due to lack of growth in children and young adults. Suitable replacement grafts should have appropriate characteristics, including resistance to infection, low immunogenicity, good biocompatability and thromboresistance, with appropriate mechanical and physiological properties. Tissue engineering is a new scientific field aiming at fabrication of living, autologous grafts having structure or function properties that can be used to restore, maintain or improve tissue function. The use of autologous stem cells in cardiovascular tissue engineering is quite promising due to their capacity of self-renewal, high proliferation, and differentiation into specialized progeny. Progress has been made in engineering the various components of the cardiovascular system, including myocardial constructs, heart valves, and vascular patches or conduits with autologous stem cells. This paper will review the current achievements in stem cell-based cardiovascular grafts tissue engineering, with an emphasis on its clinical or possible clinical use in cardiovascular surgery.
Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.
2014-01-01
Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395
Tissue engineering therapies for the vocal fold lamina propria.
Kutty, Jaishankar K; Webb, Ken
2009-09-01
The vocal folds are laryngeal connective tissues with complex matrix composition/organization that provide the viscoelastic mechanical properties required for voice production. Vocal fold injury results in alterations in tissue structure and corresponding changes in tissue biomechanics that reduce vocal quality. Recent work has begun to elucidate the biochemical changes underlying injury-induced pathology and to apply tissue engineering principles to the prevention and reversal of vocal fold scarring. Based on the extensive history of injectable biomaterials in laryngeal surgery, a major focus of regenerative therapies has been the development of novel scaffolds with controlled in vivo residence time and viscoelastic properties approximating the native tissue. Additional strategies have included cell transplantation and delivery of the antifibrotic cytokine hepatocyte growth factor, as well as investigation of the effects of the unique vocal fold vibratory microenvironment using in vitro dynamic culture systems. Recent achievements of significant reductions in fibrosis and improved recovery of native tissue viscoelasticity and vibratory/functional performance in animal models are rapidly moving vocal fold tissue engineering toward clinical application.
The materials used in bone tissue engineering
NASA Astrophysics Data System (ADS)
Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.
2015-11-01
Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.
Engineering dextran-based scaffolds for drug delivery and tissue repair
Sun, Guoming; Mao, Jeremy J
2015-01-01
Owing to its chemically reactive hydroxyl groups, dextran can be modified with different functional groups to form spherical, tubular and 3D network structures. The development of novel functional scaffolds for efficient controlled release and tissue regeneration has been a major research interest, and offers promising therapeutics for many diseases. Dextran-based scaffolds are naturally biodegradable and can serve as bioactive carriers for many protein biomolecules. The reconstruction of the in vitro microenvironment with proper signaling cues for large-scale tissue regenerative scaffolds has yet to be fully developed, and remains a significant challenge in regenerative medicine. This paper will describe recent advances in dextran-based polymers and scaffolds for controlled release and tissue engineering. Special attention is given to the development of dextran-based hydrogels that are precisely manipulated with desired structural properties and encapsulated with defined angiogenic growth factors for therapeutic neovascularization, as well as their potential for wound repair. PMID:23210716
Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.
2005-04-01
Tissue engineering involves regenerating damaged or malfunctioning organs using cells, biomolecules, and synthetic or natural scaffolds. Based on their intended roles, scaffolds can be injected as space-fillers or be preformed and implanted to provide mechanical support. Preformed scaffolds are biomimetic "trellis-like" structures which, on implantation and integration, act as tissue/organ surrogates. Customized, computer controlled, and reproducible preformed scaffolds can be fabricated using Computer Aided Design (CAD) techniques and rapid prototyping devices. A curved, monolithic construct with minimal surface area constitutes an efficient substrate geometry that promotes cell attachment, migration and proliferation. However, current CAD approaches do not provide such a biomorphic construct. We address this critical issue by presenting one of the very first physical realizations of minimal surfaces towards the construction of efficient unit-cell based tissue engineering scaffolds. Mask programmability, and optimal packing density of triply periodic minimal surfaces are used to construct the optimal pore geometry. Budgeted polygonization, and progressive minimal surface refinement facilitate the machinability of these surfaces. The efficient stress distributions, as deduced from the Finite Element simulations, favor the use of these scaffolds for orthopedic applications.
Silk fibroin in tissue engineering.
Kasoju, Naresh; Bora, Utpal
2012-07-01
Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seyednejad, Hajar; Gawlitta, Debby; Dhert, Wouter J A; van Nostrum, Cornelus F; Vermonden, Tina; Hennink, Wim E
2011-05-01
At present there is a strong need for suitable scaffolds that meet the requirements for bone tissue engineering applications. The objective of this study was to investigate the suitability of porous scaffolds based on a hydroxyl functionalized polymer, poly(hydroxymethylglycolide-co-ε-caprolactone) (pHMGCL), for tissue engineering. In a recent study this polymer was shown to be a promising material for bone regeneration. The scaffolds consisting of pHMGCL or poly(ε-caprolactone) (PCL) were produced by means of a rapid prototyping technique (three-dimensional plotting) and were shown to have a high porosity and an interconnected pore structure. The thermal and mechanical properties of both scaffolds were investigated and human mesenchymal stem cells were seeded onto the scaffolds to evaluate the cell attachment properties, as well as cell viability and differentiation. It was shown that the cells filled the pores of the pHMGCL scaffold within 7 days and displayed increased metabolic activity when compared with cells cultured in PCL scaffolds. Importantly, pHMGCL scaffolds supported osteogenic differentiation. Therefore, scaffolds based on pHMGCL are promising templates for bone tissue engineering applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Advanced therapies of skin injuries.
Maver, Tina; Maver, Uroš; Kleinschek, Karin Stana; Raščan, Irena Mlinarič; Smrke, Dragica Maja
2015-12-01
The loss of tissue is still one of the most challenging problems in healthcare. Efficient laboratory expansion of skin tissue to reproduce the skins barrier function can make the difference between life and death for patients with extensive full-thickness burns, chronic wounds, or genetic disorders such as bullous conditions. This engineering has been initiated based on the acute need in the 1980s and today, tissue-engineered skin is the reality. The human skin equivalents are available not only as models for permeation and toxicity screening, but are frequently applied in vivo as clinical skin substitutes. This review aims to introduce the most important recent development in the extensive field of tissue engineering and to describe already approved, commercially available skin substitutes in clinical use.
Advances in Tissue Engineering Techniques for Articular Cartilage Repair
Haleem, AM; Chu, CR
2010-01-01
The limited repair potential of human articular cartilage contributes to development of debilitating osteoarthritis and remains a great clinical challenge. This has led to evolution of cartilage treatment strategies from palliative to either reconstructive or reparative methods in an attempt to delay or “bridge the gap” to joint replacement. Further development of tissue engineering-based cartilage repair methods have been pursued to provide a more functional biological tissue. Currently, tissue engineering of articular cartilage has three cornerstones; a cell population capable of proliferation and differentiation into mature chondrocytes, a scaffold that can host these cells, provide a suitable environment for cellular functioning and serve as a sustained-release delivery vehicle of chondrogenic growth factors and thirdly, signaling molecules and growth factors that stimulate the cellular response and the production of a hyaline extracellular matrix (ECM). The aim of this review is to summarize advances in each of these three fields of tissue engineering with specific relevance to surgical techniques and technical notes. PMID:29430164
Huan, Zhijie; Chu, Henry K; Yang, Jie; Sun, Dong
2017-04-01
Seeding and patterning of cells with an engineered scaffold is a critical process in artificial tissue construction and regeneration. To date, many engineered scaffolds exhibit simple intrinsic designs, which fail to mimic the geometrical complexity of native tissues. In this study, a novel scaffold that can automatically seed cells into multilayer honeycomb patterns for bone tissue engineering application was designed and examined. The scaffold incorporated dielectrophoresis for noncontact manipulation of cells and intrinsic honeycomb architectures were integrated in each scaffold layer. When a voltage was supplied to the stacked scaffold layers, three-dimensional electric fields were generated, thereby manipulating cells to form into honeycomb-like cellular patterns for subsequent culture. The biocompatibility of the scaffold material was confirmed through the cell viability test. Experiments were conducted to evaluate the cell viability during DEP patterning at different voltage amplitudes, frequencies, and manipulating time. Three different mammalian cells were examined and the effects of the cell size and the cell concentration on the resultant cellular patterns were evaluated. Results showed that the proposed scaffold structure was able to construct multilayer honeycomb cellular patterns in a manner similar to the natural tissue. This honeycomb-like scaffold and the dielectrophoresis-based patterning technique examined in this study could provide the field with a promising tool to enhance seeding and patterning of a wide range of cells for the development of high-quality artificial tissues.
Foroughi, Mohammad Reza; Karbasi, Saeed; Ebrahimi-Kahrizsangi, Reza
2013-02-01
Regeneration of bone, cartilage and osteochondral tissues by tissue engineering has attracted intense attention due to its potential advantages over the traditional replacement of tissues with synthetic implants. Nevertheless, there is still a dearth of ideal or suitable scaffolds based on porous biomaterials, and the present study was undertaken to develop and evaluate a useful porous composite scaffold system. In this study, nano hydroxyapatite (nHAp) powder made (about 35-45 nm) by heating at temperature of 900 degrees C and porous hydroxyapatite (40, 50 and 60 wt% solution) for making scaffold, by using Polyurethane sponge replication method. In order to increase the scaffolds mechanical properties, they coated with 2, 4 and 6 wt% Poly-3-hydroxybutyrate (P3HB) for 30 sec and 60 sec, respectively; after the scaffold coated by Polymer and survey results, this scaffold is nHAp/P3HB composite. Based on these results, this scaffold is an optimized one among three tested above mentioned composition and can be utilized in bone tissue engineering. In the result, the best of scaffold is with 50 wt% HAp and 6 wt% P3HB and porosity of present is between 80-90% with compressive strength and modulus 1.51 MPa and 22.73 MPa, respectively, that it can be application in bone tissue engineering.
Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win
2018-02-27
Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.
Cell delivery in regenerative medicine: the cell sheet engineering approach.
Yang, Joseph; Yamato, Masayuki; Nishida, Kohji; Ohki, Takeshi; Kanzaki, Masato; Sekine, Hidekazu; Shimizu, Tatsuya; Okano, Teruo
2006-11-28
Recently, cell-based therapies have developed as a foundation for regenerative medicine. General approaches for cell delivery have thus far involved the use of direct injection of single cell suspensions into the target tissues. Additionally, tissue engineering with the general paradigm of seeding cells into biodegradable scaffolds has also evolved as a method for the reconstruction of various tissues and organs. With success in clinical trials, regenerative therapies using these approaches have therefore garnered significant interest and attention. As a novel alternative, we have developed cell sheet engineering using temperature-responsive culture dishes, which allows for the non-invasive harvest of cultured cells as intact sheets along with their deposited extracellular matrix. Using this approach, cell sheets can be directly transplanted to host tissues without the use of scaffolding or carrier materials, or used to create in vitro tissue constructs via the layering of individual cell sheets. In addition to simple transplantation, cell sheet engineered constructs have also been applied for alternative therapies such as endoscopic transplantation, combinatorial tissue reconstruction, and polysurgery to overcome limitations of regenerative therapies and cell delivery using conventional approaches.
Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering.
Brady, Mariea A; Talvard, Lucien; Vella, Alain; Ethier, C Ross
2017-04-01
An important topic in cartilage tissue engineering is the development of biomimetic scaffolds which mimic the depth-dependent material properties of the native tissue. We describe an advanced trilayered nanocomposite hydrogel (ferrogel) with a gradient in compressive modulus from the top to the bottom layers (p < 0.05) of the construct. Further, the scaffold was able to respond to remote external stimulation, exhibiting an elastic, depth-dependent strain gradient. When bovine chondrocytes were seeded into the ferrogels and cultured for up to 14 days, there was good cell viability and a biochemical gradient was measured with sulphated glycosaminoglycan increasing with depth from the surface. This novel construct provides tremendous scope for tailoring location-specific cartilage replacement tissue; by varying the density of magnetic nanoparticles, concentration of base hydrogel and number of cells, physiologically relevant depth-dependent gradients may be attained. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Cartilage Engineering from Mesenchymal Stem Cells
NASA Astrophysics Data System (ADS)
Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.
Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.
Esophageal tissue engineering: Current status and perspectives.
Poghosyan, T; Catry, J; Luong-Nguyen, M; Bruneval, P; Domet, T; Arakelian, L; Sfeir, R; Michaud, L; Vanneaux, V; Gottrand, F; Larghero, J; Cattan, P
2016-02-01
Tissue engineering, which consists of the combination and in vivo implantation of elements required for tissue remodeling toward a specific organ phenotype, could be an alternative for classical techniques of esophageal replacement. The current hybrid approach entails creation of an esophageal substitute composed of an acellular matrix and autologous epithelial and muscle cells provides the most successful results. Current research is based on the use of mesenchymal stem cells, whose potential for differentiation and proangioogenic, immune-modulator and anti-inflammatory properties are important assets. In the near future, esophageal substitutes could be constructed from acellular "intelligent matrices" that contain the molecules necessary for tissue regeneration; this should allow circumvention of the implantation step and still obtain standardized in vivo biological responses. At present, tissue engineering applications to esophageal replacement are limited to enlargement plasties with absorbable, non-cellular matrices. Nevertheless, the application of existing clinical techniques for replacement of other organs by tissue engineering in combination with a multiplication of translational research protocols for esophageal replacement in large animals should soon pave the way for health agencies to authorize clinical trials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
A novel albumin-based tissue scaffold for autogenic tissue engineering applications.
Li, Pei-Shan; Lee, I-Liang; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin
2014-07-18
Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.
Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine
Lamichhane, Tek N.; Sokic, Sonja; Schardt, John S.; Raiker, Rahul S.; Lin, Jennifer W.
2015-01-01
Extracellular vesicles (EVs)—comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others—have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies. PMID:24957510
Design and Fabrication of an MRI-Compatible, Autonomous Incubation System.
Khalilzad-Sharghi, Vahid; Xu, Huihui
2015-10-01
Tissue engineers have long sought access to an autonomous, imaging-compatible tissue incubation system that, with minimum operator handling, can provide real-time visualization and quantification of cells, tissue constructs, and organs. This type of screening system, capable of operating noninvasively to validate tissue, can overcome current limitations like temperature shock, unsustainable cellular environments, sample contamination, and handling/stress. However, this type of system has been a major challenge, until now. Here, we describe the design, fabrication, and characterization of an innovative, autonomous incubation system that is compatible with a 9.4 T magnetic resonance imaging (MRI) scanner. Termed the e-incubator (patent pending; application number: 13/953,984), this microcontroller-based system is integrated into an MRI scanner and noninvasively screens cells and tissue cultures in an environment where temperature, pH, and media/gas handling are regulated. The 4-week study discussed herein details the continuous operation of the e-incubator for a tissue-engineered osteogenic construct, validated by LIVE/DEAD(®) cell assays and histology. The evolving MR quantitative parameters of the osteogenic construct were used as biomarkers for bone tissue engineering and to further validate the quality of the product noninvasively before harvesting. Importantly, the e-incubator reliably facilitates culturing cells and tissue constructs to create engineered tissues and/or investigate disease therapies.
Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel
2016-10-22
Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of defect filling and development of repair tissue approaching the composition of native cartilage. Hyaline-like cartilage tissues, engineered from autologous nasal chondrocytes, can be used clinically for repair of articular cartilage defects in the knee. Future studies are warranted to assess efficacy in large controlled trials and to investigate an extension of indications to early degenerative states or to other joints. Deutsche Arthrose-Hilfe. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recent trends in bioinks for 3D printing.
Gopinathan, Janarthanan; Noh, Insup
2018-01-01
The worldwide demand for the organ replacement or tissue regeneration is increasing steadily. The advancements in tissue engineering and regenerative medicine have made it possible to regenerate such damaged organs or tissues into functional organ or tissue with the help of 3D bioprinting. The main component of the 3D bioprinting is the bioink, which is crucial for the development of functional organs or tissue structures. The bioinks used in 3D printing technology require so many properties which are vital and need to be considered during the selection. Combination of different methods and enhancements in properties are required to develop more successful bioinks for the 3D printing of organs or tissue structures. This review consists of the recent state-of-art of polymer-based bioinks used in 3D printing for applications in tissue engineering and regenerative medicine. The subsection projects the basic requirements for the selection of successful bioinks for 3D printing and developing 3D tissues or organ structures using combinations of bioinks such as cells, biomedical polymers and biosignals. Different bioink materials and their properties related to the biocompatibility, printability, mechanical properties, which are recently reported for 3D printing are discussed in detail. Many bioinks formulations have been reported from cell-biomaterials based bioinks to cell-based bioinks such as cell aggregates and tissue spheroids for tissue engineering and regenerative medicine applications. Interestingly, more tunable bioinks, which are biocompatible for live cells, printable and mechanically stable after printing are emerging with the help of functional polymeric biomaterials, their modifications and blending of cells and hydrogels. These approaches show the immense potential of these bioinks to produce more complex tissue/organ structures using 3D bioprinting in the future.
Bone mechanobiology, gravity and tissue engineering: effects and insights.
Ruggiu, Alessandra; Cancedda, Ranieri
2015-12-01
Bone homeostasis strongly depends on fine tuned mechanosensitive regulation signals from environmental forces into biochemical responses. Similar to the ageing process, during spaceflights an altered mechanotransduction occurs as a result of the effects of bone unloading, eventually leading to loss of functional tissue. Although spaceflights represent the best environment to investigate near-zero gravity effects, there are major limitations for setting up experimental analysis. A more feasible approach to analyse the effects of reduced mechanostimulation on the bone is represented by the 'simulated microgravity' experiments based on: (1) in vitro studies, involving cell cultures studies and the use of bioreactors with tissue engineering approaches; (2) in vivo studies, based on animal models; and (3) direct analysis on human beings, as in the case of the bed rest tests. At present, advanced tissue engineering methods allow investigators to recreate bone microenvironment in vitro for mechanobiology studies. This group and others have generated tissue 'organoids' to mimic in vitro the in vivo bone environment and to study the alteration cells can go through when subjected to unloading. Understanding the molecular mechanisms underlying the bone tissue response to mechanostimuli will help developing new strategies to prevent loss of tissue caused by altered mechanotransduction, as well as identifying new approaches for the treatment of diseases via drug testing. This review focuses on the effects of reduced gravity on bone mechanobiology by providing the up-to-date and state of the art on the available data by drawing a parallel with the suitable tissue engineering systems. Copyright © 2014 John Wiley & Sons, Ltd.
Application of xanthan gum as polysaccharide in tissue engineering: A review.
Kumar, Anuj; Rao, Kummara Madhusudana; Han, Sung Soo
2018-01-15
Xanthan gum is a microbial high molecular weight exo-polysaccharide produced by Xanthomonas bacteria (a Gram-negative bacteria genus that exhibits several different species) and it has widely been used as an additive in various industrial and biomedical applications such as food and food packaging, cosmetics, water-based paints, toiletries, petroleum, oil-recovery, construction and building materials, and drug delivery. Recently, it has shown great potential in issue engineering applications and a variety of modification methods have been employed to modify xanthan gum as polysaccharide for this purpose. However, xanthan gum-based biomaterials need further modification for several targeted applications due to some disadvantages (e.g., processing and mechanical performance of xanthan gum), where modified xanthan gum will be well suited for tissue engineering products. In this review, the current scenario of the use of xanthan gum for various tissue engineering applications, including its origin, structure, properties, modification, and processing for the preparation of the hydrogels and/or the scaffolds is precisely reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tissue engineering of ligaments for reconstructive surgery.
Hogan, MaCalus V; Kawakami, Yohei; Murawski, Christopher D; Fu, Freddie H
2015-05-01
The use of musculoskeletal bioengineering and regenerative medicine applications in orthopaedic surgery has continued to evolve. The aim of this systematic review was to address tissue-engineering strategies for knee ligament reconstruction. A systematic review of PubMed/Medline using the terms "knee AND ligament" AND "tissue engineering" OR "regenerative medicine" was performed. Two authors performed the search, independently assessed the studies for inclusion, and extracted the data for inclusion in the review. Both preclinical and clinical studies were reviewed, and the articles deemed most relevant were included in this article to provide relevant basic science and recent clinical translational knowledge concerning "tissue-engineering" strategies currently used in knee ligament reconstruction. A total of 224 articles were reviewed in our initial PubMed search. Non-English-language studies were excluded. Clinical and preclinical studies were identified, and those with a focus on knee ligament tissue-engineering strategies including stem cell-based therapies, growth factor administration, hybrid biomaterial, and scaffold development, as well as mechanical stimulation modalities, were reviewed. The body of knowledge surrounding tissue-engineering strategies for ligament reconstruction continues to expand. Presently, various tissue-engineering techniques have some potential advantages, including faster recovery, better ligamentization, and possibly, a reduction of recurrence. Preclinical research of these novel therapies continues to provide promising results. There remains a need for well-designed, high-powered comparative clinical studies to serve as a foundation for successful translation into the clinical setting going forward. Level IV, systematic review of Level IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants
Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...
2015-10-20
Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less
Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review.
Yousefi, Azizeh-Mitra; Hoque, Md Enamul; Prasad, Rangabhatala G S V; Uth, Nicholas
2015-07-01
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article. © 2014 Wiley Periodicals, Inc.
3D Bioprinting and In Vitro Cardiovascular Tissue Modeling.
Jang, Jinah
2017-08-18
Numerous microfabrication approaches have been developed to recapitulate morphologically and functionally organized tissue microarchitectures in vitro; however, the technical and operational limitations remain to be overcome. 3D printing technology facilitates the building of a construct containing biomaterials and cells in desired organizations and shapes that have physiologically relevant geometry, complexity, and micro-environmental cues. The selection of biomaterials for 3D printing is considered one of the most critical factors to achieve tissue function. It has been reported that some printable biomaterials, having extracellular matrix-like intrinsic microenvironment factors, were capable of regulating stem cell fate and phenotype. In particular, this technology can control the spatial positions of cells, and provide topological, chemical, and complex cues, allowing neovascularization and maturation in the engineered cardiovascular tissues. This review will delineate the state-of-the-art 3D bioprinting techniques in the field of cardiovascular tissue engineering and their applications in translational medicine. In addition, this review will describe 3D printing-based pre-vascularization technologies correlated with implementing blood perfusion throughout the engineered tissue equivalent. The described engineering method may offer a unique approach that results in the physiological mimicry of human cardiovascular tissues to aid in drug development and therapeutic approaches.
Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.
Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo
2018-02-01
Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.
