Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain
NASA Astrophysics Data System (ADS)
Ramesh, Govindarajan; Wu, Honglu
Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.
Barshad, Gilad; Blumberg, Amit; Cohen, Tal; Mishmar, Dan
2018-06-14
Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B ( LDHB ), which associates with high OXPHOS activity, at the expense of LDHA , which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities. © 2018 Barshad et al.; Published by Cold Spring Harbor Laboratory Press.
Fumoto, Shintaro; Nishimura, Koyo; Nishida, Koyo; Kawakami, Shigeru
2016-01-01
Evaluation methods for determining the distribution of transgene expression in the body and the in vivo fate of viral and non-viral vectors are necessary for successful development of in vivo gene delivery systems. Here, we evaluated the spatial distribution of transgene expression using tissue clearing methods. After hydrodynamic injection of plasmid DNA into mice, whole tissues were subjected to tissue clearing. Tissue clearing followed by confocal laser scanning microscopy enabled evaluation of the three-dimensional distribution of transgene expression without preparation of tissue sections. Among the tested clearing methods (ClearT2, SeeDB, and CUBIC), CUBIC was the most suitable method for determining the spatial distribution of transgene expression in not only the liver but also other tissues such as the kidney and lung. In terms of the type of fluorescent protein, the observable depth for green fluorescent protein ZsGreen1 was slightly greater than that for red fluorescent protein tdTomato. We observed a depth of ~1.5 mm for the liver and 500 μm for other tissues without preparation of tissue sections. Furthermore, we succeeded in multicolor deep imaging of the intracellular fate of plasmid DNA in the murine liver. Thus, tissue clearing would be a powerful approach for determining the spatial distribution of plasmid DNA and transgene expression in various murine tissues.
TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.
Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza
2017-08-01
Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanan, Raynoo; Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507; Ma, Ning
2012-05-04
Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the riskmore » of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and nuclear translocation of Nrf2 resulting in the expression of antioxidant genes, leading to DNA damage suppression. These DNA lesions can be useful biomarkers to predict both the risk of BEA and the efficacy of PPIs treatment to prevent BEA in BE patients.« less
Getzenberg, R H; Coffey, D S
1990-09-01
The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.
2012-01-01
Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation. PMID:22251412
NASA Astrophysics Data System (ADS)
Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.
2014-11-01
Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.
Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.
2006-01-01
The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.
Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries
Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans
2000-01-01
We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641
Sevastianova, Ksenia; Sutinen, Jussi; Greco, Dario; Sievers, Meline; Salmenkivi, Kaisa; Perttilä, Julia; Olkkonen, Vesa M.; Wågsäter, Dick; Lidell, Martin E.; Enerbäck, Sven; Eriksson, Per; Walker, Ulrich A.; Auvinen, Petri; Ristola, Matti; Yki-Järvinen, Hannele
2011-01-01
OBJECTIVE Combination antiretroviral therapy (cART) is associated with lipodystrophy, i.e., loss of subcutaneous adipose tissue in the abdomen, limbs, and face and its accumulation intra-abdominally. No fat is lost dorsocervically and it can even accumulate in this region (buffalo hump). It is unknown how preserved dorsocervical fat differs from abdominal subcutaneous fat in HIV-1–infected cART-treated patients with (cART+LD+) and without (cART+LD−) lipodystrophy. RESEARCH DESIGN AND METHODS We used histology, microarray, PCR, and magnetic resonance imaging to compare dorsocervical and abdominal subcutaneous adipose tissue in cART+LD+ (n = 21) and cART+LD− (n = 11). RESULTS Albeit dorsocervical adipose tissue in cART+LD+ seems spared from lipoatrophy, its mitochondrial DNA (mtDNA; copies/cell) content was significantly lower (by 62%) than that of the corresponding tissue in cART+LD−. Expression of CD68 mRNA, a marker of macrophages, and numerous inflammatory genes in microarray were significantly lower in dorsocervical versus abdominal subcutaneous adipose tissue. Genes with the greatest difference in expression between the two depots were those involved in regulation of transcription and regionalization (homeobox genes), irrespective of lipodystrophy status. There was negligible mRNA expression of uncoupling protein 1, a gene characteristic of brown adipose tissue, in either depot. CONCLUSIONS Because mtDNA is depleted even in the nonatrophic dorsocervical adipose tissue, it is unlikely that the cause of lipoatrophy is loss of mtDNA. Dorsocervical adipose tissue is less inflamed than lipoatrophic adipose tissue. It does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal subcutaneous adipose tissue is in expression of homeobox genes. PMID:21602514
Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer
2012-01-01
Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million crypts near cancers and TVAs suggests that the tumors arose in field defects that were deficient in DNA repair and that deficiencies in Pms2, Ercc1 and Xpf are early steps, often occurring together, in progression to colon cancer. PMID:22494821
Association of nbl gene expression and glucocorticoid-induced apoptosis in mouse thymus in vivo.
Naora, H; Nishida, T; Shindo, Y; Adachi, M; Naora, H
1995-05-01
A gene of unknown biological function, nbl, was originally isolated by virtue of its abundance in a Namalwa Burkitt Lymphoma cDNA library. nbl expression was initially found to be higher in tissues which exhibited internucleosomal DNA cleavage characteristic of apoptosis, than in tissues which did not exhibit a 'DNA ladder'. nbl expression was therefore examined in mouse thymus in vivo, in which apoptosis is induced by the glucocorticoid, dexamethasone. nbl expression was markedly enhanced by dexamethasone treatment and then sharply decreased prior to the occurrence of maximal 'DNA ladder' formation. In contrast, expression of myc, which is believed to be involved in apoptosis in other cell systems, declined as thymic apoptosis increased. Thymic apoptosis was blocked by the transcriptional inhibitor actinomycin D, if administered when nbl expression was enhanced, but not before or after the peak of nbl expression. These results suggest that nbl expression is associated with thymic apoptosis.
Kenny, Daryn; Shen, Lu-Ping; Kolberg, Janice A
2002-09-01
In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.
A common carcinogen benzo[a]pyrene causes p53 overexpression in mouse cervix via DNA damage.
Gao, Meili; Li, Yongfei; Sun, Ying; Long, Jiangang; Kong, Yu; Yang, Shuiyun; Wang, Yili
2011-09-18
Benzo[a]pyrene (BaP) is cytotoxic and/or genotoxic to lung, stomach and skin tissue in the body. However, the effect of BaP on cervical tissue remains unclear. The present study detected DNA damage and the expression of the p53 gene in BaP-induced cervical tissue in female mice. Animals were intraperitoneally injected and orally gavaged with BaP at the doses of 2.5, 5, and 10mg/kg twice a week for 14 weeks. The single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to detect the expression of p53 protein and p53 mRNA, respectively. The results showed that BaP induced a significant and dose-dependent increase of the number of cells with DNA damaged and the tail length as well as Comet tail moment in cervical tissue. The expression level of p53 protein and mRNA was increased. The results demonstrate that BaP may show toxic effect on the cervix by increasing DNA damage and the expression of the p53 gene. Copyright © 2011 Elsevier B.V. All rights reserved.
Rönn, Tina; Volkov, Petr; Davegårdh, Cajsa; Dayeh, Tasnim; Hall, Elin; Olsson, Anders H.; Nilsson, Emma; Tornberg, Åsa; Dekker Nitert, Marloes; Eriksson, Karl-Fredrik; Jones, Helena A.; Groop, Leif; Ling, Charlotte
2013-01-01
Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism. PMID:23825961
Du, C X; Wang, Y
2012-01-01
To investigate the expression of P-Akt and NFkappaB and their correlation with human papillomavirus (HPV) infection in cervical carcinoma. Expression of P-Akt and NFkappaB was detected by an immunohistochemical SP technique with HPV DNA detetion by PCR in 26 cases of cervical carcinoma tissues, 18 cases of cervical intraepithelial neoplasia tissues (CINI / n = 5, CINII / n = 3, CINIII / n = 10) and 19 cases of chronic cervicitis tissues. The different expressions of P-Akt and NFkappaB were compared in different pathological types of cervical carcinoma (cervical squamous cell carcinoma, cervical adenocarcinoma), different pathological grading (high, medium, poorly differentiated) and different clinical stage (FIGO I to IV). The relationships between P-Akt and NFkappaB, respectively, with HPV infection in cervical carcinoma were analyzed. The positive expression rate of P-Akt in chronic cervicitis tissues, CIN and cervical carcinoma tissues was 21.05%, 66.67%, and 92.31%, respectively. There was no obvious difference in the expression of P-Akt in cervical carcinoma in different pathological types or in pathological grading and no obvious difference in different clinical stages. The positive expression rate of NFkappaB in chronic cervicitis tissues, CIN and cervical carcinoma tissues was 10.52%, 72.22% and 96.15%, respectively; there was no statistically significant difference among the groups for different pathological types and there was no obvious difference in different pathological grading or different clinical stage. There was an obviously positive correlation between P-Akt and NFkappaB expression rate and degree of disease (r = 0.998, p < 0.05). Cervical carcinoma and CIN cases totaled 44; the positive expression rate of P-Akt was 87.55% in 32 cases of positive HPV-DNA of the 44 cases, and the positive expression rate of P-Akt was only 16.70% in 12 cases of negative HPV-DNA of the 44 cases. The positive expression rate of NFkappaB was obviously higher in the HPV DNA positive than in the HPV-DNA negative cases. There was a statistically significant difference among the groups (p < 0.05). The positive expression rate of P-Akt and NFkappaB was closely related with cervical disease extent, and closely related with HPV infection in cervical carcinoma. This study suggests that P-Akt and NFkappaB more probably play an important role in the occurrence of cervical carcinoma.
Wu, Shaobin; Wang, Xianwei; Chen, Jin-Xiang; Chen, Yuxiang
2014-05-01
To identify predictive biomarkers for radiosensitization and prognosis of esophageal squamous cell carcinoma (ESCC). A total of 150 advanced stage ESCC patients were treated with preoperative radiotherapy. The protein levels of Dicer 1, DNA methyltransferase 1 (Dnmt1), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and the mRNA levels of Dicer 1, Dnmt1, and let-7b microRNA (miRNA) were measured in ESCC tumor tissues before and after radiotherapy. Global DNA methylation was measured and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed. Negative Dicer 1, Dnmt1, and DNA-PKcs protein expression were observed in 72%, 67.3%, and 50.7% of ESCC patients, respectively. Primary Dicer 1 and Dnmt1 expression positively correlated with radiation sensitization and longer survival of ESCC patients, while increased Dicer 1 and Dnmt1 expression after radiation correlated with increased apoptosis in residual tumor tissues. Dicer 1 and Dnmt1 expression correlated with let-7b miRNA expression and global DNA methylation levels, respectively. In contrast, positive DNA-PKcs expression negatively correlated with radiation-induced pathological reactions, and increased DNA-PKcs expression correlated with increased apoptosis after radiation. Global DNA hypomethylation and low miRNA expression are involved in the sensitization of ESCC to radiotherapy and prognosis of patients with ESCC.
Grimminger, Peter P; Maus, Martin K H; Schneider, Paul M; Metzger, Ralf; Hölscher, Arnulf H; Sugita, Hirofumi; Danenberg, Peter V; Alakus, Hakan; Brabender, Jan
2012-10-01
The aim of this study was to investigate the relevance of mRNA expression and DNA methylation of GST-PI in tumor and non-tumor lung tissue from NSCLC patients in terms of prognostic and pathogenetic value of this biomarker. Quantitative real-time PCR was used to measure mRNA expression and DNA methylation of GST-PI in paired tumor (T) and non-tumor (N) lung tissue of 91 NSCLC patients. Of all 91 patients 49% were stage I, 21% stage II and 30% stage IIIA. Forty-seven percent of the patients had squamous cell carcinoma, 36% adenocarcinoma and 17% large cell carcinoma. All patients were R0 resected. GST-PI mRNA expression could be measured in 100% in both (T and N) tissues; GST-PI DNA methylation was detected in 14% (N) and 14% (T). The median GST-PI mRNA expression in N was 7.83 (range: 0.01-19.43) and in T 13.15 (range: 0.01-116.8; p≤0.001). The median GST-PI methylation was not significantly different between T and N. No associations were seen between the mRNA expression or DNA methylation levels and clinical or histopathologic parameters such as gender, age, TNM stage, tumor histology and grading. The median survival of the investigated patients was 59.7 years (the median follow-up was 85.9 months). High GST-PI DNA methylation was significantly associated with a worse prognosis (p=0.041, log rank test). No correlation was found between the GST-PI DNA methylation levels and the correlating mRNA expression levels. GST-PI mRNA expression seems to be involved in the pathogenesis of NSCLC. High levels of GST-PI DNA methylation in tumor tissue of NSCLC patients have a potential as a biomarker identifying subpopulations with a more aggressive tumor biology. Quantitation of GST-PI DNA methylation may be a useful method to identify patients with a poor prognosis after curative resection and who will benefit from intensive adjuvant therapy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Quan, Zifang; Ye, Ni; Hao, Zhongxiang; Wen, Caifang; Liao, Hong; Zhang, Manli; Luo, Lu; Cao, Sanjie; Wen, Xintian; Wu, Rui; Yan, Qigui
2015-10-01
The aim of the present study was to investigate the promoter methylation status and mRNA expression of goat tumor‑associated genes, in addition to the mRNA expression of DNA methyltransferase genes in enzootic nasal tumors (ENT). Methylation‑specific polymerase chain reaction and SYBR Green reverse transcription‑quantitative polymerase chain reaction were used to detect the methylation status and the mRNA expression levels of DNA methyltransferases (DNMTs), O6‑methylguanine‑DNA methyltransferase (MGMT), the tumor suppressor genes P73, P53, GADD45G, CHFR and THBS1, the transcription factor CEBPA, the proto‑oncogenes KRAS, NRAS and C‑myc and EGFR in 24 nasal tumor tissue samples and 20 normal nasal epithelia tissue samples. The associations between promoter methylation and DNMT, and promoter methylation and mRNA expression of the genes were analyzed. The results indicated that the expression levels of DNMT1 increased by 56% compared with those in normal nasal epithelial tissues, while MGMT, DNMT3a and DNMT3b had similar expression levels in the two tissue types. The expression levels of P53 decreased by 36.8% and those of THBS1 by 43%, while C‑myc increased by 2.9‑fold and CEBPA by 2‑fold compared with that in normal nasal epithelial tissues. GADD45G, P73, CHFR and NRAS were observed to have similar expression levels in the two tissue types. However, no expression was observed for EGFR and KRAS. CHFR, GADD45G and THBS1 were identified to be methylated in tumor suppressor genes. The methylation expression rate of the CHFR gene was ~60% in the two tissue types and for THBS1 it was 100% in the nasal tumor tissues as opposed to 20% in the normal nasal epithelial tissues. The exhaustive methylation expression rate of GADD45G was 62.5% and the partial methylation expression rate was 37.5% in nasal tumor tissue, while no methylation was observed in normal nasal epithelial tissues. C‑myc was the only gene identified to be methylated amongst proto‑oncogenes. The methylation expression rate of C‑myc was 87.5% in nasal tumor tissues and 15% in normal nasal epithelial tissues. The methylation expression rate of CEBPA was 100% in nasal tumor tissues and 40% in normal nasal epithelial tissues. The methylation expression rate of the EGFR gene was ~80% in the two tissues. In summary, the present study identified abnormal methylation of the C‑myc, CEBPA, GADD45G and THBS1 genes in nasal tumor tissues. The expression levels of DNMT1, C‑myc and CEBPA were upregulated and the expression of P53 and THBSI were downregulated in nasal tumor tissues, with a significant difference between the two groups (P<0.05). Therefore, it is suggested that these six genes may be used as diagnostic marker candidates for ENT. The results may serve as a foundation for screening of tumor‑specific markers for early diagnosis of ENT and further investigate the epigenetic mechanisms of enzootic nasal tumor virus (ENTV)‑induced nasal epithelium cell carcinoma.
Okabe, Kyoko; Hayashi, Mai; Wakabayashi, Naoko; Yamawaki, Yasuna; Teranishi, Miki; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi
2010-01-01
Lysophosphatidic acid (LPA) receptors act as several biological effectors through LPA, which is a bioactive phospholipid. Recently, aberrant expressions of LPA receptor genes due to DNA methylation have been detected in several tumor cells. In this study, we measured expression levels and DNA methylation status of LPA receptor genes in mouse tumor cells, LL/2 lung carcinoma, B16F0 melanoma, FM3A mammary carcinoma and L1210 leukemia cells, compared with normal tissues. Total RNAs were extracted and RT-PCR analysis was performed. For DNA methylation status, bisulfite sequencing analysis was carried out, comparing outcomes with other tumor cells and normal tissues. The expressions of LPA1 gene were shown in LL/2, but not in B16F0, FM3A and L1210 cells. While the LPA2 gene was expressed in all 4 tumor cells, the LPA3 gene was unexpressed in them. The LPA1 and LPA3 unexpressed cells were highly methylated, although normal tissues were all unmethylated. The DNA methylation status was correlated with gene expression levels in cancer cells. The present results demonstrate that DNA methylation patterns of LPA receptor genes are dependent on cancer cell types, suggesting that LPA receptors may be new molecular targets for therapeutic approaches and chemoprevention. Copyright © 2011 S. Karger AG, Basel.
DNA arrays to monitor gene expression in rat blood and uterus following 17-b-estradiol exposure - biomonitoring environmental effects using surrogate tissues
John C. Rockett, Robert J. Kavlock, Christy R. Lambright, Louise G. Parks, Judith E. Schmid, Vickie S. Wilson, Carmen W...
Zhong, Sheng; Tang, Mandy W; Yeo, Winnie; Liu, Cuiling; Lo, Y M Dennis; Johnson, Philip J
2002-04-01
Glutathione S-transferases, enzymes that defend cells against damage mediated by oxidant and electrophilic carcinogens, may be critical determinants of cancer pathogenesis. In this report, we assess the role of epigenetic silencing of the GSTP1 gene, a gene encoding the pi-class glutathione S-transferase, in the pathogenesis of hepatitis B virus (HBV)-associated hepatocellular carcinomas (HCC). The cell lines Hep3B, HepG2, and a cohort of 43 HBV-associated HCC tissue specimens and corresponding nontumor tissues were subjected to analysis for GSTP1 epigenetic alteration and expression. GSTP1 "CpG" island DNA hypermethylation in the liver cell lines, and the tissue specimens were determined by methylation-specific PCR and correlated with expression of the gene using reverse-transcription PCR, immunoblotting, and immunohistochemistry. GSTP1 CpG island DNA hypermethylation was detected in 28 of 43 (65.1%) HCC tissues and 4 of 40 (10%) corresponding nontumor tissues. GSTP1 protein was absent in those cases showing hypermethylation of the gene. Similarly, DNA from Hep3B and HepG2 cell lines displayed complete GSTP1 hypermethylation in the CpG island, and they failed to express GSTP1 mRNA and the corresponding protein product. Treatment of the cell lines with the DNA methyltransferase inhibitor 5-aza-deoxycytidine reversed the hypermethylation, and restored GSTP1 mRNA and polypeptide expression. These data indicate that epigenetic silencing of GSTP1 gene expression by CpG island DNA hypermethylation is common in human HBV-associated HCC. In addition, somatic GSTP1 inactivation via CpG island hypermethylation may contribute to the pathogenesis of this malignancy.
Association of nbl gene expression and glucocorticoid-induced apoptosis in mouse thymus in vivo.
Naora, H; Nishida, T; Shindo, Y; Adachi, M; Naora, H
1995-01-01
A gene of unknown biological function, nbl, was originally isolated by virtue of its abundance in a Namalwa Burkitt Lymphoma cDNA library. nbl expression was initially found to be higher in tissues which exhibited internucleosomal DNA cleavage characteristic of apoptosis, than in tissues which did not exhibit a 'DNA ladder'. nbl expression was therefore examined in mouse thymus in vivo, in which apoptosis is induced by the glucocorticoid, dexamethasone. nbl expression was markedly enhanced by dexamethasone treatment and then sharply decreased prior to the occurrence of maximal 'DNA ladder' formation. In contrast, expression of myc, which is believed to be involved in apoptosis in other cell systems, declined as thymic apoptosis increased. Thymic apoptosis was blocked by the transcriptional inhibitor actinomycin D, if administered when nbl expression was enhanced, but not before or after the peak of nbl expression. These results suggest that nbl expression is associated with thymic apoptosis. Images Figure 1 Figure 3 Figure 4 Figure 6 PMID:7635523
NASA Astrophysics Data System (ADS)
Zheng, Fengrong; Sun, Xiuqin; Liu, Hongzhan; Wu, Xingan; Zhong, Nan; Wang, Bo; Zhou, Guodong
2010-01-01
Lymphocystis disease, caused by the lymphocystis disease virus (LCDV), is a significant worldwide problem in fish industry causing substantial economic losses. In this study, we aimed to develop the DNA vaccine against LCDV, using DNA vaccination technology. We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate. The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line. The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also analyzed in tissues of the vaccinated Japanese flounder by PCR, RT-PCR and fluorescent microscopy. Results from PCR analysis indicated that the vaccine-containing plasmids were distributed in injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver, 6 and 25 days after vaccination. The vaccine plasmids disappeared 100 d post-vaccination. Fluorescent microscopy revealed green fluorescence in the injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver of fish 48 h post-vaccination, green fluorescence did not appear in the control treated tissue. Green fluorescence became weak at 60 days post-vaccination. RT-PCR analysis indicated that the mcp gene was expressed in all tested tissues of vaccinated fish 6-50 days post-vaccination. These results demonstrate that the antigen encoded by the DNA vaccine is distributed and expressed in all of the tissues analyzed in the vaccinated fish. The antigen would therefore potentially initiate a specific immune response. the plasmid DNA was injected into Japanese flounder ( Paralichthys olivaceus) intramuscularly and antibodies against LCDV were evaluated. The results indicate that the plasmid encoded DNA vaccine could induce an immune response to LCDV and would therefore offer immune protection against LCD. Further studies are required for the development and application of this promising DNA vaccine.
Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo
2016-01-01
Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.
Karbasi, Ashraf; Borhani, Nasim; Daliri, Karim; Kazemi, Bahram; Manoochehri, Mehdi
2015-06-01
Human papillomaviruses (HPV) have frequently been detected in colorectal cancer tumor samples, and may play a role in the pathogenesis of colorectal cancer. This study was designed to investigate the presence of DNA and RNA for the high-risk HPV genotypes 16 and 18 in samples of colorectal cancer tumors and adjacent normal tissues. We also investigated the expression of proapoptotic genes in HPV-positive colorectal tumors compared to normal tissue samples. Samples of tumoral and adjacent normal tissues were fresh-frozen, and HPV DNA was identified by nested and semiquantitative PCR. Real time PCR was used to quantitatively compare the expression of HPV-18 E6 and nine proapoptotic genes in HPV-positive tumors and samples of adjacent normal tissue. HPV-16 DNA was found in 10.5% of the tumor samples, and HPV-18 DNA was found in 23.6% of the samples. Real time PCR results showed lower expression of the E6 gene in HPV-positive tumors than in adjacent normal tissue. The expression of two proapoptotic genes, FAS and DR5, was significantly lower in tumor samples than in adjacent normal tissues. HPV infection, especially HPV-18, may play a role in colorectal cancer tumorigenesis by downregulating death receptor genes and interfering with the extrinsic pathway of apoptosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs
Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun
2014-01-01
Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489
Chung, Yih-Lin; Pui, Newman N M
2015-01-01
We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury. © 2015 by the Wound Healing Society.
Regulation of DNA methylation on EEF1D and RPL8 expression in cattle.
Liu, Xuan; Yang, Jie; Zhang, Qin; Jiang, Li
2017-10-01
Dynamic changes to the epigenome play a critical role in a variety of biology processes and complex traits. Many important candidate genes have been identified through our previous genome wide association study (GWAS) on milk production traits in dairy cattle. However, the underlying mechanism of candidate genes have not yet been clearly understood. In this study, we analyzed the methylation variation of the candidate genes, EEF1D and RPL8, which were identified to be strongly associated with milk production traits in dairy cattle in our previous studies, and its effect on protein and mRNA expression. We compared DNA methylation profiles and gene expression levels of EEF1D and RPL8 in five different tissues (heart, liver, mammary gland, ovary and muscle) of three cows. Both genes showed the highest expression level in mammary gland. For RPL8, there was no difference in the DNA methylation pattern in the five tissues, suggesting no effect of DNA methylation on gene expression. For EEF1D, the DNA methylation levels of its first CpG island differed in the five tissues and were negatively correlated with the gene expression levels. To further investigate the function of DNA methylation on the expression of EEF1D, we collected blood samples of three cows at early stage of lactation and in dry period and analyzed its expression and the methylation status of the first CpG island in blood. As a result, the mRNA expression of EEF1D in the dry period was higher than that at the early stage of lactation, while the DNA methylation level in the dry period was lower than that at the early stage of lactation. Our result suggests that the DNA methylation of EEF1D plays an important role in the spatial and temporal regulation of its expression and possibly have an effect on the milk production traits.
Deregulation of an imprinted gene network in prostate cancer
Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A
2014-01-01
Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes. PMID:24513574
Deregulation of an imprinted gene network in prostate cancer.
Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A
2014-05-01
Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.
Karahan, Gurbet; Sayar, Nilufer; Gozum, Gokcen; Bozkurt, Betul; Konu, Ozlen; Yulug, Isik G
2015-06-01
Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation between spliced rRNA expression levels, possibly due to changes in rRNA processing, which requires further investigation.
Oliveira, R R; Viana, A J C; Reátegui, A C E; Vincentz, M G A
2015-12-29
Determination of gene expression is an important tool to study biological processes and relies on the quality of the extracted RNA. Changes in gene expression profiles may be directly related to mutations in regulatory DNA sequences or alterations in DNA cytosine methylation, which is an epigenetic mark. Correlation of gene expression with DNA sequence or epigenetic mark polymorphism is often desirable; for this, a robust protocol to isolate high-quality RNA and DNA simultaneously from the same sample is required. Although commercial kits and protocols are available, they are mainly optimized for animal tissues and, in general, restricted to RNA or DNA extraction, not both. In the present study, we describe an efficient and accessible method to extract both RNA and DNA simultaneously from the same sample of various plant tissues, using small amounts of starting material. The protocol was efficient in the extraction of high-quality nucleic acids from several Arabidopsis thaliana tissues (e.g., leaf, inflorescence stem, flower, fruit, cotyledon, seedlings, root, and embryo) and from other tissues of non-model plants, such as Avicennia schaueriana (Acanthaceae), Theobroma cacao (Malvaceae), Paspalum notatum (Poaceae), and Sorghum bicolor (Poaceae). The obtained nucleic acids were used as templates for downstream analyses, such as mRNA sequencing, quantitative real time-polymerase chain reaction, bisulfite treatment, and others; the results were comparable to those obtained with commercial kits. We believe that this protocol could be applied to a broad range of plant species, help avoid technical and sampling biases, and facilitate several RNA- and DNA-dependent analyses.
John, Kaarthik; Ragavan, Narasimhan; Pratt, M. Margaret; Singh, Paras B.; Al-Buheissi, Salah; Matanhelia, Shyam S.; Phillips, David H.; Poirier, Miriam C.; Martin, Francis L.