3D Bioprinting and In Vitro Cardiovascular Tissue Modeling
Jang, Jinah
2017-01-01
Numerous microfabrication approaches have been developed to recapitulate morphologically and functionally organized tissue microarchitectures in vitro; however, the technical and operational limitations remain to be overcome. 3D printing technology facilitates the building of a construct containing biomaterials and cells in desired organizations and shapes that have physiologically relevant geometry, complexity, and micro-environmental cues. The selection of biomaterials for 3D printing is considered one of the most critical factors to achieve tissue function. It has been reported that some printable biomaterials, having extracellular matrix-like intrinsic microenvironment factors, were capable of regulating stem cell fate and phenotype. In particular, this technology can control the spatial positions of cells, and provide topological, chemical, and complex cues, allowing neovascularization and maturation in the engineered cardiovascular tissues. This review will delineate the state-of-the-art 3D bioprinting techniques in the field of cardiovascular tissue engineering and their applications in translational medicine. In addition, this review will describe 3D printing-based pre-vascularization technologies correlated with implementing blood perfusion throughout the engineered tissue equivalent. The described engineering method may offer a unique approach that results in the physiological mimicry of human cardiovascular tissues to aid in drug development and therapeutic approaches. PMID:28952550
Biomaterials and Stem Cells for Tissue Engineering
Zhang, Zhanpeng; Gupte, Melanie J.; Ma, Peter X.
2013-01-01
Importance of the field Organ failure and tissue loss are challenging health issues due to widespread injury, the lack of organs for transplantation, and limitations of conventional artificial implants. The field of tissue engineering aims to provide alternative living substitutes that restore, maintain or improve tissue function. Areas covered in this review In this paper, a wide range of porous scaffolds are reviewed, with an emphasis on phase separation techniques that generate advantageous nanofibrous 3D scaffolds for stem cell-based tissue engineering applications. In addition, methods for presentation and delivery of bioactive molecules to mimic the properties of stem cell niche are summarized. Recent progress in using these bio-instructive scaffolds to support stem cell differentiation and tissue regeneration is also presented. What the reader will gain Stem cells have great clinical potential because of their capability to differentiate into multiple cell types. Biomaterials have served as artificial extracellular environments to regulate stem cell behavior. Biomaterials with various physical, mechanical, and chemical properties can be designed to control stem cell development for regeneration. Take home message The research at the interface of stem cell biology and biomaterials has made and will continue to make exciting advances in tissue engineering. PMID:23327471
2016-01-01
Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance. PMID:28058277
Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming
2013-12-01
Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Porous magnesium-based scaffolds for tissue engineering.
Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R; Tayebi, Lobat
2017-02-01
Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.
Tan, Andrea R.
2017-01-01
Abstract Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell‐based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano‐chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage‐specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well‐developed techniques from chondrocyte‐based cartilage tissue engineering. Stem Cells Translational Medicine 2017;6:1295–1303 PMID:28177194
Periodontics--tissue engineering and the future.
Douglass, Gordon L
2005-03-01
Periodontics has a long history of utilizing advances in science to expand and improve periodontal therapies. Recently the American Academy of Periodontology published the findings of the Contemporary Science Workshop, which conducted state-of-the-art evidence-based reviews of current and emerging areas in periodontics. The findings of this workshop provide the basis for an evidence-based approach to periodontal therapy. While the workshop evaluated all areas of periodontics, it is in the area of tissue engineering that the most exciting advances are becoming a reality.
Alberti, C
2016-01-01
To prevent problematic outcomes of bowel-based bladder reconstructive surgery, such as prosthetic tumors and systemic metabolic complications, research works, to either regenerate and strengthen failing organ or build organ replacement biosubstitute, have been turned, from 90s of the last century, to both regenerative medicine and tissue engineering.Various types of acellular matrices, naturally-derived materials, synthetic polymers have been used for either "unseeded" (cell free) or autologous "cell seeded" tissue engineering scaffolds. Different categories of cell sources - from autologous differentiated urothelial and smooth muscle cells to natural or laboratory procedure-derived stem cells - have been taken into consideration to reach the construction of suitable "cell seeded" templates. Current clinically validated bladder tissue engineering approaches essentially consist of augmentation cystoplasty in patients suffering from poorly compliant neuropathic bladder. No clinical applications of wholly tissue engineered neobladder have been carried out to radical-reconstructive surgical treatment of bladder malignancies or chronic inflammation-due vesical coarctation. Reliable reasons why bladder tissue engineering clinical applications so far remain unusual, particularly imply the risk of graft ischemia, hence its both fibrous contraction and even worse perforation. Therefore, the achievement of graft vascular network (vasculogenesis) could allow, together with the promotion of host surrounding vessel sprouting (angiogenesis), an effective graft blood supply, so avoiding the ischemia-related serious complications.
Recent advances in gene-enhanced bone tissue engineering.
Betz, Volker M; Kochanek, Stefan; Rammelt, Stefan; Müller, Peter E; Betz, Oliver B; Messmer, Carolin
2018-03-30
The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years. Copyright © 2018 John Wiley & Sons, Ltd.
Duffy, Rebecca M; Feinberg, Adam W
2014-01-01
Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. © 2013 Wiley Periodicals, Inc.
Breidenbach, Andrew P; Dyment, Nathaniel A; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Butler, David L
2015-02-01
The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair.
Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.
2015-01-01
The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738
ERIC Educational Resources Information Center
Bowles, Robby D.; Saroka, James M.; Archer, Shivaun D.; Bonassar, Lawrence J.
2012-01-01
Because of cost and time, it is difficult to relate to students how fundamental chemical principles are involved in cutting edge biomedical breakthroughs being reported in the national media. The laboratory exercise presented here is aimed at high school chemistry students and uses alginate hydrogels, a common material used in tissue engineering,…
Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali
2017-07-15
Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering platform to address this issue. In this article, we describe the fundamental problems encountered in this field and review recent progress in designing cell-hydrogel constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel composition, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation hydrogel/inorganic particle/stem cell hybrid composites with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing and bioengineering technologies (e.g. 3D bioprinting) for fabrication of hydrogel-based osteochondral and cartilage constructs. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yu, Xiaojun; Botchwey, Edward A.; Levine, Elliot M.; Pollack, Solomon R.; Laurencin, Cato T.
2004-01-01
An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by mixing lighter-than-water (density, <1g/ml) and heavier-than-water (density, >1g/ml) microspheres of 85:15 poly(lactide-co-glycolide). We quantified the rate of 3D flow through the scaffolds by using a particle-tracking system, and the results suggest that motion trajectories and, therefore, the flow velocity around and through scaffolds in rotating bioreactors can be manipulated by varying the ratio of heavier-than-water to lighter-than-water microspheres. When rat primary calvarial cells were cultured on the scaffolds in bioreactors for 7 days, the 3D dynamic flow environment affected bone cell distribution and enhanced cell phenotypic expression and mineralized matrix synthesis within tissue-engineered constructs compared with static conditions. These studies provide a foundation for exploring the effects of dynamic flow on osteoblast function and provide important insight into the design and optimization of 3D scaffolds suitable in bioreactors for in vitro tissue engineering of bone. PMID:15277663
Hernon, Catherine A; Harrison, Caroline A; Thornton, Daniel J A; MacNeil, Sheila
2007-01-01
The success of laboratory-expanded autologous keratinocytes for the treatment of severe burn injuries is often compromised by their lack of dermal remnants and failure to establish a secure dermo-epidermal junction on the wound bed. We have developed a tissue-engineered skin substitute for in vivo use, based on a sterilized donor human dermis seeded with autologous keratinocytes and fibroblasts. However, culture rates are currently too slow for clinical use in acute burns. Our aim in this study was to increase the rate of production of tissue-engineered skin. Two approaches were explored: one using a commercial low-calcium media and the other supplementing well-established media for keratinocyte culture with the calcium-chelating agent ethylene glutamine tetra-acetic acid (EGTA). Using commercial low-calcium media for both the initial cell culture and subsequent culture of tissue-engineered skin did not produce tissue suitable for clinical use. However, it was possible to enhance the initial proliferation of keratinocytes and to increase their horizontal migration in tissue-engineered skin by supplementing established culture medium with 0.04 mM EGTA without sacrificing epidermal attachment and differentiation. Enhancement of keratinocyte migration with EGTA was also maximal in the absence of fibroblasts or basement membrane.
Citrate-Based Biomaterials and Their Applications in Regenerative Engineering
Tran, Richard T.; Yang, Jian; Ameer, Guillermo A.
2015-01-01
Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering. PMID:27004046
Animal models for bone tissue engineering and modelling disease
Griffin, Michelle
2018-01-01
ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995
Life is 3D: Boosting Spheroid Function for Tissue Engineering.
Laschke, Matthias W; Menger, Michael D
2017-02-01
Spheroids provide a 3D environment with intensive cell-cell contacts. As a result of their excellent regenerative properties and rapid progress in their high-throughput production, spheroids are increasingly suggested as building blocks for tissue engineering. In this review, we focus on innovative biotechnological approaches that increase the quality of spheroids for this specific type of application. These include in particular the fabrication of coculture spheroids, mimicking the complex morphology and physiological tasks of natural tissues. In vitro preconditioning under different culture conditions and incorporation of biomaterials improve the function of spheroids and their directed fusion into macrotissues of desired shapes. The continuous development of these sophisticated approaches may markedly contribute to a broad implementation of spheroid-based tissue engineering in future regenerative medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hofmann, Matthias C; Whited, Bryce M; Criswell, Tracy; Rylander, Marissa Nichole; Rylander, Christopher G; Soker, Shay; Wang, Ge; Xu, Yong
2012-09-01
A major limitation in tissue engineering is the lack of nondestructive methods that assess the development of tissue scaffolds undergoing preconditioning in bioreactors. Due to significant optical scattering in most scaffolding materials, current microscope-based imaging methods cannot "see" through thick and optically opaque tissue constructs. To address this deficiency, we developed a fiber-optic-based imaging method that is capable of nondestructive imaging of fluorescently labeled cells through a thick and optically opaque scaffold, contained in a bioreactor. This imaging modality is based on the local excitation of fluorescent cells, the acquisition of fluorescence through the scaffold, and fluorescence mapping based on the position of the excitation light. To evaluate the capability and accuracy of the imaging system, human endothelial cells (ECs), stably expressing green fluorescent protein (GFP), were imaged through a fibrous scaffold. Without sacrificing the scaffolds, we nondestructively visualized the distribution of GFP-labeled cells through a ~500 μm thick scaffold with cell-level resolution and distinct localization. These results were similar to control images obtained using an optical microscope with direct line-of-sight access. Through a detailed quantitative analysis, we demonstrated that this method achieved a resolution on the order of 20-30 μm, with 10% or less deviation from standard optical microscopy. Furthermore, we demonstrated that the penetration depth of the imaging method exceeded that of confocal laser scanning microscopy by more than a factor of 2. Our imaging method also possesses a working distance (up to 8 cm) much longer than that of a standard confocal microscopy system, which can significantly facilitate bioreactor integration. This method will enable the nondestructive monitoring of ECs seeded on the lumen of a tissue-engineered vascular graft during preconditioning in vitro, as well as for other tissue-engineered constructs in the future.
Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki
2007-08-01
An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.
The materials used in bone tissue engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.
Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers aremore » the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.« less
Cell–scaffold interaction within engineered tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong
The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted largemore » amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.« less
Singh, Milind; Sandhu, Brindar; Scurto, Aaron; Berkland, Cory; Detamore, Michael S.
2009-01-01
Shape-specific, macroporous tissue engineering scaffolds were fabricated and homogeneously seeded with cells in a single step. This method brings together CO2 polymer processing and microparticle-based scaffolds in a manner that allows each to solve the key limitation of the other. Specifically, microparticle-based scaffolds have suffered from the limitation that conventional microsphere sintering methods (e.g., heat, solvents) are not cytocompatible, yet we have shown that cell viability was sustained with sub-critical (i.e., gaseous) CO2 sintering of microspheres in the presence of cells at near-ambient temperatures. On the other hand, the fused microspheres provided the pore interconnectivity that has eluded supercritical CO2 foaming approaches. Here, fused poly(lactide-co-glycolide) microsphere scaffolds were seeded with human umbilical cord mesenchymal stromal cells to demonstrate the feasibility of utilizing these matrices for cartilage regeneration. We also demonstrated that the approach may be modified to produce thin cell-loaded patches as a promising alternative for skin tissue engineering applications. PMID:19660579
Are synthetic scaffolds suitable for the development of clinical tissue-engineered tubular organs?
Del Gaudio, Costantino; Baiguera, Silvia; Ajalloueian, Fatemeh; Bianco, Alessandra; Macchiarini, Paolo
2014-07-01
Transplantation of tissues and organs is currently the only available treatment for patients with end-stage diseases. However, its feasibility is limited by the chronic shortage of suitable donors, the need for life-long immunosuppression, and by socioeconomical and religious concerns. Recently, tissue engineering has garnered interest as a means to generate cell-seeded three-dimensional scaffolds that could replace diseased organs without requiring immunosuppression. Using a regenerative approach, scaffolds made by synthetic, nonimmunogenic, and biocompatible materials have been developed and successfully clinically implanted. This strategy, based on a viable and ready-to-use bioengineered scaffold, able to promote novel tissue formation, favoring cell adhesion and proliferation, could become a reliable alternative to allotransplatation in the next future. In this article, tissue-engineered synthetic substitutes for tubular organs (such as trachea, esophagus, bile ducts, and bowel) are reviewed, including a discussion on their morphological and functional properties. © 2013 Wiley Periodicals, Inc.
Uchida, Noriyuki; Sivaraman, Srikanth; Amoroso, Nicholas J; Wagner, William R; Nishiguchi, Akihiro; Matsusaki, Michiya; Akashi, Mitsuru; Nagatomi, Jiro
2016-01-01
Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications. © 2015 Wiley Periodicals, Inc.
A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models.
Bono, N; Meghezi, S; Soncini, M; Piola, M; Mantovani, D; Fiore, Gianfranco Beniamino
2017-06-01
In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.
Denecke, Bernd; Horsch, Liska D; Radtke, Stefan; Fischer, Johannes C; Horn, Peter A; Giebel, Bernd
2015-11-01
One of the major challenges in tissue engineering is to supply larger three-dimensional (3D) bioengineered tissue transplants with sufficient amounts of nutrients and oxygen and to allow metabolite removal. Consequently, artificial vascularization strategies of such transplants are desired. One strategy focuses on endothelial cells capable of initiating new vessel formation, which are settled on scaffolds commonly used in tissue engineering. A bottleneck in this strategy is to obtain sufficient amounts of endothelial cells, as they can be harvested only in small quantities directly from human tissues. Thus, protocols are required to expand appropriate cells in sufficient amounts without interfering with their capability to settle on scaffold materials and to initiate vessel formation. Here, we analysed whether umbilical cord blood (CB)-derived endothelial colony-forming cells (ECFCs) fulfil these requirements. In a first set of experiments, we showed that marginally expanded ECFCs settle and survive on different scaffold biomaterials. Next, we improved ECFC culture conditions and developed a protocol for ECFC expansion compatible with 'Good Manufacturing Practice' (GMP) standards. We replaced animal sera with human platelet lysates and used a novel type of tissue-culture ware. ECFCs cultured under the new conditions revealed significantly lower apoptosis and increased proliferation rates. Simultaneously, their viability was increased. Since extensively expanded ECFCs could still settle on scaffold biomaterials and were able to form tubular structures in Matrigel assays, we conclude that these ex vivo-expanded ECFCs are a novel, very potent cell source for scaffold-based tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.
Improvement of biomaterials used in tissue engineering by an ageing treatment.
Acevedo, Cristian A; Díaz-Calderón, Paulo; Enrione, Javier; Caneo, María J; Palacios, Camila F; Weinstein-Oppenheimer, Caroline; Brown, Donald I
2015-04-01
Biomaterials based on crosslinked sponges of biopolymers have been extensively used as scaffolds to culture mammal cells. It is well known that single biopolymers show significant change over time due to a phenomenon called physical ageing. In this research, it was verified that scaffolds used for skin tissue engineering (based on gelatin, chitosan and hyaluronic acid) express an ageing-like phenomenon. Treatments based on ageing of scaffolds improve the behavior of skin-cells for tissue engineering purposes. Physical ageing of dry scaffolds was studied by differential scanning calorimetry and was modeled with ageing kinetic equations. In addition, the physical properties of wet scaffolds also changed with the ageing treatments. Scaffolds were aged up to 3 weeks, and then skin-cells (fibroblasts) were seeded on them. Results indicated that adhesion, migration, viability, proliferation and spreading of the skin-cells were affected by the scaffold ageing. The best performance was obtained with a 2-week aged scaffold (under cell culture conditions). The cell viability inside the scaffold was increased from 60% (scaffold without ageing treatment) to 80%. It is concluded that biopolymeric scaffolds can be modified by means of an ageing treatment, which changes the behavior of the cells seeded on them. The ageing treatment under cell culture conditions might become a bioprocess to improve the scaffolds used for tissue engineering and regenerative medicine.
Proving the suitability of magnetoelectric stimuli for tissue engineering applications.
Ribeiro, C; Correia, V; Martins, P; Gama, F M; Lanceros-Mendez, S
2016-04-01
A novel approach for tissue engineering applications based on the use of magnetoelectric materials is presented. This work proves that magnetoelectric Terfenol-D/poly(vinylidene fluoride-co-trifluoroethylene) composites are able to provide mechanical and electrical stimuli to MC3T3-E1 pre-osteoblast cells and that those stimuli can be remotely triggered by an applied magnetic field. Cell proliferation is enhanced up to ≈ 25% when cells are cultured under mechanical (up to 110 ppm) and electrical stimulation (up to 0.115 mV), showing that magnetoelectric cell stimulation is a novel and suitable approach for tissue engineering allowing magnetic, mechanical and electrical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.
Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S
2016-04-01
A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.
Engineering Pre-vascularized Scaffolds for Bone Regeneration.
Barabaschi, Giada D G; Manoharan, Vijayan; Li, Qing; Bertassoni, Luiz E
2015-01-01
Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaffold. Unavailability of a well-defined vasculature also results in ineffective integration of scaffolds to the host vasculature upon implantation. Arguably, one of the greatest challenges in engineering clinically relevant bone substitutes, therefore, has been the development of vascularized bone scaffolds. Various approaches ranging from peptide and growth factor functionalized biomaterials to hyper-porous scaffolds have been proposed to address this problem with reasonable success. An emerging alternative to address this challenge has been the fabrication of pre-vascularized scaffolds by taking advantage of biomanufacturing techniques, such as soft- and photo-lithography or 3D bioprinting, and cell-based approaches, where functional capillaries are engineered in cell-laden scaffolds prior to implantation. These strategies seek to engineer pre-vascularized tissues in vitro, allowing for improved anastomosis with the host vasculature upon implantation, while also improving cell viability and tissue development in vitro. This book chapter provides an overview of recent methods to engineer pre-vascularized scaffolds for bone regeneration. We first review the development of functional blood capillaries in bony structures and discuss controlled delivery of growth factors, co-culture systems, and on-chip studies to engineer vascularized cell-laden biomaterials. Lastly, we review recent studies using microfabrication techniques and 3D printing to engineer pre-vascularized scaffolds for bone tissue engineering.
NASA Astrophysics Data System (ADS)
Liu, Hui; Lv, Peizhen; Zhu, Yongjia; Wu, Huayu; Zhang, Kun; Xu, Fuben; Zheng, Li; Zhao, Jinmin
2017-01-01
Salidriside (SDS), a phenylpropanoid glycoside derived from Rhodiola rosea L, has been shown to be neuroprotective in many studies, which may be promising in nerve recovery. In this study, the neuroprotective effects of SDS on engineered nerve constructed by Schwann cells (SCs) and Poly (lactic-co-glycolic acid) (PLGA) were studied in vitro. We further investigated the effect of combinational therapy of SDS and PLGA/SCs based tissue engineering on peripheral nerve regeneration based on the rat model of nerve injury by sciatic transection. The results showed that SDS dramatically enhanced the proliferation and function of SCs. The underlying mechanism may be that SDS affects SCs growth through the modulation of neurotrophic factors (BDNF, GDNF and CNTF). 12 weeks after implantation with a 12 mm gap of sciatic nerve injury, SDS-PLGA/SCs achieved satisfying outcomes of nerve regeneration, as evidenced by morphological and functional improvements upon therapy by SDS, PLGA/SCs or direct suture group assessed by sciatic function index, nerve conduction assay, HE staining and immunohistochemical analysis. Our results demonstrated the significant role of introducing SDS into neural tissue engineering to promote nerve regeneration.
NASA Astrophysics Data System (ADS)
Moutos, Franklin T.; Freed, Lisa E.; Guilak, Farshid
2007-02-01
Tissue engineering seeks to repair or regenerate tissues through combinations of implanted cells, biomaterial scaffolds and biologically active molecules. The rapid restoration of tissue biomechanical function remains an important challenge, emphasizing the need to replicate structural and mechanical properties using novel scaffold designs. Here we present a microscale 3D weaving technique to generate anisotropic 3D woven structures as the basis for novel composite scaffolds that are consolidated with a chondrocyte-hydrogel mixture into cartilage tissue constructs. Composite scaffolds show mechanical properties of the same order of magnitude as values for native articular cartilage, as measured by compressive, tensile and shear testing. Moreover, our findings showed that porous composite scaffolds could be engineered with initial properties that reproduce the anisotropy, viscoelasticity and tension-compression nonlinearity of native articular cartilage. Such scaffolds uniquely combine the potential for load-bearing immediately after implantation in vivo with biological support for cell-based tissue regeneration without requiring cultivation in vitro.
Ex vivo method to visualize and quantify vascular networks in native and tissue engineered skin.
Egaña, José Tomás; Condurache, Alexandru; Lohmeyer, Jörn Andreas; Kremer, Mathias; Stöckelhuber, Beate M; Lavandero, Sergio; Machens, Hans-Günther
2009-03-01
Neovascularization plays a pivotal role in tissue engineering and tissue regeneration. However, reliable technologies to visualize and quantify blood vessel networks in target tissue areas are still pending. In this work, we introduce a new method which allows comparing vascularization levels in normal and tissue-engineered skin. Normal skin was isolated, and vascular dermal regeneration was analyzed based on tissue transillumination and computerized digital segmentation. For tissue-engineered skin, a bilateral full skin defect was created in a nude mouse model and then covered with a commercially available scaffold for dermal regeneration. After 3 weeks, the whole skin (including scaffold for dermal regeneration) was harvested, and vascularization levels were analyzed. The blood vessel network in the skin was better visualized by transillumination than by radio-angiographic studies, the gold standard for angiographies. After visualization, the whole vascular network was digitally segmented showing an excellent overlapping with the original pictures. Quantification over the digitally segmented picture was performed, and an index of vascularization area (VAI) and length (VLI) of the vessel network was obtained in target tissues. VAI/VLI ratio was calculated to obtain the vessel size index. We present a new technique which has several advantages compared to others, as animals do not require intravascular perfusions, total areas of interest can be quantitatively analyzed at once, and the same target tissue can be processed for further experimental analysis.
Boominathan, Vijay P; Ferreira, Tracie L
2012-12-01
Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.
Mutsenko, Vitalii V; Gryshkov, Oleksandr; Lauterboeck, Lothar; Rogulska, Olena; Tarusin, Dmitriy N; Bazhenov, Vasilii V; Schütz, Kathleen; Brüggemeier, Sophie; Gossla, Elke; Akkineni, Ashwini R; Meißner, Heike; Lode, Anja; Meschke, Stephan; Fromont, Jane; Stelling, Allison L; Tabachnik, Konstantin R; Gelinsky, Michael; Nikulin, Sergey; Rodin, Sergey; Tonevitsky, Alexander G; Petrenko, Alexander Y; Glasmacher, Birgit; Schupp, Peter J; Ehrlich, Hermann
2017-11-01
The extraordinary biocompatibility and mechanical properties of chitinous scaffolds from marine sponges endows these structures with unique properties that render them ideal for diverse biomedical applications. In the present work, a technological route to produce "ready-to-use" tissue-engineered products based on poriferan chitin is comprehensively investigated for the first time. Three key stages included isolation of scaffolds from the marine demosponge Ianthella basta, confirmation of their biocompatibility with human mesenchymal stromal cells, and cryopreservation of the tissue-like structures grown within these scaffolds using a slow cooling protocol. Biocompatibility of the macroporous, flat chitin scaffolds has been confirmed by cell attachment, high cell viability and the ability to differentiate into the adipogenic lineage. The viability of cells cryopreserved on chitin scaffolds was reduced by about 30% as compared to cells cryopreserved in suspension. However, the surviving cells were able to retain their differentiation potential; and this is demonstrated for the adipogenic lineage. The results suggest that chitin from the marine demosponge I. basta is a promising, highly biocompatible biomaterial for stem cell-based tissue-engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Gsib, Olfat; Duval, Jean-Luc; Goczkowski, Mathieu; Deneufchatel, Marie; Fichet, Odile; Larreta-Garde, Véronique; Bencherif, Sidi Ahmed; Egles, Christophe
2017-12-10
Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.
Gsib, Olfat; Duval, Jean-Luc; Goczkowski, Mathieu; Deneufchatel, Marie; Fichet, Odile; Larreta-Garde, Véronique
2017-01-01
Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering. PMID:29232876
New Strategies in Targeted Interventions for Posttraumatic Osteoarthritis (PT-OA)
2016-08-01
changes No changes Fisher, M., Sonokawa, M., Conroy, S., Shepard , J., Dealy, N. Reducing EGFR signal activity slows progression of post-traumatic...Quantification for Stem Cell Based Tissue Engineered Cartilage, Stem Cell and Regenerative Medicine, Sept, 2013, University of Illinois at Chicago ...UIC), Chicago , IL. 18. Nukavarapu, S.P.* Tissue Engineered Matrices for Large Area Bone Regeneration, Gordon Research Conference on Musculoskeletal
Tissue Engineered Bone Using Polycaprolactone Scaffolds Made by Selective Laser Sintering
2005-01-01
temporo - mandibular joint (TMJ) pose many challenges for bone tissue engineering. Adverse reactions to alloplastic, non- biological materials result in...producing a prototype mandibular condyle scaffold based on an actual pig condyle. INTRODUCTION Repair and reconstruction of complex joints such as the...computed tomography (CT) data with a designed porous architecture to build a complex scaffold that mimics a mandibular condyle. Results show that
Silk sericin: A versatile material for tissue engineering and drug delivery.
Lamboni, Lallepak; Gauthier, Mario; Yang, Guang; Wang, Qun
2015-12-01
Sericin is an inexpensive glycoprotein obtained as a by-product in the silk industry. Its variable amino acid composition and diverse functional groups confer upon it attractive bioactive properties, which are particularly interesting for biomedical applications. Because of its antioxidant character, moisturizing ability, and mitogenic effect on mammalian cells, sericin is useful in cell culture and tissue engineering. Its positive effects on keratinocytes and fibroblasts have led to the development of sericin-based biomaterials for skin tissue repair, mainly as wound dressings. Additionally, sericin can be used for bone tissue engineering owing to its ability to induce nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, such as films, sponges, and hydrogels, are prepared by cross-linking, ethanol precipitation, or blending with other polymers. Sericin may also be employed for drug delivery because its chemical reactivity and pH-responsiveness facilitate the fabrication of nano- and microparticles, hydrogels, and conjugated molecules, improving the bioactivity of drugs. Here, we summarized the recent advancements in the study of silk sericin for application in tissue engineering and drug delivery. Copyright © 2015 Elsevier Inc. All rights reserved.
Osteochondral tissue engineering: scaffolds, stem cells and applications
Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R
2012-01-01
Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848
Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.
Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao
2017-10-01
Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Tissue Engineering Considerations in Dental Pulp Regeneration
Nosrat, Ali; Kim, Jong Ryul; Verma, Prashant; S. Chand, Priya
2014-01-01
Regenerative endodontic procedure is introduced as a biologically based treatment for immature teeth with pulp necrosis. Successful clinical and radiographic outcomes following regenerative procedures have been reported in landmark case reports. Retrospective studies have shown that this conservative treatment allows for continued root development and increases success and survival rate of the treated teeth compared to other treatment options. Although the goal of treatment is regeneration of a functional pulp tissue, histological analyses show a different outcome. Developing predictable protocols would require the use of key elements for tissue engineering: stem cells, bioactive scaffolds, and growth factors. In this study we will review the evidence based steps and outcomes of regenerative endodontics. PMID:24396373
Tissue engineering: state of the art in oral rehabilitation
SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.
2009-01-01
SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277
Tissue engineering: state of the art in oral rehabilitation.
Scheller, E L; Krebsbach, P H; Kohn, D H
2009-05-01
More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.
Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament.
Chen, Huan; Zhao, Xuefeng; Berwick, Zachary C; Krieger, Joshua F; Chambers, Sean; Kassab, Ghassan S
2016-06-01
There is a significant need for fixed biological tissues with desired structural and material constituents for tissue engineering applications. Here, we introduce the lung ligament as a fixed biological material that may have clinical utility for tissue engineering. To characterize the lung tissue for potential clinical applications, we studied glutaraldehyde-treated porcine pulmonary ligament (n = 11) with multiphoton microscopy (MPM) and conducted biaxial planar experiments to characterize the mechanical property of the tissue. The MPM imaging revealed that there are generally two families of collagen fibers distributed in two distinct layers: The first family largely aligns along the longitudinal direction with a mean angle of θ = 10.7 ± 9.3 deg, while the second one exhibits a random distribution with a mean θ = 36.6 ± 27.4. Elastin fibers appear in some intermediate sublayers with a random orientation distribution with a mean θ = 39.6 ± 23 deg. Based on the microstructural observation, a microstructure-based constitutive law was proposed to model the elastic property of the tissue. The material parameters were identified by fitting the model to the biaxial stress-strain data of specimens, and good fitting quality was achieved. The parameter e0 (which denotes the strain beyond which the collagen can withstand tension) of glutaraldehyde-treated tissues demonstrated low variability implying a relatively consistent collagen undulation in different samples, while the stiffness parameters for elastin and collagen fibers showed relatively greater variability. The fixed tissues presented a smaller e0 than that of fresh specimen, confirming that glutaraldehyde crosslinking increases the mechanical strength of collagen-based biomaterials. The present study sheds light on the biomechanics of glutaraldehyde-treated porcine pulmonary ligament that may be a candidate for tissue engineering.
Xu, Feng; Beyazoglu, Turker; Hefner, Evan; Gurkan, Umut Atakan
2011-01-01
Cellular alignment plays a critical role in functional, physical, and biological characteristics of many tissue types, such as muscle, tendon, nerve, and cornea. Current efforts toward regeneration of these tissues include replicating the cellular microenvironment by developing biomaterials that facilitate cellular alignment. To assess the functional effectiveness of the engineered microenvironments, one essential criterion is quantification of cellular alignment. Therefore, there is a need for rapid, accurate, and adaptable methodologies to quantify cellular alignment for tissue engineering applications. To address this need, we developed an automated method, binarization-based extraction of alignment score (BEAS), to determine cell orientation distribution in a wide variety of microscopic images. This method combines a sequenced application of median and band-pass filters, locally adaptive thresholding approaches and image processing techniques. Cellular alignment score is obtained by applying a robust scoring algorithm to the orientation distribution. We validated the BEAS method by comparing the results with the existing approaches reported in literature (i.e., manual, radial fast Fourier transform-radial sum, and gradient based approaches). Validation results indicated that the BEAS method resulted in statistically comparable alignment scores with the manual method (coefficient of determination R2=0.92). Therefore, the BEAS method introduced in this study could enable accurate, convenient, and adaptable evaluation of engineered tissue constructs and biomaterials in terms of cellular alignment and organization. PMID:21370940
2009-01-01
Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265
Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.
Pina, Sandra; Oliveira, Joaquim M; Reis, Rui L
2015-02-18
Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marx, U; Bushnaq, H; Yalcin, E
1998-02-01
Tissue engineering is seen as an interesting field of technology which could improve medical therapy and could also be considered as a commercial opportunity for the European biotechnological industry. Research in the state of the art of science using the MedLine and the Science Citation Index databases, in the patent situation and of the industry dealing with tissue engineering was done. A special method, based on the Science Citation Index Journal Citation Report 1993, for evaluating scientific work was defined. The main countries working in the field of tissue engineering were evaluated in regard to their scientific performance and their patents. The R&D of German industry was investigated as an exemplary European country. Out of all activities, different tissues were rated with respect to the attention received from research and industry and with regard to the frequency in which patents were applied for. USA, Germany and Japan rank first in most tissues, especially liver. After comparing German patents with the German scientific and industrial work, it seems that the potential in German patents and research is underestimated by German industry and inefficiently exploited.
Bioglass® 45S5-based composites for bone tissue engineering and functional applications.
Rizwan, M; Hamdi, M; Basirun, W J
2017-11-01
Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass ® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass ® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017. © 2017 Wiley Periodicals, Inc.
Klotz, B J; Lim, K S; Chang, Y X; Soliman, B G; Pennings, I; Melchels, F P W; Woodfield, T B F; Rosenberg, A J; Malda, J; Gawlitta, D
2018-05-30
In engineering of tissue analogues, upscaling to clinically-relevant sized constructs remains a significant challenge. The successful integration of a vascular network throughout the engineered tissue is anticipated to overcome the lack of nutrient and oxygen supply to residing cells. This work aimed at developing a multiscale bone-tissue-specific vascularisation strategy. Engineering pre-vascularised bone leads to biological and fabrication dilemmas. To fabricate channels endowed with an endothelium and suitable for osteogenesis, rather stiff materials are preferable, while capillarisation requires soft matrices. To overcome this challenge, gelatine-methacryloyl hydrogels were tailored by changing the degree of functionalisation to allow for cell spreading within the hydrogel, while still enabling endothelialisation on the hydrogel surface. An additional challenge was the combination of the multiple required cell-types within one biomaterial, sharing the same culture medium. Consequently, a new medium composition was investigated that simultaneously allowed for endothelialisation, capillarisation and osteogenesis. Integrated multipotent mesenchymal stromal cells, which give rise to pericyte-like and osteogenic cells, and endothelial-colony-forming cells (ECFCs) which form capillaries and endothelium, were used. Based on the aforementioned optimisation, a construct of 8 × 8 × 3 mm, with a central channel of 600 µm in diameter, was engineered. In this construct, ECFCs covered the channel with endothelium and osteogenic cells resided in the hydrogel, adjacent to self-assembled capillary-like networks. This study showed the promise of engineering complex tissue constructs by means of human primary cells, paving the way for scaling-up and finally overcoming the challenge of engineering vascularised tissues.
Khristov, Vladimir; Wan, Qin; Sharma, Ruchi; Jha, Balendu Shekhar; Lotfi, Mostafa; Maminishkis, Arvydas; Simon, Carl G.
2016-01-01
Abstract Clinical-grade manufacturing of a functional retinal pigment epithelium (RPE) monolayer requires reproducing, as closely as possible, the natural environment in which RPE grows. In vitro, this can be achieved by a tissue engineering approach, in which the RPE is grown on a nanofibrous biological or synthetic scaffold. Recent research has shown that nanofiber scaffolds perform better for cell growth and transplantability compared with their membrane counterparts and that the success of the scaffold in promoting cell growth/function is not heavily material dependent. With these strides, the field has advanced enough to begin to consider implementation of one, or a combination, of the tissue engineering strategies discussed herein. In this study, we review the current state of tissue engineering research for in vitro culture of RPE/scaffolds and the parameters for optimal scaffold design that have been uncovered during this research. Next, we discuss production methods and manufacturers that are capable of producing the nanofiber scaffolds in such a way that would be biologically, regulatory, clinically, and commercially viable. Then, a discussion of how the scaffolds could be characterized, both morphologically and mechanically, to develop a testing process that is viable for regulatory screening is performed. Finally, an example of a tissue-engineered RPE/scaffold construct is given to provide the reader a framework for understanding how these pieces could fit together to develop a tissue-engineered RPE/scaffold construct that could pass regulatory scrutiny and can be commercially successful. PMID:27110730
Watanabe, Miho; Li, Hiaying; Roybal, Jessica; Santore, Matthew; Radu, Antonetta; Jo, Jun-Ichiro; Kaneko, Michio; Tabata, Yasuhiko; Flake, Alan
2011-04-01
Myelomeningocele (MMC) is a common and devastating malformation. As an alternative to fetal surgical repair, tissue engineering has the potential to provide a less invasive approach for tissue coverage applicable at an earlier stage of gestation. We have previously evaluated the use of gelatin hydrogel composites composed of gelatin sponges and sheets as a platform for tissue coverage of the MMC defect in the retinoic acid induced fetal rat model of MMC. In the current study, we compare our previous composite with gelatin microspheres as a scaffold for tissue ingrowth and cellular adhesion within the amniotic fluid environment. We also examine the relative efficacy of various bioactive protein coatings on the adhesion of amniotic fluid cells to the construct within the amniotic cavity. We conclude from this study that gelatin microspheres are as effective as gelatin sponges as a scaffold for cellular ingrowth and amniotic fluid cell adhesion and that collagen type I and fibronectin coatings enhance amniotic fluid cell adhesion to the gelatin-based scaffolds. These findings support the potential for the development of a tissue-engineered injectable scaffold that could be applied by ultrasound-guided injection, much earlier and less invasively than sponge or sheet-based composites.
Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair
Svystonyuk, Daniyil A.; Mewhort, Holly E. M.; Fedak, Paul W. M.
2018-01-01
An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy. PMID:29696148
Hydrogels for precision meniscus tissue engineering: a comprehensive review.
Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning
The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.
Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs
Bertassoni, Luiz E.; Cecconi, Martina; Manoharan, Vijayan; Nikkhah, Mehdi; Hjortnaes, Jesper; Cristino, Ana Luiza; Barabaschi, Giada; Demarchi, Danilo; Dokmeci, Mehmet R.; Yang, Yunzhi; Khademhosseini, Ali
2014-01-01
Vascularization remains a critical challenge in tissue engineering. The development of vascular networks within densely populated and metabolically functional tissues facilitate transport of nutrients and removal of waste products, thus preserving cellular viability over a long period of time. Despite tremendous progress in fabricating complex tissue constructs in the past few years, approaches for controlled vascularization within hydrogel based engineered tissue constructs have remained limited. Here, we report a three dimensional (3D) micromolding technique utilizing bioprinted agarose template fibers to fabricate microchannel networks with various architectural features within photo cross linkable hydrogel constructs. Using the proposed approach, we were able to successfully embed functional and perfusable microchannels inside methacrylated gelatin (GelMA), star poly (ethylene glycol-co-lactide) acrylate (SPELA), poly (ethylene glycol) dimethacrylate (PEGDMA) and poly (ethylene glycol) diacrylate (PEGDA) hydrogels at different concentrations. In particular, GelMA hydrogels were used as a model to demonstrate the functionality of the fabricated vascular networks in improving mass transport, cellular viability and differentiation within the cell-laden tissue constructs. In addition, successful formation of endothelial monolayers within the fabricated channels was confirmed. Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip. PMID:24860845
Human cartilage tissue fabrication using three-dimensional inkjet printing technology.
Cui, Xiaofeng; Gao, Guifang; Yonezawa, Tomo; Dai, Guohao
2014-06-10
Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.
Dynamically Tunable Cell Culture Platforms for Tissue Engineering and Mechanobiology
Uto, Koichiro; Tsui, Jonathan H.; DeForest, Cole A.; Kim, Deok-Ho
2016-01-01
Human tissues are sophisticated ensembles of many distinct cell types embedded in the complex, but well-defined, structures of the extracellular matrix (ECM). Dynamic biochemical, physicochemical, and mechano-structural changes in the ECM define and regulate tissue-specific cell behaviors. To recapitulate this complex environment in vitro, dynamic polymer-based biomaterials have emerged as powerful tools to probe and direct active changes in cell function. The rapid evolution of polymerization chemistries, structural modulation, and processing technologies, as well as the incorporation of stimuli-responsiveness, now permit synthetic microenvironments to capture much of the dynamic complexity of native tissue. These platforms are comprised not only of natural polymers chemically and molecularly similar to ECM, but those fully synthetic in origin. Here, we review recent in vitro efforts to mimic the dynamic microenvironment comprising native tissue ECM from the viewpoint of material design. We also discuss how these dynamic polymer-based biomaterials are being used in fundamental cell mechanobiology studies, as well as towards efforts in tissue engineering and regenerative medicine. PMID:28522885
Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza
2016-03-01
Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc.
Watanabe, Miho; Li, Haiying; Kim, Aimee G; Weilerstein, Aaron; Radu, Anteneta; Davey, Marcus; Loukogeorgakis, Stavros; Sánchez, Melissa D; Sumita, Kazutaka; Morimoto, Naoki; Yamamoto, Masaya; Tabata, Yasuhiko; Flake, Alan W
2016-01-01
Myelomeningocele (MMC) is the most severe form of spina bifida, one of the most common congenital anomalies. Although open fetal surgical repair of the MMC defect has been shown to result in improved outcomes, a less invasive approach applicable earlier in gestation than the current open surgical approach between 19 and 26 weeks of gestation is desirable for further improvement of neurological symptoms, as well as reduction of maternal and fetal risks. We previously reported the therapeutic potential of a scaffold-based tissue engineering approach in a fetal rat MMC model. The objective of this study was to confirm the long-term efficacy of this approach in the surgically created fetal sheep MMC model. Gelatin-based or gelatin/collagen hybrid sponges were prepared with and without basic fibroblast growth factor (bFGF) incorporation. The defect was covered by a sponge and secured by a supporting sheet with adhesive at 100 days of gestation or the gelatin/collagen hybrid with bFGF was secured with adhesive without the sheet. Although sheets were found detached at term (140 days' gestation), both gelatin-based and gelatin/collagen hybrid sponges had integrated within the newly formed granulation tissue, resulting in complete coverage of the MMC defect. The release of bFGF from sponges resulted in enhanced formation of granulation tissue and epithelialization. There was also evidence of improved preservation of the spinal cord with less associated damage on histological analysis and reversal of hindbrain herniation. These experiments provide important proof-of-principle evidence of the efficacy of scaffold-based tissue engineered coverage for the prenatal treatment of MMC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Hwan D.; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni
2015-01-01
Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634
Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering.
Pooyan, Parisa; Tannenbaum, Rina; Garmestani, Hamid
2012-03-01
Scaffolds constitute an essential structural component in tissue engineering of a vascular substitute for small grafts by playing a significant role in integrating the overall tissue constructs. The microstructure and mechanical properties of such scaffolds are important parameters to promote further cellular activities and neo-tissue development. Cellulose nanowhiskers (CNWs), an abundant, biocompatible material, could potentially constitute an acceptable candidate in scaffolding of a tissue-engineered vessel. Inspired by the advantages of cellulose and its derivatives, we have designed a biomaterial comprising CNWs embedded in a matrix of cellulose acetate propionate to fabricate a fully bio-based scaffold. To ensure uniform distribution, CNWs were delicately extracted from a multi-stage process and dispersed in an acetone suspension prior to the composite fabrication. Comparable to carbon nanotubes or kevlar, CNWs impart significant strength and directional rigidity even at 0.2 wt% and almost double that at only 3.0 wt%. To ensure the accuracy of our experimental data and to predict the unusual reinforcing effect of CNWs in a cellulose-based composite, homogenization schemes such as the mean field approach and the percolation technique were also investigated. Based on these comparisons, the tendency of CNWs to interconnect with one another through strong hydrogen bonding confirmed the formation of a three-dimensional rigid percolating network, fact which imparted an excellent mechanical stability to the entire structure at such low filler contents. Hence, our fibrous porous microstructure with improved mechanical properties could introduce a potential scaffold to withstand the physiological pressure and to mimic the profile features of native extracellular matrix in a human vessel. We believe that our nanohybrid design not only could expand the biomedical applications of renewable cellulose-based materials but also could provide a potential scaffold candidate in tissue engineering of small diameter grafts. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tissue engineering: current strategies and future directions.
Olson, Jennifer L; Atala, Anthony; Yoo, James J
2011-04-01
Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future.
Gu, Yun; Zhu, Jianbin; Xue, Chengbin; Li, Zhenmeiyu; Ding, Fei; Yang, Yumin; Gu, Xiaosong
2014-02-01
Extracellular matrix (ECM) plays a prominent role in establishing and maintaining an ideal microenvironment for tissue regeneration, and ECM scaffolds are used as a feasible alternative to cellular and molecular therapy in the fields of tissue engineering. Because of their advantages over tissue-derived ECM scaffolds, cultured cell-derived ECM scaffolds are beginning to attract attention, but they have been scarcely studied for peripheral nerve repair. Here we aimed to develop a tissue engineered nerve scaffold by reconstituting nerve cell-derived ECM with natural biomaterials. A protocol was adopted to prepare and characterize the cultured Schwann cell (SC)-derived ECM. A chitosan conduit and silk fibroin (SF) fibers were prepared, cultured with SCs for ECM deposition, and subjected to decellularization, followed by assembly into a chitosan/SF-based, SC-derived ECM-modified scaffold, which was used to bridge a 10 mm rat sciatic nerve gap. The results from morphological analysis as well as electrophysiological examination indicated that regenerative outcomes achieved by our developed scaffold were similar to those by an acellular nerve graft (namely a nerve tissue-derived ECM scaffold), but superior to those by a plain chitosan/SF scaffold. Moreover, blood and histopathological parameters confirmed the safety of scaffold modification by SC-derived ECM. Therefore, a hybrid scaffold based on joint use of acellular and classical biomaterials represents a promising approach to nerve tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nalwa, Hari Singh
2014-10-01
This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.
Tissue engineering on the nanoscale: lessons from the heart.