2008-01-01
BACKGROUND Studies of migrant populations suggest that dietary and/or environmental factors play a crucial role in the aetiology of prostatic adenocarcinoma (CaP). The human prostate consists of the peripheral zone (PZ), transition zone (TZ) and central zone (CZ); CaP occurs most often in the PZ. METHODS To investigate the notion that an underlying differential expression of phase I/II genes, and/or the presence of polycyclic aromatic hydrocarbon (PAH)-DNA adducts might explain the elevated PZ susceptibility, we examined prostate tissues (matched tissue sets consisting of PZ and TZ) from men undergoing radical retropubic prostatectomy for CaP (n=26) or cystoprostatectomy (n=1). Quantitative gene expression analysis was employed for cytochrome P450 (CYP) isoforms CYP1A1, CYP1B1 and CYP1A2, as well as N-acetyltransferase 1 and 2 (NAT1 and NAT2) and catechol-O-methyl transferase (COMT). RESULTS CYP1B1, NAT1 and COMT were expressed in all tissue sets; levels of CYP1B1 and NAT1 were consistently higher in the PZ compared to TZ. Immunohistochemistry confirmed the presence of CYP1B1 (nuclear-associated and primarily in basal epithelial cells) and NAT1. Tissue sections from 23 of these aforementioned 27 matched tissue sets were analyzed for PAH-DNA adduct levels using antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE). PAH-DNA adduct levels were highest in glandular epithelial cells, but a comparison of PZ and TZ showed no significant differences. CONCLUSION Although expression of activating and/or detoxifying enzymes may be higher in the PZ, PAH-DNA adduct levels appear to be similar in both zones. Therefore, factors other than PAH-DNA adducts may be responsible for promotion of tumour formation in the human prostate. PMID:19143007
Genome-wide analysis of DNA methylation in five tissues of sika deer (Cervus nippon).
Yang, Chun; Zhang, Yan; Liu, Wenyuan; Lu, Xiao; Li, Chunyi
2018-03-01
DNA methylation plays an important role in regulating gene expression during tissue development and differentiation in eukaryotes. In contrast to domestic animals, epigenetic studies have been seldom conducted in wild animals. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of sika deer using the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique. Overall, a total of 104,131 fragments were amplified including 41,951 methylated fragments using 32 pairs of selected primers. The average incidence of DNA methylation was approximately 38.18% in muscle, 40.32% in heart, 41.86% in liver, 41.20% in lung, and 41.68% in kidney, respectively. Also, the significant differences of the DNA methylation levels were found between the different tissue types (P<0.05), which indicates that the differences of genome-wide DNA methylation levels may be related to gene expression during tissue development and differentiation. In addition, 37 tissue-specific differentially methylated regions (T-DMRs) were identified and recovered by MSAP in five tissues, and were further confirmed by Southern blot analysis. Our study presents the first look at the T-DMRs in sika deer and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in sika deer. Copyright © 2017. Published by Elsevier B.V.
Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle.
Huang, Yong-Zhen; Zhang, Zi-Jing; He, Hua; Cao, Xiu-Kai; Song, Cheng-Chuang; Liu, Kun-Peng; Lan, Xian-Yong; Lei, Chu-Zhao; Qi, Xing-Lei; Bai, Yue-Yu; Chen, Hong
2017-04-03
DNA methylation is essential for the regulation of gene expression and important roles in muscle development. To assess the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in ZBED6, we simultaneously examined DNA methylation and expression in six tissues from two different developmental stages (fetal bovine and adult bovine). The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The result of quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution and is highly expressed in adult bovine (P < 0.05 or P < 0.01). The DNA methylation level was significantly different in liver, lung and spleen between the two cattle groups (P < 0.05 or P < 0.01). The adult bovine group exhibited a significantly higher mRNA level and lower DNA methylation level than the fetal bovine group in liver, lung, and spleen. No significant association was detected between DNA methylation level and muscle, heart, and kidney at two different stages. In this study, the statistical analyses indicated that DNA methylation patterns are associated with mRNA level in some tissues, these results may be a useful parameter to investigate muscle developmental in cattle and as a model for studies in other species, potentially contributing to an improvement of growth performance selection in beef cattle breeding program.
Bahar Halpern, Keren; Vana, Tal; Walker, Michael D.
2014-01-01
The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2′-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation. PMID:25016019
Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S
2016-04-01
Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.
Baribault, Carl; Ehrlich, Kenneth C.; Ponnaluri, V. K. Chaithanya; Pradhan, Sriharsa; Lacey, Michelle; Ehrlich, Melanie
2018-01-01
ABSTRACT DNA methylation can affect tissue-specific gene transcription in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). To elucidate the variety of associations between differentiation-related DNA hypermethylation and transcription, we used available epigenomic and transcriptomic profiles from 38 human cell/tissue types to focus on such relationships in 94 genes linked to hypermethylated DMRs in myoblasts (Mb). For 19 of the genes, promoter-region hypermethylation in Mb (and often a few heterologous cell types) was associated with gene repression but, importantly, DNA hypermethylation was absent in many other repressed samples. In another 24 genes, DNA hypermethylation overlapped cryptic enhancers or super-enhancers and correlated with down-modulated, but not silenced, gene expression. However, such methylation was absent, surprisingly, in both non-expressing samples and highly expressing samples. This suggests that some genes need DMR hypermethylation to help repress cryptic enhancer chromatin only when they are actively transcribed. For another 11 genes, we found an association between intergenic hypermethylated DMRs and positive expression of the gene in Mb. DNA hypermethylation/transcription correlations similar to those of Mb were evident sometimes in diverse tissues, such as aorta and brain. Our findings have implications for the possible involvement of methylated DNA in Duchenne's muscular dystrophy, congenital heart malformations, and cancer. This epigenomic analysis suggests that DNA methylation is not simply the inevitable consequence of changes in gene expression but, instead, is often an active agent for fine-tuning transcription in association with development. PMID:29498561
Establishment of a tissue-specific RNAi system in C. elegans.
Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D; Amano, Mutsuki; Moerman, Donald G; Kaibuchi, Kozo
2007-10-01
In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal-and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues.
Establishment of a tissue-specific RNAi system in C. elegans
Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D.; Amano, Mutsuki; Moerman, Donald G.; Kaibuchi, Kozo
2011-01-01
In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal- and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues. PMID:17681718
Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA
NASA Technical Reports Server (NTRS)
Gaynor, J. J.
1984-01-01
Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.
Low-intensity red and infrared lasers on XPA and XPC gene expression
NASA Astrophysics Data System (ADS)
Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Ferreira-Machado, S. C.; Geller, M.; Paoli, F.
2014-09-01
Laser devices emit monochromatic, coherent, and highly collimated intense beams of light that are useful for a number of biomedical applications. However, for low-intensity lasers, possible adverse effects of laser light on DNA are still controversial. In this work, the expression of XPA and XPC genes in skin and muscle tissue exposed to low-intensity red and infrared lasers was evaluated. Skin and muscle tissue of Wistar rats were exposed to low-intensity red and infrared lasers at different fluences in continuous mode emission. Skin and muscle tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of actin gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of XPA and XPC mRNA differently in skin and muscle tissue of Wistar rats, depending on physical (fluence and wavelength) and biological (tissue) parameters. Laser light could modify expression of genes related to the nucleotide excision repair pathway at fluences and wavelengths used in clinical protocols.
Chen, Jin-Zhong; Wang, Shu; Tang, Rong; Yang, Quan-Sheng; Zhao, Enpeng; Chao, Yaoqiong; Ying, Kang; Xie, Yi; Mao, Yu-Min
2002-09-01
A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.
Evaluation of the branched-chain DNA assay for measurement of RNA in formalin-fixed tissues.
Knudsen, Beatrice S; Allen, April N; McLerran, Dale F; Vessella, Robert L; Karademos, Jonathan; Davies, Joan E; Maqsodi, Botoul; McMaster, Gary K; Kristal, Alan R
2008-03-01
We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93-100%) than for qPCR (82.4-95%). Correlations between qPCR(FROZEN), the gold standard, and bDNA(FFPE) ranged from 0.60 to 0.94, similar to those from qPCR(FROZEN) and qPCR(FFPE). Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management.
Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.
2002-01-01
Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730
Yudin, M A; Bykov, V N; Nikiforov, A S; Al-Shekhadat, R I; Ivanov, I M; Ustinova, T M
2018-04-01
We compared the efficiency of delivery of plasmid DNA (active ingredient concentration 1 mg/kg) that provides production of nerve growth factor (NGF) after intravenous administration to rats and after administration by hydroporation. The method of hydroporation ensured plasmid penetration into the liver tissue and lengthened the time of its detection in the organ. DNA concentration in 1 h after its introduction by hydroporation or intravenous route was 0.7 and 0.05 ng/mg tissue, respectively. The use of this transfection method ensured preservation of NGF DNA in the liver tissue at a level of 0.24 ng/mg of tissue 1 day after administration of the plasmid construct, while after intravenous administration, expression of the analyzed DNA was not detected in blood and liver samples. After hydroporation, the maximum of relative normalized expression of cDNA (270 rel. units) was observed after 4 h, and after 1 day, this parameter decreased to 35 rel. units. Introduction of plasmid DNA of NGF by hydroporation prevented the development of disorders of neuromuscular conduction in a rats model of toxic neuropathy induced by subacute administration of malathion in a dose of 0.5 LD 50 .
Characterization and expression of the calpastatin gene in Cyprinus carpio.
Chen, W X; Ma, Y
2015-07-03
Calpastatin, an important protein used to regulate meat quality traits in animals, is encoded by the CAST gene. The aim of the present study was to clone the cDNA sequence of the CAST gene and detect the expression of CAST in the tissues of Cyprinus carpio. The cDNA of the C. carpio CAST gene, amplified using rapid amplification of cDNA ends PCR, is 2834 bp in length (accession No. JX275386), contains a 2634-bp open reading frame, and encodes a protein with 877 amino acid residues. The amino acid sequence of the C. carpio CAST gene was 88, 80, and 59% identical to the sequences observed in grass carp, zebrafish, and other fish, respectively. The C. carpio CAST was observed to contain four conserved domains with 54 serine phosphorylation loci, 28 threonine phosphorylation loci, 1 tyrosine phosphorylation loci, and 6 specific protein kinase C phosphorylation loci. The CAST gene showed widespread expression in different tissues of C. carpio. Surprisingly, the relative expression of the CAST transcript in the muscle and heart tissues of C. carpio was significantly higher than in other tissues (P < 0.01).
Olsen, Ansgar S.; Sarras, Michael P.; Leontovich, Alexey; Intine, Robert V.
2012-01-01
Metabolic memory (MM) is the phenomenon whereby diabetes complications persist and progress after glycemic recovery is achieved. Here, we present data showing that MM is heritable and that the transmission correlates with hyperglycemia-induced DNA hypomethylation and aberrant gene expression. Streptozocin was used to induce hyperglycemia in adult zebrafish, and then, following streptozocin withdrawal, a recovery phase was allowed to reestablish a euglycemic state. Blood glucose and serum insulin returned to physiological levels during the first 2 weeks of the recovery phase as a result of pancreatic β-cell regeneration. In contrast, caudal fin regeneration and skin wound healing remained impaired to the same extent as in diabetic fish, and this impairment was transmissible to daughter cell tissue. Daughter tissue that was never exposed to hyperglycemia, but was derived from tissue that was, did not accumulate AGEs or exhibit increased levels of oxidative stress. However, CpG island methylation and genome-wide microarray expression analyses revealed the persistence of hyperglycemia-induced global DNA hypomethylation that correlated with aberrant gene expression for a subset of loci in this daughter tissue. Collectively, the data presented here implicate the epigenetic mechanism of DNA methylation as a potential contributor to the MM phenomenon. PMID:22228713
Gorodkin, Jan; Cirera, Susanna; Hedegaard, Jakob; Gilchrist, Michael J; Panitz, Frank; Jørgensen, Claus; Scheibye-Knudsen, Karsten; Arvin, Troels; Lumholdt, Steen; Sawera, Milena; Green, Trine; Nielsen, Bente J; Havgaard, Jakob H; Rosenkilde, Carina; Wang, Jun; Li, Heng; Li, Ruiqiang; Liu, Bin; Hu, Songnian; Dong, Wei; Li, Wei; Yu, Jun; Wang, Jian; Stærfeldt, Hans-Henrik; Wernersson, Rasmus; Madsen, Lone B; Thomsen, Bo; Hornshøj, Henrik; Bujie, Zhan; Wang, Xuegang; Wang, Xuefei; Bolund, Lars; Brunak, Søren; Yang, Huanming; Bendixen, Christian; Fredholm, Merete
2007-01-01
Background Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages. Results Using the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which approximately 25% have a high confidence match to UniProt. Approximately 6,000 new porcine gene clusters were identified. Expression analysis based on the non-normalized libraries resulted in the following findings. The distribution of cluster sizes is scaling invariant. Brain and testes are among the tissues with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential expression of genes between different tissues, in particular brain/spinal cord, and found patterns of correlation between genes that share expression in pairs of libraries. Finally, there was remarkable agreement in expression between specialized tissues according to Gene Ontology categories. Conclusion This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies. PMID:17407547
Saada, Ann; Shaag, Avraham; Elpeleg, Orly
2003-05-01
Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.
Chen, Zhenchuan; Zhang, Wei; Yun, Zhimin; Zhang, Xue; Gong, Feng; Wang, Yunfang; Ji, Shouping; Leng, Ling
2018-06-01
In response to DNA damage, proliferating cell nuclear antigen (PCNA) has an important role as a positive regulator and as a scaffold protein associated with DNA damage bypass and repair pathways by serving as a platform for the recruitment of associated components. As demonstrated in the present study, the ubiquitin‑like modifier human leukocyte antigen F locus adjacent transcript 10 (FAT10), which binds to PCNA but has not previously been demonstrated to be associated with the DNA damage response (DDR), is induced by ultraviolet/ionizing radiation and VP‑16 treatment in HeLa cells. Furthermore, DNA damage enhances FAT10 expression. Immunoprecipitation analysis suggested PCNA is modified by FAT10, and the degradation of FATylated PCNA located in the cytoplasm is regulated by the 26S proteasome, which is also responsible for the upregulation of nuclear foci formation. Furthermore, immunofluorescence experiment suggested FAT10 co‑localizes with PCNA in nuclear foci, thus suggesting that FATylation of PCNA may affect DDR via the induction of PCNA degradation in the cytoplasm or nucleus. In addition, immunohistochemistry experiment suggested the expression levels of FAT10 and PCNA are enhanced in HCC tissues compared with healthy liver tissues; however, the expression of FAT10 is suppressed in regenerated liver tissues, which express high levels of PCNA, thus suggesting that the association between FAT10 and PCNA expression is only exhibited in tumor tissues. In conclusion, the results of the present study suggest that FAT10 may be involved in DDR and therefore the progression of tumorigenesis.
Genome-wide Mapping Reveals Conservation of Promoter DNA Methylation Following Chicken Domestication
Li, Qinghe; Wang, Yuanyuan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Ning
2015-01-01
It is well-known that environment influences DNA methylation, however, the extent of heritable DNA methylation variation following animal domestication remains largely unknown. Using meDIP-chip we mapped the promoter methylomes for 23,316 genes in muscle tissues of ancestral and domestic chickens. We systematically examined the variation of promoter DNA methylation in terms of different breeds, differentially expressed genes, SNPs and genes undergo genetic selection sweeps. While considerable changes in DNA sequence and gene expression programs were prevalent, we found that the inter-strain DNA methylation patterns were highly conserved in promoter region between the wild and domestic chicken breeds. Our data suggests a global preservation of DNA methylation between the wild and domestic chicken breeds in either a genome-wide or locus-specific scale in chick muscle tissues. PMID:25735894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ning; Thanan, Raynoo; Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie
Highlights: {yields} Oct3/4-positive cells increase in Schistosoma haematobium (SH)-associated bladder cancer. {yields} iNOS-dependent DNA lesion, 8-nitroguanine, was formed in Oct3/4-positive cells. {yields} 8-Nitroguanine formed in stem-like cells plays a role in SH-induced carcinogenesis. {yields} Mutant stem cells may participate in inflammation-related carcinogenesis. -- Abstract: To investigate whether mutant stem cells participate in inflammation-related carcinogenesis, we performed immunohistochemical analysis to examine nitrative and oxidative DNA lesions (8-nitroguanine and 8-oxodG) and a stem cell marker Oct3/4 in bladder tissues obtained from cystitis and bladder cancer patients infected with Schistosomahaematobium (S. haematobium). We also detected the expression of nuclear factor-{kappa}B (NF-{kappa}B) and induciblemore » nitric oxide synthase (iNOS), which lead to 8-nitroguanine formation. The staining intensity of 8-nitroguanine and 8-oxodG was significantly higher in bladder cancer and cystitis tissues than in normal tissues. iNOS expression was colocalized with NF-{kappa}B in 8-nitroguanine-positive tumor cells from bladder cancer patients. Oct3/4 expression was significantly increased in cells from S. haematobium-associated bladder cancer tissues in comparison to normal bladder and cancer tissues without infection. Oct3/4 was also expressed in epithelial cells of cystitis patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in S. haematobium-associated cystitis and cancer tissues. In conclusion, inflammation by S.haematobium infection may increase the number of mutant stem cells, in which iNOS-dependent DNA damage occurs via NF-{kappa}B activation, leading to tumor development.« less
Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y
2004-05-01
Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.
Ehrlich, Kenneth C.; Paterson, Heather L.; Lacey, Michelle; Ehrlich, Melanie
2016-01-01
Tissue-specific enhancers are critical for gene regulation. In this study, we help elucidate the contribution of muscle-associated differential DNA methylation to the enhancer activity of highly muscle-specific genes. By bioinformatic analysis of 44 muscle-associated genes, we show that preferential gene expression in skeletal muscle (SkM) correlates with SkM-specific intragenic and intergenic enhancer chromatin and overlapping foci of DNA hypomethylation. Some genes, e.g., CASQ1 and FBXO32, displayed broad regions of both SkM- and heart-specific enhancer chromatin but exhibited focal SkM-specific DNA hypomethylation. Half of the genes had SkM-specific super-enhancers. In contrast to simple enhancer/gene-expression correlations, a super-enhancer was associated with the myogenic MYOD1 gene in both SkM and myoblasts even though SkM has < 1 percent as much MYOD1 expression. Local chromatin differences in this super-enhancer probably contribute to the SkM/myoblast differential expression. Transfection assays confirmed the tissue-specificity of the 0.3-kb core enhancer within MYOD1’s super-enhancer and demonstrated its repression by methylation of its three CG dinucleotides. Our study suggests that DNA hypomethylation increases enhancer tissue-specificity and that SkM super-enhancers sometimes are poised for physiologically important, rapid up-regulation. PMID:28018137
Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng
2007-03-01
To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.
Singh, Deepak K.; Rath, Pramod C.
2012-01-01
We report strong somatic and germ line expression of LINE RNAs in eight different tissues of rat by using a novel ~2.8 kb genomic PstI-LINE DNA (P1-LINE) isolated from the rat brain. P1-LINE is present in a 93 kb LINE-SINE-cluster in sub-telomeric region of chromosome 12 (12p12) and as multiple truncated copies interspersed in all rat chromosomes. P1-LINEs occur as inverted repeats at multiple genomic loci in tissue-specific and mosaic patterns. P1-LINE RNAs are strongly expressed in brain, liver, lungs, heart, kidney, testes, spleen and thymus into large to small heterogeneous RNAs (~5.0 to 0.2 kb) in tissue-specific and dynamic patterns in individual rats. P1-LINE DNA is strongly methylated at CpG-dinucleotides in most genomic copies in all the tissues and weakly hypomethylated in few copies in some tissues. Small (700–75 nt) P1-LINE RNAs expressed in all tissues may be possible precursors for small regulatory RNAs (PIWI-interacting/piRNAs) bioinformatically derived from P1-LINE. The strong and dynamic expression of LINE RNAs from multiple chromosomal loci and the putative piRNAs in somatic tissues of rat under normal physiological conditions may define functional chromosomal domains marked by LINE RNAs as long noncoding RNAs (lncRNAs) unrestricted by DNA methylation. The tissue-specific, dynamic RNA expression and mosaic genomic distribution of LINEs representing a steady-state genomic flux of retrotransposon RNAs suggest for biological role of LINE RNAs as long ncRNAs and small piRNAs in mammalian tissues independent of their cellular fate for translation, reverse-transcription and retrotransposition. This may provide evolutionary advantages to LINEs and mammalian genomes. PMID:23064113
We propose that gene expression changes in accessible tissues such as blood often reflect those in inaccessible tissues, thus offering a convenient biomonitoring method to provide insight into the effects of environmental toxicants on such tissues. In this pilot study, gene expre...
Evaluation of the Branched-Chain DNA Assay for Measurement of RNA in Formalin-Fixed Tissues
Knudsen, Beatrice S.; Allen, April N.; McLerran, Dale F.; Vessella, Robert L.; Karademos, Jonathan; Davies, Joan E.; Maqsodi, Botoul; McMaster, Gary K.; Kristal, Alan R.
2008-01-01
We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93–100%) than for qPCR (82.4–95%). Correlations between qPCRFROZEN, the gold standard, and bDNAFFPE ranged from 0.60 to 0.94, similar to those from qPCRFROZEN and qPCRFFPE. Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management. PMID:18276773
Inhibiting DNA-PK{sub CS} radiosensitizes human osteosarcoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamo, Tewodros; Mladek, Ann C.; Shogren, Kris L.
Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PK{sub CS}), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PK{sub CS} in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PK{sub CS} inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PK{submore » CS} was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PK{sub CS} inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. - Highlights: • DNA-PKcs is consistently expressed in human osteosarcoma tissue and cell lines. • The DNA-PKcs inhibitor, KU60648, effectively radiosensitizes osteosarcoma cells. • Combining KU60648 with radiation increases G2/M accumulation and DNA damage.« less
Sanyal, Sudip; Siriwardena, Ajith K; Byers, Richard
2018-06-01
The aim of this study is to compare gene expression profiles in RNA isolated from pancreatic ductal juice with the RNA expression profiles of the same genes from matched intra-operative tissue samples from pancreatic tumours. Intra-operative sampling of pancreatic juice and collection of matched tissue samples was undertaken in patients undergoing pancreatoduodenectomy for clinically suspected pancreatic cancer and a precursor lesion, main-duct intraductal papillary mucinous neoplasm. RNA was isolated and Poly A PCR was used to globally amplify the RNA. Real-time polymerase chain reaction (RT-PCR) was used to measure expression levels of 17 genes selected from microarray studies. Spearman's rank correlation test was used to examine the relationship of gene expression between pancreatic juice and tissue. The study was approved by Regional Ethics Committee. Mesothelin (MSLN) showed significant correlation (p < 0.008) in expression levels between paired pancreatic juice and tissue samples in pancreas cancer. In intraductal papillary mucinous neoplasms (IPMN), Matrix Metalloproteinase 7 (MMP7), showed significant correlation (p < 0.01) in the expression levels between paired pancreatic juice and tissue samples. This study confirms that RNA analysis of paired pancreatic juice and tissue samples and establishment of cDNA using poly A PCR is technically feasible. Application of the technique to non-invasively obtained pancreatic juice during endoscopic assessment of tumours and the use of gene arrays of cancer indicator genes are the next steps in development of this technique. Copyright © 2018 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Diray-Arce, Joann; Liu, Bin; Cupp, John D; Hunt, Travis; Nielsen, Brent L
2013-03-04
The Arabidopsis thaliana genome encodes a homologue of the full-length bacteriophage T7 gp4 protein, which is also homologous to the eukaryotic Twinkle protein. While the phage protein has both DNA primase and DNA helicase activities, in animal cells Twinkle is localized to mitochondria and has only DNA helicase activity due to sequence changes in the DNA primase domain. However, Arabidopsis and other plant Twinkle homologues retain sequence homology for both functional domains of the phage protein. The Arabidopsis Twinkle homologue has been shown by others to be dual targeted to mitochondria and chloroplasts. To determine the functional activity of the Arabidopsis protein we obtained the gene for the full-length Arabidopsis protein and expressed it in bacteria. The purified protein was shown to have both DNA primase and DNA helicase activities. Western blot and qRT-PCR analysis indicated that the Arabidopsis gene is expressed most abundantly in young leaves and shoot apex tissue, as expected if this protein plays a role in organelle DNA replication. This expression is closely correlated with the expression of organelle-localized DNA polymerase in the same tissues. Homologues from other plant species show close similarity by phylogenetic analysis. The results presented here indicate that the Arabidopsis phage T7 gp4/Twinkle homologue has both DNA primase and DNA helicase activities and may provide these functions for organelle DNA replication.
ALP gene expression in cDNA samples from bone tissue engineering using a HA/TCP/Chitosan scaffold
NASA Astrophysics Data System (ADS)
Stephanie, N.; Katarina, H.; Amir, L. R.; Gunawan, H. A.
2017-08-01
This study examined the potential use of hydroxyapatite (HA)/tricalcium phosphate (TCP)/Chitosan as a bone tissue engineering scaffold. The potential for using HA/TCP/chitosan as a scaffold was analyzed by measuring expression of the ALP osteogenic gene in cDNA from bone biopsies from four Macaque nemestrina. Experimental conditions included control (untreated), treatment with HA/TCP 70:30, HA/TCP 50:50, and HA/TCP/chitosan. cDNA samples were measured quantitively with Real-Time PCR (qPCR) and semi-quantitively by gel electrophoresis. There were no significant differences in ALP gene expression between treatment subjects after two weeks, but the HA/TCP/chitosan treatment gave the highest level of expression after four weeks. The scaffold using the HA/TCP/chitosan combination induced a higher level of expression of the osteogenic gene ALP than did scaffold without chitosan.
Peffers, Mandy Jayne; Goljanek-Whysall, Katarzyna; Collins, John; Fang, Yongxiang; Rushton, Michael; Loughlin, John; Proctor, Carole; Clegg, Peter David
2016-01-01
Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for ‘cell death and survival’, ‘cell morphology’, and ‘cell growth and proliferation’. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in ‘skeletal system morphogenesis’, ‘regulation of cell proliferation’ and ‘regulation of transcription’ suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies. PMID:27533049
Epigenetic regulation of depot-specific gene expression in adipose tissue.