Fleischer, Sharon; Dvir, Tal
2013-08-01
Recognizing the limitations of biomaterials for engineering complex tissues and the desire for closer recapitulation of the natural matrix have led tissue engineers to seek new technologies for fabricating 3-dimensional (3D) cellular microenvironments. In this review, through examples from cardiac tissue engineering, we describe the nanoscale hallmarks of the extracellular matrix that tissue engineers strive to mimic. Furthermore, we discuss the use of inorganic nanoparticles and nanodevices for improving and monitoring the performance of engineered tissues. Finally, we offer our opinion on the main challenges and prospects of applying nanotechnology in tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng
2018-01-01
Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454
Madry, H; Alini, M; Stoddart, M J; Evans, C; Miclau, T; Steiner, S
2014-05-06
Research in orthopaedic tissue engineering has intensified over the last decade and new protocols continue to emerge. The clinical translation of these new applications, however, remains associated with a number of obstacles. This report highlights the major issues that impede the clinical translation of advanced tissue engineering concepts, discusses strategies to overcome these barriers, and examines the need to increase incentives for translational strategies. The statements are based on presentations and discussions held at the AO Foundation-sponsored symposium "Where Science meets Clinics 2013" held at the Congress Center in Davos, Switzerland, in September, 2013. The event organisers convened a diverse group of over one hundred stakeholders involved in clinical translation of orthopaedic tissue engineering, including scientists, clinicians, healthcare industry professionals and regulatory agency representatives. A major point that emerged from the discussions was that there continues to be a critical need for early trans-disciplinary communication and collaboration in the development and execution of research approaches. Equally importantly was the need to address the shortage of sustained funding programs for multidisciplinary teams conducting translational research. Such detailed discussions between experts contribute towards the development of a roadmap to more successfully advance the clinical translation of novel tissue engineering concepts and ultimately improve patient care in orthopaedic and trauma surgery.
Engineering Cell-Cell Signaling
Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R.
2014-01-01
Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling based on quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilizing synthetic cells, advanced ‘chassis’ and predictive modeling to engineer the form and function of living tissues. PMID:23856592
Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G
2012-11-14
Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.
Design Approaches to Myocardial and Vascular Tissue Engineering.
Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y
2017-06-21
Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.
Bioprinting for vascular and vascularized tissue biofabrication.
Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T
2017-03-15
Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup
2016-01-01
This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.
Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery.
Smith, M H; Flanagan, C L; Kemppainen, J M; Sack, J A; Chung, H; Das, S; Hollister, S J; Feinberg, S E
2007-09-01
Tissue engineering provides an alternative modality allowing for decreased morbidity of donor site grafting and decreased rejection of less compatible alloplastic tissues. Using image-based design and computer software, a precisely sized and shaped scaffold for osseous tissue regeneration can be created via selective laser sintering. Polycaprolactone has been used to create a condylar ramus unit (CRU) scaffold for application in temporomandibular joint reconstruction in a Yucatan minipig animal model. Following sacrifice, micro-computed tomography and histology was used to demonstrate the efficacy of this particular scaffold design. A proof-of-concept surgery has demonstrated cartilaginous tissue regeneration along the articulating surface with exuberant osseous tissue formation. Bone volumes and tissue mineral density at both the 1 and 3 month time points demonstrated significant new bone growth interior and exterior to the scaffold. Computationally designed scaffolds can support masticatory function in a large animal model as well as both osseous and cartilage regeneration. Our group is continuing to evaluate multiple implant designs in both young and mature Yucatan minipig animals. 2007 John Wiley & Sons, Ltd.
Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective
Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.
2013-01-01
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505
Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.
Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric
2007-06-01
Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.
Tissue engineering for clinical applications.
Bhatia, Sujata K
2010-12-01
Tissue engineering is increasingly being recognized as a beneficial means for lessening the global disease burden. One strategy of tissue engineering is to replace lost tissues or organs with polymeric scaffolds that contain specialized populations of living cells, with the goal of regenerating tissues to restore normal function. Typical constructs for tissue engineering employ biocompatible and degradable polymers, along with organ-specific and tissue-specific cells. Once implanted, the construct guides the growth and development of new tissues; the polymer scaffold degrades away to be replaced by healthy functioning tissue. The ideal biomaterial for tissue engineering not only defends against disease and supports weakened tissues or organs, it also provides the elements required for healing and repair, stimulates the body's intrinsic immunological and regenerative capacities, and seamlessly interacts with the living body. Tissue engineering has been investigated for virtually every organ system in the human body. This review describes the potential of tissue engineering to alleviate disease, as well as the latest advances in tissue regeneration. The discussion focuses on three specific clinical applications of tissue engineering: cardiac tissue regeneration for treatment of heart failure; nerve regeneration for treatment of stroke; and lung regeneration for treatment of chronic obstructive pulmonary disease. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Periodontal tissue engineering strategies based on nonoral stem cells.
Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima
2014-01-01
Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.
Prelude to corneal tissue engineering – Gaining control of collagen organization
Ruberti, Jeffrey W.; Zieske, James D.
2012-01-01
By most standard engineering practice principles, it is premature to credibly discuss the “engineering” of a human cornea. A professional design engineer would assert that we still do not know what a cornea is (and correctly so), therefore we cannot possibly build one. The proof resides in the fact that there are no clinically viable corneas based on classical tissue engineering methods available. This is possibly because tissue engineering in the classical sense (seeding a degradable scaffolding with a population synthetically active cells) does not produce conditions which support the generation of organized tissue. Alternative approaches to the problem are in their infancy and include the methods which attempt to recapitulate development or to produce corneal stromal analogs de novo which require minimal remodeling. Nonetheless, tissue engineering efforts, which have been focused on producing the fundamental functional component of a cornea (organized alternating arrays of collagen or “lamellae”) may have already provided valuable new insights and tools relevant to development, growth, remodeling and pathologies associated with connective tissue in general. This is because engineers ask a fundamentally different question (How can that be done?) than do biological scientists (How is that done?). The difference in inquiry has prompted us to closely examine (and to mimic) development as well as investigate collagen physicochemical behavior so that we may exert control over organization both in cell-culture (in vitro) and on the benchtop (de novo). Our initial results indicate that reproducing corneal stroma-like local and long-range organization of collagen may be simpler than we anticipated while controlling spacing and fibril morphology remains difficult, but perhaps not impossible in the (reasonably) near term. PMID:18775789
Sivashankari, P R; Moorthi, A; Abudhahir, K Mohamed; Prabaharan, M
2018-04-15
Hydroxypropyl chitosan (HPCH), a water soluble derivative of chitosan, is widely considered for tissue engineering and wound healing applications due to its biocompatibility and biodegradability. Graphene oxide (GO) is a carbon-based nanomaterial which is capable of imparting desired properties to the scaffolds. Hence, the integration of GO into HPCH could allow for the production of HPCH-based scaffolds with improved swelling character, mechanical strength, and stability aimed at being used in tissue engineering. In this study, hydroxypropyl chitosan-graft-graphene oxide (HPCH-g-GO) with varying GO content (0.5, 1, 3 and 4wt.%) was prepared using HPCH and GO as a tissue engineering scaffold material. The formation of HPCH-g-GO was confirmed by FTIR and XRD analysis. Using the HPCH-g-GO as a matrix material and glutaraldehyde as a crosslinking agent, the three dimensional (3D) porous scaffolds were fabricated by the freeze-drying method. The HPCH-g-GO scaffolds exhibited uniform porosity as observed in SEM analysis. The pore size and porosity reduced as the content of GO was increased. These scaffolds presented good swelling capacity, water retention ability, mechanical strength and in vitro degradation properties. The HPCH-g-GO scaffolds irrespective of their GO content demonstrated good cell viability when compared to control. Altogether, these results suggest that HPCH-g-GO scaffolds can be used as potential tissue engineering material. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanotechnology in bone tissue engineering.
Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C
2015-07-01
Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.
Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.
Hayami, James W S; Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G
2010-03-15
Herein we report on the development and characterization of a biodegradable composite scaffold for ligament tissue engineering based on the fundamental morphological features of the native ligament. An aligned fibrous component was used to mimic the fibrous collagen network and a hydrogel component to mimic the proteoglycan-water matrix of the ligament. The composite scaffold was constructed from cell-adherent, base-etched, electrospun poly(epsilon-caprolactone-co-D,L-lactide) (PCLDLLA) fibers embedded in a noncell-adherent photocrosslinked N-methacrylated glycol chitosan (MGC) hydrogel seeded with primary ligament fibroblasts. Base etching improved cellular adhesion to the PCLDLLA material. Cells within the MGC hydrogel remained viable (72 +/- 4%) during the 4-week culture period. Immunohistochemistry staining revealed ligament ECM markers collagen type I, collagen type III, and decorin organizing and accumulating along the PCLDLLA fibers within the composite scaffolds. On the basis of these results, it was determined that the composite scaffold design was a viable alternative to the current approaches used for ligament tissue engineering and merits further study. (c) 2009 Wiley Periodicals, Inc.
Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering
Kessler, Lukas; Gehrke, Sandra; Winnefeld, Marc; Huber, Birgit; Hoch, Eva; Walter, Torsten; Wyrwa, Ralf; Schnabelrauch, Matthias; Schmidt, Malte; Kückelhaus, Maximilian; Lehnhardt, Marcus; Hirsch, Tobias; Jacobsen, Frank
2017-01-01
In vitro–generated soft tissue could provide alternate therapies for soft tissue defects. The aim of this study was to evaluate methacrylated gelatin/hyaluronan as scaffolds for soft tissue engineering and their interaction with human adipose–derived stem cells (hASCs). ASCs were incorporated into methacrylated gelatin/hyaluronan hydrogels. The gels were photocrosslinked with a lithium phenyl-2,4,6-trimethylbenzoylphosphinate photoinitiator and analyzed for cell viability and adipogenic differentiation of ASCs over a period of 30 days. Additionally, an angiogenesis assay was performed to assess their angiogenic potential. After 24 h, ASCs showed increased viability on composite hydrogels. These results were consistent over 21 days of culture. By induction of adipogenic differentiation, the mature adipocytes were observed after 7 days of culture, their number significantly increased until day 28 as well as expression of fatty acid binding protein 4 and adiponectin. Our scaffolds are promising as building blocks for adipose tissue engineering and allowed long viability, proliferation, and differentiation of ASCs. PMID:29318000
NASA Astrophysics Data System (ADS)
Kudryavtseva, Valeriya; Stankevich, Ksenia; Kibler, Elina; Golovkin, Alexey; Mishanin, Alexander; Bolbasov, Evgeny; Choynzonov, Evgeny; Tverdokhlebov, Sergei
2018-04-01
Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts.
An Overview of Recent Patents on Musculoskeletal Interface Tissue Engineering
Rao, Rohit T.; Browe, Daniel P.; Lowe, Christopher J.; Freeman, Joseph W.
2018-01-01
Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues e.g. between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose. PMID:26577344
Tissue engineering and regenerative medicine: recent innovations and the transition to translation.
Fisher, Matthew B; Mauck, Robert L
2013-02-01
The field of tissue engineering and regenerative medicine (TERM) has exploded in the last decade. In this Year (or so) in Review, we highlight some of the high impact advances within the field over the past several years. Using the past as our guide and starting with an objective premise, we attempt so to identify recent "hot topics" and transformative publications within the field. Through this process, several key themes emerged: (1) tissue engineering: grafts and materials, (2) regenerative medicine: scaffolds and factors that control endogenous tissue formation, (3) clinical trials, and (4) novel cell sources: induced pluripotent stem cells. Within these focus areas, we summarize the highly impactful articles that emerged from our objective analysis and review additional recent publications to augment and expand upon these key themes. Finally, we discuss where the TERM field may be headed and how to monitor such a broad-based and ever-expanding community.
Tissue Engineering and Regenerative Medicine: Recent Innovations and the Transition to Translation
Fisher, Matthew B.
2013-01-01
The field of tissue engineering and regenerative medicine (TERM) has exploded in the last decade. In this Year (or so) in Review, we highlight some of the high impact advances within the field over the past several years. Using the past as our guide and starting with an objective premise, we attempt so to identify recent “hot topics” and transformative publications within the field. Through this process, several key themes emerged: (1) tissue engineering: grafts and materials, (2) regenerative medicine: scaffolds and factors that control endogenous tissue formation, (3) clinical trials, and (4) novel cell sources: induced pluripotent stem cells. Within these focus areas, we summarize the highly impactful articles that emerged from our objective analysis and review additional recent publications to augment and expand upon these key themes. Finally, we discuss where the TERM field may be headed and how to monitor such a broad-based and ever-expanding community. PMID:23253031
Hydrogel-laden paper scaffold system for origami-based tissue engineering
Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S.
2015-01-01
In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca2+. This procedure ensures the formation of alginate hydrogel on the paper due to Ca2+ diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717
Hydrogel-laden paper scaffold system for origami-based tissue engineering.
Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S
2015-12-15
In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.
Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions.
Bhardwaj, Nandana; Chouhan, Dimple; Mandal, Biman B
2017-01-01
The global volume of skin damage or injuries has major healthcare implications and, accounts for about half of the world's annual expenditure in the healthcare sector. In the last two decades, tissue-engineered skin constructs have shown great promise in the treatment of various skin-related disorders such as deep burns and wounds. The treatment methods for skin replacement and repair have evolved from utilization of autologous epidermal sheets to more complex bilayered cutaneous tissue engineered skin substitutes. However, inadequate vascularization, lack of flexibility in drug/growth factors loading and inability to reconstitute skin appendages such as hair follicles limits their utilization for restoration of normal skin anatomy on a routine basis. Recent advancements in cutting-edge technology from stem cell biology, nanotechnology, and various vascularization strategies have provided a tremendous springboard for researchers in developing and manipulating tissue engineered skin substitutes for improved skin regeneration and wound healing. This review summarizes the overview of skin tissue engineering and wound healing. Herein, developments and challenges of various available biomaterials, cell sources and in vitro skin models (full thickness and wound healing models) in tissue-engineered skin research are discussed. Furthermore, central to the discussion is the inclusion of various innovative strategies starting from stem cells, nanotechnology, vascularization strategies, microfluidics to three dimensional (3D) bioprinting based strategies for generation of complex skin mimics. The review then moves on to highlight the future prospects of advanced construction strategies of these bioengineered skin constructs and their contribution to wound healing and skin regeneration on current practice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Introduction to tissue engineering and application for cartilage engineering.
de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F
2010-01-01
Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.
Farraro, Kathryn F.; Kim, Kwang E.; Woo, Savio L-Y.; Flowers, Jonquil R.; McCullough, Matthew B.
2014-01-01
In recent years, there has been a surge of interest in magnesium (Mg) and its alloys as biomaterials for orthopaedic applications, as they possess desirable mechanical properties, good biocompatibility, and biodegradability. Also shown to be osteoinductive, Mg-based materials could be particularly advantageous in functional tissue engineering to improve healing and serve as scaffolds for delivery of drugs, cells, and cytokines. In this paper, we will present two examples of Mg-based orthopaedic devices: an interference screw to accelerate ACL graft healing and a ring to aid in the healing of an injured ACL. In vitro tests using a robotic/UFS testing system showed that both devices could restore function of the goat stifle joint. Under a 67-N anterior tibial load, both the ACL graft fixed with the Mg-based interference screw and the Mg-based ring-repaired ACL could restore anterior tibial translation (ATT) to within 2 mm and 5 mm, respectively, of the intact joint at 301, 601, and 901 of flexion. In-situ forces in the replacement graft and Mg-based ring-repaired ACL were also similar to those of the intact ACL. Further, early in vivo data using the Mg-based interference screw showed that after 12 weeks, it was non-toxic and the joint stability and graft function reached similar levels as published data. Following these positive results, we will move forward in incorporating bioactive molecules and ECM bioscaffolds to these Mg-based biomaterials to test their potential for functional tissue engineering of musculoskeletal and other tissues. PMID:24373510
Farraro, Kathryn F; Kim, Kwang E; Woo, Savio L-Y; Flowers, Jonquil R; McCullough, Matthew B
2014-06-27
In recent years, there has been a surge of interest in magnesium (Mg) and its alloys as biomaterials for orthopaedic applications, as they possess desirable mechanical properties, good biocompatibility, and biodegradability. Also shown to be osteoinductive, Mg-based materials could be particularly advantageous in functional tissue engineering to improve healing and serve as scaffolds for delivery of drugs, cells, and cytokines. In this paper, we will present two examples of Mg-based orthopaedic devices: an interference screw to accelerate ACL graft healing and a ring to aid in the healing of an injured ACL. In vitro tests using a robotic/UFS testing system showed that both devices could restore function of the goat stifle joint. Under a 67-N anterior tibial load, both the ACL graft fixed with the Mg-based interference screw and the Mg-based ring-repaired ACL could restore anterior tibial translation (ATT) to within 2mm and 5mm, respectively, of the intact joint at 30°, 60°, and 90° of flexion. In-situ forces in the replacement graft and Mg-based ring-repaired ACL were also similar to those of the intact ACL. Further, early in vivo data using the Mg-based interference screw showed that after 12 weeks, it was non-toxic and the joint stability and graft function reached similar levels as published data. Following these positive results, we will move forward in incorporating bioactive molecules and ECM bioscaffolds to these Mg-based biomaterials to test their potential for functional tissue engineering of musculoskeletal and other tissues. © 2013 Published by Elsevier Ltd.
XanoMatrix surfaces as scaffolds for mesenchymal stem cell culture and growth
Bhardwaj, Garima; Webster, Thomas J
2016-01-01
Stem cells are being widely investigated for a wide variety of applications in tissue engineering due to their ability to differentiate into a number of cells such as neurons, osteoblasts, and fibroblasts. This ability of stem cells to differentiate into different types of cells is greatly based on mechanical and chemical cues received from their three-dimensional environments. All organs are formed by a number of cells linked together via an extracellular matrix (ECM). The ECM is a complex network of proteins and carbohydrates, which occupies intercellular spaces and regulates cellular activity by controlling cell adhesion, migration, proliferation, and differentiation. The ECM is composed of two main types of macromolecules, namely, polysaccharide glycosaminoglycans, which are covalently attached to proteins in the form of proteoglycans and fibrous proteins belonging to two functional groups, structural (collagen and elastin) and adhesive (fibronectin, laminin, vitronectin, etc). Tissue engineering is a multidisciplinary field that aims to develop biomimetic scaffolds that emulate properties of the ECM to help repair or regenerate diseased or damaged tissue. This study introduces one of these matrices, XanoMatrix, as an optimal scaffold for tissue engineering applications, in particular, for stem cell research, based on its composition, nanofibrous structure, and porosity. Results of this study suggest that XanoMatrix scaffolds are promising for stem cell tissue engineering applications and as improved cell culture inserts for studying stem cell functions (compared to traditional Corning and Falcon cell culture plates) and, thus, should be further studied. PMID:27354795
Proteomic differences between native and tissue‐engineered tendon and ligament
Tew, Simon R.; Peffers, Mandy; Canty‐Laird, Elizabeth G.; Comerford, Eithne
2016-01-01
Tendons and ligaments (T/Ls) play key roles in the musculoskeletal system, but they are susceptible to traumatic or age‐related rupture, leading to severe morbidity as well as increased susceptibility to degenerative joint diseases such as osteoarthritis. Tissue engineering represents an attractive therapeutic approach to treating T/L injury but it is hampered by our poor understanding of the defining characteristics of the two tissues. The present study aimed to determine differences in the proteomic profile between native T/Ls and tissue engineered (TE) T/L constructs. The canine long digital extensor tendon and anterior cruciate ligament were analyzed along with 3D TE fibrin‐based constructs created from their cells. Native tendon and ligament differed in their content of key structural proteins, with the ligament being more abundant in fibrocartilaginous proteins. 3D T/L TE constructs contained less extracellular matrix (ECM) proteins and had a greater proportion of cellular‐associated proteins than native tissue, corresponding to their low collagen and high DNA content. Constructs were able to recapitulate native T/L tissue characteristics particularly with regard to ECM proteins. However, 3D T/L TE constructs had similar ECM and cellular protein compositions indicating that cell source may not be an important factor for T/L tissue engineering. PMID:27080496
Tissue engineering therapy for cardiovascular disease.
Nugent, Helen M; Edelman, Elazer R
2003-05-30
The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.
NASA Astrophysics Data System (ADS)
Mercado, Karla Patricia E.
Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.
Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.
Horst, Maya; Milleret, Vincent; Noetzli, Sarah; Gobet, Rita; Sulser, Tullio; Eberli, Daniel
2017-04-01
Poly(lactic-co-glycolic acid) (PLGA) based biomaterials for soft tissue engineering have inherent disadvantages, such as a relative rigidity and a limited variability in the mechanical properties and degradation rates. In this study, a novel electrospun biomaterial based on degradable polyesterurethane (PEU) (DegraPol ® ) was investigated for potential use for bladder engineering in vitro and in vivo. Hybrid microfibrous PEU and PLGA scaffolds were produced by direct electrospinning of the polymer onto a bladder acellular matrix. The scaffold morphology of the scaffold was analyzed, and the biological performance was tested in vitro and in vivo using a rat cystoplasty model. Anatomical and functional outcomes after implantation were analyzed macroscopically, histologically and by cystometry, respectively. Scanning electron microscopy analysis showed that PEU samples had a lower porosity (p < 0.001) and were slightly thinner (p = 0.009) than the PGLA samples. Proliferation and survival of the seeded smooth muscle cells in vitro were comparable on PEU and PLGA scaffolds. After 8 weeks in vivo, the PEU scaffolds exhibited no shrinkage. However, cystometry of the reconstructed bladders exhibited a slightly greater functional bladder capacity in the PLGA group. Morphometric analyses revealed significantly better tissue healing (p < 0.05) and, in particular, better smooth muscle regeneration, as well as a lower rate of inflammatory responses at 8 weeks in the PEU group. Collectively, the results indicated that PEU-hybrid scaffolds promote bladder tissue formation with excellent tissue integration and a low inflammatory reaction in vivo. PEU is a promising biomaterial, particularly with regard to functional tissue engineering of the bladder and other hollow organs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 658-667, 2017. © 2015 Wiley Periodicals, Inc.
Proteomic differences between native and tissue-engineered tendon and ligament.
Kharaz, Yalda A; Tew, Simon R; Peffers, Mandy; Canty-Laird, Elizabeth G; Comerford, Eithne
2016-05-01
Tendons and ligaments (T/Ls) play key roles in the musculoskeletal system, but they are susceptible to traumatic or age-related rupture, leading to severe morbidity as well as increased susceptibility to degenerative joint diseases such as osteoarthritis. Tissue engineering represents an attractive therapeutic approach to treating T/L injury but it is hampered by our poor understanding of the defining characteristics of the two tissues. The present study aimed to determine differences in the proteomic profile between native T/Ls and tissue engineered (TE) T/L constructs. The canine long digital extensor tendon and anterior cruciate ligament were analyzed along with 3D TE fibrin-based constructs created from their cells. Native tendon and ligament differed in their content of key structural proteins, with the ligament being more abundant in fibrocartilaginous proteins. 3D T/L TE constructs contained less extracellular matrix (ECM) proteins and had a greater proportion of cellular-associated proteins than native tissue, corresponding to their low collagen and high DNA content. Constructs were able to recapitulate native T/L tissue characteristics particularly with regard to ECM proteins. However, 3D T/L TE constructs had similar ECM and cellular protein compositions indicating that cell source may not be an important factor for T/L tissue engineering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.
Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya
2016-07-01
Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quade, Mandy; Knaack, Sven; Akkineni, Ashwini Rahul; Gabrielyan, Anastasia; Lode, Anja; Rösen-Wolff, Angela; Gelinsky, Michael
2017-08-01
Tissue engineering, the application of stem and progenitor cells in combination with an engineered extracellular matrix, is a promising strategy for bone regeneration. However, its success is limited by the lack of vascularization after implantation. The concept of in situ tissue engineering envisages the recruitment of cells necessary for tissue regeneration from the host environment foregoing ex vivo cell seeding of the scaffold. In this study, we developed a novel scaffold system for enhanced cell attraction, which is based on biomimetic mineralized collagen scaffolds equipped with a central biopolymer depot loaded with chemotactic agents. In humid milieu, as after implantation, the signaling factors are expected to slowly diffuse out of the central depot forming a gradient that stimulates directed cell migration toward the scaffold center. Heparin, hyaluronic acid, and alginate have been shown to be capable of depot formation. By using vascular endothelial growth factor (VEGF) as model factor, it was demonstrated that the release kinetics can be adjusted by varying the depot composition. While alginate and hyaluronic acid are able to reduce the initial burst and prolong the release of VEGF, the addition of heparin led to a much stronger retention that resulted in an almost linear release over 28 days. The biological activity of released VEGF was proven for all variants using an endothelial cell proliferation assay. Furthermore, migration experiments with endothelial cells revealed a relationship between the degree of VEGF retention and migration distance: cells invaded deepest in scaffolds containing a heparin-based depot indicating that the formation of a steep gradient is crucial for cell attraction. In conclusion, this novel in situ tissue engineering approach, specifically designed to recruit and accommodate endogenous cells upon implantation, appeared highly promising to stimulate cell invasion, which in turn would promote vascularization and finally new bone formation.
Iida, Takuya; Takami, Yoshihiro; Yamaguchi, Ryo; Shimazaki, Shuji; Harii, Kiyonori
2005-01-01
Tissue-engineered skin equivalents composed of epidermal and dermal components have been widely investigated for coverage of full-thickness skin defects. We developed a tissue-engineered oral mucosa equivalent based on an acellular allogeneic dermal matrix and investigated its characteristics. We also tried and assessed its preliminary clinical application. Human oral mucosal keratinocytes were separated from a piece of oral mucosa and cultured in a chemically-defined medium. The keratinocytes were seeded on to the acellular allogeneic dermal matrix and cultured. Histologically, the mucosa equivalent had a well-stratified epithelial layer. Immunohistochemical study showed that it was similar to normal oral mucosa. We applied this equivalent in one case with an extensive burn wound. The equivalent was transplanted three weeks after the harvest of the patient's oral mucosa and about 30% of the graft finally survived. We conclude that this new oral mucosa equivalent could become a therapeutic option for the treatment of extensive burns.
Turner, William S; Sandhu, Nabjot; McCloskey, Kara E
2014-10-03
Many tissues, such as the adult human hearts, are unable to adequately regenerate after damage.(2,3) Strategies in tissue engineering propose innovations to assist the body in recovery and repair. For example, TE approaches may be able to attenuate heart remodeling after myocardial infarction (MI) and possibly increase total heart function to a near normal pre-MI level.(4) As with any functional tissue, successful regeneration of cardiac tissue involves the proper delivery of multiple cell types with environmental cues favoring integration and survival of the implanted cell/tissue graft. Engineered tissues should address multiple parameters including: soluble signals, cell-to-cell interactions, and matrix materials evaluated as delivery vehicles, their effects on cell survival, material strength, and facilitation of cell-to-tissue organization. Studies employing the direct injection of graft cells only ignore these essential elements.(2,5,6) A tissue design combining these ingredients has yet to be developed. Here, we present an example of integrated designs using layering of patterned cell sheets with two distinct types of biological-derived materials containing the target organ cell type and endothelial cells for enhancing new vessels formation in the "tissue". Although these studies focus on the generation of heart-like tissue, this tissue design can be applied to many organs other than heart with minimal design and material changes, and is meant to be an off-the-shelf product for regenerative therapies. The protocol contains five detailed steps. A temperature sensitive Poly(N-isopropylacrylamide) (pNIPAAM) is used to coat tissue culture dishes. Then, tissue specific cells are cultured on the surface of the coated plates/micropattern surfaces to form cell sheets with strong lateral adhesions. Thirdly, a base matrix is created for the tissue by combining porous matrix with neovascular permissive hydrogels and endothelial cells. Finally, the cell sheets are lifted from the pNIPAAM coated dishes and transferred to the base element, making the complete construct.
Peffers, Mandy Jayne; Goljanek-Whysall, Katarzyna; Collins, John; Fang, Yongxiang; Rushton, Michael; Loughlin, John; Proctor, Carole; Clegg, Peter David
2016-01-01
Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for ‘cell death and survival’, ‘cell morphology’, and ‘cell growth and proliferation’. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in ‘skeletal system morphogenesis’, ‘regulation of cell proliferation’ and ‘regulation of transcription’ suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies. PMID:27533049
Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.
Sheehy, Eamon J; Mesallati, Tariq; Vinardell, Tatiana; Kelly, Daniel J
2015-02-01
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) have been shown to generate bone in vivo by executing an endochondral programme. This may hinder the use of MSCs for articular cartilage regeneration, but opens the possibility of using engineered cartilaginous tissues for large bone defect repair. Hydrogels may be an attractive tool in the scaling-up of such tissue engineered grafts for endochondral bone regeneration. In this study, we compared the capacity of different naturally derived hydrogels (alginate, chitosan and fibrin) to support chondrogenesis and hypertrophy of MSCs in vitro and endochondral ossification in vivo. In vitro, alginate and chitosan constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG), with chitosan constructs synthesizing the highest levels of collagen. Alginate and fibrin constructs supported the greatest degree of calcium accumulation, though only fibrin constructs calcified homogeneously. In vivo, chitosan constructs facilitated neither vascularization nor endochondral ossification, and also retained the greatest amount of sGAG, suggesting it to be a more suitable material for the engineering of articular cartilage. Both alginate and fibrin constructs facilitated vascularization and endochondral bone formation as well as the development of a bone marrow environment. Alginate constructs accumulated significantly more mineral and supported greater bone formation in central regions of the engineered tissue. In conclusion, this study demonstrates the capacity of chitosan hydrogels to promote and better maintain a chondrogenic phenotype in MSCs and highlights the potential of utilizing alginate hydrogels for MSC-based endochondral bone tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
In Vitro Engineering of Vascularized Tissue Surrogates
Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Horaguchi, Shigeto; Sekine, Hidekazu; Yamato, Masayuki; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models. PMID:23419835
Cardiac tissue engineering: from matrix design to the engineering of bionic hearts.
Fleischer, Sharon; Feiner, Ron; Dvir, Tal
2017-04-01
The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.
Cengiz, Ibrahim Fatih; Pereira, Hélder; de Girolamo, Laura; Cucchiarini, Magali; Espregueira-Mendes, João; Reis, Rui L; Oliveira, Joaquim Miguel
2018-05-22
Orthopaedic disorders are very frequent, globally found and often partially unresolved despite the substantial advances in science and medicine. Their surgical intervention is multifarious and the most favourable treatment is chosen by the orthopaedic surgeon on a case-by-case basis depending on a number of factors related with the patient and the lesion. Numerous regenerative tissue engineering strategies have been developed and studied extensively in laboratory through in vitro experiments and preclinical in vivo trials with various established animal models, while a small proportion of them reached the operating room. However, based on the available literature, the current strategies have not yet achieved to fully solve the clinical problems. Thus, the gold standards, if existing, remain unchanged in the clinics, notwithstanding the known limitations and drawbacks. Herein, the involvement of regenerative tissue engineering in the clinical orthopaedics is reviewed. The current challenges are indicated and discussed in order to describe the current disequilibrium between the needs and solutions made available in the operating room. Regenerative tissue engineering is a very dynamic field that has a high growth rate and a great openness and ability to incorporate new technologies with passion to edge towards the Holy Grail that is functional tissue regeneration. Thus, the future of clinical solutions making use of regenerative tissue engineering principles for the management of orthopaedic disorders is firmly supported by the clinical need.
Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine
Renth, Amanda N.
2012-01-01
Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of “raw materials” used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies. PMID:22462759
Factors affecting the structure and maturation of human tissue engineered skeletal muscle.
Martin, Neil R W; Passey, Samantha L; Player, Darren J; Khodabukus, Alastair; Ferguson, Richard A; Sharples, Adam P; Mudera, Vivek; Baar, Keith; Lewis, Mark P
2013-07-01
Tissue engineered skeletal muscle has great utility in experimental studies of physiology, clinical testing and its potential for transplantation to replace damaged tissue. Despite recent work in rodent tissue or cell lines, there is a paucity of literature concerned with the culture of human muscle derived cells (MDCs) in engineered constructs. Here we aimed to tissue engineer for the first time in the literature human skeletal muscle in self-assembling fibrin hydrogels and determine the effect of MDC seeding density and myogenic proportion on the structure and maturation of the constructs. Constructs seeded with 4 × 10(5) MDCs assembled to a greater extent than those at 1 × 10(5) or 2 × 10(5), and immunostaining revealed a higher fusion index and a higher density of myotubes within the constructs, showing greater structural semblance to in vivo tissue. These constructs primarily expressed perinatal and slow type I myosin heavy chain mRNA after 21 days in culture. In subsequent experiments MACS(®) technology was used to separate myogenic and non-myogenic cells from their heterogeneous parent population and these cells were seeded at varying myogenic (desmin +) proportions in fibrin based constructs. Only in the constructs seeded with 75% desmin + cells was there evidence of striations when immunostained for slow myosin heavy chain compared with constructs seeded with 10 or 50% desmin + cells. Overall, this work reveals the importance of cell number and myogenic proportions in tissue engineering human skeletal muscle with structural resemblance to in vivo tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.
Advances in bionanomaterials for bone tissue engineering.
Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit
2013-01-01
Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.
Tajbakhsh, Saeid; Hajiali, Faezeh
2017-01-01
The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites containing ceramic reinforcements, including various methods of production and the evaluation of the scaffolds in terms of porosity, mechanical properties, in vitro and in vivo biocompatibility and bioactivity for bone tissue engineering applications. The production routes range from traditional approaches such as the use of porogens to provide porosity in the scaffolds to novel methods such as solid free-form techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Raman fiberoptic probe for monitoring human tissue engineered oral mucosa constructs
NASA Astrophysics Data System (ADS)
Khmaladze, Alexander; Kuo, Shiuhyang; Okagbare, Paul; Marcelo, Cynthia L.; Feinberg, Stephen E.; Morris, Michael D.
2013-02-01
In oral and maxillofacial surgery, there is a need for tissue engineered constructs for dental implants, reconstructions due to trauma, oral cancer or congenital defects. A non-invasive quality monitoring of the fabrication of tissue engineered constructs during their production and implantation is a required component of any successful tissue engineering technique. We demonstrate the design and application of a Raman spectroscopic probe for rapid and noninvasive monitoring of Ex Vivo Produced Oral Mucosa Equivalent constructs (EVPOMEs). We conducted in vivo studies to identify Raman spectroscopic failure indicators for EVPOMEs (already developed in vitro), and found that Raman spectra of EVPOMEs exposed to thermal stress showed correlation of the band height ratio of CH2 deformation to phenylalanine ring breathing modes, providing a Raman metric to distinguish between viable and nonviable constructs. This is the first step towards the ultimate goal to design a stand-alone system, which will be usable in a clinical setting, as the data processing and analysis will be performed with minimal user intervention, based on already established and tested Raman spectroscopic indicators for EVPOMEs.
Recent progresses in gene delivery-based bone tissue engineering.
Lu, Chia-Hsin; Chang, Yu-Han; Lin, Shih-Yeh; Li, Kuei-Chang; Hu, Yu-Chen
2013-12-01
Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches. © 2013.
Rheological Properties of Cross-Linked Hyaluronan–Gelatin Hydrogels for Tissue Engineering
Vanderhooft, Janssen L.; Alcoutlabi, Mataz; Magda, Jules J.; Prestwich, Glenn D.
2009-01-01
Hydrogels that mimic the natural extracellular matrix (ECM) are used in three-dimensional cell culture, cell therapy, and tissue engineering. A semi-synthetic ECM based on cross-linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross-linking density were the main determinants of gel stiffness. Increase in the ratio of thiol-modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component. PMID:18839402
[NEW PROGRESS OF ACELLULAR FISH SKIN AS NOVEL TISSUE ENGINEERED SCAFFOLD].
Wei, Xiaojuan; Wang, Nanping; He, Lan; Guo, Xiuyu; Gu, Qisheng
2016-11-08
To review the recent research progress of acellular fish skin as a tissue engineered scaffold, and to analyze the feasibility and risk management in clinical application. The research and development, application status of acellular fish skin as a tissue engineered scaffold were comprehensively analyzed, and then several key points were put forward. Acellular fish skin has a huge potential in clinical practice as novel acellular extracellular matrix, but there have been no related research reports up to now in China. As an emerging point of translational medicine, investigation of acellular fish skin is mainly focused on artificial skin, surgical patch, and wound dressings. Development of acellular fish skin-based new products is concerned to be clinical feasible and necessary, but a lot of applied basic researches should be carried out.
Biomechanics and mechanobiology in functional tissue engineering.
Guilak, Farshid; Butler, David L; Goldstein, Steven A; Baaijens, Frank P T
2014-06-27
The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of "functional tissue engineering" has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Micro- and nanotechnology in cardiovascular tissue engineering.
Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica
2011-12-09
While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.
Tissue engineering, stem cells, and cloning for the regeneration of urologic organs.
Atala, Anthony
2003-10-01
Tissue engineering efforts are currently being undertaken for every type of tissue and organ within the urinary system. Most of the effort expended to engineer genitourinary tissues has occurred within the last decade. Tissue engineering techniques require a cell culture facility designed for human application. Personnel who have mastered the techniques of cell harvest, culture, and expansion as well as polymer design are essential for the successful application of this technology. Various engineered genitourinary tissues are at different stages of development, with some already being used clinically, a few in preclinical trials, and some in the discovery stage. Recent progress suggests that engineered urologic tissues may have an expanded clinical applicability in the future.
Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane
2015-08-01
The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.
Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair
NASA Astrophysics Data System (ADS)
Erickson, Isaac E.
2011-12-01
Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 kPa, nearly 10-fold greater than previous reports of integration with MSC-based constructs. Furthermore, we demonstrated the durability of this repair system by applying dynamic loading and showed its functional contribution to the distribution of compressive loads across the repair space. Overall, the studies contained within this thesis offer the first MSC-based tissue engineering strategy that successfully recapitulates native mechanical function while also demonstrating the potential for complete functional cartilage repair.
Cardiovascular tissue engineering: where we come from and where are we now?
Smit, Francis E; Dohmen, Pascal M
2015-01-27
Abstract Tissue engineering was introduced by Vacanti and Langer in the 80's, exploring the potential of this new technology starting with the well-known "human ear on the mouse back". The goal is to create a substitute which supplies an individual therapy for patients with regeneration, remodeling and growth potential. The growth potential of these subjects is of special interest in congenital cardiac surgery, avoiding repeated interventions and surgery. Initial applications of tissue engineered created substitutes were relatively simple cardiovascular grafts seeded initially by end-differentiated autologous endothelial cells. Important data were collected from these initial clinical autologous endothelial cell seeded grafts in peripheral and coronary vessel disease. After these initial successfully implantation bone marrow cell were used to seed patches and pulmonary conduits were implanted in patients. Driven by the positive results of tissue engineered material implanted under low pressure circumstances, first tissue engineered patches were implanted in the systemic circulation followed by the implantation of tissue engineered aortic heart valves. Tissue engineering is an extreme dynamic technology with continuously modifications and improvements to optimize clinical products. New technologies are unified and so this has also be done with tissue engineering and new application features, so called transcatheter valve intervention. First studies are initiated to apply tissue engineered heart valves with this new transcatheter delivery system less invasive. Simultaneously studies have been started on tissue engineering of so-called whole organs since organ transplantation is restricted due to donor shortage and tissue engineering could overcome this problem. Initial studies of whole heart engineering in the rat model are promising and larger size models are initiated.
3D Printing of Personalized Organs and Tissues
NASA Astrophysics Data System (ADS)
Ye, Kaiming
2015-03-01
Authors: Kaiming Ye and Sha Jin, Department of Biomedical Engineering, Watson School of Engineering and Applied Science, Binghamton University, State University of New York, Binghamton, NY 13902-6000 Abstract: Creation of highly organized multicellular constructs, including tissues and organs or organoids, will revolutionize tissue engineering and regenerative medicine. The development of these technologies will enable the production of individualized organs or tissues for patient-tailored organ transplantation or cell-based therapy. For instance, a patient with damaged myocardial tissues due to an ischemic event can receive a myocardial transplant generated using the patient's own induced pluripotent stem cells (iPSCs). Likewise, a type-1 diabetic patient can be treated with lab-generated islets to restore his or her physiological insulin secretion capability. These lab-produced, high order tissues or organs can also serve as disease models for pathophysiological study and drug screening. The remarkable advances in stem cell biology, tissue engineering, microfabrication, and materials science in the last decade suggest the feasibility of generating these tissues and organoids in the laboratory. Nevertheless, major challenges still exist. One of the critical challenges that we still face today is the difficulty in constructing or fabricating multicellular assemblies that recapitulate in vivo microenvironments essential for controlling cell proliferation, migration, differentiation, maturation and assembly into a biologically functional tissue or organoid structure. These challenges can be addressed through developing 3D organ and tissue printing which enables organizing and assembling cells into desired tissue and organ structures. We have shown that human pluripotent stem cells differentiated in 3D environments are mature and possess high degree of biological function necessary for them to function in vivo.
NASA Astrophysics Data System (ADS)
Nahmias, Yaakov Koby
Tissue Engineering aims for the creation of functional tissues or organs using a combination of biomaterials and living cells. Artificial tissues can be implanted in patients to restore tissue function that was lost due to trauma, disease, or genetic disorder. Tissue equivalents may also be used to screen the effects of drugs and toxins, reducing the use of animals in research. One of the principle limitations to the size of engineered tissue is oxygen and nutrient transport. Lacking their own vascular bed, cells embedded in the engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. Establishing capillaries within the tissue prior to implantation can potentially eliminate this limitation. One approach to establishing capillaries within the tissue is to directly write endothelial cells with micrometer accuracy as it is being built. The patterned endothelial cells will then self-assemble into vascular structures within the engineering tissue. The cell patterning technique known as laser-guided direct writing can confine multiple cells in a laser beam and deposit them as a steady stream on any non-absorbing surface with micrometer scale accuracy. By applying the generalized Lorenz-Mie theory for light scattering on laser-guided direct writing we were able to accurately predict the behavior of with various cells and particles in the focused laser. In addition, two dimensionless parameters were identified for general radiation-force based system design. Using laser-guided direct writing we were able to direct the assembly of endothelial vascular structures with micrometer accuracy in two and three dimensions. The patterned vascular structures provided the backbone for subsequent in vitro liver morphogenesis. Our studies show that hepatocytes migrate toward and adhere to endothelial vascular structures in response to endothelial-secreted hepatocyte growth factor (HGF). Our approach has the advantage of retaining the natural heterotypic cell-cell interaction and spatial arrangement of native tissue, which is important for proper tissue function.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Microsoft Office; Windows MediaPlayer or RealPlayer.
Liu, Liangqi; Wu, Wei; Tuo, Xiaoye; Geng, Wenxin; Zhao, Jie; Wei, Jing; Yan, Xingrong; Yang, Wei; Li, Liwen; Chen, Fulin
2010-05-01
Limited donor sites of cartilage and dedifferentiation of chondrocytes during expansion, low tissue reconstruction efficiency, and uncontrollable immune reactions to foreign materials are the main obstacles to overcome before cartilage tissue engineering can be widely used in the clinic. In the current study, we developed a novel strategy to fabricate tissue-engineered trachea cartilage grafts using marrow mesenchymal stem cell (MSC) macroaggregates and hydrolyzable scaffold of polylactic acid-polyglycolic acid copolymer (PLGA). Rabbit MSCs were continuously cultured to prepare macroaggregates in sheet form. The macroaggregates were studied for their potential for chondrogenesis. The macroaggregates were wrapped against the PLGA scaffold to make a tubular composite. The composites were incubated in spinner flasks for 4 weeks to fabricate trachea cartilage grafts. Histological observation and polymerase chain reaction array showed that MSC macroaggregates could obtain the optimal chondrogenic capacity under the induction of transforming growth factor-beta. Engineered trachea cartilage consisted of evenly spaced lacunae embedded in a matrix rich in proteoglycans. PLGA scaffold degraded totally during in vitro incubation and the engineered cartilage graft was composed of autologous tissue. Based on this novel, MSC macroaggregate and hydrolyzable scaffold composite strategy, ready-to-implant autologous trachea cartilage grafts could be successfully fabricated. The strategy also had the advantages of high efficiency in cell seeding and tissue regeneration, and could possibly be used in future in vivo experiments.
Xenogeneic Acellular Conjunctiva Matrix as a Scaffold of Tissue-Engineered Corneal Epithelium
Zhao, Haifeng; Qu, Mingli; Wang, Yao; Wang, Zhenyu; Shi, Weiyun
2014-01-01
Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface. PMID:25375996
Novel imaging analysis system to measure the spatial dimension of engineered tissue construct.
Choi, Kyoung-Hwan; Yoo, Byung-Su; Park, So Ra; Choi, Byung Hyune; Min, Byoung-Hyun
2010-02-01
The measurement of the spatial dimensions of tissue-engineered constructs is very important for their clinical applications. In this study, a novel method to measure the volume of tissue-engineered constructs was developed using iterative mathematical computations. The method measures and analyzes three-dimensional (3D) parameters of a construct to estimate its actual volume using a sequence of software-based mathematical algorithms. The mathematical algorithm is composed of two stages: the shape extraction and the determination of volume. The shape extraction utilized 3D images of a construct: length, width, and thickness, captured by a high-quality camera with charge coupled device. The surface of the 3D images was then divided into fine sections. The area of each section was measured and combined to obtain the total surface area. The 3D volume of the target construct was then mathematically obtained using its total surface area and thickness. The accuracy of the measurement method was verified by comparing the results with those obtained from the hydrostatic weighing method (Korea Research Institute of Standards and Science [KRISS], Korea). The mean difference in volume between two methods was 0.0313 +/- 0.0003% (n = 5, P = 0.523) with no significant statistical difference. In conclusion, our image-based spatial measurement system is a reliable and easy method to obtain an accurate 3D volume of a tissue-engineered construct.
Biomedical applications of tissue engineering technology: regulatory issues.