Gehrke, Sandra; Brueckner, Bodo; Schepky, Andreas; Klein, Johannes; Iwen, Alexander; Bosch, Thomas C G; Wenck, Horst; Winnefeld, Marc; Hagemann, Sabine
2013-01-01
In humans, adipose tissue is distributed in subcutaneous abdominal and subcutaneous gluteal depots that comprise a variety of functional differences. Whereas energy storage in gluteal adipose tissue has been shown to mediate a protective effect, an increase of abdominal adipose tissue is associated with metabolic disorders. However, the molecular basis of depot-specific characteristics is not completely understood yet. Using array-based analyses of transcription profiles, we identified a specific set of genes that was differentially expressed between subcutaneous abdominal and gluteal adipose tissue. To investigate the role of epigenetic regulation in depot-specific gene expression, we additionally analyzed genome-wide DNA methylation patterns in abdominal and gluteal depots. By combining both data sets, we identified a highly significant set of depot-specifically expressed genes that appear to be epigenetically regulated. Interestingly, the majority of these genes form part of the homeobox gene family. Moreover, genes involved in fatty acid metabolism were also differentially expressed. Therefore we suppose that changes in gene expression profiles might account for depot-specific differences in lipid composition. Indeed, triglycerides and fatty acids of abdominal adipose tissue were more saturated compared to triglycerides and fatty acids in gluteal adipose tissue. Taken together, our results uncover clear differences between abdominal and gluteal adipose tissue on the gene expression and DNA methylation level as well as in fatty acid composition. Therefore, a detailed molecular characterization of adipose tissue depots will be essential to develop new treatment strategies for metabolic syndrome associated complications.
Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung
2016-11-01
Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Prevalence and Quantitation of Species C Adenovirus DNA in Human Mucosal Lymphocytes
Garnett, C. T.; Erdman, D.; Xu, W.; Gooding, Linda R.
2002-01-01
The common species C adenoviruses (serotypes Ad1, Ad2, Ad5, and Ad6) infect more than 80% of the human population early in life. Following primary infection, the virus can establish an asymptomatic persistent infection in which infectious virions are shed in feces for several years. The probable source of persistent virus is mucosa-associated lymphoid tissue, although the molecular details of persistence or latency of adenovirus are currently unknown. In this study, a sensitive real-time PCR assay was developed to quantitate species C adenovirus DNA in human tissues removed for routine tonsillectomy or adenoidectomy. Using this assay, species C DNA was detected in Ficoll-purified lymphocytes from 33 of 42 tissue specimens tested (79%). The levels varied from fewer than 10 to greater than 2 × 106 copies of the adenovirus genome/107 cells, depending on the donor. DNA from serotypes Ad1, Ad2, and Ad5 was detected, while the rarer serotype Ad6 was not. When analyzed as a function of donor age, the highest levels of adenovirus genomes were found among the youngest donors. Antibody-coated magnetic beads were used to purify lymphocytes into subpopulations and determine whether viral DNA could be enriched within any purified subpopulations. Separation of T cells (CD4/8- expressing and/or CD3-expressing cells) enriched viral DNA in each of nine donors tested. In contrast, B-cell purification (CD19-expressing cells) invariably depleted or eliminated viral DNA. Despite the frequent finding of significant quantities of adenovirus DNA in tonsil and adenoid tissues, infectious virus was rarely present, as measured by coculture with permissive cells. These findings suggest that human mucosal T lymphocytes may harbor species C adenoviruses in a quiescent, perhaps latent form. PMID:12368303
A Simple And Rapid Minicircle DNA Vector Manufacturing System
Kay, Mark A; He, Cheng-Yi; Chen, Zhi-Ying
2010-01-01
Minicircle DNA vectors consisting of a circular expression cassette devoid of the bacterial plasmid DNA backbone provides several advantages including sustained transgene expression in quiescent cells/tissues. Their use has been limited by labor-intensive production. We report on a strategy for making multiple genetic modifications in E.coli to construct a producer strain that stably expresses a set of inducible minicircle-assembly enzymes, the øC31-integrase and I-SceI homing-endonuclease. This bacterial strain is capable of producing highly purified minicircle yields in the same time frame as routine plasmid DNA. It is now feasible for minicircle DNA vectors to replace routine plasmids in mammalian transgene expression studies. PMID:21102455
Expression of DNA repair genes in burned skin exposed to low-level red laser.
Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson
2014-11-01
Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.
2012-01-01
Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G)-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA) for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024). EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated with ErbB1, mTOR, PTEN, and Stat5. Western blots confirmed that full-length and truncated beta-catenin expression correlated with U2AF65 expression in tumor extracts. Conclusions Increased triplex DNA-binding activity in vitro correlates with lymph node disease, metastasis, and reduced overall survival in colorectal cancer, and increased U2AF65 expression is associated with total and truncated beta-catenin expression in high-stage colorectal tumors. PMID:22682314
Epigenomics of Development in Populus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Steve; Freitag, Michael; Mockler, Todd
2013-01-10
We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from elevenmore » target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue dedifferentiation and redifferentiation in vitro.« less
Human Endometrial DNA Methylome Is Cycle-Dependent and Is Associated With Gene Expression Regulation
Houshdaran, Sahar; Zelenko, Zara; Irwin, Juan C.
2014-01-01
Human endometrium undergoes major gene expression changes, resulting in altered cellular functions in response to cyclic variations in circulating estradiol and progesterone, largely mediated by transcription factors and nuclear receptors. In addition to classic modulators, epigenetic mechanisms regulate gene expression during development in response to environmental factors and in some diseases and have roles in steroid hormone action. Herein, we tested the hypothesis that DNA methylation plays a role in gene expression regulation in human endometrium in different hormonal milieux. High throughput, genome-wide DNA methylation profiling of endometrial samples in proliferative, early secretory, and midsecretory phases revealed dynamic DNA methylation patterns with segregation of proliferative from secretory phase samples by unsupervised cluster analysis of differentially methylated genes. Changes involved different frequencies of gain and loss of methylation within or outside CpG islands. Comparison of changes in transcriptomes and corresponding DNA methylomes from the same samples revealed association of DNA methylation and gene expression in a number of loci, some important in endometrial biology. Human endometrial stromal fibroblasts treated in vitro with estradiol and progesterone exhibited DNA methylation changes in several genes observed in proliferative and secretory phase tissues, respectively. Taken together, the data support the observation that epigenetic mechanisms are involved in gene expression regulation in human endometrium in different hormonal milieux, adding endometrium to a small number of normal adult tissues exhibiting dynamic DNA methylation. The data also raise the possibility that the interplay between steroid hormone and methylome dynamics regulates normal endometrial functions and, if abnormal, may result in endometrial dysfunction and associated disorders. PMID:24877562
Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis
Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.
1999-01-01
With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933
Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna
2013-01-01
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.
Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna
2013-01-01
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978
Bernstein, Steven L; Guo, Yan; Peterson, Katherine; Wistow, Graeme
2009-01-01
Background The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON. Results Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed. Conclusion We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview of gene expression patterns in this tissue. The data provide clues for tissue-specific and species-specific properties of human ON that will help in design of therapeutic models. PMID:19778450
Ponnaluri, V. K. Chaithanya; Ehrlich, Kenneth C.; Zhang, Guoqiang; Lacey, Michelle; Johnston, Douglas; Pradhan, Sriharsa; Ehrlich, Melanie
2017-01-01
ABSTRACT Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study—owing to their myogenic DMRs—overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage. PMID:27911668
Lin, Zeng-Mao; Zhao, Jian-Xin; Duan, Xue-Ning; Zhang, Lan-Bo; Ye, Jing-Ming; Xu, Ling; Liu, Yin-Hua
2014-01-01
This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR- 2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.
Zhu, L; Liu, Z; Yang, J; Cai, J
2009-01-01
This study was designed to investigate the pathogenesis of gynaecomastia by measuring phosphatase and tensin homologue (PTEN), O(6)-methylguanine-DNA methyltransferase (MGMT) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein in breast tissue specimens from 68 patients with gynaecomastia and 24 normal male controls using immunohistochemical staining. The gynaecomastia cases were divided into three different histological types: florid, intermediate and fibrous. The PTEN, MGMT and DNA-PKcs proteins were detected in both gynaecomastia and normal breast tissue, but the levels of immunohistochemical staining of each protein were significantly lower in gynaecomastia breast tissue than in normal breast tissue. There were also significant differences in the levels of immunohistochemical staining for the three proteins according to gynaecomastia histological type. These results suggest that abnormally low levels of PTEN, MGMT and DNA-PKcs protein in gynaecomastia breast tissue may play a role in the development of gynaecomastia. Further research is required to elucidate fully their individual roles in the pathophysiology of gynaecomastia.
Preparation of Formalin-fixed Paraffin-embedded Tissue Cores for both RNA and DNA Extraction.
Patel, Palak G; Selvarajah, Shamini; Boursalie, Suzanne; How, Nathan E; Ejdelman, Joshua; Guerard, Karl-Philippe; Bartlett, John M; Lapointe, Jacques; Park, Paul C; Okello, John B A; Berman, David M
2016-08-21
Formalin-fixed paraffin embedded tissue (FFPET) represents a valuable, well-annotated substrate for molecular investigations. The utility of FFPET in molecular analysis is complicated both by heterogeneous tissue composition and low yields when extracting nucleic acids. A literature search revealed a paucity of protocols addressing these issues, and none that showed a validated method for simultaneous extraction of RNA and DNA from regions of interest in FFPET. This method addresses both issues. Tissue specificity was achieved by mapping cancer areas of interest on microscope slides and transferring annotations onto FFPET blocks. Tissue cores were harvested from areas of interest using 0.6 mm microarray punches. Nucleic acid extraction was performed using a commercial FFPET extraction system, with modifications to homogenization, deparaffinization, and Proteinase K digestion steps to improve tissue digestion and increase nucleic acid yields. The modified protocol yields sufficient quantity and quality of nucleic acids for use in a number of downstream analyses, including a multi-analyte gene expression platform, as well as reverse transcriptase coupled real time PCR analysis of mRNA expression, and methylation-specific PCR (MSP) analysis of DNA methylation.
Garver, K.A.; Conway, C.M.; Elliott, D.G.; Kurath, G.
2005-01-01
A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was used in a systematic study to analyze vaccine tissue distribution, persistence, expression patterns, and histopathologic effects. Vaccine plasmid pIHNw-G, containing the gene for the viral glycoprotein, was detected immediately after intramuscular injection in all tissues analyzed, including blood, but at later time points was found primarily in muscle tissue, where it persisted to 90 days. Glycoprotein expression was detected in muscle, kidney, and thymus tissues, with levels peaking at 14 days and becoming undetectable by 28 days. Histologic examination revealed no vaccine-specific pathologic changes at the standard effective dose of 0.1 ??g DNA per fish, but at a high dose of 50 ??g an increased inflammatory response was evident. Transient damage associated with needle injection was localized in muscle tissue, but by 90 days after vaccination no damage was detected in any tissue, indicating the vaccine to be safe and well tolerated. ?? Springer Science+Business Media, Inc. 2005.
Fisel, Pascale; Stühler, Viktoria; Bedke, Jens; Winter, Stefan; Rausch, Steffen; Hennenlotter, Jörg; Nies, Anne T; Stenzl, Arnulf; Scharpf, Marcus; Fend, Falko; Kruck, Stephan; Schwab, Matthias; Schaeffeler, Elke
2015-10-13
Cluster of differentiation 147 (CD147/BSG) is a transmembrane glycoprotein mediating oncogenic processes partly through its role as binding partner for monocarboxylate transporter MCT4/SLC16A3. As demonstrated for MCT4, CD147 is proposed to be associated with progression in clear cell renal cell carcinoma (ccRCC). In this study, we evaluated the prognostic relevance of CD147 in comparison to MCT4/SLC16A3 expression and DNA methylation. CD147 protein expression was assessed in two independent ccRCC-cohorts (n = 186, n = 59) by immunohistochemical staining of tissue microarrays and subsequent manual as well as automated software-supported scoring (Tissue Studio, Definien sAG). Epigenetic regulation of CD147 was investigated using RNAseq and DNA methylation data of The Cancer Genome Atlas. These results were validated in our cohort. Relevance of prognostic models for cancer-specific survival, comprising CD147 and MCT4 expression or SLC16A3 DNA methylation, was compared using chi-square statistics. CD147 protein expression generated with Tissue Studio correlated significantly with those from manual scoring (P < 0.0001, rS = 0.85), indicating feasibility of software-based evaluation exemplarily for the membrane protein CD147 in ccRCC. Association of CD147 expression with patient outcome differed between cohorts. DNA methylation in the CD147/BSG promoter was not associated with expression. Comparison of prognostic relevance of CD147/BSG and MCT4/SLC16A3, showed higher significance for MCT4 expression and superior prognostic power for DNA methylation at specific CpG-sites in the SLC16A3 promoter (e.g. CD147 protein: P = 0.7780,Harrell's c-index = 53.7% vs. DNA methylation: P = 0.0076, Harrell's c-index = 80.0%). Prognostic significance of CD147 protein expression could not surpass that of MCT4, especially of SLC16A3 DNA methylation, corroborating the role of MCT4 as prognostic biomarker for ccRCC.
Winter, Stefan; Rausch, Steffen; Hennenlotter, Jörg; Nies, Anne T.; Stenzl, Arnulf; Scharpf, Marcus; Fend, Falko; Kruck, Stephan; Schwab, Matthias; Schaeffeler, Elke
2015-01-01
Cluster of differentiation 147 (CD147/BSG) is a transmembrane glycoprotein mediating oncogenic processes partly through its role as binding partner for monocarboxylate transporter MCT4/SLC16A3. As demonstrated for MCT4, CD147 is proposed to be associated with progression in clear cell renal cell carcinoma (ccRCC). In this study, we evaluated the prognostic relevance of CD147 in comparison to MCT4/SLC16A3 expression and DNA methylation. Methods CD147 protein expression was assessed in two independent ccRCC-cohorts (n = 186, n = 59) by immunohistochemical staining of tissue microarrays and subsequent manual as well as automated software-supported scoring (Tissue Studio, Definien sAG). Epigenetic regulation of CD147 was investigated using RNAseq and DNA methylation data of The Cancer Genome Atlas. These results were validated in our cohort. Relevance of prognostic models for cancer-specific survival, comprising CD147 and MCT4 expression or SLC16A3 DNA methylation, was compared using chi-square statistics. Results CD147 protein expression generated with Tissue Studio correlated significantly with those from manual scoring (P < 0.0001, rS = 0.85), indicating feasibility of software-based evaluation exemplarily for the membrane protein CD147 in ccRCC. Association of CD147 expression with patient outcome differed between cohorts. DNA methylation in the CD147/BSG promoter was not associated with expression. Comparison of prognostic relevance of CD147/BSG and MCT4/SLC16A3, showed higher significance for MCT4 expression and superior prognostic power for DNA methylation at specific CpG-sites in the SLC16A3 promoter (e.g. CD147 protein: P = 0.7780, Harrell's c-index = 53.7% vs. DNA methylation: P = 0.0076, Harrell's c-index = 80.0%). Conclusions Prognostic significance of CD147 protein expression could not surpass that of MCT4, especially of SLC16A3 DNA methylation, corroborating the role of MCT4 as prognostic biomarker for ccRCC. PMID:26384346
Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri
NASA Astrophysics Data System (ADS)
He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli
2013-11-01
The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.
Characterization of embryo-specific genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that is not expressed in mature tissues -- the embryonic genes. In the last two years, using cDNA clones, we have isolated 22 cDNA clones, and characterized the expression pattern of their corresponding RNA. At least 4 cDNA clones detect RNAs of embryonic genes. These cDNA clones detect RNAs expressed in somatic as well as zygotic embryos of carrot. Using the cDNA clones, we screened the genomic library of carrot embryo DNA, and isolatedmore » genomic clones for three genes. The structure and function of two genes DC 8 and DC 59 have been characterized and are reported in this paper.« less
Ohno, Misa; Togashi, Yuto; Tsuda, Kyoko; Okawa, Kazuaki; Kamaya, Minori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka
2013-01-01
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific. PMID:23826286
Geng, Yao; Gao, Yanfang; Ju, Huangxian; Yan, Feng
2013-02-01
Ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1) has been reported to play an important role in breast carcinogenesis. This work investigated the correlation of UHRF1 DNA level in plasma with clinical characteristics of breast cancer and its clinical significance in breast cancer diagnosis. The expression of UHRF1 in primary breast cancer tissue was examined by Western blot. The UHRF1 DNA levels in plasma and UHRF1 mRNA expression in tissues were determined by accurate real-time quantitative PCR. The associations of UHRF1 levels with clinical variables were evaluated using standard statistical methods. The UHRF1 DNA in plasma of 229 breast cancer patients showed higher expression than healthy controls, which showed high specificity up to 76.2% at a sensitivity of 79.2%, and was significantly associated with c-erbB2 positive status, cancer stage and lymph node metastasis. High UHRF1 DNA level in plasma was significantly associated with short progression-free survival. The UHRF1 DNA level in plasma is highly correlative with breast cancer and its status and stage, and may be a potential independent diagnostic and prognostic factor for both breast cancer and the survival of breast cancer patients. © 2012 Japanese Cancer Association.
Ossovskaya, Valeria; Koo, Ingrid Chou; Kaldjian, Eric P.; Alvares, Christopher; Sherman, Barry M.
2010-01-01
Poly (ADP-ribose) polymerase-1 (PARP1) is a key facilitator of DNA repair and is implicated in pathways of tumorigenesis. PARP inhibitors have gained recent attention as rationally designed therapeutics for the treatment of several malignancies, particularly those associated with dysfunctional DNA repair pathways, including triple-negative breast cancer (TNBC). We investigated the PARP1 gene expression profile in surgical samples from more than 8,000 primary malignant and normal human tissues. PARP1 expression was found to be significantly increased in several malignant tissues, including those isolated from patients with breast, uterine, lung, ovarian, and skin cancers, and non-Hodgkin’s lymphoma. Within breast infiltrating ductal carcinoma (IDC) samples tested, mean PARP1 expression was significantly higher relative to normal breast tissue, with over 30% of IDC samples demonstrating upregulation of PARP1, compared with 2.9% of normal tissues. Because of known DNA repair defects, including BRCA1 dysfunction, associated with TNBC, exploration of PARP1 expression in breast cancers related to expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) led to the observation that negative expression of any of the 3 receptors was associated with upregulation of PARP1 expression, compared with receptor-positive tissues. To validate these observations, an independent set of breast adenocarcinomas was evaluated and demonstrated >2-fold upregulation of PARP1 in approximately 70% of primary breast adenocarcinomas, including TNBC, compared with syngeneic nonmalignant breast tissues. Immunohistochemistry (IHC) showed that upregulation of the PARP1 gene was consistent with increased protein expression in TNBC. These analyses suggest a potential biological role for PARP1 in several distinct malignancies, including TNBC. Further investigation of PARP1 as a biomarker for the therapeutic activity of PARP inhibitor-based therapy is warranted. PMID:21779467
DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns
Schumann, Ulrike; Lee, Joanne; Kazan, Kemal; Ayliffe, Michael; Wang, Ming-Bo
2017-01-01
Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana. PMID:28894455
Characterization of Breast Cancer Cell Death Induced by Interferons and Retinoids
1999-07-01
treated cells. Cells were treated for 48 hr, before RNA extraction . Figure 4: Expression of GRIM-I in different mouse tissues. A multiple tissue...knockout approach (12). In this teria were scraped from the plates, and plasmid DNA was extracted and purified approach specific cell death-associated genes...ml), and Hirt DNA extracts intracellular redox regulatory enzyme (16). We show that cel- were prepared (22). DNA was digested with DpnI and
Volkov, Petr; Olsson, Anders H.; Gillberg, Linn; Jørgensen, Sine W.; Brøns, Charlotte; Eriksson, Karl-Fredrik; Groop, Leif; Jansson, Per-Anders; Nilsson, Emma; Rönn, Tina; Vaag, Allan; Ling, Charlotte
2016-01-01
Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and diabetes. PMID:27322064
Parrish, R Ryley; Day, Jeremy J; Lubin, Farah D
2012-07-01
DNA methylation is an epigenetic modification that is essential for the development and mature function of the central nervous system. Due to the relevance of this modification to the transcriptional control of gene expression, it is often necessary to examine changes in DNA methylation patterns with both gene and single-nucleotide resolution. Here, we describe an in-depth basic protocol for direct bisulfite sequencing of DNA isolated from brain tissue, which will permit direct assessment of methylation status at individual genes as well as individual cytosine molecules/nucleotides within a genomic region. This method yields analysis of DNA methylation patterns that is robust, accurate, and reproducible, thereby allowing insights into the role of alterations in DNA methylation in brain tissue.
DNA methyl transferases are differentially expressed in the human anterior eye segment.
Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc
2014-08-01
DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Heritable Epigenomic Changes to the Maize Methylome Resulting from Tissue Culture.
Han, Zhaoxue; Crisp, Peter A; Stelpflug, Scott; Kaeppler, Shawn M; Li, Qing; Springer, Nathan M
2018-05-30
DNA methylation can contribute to the maintenance of genome integrity and regulation of gene expression. In most situations, DNA methylation patterns are inherited quite stably. However, changes in DNA methylation can occur at some loci as a result of tissue culture resulting in somaclonal variation. To investigate heritable epigenetic changes as a consequence of tissue culture, a sequence-capture bisulfite sequencing approach was implemented to monitor context-specific DNA methylation patterns in ∼15Mb of the maize genome for a population of plants that had been regenerated from tissue culture. Plants that have been regenerated from tissue culture exhibit gains and losses of DNA methylation at a subset of genomic regions. There was evidence for a high rate of homozygous changes to DNA methylation levels that occur consistently in multiple independent tissue culture lines suggesting that some loci are either targeted or hotspots for epigenetic variation. The consistent changes inherited following tissue culture include both gains and losses of DNA methylation and can affect CG, CHG or both contexts within a region. Only a subset of the tissue culture changes observed in callus plants are observed in the primary regnerants but the majority of DNA methylation changes present in primary regenerants are passed onto offspring. This study provides insights into the susceptibility of some loci and potential mechanisms that could contribute to altered DNA methylation and epigenetic state that occur during tissue culture in plant species. Copyright © 2018, Genetics.
Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water.
Du, Xiaoyan; Tian, Meiping; Wang, Xiaoxue; Zhang, Jie; Huang, Qingyu; Liu, Liangpo; Shen, Heqing
2018-03-01
The neurotoxicity of arsenic is a serious health problem, especially for children. DNA epigenetic change may be an important pathogenic mechanism, but the molecular pathway remains obscure. In this study, the weaned male Sprague-Dawly (SD) rats were treated with arsenic trioxide via drinking water for 6 months, simulating real developmental exposure situation of children. Arsenic exposure impaired the cognitive abilities, and altered the expression of neuronal activity-regulated genes. Total arsenic concentrations of cortex and hippocampus tissues were significantly increased in a dose-dependent manner. The reduction in 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5hmC) levels as well as the down-regulation of DNA methyltransferases (DNMTs) and ten-eleven translocations (TETs) expression suggested that DNA methylation/demethylation processes were significantly suppressed in brain tissues. S-adenosylmethionine (SAM) level wasn't changed, but the expression of the important indicators of oxidative/anti-oxidative balance and tricarboxylic acid (TCA) cycle was significantly deregulated. Overall, arsenic can disrupt oxidative/anti-oxidative balance, further inhibit TETs expression through TCA cycle and alpha-ketoglutarate (α-KG) pathway, and consequently cause DNA methylation/demethylation disruption. The present study implies oxidative stress but not SAM depletion may lead to DNA epigenetic alteration and arsenic neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N
2011-03-01
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
Skin Electroporation: Effects on Transgene Expression, DNA Persistence and Local Tissue Environment
Roos, Anna-Karin; Eriksson, Fredrik; Timmons, James A.; Gerhardt, Josefine; Nyman, Ulrika; Gudmundsdotter, Lindvi; Bråve, Andreas; Wahren, Britta; Pisa, Pavel
2009-01-01
Background Electrical pulses have been used to enhance uptake of molecules into living cells for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination (gene delivery followed by electroporation) is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood. Methodology/Principal Findings This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid. Conclusions/Significance This study provides important insights to how DNA delivery by intradermal electrovaccination affects the local immunological responses of the skin, transgene expression and clearance of the plasmid. As the described vaccination approach is currently being evaluated in clinical trials, the data provided will be of high significance. PMID:19789652
USDA-ARS?s Scientific Manuscript database
The ubiquitous nature of DNA is a central theme for all biology. The nucleus of each cell that makes up an organism contains genomic DNA, which is the blueprint for life. The differential expression of genes within each cell gives rise to different tissues, organs and, ultimately, different organism...
Saurer, Eric M.; Yamanouchi, Dai; Liu, Bo; Lynn, David M.
2010-01-01
We report an approach for the localized delivery of plasmid DNA to vascular tissue from the surfaces of inflatable embolectomy catheter balloons. Using a layer-by-layer approach, ultrathin multilayered polyelectrolyte films were fabricated on embolectomy catheter balloons by alternately adsorbing layers of a hydrolytically degradable poly(β-amino ester) and plasmid DNA. Fluorescence microscopy revealed that the films coated the surfaces of the balloons uniformly. Coated balloons that were incubated in phosphate-buffered saline at 37 °C released ~25 μg DNA/cm2 over 24 hours. Analysis of the DNA by gel electrophoresis showed that the DNA was released in open-circular (‘nicked’) and supercoiled conformations, and in vitro cell transfection assays confirmed that the released DNA was transcriptionally active. Arterial injury was induced in the internal carotid arteries of Sprague-Dawley rats using uncoated balloons, followed by treatment with film-coated balloons for 20 minutes. X-gal, immunohistochemical, and immunofluorescence staining of sectioned arteries indicated high levels of β-galactosidase or enhanced green fluorescent protein (EGFP) expression in arteries treated with film-coated balloons. β-galactosidase and EGFP expression were observed throughout the medial layers of arterial tissue, and around approximately two-thirds of the circumference of the treated arteries. The layer-by-layer approach reported here provides a general platform for the balloon-mediated delivery of DNA to vascular tissue. Our results suggest the potential of this approach to deliver therapeutically relevant DNA to prevent complications such as intimal hyperplasia that arise after vascular interventions. PMID:20933275
Vincent, Rebecca N; Gooding, Luke D; Louie, Kenny; Chan Wong, Edgar; Ma, Sai
2016-09-01
To investigate DNA methylation and expression of imprinted genes and an imprinted gene network (IGN) in neonates conceived via assisted reproductive technology (ART). Case control. Research institution. Two hundred sixty-four cases of cord blood and/or placental villi from neonates (101 IVF, 81 ICSI, 82 naturally conceived). Placentas were obtained at birth for biopsy and cord blood extraction. DNA methylation and expression of imprinted genes. DNA methylation at the PLAGL1 differentially methylated region (DMR) was significantly higher in IVF cord blood (48.0%) compared with controls (46.0%). No differences were found in DNA methylation between conception modes for KvDMR1 and LINE-1 in cord blood and placenta as well as PLAGL1 and PEG10 in placenta villi. PLAGL1 expression was lower in both IVF and ICSI cord blood groups than in controls (relative quantification of 0.65, 0.74, 0.89, respectively). Analyzing the expression of 3 genes in a PLAGL1 regulated IGN revealed different expression between conception modes and a significant correlation to PLAGL1 expression in only one (KCNQ1OT1). Our results suggest a stability of DNA methylation at imprinted DMRs; however, we show PLAGL1 methylation/expression to be altered after ART. As PLAGL1 expression correlated with only one of the three IGN genes in cord blood, we propose there is a more complex mechanism of regulating the IGN that may involve other genes and epigenetic modifications in this tissue. Further research investigating IGN-implicated genes in various neonatal tissues is warranted to elucidate the full effects ART-induced alterations to PLAGL1 and the IGN may have on fetal growth/development. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors
Hubert, Rene S.; Vivanco, Igor; Chen, Emily; Rastegar, Shiva; Leong, Kahan; Mitchell, Steve C.; Madraswala, Rashida; Zhou, Yanhong; Kuo, James; Raitano, Arthur B.; Jakobovits, Aya; Saffran, Douglas C.; Afar, Daniel E. H.