Hellman, K B
1995-01-01
Novel emerging technologies such as tissue engineering, which utilize the approaches of molecular and cell biology, biotechnology, as well as materials science and engineering, are being used in the development of a wide range of biomedical products developed by industries regulated by the U.S. Food and Drug Administration (FDA). The FDA's mission is to promote and protect the public health by ensuring the safety and effectiveness of pharmaceuticals and medical devices, including those manufactured by novel technology, as assessed by scientific principles and methods. Regulatory review is conducted on a product-by-product basis. To accomplish its mission over the wide range of products in its regulatory purview, the FDA has six centers, each staffed with the scientific and regulatory expertise to evaluate the products in the center's jurisdiction. Recent legislative and regulatory changes are designed to simplify and facilitate the administrative process for evaluating novel combination products emanating from such interdisciplinary technology as tissue engineering and to resolve questions of product regulatory jurisdiction. Under the new procedures, the FDA may designate a lead FDA center for product review based on the primary mode of action of the combination product, with additional center(s) designated to assist in the evaluation in a collaborative or consultative capacity. In addition, FDA centers have increased their cooperation and information sharing with regard to evolving interdisciplinary technology. The FDA InterCenter Tissue Engineering Initiative was established to develop information on intercenter efforts in the evaluation of tissue engineering applications and to identify areas for further consideration. The FDA InterCenter Tissue Engineering Working Group, comprised of staff from the Center for Biologies Evaluation and Research (CBER), Center for Devices and Radiological Health (CDRH), Center for Drug Evaluation and Research (CDER), and Center for Veterinary Medicine (CVM) has developed a Draft Report considering recent developments in tissue engineering and scientific and regulatory issues in the product application areas. The Working Group has identified generic safety and effectiveness issues for consideration by the research and development community in its development of products. The FDA centers are using multiple approaches at their disposal in the evaluation of tissue engineered products including research, data and information monitoring, regulatory guidance, training and education, and cooperation with public and private groups.
Suntornnond, Ratima; Tan, Edgar Yong Sheng; An, Jia; Chua, Chee Kai
2017-12-04
Vascularization is one major obstacle in bioprinting and tissue engineering. In order to create thick tissues or organs that can function like original body parts, the presence of a perfusable vascular system is essential. However, it is challenging to bioprint a hydrogel-based three-dimensional vasculature-like structure in a single step. In this paper, we report a new hydrogel-based composite that offers impressive printability, shape integrity, and biocompatibility for 3D bioprinting of a perfusable complex vasculature-like structure. The hydrogel composite can be used on a non-liquid platform and is printable at human body temperature. Moreover, the hydrogel composite supports both cell proliferation and cell differentiation. Our results represent a potentially new vascularization strategy for 3D bioprinting and tissue engineering.
Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.
Kant, Rajeev J; Coulombe, Kareen L K
2018-03-15
The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A
2010-08-01
Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.
Biomechanics and mechanobiology in functional tissue engineering
Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.
2014-01-01
The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797
Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs.
Mekhileri, N V; Lim, K S; Brown, G C J; Mutreja, I; Schon, B S; Hooper, G J; Woodfield, T B F
2018-01-12
Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ± 5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was observed. Bioassembly of pre-differentiated micro-tissues as well as chondrocyte-laden hydrogel micro-spheres demonstrated the flexibility of the platform while supporting tissue fusion, long-term cell viability, and deposition of cartilage-specific extracellular matrix proteins. This technology provides an automated and scalable pathway for bioassembly of both simple and complex 3D tissue constructs of clinically relevant shape and size, with demonstrated capability to facilitate direct spatial organisation and hierarchical 3D assembly of micro-tissue modules, ranging from biomaterial free cell pellets to cell-laden hydrogel formulations.
Mondrinos, Mark J; Dembzynski, Robert; Lu, Lin; Byrapogu, Venkata K C; Wootton, David M; Lelkes, Peter I; Zhou, Jack
2006-09-01
Drop on demand printing (DDP) is a solid freeform fabrication (SFF) technique capable of generating microscale physical features required for tissue engineering scaffolds. Here, we report results toward the development of a reproducible manufacturing process for tissue engineering scaffolds based on injectable porogens fabricated by DDP. Thermoplastic porogens were designed using Pro/Engineer and fabricated with a commercially available DDP machine. Scaffolds composed of either pure polycaprolactone (PCL) or homogeneous composites of PCL and calcium phosphate (CaP, 10% or 20% w/w) were subsequently fabricated by injection molding of molten polymer-ceramic composites, followed by porogen dissolution with ethanol. Scaffold pore sizes, as small as 200 microm, were attainable using the indirect (porogen-based) method. Scaffold structure and porosity were analyzed by scanning electron microscopy (SEM) and microcomputed tomography, respectively. We characterized the compressive strength of 90:10 and 80:20 PCL-CaP composite materials (19.5+/-1.4 and 24.8+/-1.3 Mpa, respectively) according to ASTM standards, as well as pure PCL scaffolds (2.77+/-0.26 MPa) fabricated using our process. Human embryonic palatal mesenchymal (HEPM) cells attached and proliferated on all scaffolds, as evidenced by fluorescent nuclear staining with Hoechst 33258 and the Alamar Blue assay, with increased proliferation observed on 80:20 PCL-CaP scaffolds. SEM revealed multilayer assembly of HEPM cells on 80:20 PCL-CaP composite, but not pure PCL, scaffolds. In summary, we have developed an SFF-based injection molding process for the fabrication of PCL and PCL-CaP scaffolds that display in vitro cytocompatibility and suitable mechanical properties for hard tissue repair.
Silk scaffolds in bone tissue engineering: An overview.
Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C
2017-11-01
Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide applications as cell scaffolding matrices to micro-nano carriers for delivering bone growth factors and therapeutic molecules to diseased or damaged sites to facilitate bone regeneration, is emphasized here. The review rationalizes that the choice of silk protein as a biomaterial is not only because of its natural polymeric nature, mechanical robustness, flexibility and wide range of cell compatibility but also because of its ability to template the growth of hydroxyapatite, the chief inorganic component of bone mineral matrix, resulting in improved osteointegration. The discussion extends to the role of inorganic ions such as Si and Ca as matrix components in combination with silk to influence bone regrowth. The effect of ions or growth factor-loaded vehicle incorporation into regenerative matrix, nanotopography is also considered. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue.
Patra, Satyajit; Young, Vanesa
2016-06-01
3D printing has been around in the art, micro-engineering, and manufacturing worlds for decades. Similarly, research for traditionally engineered skin tissue has been in the works since the 1990s. As of recent years, the medical field also began to take advantage of the untapped potential of 3D printing for the biofabrication of tissue. To do so, researchers created a set of goals for fabricated tissues based on the characteristics of natural human tissues and organs. Fabricated tissue was then measured against this set of standards. Researchers were interested in not only creating tissue that functioned like natural tissues but in creating techniques for 3D printing that would print tissues quickly, efficiently, and ultimately result in the ability to mass produce fabricated tissues. Three promising methods of 3D printing emerged from their research: thermal inkjet printing with bioink, direct-write bioprinting, and organ printing using tissue spheroids. This review will discuss all three printing techniques, as well as their advantages, disadvantages, and the possibility of future advancements in the field of tissue fabrication.
The necessity of a theory of biology for tissue engineering: metabolism-repair systems.
Ganguli, Suman; Hunt, C Anthony
2004-01-01
Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.
Piezoelectric polymers as biomaterials for tissue engineering applications.
Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu
2015-12-01
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions. Copyright © 2015 Elsevier B.V. All rights reserved.
Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P
2015-01-01
Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.
Integrating-Sphere Measurements for Determining Optical Properties of Tissue-Engineered Oral Mucosa
NASA Astrophysics Data System (ADS)
Ionescu, A. M.; Cardona, J. C.; Garzón, I.; Oliveira, A. C.; Ghinea, R.; Alaminos, M.; Pérez, M. M.
2015-02-01
Surgical procedures carried out in the oral and maxillofacial region can result in large tissue defects. Accounting for the shortage of oral mucosa to replace the excised tissues, different models of an organotypic substitute of the oral mucosa generated by tissue engineering have recently been proposed. In this work, the propagation of light radiation through artificial human oral mucosa substitutes based on fibrin-agarose scaffolds (fibrin, fibrin-0.1% agarose, fibrin-0.2%agarose) is investigated, and their optical properties are determined using the inverse adding-doubling (IAD) method based on integrating-sphere measurements. Similar values for the absorption and scattering coefficients between the fibrin and fibrin-0.1% agarose bioengineered tissues and the native oral mucosa were found. These results suggest the adequacy of these biomaterials for potential clinical use in human oral mucosa applications. These optical properties represent useful references and data for applications requiring the knowledge of the light transport through this type of tissues, applications used in clinical practice. It also provides a new method of information analysis for the quality control of the development of the artificial nanostructured oral mucosa substitutes and its comparison with native oral mucosa tissues.
Injectable hydrogels for cartilage and bone tissue engineering
Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue
2017-01-01
Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674
[Strategies to choose scaffold materials for tissue engineering].
Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui
2016-02-01
Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which mixed with sustained-release nano-microsphere containing growth factors. What's more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.
The Application of Tissue Engineering Procedures to Repair the Larynx
ERIC Educational Resources Information Center
Ringel, Robert L.; Kahane, Joel C.; Hillsamer, Peter J.; Lee, Annie S.; Badylak, Stephen F.
2006-01-01
The field of tissue engineering/regenerative medicine combines the quantitative principles of engineering with the principles of the life sciences toward the goal of reconstituting structurally and functionally normal tissues and organs. There has been relatively little application of tissue engineering efforts toward the organs of speech, voice,…
Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.
Dilley, Rodney J; Morrison, Wayne A
2014-11-01
Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering
Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali
2010-01-01
Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414
Naderi, Hojjat; Matin, Maryam M; Bahrami, Ahmad Reza
2011-11-01
Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.
Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs
Borenstein, Jeffrey T.; Megley, Katie; Wall, Kimberly; Pritchard, Eleanor M.; Truong, David; Kaplan, David L.; Tao, Sarah L.; Herman, Ira M.
2010-01-01
One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.
Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khosrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G; Walther, Andreas
2015-05-20
A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geo-metries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Building better bone: The weaving of biologic and engineering strategies for managing bone loss.
Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J
2017-09-01
Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Biophysical stimulation for in vitro engineering of functional cardiac tissues.
Korolj, Anastasia; Wang, Erika Yan; Civitarese, Robert A; Radisic, Milica
2017-07-01
Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
McCoy, Ryan J; O'Brien, Fergal J
2012-12-01
Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. Copyright © 2012 Wiley Periodicals, Inc.
Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L
2017-07-01
Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.
Multiphasic Scaffolds for Periodontal Tissue Engineering
Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.W.; Bartold, P.M.
2014-01-01
For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor–based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. PMID:25139362
Multiphasic scaffolds for periodontal tissue engineering.
Ivanovski, S; Vaquette, C; Gronthos, S; Hutmacher, D W; Bartold, P M
2014-12-01
For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. © International & American Associations for Dental Research.
Cell culture in autologous fibrin scaffolds for applications in tissue engineering.
de la Puente, Pilar; Ludeña, Dolores
2014-03-10
In tissue engineering techniques, three-dimensional scaffolds are needed to adjust and guide cell growth and to allow tissue regeneration. The scaffold must be biocompatible, biodegradable and must benefit the interactions between cells and biomaterial. Some natural biomaterials such as fibrin provide a structure similar to the native extracellular matrix containing the cells. Fibrin was first used as a sealant based on pools of commercial fibrinogen. However, the high risk of viral transmission of these pools led to the development of techniques of viral inactivation and elimination and the use of autologous fibrins. In recent decades, fibrin has been used as a release system and three-dimensional scaffold for cell culture. Fibrin scaffolds have been widely used for the culture of different types of cells, and have found several applications in tissue engineering. The structure and development of scaffolds is a key point for cell culture because scaffolds of autologous fibrin offer an important alternative due to their low fibrinogen concentrations, which are more suitable for cell growth. With this review our aim is to follow methods of development, analyze the commercial and autologous fibrins available and assess the possible applications of cell culture in tissue engineering in these three-dimensional structures. Copyright © 2013 Elsevier Inc. All rights reserved.
Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment
Edalat, Faramarz; Bae, Hojae; Manoucheri, Sam; Cha, Jae Min; Khademhosseini, Ali
2012-01-01
Stem cell-based therapeutics have become a vital component in tissue engineering and regenerative medicine. The microenvironment within which stem cells reside, i.e. the niche, plays a crucial role in regulating stem cell self-renewal and differentiation. However, current biological techniques lack the means to recapitulate the complexity of this microenvironment. Nano- and microengineered materials offer innovative methods to: (1) deconstruct the stem cell niche to understand the effects of individual elements; (2) construct complex tissue-like structures resembling the niche to better predict and control cellular processes; and (3) transplant stem cells or activate endogenous stem cell populations for regeneration of aged or diseased tissues. Here, we highlight some of the latest advances in this field and discuss future applications and directions of the use of nano- and microtechnologies for stem cell engineering. PMID:22101755
Béduer, Amélie; Vaysse, Laurence; Loubinoux, Isabelle; Vieu, Christophe
2013-01-01
Central nervous system pathologies are often characterized by the loss of cell populations. A promising therapy now being developed consists in using bioactive materials, associating grafted cells to biopolymers which provide a scaffold for the in vitro building of new tissues, to be implanted in vivo. In the present article, the state of the art of this field, at crossroads between microtechnology and neuroscience, is described in detail; thereafter our own approach and results about interactions between adult human neural stem cells and microstructured polymers are summarized and discussed. In a second part, some central nervous system repair strategies, based on cerebral tissue engineering, are presented. We will report the main results of our studies to work out and characterize in vivo a cerebral bioprosthesis. © Société de Biologie, 2014.
Two-photon excitation based photochemistry and neural imaging
NASA Astrophysics Data System (ADS)
Hatch, Kevin Andrew
Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, two-photon microscopy was used to observe the effects of the application of the neurotransmitter dopamine to the mushroom body neural structures of Drosophila melanogaster to investigate dopamine's connection to cognitive degeneration.
Engineering approaches toward deconstructing and controlling the stem cell environment.
Edalat, Faramarz; Bae, Hojae; Manoucheri, Sam; Cha, Jae Min; Khademhosseini, Ali
2012-06-01
Stem cell-based therapeutics have become a vital component in tissue engineering and regenerative medicine. The microenvironment within which stem cells reside, i.e., the niche, plays a crucial role in regulating stem cell self-renewal and differentiation. However, current biological techniques lack the means to recapitulate the complexity of this microenvironment. Nano- and microengineered materials offer innovative methods to (1) deconstruct the stem cell niche to understand the effects of individual elements; (2) construct complex tissue-like structures resembling the niche to better predict and control cellular processes; and (3) transplant stem cells or activate endogenous stem cell populations for regeneration of aged or diseased tissues. In this article, we highlight some of the latest advances in this field and discuss future applications and directions of the use of nano- and microtechnologies for stem cell engineering.
Janjanin, Sasa; Li, Wan-Ju; Morgan, Meredith T.; Shanti, Rabie M.; Tuan, Rocky S.
2008-01-01
Background Mesenchymal stem cell (MSC)-based tissue engineering is a promising future alternative to autologous cartilage grafting. This study evaluates the potential of using MSCs, seeded into electrospun, biodegradable polymeric nanofibrous scaffolds, to engineer cartilage with defined dimensions and shape, similar to grafts used for subcutaneous implantation in plastic and reconstructive surgery. Materials and methods Human bone marrow derived MSCs seeded onto nanofibrous scaffolds and placed in custom-designed molds were cultured for up to 42 days in bioreactors. Chondrogenesis was induced with either transforming growth factor-β1 (TGF-β1) alone or in combination with insulin-like growth factor-I (IGF-I). Results Constructs exhibited hyaline cartilage histology with desired thickness and shape as well as favorable tissue integrity and shape retention, suggesting the presence of elastic tissue. Time-dependent increase in cartilage matrix gene expression was seen in both types of culture; at Day 42, TGF-β1/IGF-I treated cultures showed higher collagen type II and aggrecan expression. Both culture conditions showed significant time-dependent increase in sulfated glycosaminoglycan and hydroxyproline contents. TGF-β1/IGF-I treated samples were significantly stiffer; with equilibrium compressive Young’s modulus values reaching 17 kPa by Day 42. Conclusions The successful ex vivo development of geometrically defined cartilaginous construct using customized molding suggests the potential of cell-based cartilage tissue for reconstructive surgery. PMID:18316094
NASA Astrophysics Data System (ADS)
Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.
Ardeshirylajimi, Abdolreza
2017-10-01
Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Madry, H; Kaul, G; Zurakowski, D; Vunjak-Novakovic, G; Cucchiarini, M
2013-04-16
Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes overexpressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-overexpressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects.
Madry, Henning; Kaul, Gunter; Zurakowski, David; Vunjak-Novakovic, Gordana; Cucchiarini, Magali
2015-01-01
Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes over expressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-over expressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects. PMID:23588785
Combining platelet-rich plasma and tissue-engineered skin in the treatment of large skin wound.
Han, Tong; Wang, Hao; Zhang, Ya Qin
2012-03-01
The objective of the study was to observe the effects of tissue-engineered skin in combination with platelet-rich plasma (PRP) and other preparations on the repair of large skin wound on nude mice.We first prepared PRP from venous blood by density-gradient centrifugation. Large skin wounds were created surgically on the dorsal part of nude mice. The wounds were then treated with either artificial skin, tissue-engineered skin, tissue-engineered skin combined with basic fibroblast growth factor, tissue-engineered skin combined with epidermal growth factor, or tissue-engineered skin combined with PRP. Tissue specimens were collected at different time intervals after surgery. Hematoxylin-eosin and periodic acid-Schiff staining and immunohistochemistry were performed to assess the rate of wound healing.Macroscopic observations, hematoxylin-eosin/periodic acid-Schiff staining, and immunohistochemistry revealed that the wounds treated with tissue-engineered skin in combination with PRP showed the most satisfactory wound recovery, among the 5 groups.
Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D
2017-11-01
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Construction Strategy and Progress of Whole Intervertebral Disc Tissue Engineering.
Yang, Qiang; Xu, Hai-wei; Hurday, Sookesh; Xu, Bao-shan
2016-02-01
Degenerative disc disease (DDD) is the major cause of low back pain, which usually leads to work absenteeism, medical visits and hospitalization. Because the current conservative procedures and surgical approaches to treatment of DDD only aim to relieve the symptoms of disease but not to regenerate the diseased disc, their long-term efficiency is limited. With the rapid developments in medical science, tissue engineering techniques have progressed markedly in recent years, providing a novel regenerative strategy for managing intervertebral disc disease. However, there are as yet no ideal methods for constructing tissue-engineered intervertebral discs. This paper reviews published reports pertaining to intervertebral disc tissue engineering and summarizes data concerning the seed cells and scaffold materials for tissue-engineered intervertebral discs, construction of tissue-engineered whole intervertebral discs, relevant animal experiments and effects of mechanics on the construction of tissue-engineered intervertebral disc and outlines the existing problems and future directions. Although the perfect regenerative strategy for treating DDD has not yet been developed, great progress has been achieved in the construction of tissue-engineered intervertebral discs. It is believed that ongoing research on intervertebral disc tissue engineering will result in revolutionary progress in the treatment of DDD. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Vital roles of stem cells and biomaterials in skin tissue engineering
Mohd Hilmi, Abu Bakar; Halim, Ahmad Sukari
2015-01-01
Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissue types may be fabricated in the future. Tissue engineering was first defined in 1987 by the United States National Science Foundation which critically discussed the future targets of bioengineering research and its consequences. The principles of tissue engineering are to initiate cell cultures in vitro, grow them on scaffolds in situ and transplant the composite into a recipient in vivo. From the beginning, scaffolds have been necessary in tissue engineering applications. Regardless, the latest technology has redirected established approaches by omitting scaffolds. Currently, scientists from diverse research institutes are engineering skin without scaffolds. Due to their advantageous properties, stem cells have robustly transformed the tissue engineering field as part of an engineered bilayered skin substitute that will later be discussed in detail. Additionally, utilizing biomaterials or skin replacement products in skin tissue engineering as strategy to successfully direct cell proliferation and differentiation as well as to optimize the safety of handling during grafting is beneficial. This approach has also led to the cells’ application in developing the novel skin substitute that will be briefly explained in this review. PMID:25815126
Vital roles of stem cells and biomaterials in skin tissue engineering.
Mohd Hilmi, Abu Bakar; Halim, Ahmad Sukari
2015-03-26
Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissue types may be fabricated in the future. Tissue engineering was first defined in 1987 by the United States National Science Foundation which critically discussed the future targets of bioengineering research and its consequences. The principles of tissue engineering are to initiate cell cultures in vitro, grow them on scaffolds in situ and transplant the composite into a recipient in vivo. From the beginning, scaffolds have been necessary in tissue engineering applications. Regardless, the latest technology has redirected established approaches by omitting scaffolds. Currently, scientists from diverse research institutes are engineering skin without scaffolds. Due to their advantageous properties, stem cells have robustly transformed the tissue engineering field as part of an engineered bilayered skin substitute that will later be discussed in detail. Additionally, utilizing biomaterials or skin replacement products in skin tissue engineering as strategy to successfully direct cell proliferation and differentiation as well as to optimize the safety of handling during grafting is beneficial. This approach has also led to the cells' application in developing the novel skin substitute that will be briefly explained in this review.
Mayrand, Dominique; Fradette, Julie
2018-01-01
Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.
Klatt, Dieter; Magin, Richard L.
2013-01-01
A key technical challenge in cartilage tissue engineering is the development of a noninvasive method for monitoring the composition, structure, and function of the tissue at different growth stages. Due to its noninvasive, three-dimensional imaging capabilities and the breadth of available contrast mechanisms, magnetic resonance imaging (MRI) techniques can be expected to play a leading role in assessing engineered cartilage. In this review, we describe the new MR-based tools (spectroscopy, imaging, and elastography) that can provide quantitative biomarkers for cartilage tissue development both in vitro and in vivo. Magnetic resonance spectroscopy can identify the changing molecular structure and alternations in the conformation of major macromolecules (collagen and proteoglycans) using parameters such as chemical shift, relaxation rates, and magnetic spin couplings. MRI provides high-resolution images whose contrast reflects developing tissue microstructure and porosity through changes in local relaxation times and the apparent diffusion coefficient. Magnetic resonance elastography uses low-frequency mechanical vibrations in conjunction with MRI to measure soft tissue mechanical properties (shear modulus and viscosity). When combined, these three techniques provide a noninvasive, multiscale window for characterizing cartilage tissue growth at all stages of tissue development, from the initial cell seeding of scaffolds to the development of the extracellular matrix during construct incubation, and finally, to the postimplantation assessment of tissue integration in animals and patients. PMID:23574498
Development of decellularized scaffolds for stem cell-driven tissue engineering.