1999-01-01
In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging. PMID:10588738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwai, Masaru; Kanno, Harumi; Senba, Izumi
2011-03-04
Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with amore » high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.« less
Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters
Maunakea, Alika K.; Nagarajan, Raman P.; Bilenky, Mikhail; Ballinger, Tracy J.; D’Souza, Cletus; Fouse, Shaun D.; Johnson, Brett E.; Hong, Chibo; Nielsen, Cydney; Zhao, Yongjun; Turecki, Gustavo; Delaney, Allen; Varhol, Richard; Thiessen, Nina; Shchors, Ksenya; Heine, Vivi M.; Rowitch, David H.; Xing, Xiaoyun; Fiore, Chris; Schillebeeckx, Maximiliaan; Jones, Steven J.M.; Haussler, David; Marra, Marco A.; Hirst, Martin; Wang, Ting; Costello, Joseph F.
2014-01-01
While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear1–5. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences5–10. Tissue-specific intragenic methylation might reduce,3 or, paradoxically, enhance transcription elongation efficiency1,2,4,5. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes11–15. To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters16. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies. PMID:20613842
Milk phospholipid's protective effects against UV damage in skin equivalent models
NASA Astrophysics Data System (ADS)
Dargitz, Carl; Russell, Ashley; Bingham, Michael; Achay, Zyra; Jimenez-Flores, Rafael; Laiho, Lily H.
2012-03-01
Exposure of skin tissue to UV radiation has been shown to cause DNA photodamage. If this damaged DNA is allowed to replicate, carcinogenesis may occur. DNA damage is prevented from being passed on to daughter cells by upregulation of the protein p21. p21 halts the cells cycle allowing the cell to undergo apoptosis, or repair its DNA before replication. Previous work suggested that milk phospholipids may possess protective properties against UV damage. In this study, we observed cell morphology, cell apoptosis, and p21 expression in tissue engineered epidermis through the use of Hematoxylin and Eosin staining, confocal microscopy, and western blot respectively. Tissues were divided into four treatment groups including: a control group with no UV and no milk phospholipid treatment, a group exposed to UV alone, a group incubated with milk phospholipids alone, and a group treated with milk phospholipids and UV. All groups were incubated for twenty-four hours after treatment. Tissues were then fixed, processed, and embedded in paraffin. Performing western blots resulted in visible p21 bands for the UV group only, implying that in every other group, p21 expression was lesser. Numbers of apoptotic cells were determined by observing the tissues treated with Hoechst dye under a confocal microscope, and counting the number of apoptotic and total cells to obtain a percentage of apoptotic cells. We found a decrease in apoptotic cells in tissues treated with milk phospholipids and UV compared to tissues exposed to UV alone. Collectively, these results suggest that milk phospholipids protect cell DNA from damage incurred from UV light.
Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe
2015-11-10
IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.
Characteristics of yak platelet derived growth factors-alpha gene and expression in brain tissues.
Huang, Zhenhua; Pan, Yangyang; Liu, Penggang; Yu, Sijiu; Cui, Yan
2017-05-29
Platelet derived growth factors (PDGFs) are key components of autocrine and paracrine signaling, both of which play important roles in mammalian developmental processes. PDGF expression levels also relate to oxygen levels. The characteristics of yak PDGFs, which are indigenous to hypoxic environments, have not been clearly described until the current study. We amplified the open reading frame encoding yak (Bos grunniens) platelet derived growth factor-a (PDGFA) from a yak skin tissue cDNA library by reverse transcriptase polymerase chain reaction (PCR) using specific primers and Sanger dideoxy sequencing. Expression of PDGFA mRNA in different portions of yak brain tissue (cerebrum, cerebellum, hippocampus, and spinal cord) was detected by quantitative real-time PCR (qRT-PCR). PDGFA protein expression levels and its location in different portions of the yak brain were evaluated by western blot and immunohistochemistry. We obtained a yak PDGFA 755 bp cDNA gene fragment containing a 636 bp open reading frame, encoding 211 amino acids (GenBank: KU851801). Phylogenetic analysis shows yak PDGFA to be well conserved, having 98.1% DNA sequence identity to homologous Bubalus bubalus and Bos taurus PDGFA genes. However, eight nucleotides in the yak DNA sequence and four amino acids in the yak protein sequence differ from the other two species. PDGFA is widely expressed in yak brain tissue, and furthermore, PDGFA expression in the cerebrum and cerebellum are higher than in the hippocampus and spinal cord (p > 0.05). PDGFA was observed by immunohistochemistry in glial cells of the cerebrum, cerebellum, and hippocampus, as well as in pyramidal cells of the cerebrum, and Purkinje cell bodies of the hippocampus, but not in glial cells of the spinal cord. The PDGFA gene is well conserved in the animal kingdom; however, the yak PDGFA gene has unique characteristics and brain expression patterns specific to this high elevation species.
Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui
2017-06-01
The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.
Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J
1993-01-01
A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ok Ran; Lim, In Kyoung, E-mail: iklim@ajou.ac.kr
2011-04-08
Highlights: {yields} Reduced p21 expression in senescent cells treated with DNA damaging agents. {yields} Increase of [{sup 3}H]thymidine and BrdU incorporations in DNA damaged-senescent cells. {yields} Upregulation of miR-93 expression in senescent cells in response to DSB. {yields} Failure of p53 binding to p21 promoter in senescent cells in response to DSB. {yields} Molecular mechanism of increased cancer development in aged than young individuals. -- Abstract: To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin ormore » X-ray irradiation. Response to the damage was different between young and old cells; loss of p21{sup sdi1} expression in spite of p53{sup S15} activation in old cells along with [{sup 3}H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21{sup sdi1} expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.« less
Transgelin gene is frequently downregulated by promoter DNA hypermethylation in breast cancer.
Sayar, Nilufer; Karahan, Gurbet; Konu, Ozlen; Bozkurt, Betul; Bozdogan, Onder; Yulug, Isik G
2015-01-01
CpG hypermethylation in gene promoters is a frequent mechanism of tumor suppressor gene silencing in various types of cancers. It usually occurs at early steps of cancer progression and can be detected easily, giving rise to development of promising biomarkers for both detection and progression of cancer, including breast cancer. 5-aza-2'-deoxycytidine (AZA) is a DNA demethylating and anti-cancer agent resulting in induction of genes suppressed via DNA hypermethylation. Using microarray expression profiling of AZA- or DMSO-treated breast cancer and non-tumorigenic breast (NTB) cells, we identified for the first time TAGLN gene as a target of DNA hypermethylation in breast cancer. TAGLN expression was significantly and frequently downregulated via promoter DNA hypermethylation in breast cancer cells compared to NTB cells, and also in 13/21 (61.9 %) of breast tumors compared to matched normal tissues. Analyses of public microarray methylation data showed that TAGLN was also hypermethylated in 63.02 % of tumors compared to normal tissues; relapse-free survival of patients was worse with higher TAGLN methylation; and methylation levels could discriminate between tumors and healthy tissues with 83.14 % sensitivity and 100 % specificity. Additionally, qRT-PCR and immunohistochemistry experiments showed that TAGLN expression was significantly downregulated in two more independent sets of breast tumors compared to normal tissues and was lower in tumors with poor prognosis. Colony formation was increased in TAGLN silenced NTB cells, while decreased in overexpressing BC cells. TAGLN gene is frequently downregulated by DNA hypermethylation, and TAGLN promoter methylation profiles could serve as a future diagnostic biomarker, with possible clinical impact regarding the prognosis in breast cancer.
Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuehai; Huang, Ziyang, E-mail: huangziyang666@126.com; Lu, Huixia
2012-07-13
Highlights: Black-Right-Pointing-Pointer Titers of ANA and anti-dsDNA antibodies were higher in ApoE{sup -/-} than C57B6/L mice. Black-Right-Pointing-Pointer Spleen was greater and splenocyte apoptosis lower in ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer Level of TLR4 was lower in spleen tissue of ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. Black-Right-Pointing-Pointer The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE{sup -/-}) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE{sup -/-}more » mice. The spleens of all ApoE{sup -/-} and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE{sup -/-} mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE{sup -/-} mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE{sup -/-} than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE{sup -/-} spleen tissue. The down-regulation of TLR4 signal molecules induced by LPS led to decreased expression of Bax and increased serum titers of ANA and anti-dsDNA antibody. Therefore, the TLR4 signal pathway may participate in maintaining the balance of splenocyte apoptosis and autoantibody production in ApoE{sup -/-} mice.« less
Tan, Kun; Zhang, Zhenni; Miao, Kai; Yu, Yong; Sui, Linlin; Tian, Jianhui; An, Lei
2016-07-01
How does in vitro fertilization (IVF) alter promoter DNA methylation patterns and its subsequent effects on gene expression profiles during placentation in mice? IVF-induced alterations in promoter DNA methylation might have functional consequences in a number of biological processes and functions during IVF placentation, including actin cytoskeleton organization, hematopoiesis, vasculogenesis, energy metabolism and nutrient transport. During post-implantation embryonic development, both embryonic and extraembryonic tissues undergo de novo DNA methylation, thereby establishing a global DNA methylation pattern, and influencing gene expression profiles. Embryonic and placental tissues of IVF conceptuses can have aberrant morphology and functions, resulting in adverse pregnancy outcomes such as pregnancy loss, low birthweight, and long-term health effects. To date, the IVF-induced global profiling of DNA methylation alterations, and their functional consequences on aberrant gene expression profiles in IVF placentas have not been systematically studied. Institute for Cancer Research mice (6 week-old females and 8-9 week-old males) were used to generate in vivo fertilization (IVO) and IVF blastocysts. After either IVO and development (IVO group as control) or in vitro fertilization and culture (IVF group), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Extraembryonic (ectoplacental cone and extraembryonic ectoderm) and placental tissues from both groups were sampled at embryonic day (E) 7.5 (IVO, n = 822; IVF, n = 795) and E10.5 (IVO, n = 324; IVF, n = 278), respectively. The collected extraembryonic (E7.5) and placental tissues (E10.5) were then used for high-throughput RNA sequencing (RNA-seq) and methylated DNA immunoprecipitation sequencing (MeDIP-seq). The main dysfunctions indicated by bioinformatic analyses were further validated using molecular detection, and morphometric and phenotypic analyses. Dynamic functional profiling of high-throughput data, together with molecular detection, and morphometric and phenotypic analyses, showed that differentially expressed genes dysregulated by DNA methylation were functionally involved in: (i) actin cytoskeleton disorganization in IVF extraembryonic tissues, which may impair allantois or chorion formation, and chorioallantoic fusion; (ii) disturbed hematopoiesis and vasculogenesis, which may lead to abnormal placenta labyrinth formation and thereby impairing nutrition transport in IVF placentas; (iii) dysregulated energy and amino acid metabolism, which may cause placental dysfunctions, leading to delayed embryonic development or even lethality; (iv) disrupted genetic information processing, which can further influence gene transcriptional and translational processes. Findings in mouse placental tissues may not be fully representative of human placentas. Further studies are necessary to confirm these findings and determine their clinical significance. Our study is the first to provide the genome-wide analysis of gene expression dysregulation caused by DNA methylation during IVF placentation. Systematic understanding of the molecular mechanisms implicated in IVF placentation can be useful for the improvement of existing assisted conception systems to prevent these IVF-associated safety concerns. This work was supported by grants from the National Natural Science Foundation of China (No. 31472092), and the National High-Tech R&D Program (Nos. 2011|AA100303, 2013AA102506). There was no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gore, Prashant R; Prajapati, Chaitali P; Mahajan, Umesh B; Goyal, Sameer N; Belemkar, Sateesh; Ojha, Shreesh; Patil, Chandragouda R
2016-01-01
Cyclophosphamide (CYP) induced hemorrhagic cystitis is a dose-limiting side effect involving increased oxidative stress, inflammatory cytokines and suppressed activity of nuclear factor related erythroid 2-related factor (Nrf2). Thymoquinone (TQ), an active constituent of Nigella sativa seeds, is reported to increase the expression of Nrf2, exert antioxidant action, and anti-inflammatory effects in the experimental animals. The present study was designed to explore the effects of TQ on CYP-induced hemorrhagic cystitis in Balb/c mice. Cystitis was induced by a single intraperitoneal injection of CYP (200 mg/kg). TQ was administered intraperitoneally at 5, 10 and 20 mg/kg doses twice a day, for three days before and three days after the CYP administration. The efficacy of TQ was determined in terms of the protection against the CYP-induced histological perturbations in the bladder tissue, reduction in the oxidative stress, and inhibition of the DNA fragmentation. Immunohistochemistry was performed to examine the expression of Nrf2. TQ protected against CYP-induced oxidative stress was evident from significant reduction in the lipid peroxidation, restoration of the levels of reduced glutathione, catalase and superoxide dismutase activities. TQ treatment significantly reduced the DNA damage evident as reduced DNA fragmentation. A significant decrease in the cellular infiltration, edema, epithelial denudation and hemorrhage were observed in the histological observations. There was restoration and rise in the Nrf2 expression in the bladder tissues of mice treated with TQ. These results confirm that, TQ ameliorates the CYP-induced hemorrhagic cystitis in mice through reduction in the oxidative stress, inhibition of the DNA damage and through increased expression of Nrf2 in the bladder tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J.
When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACCmore » synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.« less
Cloning and analysis of DnaJ family members in the silkworm, Bombyx mori.
Li, Yinü; Bu, Cuiyu; Li, Tiantian; Wang, Shibao; Jiang, Feng; Yi, Yongzhu; Yang, Huipeng; Zhang, Zhifang
2016-01-15
Heat shock proteins (Hsps) are involved in a variety of critical biological functions, including protein folding, degradation, and translocation and macromolecule assembly, act as molecular chaperones during periods of stress by binding to other proteins. Using expressed sequence tag (EST) and silkworm (Bombyx mori) transcriptome databases, we identified 27 cDNA sequences encoding the conserved J domain, which is found in DnaJ-type Hsps. Of the 27 J domain-containing sequences, 25 were complete cDNA sequences. We divided them into three types according to the number and presence of conserved domains. By analyzing the gene structures, intron numbers, and conserved domains and constructing a phylogenetic tree, we found that the DnaJ family had undergone convergent evolution, obtaining new domains to expand the diversity of its family members. The acquisition of the new DnaJ domains most likely occurred prior to the evolutionary divergence of prokaryotes and eukaryotes. The expression of DnaJ genes in the silkworm was generally higher in the fat body. The tissue distribution of DnaJ1 proteins was detected by western blotting, demonstrating that in the fifth-instar larvae, the DnaJ1 proteins were expressed at their highest levels in hemocytes, followed by the fat body and head. We also found that the DnaJ1 transcripts were likely differentially translated in different tissues. Using immunofluorescence cytochemistry, we revealed that in the blood cells, DnaJ1 was mainly localized in the cytoplasm. Copyright © 2015 Elsevier B.V. All rights reserved.
Epigenetic silencing of MicroRNA-503 regulates FANCA expression in non-small cell lung cancer cell.
Li, Ning; Zhang, Fangfang; Li, Suyun; Zhou, Suzhen
2014-02-21
It is reported that MicroRNA-503 (miR-503) regulates cell apoptosis, and thus modulates the resistance of non-small cell lung cancer cells (NSCLC) to cisplatin. However, the exact role of miR-503 in NSCLC remains unknown. In the present study, the level of miR-503 expression in NSCLC was evaluated using realtime PCR, and the DNA methylation status within miR-503 promoter was analyzed by Combined Bisulfite Restriction Analysis (COBRA) or bisulfite-treated DNA sequencing assays (BSP). We found that the expression of miR-503 was significantly decreased in NSCLC tissues compared to normal tissues. A statistically significant inverse association was found between miR-503 methylation status and expression of the miR-503 in tumor tissues (P<0.001), and expression of miR-503 was restored by the demethylating agent 5-aza-2'-deoxycytidine, suggesting that methylation was associated with the transcriptional silencing. Then, we show that miR-503 targets a homologous DNA region in the 3'-UTR region of the Fanconi anemia complementation group A protein (FANCA) gene and represses its expression at the transcriptional level. Taken together, our results suggest that miR-503 regulates the resistance of non-small cell lung cancer cells to cisplatin at least in part by targeting FANCA. Copyright © 2014 Elsevier Inc. All rights reserved.
Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka
2016-03-01
Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.
Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation
Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Shiwa, Yuh; Ono, Kanako; Suzuki, Sadafumi; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Shimizu, Atsushi
2016-01-01
Cytosine methylation at CpG dinucleotides is an epigenetic mechanism that affects the gene expression profiles responsible for the functional differences in various cells and tissues. Although gene expression patterns are dynamically altered in response to various stimuli, the intraindividual dynamics of DNA methylation in human cells are yet to be fully understood. Here, we investigated the extent to which DNA methylation contributes to the dynamics of gene expression by collecting 24 blood samples from two individuals over a period of 3 months. Transcriptome and methylome association analyses revealed that only ~2% of dynamic changes in gene expression could be explained by the intraindividual variation of DNA methylation levels in peripheral blood mononuclear cells and purified monocytes. These results showed that DNA methylation levels remain stable for at least several months, suggesting that disease-associated DNA methylation markers are useful for estimating the risk of disease manifestation. PMID:27192970
Aberrant methylation of GCNT2 is tightly related to lymph node metastasis of primary CRC.
Nakamura, Kazunori; Yamashita, Keishi; Sawaki, Hiromichi; Waraya, Mina; Katoh, Hiroshi; Nakayama, Nobukazu; Kawamata, Hiroshi; Nishimiya, Hiroshi; Ema, Akira; Narimatsu, Hisashi; Watanabe, Masahiko
2015-03-01
Glycoprotein expression profile is dramatically altered in human cancers; however, specific glycogenes have not been fully identified. A comprehensive real-time polymerase chain reaction (PCR) system for glycogenes (CRPS-G) identified several outstanding glycogenes. GCNT2 was of particular interest after GCNT2 expression and epigenetics were rigorously investigated in primary colorectal cancer (CRC). The highlights of this work can be summarized as follows: (i) Expression of GCNT2 was remarkably suppressed. (ii) Silenced expression of GCNT2 was reactivated by combined demethylating agents. (iii) Promoter DNA methylation of GCNT2 was silenced in CRC cell lines and tissues. Hypomethylation of GCNT2 variant 2 is tightly associated with lymph node metastasis in primary CRC. (iv) GCNT2 methylation level in the normal tissues also showed a close association with that in the tumor tissues and reflected lymph node metastasis. We identified aberrant expression of GCNT2, which can be explained by promoter DNA hypermethylation. Hypomethylation of the GCNT2 variant 2 reflected lymph node metastasis of CRC in the tumor and normal tissues. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Gillberg, Linn; Perfilyev, Alexander; Brøns, Charlotte; Thomasen, Martin; Grunnet, Louise G; Volkov, Petr; Rosqvist, Fredrik; Iggman, David; Dahlman, Ingrid; Risérus, Ulf; Rönn, Tina; Nilsson, Emma; Vaag, Allan; Ling, Charlotte
2016-04-01
Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW. mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays. We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate <5%), including sites in the FADS2 and CPLX1 genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate <5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were ELOVL6, FADS2 and NNAT; in contrast, INSR, IRS2 and the SLC27A2 fatty acid transporter showed decreased expression after HFO. Interestingly, SLC27A2 expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in CDK5, IGFBP5 and SLC2A4) was altered in SAT after overfeeding in this and in another cohort. Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.
Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.
Felgner, P L; Gadek, T R; Holm, M; Roman, R; Chan, H W; Wenz, M; Northrop, J P; Ringold, G M; Danielsen, M
1987-01-01
A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA, DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and effective for both transient and stable expression of transfected DNA. Depending upon the cell line, lipofection is from 5- to greater than 100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique. Images PMID:2823261
Haas, Christian S; Creighton, Chad J; Pi, Xiujun; Maine, Ira; Koch, Alisa E; Haines, G Kenneth; Ling, Song; Chinnaiyan, Arul M; Holoshitz, Joseph
2006-07-01
To identify disease-specific gene expression profiles in patients with rheumatoid arthritis (RA), using complementary DNA (cDNA) microarray analyses on lymphoblastoid B cell lines (LCLs) derived from RA-discordant monozygotic (MZ) twins. The cDNA was prepared from LCLs derived from the peripheral blood of 11 pairs of RA-discordant MZ twins. The RA twin cDNA was labeled with cy5 fluorescent dye, and the cDNA of the healthy co-twin was labeled with cy3. To determine relative expression profiles, cDNA from each twin pair was combined and hybridized on 20,000-element microarray chips. Immunohistochemistry and real-time polymerase chain reaction were used to detect the expression of selected gene products in synovial tissue from patients with RA compared with patients with osteoarthritis and normal healthy controls. In RA twin LCLs compared with healthy co-twin LCLs, 1,163 transcripts were significantly differentially expressed. Of these, 747 were overexpressed and 416 were underexpressed. Gene ontology analysis revealed many genes known to play a role in apoptosis, angiogenesis, proteolysis, and signaling. The 3 most significantly overexpressed genes were laeverin (a novel enzyme with sequence homology to CD13), 11beta-hydroxysteroid dehydrogenase type 2 (a steroid pathway enzyme), and cysteine-rich, angiogenic inducer 61 (a known angiogenic factor). The products of these genes, heretofore uncharacterized in RA, were all abundantly expressed in RA synovial tissues. Microarray cDNA analysis of peripheral blood-derived LCLs from well-controlled patient populations is a useful tool to detect RA-relevant genes and could help in identifying novel therapeutic targets.
DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma.
Zou, Shitao; Shang, Zeng-Fu; Liu, Biao; Zhang, Shuyu; Wu, Jinchang; Huang, Min; Ding, Wei-Qun; Zhou, Jundong
2016-05-31
DNA polymerase iota (Pol ι) is an error-prone DNA polymerase involved in translesion DNA synthesis (TLS) that contributes to the accumulation of DNA mutations. We recently showed that Pol ι is overexpressed in human esophageal squamous cell cancer (ESCC) tissues which promotes ESCC' progression. The present study was aimed at investigating the molecular mechanisms by which Pol ι enhances the invasiveness and metastasis of ESCC cells. We found that the expression of Pol ι is significantly higher in ESCCs with lymph node metastasis compared to those without lymph node metastasis. Kaplan-Meier analysis revealed an inverse correlation between Pol ι expression and patient prognosis. The expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two essential regulators of cells' invasiveness, were positively associated with Pol ι expression in ESCC tissues. Ectopic expression of Pol ι enhanced the motility and invasiveness of ESCC cells as evaluated by wound-healing and transwell assays, respectively. A xenograft nude mouse model showed that Pol ι promotes the colonization of ESCC cells in the liver, lung and kidney. Signaling pathway analysis identified the JNK-AP-1 cascade as a mediator of the Pol ι-induced increase in the expression of MMP-2/9 and enhancement of ESCC progression. These data demonstrate the underlying mechanism by which Pol ι promotes ESCC progression, suggesting that Pol ι is a potential novel prognostic biomarker and therapeutic target for ESCC.
DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma
Liu, Biao; Zhang, Shuyu; Wu, Jinchang; Huang, Min; Ding, Wei-Qun; Zhou, Jundong
2016-01-01
DNA polymerase iota (Pol ι) is an error-prone DNA polymerase involved in translesion DNA synthesis (TLS) that contributes to the accumulation of DNA mutations. We recently showed that Pol ι is overexpressed in human esophageal squamous cell cancer (ESCC) tissues which promotes ESCC' progression. The present study was aimed at investigating the molecular mechanisms by which Pol ι enhances the invasiveness and metastasis of ESCC cells. We found that the expression of Pol ι is significantly higher in ESCCs with lymph node metastasis compared to those without lymph node metastasis. Kaplan-Meier analysis revealed an inverse correlation between Pol ι expression and patient prognosis. The expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two essential regulators of cells' invasiveness, were positively associated with Pol ι expression in ESCC tissues. Ectopic expression of Pol ι enhanced the motility and invasiveness of ESCC cells as evaluated by wound-healing and transwell assays, respectively. A xenograft nude mouse model showed that Pol ι promotes the colonization of ESCC cells in the liver, lung and kidney. Signaling pathway analysis identified the JNK-AP-1 cascade as a mediator of the Pol ι-induced increase in the expression of MMP-2/9 and enhancement of ESCC progression. These data demonstrate the underlying mechanism by which Pol ι promotes ESCC progression, suggesting that Pol ι is a potential novel prognostic biomarker and therapeutic target for ESCC. PMID:27057634
Smoking induces transcription of the heat shock protein system in the joints.
Ospelt, Caroline; Camici, Giovanni G; Engler, Anna; Kolling, Christoph; Vogetseder, Alexander; Gay, Renate E; Michel, Beat A; Gay, Steffen
2014-07-01
Smoking increases the risk of developing rheumatoid arthritis (RA) and worsens the course of the disease. In the current study we analysed whether smoking can affect gene expression directly in the joints. Synovial fibroblasts were incubated with 5% cigarette smoke extract and changes in gene expression were detected using whole genome microarrays and verified with real-time PCR. Synovial tissues were obtained from smoking and non-smoking patients with RA undergoing joint replacement surgery and from mice exposed to cigarette smoke or ambient air in a whole body exposure chamber for 3 weeks. Microarray and real-time PCR analysis showed a significant upregulation of the heat shock proteins DnaJA4, DnaJB4, DnaJC6, HspB8 and Hsp70 after stimulation of synovial fibroblasts with 5% cigarette smoke extract. Similarly, in synovial tissues of smokers with RA the expression of DnaJB4, DnaJC6, HspB8 and Hsp70 was significantly higher compared with non-smokers with RA. Upregulation of DnaJB4 and DnaJC6 in joints by smoking was also confirmed in mice exposed to cigarette smoke. Our data clearly show that smoking can change gene expression in the joints, which can lead to the activation of signalling pathways that promote development of autoimmunity and chronic joint inflammation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ohno, Misa; Kida, Yuta; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka
2014-10-08
Mice and humans produce chitinase-like proteins (CLPs), which are highly homologous to chitinases but lack chitinolytic activity. Mice express primarily three CLPs, including breast regression protein-39 (BRP-39) [chitinase 3-like-1 (Chi3l1) or 38-kDa glycoprotein (gp38k)], Ym1 (Chi3l3) and Ym2 (Chi3l4). Recently, CLPs have attracted considerable attention due to their increased expression in a number of pathological conditions, including asthma, allergies, rheumatoid arthritis and malignant tumors. Although the exact functions of CLPs are largely unknown, the significance of their increased expression levels during pathophysiological states needs to be determined. The quantification of BRP-39, Ym1 and Ym2 is an important step in gaining insight into the in vivo regulation of the CLPs. We constructed a standard DNA for quantitative real-time PCR (qPCR) by containing three CLPs target fragments and five reference genes cDNA in a one-to-one ratio. We evaluated this system by analyzing the eight target cDNA sequences. Tissue cDNAs obtained by reverse transcription from total RNA from four embryonic stages and eight adult tissues were analyzed using the qPCR system with the standard DNA. We established a qPCR system detecting CLPs and comparing their expression levels with those of five reference genes using the same scale in mouse tissues. We found that BRP-39 and Ym1 were abundant in the mouse lung, whereas Ym2 mRNA was abundant in the stomach, followed by lung. The expression levels of BRP-39 and Ym1 in the mouse lung were higher than those of two active chitinases and were comparable to glyceraldehyde-3-phosphate dehydrogenase, a housekeeping gene which is constitutively expressed in all tissues. Our results indicate that catalytically inactive BRP-39 and Ym1 are constitutive genes in normal mouse lung.