Rana, Deepti; Zreiqat, Hala; Benkirane-Jessel, Nadia; Ramakrishna, Seeram; Ramalingam, Murugan
2017-04-01
Organ transplantation is an effective treatment for chronic organ dysfunctioning conditions. However, a dearth of available donor organs for transplantation leads to the death of numerous patients waiting for a suitable organ donor. The potential of decellularized scaffolds, derived from native tissues or organs in the form of scaffolds has been evolved as a promising approach in tissue-regenerative medicine for translating functional organ replacements. In recent years, donor organs, such as heart, liver, lung and kidneys, have been reported to provide acellular extracellular matrix (ECM)-based scaffolds through the process called 'decellularization' and proved to show the potential of recellularization with selected cell populations, particularly with stem cells. In fact, decellularized stem cell matrix (DSCM) has also emerged as a potent biological scaffold for controlling stem cell fate and function during tissue organization. Despite the proven potential of decellularized scaffolds in tissue engineering, the molecular mechanism responsible for stem cell interactions with decellularized scaffolds is still unclear. Stem cells interact with, and respond to, various signals/cues emanating from their ECM. The ability to harness the regenerative potential of stem cells via decellularized ECM-based scaffolds has promising implications for tissue-regenerative medicine. Keeping these points in view, this article reviews the current status of decellularized scaffolds for stem cells, with particular focus on: (a) concept and various methods of decellularization; (b) interaction of stem cells with decellularized scaffolds; (c) current recellularization strategies, with associated challenges; and (iv) applications of the decellularized scaffolds in stem cell-driven tissue engineering and regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Nanofibers and their applications in tissue engineering
Vasita, Rajesh; Katti, Dhirendra S
2006-01-01
Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259
Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure
Finosh, G.T.; Jayabalan, Muthu
2012-01-01
Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed. PMID:23507781
Finosh, G T; Jayabalan, Muthu
2012-01-01
Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed.
Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.
Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai
2015-01-01
The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.
Topographical Control of Ocular Cell Types for Tissue Engineering
McHugh, Kevin J.; Saint-Geniez, Magali; Tao, Sarah L.
2014-01-01
Visual impairment affects over 285 million people worldwide and has a major impact on an individual’s quality of life. Tissue engineering has the potential to increase quality of life for many of these patients by preventing vision loss or restoring vision using cell-based therapies. However, these strategies will require an understanding of the microenvironmental factors that influence cell behavior. The eye is a well-organized organ whose structural complexity is essential for proper function. Interactions between ocular cells and their highly ordered extracellular matrix are necessary for maintaining key tissue properties including corneal transparency and retinal lamination. Therefore, it is not surprising that culturing these cells in vitro on traditional flat substrates result in irregular morphology. Instead, topographically patterned biomaterials better mimic native extracellular matrix and have been shown to elicit in vivo-like morphology and gene expression which is essential for tissue engineering. Herein we review multiple methods for producing well-controlled topography and discuss optimal biomaterial scaffold design for cells of the cornea, retina, and lens. PMID:23744715
Tubular organ epithelialisation
Saksena, Rhea; Gao, Chuanyu; Wicox, Mathew; de Mel, Achala
2016-01-01
Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell–scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts. PMID:28228931
Bone Tissue Engineering with Premineralized Silk Scaffolds
Kim, Hyeon Joo; Kim, Ung-Jin; Kim, Hyun Suk; Li, Chunmei; Wada, Masahisa; Leisk, Gary G.; Kaplan, David L.
2009-01-01
Silks fibroin biomaterials are being explored as novel protein-based systems for cell and tissue culture. In the present study, biomimetic growth of calcium phosphate on porous silk fibroin polymeric scaffolds was explored to generate organic/inorganic composites as scaffolds for bone tissue engineering. Aqueous-derived silk fibroin scaffolds were prepared with the addition of polyaspartic acid during processing, followed by the controlled deposition of calcium phosphate by exposure to CaCl2 and Na2HPO4. These mineralized protein-composite scaffolds were subsequently seeded with human bone marrow stem cells (hMSC) and cultured in vitro for 6 weeks under osteogenic conditions with or without BMP-2. The extent of osteoconductivity was assessed by cell numbers, alkaline phosphatase and calcium deposition, along with immunohistochemistry for bone related outcomes. The results suggest increased osteoconductive outcomes with an increase in initial content of apatite and BMP-2 in the silk fibroin porous scaffolds. The premineralization of these highly porous silk fibroin protein scaffolds provided enhanced outcomes for the bone tissue engineering. PMID:18387349
Faulkner, Alex; Kent, Julie; Geesink, Ingrid; FitzPatrick, David
2006-11-01
This paper examines the development of innovation in human tissue technologies as a form of regenerative medicine, firstly by applying 'pollution ideas' to contemporary trends in its risk regulation and to the processes of regulatory policy formation, and secondly by analysing the classificatory processes deployed in regulatory policy. The analysis draws upon data from fieldwork and documentary materials with a focus on the UK and EU (2002-05) and explores four arenas: governance and regulatory policy; commercialisation and the market; 'evidentiality' manifest in evidence-based policy; and publics' and technology users' values and ethics. The analysis suggests that there is a trend toward 'purification' across these arenas, both material and socio-political. A common process of partitioning is found in stakeholders' attempts to define a clear terrain, which the field of tissue-engineered technology might occupy. We conclude that pollution ideas and partitioning processes are useful in understanding regulatory ordering and innovation in the emerging technological zone of human tissue engineering.
In vitro comparison of human fibroblasts from intact and ruptured ACL for use in tissue engineering.
Brune, T; Borel, A; Gilbert, T W; Franceschi, J P; Badylak, S F; Sommer, P
2007-12-17
The present study compares fibroblasts extracted from intact and ruptured human anterior cruciate ligaments (ACL) for creation of a tissue engineered ACL-construct, made of porcine small intestinal submucosal extracellular matrix (SIS-ECM) seeded with these ACL cells. The comparison is based on histological, immunohistochemical and RT-PCR analyses. Differences were observed between cells in a ruptured ACL (rACL) and cells in an intact ACL (iACL), particularly with regard to the expression of integrin subunits and smooth muscle actin (SMA). Despite these differences in the cell source, both cell populations behaved similarly when seeded on an SIS-ECM scaffold, with similar cell morphology, connective tissue organization and composition, SMA and integrin expression. This study shows the usefulness of naturally occurring scaffolds such as SIS-ECM for the study of cell behaviour in vitro, and illustrates the possibility to use autologous cells extracted from ruptured ACL biopsies as a source for tissue engineered ACL constructs.
3D printing for the design and fabrication of polymer-based gradient scaffolds.
Bracaglia, Laura G; Smith, Brandon T; Watson, Emma; Arumugasaamy, Navein; Mikos, Antonios G; Fisher, John P
2017-07-01
To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review will help to condense the abundance of information that has been published on the creation and characterization of gradient scaffolds and to provide a single review discussing both methods for manufacturing gradient scaffolds and evaluating the establishment of a gradient. Copyright © 2017. Published by Elsevier Ltd.
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Nemoto, Hitoshi; Watson, Deborah; Masuda, Koichi
2015-01-01
Tissue engineering holds great promise for cartilage repair with minimal donor-site morbidity. The in vivo maturation of a tissue-engineered construct can be tested in the subcutaneous tissues of the same species for autografts or of immunocompromised animals for allografts or xenografts. This section describes detailed protocols for the surgical transplantation of a tissue-engineered construct into an animal model to assess construct validity.
Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine
Sundelacruz, Sarah; Kaplan, David L.
2009-01-01
In osteochondral tissue engineering, cell recruitment, proliferation, differentiation, and patterning are critical for forming biologically and structurally viable constructs for repair of damaged or diseased tissue. However, since constructs prepared ex vivo lack the multitude of cues present in the in vivo microenvironment, cells often need to be supplied with external biological and physical stimuli to coax them towards targeted tissue functions. To determine which stimuli to present to cells, bioengineering strategies can benefit significantly from endogenous examples of skeletogenesis. As an example of developmental skeletogenesis, the developing limb bud serves as an excellent model system in which to study how an osteochondral structures form from undifferentiated precursor cells. Alongside skeletal formation during embryogenesis, bone also possesses innate regenerative capacity, displaying remarkable ability to heal after damage. Bone fracture healing shares many features with bone development, driving the hypothesis that the regenerative process generally recapitulates development. Similarities and differences between the two modes of bone formation may offer insight into the special requirements for healing damaged or diseased bone. Thus, endogenous fracture healing, as an example of regenerative skeletogenesis, may also inform bioengineering strategies. In this review, we summarize the key cellular events involving stem and progenitor cells in developmental and regenerative skeletogenesis, and discuss in parallel the corresponding cell- and scaffold-based strategies that tissue engineers employ to recapitulate these events in vitro. PMID:19508851
Generation of strip-format fibrin-based engineered heart tissue (EHT).
Schaaf, Sebastian; Eder, Alexandra; Vollert, Ingra; Stöhr, Andrea; Hansen, Arne; Eschenhagen, Thomas
2014-01-01
This protocol describes a method for casting fibrin-based engineered heart tissue (EHT) in standard 24-well culture dishes. In principle, a hydrogel tissue engineering method requires cardiomyocytes, a liquid matrix that forms a gel, a casting mold, and a device that keeps the developing tissue in place. This protocol refers to neonatal rat heart cells as the cell source; the matrix of choice is fibrin, and the tissues are generated in rectangular agarose-casting molds (12 × 3 × 3 mm) prepared in standard 24-well cell culture dishes, in which a pair of flexible silicone posts is suspended from above. A master mix of freshly isolated cells, medium, fibrinogen, and thrombin is pipetted into the casting mold and, over a period of 2 h, polymerizes and forms a fibrin cell block around two silicone posts. Silicone racks holding four pairs of silicone posts each are used to transfer the fresh fibrin cell blocks into new 24-well dishes with culture medium. Without further handling, the cells start to remodel the fibrin gel, form contacts with each other, elongate, and condense the gel to approximately ¼ of the initial volume. Spontaneous and rhythmic contractions start after 1 week. EHTs are viable and relatively stable for several weeks in this format and can be subjected to repeated measurements of contractile function and final morphological and molecular analyses.
Bone tissue engineering scaffolding: computer-aided scaffolding techniques.
Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi
Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).
Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N
2015-01-01
Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S
2017-03-01
The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the glycosaminoglycan content was higher in both the inner and outer mECM groups compared with the control group. These results showed that the inner mECM enhances the fibrocartilaginous differentiation of hBMSCs, while the outer mECM promotes a more fibroblastic phenotype. Our findings support the feasibility of fabricating bioactive scaffolds using region-specific mECM preparations for meniscus tissue engineering. This is the first report to demonstrate the feasibility of applying region-specific mECMs for the engineering of meniscus implants capable of reproducing the biphasic, anatomic, and biochemical characteristics of the meniscus, features that should contribute to the feasibility of their clinical application.
Smith, Alec S.T.; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A.; Kim, Deok-Ho
2016-01-01
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. PMID:28007615
The junction between hyaline cartilage and engineered cartilage in rabbits.
Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko
2013-06-01
Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.
Engineering extracellular matrix through nanotechnology.
Kelleher, Cassandra M; Vacanti, Joseph P
2010-12-06
The goal of tissue engineering is the creation of a living device that can restore, maintain or improve tissue function. Behind this goal is a new idea that has emerged from twentieth century medicine, science and engineering. It is preceded by centuries of human repair and replacement with non-living materials adapted to restore function and cosmetic appearance to patients whose tissues have been destroyed by disease, trauma or congenital abnormality. The nineteenth century advanced replacement and repair strategies based on moving living structures from a site of normal tissue into a site of defects created by the same processes. Donor skin into burn wounds, tendon transfers, intestinal replacements into the urinary tract, toes to replace fingers are all examples. The most radical application is that of vital organ transplantation in which a vital part such as heart, lung or liver is removed from one donor, preserved for transfer and implanted into a patient dying of end-stage organ failure. Tissue engineering and regenerative medicine have advanced a general strategy combining the cellular elements of living tissue with sophisticated biomaterials to produce living structures of sufficient size and function to improve patients' lives. Multiple strategies have evolved and the application of nanotechnology can only improve the field. In our era, by necessity, any medical advance must be successfully commercialized to allow widespread application to help the greatest number of patients. It follows that business models and regulatory agencies must adapt and change to enable these new technologies to emerge. This brief review will discuss the science of nanotechnology and how it has been applied to this evolving field. We will then briefly summarize the history of commercialization of tissue engineering and suggest that nanotechnology may be of use in breeching the barriers to commercialization although its primary mission is to improve the technology by solving some remaining and vexing problems in its science and engineering aspects.
Optimized adipose tissue engineering strategy based on a neo-mechanical processing method.
He, Yunfan; Lin, Maohui; Wang, Xuecen; Guan, Jingyan; Dong, Ziqing; Feng, Lu; Xing, Malcolm; Feng, Chuanbo; Li, Xiaojian
2018-05-26
Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared to those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared to those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.
Tissue engineering in urethral reconstruction—an update
Mangera, Altaf; Chapple, Christopher R
2013-01-01
The field of tissue engineering is rapidly progressing. Much work has gone into developing a tissue engineered urethral graft. Current grafts, when long, can create initial donor site morbidity. In this article, we evaluate the progress made in finding a tissue engineered substitute for the human urethra. Researchers have investigated cell-free and cell-seeded grafts. We discuss different approaches to developing these grafts and review their reported successes in human studies. With further work, tissue engineered grafts may facilitate the management of lengthy urethral strictures requiring oral mucosa substitution urethroplasty. PMID:23042444
Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young
2016-08-01
While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future.
Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering
Nitta, Sachiko Kaihara; Numata, Keiji
2013-01-01
There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed. PMID:23344060
Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui
2016-03-01
Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N
2012-01-01
Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012
Yoo, Dongjin
2012-07-01
Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Yong; Gao, Huai-Ling; Shen, Li-Li; Pan, Zhao; Mao, Li-Bo; Wu, Tao; He, Jia-Cai; Zou, Duo-Hong; Zhang, Zhi-Yuan; Yu, Shu-Hong
2015-12-01
Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering.Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering. Electronic supplementary information (ESI) available: Additional figures and table. See DOI: 10.1039/c5nr06876b
Adipose and mammary epithelial tissue engineering.
Zhu, Wenting; Nelson, Celeste M
2013-01-01
Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.
Adipose and mammary epithelial tissue engineering
Zhu, Wenting; Nelson, Celeste M.
2013-01-01
Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast. PMID:23628872
Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications
Dai, Ru; Wang, Zongjie; Samanipour, Roya; Koo, Kyo-in; Kim, Keekyoung
2016-01-01
Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine. PMID:27057174
Nanomaterials for Cardiac Myocyte Tissue Engineering.
Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A
2016-07-19
Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.
Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein
2016-01-01
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450
Baranwal, Anupriya; Kumar, Ashutosh; Priyadharshini, A; Oggu, Gopi Suresh; Bhatnagar, Ira; Srivastava, Ananya; Chandra, Pranjal
2018-04-15
Biopolymers have been serving the mankind in various ways since long. Over the last few years, these polymers have found great demand in various domains which includes bio medicine, tissue engineering, bio sensor fabrications etc. because of their excellent bio compatibility. In this context, chitosan has found global attention due to its environmentally benign nature, biocompatibility, biodegradability, and ease of availability. In last one decade or so, extensive research in active biomaterials, like chitosan has led to the development of novel delivery systems for drugs, genes, and biomolecules; and regenerative medicine. Additionally, chitosan has also witnessed its usage in functionalization of biocompatible materials, nanoparticle (NP) synthesis, and immobilization of various bio-recognition elements (BREs) to form active bio-surfaces with great ease. Keeping these aspects in mind, we have written a comprehensive review which aims to acquaint its readers with the exceptional properties of chitosan and its usage in the domain of biomedicine, tissue engineering, and biosensor fabrication. Herein, we have briefly explained various aspects of direct utilization of chitosan and then presented vivid strategies towards formulation of chitosan based nanocomposites for biomedicine, tissue engineering, and biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Labib, Gihan
2018-01-01
Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.
Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery.
Ceccarelli, Gabriele; Presta, Rossella; Benedetti, Laura; Cusella De Angelis, Maria Gabriella; Lupi, Saturnino Marco; Rodriguez Y Baena, Ruggero
2017-01-01
Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives) or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA), polylactic acid (PLA), and polycaprolactone). This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.
Irie, Toru; Majima, Tokifumi; Sawaguchi, Naohiro; Funakoshi, Tadanao; Nishimura, Shin-Ichiro; Minami, Akio
2011-05-01
In this study, we used a rabbit medial collateral ligament reconstruction model to evaluate a novel chitosan-based hyaluronan hybrid polymer fiber scaffold for ligament tissue engineering and to examine whether mechanical forces exerted in an in vivo model increased extracellular matrix production by seeded fibroblasts. Scaffolds were used 2 weeks after incubation with fibroblasts obtained from the same rabbit in a cell-seeded scaffold (CSS) group and without cells in a noncell-seeded scaffold (NCSS) group. At 3, 6, and 12 weeks after surgery, the failure loads of the engineered ligaments in the CSS groups were significantly greater than those in the NCSS groups. At 6 weeks after surgery, the reconstructed tissue of the CSS group was positive for type I collagen, whereas that in the NCSS group was negative for type I collagen. At 12 weeks after surgery, the reconstructed tissue stained positive for type I collagen in the CSS group, but negative in the NCSS group. Our results indicate that the scaffold material enhanced the production of type I collagen and led to improved mechanical strength in the engineered ligament in vivo. Copyright © 2011 Wiley Periodicals, Inc.
Bisphosphonate-Based Strategies for Bone Tissue Engineering and Orthopedic Implants
Cattalini, Juan Pablo; Boccaccini, Aldo R.; Lucangioli, Silvia
2012-01-01
Bisphosphonates (BPs) are a group of well-established drugs that are applied in the development of metabolic bone disorder-related therapies. There is increasing interest also in the application of BPs in the context of bone tissue engineering, which is the topic of this review, in which an extensive overview of published studies on the development and applications of BPs-based strategies for bone regeneration is provided with special focus on the rationale for the use of different BPs in three-dimensional (3D) bone tissue scaffolds. The different alternatives that are investigated to address the delivery and sustained release of these therapeutic drugs in the nearby tissues are comprehensively discussed, and the most significant published approaches on bisphosphonate-conjugated drugs in multifunctional 3D scaffolds as well as the role of BPs within coatings for the improved fixation of orthopedic implants are presented and critically evaluated. Finally, the authors' views regarding the remaining challenges in the fields and directions for future research efforts are highlighted. PMID:22440082
Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions
Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji
2016-01-01
Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation. PMID:27966584
Gellan Gum-Based Hydrogels for Osteochondral Repair.
Costa, Lígia; Silva-Correia, Joana; Oliveira, J Miguel; Reis, Rui L
2018-01-01
Gellan gum (GG) is a widely explored natural polysaccharide that has been gaining attention in tissue engineering (TE) and regenerative medicine field, and more recently in osteochondral TE approaches. Taking advantage of its inherent features such as biocompatibility, biodegradability, similarity with the extracellular matrix and easy functionalization, GG-based hydrogels have been studied for their potential for cartilage and bone tissue regeneration. Several preclinical studies describe the successful outcome of GG in cartilage tissue engineering. By its turn, GG composites have also been proposed in several strategies to guide bone formation. The big challenge in osteochondral TE approaches is still to achieve cartilage and bone regeneration simultaneously through a unique integrated bifunctional construct. The potential of GG to be used as polymeric support to reach both bone and cartilage regeneration has been demonstrated. This chapter provides an overview of GG properties and the functionalization strategies employed to tailor its behaviour to a particular application. The use of GG in soft and hard tissues regeneration approaches, as well in osteochondral integrated TE strategies is also revised.
Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.
Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji
2016-12-14
Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.
Rey-Rico, Ana; Cucchiarini, Magali
2016-04-01
Musculoskeletal tissues are diverse and significantly different in their ability to repair upon injury. Current treatments often fail to reproduce the natural functions of the native tissue, leading to an imperfect healing. Gene therapy might improve the repair of tissues by providing a temporarily and spatially defined expression of the therapeutic gene(s) at the site of the injury. Several gene transfer vehicles have been developed to modify various human cells and tissues from musculoskeletal system among which the non-pathogenic, effective, and relatively safe recombinant adeno-associated viral (rAAV) vectors that have emerged as the preferred gene delivery system to treat human disorders. Adapting tissue engineering platforms to gene transfer approaches mediated by rAAV vectors is an attractive tool to circumvent both the limitations of the current therapeutic options to promote an effective healing of the tissue and the natural obstacles from these clinically adapted vectors to achieve an efficient and durable gene expression of the therapeutic sequences within the lesions.
ERIC Educational Resources Information Center
Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.
2013-01-01
A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…
Puppi, Dario; Morelli, Andrea; Chiellini, Federica
2017-05-24
Additive manufacturing of scaffolds made of a polyhydroxyalkanoate blended with another biocompatible polymer represents a cost-effective strategy for combining the advantages of the two blend components in order to develop tailored tissue engineering approaches. The aim of this study was the development of novel poly(3-hydroxybutyrate- co -3-hydroxyhexanoate)/ poly(ε-caprolactone) (PHBHHx/PCL) blend scaffolds for tissue engineering by means of computer-aided wet-spinning, a hybrid additive manufacturing technique suitable for processing polyhydroxyalkanoates dissolved in organic solvents. The experimental conditions for processing tetrahydrofuran solutions containing the two polymers at different concentrations (PHBHHx/PCL weight ratio of 3:1, 2:1 or 1:1) were optimized in order to manufacture scaffolds with predefined geometry and internal porous architecture. PHBHHx/PCL scaffolds with a 3D interconnected network of macropores and a local microporosity of the polymeric matrix, as a consequence of the phase inversion process governing material solidification, were successfully fabricated. As shown by scanning electron microscopy, thermogravimetric, differential scanning calorimetric and uniaxial compressive analyses, blend composition significantly influenced the scaffold morphological, thermal and mechanical properties. In vitro biological characterization showed that the developed scaffolds were able to sustain the adhesion and proliferation of MC3T3-E1 murine preosteoblast cells. The additive manufacturing approach developed in this study, based on a polymeric solution processing method avoiding possible material degradation related to thermal treatments, could represent a powerful tool for the development of customized PHBHHx-based blend scaffolds for tissue engineering.
Layering PLGA-based electrospun membranes and cell sheets for engineering cartilage-bone transition.
Mouthuy, P-A; El-Sherbini, Y; Cui, Z; Ye, H
2016-04-01
It is now widely acknowledged that implants that have been designed with an effort towards reconstructing the transition between tissues might improve their functionality and integration in vivo. This paper contributes to the development of improved treatment for articular cartilage repair by exploring the potential of the combination of electrospinning technology and cell sheet engineering to create cartilage tissue. Poly(lactic-co-glycolic acid) (PLGA) was used to create the electrospun membranes. The focus being on the cartilage-bone transition, collagen type I and hydroxyapatite (HA) were also added to the scaffolds to increase the histological biocompatibility. Human mesenchymal stem cells (hMSCs) were cultured in thermoresponsive dishes to allow non-enzymatic removal of an intact cell layer after reaching confluence. The tissue constructs were created by layering electrospun membranes with sheets of hMSCs and were cultured under chondrogenic conditions for up to 21 days. High viability was found to be maintained in the multilayered construct. Under chondrogenic conditions, reverse-transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry have shown high expression levels of collagen type X, a form of collagen typically found in the calcified zone of articular cartilage, suggesting an induction of chondrocyte hypertrophy in the PLGA-based scaffolds. To conclude, this paper suggests that layering electrospun scaffolds and cell sheets is an efficient approach for the engineering of tissue transitions, and in particular the cartilage-bone transition. The use of PLGA-based scaffold might be particularly useful for the bone-cartilage reconstruction, since the differentiated tissue constructs seem to show characteristics of calcified cartilage. Copyright © 2013 John Wiley & Sons, Ltd.