Identification and embryonic expression of a new AP-2 transcription factor, AP-2 epsilon.
Wang, Hao-Ven; Vaupel, Kristina; Buettner, Reinhard; Bosserhoff, Anja-Katrin; Moser, Markus
2004-09-01
AP-2 proteins comprise a family of highly related transcription factors, which are expressed during mouse embryogenesis in a variety of ectodermal, neuroectodermal, and mesenchymal tissues. AP-2 transcription factors were shown to be involved in morphogenesis of craniofacial, urogenital, neural crest-derived, and placental tissues. By means of a partial cDNA fragment identified during an expressed sequence tag search for AP-2 genes, we identified a fifth, previously unknown AP-2-related gene, AP-2 epsilon. AP-2 epsilon encodes an open reading frame of 434 amino acids, which reveals the typical modular structure of AP-2 transcription factors with highly conserved C-terminal DNA binding and dimerization domains. Although the N-terminally localized activation domain is less homologous, position and identity of amino acids essential for transcriptional transactivation are conserved. Reverse transcriptase-polymerase chain reaction analyses of murine embryos revealed AP-2 epsilon expression from gestational stage embryonic day 7.5 throughout all later embryonic stages until birth. Whole-mount in situ hybridization using a specific AP-2 epsilon cDNA fragment demonstrated that during embryogenesis, expression of AP-2 epsilon is mainly restricted to neural tissue, especially the midbrain, hindbrain, and olfactory bulb. This expression pattern was confirmed by immunohistochemistry with an AP-2 epsilon-specific antiserum. By using this antiserum, we could further localize AP-2 epsilon expression in a hypothalamic nucleus and the neuroepithelium of the vomeronasal organ, suggesting an important function of AP-2 epsilon for the development of the olfactory system.
Dziaman, Tomasz; Gackowski, Daniel; Guz, Jolanta; Linowiecka, Kinga; Bodnar, Magdalena; Starczak, Marta; Zarakowska, Ewelina; Modrzejewska, Martyna; Szpila, Anna; Szpotan, Justyna; Gawronski, Maciej; Labejszo, Anna; Liebert, Ariel; Banaszkiewicz, Zbigniew; Klopocka, Maria; Foksinski, Marek; Marszalek, Andrzej; Olinski, Ryszard
2018-01-01
Active demethylation of 5-methyl-2'-deoxycytidine (5-mdC) in DNA occurs by oxidation to 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC) and further oxidation to 5-formyl-2'-deoxycytidine (5-fdC) and 5-carboxy-2'-deoxycytidine (5-cadC), and is carried out by enzymes of the ten-eleven translocation family (TETs 1, 2, 3). Decreased level of epigenetic DNA modifications in cancer tissue may be a consequence of reduced activity/expression of TET proteins. To determine the role of epigenetic DNA modifications in colon cancer development, we analyzed their levels in normal colon and various colonic pathologies. Moreover, we determined the expressions of TETs at mRNA and protein level.The study included material from patients with inflammatory bowel disease (IBD), benign polyps (AD), and colorectal cancer (CRC). The levels of epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in examined tissues were determined by means of isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS). The expressions of TET mRNA were measured with RT-qPCR, and the expressions of TET proteins were determined immunohistochemically. IBD was characterized by the highest level of 8-oxodG among all analyzed tissues, as well as by a decrease in 5-hmdC and 5-mdC levels (at a midrange between normal colon and CRC). AD had the lowest levels of 5-hmdC and 5-mdC of all examined tissues and showed an increase in 8-oxodG and 5-(hydroxymethyl)-2'-deoxyuridine (5-hmdU) levels. CRC was characterized by lower levels of 5-hmdC and 5-mdC, the lowest level of 5-fdC among all analyzed tissues, and relatively high content of 5-cadC. The expression of TET1 mRNA in CRC and AD was significantly weaker than in IBD and normal colon. Furthermore, CRC and AD showed significantly lower levels of TET2 and AID mRNA than normal colonic tissue. Our findings suggest that a complex relationship between aberrant pattern of DNA epigenetic modification and cancer development does not depend solely on the transcriptional status of TET proteins, but also on the characteristics of premalignant/malignant cells. This study showed for the first time that the examined colonic pathologies had their unique epigenetic marks, distinguishing them from each other, as well as from normal colonic tissue. A decrease in 5-fdC level may be a characteristic feature of largely undifferentiated cancer cells.
LINE1 family member is negative regulator of HLA-G expression.
Ikeno, Masashi; Suzuki, Nobutaka; Kamiya, Megumi; Takahashi, Yuji; Kudoh, Jun; Okazaki, Tsuneko
2012-11-01
Class Ia molecules of human leucocyte antigen (HLA-A, -B and -C) are widely expressed and play a central role in the immune system by presenting peptides derived from the lumen of the endoplasmic reticulum. In contrast, class Ib molecules such as HLA-G serve novel functions. The distribution of HLA-G is mostly limited to foetal trophoblastic tissues and some tumour tissues. The mechanism required for the tissue-specific regulation of the HLA-G gene has not been well understood. Here, we investigated the genomic regulation of HLA-G by manipulating one copy of a genomic DNA fragment on a human artificial chromosome. We identified a potential negative regulator of gene expression in a sequence upstream of HLA-G that overlapped with the long interspersed element (LINE1); silencing of HLA-G involved a DNA secondary structure generated in LINE1. The presence of a LINE1 gene silencer may explain the limited expression of HLA-G compared with other class I genes.
DNA methylation markers for diagnosis and prognosis of common cancers
Hao, Xiaoke; Luo, Huiyan; Krawczyk, Michal; Wei, Wei; Wang, Wenqiu; Wang, Juan; Flagg, Ken; Hou, Jiayi; Zhang, Heng; Yi, Shaohua; Jafari, Maryam; Lin, Danni; Chung, Christopher; Caughey, Bennett A.; Li, Gen; Dhar, Debanjan; Shi, William; Zheng, Lianghong; Hou, Rui; Zhu, Jie; Zhao, Liang; Fu, Xin; Zhang, Edward; Zhang, Charlotte; Zhu, Jian-Kang; Karin, Michael; Xu, Rui-Hua; Zhang, Kang
2017-01-01
The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis. PMID:28652331
2011-01-01
Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389
Appleyard, Greg D; Forsyth, George W; Kiehlbauch, Laura M; Sigfrid, Kristen N; Hanik, Heather L J; Quon, Anita; Loewen, Matthew E; Grahn, Bruce H
2006-05-01
To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not contain mutations. Based on the implication of mt-DNA-encoded proteins by the RDA experiments we used real-time PCR to compare the relative amounts of mt-DNA template in white blood cells from normal and affected dogs. White blood cells of affected dogs contained less than 30% of the normal amount of two specific mtDNA sequences, compared with the content of the nuclear-encoded glyceraldehyde-3-phosphate dehydrogenase (GA-3-PDH) reference gene. Retina and RPE tissue from affected dogs had reduced mRNA transcript levels for the two mitochondrial genes detected in the RDA experiment. Transcript levels for another mtDNA-encoded gene as well as the nuclear-encoded mitochondrial Tfam transcription factor were reduced in these tissues in affected dogs. Mitochondria from affected dogs were reduced in number and size and were unusually electron dense. Reduced levels of nuclear and mitochondrial transcripts in the retina and RPE of miniature Schnauzers affected with retinal dysplasia suggest that the pathogenesis of the disorder may arise from a lowered energy supply to the retina and RPE.
2013-01-01
Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. Conclusions The two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer. PMID:23374247
Milnthorpe, Andrew T; Soloviev, Mikhail
2011-04-15
The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used.
2011-01-01
Background The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. Results We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Conclusion Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used. PMID:21496233
Burgess, D; Penton, A; Dunsmuir, P; Dooner, H
1997-02-01
Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.
Zhang, Jun; Wang, Cuizhe; Ha, Xiaodan; Li, Wei; Xu, Peng; Gu, Yajuan; Wang, Tingting; Wang, Yan; Xie, Jianxin
2017-07-01
The higher probability of type 2 diabetes mellitus (T2DM) in the Uygur population is due to a greater waist: hip ratio and visceral fat. This study investigated DNA methylation of tumor necrosis factor-α (TNF), monocyte chemoattractant protein-1 (MCP1), and adiponectin (ADIPOQ) in visceral adipose tissue in T2DM. Visceral adipose tissue was collected from Uygur individuals and divided into normal control (NC; n = 50), obese (Ob; n = 48), and T2DM (n = 26) groups. Expression of TNF, ADIPOQ, and MCP1 mRNA and DNA methylation status were quantified by reverse transcription-polymerase chain reaction and denaturing HPLC. The respective methylation-positive rate for ADIPOQ increased gradually from the NC to Ob to T2DM groups (34.0 %, 47.9 %, and 65.4 %; P < 0.05), decreased gradually for TNF (70.0 %, 47.9 %, and 26.9 %; P < 0.01), and did not differ significantly for MCP1 (0 %, 2.08 %, and 0 %). Compared with the NC group, ADIPOQ mRNA expression was significantly lower in the Ob and T2DM groups (median 0.7162 vs 0.4244 and 0.4093, respectively; P < 0.05), whereas TNF and MCP1 expression was significantly higher (median TNF expression: 0.0250 vs 0.1096 and 0.0734 respectively; median MCP1 expression 0.1588 vs 0.1937 and 0.1983, respectively; P < 0.05 for all). Expression of ADIPOQ and TNF was significantly lower in methylation-negative (median 0.7870 and 0.1988, respectively) than methylation-positive (median 0.2700 and 0.0542, respectively) groups (P < 0.01). Lower ADIPOQ and higher TNF and MCP1 mRNA expression in visceral adipose tissue may be correlated with obesity and T2DM in the Uygur population. Promoter DNA methylation affects expression of ADIPOQ and TNF. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Final Report - Epigenetics of low dose radiation effects in an animal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalchuk, Olga
This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis ofmore » induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low dose radiation effects and adaptive response • To correlate the levels of epigenetic changes with genetic rearrangement levels and gene expression patterns. In sum, we determined the precise global and locus-specific DNA methylation patterns in the LDR-exposed cells and tissues of mice, and to correlated DNA methylation changes with the gene expression patterns and manifestations of genome instability. We also determined the alterations of global histone modification pattern in the LDR exposed tissues. Additionally, we established the nature of microRNAome changes in the LDR exposed tissue. In this study we for the first time found that LDR exposure caused profound tissue-specific epigenetic changes in the exposed tissues. We established that LDR exposure affect methylation of repetitive elements in the murine genome, causes changes in histone methylation, acetylation and phosphorylation. Importantly, we found that LDR causes profound and persistent effects on small RNA profiles and gene expression, and that miRNAs are excellent biomarkers of LDR exposure. Furthermore, we extended our analysis and studied LDR effects in rat tissues and human tissues and cell lines. There we also analyzed LDR-induced gene expression, DNA methylation and miRNA changes. Our datasets laid foundation for several new research projects aimed to understand molecular underpinnings of low dose radiation responses, and biological repercussions of low dose radiation effects and radiation carcinogenesis.« less
Coelho-Castelo, AAM; Trombone, AP; Rosada, RS; Santos, RR; Bonato, VLD; Sartori, A; Silva, CL
2006-01-01
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. PMID:16445866
[Development of a hepatitis B virus carrier transgenic mice model].
Caner, Müge; Arat, Sezen; Bircan, Rifat
2008-01-01
The studies for the development of transgenic mice models which provide important profits for the studies concerning immunopathogenesis of hepatitis B virus (HBV) infections are in progress since 20 years. For this purpose different lineages bearing whole HBV genome or selected viral genes have been developed and their usage in clarifying the HBV replication and pathogenesis mechanisms have been emphasized. The aim of this study was to develop and breed a HBV carrier mice model. In the study the full HBV genome has been transferred to mouse embryos by microinjection procedure. Following transgenic manipulation, the HBV carriers among the daughter mice have been detected by molecular methods in which HBV-DNA replication and expression have been shown. The manipulations for transgene transfers have been performed in TUBITAK Marmara Research Center Transgene Laboratory, Gebze, Istanbul. The HBV-DNA carrier mice have been demonstrated by polymerase chain reaction (PCR) using the DNA samples obtained from tail tissues and also by dot-blot hybridization of the mice sera. Integrated HBV-DNA has been detected by applying in-situ hybridization to the liver tissue sections. HBV-DNA expression has been shown by reverse transcriptase PCR method with total RNA molecules that have been isolated from the liver tissues of the HBV-DNA carrier mice. HBsAg has been detected in the liver by immunohistochemical method, and HBsAg and HBeAg have additionally been demonstrated by ELISA. HBV genome, expression of the genome and the expression products have been determined in approximately 10% of the mice of which HBV-DNA have been transferred. By inbreeding heterozygote carrier mice, homozygote HBV transgenic mice line have been obtained. These HBV transgenic mice are the first lineages developed in our country. It is hopefully thought that this HBV carrier transgenic mouse model may contribute to the studies on the pathogenesis of HBV infections which are important health problems in the world as well as in Turkey.
DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma
Anwar, Sumadi Lukman; Lehmann, Ulrich
2014-01-01
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC. PMID:24976726
miR-34a inhibits the in vitro cell proliferation and migration in human esophageal cancer.
Shi, Hui; Zhou, Shengluan; Liu, Junhua; Zhu, Jun; Xue, Jianhua; Gu, Luo; Chen, Yijiang
2016-05-01
Increasing studies demonstrate that reduced expression of miR-34a is involved in the initiation and progression of cancers, and it has been characterized as a tumor suppressor in various types of cancers. In present study, we investigated the expression and role of miR-34a in esophageal cancer. qRT-PCR assays were performed to analyze the expression of miR-34a in human esophageal cancer tissues and adjacent esophageal tissues. CCK8 assay, flow cytometry analysis and in vitro migration assays were performed to analyze the role of miR-34a in human esophageal cancer cell. MSP assay was performed to analyze the DNA methylation of the miR-34a promoter. The expression of miR-34a was down-regulated in human esophageal cancer tissues. miR-34a ectopic expression affected esophageal cancer cells survival, proliferation and capabilities of migration in vitro. p53 status was not correlated with miR-34a. Subsequently, aberrant DNA methylation of the miR-34a promoter was found in human esophageal cancer, and 5-AZA-dC inhibited DNA methylation of the miR-34a promoter. our data showed that miR-34a acted as a tumor suppressor in human esophageal cancer. Copyright © 2016. Published by Elsevier GmbH.
Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.
2010-04-01
This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels resultmore » in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.« less
Manjanatha, Mugimane G; Bishop, Michelle E; Pearce, Mason G; Kulkarni, Rohan; Lyn-Cook, Lascelles E; Ding, Wei
2014-01-01
Doxorubicin (DOX) is an antineoplastic drug effective against many human malignancies. DOX's clinical efficacy is greatly limited because of severe cardiotoxicity. To evaluate if DOX is genotoxic in the heart, ~7-week-old, male F344 rats were administered intravenously 1, 2, and 3 mg/kg bw DOX at 0, 24, 48, and 69 hr and the Comet assays in heart, liver, kidney, and testis and micronucleus (MN) assay in the peripheral blood (PB) erythrocytes using flow cytometry were conducted. Rats were euthanized at 72 hr and PB was removed for the MN assay and single cells were isolated from multiple tissues for the Comet assays. None of the doses of DOX induced a significant DNA damage in any of the tissues examined by the alkaline Comet assay. Contrastingly, the glycosylase enzymes-modified Comet assay showed a significant dose dependent increase in the oxidative DNA damage in the cardiac tissue (P ≤ 0.05). In the liver, only the top dose induced significant increase in the oxidative DNA damage (P ≤ 0.05). The histopathology showed no severe cardiotoxicity but non-neoplastic lesions were present in both untreated and treated samples. A severe toxicity likely occurred in the bone marrow because no viable reticulocytes could be screened for the MN assay. Gene expression profiling of the heart tissues showed a significant alteration in the expression of 11 DNA damage and repair genes. These results suggest that DOX is genotoxic in the heart and the DNA damage may be induced primarily via the production of reactive oxygen species. Copyright © 2013 Wiley Periodicals, Inc.
Santegoets, Lindy A M; van Baars, Romy; Terlou, Annelinde; Heijmans-Antonissen, Claudia; Swagemakers, Sigrid M A; van der Spek, Peter J; Ewing, Patricia C; van Beurden, Marc; van der Meijden, Willem I; Helmerhorst, Theo J M; Blok, Leen J
2012-06-15
Human papillomavirus (HPV) infections may result in benign hyperplasia, caused by low-risk HPV types, or (pre)malignant lesions caused by high-risk HPV types. The molecular basis of this difference in malignant potential is not completely understood. Here, we performed gene profiling of different HPV infected vulvar tissues (condylomata acuminata (n = 5), usual type vulvar intraepithelial neoplasia (uVIN) (n = 9)) and control samples (n = 14) using Affymetrix Human U133A plus 2 GeneChips. Data were analyzed using OmniViz®, Partek® and Ingenuity® Software. Results were validated by real-time RT-PCR and immunostaining. Although similarities were observed between gene expression profiles of low- and high-risk HPV infected tissues (e.g., absence of estrogen receptor in condylomata and uVIN), high-risk HPV infected tissues showed more proliferation and displayed more DNA damage than tissues infected with low-risk HPV. These observations were confirmed by differential regulation of cell cycle checkpoints and by increased expression of DNA damage-biomarkers p53 and γH2AX. Furthermore, FANCA, FANCD2, BRCA1 and RAD51, key players in the DNA damage response, were significantly upregulated (p < 0.05). In addition, we compared our results with publicly available gene expression profiles of various other HPV-induced cancers (vulva, cervix and head-and-neck). This showed p16(INK4a) was the most significant marker to detect a high-risk HPV infection, but no other markers could be found. In conclusion, this study provides insight into the molecular basis of low- and high-risk HPV infections and indicates two main pathways (cell cycle and DNA damage response) that are much stronger affected by high-risk HPV as compared to low-risk HPV. Copyright © 2011 UICC.
Isolation and expression of homeobox genes from the embryonic chicken eye.
Dhawan, R R; Schoen, T J; Beebe, D C
1997-06-11
To identify homeobox-containing genes that may play a role in the differentiation of ocular tissues. Total RNA was isolated from microdissected chicken embryo eye tissues at 3.5 days of development (embryonic day 3.5; E3.5). An "anchor-oligo-dT primer" was used for the synthesis of cDNA. Degenerate oligonucleotides designed from highly-conserved sequences in the third helix of the homeobox and the "anchor-primer" were used to amplify cDNAs by polymerase chain reaction (PCR). PCR products were cloned and sequenced. The spatial and temporal expression of selected transcripts was mapped by whole-mount in situ hybridization and northern blot analysis. After sequencing eighteen clones we identified a member of the distal-less family (dlx-3) in cDNA from presumptive neural retina and three chicken homologs of the Xenopus "anterior neural fold" (Xanf-1) in cDNA from anterior eye tissue. Dlx transcripts were mapped by in situ hybridization. Expression began at Hamburger and Hamilton stage 14 (E2.5) and was widely distributed in embryonic mesenchyme on E3 and E4. Expression increased in the retina during early development and persisted until after hatching. The one anf clone selected for further study was not detected by in situ or northern blot analysis. It is feasible to isolate homeobox cDNAs directly from microdissected embryonic tissues. Chicken dlx-3 mRNA has a wider distribution in the embryo than expected, based on the expression of the mouse homolog. Dlx-3 may play a role in establishing or maintaining the differentiation of the retina.
Saluz, H P; Feavers, I M; Jiricny, J; Jost, J P
1988-01-01
Genomic sequencing was used to study the in vivo methylation pattern of two CpG sites in the promoter region of the avian vitellogenin gene. The CpG at position +10 was fully methylated in DNA isolated from tissues that do not express the gene but was unmethylated in the liver of mature hens and estradiol-treated roosters. In the latter tissue, this site became demethylated and DNase I hypersensitive after estradiol treatment. A second CpG (position -52) was unmethylated in all tissues examined. In vivo genomic footprinting with dimethyl sulfate revealed different patterns of DNA protection in silent and expressed genes. In rooster liver cells, at least 10 base pairs of DNA, including the methylated CpG, were protected by protein(s). Gel-shift assays indicated that a protein factor, present in rooster liver nuclear extract, bound at this site only when it was methylated. In hen liver cells, the same unmethylated CpG lies within a protected region of approximately equal to 20 base pairs. In vitro DNase I protection and gel-shift assays indicate that this sequence is bound by a protein, which binds both double- and single-stranded DNA. For the latter substrate, this factor was shown to bind solely the noncoding (i.e., mRNA-like) strand. Images PMID:3413118
Hu, Xi-Lian; Zhu, Mu-Yuan; Zhang, Zhi-He; Hou, Rong; Shen, Fu-Jun; Li, Fu-Zhen; Zhang, An-Ju
2006-08-01
Insulin-like growth factor I (IGF-I) plays an important role in regulating gonad function, which is essential for normal reproduction in animals, especially in sexual receptivity and reproductive behavior. In this study, a cDNA encoding Amur tiger (Panthera tigris altaica) IGF-I was isolated from liver total RNA using RT-PCR. The IGF-I cDNA of Amur tiger (ATIGF-I) was highly homologous to that of other animals, 84.8% to rat, 93.7% to human and horse. Alignment analysis showed that the cysteine residues and many amino acid residues of putative mature ATIGF-I are highly conserved in mammalian species, confirming the high sequence homology observed in other species. DNA encoding the mature ATIGF-I peptide was ligated with pET-DsbA expression vector and highly expressed in Escherichia coli BL21 with IPTG induction. The recombinant proteins expressed existed mostly in the soluble protein fraction, and were purified with metal affinity resins. Western blotting confirmed that the recombinant proteins reacted with antibodies against IGF-I. The results obtained here should be useful for large-scale production of biological active ATIGF-I protein, as well as for further research on growth, development, and reproduction in the Amur tiger. Tissue specific expression of ATIGF-I mRNA in the Amur tiger was examined by reverse transcription-polymerase chain reaction (RT-PCR), The major ATIGF-I mRNA expression tissue was the liver, while medium signals were found in the uterus, ovary, and pituitary, and minor signals were detected in various tissues including the heart, spleen, pancreas, and kidney. The results indicate that IGF-I might play an important role in the reproductive system and in cub development in the Amur tiger.
TET1-mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer
Yokoyama, Seiya; Higashi, Michiyo; Tsutsumida, Hideaki; Wakimoto, Jouji; Hamada, Tomofumi; Wiest, Edwin; Matsuo, Kei; Kitazono, Ikumi; Goto, Yuko; Guo, Xin; Hamada, Taiji; Yamada, Sohsuke; Hiraki, Tsubasa; Yonezawa, Suguru; Batra, Surinder K.; Hollingsworth, Michael A.; Tanimoto, Akihide
2017-01-01
Lung cancer remains a disease of high mortality, despite advanced diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in lung neoplasms. Our immunohistochemistry (IHC) studies have shown that high MUC4 expression correlates with a poor outcome. We have also shown that the expression of several mucin genes in cancer cell lines is regulated by DNA methylation. We evaluated the expression level of MUC4, mRNA and several DNA hypomethylation factors in lung tissue samples from 33 patients with various lung lesions. The results indicated that the DNA methylation status of MUC4 matched the expression level of mRNA. In addition, the TET1 (Ten-Eleven Translocation) mRNA showed a significant correlation with the status of DNA methylation of MUC4. Furthermore, the treatment of a lung cancer cell line with TET1 siRNA caused a reduction in MUC4 mRNA expression. Thus, we suggest that TET1 mediated DNA hypomethylation plays a key role in the expression of MUC4. This is the first report that TET1 mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer. The analysis of these epigenetic changes may be useful for diagnosing carcinogenic risk. PMID:28680536
TET1-mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer.
Yokoyama, Seiya; Higashi, Michiyo; Tsutsumida, Hideaki; Wakimoto, Jouji; Hamada, Tomofumi; Wiest, Edwin; Matsuo, Kei; Kitazono, Ikumi; Goto, Yuko; Guo, Xin; Hamada, Taiji; Yamada, Sohsuke; Hiraki, Tsubasa; Yonezawa, Suguru; Batra, Surinder K; Hollingsworth, Michael A; Tanimoto, Akihide
2017-03-01
Lung cancer remains a disease of high mortality, despite advanced diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in lung neoplasms. Our immunohistochemistry (IHC) studies have shown that high MUC4 expression correlates with a poor outcome. We have also shown that the expression of several mucin genes in cancer cell lines is regulated by DNA methylation. We evaluated the expression level of MUC4, mRNA and several DNA hypomethylation factors in lung tissue samples from 33 patients with various lung lesions. The results indicated that the DNA methylation status of MUC4 matched the expression level of mRNA. In addition, the TET1 (Ten-Eleven Translocation) mRNA showed a significant correlation with the status of DNA methylation of MUC4 . Furthermore, the treatment of a lung cancer cell line with TET1 siRNA caused a reduction in MUC4 mRNA expression. Thus, we suggest that TET1 mediated DNA hypomethylation plays a key role in the expression of MUC4. This is the first report that TET1 mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer. The analysis of these epigenetic changes may be useful for diagnosing carcinogenic risk.
Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen
2017-03-15
Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.
Eftang, Lars Lohne; Klajic, Jovana; Kristensen, Vessela N; Tost, Jörg; Esbensen, Qin Ying; Blom, Gustav Peter; Bukholm, Ida Rashida Khan; Bukholm, Geir
2016-03-16
A large number of epigenetic alterations has been found to be implicated in the etiology of gastric cancer. We have studied the DNA methylation status of 27 500 gene promoter regions in 24 gastric adenocarcinomas from a Norwegian cohort, and aimed at identifying the hypermethylated regions. We have compared our findings to the gene expression in the same tissue, and linked our results to prognosis and survival. Biopsies from gastric adenocarcinomas and adjacent normal gastric mucosa were obtained from 24 patients following surgical resection of the tumor. Genome-wide DNA methylation profiling of the tumor and matched non-cancerous mucosa was performed. The results were compared to whole transcriptome cDNA microarray analysis of the same material. Most of the gene promoter regions in both types of tissue showed a low degree of methylation, however there was a small, but significant hypermethylation of the tumors. Hierarchical clustering showed separate grouping of the tumor and normal tissue. Hypermethylation of the promoter region of the GFRA3 gene showed a strong correlation to post-operative survival and several of the clinicopathological parameters, however no difference was found between the two main histological types of gastric cancer. There was only a modest correlation between the DNA methylation status and gene expression. The different DNA methylation clusters of the tumors and normal tissue indicate that aberrant DNA methylation is a distinct feature of gastric cancer, although there is little difference in the overall, and low, methylation levels between the two tissue types. The GFRA3 promoter region showed marked hypermethylation in almost all tumors, and its correlation with survival and other clinicopathological parameters may have important prognostic significance.
Conditional sterility in plants
Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung
2010-02-23
The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.
Insight into mechanism of oxidative DNA damage in angiomyolipomas from TSC patients
Habib, Samy L
2009-01-01
Background The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. Loss of heterozygosity at the 8-oxoG-DNA glycosylase (OGG1) allele is found in human kidney clear cell carcinoma identifying loss of OGG1 function as a possible contributor to tumorigenesis in the kidney. Tuberin regulates OGG1 through the transcription factor NF-YA in cultured cells. The purpose of this study is to determine the effect of tuberin-deficiency on OGG1 protein and mRNA levels as well as on 8-oxodG levels in kidney tumors from patients with TSC. In addition we evaluated the phophorylation level of downstream targets of mTOR, phospho-S70K, in kidney tumor tissue from TSC patients. Results Kidney angiomyolipoma tissue from TSC patients expresses significant levels of phopho-tuberin and low levels of tuberin compared to control kidney tissue. The increase in tuberin phosphorylation and the decrease tuberin expression are associated with decrease in OGG1 protein and mRNA levels in tumor samples compared to normal kidney samples. The decrease OGG1 expression is also associated with significant decrease in the transcription factor, NF-YA, expression in tumor samples compared to normal tissues. In addition, the levels of 8-oxodG are 4-fold higher in tumors compared to control samples. The significant increase of phospho-tuberin expression is associated with increase phosphorylation of S6K in tumor samples compared to controls. Cyclin D1 expression is also 3-fold higher in increase in the tumor tissues compared to normal kidney tissues. Conclusion These data indicate that tuberin deficiency in angiomyolipoma enhances mTOR activation by phosphorylation of S6K and downregulation of protein and mRNA expression of OGG1 resulted in accumulation of oxidized DNA in patients with TSC. These data suggest that tuberin and OGG1 are important proteins in the pathogenesis of angiomyolipoma in TSC patients. PMID:19265534
Structural polymorphism at LCR and its role in beta-globin gene regulation.
Kukreti, Shrikant; Kaur, Harpreet; Kaushik, Mahima; Bansal, Aparna; Saxena, Sarika; Kaushik, Shikha; Kukreti, Ritushree
2010-09-01
Information on the secondary structures and conformational manifestations of eukaryotic DNA and their biological significance with reference to gene regulation and expression is limited. The human beta-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression, is a contiguous piece of DNA with five tissue-specific DNase I-hypersensitive sites (HSs). Since these HSs have a high density of transcription factor binding sites, structural interdependencies between HSs and different promoters may directly or indirectly regulate LCR functions. Mutations and SNPs may stabilize or destabilize the local secondary structures, affecting the gene expression by changes in the protein-DNA recognition patterns. Various palindromic or quasi-palindromic segments within LCR, could cause structural polymorphism and geometrical switching of DNA. This emphasizes the importance of understanding of the sequence-dependent variations of the DNA structure. Such structural motifs might act as regulatory elements. The local conformational variability of a DNA segment or action of a DNA specific protein is key to create and maintain active chromatin domains and affect transcription of various tissue specific beta-globin genes. We, summarize here the current status of beta-globin LCR structure and function. Further structural studies at molecular level and functional genomics might solve the regulatory puzzles that control the beta-globin gene locus. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Abraham, S; Solomon, W B
2000-09-19
We used a subtractive hybridization protocol to identify novel expressed sequence tags (ESTs) corresponding to mRNAs whose expression was induced upon exposure of the human leukemia cell line K562 to the phorbol ester 12-O-tetradecanolyphorbol-13-acetate (TPA). The complete open reading frame of one of the novel ESTs, named TIG-1, was obtained by screening K562 cell and placental cDNA libraries. The deduced open reading frame of the TIG-1 cDNA encodes for a glutamine repeat-rich protein with a predicted molecular weight of 63kDa. The predicted open reading frame also contains a consensus bipartite nuclear localization signal, though no specific DNA-binding domain is found. The corresponding TIG-1 mRNA is ubiquitously expressed. Placental tissue expresses the TIG-1 mRNA 200 times more than the lowest expressing tissues such as kidney and lung. There is also preferential TIG-1 mRNA expression in cells of bone-marrow lineage.In-vitro transcription/translation of the TIG-1 cDNA yielded a polypeptide with an apparent molecular weight of 97kDa. Using polyclonal antibodies obtained from a rabbit immunized with the carboxy-terminal portion of bacterially expressed TIG-1 protein, a polypeptide with molecular weight of 97kDa was identified by Western blot analyses of protein lysates obtained from K562 cells. Cotransfection assays of K562 cells, using a GAL4-TIG-1 fusion gene and GAL4 operator-CAT, indicate that the TIG-1 protein may have transcriptional regulatory activity when tethered to DNA. We hypothesize that this novel glutamine-rich protein participates in a protein complex that regulates gene transcription. It has been demonstrated by Naar et al. (Naar, A.M., Beaurang, P.A., Zhou, S., Abraham, S., Solomon, W.B., Tjian, R., 1999, Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828-830) that the amino acid sequences of peptide fragments obtained from a polypeptide found in a complex of proteins that alters chromatin structure (ARC) are identical to portions of the deduced open reading frame of TIG-1 mRNA.
Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression
Lisowski, Leszek; Lau, Ashley; Wang, Zhongya; Zhang, Yue; Zhang, Feijie; Grompe, Markus; Kay, Mark A
2012-01-01
Although recombinant adeno-associated virus (rAAV) vectors are proving to be efficacious in clinical trials, the episomal character of the delivered transgene restricts their effectiveness to use in quiescent tissues, and may not provide lifelong expression. In contrast, integrating vectors enhance the risk of insertional mutagenesis. In an attempt to overcome both of these limitations, we created new rAAV-rDNA vectors, with an expression cassette flanked by ribosomal DNA (rDNA) sequences capable of homologous recombination into genomic rDNA. We show that after in vivo delivery the rAAV-rDNA vectors integrated into the genomic rDNA locus 8–13 times more frequently than control vectors, providing an estimate that 23–39% of the integrations were specific to the rDNA locus. Moreover, a rAAV-rDNA vector containing a human factor IX (hFIX) expression cassette resulted in sustained therapeutic levels of serum hFIX even after repeated manipulations to induce liver regeneration. Because of the relative safety of integration in the rDNA locus, these vectors expand the usage of rAAV for therapeutics requiring long-term gene transfer into dividing cells. PMID:22990671
Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.
2012-01-01
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637
Savio, Andrea J; Mrkonjic, Miralem; Lemire, Mathieu; Gallinger, Steven; Knight, Julia A; Bapat, Bharat
2017-01-01
Colorectal cancers (CRCs) undergo distinct genetic and epigenetic alterations. Expression of mutL homolog 1 ( MLH1 ), a mismatch repair gene that corrects DNA replication errors, is lost in up to 15% of sporadic tumours due to mutation or, more commonly, due to DNA methylation of its promoter CpG island. A single nucleotide polymorphism (SNP) in the CpG island of MLH1 ( MLH1 -93G>A or rs1800734) is associated with CpG island hypermethylation and decreased MLH1 expression in CRC tumours. Further, in peripheral blood mononuclear cell (PBMC) DNA of both CRC cases and non-cancer controls, the variant allele of rs1800734 is associated with hypomethylation at the MLH1 shore, a region upstream of its CpG island that is less dense in CpG sites . To determine whether this genotype-epigenotype association is present in other tissue types, including colorectal tumours, we assessed DNA methylation in matched normal colorectal tissue, tumour, and PBMC DNA from 349 population-based CRC cases recruited from the Ontario Familial Colorectal Cancer Registry. Using the semi-quantitative real-time PCR-based MethyLight assay, MLH1 shore methylation was significantly higher in tumour tissue than normal colon or PBMCs ( P < 0.01). When shore methylation levels were stratified by SNP genotype, normal colorectal DNA and PBMC DNA were significantly hypomethylated in association with variant SNP genotype ( P < 0.05). However, this association was lost in tumour DNA. Among distinct stages of CRC, metastatic stage IV CRC tumours incurred significant hypomethylation compared to stage I-III cases, irrespective of genotype status. Shore methylation of MLH1 was not associated with MSI status or promoter CpG island hypermethylation, regardless of genotype. To confirm these results, bisulfite sequencing was performed in matched tumour and normal colorectal specimens from six CRC cases, including two cases per genotype (wildtype, heterozygous, and homozygous variant). Bisulfite sequencing results corroborated the methylation patterns found by MethyLight, with significant hypomethylation in normal colorectal tissue of variant SNP allele carriers. These results indicate that the normal tissue types tested (colorectum and PBMC) experience dynamic genotype-associated epigenetic alterations at the MLH1 shore, whereas tumour DNA incurs aberrant hypermethylation compared to normal DNA.
Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors
Mastorakos, Panagiotis; Zhang, Clark; Song, Eric; Kim, Young Eun; Park, Hee Won; Berry, Sneha; Choi, Won Kyu; Hanes, Justin; Suk, Jung Soo
2018-01-01
The discovery of powerful genetic targets has spurred clinical development of gene therapy approaches to treat patients with malignant brain tumors. However, lack of success in the clinic has been attributed to the inability of conventional gene vectors to achieve gene transfer throughout highly disseminated primary brain tumors. Here, we demonstrate ex vivo that small nanocomplexes composed of DNA condensed by a blend of biodegradable polymer, poly(β-amino ester) (PBAE), with PBAE conjugated with 5 kDa polyethylene glycol (PEG) molecules (PBAE-PEG) rapidly penetrate healthy brain parenchyma and orthotopic brain tumor tissues in rats. Rapid diffusion of these DNA-loaded nanocomplexes observed in fresh tissues ex vivo demonstrated that they avoided adhesive trapping in the brain owing to their dense PEG coating, which was critical to achieving widespread transgene expression throughout orthotopic rat brain tumors in vivo following administration by convection enhanced delivery. Transgene expression with the PBAE/PBAE-PEG blended nanocomplexes (DNA-loaded brain-penetrating nanocomplexes, or DNA-BPN) was uniform throughout the tumor core compared to nanocomplexes composed of DNA with PBAE only (DNA-loaded conventional nanocomplexes, or DNA-CN), and transgene expression reached beyond the tumor edge, where infiltrative cancer cells are found, only for the DNA-BPN formulation. Finally, DNA-BPN loaded with anti-cancer plasmid DNA provided significantly enhanced survival compared to the same plasmid DNA loaded in DNA-CN in two aggressive orthotopic brain tumor models in rats. These findings underscore the importance of achieving widespread delivery of therapeutic nucleic acids within brain tumors and provide a promising new delivery platform for localized gene therapy in the brain. PMID:28694032
Shin, Seung-Yong; Lee, Haeng-Soon; Kwon, Suk-Yoon; Kwon, Soon-Tae; Kwak, Sang-Soo
2005-01-01
Superoxide dismutase (SOD) cDNA, mSOD2, encoding cytosolic copper/zinc SOD (CuZnSOD) cDNA was isolated from suspension-cultured cells of cassava (Manihot esculenta Crantz) by cDNA library screening, and its expression was investigated in relation to environmental stress. mSOD2 is 774 bp in length with an open reading frame (ORF) of 152 amino acids, corresponding to a protein of predicted molecular mass 15 kDa and a pI of 5.22. One copy of the mSOD2 gene was found to be present in the cassava genome by Southern analysis using an mSOD2 cDNA-specific probe. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed diverse expression patterns for the mSOD2 gene in various tissues of intact cassava plants, at various stages of the growth in suspension cultures, and in the leaf tissues exposed to different stresses. The mSOD2 gene was highly expressed in suspension-cultured cells and in the stems of intact plants. However, it was expressed at low levels in leaves and roots. During suspension cell growth, the mSOD2 transcript progressively increased during culture. Moreover, the mSOD2 gene in excised cassava leaves responded to various stresses in different ways. In particular, it was highly induced in leaf tissue by several abiotic stresses, including high temperature (37 degrees C), chilling (4 degrees C), methyl viologen (MV) exposure, and wounding treatment. These results indicate that the mSOD2 gene is involved in the antioxidative process triggered by oxidative stress induced by environmental change.
Variation in the DNA methylation pattern of expressed and nonexpressed genes in chicken.
Cooper, D N; Errington, L H; Clayton, R M
1983-01-01
Using methyl-sensitive and -insensitive restriction enzymes, Hpa II and Msp I, the methylation status of various chicken genes was examined in different tissues and developmental stages. Tissue-specific differences in methylation were found for the delta-crystallin, beta-tubulin, G3PDH, rDNA, and actin genes but not for the histone genes. Developmental decreases in methylation were noted for the delta-crystallin and actin genes in chicken kidney between embryo and adult. Since most of the sequences examined were housekeeping genes, transcriptional differences are apparently not a necessary accompaniment to changes in DNA methylation at the CpG sites examined. The only exception is sperm DNA where the delta-crystallin, beta-tubulin, and actin genes are highly methylated and almost certainly not transcribed. However the G3PDH genes are no more highly methylated in sperm than in other somatic tissues. Many sequences homologous to the rDNA and histone probes used are unmethylated in all tissues examined including sperm, but a methylated rDNA subfraction is more heavily methylated in sperm than in other tissues. We speculate as to the significance of these differences in sperm DNA methylation in the light of possible requirements for early gene activation and the probable deleterious mutagenic effects of heavy methylation within coding sequences.
Liu, Hongyan; Dong, Huijia; Robertson, Keith; Liu, Chen
2011-01-01
Carbamoyl phosphate synthetase 1 (CPS1) is a liver-specific, intramitochondrial, rate-limiting enzyme in the urea cycle. A previous study showed that CPS1 is the antigen for hepatocyte paraffin 1 antibody, a commonly used antibody in surgical pathology practice; and CPS1 expression appears to be down-regulated in liver cancer tissue and cell lines. The aim of this study is to understand how the CPS1 gene is regulated in liver carcinogenesis. In this report, we show that human hepatocellular carcinoma (HCC) cells do not express CPS1, whereas cultured human primary hepatocytes express abundant levels. In addition, CPS1 was silenced or down-regulated in liver tumor tissues compared with the matched noncancerous tissues. The expression of CPS1 in HCC cells was restored with a demethylation agent, 5-azacytidine. We show that two CpG dinucleotides, located near the transcription start site, and a CpG-rich region in the first intron were hypermethylated in HCC cells. The hypermethylation of the two CpG dinucleotides was also detected in HCC tumor tissues compared with noncancerous tissues. Further molecular analysis with mutagenesis indicated that the two CpG dinucleotides play a role in promoter activity of the CPS1 gene. In conclusion, our study demonstrates that DNA methylation is a key mechanism of silencing CPS1 expression in human HCC cells, and CPS1 gene hypermethylation of the two CpG dinucleotides is a potential biomarker for HCC. PMID:21281797
Finke, J; Fritzen, R; Ternes, P; Lange, W; Dölken, G
1993-03-01
Specific amplification of nucleic acid sequences by PCR has been extensively used for the detection of gene rearrangements and gene expression. Although successful amplification of DNA sequences has been carried out with DNA prepared from formalin-fixed, paraffin-embedded (FFPE) tissues, there are only a few reports regarding RNA analysis in this kind of material. We describe a procedure for RNA extraction from different types of FFPE tissues, involving digestion with proteinase K followed by guanidinium-thiocyanate acid phenol extraction and DNase I digestion. These RNA preparations are suitable for PCR analysis of mRNA and even of intronless genes. Furthermore, the universally expressed porphobilinogen deaminase mRNA proved to be useful as a positive control because of the lack of pseudogenes.
Use of telomerase to create bioengineered tissues.
Shay, Jerry W; Wright, Woodring E
2005-12-01
Telomeres are repetitive DNA (TTAGGG) elements at the ends of chromosomes. Telomerase is a ribonucleoprotein complex that catalyzes the addition of telomeric sequences to the ends of chromosomes. The catalytic protein component of telomerase (hTERT) is expressed only in specific germ line cells, proliferative stem cells of renewal tissues, and cancer cells. The expression of hTERT in normal cells reconstitutes telomerase activity and circumvents the induction of senescence. Telomeres shorten with each cell division, eventually leading to senescence (aging), due to incomplete lagging DNA strand synthesis and end-processing events, and because telomerase activity is not detected in most somatic tissues. There are specific tissues and locations in which replicative senescence likely contributes to the decline in human physiological function with increased age and with chronic illnesses. While expressing hTERT in cells results in the maintenance of telomere length and greatly extended life span, blocking replicative aging systemically would be predicted to increase the potential for tumor formation. However, there are many situations in which the transient rejuvenation of cells could be beneficial. Ectopic expression of hTERT has been shown to immortalize human skin keratinocytes, dermal fibroblasts, muscle satellite (stem), and vascular endothelial, myometrial, retinal-pigmented, and breast epithelial cells. In addition, human bronchial, corneal and skin cells expressing hTERT can be used to form organotypic (3D) cultures (bioengineered tissues) that express differentiation-specific proteins, demonstrating that hTERT by itself does not alter normal physiology. The production of hTERT-engineered tissues offers the possibility of producing tissues to treat a variety of chronic diseases and age-related medical conditions that are due to telomere-based replicative senescence.
Pardo, Michal; Kuperman, Yael; Levin, Liron; Rudich, Assaf; Haim, Yulia; Schauer, James J; Chen, Alon; Rudich, Yinon
2018-04-20
Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma
Navarro, Antonia; Yin, Ping; Monsivais, Diana; Lin, Simon M.; Du, Pan; Wei, Jian-Jun; Bulun, Serdar E.
2012-01-01
Background Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. Principal Findings We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. Conclusions These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women. PMID:22428009
Yan, Shi-Fang; Zou, Yu Shan; Gao, Yun; Zhai, Chao; Mackman, Nigel; Lee, Stephen L.; Milbrandt, Jeffrey; Pinsky, David; Kisiel, Walter; Stern, David
1998-01-01
Local hypoxemia and stasis trigger thrombosis. We have demonstrated previously that in a murine model of normobaric hypoxia pulmonary fibrin deposition is a result of expression of tissue factor, especially in oxygen-deprived mononuclear phagocytes (MPs). We now show that transcription factor early-growth-response gene product (Egr-1) is rapidly activated in hypoxia, both in vitro and in vivo, and is responsible for transcription and expression of tissue factor in hypoxic lung. MPs and HeLa cells subjected to hypoxia (pO2 ≈13 torr) had increased levels of tissue factor transcripts (≈18-fold) and an increased rate of transcription (≈15-fold), based on nuclear run-on analysis. Gel-shift analysis of nuclear extracts from hypoxic MPs and HeLa cells demonstrated increased DNA-binding activity at the serum response region (SRR; −111/+14 bp) of the tissue factor promoter at Egr-1 motifs. Using 32P-labeled Egr consensus oligonucleotide, we observed induction of DNA-binding activity in nuclear extracts from hypoxic lung and HeLa cells because of activation of Egr-1, by means of supershift analysis. Transient transfection of HeLa cells with chimeric plasmids containing wild-type or mutant SRR from the tissue factor promoter showed that intact Sp1 sites are necessary for basal promoter activity, whereas the integrity of Egr-1 sites was required for hypoxia-enhanced expression. A central role for Egr-1 in hypoxia-mediated tissue factor expression was confirmed by experiments with homozygous Egr-1 null mice; wild-type mice subjected to oxygen deprivation expressed tissue factor and showed fibrin deposition, but hypoxic homozygous Egr-1 null mice displayed neither tissue factor nor fibrin. These data delineate a novel biology for hypoxia-induced fibrin deposition, in which oxygen deprivation-induced activation of Egr-1, resulting in expression of tissue factor, has an unexpected and central role. PMID:9653181
Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue
Geybels, Milan S.; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A.; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L.
2016-01-01
Background Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. Methods The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. Results In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value <0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for ten genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. Conclusions This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. PMID:26383847
Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.
Geybels, Milan S; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L
2015-12-01
Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. © 2015 Wiley Periodicals, Inc.
Shiraishi, H; Ishikura, S; Matsuura, K; Deyashiki, Y; Ninomiya, M; Sakai, S; Hara, A
1998-01-01
Human liver contains three isoforms (DD1, DD2 and DD4) of dihydrodiol dehydrogenase with 20alpha- or 3alpha-hydroxysteroid dehydrogenase activity; the dehydrogenases belong to the aldo-oxo reductase (AKR) superfamily. cDNA species encoding DD1 and DD4 have been identified. However, four cDNA species with more than 99% sequence identity have been cloned and are compatible with a partial amino acid sequence of DD2. In this study we have isolated a cDNA clone encoding DD2, which was confirmed by comparison of the properties of the recombinant and hepatic enzymes. This cDNA showed differences of one, two, four and five nucleotides from the previously reported four cDNA species for a dehydrogenase of human colon carcinoma HT29 cells, human prostatic 3alpha-hydroxysteroid dehydrogenase, a human liver 3alpha-hydroxysteroid dehydrogenase-like protein and chlordecone reductase-like protein respectively. Expression of mRNA species for the five similar cDNA species in 20 liver samples and 10 other different tissue samples was examined by reverse transcriptase-mediated PCR with specific primers followed by diagnostic restriction with endonucleases. All the tissues expressed only one mRNA species corresponding to the newly identified cDNA for DD2: mRNA transcripts corresponding to the other cDNA species were not detected. We suggest that the new cDNA is derived from the principal gene for DD2, which has been named AKR1C2 by a new nomenclature for the AKR superfamily. It is possible that some of the other cDNA species previously reported are rare allelic variants of this gene. PMID:9716498
Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis
Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Mehta, Jawahar L.
2013-01-01
Our studies in HUVECs show that ox-LDL induced autophagy and damaged mtDNA leading to TLR9 expression. LOX-1 antibody or the ROS inhibitor apocynin attenuated ox-LDL-mediated autophagy, mtDNA damage and TLR9 expression, suggesting that these events are LOX-1 and ROS-dependent phenomena. Experiments using siRNA to DNase II indicated that DNase II digests mtDNA to protect the tissue from inflammation. Next, we studied and found intense autophagy, TLR9 expression and inflammatory signals (CD45 and CD68) in the aortas of LDLR knockout mice fed high cholesterol diet. Deletion of LOX-1 (LDLR/LOX-1 double knockout mice) attenuated autophagy, TLR9 expression as well as CD45 and CD68. Damaged mtDNA signal was also very high in LDLR knockout mice aortas, and this signal was attenuated by LOX-1 deletion. Thus, it appears that oxidative stress-mediated damaged mtDNA that escapes autophagy induces a potent inflammatory response in atherosclerosis. PMID:23326634
Intravenous Delivery of pDNA and siRNA into Muscle with Bubble Liposomes and Ultrasound
NASA Astrophysics Data System (ADS)
Negishi, Yoichi; Sekine, Shohko; Endo, Yoko; Nishijima, Nobuaki; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko
2010-03-01
Skeletal muscle is an attractive target tissue for numerous gene therapy strategies. Gene delivery into muscle has been extensively studied. Of the strategies, intravascular delivery of naked pDNA is desirable. Muscle has a high density of capillaries that are in close contact with myofibers. Previously, we developed polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas, known as ultrasound (US) imaging gas. We called the liposomes "Bubble liposomes" (BLs). It has been reported that BLs improve the tissue permeability by cavitation on US exposure. Here, we modified the naked pDNA or siRNA transfer method into hind limb muscle through blood vessels using BLs and US. The intravenous delivery of pDNA into muscle can be markedly enhanced when the pDNA is delivered in combination with BLs and US. In addition, the expression of pDNA is high in the US-focused site. Moreover, efficient gene delivery can be achieved by the intravenous delivery of pDNA into muscle with BLs and US. Expression is also down-regulated by delivering siRNA with BLs and US. Thus, this US-mediated BL technique involving veins may be an effective method for gene therapy.
Weiner, Juliane; Rohde, Kerstin; Krause, Kerstin; Zieger, Konstanze; Klöting, Nora; Kralisch, Susan; Kovacs, Peter; Stumvoll, Michael; Blüher, Matthias; Böttcher, Yvonne; Heiker, John T
2017-06-01
Several studies have demonstrated anti-diabetic and anti-obesogenic properties of visceral adipose tissue-derived serine protease inhibitor (vaspin) and so evoked its potential use for treatment of obesity-related diseases. The aim of the study was to unravel physiological regulators of vaspin expression and secretion with a particular focus on its role in brown adipose tissue (BAT) biology. We analyzed the effects of obesogenic diets and cold exposure on vaspin expression in liver and white and brown adipose tissue (AT) and plasma levels. Vaspin expression was analyzed in isolated white and brown adipocytes during adipogenesis and in response to adrenergic stimuli. DNA-methylation within the vaspin promoter was analyzed to investigate acute epigenetic changes after cold-exposure in BAT. Our results demonstrate a strong induction of vaspin mRNA and protein expression specifically in BAT of both cold-exposed and high-fat (HF) or high-sugar (HS) fed mice. While obesogenic diets also upregulated hepatic vaspin mRNA levels, cold exposure tended to increase vaspin gene expression of inguinal white adipose tissue (iWAT) depots. Concomitantly, vaspin plasma levels were decreased upon obesogenic or thermogenic triggers. Vaspin expression was increased during adipogenesis but unaffected by sympathetic activation in brown adipocytes. Analysis of vaspin promoter methylation in AT revealed lowest methylation levels in BAT, which were acutely reduced after cold exposure. Our data demonstrate a novel BAT-specific regulation of vaspin gene expression upon physiological stimuli in vivo with acute epigenetic changes that may contribute to cold-induced expression in BAT. We conclude that these findings indicate functional relevance and potentially beneficial effects of vaspin in BAT function.
Sex- and Tissue-Specific Methylome Changes in Brains of Mice Perinatally Exposed to Lead
Sánchez-Martín, Francisco Javier; Lindquist, Diana M.; Landero-Figueroa, Julio; Zhang, Xiang; Chen, Jing; Cecil, Kim M.; Medvedovic, Mario; Puga, Alvaro
2014-01-01
Changes in DNA methylation and subsequent changes in gene expression regulation are the hallmarks of age- and tissue-dependent epigenetic drift and plasticity resulting from the combinatorial integration of genetic determinants and environmental cues. To determine whether perinatal lead exposure caused persistent DNA methylation changes in target tissues, we exposed mouse dams to 0, 3 or 30 ppm of lead acetate in drinking water for a period extending from 2 months prior to mating, through gestation, until weaning of pups at postnatal day-21, and analyzed whole-genome DNA methylation in brain cortex and hippocampus of 2-month old exposed and unexposed progeny. Lead exposure resulted in hypermethylation of three differentially methylated regions in the hippocampus of females, but not males. These regions mapped to Rn4.5s, Sfi1, and Rn45s loci in mouse chromosomes 2, 11 and 17, respectively. At a conservative fdr<0.001, 1,623 additional CpG sites were differentially methylated in female hippocampus, corresponding to 117 unique genes. Sixty of these genes were tested for mRNA expression and showed a trend towards negative correlation between mRNA expression and methylation in exposed females but not males. No statistically significant methylome changes were detected in male hippocampus or in cortex of either sex. We conclude that exposure to lead during embryonic life, a time when the organism is most sensitive to environmental cues, appears to have a sex- and tissue-specific effect on DNA methylation that may produce pathological or physiological deviations from the epigenetic plasticity operative in unexposed mice. PMID:25530354
Uehara, Maiko; Tabata, Eri; Ishii, Kazuhiro; Sawa, Akira; Ohno, Misa; Sakaguchi, Masayoshi; Matoska, Vaclav; Bauer, Peter O; Oyama, Fumitaka
2018-05-09
Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey ( Macaca fascicularis ) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey⁻mouse⁻human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.