Biological responses to M13 bacteriophage modified titanium surfaces in vitro.
Sun, Yuhua; Li, Yiting; Wu, Baohua; Wang, Jianxin; Lu, Xiong; Qu, Shuxin; Weng, Jie; Feng, Bo
2017-08-01
Phage-based materials have showed great potential in tissue engineering application. However, it is unknown what inflammation response will happen to this kind of materials. This work is to explore the biological responses to M13 bacteriophage (phage) modified titanium surfaces in vitro from the aspects of their interaction with macrophages, osteoblasts and mineralization behavior. Pretreated Ti surface, Ti surfaces with noncrosslinked phage film (APP) and crosslinked phage film (APPG) were compared. Phage films could limit the macrophage adhesion and activity due to inducing adherent-cell apoptosis. The initial inflammatory activity (24h) caused by phage films was relatively high with more production of TNF-α, but in the later stage (7-10days) inflammatory response was reduced with lower TNF-α, IL-6 and higher IL-10. In addition, phage films improved osteoblast adhesion, differentiation, and hydroapatite (HA)-forming via a combination of topographical and biochemcial cues. The noncrosslinked phage film displayed the best immunomodulatory property, osteogenic activity and HA mineralization ability. This work provides better understanding of inflammatory and osteogenetic activity of phage-based materials and contributes to their future application in tissue engineering. In vivo, the bone and immune cells share a common microenvironment, and are being affected by similar cytokines, signaling molecules, transcription factors and membrane receptors. Ideal implants should cause positive biological response, including adequate and appropriate inflammatory reaction, well-balanced bone formation and absorption. Phage-based materials have showed great potential in tissue engineering application. However, at present it is unknown what inflammation response will happen to this kind of materials. A good understanding of the immune response possibly induced by phage-based materials is needed. This work studied the osteoimmunomodulation property of phage films on titanium surface, involving inflammatory response, osteogenic activity and biomineralization ability. It provides more understanding of the phage-based materials and contributes to their future application in tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
ECM-Based Biohybrid Materials for Engineering Compliant, Matrix-Dense Tissues
Bracaglia, Laura G.; Fisher, John P.
2015-01-01
An ideal tissue engineering scaffold should not only promote, but take an active role in, constructive remodeling and formation of site appropriate tissue. ECM-derived proteins provide unmatched cellular recognition, and therefore influence cellular response towards predicted remodeling behaviors. Materials built with only these proteins, however, can degrade rapidly or begin too weak to substitute for compliant, matrix-dense tissues. The focus of this review is on biohybrid materials that incorporate polymer components with ECM-derived proteins, to produce a substrate with desired mechanical and degradation properties, as well as actively guide tissue remodeling. Materials are described through four fabrication methods: (1) polymer and ECM-protein fibers woven together, (2) polymer and ECM proteins combined in a bilayer, (3) cell-built ECM on polymer scaffold, and (4) ECM proteins and polymers combined in a single hydrogel. Scaffolds from each fabrication method can achieve characteristics suitable for different types of tissue. In vivo testing has shown progressive remodeling in injury models, and suggests ECM-based biohybrid materials promote a prohealing immune response over single component alternatives. The prohealing immune response is associated with lasting success and long term host maintenance of the implant. PMID:26227679
A Cost-Minimization Analysis of Tissue-Engineered Constructs for Corneal Endothelial Transplantation
Tan, Tien-En; Peh, Gary S. L.; George, Benjamin L.; Cajucom-Uy, Howard Y.; Dong, Di; Finkelstein, Eric A.; Mehta, Jodhbir S.
2014-01-01
Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses. PMID:24949869
Tan, Tien-En; Peh, Gary S L; George, Benjamin L; Cajucom-Uy, Howard Y; Dong, Di; Finkelstein, Eric A; Mehta, Jodhbir S
2014-01-01
Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses.
Kim, Byung-Chul; Jun, Sung-Min; Kim, So Yeon; Kwon, Yong-Dae; Choe, Sung Chul; Kim, Eun-Chul; Lee, Jae-Hyung; Kim, Jinseok; Suh, Jun-Kyo Francis; Hwang, Yu-Shik
2017-04-01
The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential. Here, we established a culture strategy for the generation of in vitro cell-based 3D nerve tissue from postnatal stem cells from apical papilla (SCAPs) of teeth, which originate from neural crest-derived ectomesenchyme cells. A stem cell population capable of differentiating into neural cell lineages was generated during the ex vivo expansion of SCAPs in the presence of EGF and bFGF, and SCAPs differentiated into neural cells, showing neural cell lineage-related molecular and gene expression profiles, morphological changes and electrophysical property under neural-inductive culture conditions. Moreover, we showed the first evidence that 3D cell-based nerve-like tissue with axons and myelin structures could be generated from SCAPs via 3D organotypic culture using an integrated bioprocess composed of polyethylene glycol (PEG) microwell-mediated cell spheroid formation and subsequent dynamic culture in a high aspect ratio vessel (HARV) bioreactor. In conclusion, the culture strategy in our study provides a novel approach to develop in vitro engineered nerve tissue using SCAPs and a foundation to study biological events in the neural differentiation of postnatal stem cells. Biotechnol. Bioeng. 2017;114: 903-914. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China.
Zou, Qingsong; Fu, Qiang
2018-04-01
Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.
3D printing facilitated scaffold-free tissue unit fabrication.
Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying
2014-06-01
Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation.
Tan, Huaping; Chu, Constance R.; Payne, Karin; Marra, Kacey G.
2009-01-01
Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAG). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications. PMID:19167750
Markstedt, Kajsa; Mantas, Athanasios; Tournier, Ivan; Martínez Ávila, Héctor; Hägg, Daniel; Gatenholm, Paul
2015-05-11
The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs.
Sengers, B G; Van Donkelaar, C C; Oomens, C W J; Baaijens, F P T
2004-12-01
Assessment of the functionality of tissue engineered cartilage constructs is hampered by the lack of correlation between global measurements of extra cellular matrix constituents and the global mechanical properties. Based on patterns of matrix deposition around individual cells, it has been hypothesized previously, that mechanical functionality arises when contact occurs between zones of matrix associated with individual cells. The objective of this study is to determine whether the local distribution of newly synthesized extracellular matrix components contributes to the evolution of the mechanical properties of tissue engineered cartilage constructs. A computational homogenization approach was adopted, based on the concept of a periodic representative volume element. Local transport and immobilization of newly synthesized matrix components were described. Mechanical properties were taken dependent on the local matrix concentration and subsequently the global aggregate modulus and hydraulic permeability were derived. The transport parameters were varied to assess the effect of the evolving matrix distribution during culture. The results indicate that the overall stiffness and permeability are to a large extent insensitive to differences in local matrix distribution. This emphasizes the need for caution in the visual interpretation of tissue functionality from histology and underlines the importance of complementary measurements of the matrix's intrinsic molecular organization.
Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi
2015-01-01
Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600
Mechanical control of tissue and organ development
Mammoto, Tadanori; Ingber, Donald E.
2010-01-01
Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces generated by living cells are as crucial as genes and chemical signals for the control of embryological development, morphogenesis and tissue patterning. PMID:20388652
Nanomaterials design and tests for neural tissue engineering.
Saracino, Gloria A A; Cigognini, Daniela; Silva, Diego; Caprini, Andrea; Gelain, Fabrizio
2013-01-07
Nanostructured scaffolds recently showed great promise in tissue engineering: nanomaterials can be tailored at the molecular level and scaffold morphology may more closely resemble features of extracellular matrix components in terms of porosity, framing and biofunctionalities. As a consequence, both biomechanical properties of scaffold microenvironments and biomaterial-protein interactions can be tuned, allowing for improved transplanted cell engraftment and better controlled diffusion of drugs. Easier said than done, a nanotech-based regenerative approach encompasses different fields of know-how, ranging from in silico simulations, nanomaterial synthesis and characterization at the nano-, micro- and mesoscales to random library screening methods (e.g. phage display), in vitro cellular-based experiments and validation in animal models of the target injury. All of these steps of the "assembly line" of nanostructured scaffolds are tightly interconnected both in their standard analysis techniques and in their most recent breakthroughs: indeed their efforts have to jointly provide the deepest possible analyses of the diverse facets of the challenging field of neural tissue engineering. The purpose of this review is therefore to provide a critical overview of the recent advances in and drawbacks and potential of each mentioned field, contributing to the realization of effective nanotech-based therapies for the regeneration of peripheral nerve transections, spinal cord injuries and brain traumatic injuries. Far from being the ultimate overview of such a number of topics, the reader will acknowledge the intrinsic complexity of the goal of nanotech tissue engineering for a conscious approach to the development of a regenerative therapy and, by deciphering the thread connecting all steps of the research, will gain the necessary view of its tremendous potential if each piece of stone is correctly placed to work synergically in this impressive mosaic.
Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules.
Zhang, Wujie; Choi, Jung K; He, Xiaoming
2017-02-01
Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. This approach provides an alternative and promising method for constructing vascularized tissues.
The role of mechanical loading in ligament tissue engineering.
Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M
2009-12-01
Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.
Cell-scaffold interactions in the bone tissue engineering triad.
Murphy, Ciara M; O'Brien, Fergal J; Little, David G; Schindeler, Aaron
2013-09-20
Bone tissue engineering has emerged as one of the leading fields in tissue engineering and regenerative medicine. The success of bone tissue engineering relies on understanding the interplay between progenitor cells, regulatory signals, and the biomaterials/scaffolds used to deliver them--otherwise known as the tissue engineering triad. This review will discuss the roles of these fundamental components with a specific focus on the interaction between cell behaviour and scaffold structural properties. In terms of scaffold architecture, recent work has shown that pore size can affect both cell attachment and cellular invasion. Moreover, different materials can exert different biomechanical forces, which can profoundly affect cellular differentiation and migration in a cell type specific manner. Understanding these interactions will be critical for enhancing the progress of bone tissue engineering towards clinical applications.
Hydrogel scaffolds for tissue engineering: Progress and challenges
El-Sherbiny, Ibrahim M.; Yacoub, Magdi H.
2013-01-01
Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described. PMID:24689032
Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.
Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L
2011-09-01
Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.
Functional and morphological ultrasonic biomicroscopy for tissue engineers
NASA Astrophysics Data System (ADS)
Mallidi, S.; Aglyamov, S. R.; Karpiouk, A. B.; Park, S.; Emelianov, S. Y.
2006-03-01
Tissue engineering is an interdisciplinary field that combines various aspects of engineering and life sciences and aims to develop biological substitutes to restore, repair or maintain tissue function. Currently, the ability to have quantitative functional assays of engineered tissues is limited to existing invasive methods like biopsy. Hence, an imaging tool for non-invasive and simultaneous evaluation of the anatomical and functional properties of the engineered tissue is needed. In this paper we present an advanced in-vivo imaging technology - ultrasound biomicroscopy combined with complementary photoacoustic and elasticity imaging techniques, capable of accurate visualization of both structural and functional changes in engineered tissues, sequential monitoring of tissue adaptation and/or regeneration, and possible assistance of drug delivery and treatment planning. The combined imaging at microscopic resolution was evaluated on tissue mimicking phantoms imaged with 25 MHz single element focused transducer. The results of our study demonstrate that the ultrasonic, photoacoustic and elasticity images synergistically complement each other in detecting features otherwise imperceptible using the individual techniques. Finally, we illustrate the feasibility of the combined ultrasound, photoacoustic and elasticity imaging techniques in accurately assessing the morphological and functional changes occurring in engineered tissue.
Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo
2017-01-02
Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chitosan based nanofibers in bone tissue engineering.
Balagangadharan, K; Dhivya, S; Selvamurugan, N
2017-11-01
Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Lv, Qing; Nair, Lakshmi; Laurencin, Cato T
2009-12-01
Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.
Applications of Tissue Engineering in Joint Arthroplasty: Current Concepts Update.
Zeineddine, Hussein A; Frush, Todd J; Saleh, Zeina M; El-Othmani, Mouhanad M; Saleh, Khaled J
2017-07-01
Research in tissue engineering has undoubtedly achieved significant milestones in recent years. Although it is being applied in several disciplines, tissue engineering's application is particularly advanced in orthopedic surgery and in degenerative joint diseases. The literature is full of remarkable findings and trials using tissue engineering in articular cartilage disease. With the vast and expanding knowledge, and with the variety of techniques available at hand, the authors aimed to review the current concepts and advances in the use of cell sources in articular cartilage tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali
2016-04-06
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brillouin light scattering spectroscopy for tissue engineering application
NASA Astrophysics Data System (ADS)
Akilbekova, Dana; Yakupov, Talgat; Ogay, Vyacheslav; Umbayev, Bauyrzhan; Yakovlev, Vladislav V.; Utegulov, Zhandos N.
2018-02-01
Biomechanical properties of mammalian bones, such as strength, toughness and plasticity, are essential for understanding how microscopic scale mechanical features can link to macroscale bones' strength and fracture resistance. We employ Brillouin light scattering (BLS) micro-spectroscopy for local assessment of elastic properties of bones under compression and the efficacy of the tissue engineering approach based on heparin-conjugated fibrin (HCF) hydrogels, bone morphogenic proteins (BMPs) and osteogenic stem cells in the regeneration of the bone tissues. BLS is noninvasive and label-free imaging modality for probing mechanical properties of hard tissues that can give information on structure-function properties of normal and pathological tissues. Results showed that HCF gels containing combination of all factors had the best effect with complete defect regeneration at week 9 and that the bones with fully consolidated fractures have higher values of elastic moduli compared to the bones with defects.
Regenerative endodontics: a state of the art.
Bansal, Rashmi; Bansal, Rajesh
2011-01-01
Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue grafting, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. Non-vital infected teeth have long been treated with root canal therapy (for mature root apex) and apexification (for immature root apex), or doomed to extraction. Although successful, current treatments fail to re-establish healthy pulp tissue in these teeth. But, what if the non-vital tooth could be made vital once again? That is the hope offered by regenerative endodontics, an emerging field focused on replacing traumatized and diseased pulp with functional pulp tissue. Restoration of vitality of non-vital tooth is based on tissue engineering and revascularization procedures. The purpose of this article is to review these biological procedures and the hurdles that must be overcome to develop regenerative endodontic procedures.
Kino-oka, Masahiro; Taya, Masahito
2009-10-01
Innovative techniques of cell and tissue processing, based on tissue engineering, have been developed for therapeutic applications. Cell expansion and tissue reconstruction through ex vivo cultures are core processes used to produce engineered tissues with sufficient structural integrity and functionality. In manufacturing, strict management against contamination and human error is compelled due to direct use of un-sterilable products and the laboriousness of culture operations, respectively. Therefore, the development of processing systems for cell and tissue cultures is one of the critical issues for ensuring a stable process and quality of therapeutic products. However, the siting criterion of culture systems to date has not been made clear. This review article classifies some of the known processing systems into 'sealed-chamber' and 'sealed-vessel' culture systems based on the difference in their aseptic spaces, and describes the potential advantages of these systems and current states of culture systems, especially those established by Japanese companies. Moreover, on the basis of the guidelines for isolator systems used in aseptic processing for healthcare products, which are issued by the International Organization for Standardization, the siting criterion of the processing systems for cells and tissue cultures is discussed in perspective of manufacturing therapeutic products in consideration of the regulations according to the Good Manufacturing Practice.
Wu, Shaohua; Wang, Ying; Streubel, Philipp N; Duan, Bin
2017-10-15
Non-woven nanofibrous scaffolds have been developed for tendon graft application by using electrospinning strategies. However, electrospun nanofibrous scaffolds face some obstacles and limitations, including suboptimal scaffold structure, weak tensile and suture-retention strengths, and compact structure for cell infiltration. In this work, a novel nanofibrous, woven biotextile, fabricated based on electrospun nanofiber yarns, was implemented as a tissue engineered tendon scaffold. Based on our modified electrospinning setup, polycaprolactone (PCL) nanofiber yarns were fabricated with reproducible quality, and were further processed into plain-weaving fabrics interlaced with polylactic acid (PLA) multifilaments. Nonwoven nanofibrous PCL meshes with random or aligned fiber structures were generated using typical electrospinning as comparative counterparts. The woven fabrics contained 3D aligned microstructures with significantly larger pore size and obviously enhanced tensile mechanical properties than their nonwoven counterparts. The biological results revealed that cell proliferation and infiltration, along with the expression of tendon-specific genes by human adipose derived mesenchymal stem cells (HADMSC) and human tenocytes (HT), were significantly enhanced on the woven fabrics compared with those on randomly-oriented or aligned nanofiber meshes. Co-cultures of HADMSC with HT or human umbilical vein endothelial cells (HUVEC) on woven fabrics significantly upregulated the functional expression of most tenogenic markers. HADMSC/HT/HUVEC tri-culture on woven fabrics showed the highest upregulation of most tendon-associated markers than all the other mono- and co-culture groups. Furthermore, we conditioned the tri-cultured constructs with dynamic conditioning and demonstrated that dynamic stretch promoted total collagen secretion and tenogenic differentiation. Our nanofiber yarn-based biotextiles have significant potential to be used as engineered scaffolds to synergize the multiple cell interaction and mechanical stimulation for promoting tendon regeneration. Tendon grafts are essential for the treatment of various tendon-related conditions due to the inherently poor healing capacity of native tendon tissues. In this study, we combined electrospun nanofiber yarns with textile manufacturing strategies to fabricate nanofibrous woven biotextiles with hierarchical features, aligned fibrous topography, and sufficient mechanical properties as tendon tissue engineered scaffolds. Comparing to traditional electrospun random or aligned meshes, our novel nanofibrous woven fabrics possess strong tensile and suture-retention strengths and larger pore size. We also demonstrated that the incorporation of tendon cells and vascular cells promoted the tenogenic differentiation of the engineered tendon constructs, especially under dynamic stretch. This study not only presents a novel tissue engineered tendon scaffold fabrication technique but also provides a useful strategy to promote tendon differentiation and regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Antoine, Elizabeth E; Vlachos, Pavlos P; Rylander, Marissa Nichole
2014-12-01
Type I collagen hydrogels have been used successfully as three-dimensional substrates for cell culture and have shown promise as scaffolds for engineered tissues and tumors. A critical step in the development of collagen hydrogels as viable tissue mimics is quantitative characterization of hydrogel properties and their correlation with fabrication parameters, which enables hydrogels to be tuned to match specific tissues or fulfill engineering requirements. A significant body of work has been devoted to characterization of collagen I hydrogels; however, due to the breadth of materials and techniques used for characterization, published data are often disjoint and hence their utility to the community is reduced. This review aims to determine the parameter space covered by existing data and identify key gaps in the literature so that future characterization and use of collagen I hydrogels for research can be most efficiently conducted. This review is divided into three sections: (1) relevant fabrication parameters are introduced and several of the most popular methods of controlling and regulating them are described, (2) hydrogel properties most relevant for tissue engineering are presented and discussed along with their characterization techniques, (3) the state of collagen I hydrogel characterization is recapitulated and future directions are proposed. Ultimately, this review can serve as a resource for selection of fabrication parameters and material characterization methodologies in order to increase the usefulness of future collagen-hydrogel-based characterization studies and tissue engineering experiments.
Vlachos, Pavlos P.; Rylander, Marissa Nichole
2014-01-01
Type I collagen hydrogels have been used successfully as three-dimensional substrates for cell culture and have shown promise as scaffolds for engineered tissues and tumors. A critical step in the development of collagen hydrogels as viable tissue mimics is quantitative characterization of hydrogel properties and their correlation with fabrication parameters, which enables hydrogels to be tuned to match specific tissues or fulfill engineering requirements. A significant body of work has been devoted to characterization of collagen I hydrogels; however, due to the breadth of materials and techniques used for characterization, published data are often disjoint and hence their utility to the community is reduced. This review aims to determine the parameter space covered by existing data and identify key gaps in the literature so that future characterization and use of collagen I hydrogels for research can be most efficiently conducted. This review is divided into three sections: (1) relevant fabrication parameters are introduced and several of the most popular methods of controlling and regulating them are described, (2) hydrogel properties most relevant for tissue engineering are presented and discussed along with their characterization techniques, (3) the state of collagen I hydrogel characterization is recapitulated and future directions are proposed. Ultimately, this review can serve as a resource for selection of fabrication parameters and material characterization methodologies in order to increase the usefulness of future collagen-hydrogel-based characterization studies and tissue engineering experiments. PMID:24923709
MECHANICAL DESIGN CRITERIA FOR INTERVERTEBRAL DISC TISSUE ENGINEERING
Nerurkar, Nandan L.; Elliott, Dawn M.; Mauck, Robert L.
2009-01-01
Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviour, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying measures where functional equivalence was achieved, and others where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. PMID:20080239
Ekenseair, Adam K.; Boere, Kristel W. M.; Tzouanas, Stephanie N.; Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.
2012-01-01
The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine crosslinking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to easily tune post-formation dimensional stability at both the synthesis and formulation stages represents a significant novel contribution towards efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established, while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects. PMID:22881074
Repair and tissue engineering techniques for articular cartilage
Makris, Eleftherios A.; Gomoll, Andreas H.; Malizos, Konstantinos N.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2015-01-01
Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of regenerative biological products that over the next decade could revolutionize joint care by functionally healing articular cartilage. These products include cell-based and cell-free materials such as autologous and allogeneic cell-based approaches and multipotent and pluripotent stem-cell-based techniques. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed. PMID:25247412
Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Lee, Jung-Joo; Hong, So Young; Sun, Kyung
2010-11-01
Bioprinting is an emerging technology for constructing tissue or bioartificial organs with complex three-dimensional (3D) structures. It provides high-precision spatial shape forming ability on a larger scale than conventional tissue engineering methods, and simultaneous multiple components composition ability. Bioprinting utilizes a computer-controlled 3D printer mechanism for 3D biological structure construction. To implement minimal pattern width in a hydrogel-based bioprinting system, a study on printing characteristics was performed by varying printer control parameters. The experimental results showed that printing pattern width depends on associated printer control parameters such as printing flow rate, nozzle diameter, and nozzle velocity. The system under development showed acceptable feasibility of potential use for accurate printing pattern implementation in tissue engineering applications and is another example of novel techniques for regenerative medicine based on computer-aided biofabrication system. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.
Gentile, Piergiorgio; Chiono, Valeria; Carmagnola, Irene; Hatton, Paul V
2014-02-28
Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.
Hardy, John G; Pfaff, André; Leal-Egaña, Aldo; Müller, Axel H E; Scheibel, Thomas R
2014-07-01
Silk protein-based materials are promising biomaterials for application as tissue scaffolds, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) and their functionalization with glycopolymers are described. The glycopolymers bind proteins found in the extracellular matrix, providing a biomimetic coating on the films that improves cell adhesion to the surfaces of engineered spider silk films. Such silk-based materials have potential as coatings for degradable implantable devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cucchiarini, M.; McNulty, A.L.; Mauck, R.L.; Setton, L.A.; Guilak, F.; Madry, H.
2017-01-01
SUMMARY Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis. Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. PMID:27063441
The self-assembling process and applications in tissue engineering
Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.
2018-01-01
Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174