USDA-ARS?s Scientific Manuscript database
Transition from adolescence to puberty is marked by changes in metabolic activity. Fatty acid synthase (FASN) catalyzes the de novo synthesis of fatty acids and increased expression has been linked to excess energy intake and obesity. The enzyme, DNA-protein kinase (DNA-PK) plays a role in DNA damag...
Sun, Lili; Li, Xuenong; Liu, Guobing
2013-06-01
To investigate the expression of inhibitor of DNA differentiation/DNA binding 1 (Id1) and Id3 in endometrial carcinoma and explore their roles in regulating the proliferation, invasion, migration and adhesion of endometrial carcinoma cells in vitro. Id1 and Id3 expression in 4 fresh endometrial cancer tissue specimens and matched adjacent tissues were detected using Western blotting. Two endometrial cancer cell lines, HEC-1-B and RL-952, were both divided into 4 groups, namely the untreated group, blank virus group, promoter group and Id1/Id3 double-knockdown group, and their expressions of MMP2, CXCR4 and P21 were detected by qRT-PCR and Western blotting. The proliferation, invasion, migration and adhesion of the cells were evaluated with MTT, Transwell, wound-healing, and adhesion assays. Endometrial carcinoma tissues showed significantly higher Id1 and Id3 expression than the adjacent tissues (P<0.05). In the two endometrial carcinoma cell lines, Id1/Id3 double-knockdown significantly decreased MMP2 and CXCR4 expression and increased P21 expression at both mRNA and protein levels (P<0.05), and resulted in suppressed cell proliferation, invasion, migration and adhesion. Id1 and Id3 expressions are up-regulated in endometrial carcinoma to promote the proliferation, invasion, migration and adhesion of the tumor cells by increasing MMP2 and CXCR4 expression and reducing P21 expression. Therapies targeting Id1/Id3 can be a novel strategy for treatment of endometrial carcinoma.
Dai, W; Pan, H; Hassanain, H; Gupta, S L; Murphy, M J
1994-03-01
Using a combination of polymerase chain reaction and conventional cDNA library screening approaches, we have cloned and characterized a putative receptor tyrosine kinase termed tif. The extracellular domain of tif has an immunoglobulin-like loop and a fibronectin type III structure. The intracellular domain contains a tyrosine kinase domain. Compared with ryk, a ubiquitously expressed receptor tyrosine kinase, tif expression is tissue-specific with human ovary and testis containing the highest amount of tif mRNA. Many other tested human tissues such as heart, liver, pancreas and thymus do not contain detectable levels of tif mRNA. The molecular cloning and characterization of tif cDNA will facilitate the identification of a potential ligand(s) for the putative receptor and the study of its biological role.
Kishikawa, Takahiro; Otsuka, Motoyuki; Suzuki, Tatsunori; Seimiya, Takahiro; Sekiba, Kazuma; Ishibashi, Rei; Tanaka, Eri; Ohno, Motoko; Yamagami, Mari; Koike, Kazuhiko
2018-05-10
Highly repetitive tandem arrays such as satellite sequences in the centromeric and pericentromeric regions of chromosomes, which were previously considered to be silent, are actively transcribed in various biological processes, including cancers. In the pancreas, this aberrant expression occurs even in Kras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To determine the biological role of satellite RNAs in carcinogenesis in vivo , we constructed mouse major satellite (MajSAT) RNA-expressing transgenic mice. However, these transgenic mice did not show spontaneous malignant tumor formation under normal breeding. Importantly, however, DNA damage was increased in pancreatic tissues induced by caerulein treatment or high-fat diet, which may be due to impaired nuclear localization of Y-Box Binding Protein 1 (YBX1), a component of the DNA damage repair machinery. In addition, when crossed with pancreas-specific Kras-mutant mice, MajSAT RNA expression resulted in an earlier increase in PanIN formation. These results suggest that aberrant MajSAT RNA expression accelerates oncogenesis by increasing the probability of a second driver mutation, thus accelerating cells to exit from the breakthrough phase to the expansion phase. Implications: Aberrant expression of satellite RNAs accelerates oncogenesis through a mechanism involving increased DNA damage. Mol Cancer Res; 1-8. ©2018 AACR. ©2018 American Association for Cancer Research.
Lu, W; Wainwright, G; Olohan, L A; Webster, S G; Rees, H H; Turner, P C
2001-10-31
Synthesis of ecdysteroids (molting hormones) by crustacean Y-organs is regulated by a neuropeptide, molt-inhibiting hormone (MIH), produced in eyestalk neural ganglia. We report here the molecular cloning of a cDNA encoding MIH of the edible crab, Cancer pagurus. Full-length MIH cDNA was obtained by using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate oligonucleotides based upon the amino acid sequence of MIH, in conjunction with 5'- and 3'-RACE. Full-length clones of MIH cDNA were obtained that encoded a 35 amino acid putative signal peptide and the mature 78 amino acid peptide. Of various tissues examined by Northern blot analysis, the X-organ was the sole major site of expression of the MIH gene. However, a nested-PCR approach using non-degenerate MIH-specific primers indicated the presence of MIH transcripts in other tissues. Southern blot analysis indicated a simple gene arrangement with at least two copies of the MIH gene in the genome of C. pagurus. Additional Southern blotting experiments detected MIH-hybridizing bands in another Cancer species, Cancer antennarius and another crab species, Carcinus maenas.
MiR-2964a-5p binding site SNP regulates ATM expression contributing to age-related cataract risk.
Rong, Han; Gu, Shanshan; Zhang, Guowei; Kang, Lihua; Yang, Mei; Zhang, Junfang; Shen, Xinyue; Guan, Huaijin
2017-10-17
This study was to explore the involvement of DNA repair genes in the pathogenesis of age-related cataract (ARC). We genotyped nine single nucleotide polymorphisms (SNPs) of genes responsible to DNA double strand breaks (DSBs) in 804 ARC cases and 804 controls in a cohort of eye diseases in Chinese population and found that the ataxia telangiectasia mutated ( ATM ) gene-rs4585:G>T was significantly associated with ARC risk. An in vitro functional test found that miR-2964a-5p specifically down-regulated luciferase reporter expression and ATM expression in the cell lines transfected with rs4585 T allele compared to rs4585 G allele. The molecular assay on human tissue samples discovered that ATM expression was down-regulated in majority of ARC tissues and correlated with ATM genotypes. In addition, the Comet assay of cellular DNA damage of peripheral lymphocytes indicated that individuals carrying the G allele (GG/GT) of ATM -rs4585 had lower DNA breaks compared to individuals with TT genotype. These findings suggested that the SNP rs4585 in ATM might affect ARC risk through modulating the regulatory affinity of miR-2964a-5p. The reduced DSBs repair might be involved in ARC pathogenesis.
MYC and the Control of DNA Replication
Dominguez-Sola, David; Gautier, Jean
2014-01-01
The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC’s diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer. PMID:24890833
Modulation of tissue repair by regeneration enhancer elements.
Kang, Junsu; Hu, Jianxin; Karra, Ravi; Dickson, Amy L; Tornini, Valerie A; Nachtrab, Gregory; Gemberling, Matthew; Goldman, Joseph A; Black, Brian L; Poss, Kenneth D
2016-04-14
How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs.
Le-Bel, Gaëtan; Ghio, Sergio Cortez; Larouche, Danielle; Germain, Lucie; Guérin, Sylvain L
2018-05-27
Electrophoretic mobility shift assays and Western blots are simple, efficient, and rapid methods to study DNA-protein interactions and protein expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem cells through the culture process is essential to produce high quality substitutes. However, the increase in the number of cell passages is associated with a decrease in their ability to proliferate until senescence is reached. This process is likely to be mediated by the altered expression of nuclear-located transcription factors such as Sp1 and NFI, whose expression has been documented to be required for cell adhesion, migration, and differentiation. In some of our recent studies, we observed a correlation between reconstructed tissues exhibiting poor histological and structural characteristics and a low expression of Sp1 in their constituting epithelial cells. Therefore, monitoring both the expression and DNA binding of these transcription factors in human skin and corneal epithelial cells is a useful tool for characterizing the quality of primary cultured epithelial cells.
Palumbo, R. Noelle; Zhong, Xiao; Panus, David; Han, Wenqing; Ji, Weihang; Wang, Chun
2012-01-01
DNA vaccination using cationic polymers as carriers has the potential to be a very powerful method of immunotherapy, but typical immune responses generated have been less than robust. To better understand the details of DNA vaccine delivery in vivo, we prepared polymer/DNA complexes using three structurally distinct cationic polymers and fluorescently labeled plasmid DNA and injected them intradermally into mice. We analyzed transgene expression (luciferase) and the local tissue distribution of the labeled plasmid at the injection site at various time points (from hours to days). Comparable numbers of luciferase expressing cells were observed in the skin of mice receiving naked plasmid or polyplexes one day after transfection. At day 4, however, the polyplexes appeared to result in more transfected skin cells than naked plasmid. Live animal imaging revealed that naked plasmid dispersed quickly in the skin of mice after injection and had a wider distribution than any of the three types of polyplexes. However, naked plasmid level dropped to below detection limit after 24 h, whereas polyplexes persisted for up to 2 weeks. The PEGylated polyplexes had a significantly wider distribution in the tissue than the nonPEGylated polyplexes. PEGylated polyplexes also distributed more broadly among dermal fibroblasts and allowed greater interaction with antigen-presenting cells (APCs) (dendritic cells and macrophages) starting at around 24 h post-injection. By day 4, co-localization of polyplexes with APCs was observed at the injection site regardless of polymer structure, whereas small amounts of polyplexes were found in the draining lymph nodes. These in vivo findings demonstrate the superior stability of PEGylated polyplexes in physiological milieu and provide important insight on how cationic polymers could be optimized for DNA vaccine delivery. PMID:22300619
Expression of PCV2 antigen in the ovarian tissues of gilts.
Tummaruk, Padet; Pearodwong, Pachara
2016-03-01
The present study was performed to determine the expression of porcine circovirus type 2 (PCV2) antigen in the ovarian tissue of naturally infected gilts. Ovarian tissues were obtained from 11 culled gilts. The ovarian tissues sections were divided into two groups according to PCV2 DNA detection using PCR. PCV2 antigen was assessed in the paraffin embedded ovarian tissue sections by immunohistochemistry. A total of 2,131 ovarian follicles (i.e., 1,437 primordial, 133 primary, 353 secondary and 208 antral follicles), 66 atretic follicles and 131 corpora lutea were evaluated. It was found that PCV2 antigen was detected in 280 ovarian follicles (i.e., 239 primordial follicles, 12 primary follicles, 10 secondary follicles and 19 antral follicles), 1 atretic follicles and 3 corpora lutea (P<0.05). PCV2 antigen was detected in primordial follicles more often than in secondary follicles, atretic follicles and corpora lutea (P<0.05). The detection of PCV2 antigen was found mainly in oocytes. PCV2 antigen was found in both PCV2 DNA positive and negative ovarian tissues. It can be concluded that PCV2 antigen is expressed in all types of the ovarian follicles and corpora lutea. Further studies should be carried out to determine the influence of PCV2 on porcine ovarian function and oocyte quality.
Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood
Buckley, Lauren; Lacey, Michelle; Ehrlich, Melanie
2016-01-01
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology. PMID:26756355
ERIC Educational Resources Information Center
Ibarguren, Izaskun; Villamarín, Antonio
2017-01-01
All the cells of higher organisms have the same DNA but not the same proteins. Each type of specialised cell that forms a tissue has its own pattern of gene expression and, consequently, it contains a particular set of proteins that determine its function. Here, we describe a laboratory exercise addressed to undergraduate students that aims to…
Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Foronjy, Robert F; Feronjy, Robert; Spira, Avrum; Schadt, Eric E; Powell, Charles A; Zhu, Jun
2015-01-01
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.
Müller, J-M V; Wissemann, J; Meli, M L; Dasen, G; Lutz, H; Heinzerling, L; Feige, K
2011-11-01
Whole blood pharmacokinetics of intratumourally injected naked plasmid DNA coding for equine Interleukin 12 (IL-12) was assessed as a means of in vivo gene transfer in the treatment of melanoma in grey horses. The expression of induced interferon gamma (IFN-g) was evaluated in order to determine the pharmacodynamic properties of in vivo gene transduction. Seven grey horses bearing melanoma were injected intratumourally with 250 µg naked plasmid DNA coding for IL-12. Peripheral blood and biopsies from the injection site were taken at 13 time points until day 14 post injection (p.i.). Samples were analysed using quantitative real-time PCR. Plasmid DNA was quantified in blood samples and mRNA expression for IFN-g in tissue samples. Plasmid DNA showed fast elimination kinetics with more than 99 % of the plasmid disappearing within 36 hours. IFN-g expression increased quickly after IL-12 plasmid injection, but varied between individual horses. Intratumoural injection of plasmid DNA is a feasible method for inducing transgene expression in vivo. Biological activity of the transgene IL-12 was confirmed by measuring expression of IFN-g.
Koji, Takehiko; Ueda, Kazumitsu; Pastan, Ira; Gottesman, Michael M.; Nakane, Paul K.; Mori, Shigeo
1990-01-01
In order to detect the mRNA transcribed from the multidrug‐resistance gene (MDR1), thymine‐thymine (T‐T) dimerized single‐stranded DNA probes have been utilized for hybridization with mRNA either on nitrocellulose filters or in cells and tissues. S1 nuclease digestion rather than sonication was used to obtain short T‐T dimerized single‐stranded DNA (300–400 bases) so that they could penetrate well into the cytoplasm. The hybridized T‐T DNA was detected immunohisto‐chemically using rabbit anti‐T‐T DNA antibody (Ab) and peroxidase‐labeled goat anti‐rabbit IgG Ab. Employing this system, MDR1 mRNA could be localized clearly in the human multidrug‐resistant cell lines K562/ADM, CEM/VLB, 2780ad, and KBC4 cells as well as in human fetal kidney and gastric carcinoma. Furthermore, our system successfully detected the expression of MDR1 mRNA in cell lines of increasing resistance. These results paralleled results obtained at the protein level by immunohistochemistry. The analysis of MDR1 RNA expression by this in situ hybridization technique should be useful in the study of normal human tissues and tumor samples expressing the MDR1 gene. PMID:1977730
He, Sha-Sha; Chen, Yong; Shen, Xiao-Ming; Wang, Hong-Zhi; Sun, Peng; Dong, Jun; Guo, Gui-Fang; Chen, Ju-Gao; Xia, Liang-Ping; Hu, Pei-Li; Qiu, Hui-Juan; Liu, Shou-Sheng; Zhou, Yi-Xin; Wang, Wei; Hu, Wei-Han; Cai, Xiu-Yu
2017-01-01
Background: DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known to function in several types of cancer. In this study, we investigated the expression and clinicopathologic significance of DNA-PKcs in laryngeal squamous cell carcinoma (LSCC). Methods: We conducted a retrospective study of 208 patients with advanced-stage LSCC treated at Sun Yat-sen University Cancer Center, Guangzhou, China. We assessed DNA-PKcs and p16INK4a (p16) status using immunohistochemistry. We examined the association between DNA-PKcs expression and clinicopathologic features and survival outcomes. To evaluate the independent prognostic relevance of DNA-PKcs, we used univariate and multivariate Cox regression models. We estimated overall survival (OS) and distant metastasis-free survival (DMFS) using the Kaplan-Meier method. Results: Immunohistochemical analyses revealed that 163/208 (78.4%) of the LSCC tissue samples exhibited high DNA-PKcs expression. High DNA-PKcs expression was significantly associated with survival outcomes ( P = 0.016) and distant metastasis ( P = 0.02; chi-squared test). High DNA-PKcs expression was associated with a significantly shorter OS and DMFS than low DNA-PKcs expression ( P = 0.029 and 0.033, respectively; log-rank test), and was associated with poor OS in the p16-positive subgroup ( P = 0.047). Multivariate analysis identified DNA-PKcs as an independent prognostic indicator of OS and DMFS in all patients ( P = 0.039 and 0.037, respectively). Conclusions : Our results suggest that patients with LSCC in whom DNA-PKcs expression is elevated have a higher incidence of distant metastasis and a poorer prognosis. DNA-PKcs may represent a marker of tumor progression in patients with p16-positive LSCC.
Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Qin, Lei; Du, Ming
2017-11-01
Cathepsin D (CTSD, EC 3.4.23.5) belongs to aspartic protease family, which is located in lysosomes and is distributed in diverse tissues and cells. CTSD has a wide variety of physiological functions, owing to its proteolytic activity in degradating proteins and peptides. In the current study, the full length cDNA of sea cucumber (Apostichopus japonicus) cathepsin D (AjCTSD) was firstly cloned, then the association between AjCTSD and sea cucumber autolysis was investigated. The full length cDNA of AjCTSD was 2896 bp, with an open reading frame (ORF) for 391 amino acids. AjCTSD was widely expressed in body wall, muscle and intestine; the expression level was the highest in intestine, followed by muscle and body wall. Compared to fresh tissues, AjCTSD expression levels were significantly increased in all examined autolytic tissues. The purified recombinant AjCTSD promoted the degradation of sea cucumber muscle. In conclusion, AjCTSD contributed to sea cucumber muscle autolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Epigenetic-Mediated Downregulation of μ-Protocadherin in Colorectal Tumours
Mateusz, Bujko; Paulina, Kober; Małgorzata, Statkiewicz; Michal, Mikula; Marcin, Ligaj; Lech, Zwierzchowski; Jerzy, Ostrowski; Aleksander, Siedlecki Janusz
2015-01-01
Carcinogenesis involves altered cellular interaction and tissue morphology that partly arise from aberrant expression of cadherins. Mucin-like protocadherin is implicated in intercellular adhesion and its expression was found decreased in colorectal cancer (CRC). This study has compared MUPCDH (CDHR5) expression in three key types of colorectal tissue samples, for normal mucosa, adenoma, and carcinoma. A gradual decrease of mRNA levels and protein expression was observed in progressive stages of colorectal carcinogenesis which are consistent with reports of increasing MUPCDH 5′ promoter region DNA methylation. High MUPCDH methylation was also observed in HCT116 and SW480 CRC cell lines that revealed low gene expression levels compared to COLO205 and HT29 cell lines which lack DNA methylation at the MUPCDH locus. Furthermore, HCT116 and SW480 showed lower levels of RNA polymerase II and histone H3 lysine 4 trimethylation (H3K4me3) as well as higher levels of H3K27 trimethylation at the MUPCDH promoter. MUPCDH expression was however restored in HCT116 and SW480 cells in the presence of 5-Aza-2′-deoxycytidine (DNA methyltransferase inhibitor). Results indicate that μ-protocadherin downregulation occurs during early stages of tumourigenesis and progression into the adenoma-carcinoma sequence. Epigenetic mechanisms are involved in this silencing. PMID:25972897
Zhang, Yi; Cao, Jia; Meng, Yanni; Qu, Chunying; Shen, Feng; Xu, Leiming
2018-05-01
Xeroderma pigmentosum group C (XPC) is a DNA-damage-recognition gene active at the early stage of DNA repair. XPC also participates in regulation of cell-cycle checkpoint and DNA-damage-induced apoptosis. In the present study, the expression levels of genes involved in nucleotide excision repair (NER) were assessed in human colorectal cancer (CRC) tissue. This analysis revealed that expression of XPC mRNA significantly increased in colorectal carcinoma tissues compared with matched normal controls. Expression of XPC gradually increased along with the degree of progression of CRC. In vitro , an XTT assay demonstrated that small interfering RNA (siRNA) targeting XPC significantly increased the sensitivity of CRC SW480 cells to cisplatin, whereas cells transfected with a XPC-overexpression plasmid became more resistant to cisplatin. Furthermore, flow cytometry revealed that the proportion of apoptotic cells significantly increased in XPC-knockdown cells upon cisplatin treatment. However, the overexpression XPC significantly increased the resistance of cells to cisplatin. In vivo , tumor growth was significantly reduced in tumor-bearing mice when the XPC gene was knocked down. Upregulation of the expression of pro-apoptotic Bcl-associated X and downregulation of the anti-apoptotic B-cell lymphoma 2 proteins was observed in the implanted tumor tissue. In conclusion, XPC serves a key role in chemotherapeutic sensitivity of CRC to cisplatin, meaning that it may be a potential target for chemotherapy of CRC.
Peña-Llopis, Samuel; Brugarolas, James
2014-01-01
Genomic technologies have revolutionized our understanding of complex Mendelian diseases and cancer. Solid tumors present several challenges for genomic analyses, such as tumor heterogeneity and tumor contamination with surrounding stroma and infiltrating lymphocytes. We developed a protocol to (i) select tissues of high cellular purity on the basis of histological analyses of immediately flanking sections and (ii) simultaneously extract genomic DNA (gDNA), messenger RNA (mRNA), noncoding RNA (ncRNA; enriched in microRNA (miRNA)) and protein from the same tissues. After tissue selection, about 12–16 extractions of DNA/RNA/protein can be obtained per day. Compared with other similar approaches, this fast and reliable methodology allowed us to identify mutations in tumors with remarkable sensitivity and to perform integrative analyses of whole-genome and exome data sets, DNA copy numbers (by single-nucleotide polymorphism (SNP) arrays), gene expression data (by transcriptome profiling and quantitative PCR (qPCR)) and protein levels (by western blotting and immunohistochemical analysis) from the same samples. Although we focused on renal cell carcinoma, this protocol may be adapted with minor changes to any human or animal tissue to obtain high-quality and high-yield nucleic acids and proteins. PMID:24136348
Methylation-sensitive amplification polymorphism analysis of fat and muscle tissues in pigs.
Ma, J D; Li, M Z; Zhou, S L; Zhou, C W; Li, X W
2012-09-26
DNA methylation may be involved in regulating the expression of protein-coding genes, resulting in different fat and muscle phenotypes. Using a methylation-sensitive amplified polymorphism approach, we obtained 7423 bands by selective amplification of genomic DNA from six different fat depots and two heterogeneous muscle types from Duroc/Landrace/Yorkshire cross-bred pigs. The degrees of DNA methylation, determined by the percentages of hemi- and fully methylated sites relative to the total number of CCGG sites, were similar in male and female pigs for each specific tissue [χ(2) test; P (two-tailed) > 0.05]. Gender bias was therefore ignored. There were significant differences in the degree of DNA methylation among the eight tissue types [χ(2) test; P(total) (two-tailed) = 0.009]. However, similar degrees of methylation were observed among the six fat depots [χ(2) test; P(fat) (two-tailed) = 0.24 > 0.05]and between the two muscle types [χ(2) test; P(muscle) (two-tailed) = 0.76 > 0.05]. We conclude that the degree of DNA methylation differs between porcine fat and muscle tissue, but that the methylation status of a particular tissue type is similar, despite being deposited at different body sites.
Su, Y; Feng, J; Sun, X; Guo, Z; Xu, L; Jiang, J
2013-01-01
Chemokines are small, secreted cytokine peptides, known principally for their ability to induce migration and activation of leukocyte populations under both pathological and physiological conditions. On the basis of previously constructed express sequence tags (ESTs) of the head kidney and spleen cDNA library of the perciform marine fish Rachycentron canadum (common name cobia). We used bi-directional rapid amplification of cDNA ends (RACE) and obtained a full-length cDNA of a new CC chemokine gene (designated RcCC3). The RcCC3 putative peptide exhibits sequence similarity to the group of CCL19/21/25 CC chemokines. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used in transcript expression studies of RcCC3. We examined the constitutive expression of the transcripts in 12 tissues of non-stressed cobia; RcCC3 transcripts were detected in all tissues examined, with the highest expression in gill and liver, following by head kidney, kidney, spleen, skin, intestine, muscle, stomach, heart, blood and brain. Transcript expression of RcCC3 was examined in immune-related organs, including head kidney, spleen and liver, following intraperitoneal injection of phosphate-buffered saline control, polyriboinosinic polyribocytidylic acid (poly(I:C)) and formalin-killed Vibrio carchariae (bacterial vaccine). The transcripts in these tissues were quickly up-regulated by the injection of poly(I:C) and bacterial vaccine at early time points, although with different expression profiles. These results indicate RcCC3 represents an important component of innate immunity in cobia.
Wojtczyk-Miaskowska, Anita; Presler, Malgorzata; Michajlowski, Jerzy; Matuszewski, Marcin; Schlichtholz, Beata
2017-01-01
This study investigated the gene expression and DNA methylation of selected DNA repair genes (MBD4, TDG, MLH1, MLH3) and DNMT1 in human bladder cancer in the context of pathophysiological and prognostic significance. To determine the relationship between the gene expression pattern, global methylation and promoter methylation status, we performed real-time PCR to quantify the mRNA of selected genes in 50 samples of bladder cancer and adjacent non-cancerous tissue. The methylation status was analyzed by methylation-specific polymerase chain reaction (MSP) or digestion of genomic DNA with a methylation-sensitive restriction enzyme and PCR with gene-specific primers (MSRE-PCR). The global DNA methylation level was measured using the antibody-based 5-mC detection method. The relative levels of mRNA for MBD4, MLH3, and MLH1 were decreased in 28% (14/50), 34% (17/50) and 36% (18/50) of tumor samples, respectively. The MBD4 mRNA expression was decreased in 46% of non-muscle invasive tumors (Ta/T1) compared with 11% found in muscle invasive tumors (T2-T4) (P<0.003). Analysis of mRNA expression for TDG did not show any significant differences between Ta/T1 and T2-T4 tumors. The frequency of increased DNMT1 mRNA expression was higher in T2-T4 (52%) comparing to Ta/T1 (16%). The overall methylation rates in tumor tissue were 18% for MBD4, 25% for MLH1 and there was no evidence of MLH3 promoter methylation. High grade tumors had significantly lower levels of global DNA methylation (P=0.04). There was a significant association between shorter survival and increased expression of DNMT1 mRNA (P=0.002), decreased expression of MLH1 mRNA (P=0.032) and the presence of MLH1 promoter methylation (P=0.006). This study highlights the importance of DNA repair pathways and provides the first evidence of the role of MBD4 and MLH3 in bladder cancer. In addition, our findings suggest that DNMT1 mRNA and MLH1 mRNA expression, as well as the status of MLH1 promoter methylation, are attractive prognostic markers in this pathology. © 2017 The Author(s). Published by S. Karger AG, Basel.
Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis.
Luo, Jun; Dunn, Thomas; Ewing, Charles; Sauvageot, Jurga; Chen, Yidong; Trent, Jeffrey; Isaacs, William
2002-05-15
Despite the high prevalence of benign prostatic hyperplasia (BPH) in the aging male, little is known regarding the etiology of this disease. A better understanding of the molecular etiology of BPH would be facilitated by a comprehensive analysis of gene expression patterns that are characteristic of benign growth in the prostate gland. Since genes differentially expressed between BPH and normal prostate tissues are likely to reflect underlying pathogenic mechanisms involved in the development of BPH, we performed comparative gene expression analysis using cDNA microarray technology to identify candidate genes associated with BPH. Total RNA was extracted from a set of 9 BPH specimens from men with extensive hyperplasia and a set of 12 histologically normal prostate tissues excised from radical prostatectomy specimens. Each of these 21 RNA samples was labeled with Cy3 in a reverse transcription reaction and cohybridized with a Cy5 labeled common reference sample to a cDNA microarray containing 6,500 human genes. Normalized fluorescent intensity ratios from each hybridization experiment were extracted to represent the relative mRNA abundance for each gene in each sample. Weighted gene and random permutation analyses were performed to generate a subset of genes with statistically significant differences in expression between BPH and normal prostate tissues. Semi-quantitative PCR analysis was performed to validate differential expression. A subset of 76 genes involved in a wide range of cellular functions was identified to be differentially expressed between BPH and normal prostate tissues. Semi-quantitative PCR was performed on 10 genes and 8 were validated. Genes consistently upregulated in BPH when compared to normal prostate tissues included: a restricted set of growth factors and their binding proteins (e.g. IGF-1 and -2, TGF-beta3, BMP5, latent TGF-beta binding protein 1 and -2); hydrolases, proteases, and protease inhibitors (e.g. neuropathy target esterase, MMP2, alpha-2-macroglobulin); stress response enzymes (e.g. COX2, GSTM5); and extracellular matrix molecules (e.g. laminin alpha 4 and beta 1, chondroitin sulfate proteoglycan 2, lumican). Genes consistently expressing less mRNA in BPH than in normal prostate tissues were less commonly observed and included the transcription factor KLF4, thrombospondin 4, nitric oxide synthase 2A, transglutaminase 3, and gastrin releasing peptide. We identified a diverse set of genes that are potentially related to benign prostatic hyperplasia, including genes both previously implicated in BPH pathogenesis as well as others not previously linked to this disease. Further targeted validation and investigations of these genes at the DNA, mRNA, and protein levels are warranted to determine the clinical relevance and possible therapeutic utility of these genes. Copyright 2002 Wiley-Liss, Inc.
Assaf, S; Hazard, D; Pitel, F; Morisson, M; Alizadeh, M; Gondret, F; Diot, C; Vignal, A; Douaire, M; Lagarrigue, S
2003-01-01
Sterol regulatory element binding protein-1 and -2 (SREBP-1 and -2) are key transcription factors involved in the biosynthesis of cholesterol and fatty adds. The SREBP have mainly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, however, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. As a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we sequenced the cDNA, encoding the mature nuclear form of chicken SREBP-2 protein, mapped SREBP-1 and -2 genes and studied their tissue expressions. The predicted chicken SREBP-2 amino acid sequence shows a 77 to 79% identity with human, mouse, and hamster homologues, with a nearly perfect conservation in all the important functional motifs, basic, helix-loop-helix, and leucine zipper (bHLH-Zip) region as well as cleavage sites. As in the human genome, SREBP-1 and SREBP-2 chicken genes are located on two separate chromosomes, respectively microchromosome 14 and macrochromosome 1. Tissue expression data show that SREBP-1 and SREBP-2 are expressed in a wide variety of tissues in chicken. However, unlike SREBP-2, SREBP-1 is expressed preferentially in the liver and uropygial gland, suggesting an important role of SREBP-1 in the regulation of lipogenesis in avian species.
Fiermonte, G; Runswick, M J; Walker, J E; Palmieri, F
1992-01-01
A human cDNA has been isolated previously from a thyroid library with the aid of serum from a patient with Grave's disease. It encodes a protein belonging to the mitochondrial metabolite carrier family, referred to as the Grave's disease carrier protein (GDC). Using primers based on this sequence, overlapping cDNAs encoding the bovine homologue of the GDC have been isolated from total bovine heart poly(A)+ cDNA. The bovine protein is 18 amino acids shorter than the published human sequence, but if a frame shift requiring the removal of one nucleotide is introduced into the human cDNA sequence, the human and bovine proteins become identical in their C-terminal regions, and 308 out of 330 amino acids are conserved over their entire sequences. The bovine cDNA has been used to investigate the expression of the GDC in various bovine tissues. In the tissues that were examined, the GDC is most strongly expressed in the thyroid, but substantial amounts of its mRNA were also detected in liver, lung and kidney, and lesser amounts in heart and skeletal muscle.
NASA Astrophysics Data System (ADS)
Noble, Misty L.; Song, Shuxian; Sun, Ryan R.; Fan, Luping; DiBlasi, Robert M.; O'Kelly-Priddy, Colleen; Loeb, Keith R.; Miao, Carol H.
2012-11-01
Ultrasound (US) targeted microbubble (MB) destruction (UTMD) has been shown to be an effective method in delivering drugs and plasmid DNA (pDNA) into cells. We previously reported successful gene transfection of a reporter luciferase gene, pGL4, into livers of mice and rats using UTMD. The challenge is to translate and achieve similar gene expression in large animals, like swine, where the treated tissue volume is substantially larger. The scale-up study requires proportionally increased amount of pDNA/MBs delivered to tissues and an equivalent increase in US energy. We use different MBs and surgical strategies to retain most of pDNA/MB locally during US application in order to maximize the effect of UTMD in gene transfection. Our results show significant increase in luciferase expression in swine injected with MBs and exposed to 2.7 MPa US. We obtained up to 1800-fold enhancement in the pig experiment using Definity® MBs, and 2000-fold and 6300-fold enhancement in two pig studies using RN18 MBs compared to sham. These results represent an important developmental step towards US mediated gene delivery in large animals and clinical trials.
Tumor targeting of gene expression through metal-coordinated conjugation with dextran.
Hosseinkhani, Hossein; Aoyama, Teruyoshi; Ogawa, Osamu; Tabata, Yasuhiko
2003-03-07
Tumor targeting of plasmid DNA was achieved through the conjugation of dextran derivatives with chelate residues based on metal coordination. Diethylenetriamine pentaacetic acid (DTPA), spermidine (Sd), and spermine (Sm) were chemically introduced to the hydroxyl groups of dextran to obtain dextran-DTPA, dextran-Sd and dextran-Sm derivatives. Conjugation of the dextran derivative by Zn(2+) coordination decreased the apparent size of the plasmid DNA, depending on the derivative type. The negative zeta potential of plasmid DNA became almost 0 mV after Zn(2+)-coordinated conjugation with dextran-Sm. When the dextran derivative-plasmid DNA conjugates with Zn(2+) coordination were intravenously injected subcutaneously into mice bearing Meth-AR-1 fibrosarcoma, the dextran-Sm-plasmid DNA conjugate significantly enhanced the level of gene expression in the tumor, in contrast to the conjugate of other dextran derivatives and free plasmid DNA. The enhanced gene expression produced by the Zn(2+)-coordinated dextran-Sm-plasmid DNA conjugate was specific to the tumor, whereas a simple mixture of dextran-Sm and plasmid DNA was not effective. The level of gene expression depended on the percentage of chelate residues introduced, the mixing weight ratio of the plasmid DNA/Sm residue used for conjugate preparation, and the plasmid DNA dose. A fluorescent microscopic study revealed that localization of plasmid DNA in the tumor tissue was observed only after injection of the dextran-Sm-plasmid DNA conjugate with Zn(2+) coordination. In addition, the gene expression induced by the conjugate lasted for more than 10 days after the injection. We conclude that Zn(2+)-coordinated dextran-Sm conjugation is a promising way to enable plasmid DNA to target the tumor in gene expression as well as to prolong the duration of gene expression.
2010-01-01
staining results as ERG positive or negative. Analysis of ERG mRNA by branched-chain DNA ( bDNA ) signal amplification One 4-mm thick section was selected...patients treated with radical prostatectomy by using bDNA assay as described in Materials and Methods. Consecutive tissue slides from whole-mounted FFPE
Nicol, Alcina F; Brunette, Laurie L; Nuovo, Gerard J; Grinsztejn, Beatriz; Friedman, Ruth K; Veloso, Valdiléa G; Cunha, Cynthia B; Coutinho, José R; Vianna-Andrade, Cecilia; Oliveira, Nathalia S; Woodham, Andrew W; DA Silva, Diane M; Kast, W Martin
2016-09-01
The aim of this study was to evaluate secretory leukocyte protease inhibitor (SLPI) expression in anal biopsies from HIV-positive (HIV+) individuals, and compare that to anal intraepithelial neoplasia (AIN) diagnoses and human papillomavirus (HPV) status. This is a cross-sectional study of a cohort of 54 HIV+ (31 males and 23 females) from an AIDS clinic in Rio de Janeiro, Brazil. The study material consisted of anorectal tissue biopsies obtained from HIV+ subjects, which were used to construct tissue microarray paraffin blocks for immunohistochemical analysis of SLPI expression. Biopsies were evaluated by an expert pathologist and classified as low-grade AIN1, high-grade AIN2/3, or normal squamous epithelium. In addition, DNA from the biopsies was extracted and analyzed for the presence of low- or high-risk HPV DNA. Histologically, normal squamous epithelium from the anorectal region showed strong positive SLPI staining in 17/20 (85%) samples. In comparison, 9/17 (53%) dysplastic squamous epithelial samples from AIN1 patients showed strong SLPI staining, and only 5/17 (29%) samples from AIN2/3 patients exhibited strong SPLI staining, which both were significantly fewer than those from normal tissue (P = 0.005). Furthermore, there was a significantly higher proportion of samples in which oncogenic high-risk HPV genotypes were detected in low SLPI-expressing tissues than that in tissues with high SLPI expression (P = 0.040). Taken together these results suggest that low SLPI expression is associated with high-risk HPV infections in the development of AIN.
MELAS syndrome with mitochondrial tRNA(Leu(UUR)) gene mutation in a Chinese family.
Huang, C C; Chen, R S; Chen, C M; Wang, H S; Lee, C C; Pang, C Y; Hsu, H S; Lee, H C; Wei, Y H
1994-01-01
The clinical features of a patient in a Chinese family with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome) are reported. The study revealed that hearing and visual impairments and miscarriages may be early clinical presentations in MELAS. A heteroplasmic A to G transition in the tRNA(Leu(UUR)) gene was noted at the nucleotide pair 3243 in the mitochondrial DNA of muscle, blood, and hair follicles of the proband and his maternal relatives. Quantitative analysis of the mutated mitochondrial DNA revealed variable proportions in different tissues and subjects of maternal lineage in the family. Muscle tissue contained a higher proportion of the mutant mitochondria than other tissues examined. The function of the reproductive system of the proband seems to be impaired. In one clinically healthy sibling, the 3243rd point mutation was found in sperm mitochondrial DNA, although sperm motility was not affected. It seems that biochemical defects in mitochondrial respiration and oxidative phosphorylation are tissue specific expressions of the 3243rd point mutation in the mitochondrial DNA of the affected target tissues. Images PMID:8201329
Lan, Xianyong; Cretney, Evan C; Kropp, Jenna; Khateeb, Karam; Berg, Mary A; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E; Khatib, Hasan
2013-01-01
Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller's grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.
Lan, Xianyong; Cretney, Evan C.; Kropp, Jenna; Khateeb, Karam; Berg, Mary A.; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E.; Khatib, Hasan
2013-01-01
Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller’s grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues. PMID:23577020
Kearney, Mary F; Anderson, Elizabeth M; Coomer, Charles; Smith, Luke; Shao, Wei; Johnson, Nicholas; Kline, Christopher; Spindler, Jonathan; Mellors, John W; Coffin, John M; Ambrose, Zandrea
2015-11-11
Determining the anatomic compartments that contribute to plasma HIV-1 is critical to understanding the sources of residual viremia during combination antiretroviral therapy (ART). We analyzed viral DNA and RNA populations in the plasma and tissues from macaques infected with SIV containing HIV-1 RT (RT-SHIV) to identify possible sources of persistent viremia and to investigate the effect of ART on viral replication in tissues. Tissues were collected at necropsy from four pigtailed macaques infected for 30 weeks with a diverse population of RT-SHIV. Two animals (6760 and 8232) were untreated and two animals (8030 and 8272) were treated with efavirenz, tenofovir, and emtricitabine for 20 weeks. A total of 1800 single-genome RT-SHIV pol and env DNA and RNA sequences were analyzed from the plasma, PBMCs, axillary and mesenteric lymph nodes, spleen, thymus, small intestine, bone marrow, lung, and brain. Analyses of intracellular DNA and RNA populations revealed that the majority of proviruses in tissues from untreated animal 8232 were not expressed, whereas a greater proportion of proviruses in tissues were expressed from 6760. Few intracellular RNA sequences were detected in treated animals and most contained inactivating mutations, such as frame shifts or large deletions. Phylogenetics showed that RT-SHIV DNA populations in tissues were not different from virus in contemporary plasma samples in the treated or untreated animals, demonstrating a lack of anatomic compartmentalization and suggesting that plasma viremia is derived from multiple tissue sources. No sequence divergence was detected in the plasma or between tissues in the treated animals after 20 weeks of ART indicating a lack of ongoing replication in tissues during treatment. Virus populations in plasma and tissues did not differ significantly in either treated or untreated macaques, suggesting frequent exchange of virus or infected cells between tissues and plasma, consistent with non-compartmentalized and widely disseminated infection. There was no genetic evidence of ongoing replication in tissues during suppressive ART.
Komatsu, Yuuta; Sukegawa, Shin; Yamashita, Mai; Katsuda, Naoki; Tong, Bin; Ohta, Takeshi; Kose, Hiroyuki; Yamada, Takahisa
2016-06-01
Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from musculus longissimus muscle tissues of selected pigs with extreme expected breeding values at the age of 100 kg. Three upregulated genes (EEF1A2, TSG101 and TTN) and six downregulated genes (ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7) in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis confirmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Landrace weanling pig groups with divergent genetic propensity for growth rate. Further, differential expression of the identified genes except for the TTN was validated by Western blot analysis. Additionally, the eight genes other than the ATP5C1 colocalized with the same chromosomal positions as QTLs that have been previously identified for growth rate traits. Finally, the changes of expression predicted from gene function suggested association of upregulation of expression of the EEF1A2, TSG101 and TTN genes and downregulation of the ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7 gene expression with increased growth rate. The identified genes will provide an important insight in understanding the molecular mechanism underlying growth rate in Landrace pig breed.
SASH1 regulates proliferation, apoptosis, and invasion of osteosarcoma cell.
Meng, Qingbing; Zheng, Minqian; Liu, Hongbing; Song, Changzhi; Zhang, Wensheng; Yan, Juan; Qin, Ling; Liu, Xiaolan
2013-01-01
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. The SASH1 protein possesses both the SH3 and SAM domains, indicating that it may play an important role in intracellular signal transduction. Reduced expression of SASH1 is closely related to tumor growth, invasion, metastasis, and poor prognosis. However, the biological role of SASH1 remains unknown in osteosarcoma. To unravel the function of SASH1, we explored the expression of SASH1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and analyzed the relationship between SASH1 expression and cell cycle, apoptosis and invasion of osteosarcoma MG-63 cells, using the flow cytometry analysis and transwell invasion chamber experiments. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-9 were observed by western blot. Our results showed that the expression rate of SASH1 mRNA in osteosarcoma tissues was significantly lower than that in normal bone tissue (p = 0.000), that the expression rate of SASH1 mRNA in the carcinoma tissues from patients with lung metastasis was significantly lower than that from patients without lung metastasis (p = 0.041), and that the expression rate of SASH1 mRNA also decreased with increasing Enneking stage (p = 0.032). However, the mRNA expression of SASH1 in osteosarcoma was independent of the patient's gender, age, and tumor size (p = 0.983, 0.343, 0.517, respectively). The SASH1 protein displayed a down-regulation in osteosarcoma tissues compared to normal bone tissue (p = 0.000), displayed a down-regulation in osteosarcoma tissues from patients with lung metastasis compared to from patients without lung metastasis (p = 0.000), and displayed a gradual decrease with increasing Enneking stage (p = 0.000). In addition, the MG-63 cells from pcDNA3.1-SASH1 group exhibited significantly reduced cell viability, proliferation, and invasive ability compared to the empty vector group and blank control group (p = 0.023, 0.001, respectively), and there was no difference between the empty vector group and blank control group. The pcDNA3.1-SASH1 group displayed significantly more apoptotic cells than the empty vector group and blank control group (p = 0.004). The expression of cyclin D1, MMP-9 displayed a down-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000, 0.001, respectively) and the expression levels of caspase-3 displayed an up-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000). Taken together, these data indicated that the overexpression of SASH1 might be associated with the inhibition of growth, proliferation, and invasion of MG-63 cells and the promotion of apoptosis of MG-63 cells.
Houdebine, L M; Chourrout, D
1991-09-15
Gene transfer into fish embryo is being performed in several species (trout, salmon, carps, tilapia, medaka, goldfish, zebrafish, loach, catfish, etc.). In most cases, pronuclei are not visible and microinjection must be done into the cytoplasm of early embryos. Several million copies of the gene are generally injected. In medaka, transgenesis was attempted by injection of the foreign gene into the nucleus of oocyte. Several reports indicate that the injected DNA was rapidly replicated in the early phase of embryo development, regardless of the origin and the sequence of the foreign DNA. The survival of the injected embryos was reasonably good and a large number reached maturity. The proportion of transgenic animals ranged from 1 to 50% or more, according to species and to experimentators. The reasons for this discrepancy have not been elucidated. In all species, the transgenic animals were mosaic. The copy number of the foreign DNA was different in the various tissues of an animal and a proportion lower than 50% of F1 offsprings received the gene from their parents. This suggests that the foreign DNA was integrated into the fish genome at the two cells stage or later. An examination of the integrated DNA in different cell types of an animal revealed that integration occurred mainly during early development. The transgene was found essentially unrearranged in the fish genome of the founders and offsprings. The transgenes were therefore stably transmitted to progeny in a Mendelian fashion. Southern blot analysis revealed the presence of possible junction fragments and also of minor bands which may result from a rearrangement of the injected DNA. In all species, the integrated DNA appeared mainly as random end-to-end concatemers. In adult trout blood cells, a small proportion of the foreign DNA was maintained in the form of non-integrated concatemers, as judged by the existence of end fragments. The transgenes were generally only poorly expressed. The majority of the injected gene constructs contained essentially mammalian or higher vertebrates sequences. The comparison of the expression efficiency of these constructs in transfected fish and mammalian cells indicates that some of the mammalian DNA sequences are most efficiently understood by the fish cell machinery. Chloramphenicol acetyl transferase gene under the control of promoters from Rous sarcoma virus, and human cytomegalovirus, was expressed in several tissues of transgenic fish. Chicken delta-crystallin gene was expressed in several tissues of transgenic fish.(ABSTRACT TRUNCATED AT 400 WORDS)
Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants.
Chung, Eunsook; Kim, Soo-Yong; Yi, So Young; Choi, Doil
2003-06-30
Osmotic stress-related genes were selected from an EST database constructed from 7 cDNA libraries from different tissues of the hot pepper. A full-length cDNA of Capsicum annuum dehydrin (Cadhn), a late embryogenesis abundant (lea) gene, was selected from the 5' single pass sequenced cDNA clones and sequenced. The deduced polypeptide has 87% identity with potato dehydrin C17, but very little identity with the dehydrin genes of other organisms. It contains a serine-tract (S-segment) and 3 conserved lysine-rich domains (K-segments). Southern blot analysis showed that 2 copies are present in the hot pepper genome. Cadhn was induced by osmotic stress in leaf tissues as well as by the application of abscisic acid. The RNA was most abundant in green fruit. The expression of several osmotic stress-related genes was examined and Cadhn proved to be the most abundantly expressed of these in response to osmotic stress.
Interaction theory of mammalian mitochondria.
Nakada, K; Inoue, K; Hayashi, J
2001-11-09
We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit. Copyright 2001 Academic Press.
Genomic expression patterns of cardiac tissues from dogs with dilated cardiomyopathy.
Oyama, Mark A; Chittur, Sridar
2005-07-01
To evaluate global genome expression patterns of left ventricular tissues from dogs with dilated cardiomyopathy (DCM). Tissues obtained from the left ventricle of 2 Doberman Pinschers with end-stage DCM and 5 healthy control dogs. Transcriptional activities of 23,851 canine DNA sequences were determined by use of an oligonucleotide microarray. Genome expression patterns of DCM tissue were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with gene expression for tissues from 5 healthy control dogs. 478 transcripts were differentially expressed (> or = 2.5-fold change). In DCM tissue, expression of 173 transcripts was upregulated and expression of 305 transcripts was downregulated, compared with expression for control tissues. Of the 478 transcripts, 167 genes could be specifically identified. These genes were grouped into 1 of 8 categories on the basis of their primary physiologic function. Grouping revealed that pathways involving cellular energy production, signaling and communication, and cell structure were generally downregulated, whereas pathways involving cellular defense and stress responses were upregulated. Many previously unreported genes that may contribute to the pathophysiologic aspects of heart disease were identified. Evaluation of global expression patterns provides a molecular portrait of heart failure, yields insights into the pathophysiologic aspects of DCM, and identifies intriguing genes and pathways for further study.
Use of electroporation for high-molecular-weight DNA-mediated gene transfer.
Jastreboff, M M; Ito, E; Bertino, J R; Narayanan, R
1987-08-01
Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.
Light-patterning of synthetic tissues with single droplet resolution.
Booth, Michael J; Restrepo Schild, Vanessa; Box, Stuart J; Bayley, Hagan
2017-08-24
Synthetic tissues can be generated by forming networks of aqueous droplets in lipid-containing oil. Each droplet contains a cell-free expression system and is connected to its neighbor through a lipid bilayer. In the present work, we have demonstrated precise external control of such networks by activating protein expression within single droplets, by using light-activated DNA to encode either a fluorescent or a pore-forming protein. By controlling the extent of activation, synthetic tissues were generated with graded levels of protein expression in patterns of single droplets. Further, we have demonstrated reversible activation within individual compartments in synthetic tissues by turning a fluorescent protein on-and-off. This is the first example of the high-resolution patterning of droplet networks, following their formation. Single-droplet control will be essential to power subsets of compartments within synthetic tissues or to stimulate subsets of cells when synthetic tissues are interfaced with living tissues.
Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue
NASA Astrophysics Data System (ADS)
Fonseca, A. S.; Mencalha, A. L.; Campos, V. M. A.; Ferreira-Machado, S. C.; Peregrino, A. A. F.; Magalhães, L. A. G.; Geller, M.; Paoli, F.
2013-02-01
The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation.
Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A; Kuiper, Raoul V; Curbo, Sophie; Karlsson, Anna
2013-02-15
A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK(+/-) transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK(+/-)TK2(-/-) mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK(+/-)TK2(-/-) mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency.
Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression
Parks, Matthew M.; Kurylo, Chad M.; Dass, Randall A.; Bojmar, Linda; Lyden, David; Vincent, C. Theresa; Blanchard, Scott C.
2018-01-01
The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome’s molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease. PMID:29503865
A multiplex branched DNA assay for parallel quantitative gene expression profiling.
Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling
2006-05-01
We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.
Molecular tools for studying plant genetic diversity
USDA-ARS?s Scientific Manuscript database
The ubiquitous nature of DNA is a central theme for all biology. The nucleus of each cell that makes up an organism contains genomic DNA, which is the blueprint for life. The differential expression of genes within each cell gives rise to different tissues, organs and, ultimately, different organi...
Edvardsen, Rolf B; Malde, Ketil; Mittelholzer, Christian; Taranger, Geir Lasse; Nilsen, Frank
2011-03-01
The Atlantic cod, Gadus morhua, is an important species both for traditional fishery and increasingly also in fish farming. The Atlantic cod is also under potential threat from various environmental changes such as pollution and climate change, but the biological impact of such changes are not well known, in particular when it comes to sublethal effects that can be difficult to assert. Modern molecular and genomic approaches have revolutionized biological research during the last decade, and offer new avenues to study biological functions and e.g. the impact of anthropogenic activities at different life-stages for a given organism. In order to develop genomic data and genomic tools for Atlantic cod we conducted a program were we constructed 20 cDNA libraries, and produced and analyzed 44006 expressed sequence tags (ESTs) from these. Several tissues are represented in the multiple cDNA libraries, that differ in either sexual maturation or immulogical stimulation. This approach allowed us to identify genes that are expressed in particular tissues, life-stages or in response to specific stimuli, and also gives us information about potential functions of the transcripts. The ESTs were used to construct a 16k cDNA microarray to further investigate the cod transcriptome. Microarray analyses were preformed on pylorus, pituitary gland, spleen and testis of sexually maturing male cod. The four different tissues displayed tissue specific transcriptomes demonstrating that the cDNA array is working as expected and will prove to be a powerful tool in further experiments. Copyright © 2010 Elsevier Inc. All rights reserved.
The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.
Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H
2009-07-31
Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.
The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics
Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.
2008-01-01
Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions. PMID:19101574
Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.
This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in themore » low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, L.; Desbarats, M.; Viel, J.
1996-08-15
The recently identified human PEX g ene apparently encodes for a neutral endopeptidase that is mutated in patients with X-linked hypophosphatemia. The 3{prime} and 5{prime} ends of the coding region of PEX have not been cloned, nor has the tissue expression of the gene been identified. Here we report the isolation and characterization of the complete open reading frame of the mouse Pex gene and the demonstration of its expression in bone. Mouse Pex cDNA is predicted to encode a protein of 749 amino acids with 95% identity to the available human PEX sequence and significant homology to members ofmore » the membrane-bound metalloendopeptidase family. Northern blot analysis revealed a 6.6-kb transcript in bone and in cultured osteoblasts from normal mice that was not detectable in samples from the Hyp mouse, the murine homolog of human X-linked hypophosphatemia. Pex transcripts were, however, detectable in Hyp bone by RT-PCR amplification. Of particular interest, a cDNA clone from rat incisor shows 93% sequence identity to the 5{prime} end of Pex cDNA, suggesting that Pex may be expressed in another calcified tissue, the tooth. The association of impaired mineralization of bone and teeth and disturbed renal phosphate reabsorption with altered expression of Pex suggests that the Pex gene product may play a critical role in these processes. 47 refs., 2 figs., 1 tab.« less
Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.
Su, S; Bird, R C
1995-09-15
A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed by a single amino acid from the sequence of hG1.16 and the published rat L37 sequence. Southern-blot analysis revealed that hG1.16 exists in multiple copies in human, rat and mouse genomes. These G1.16 clones encode unique human, rat and bovine members of the ribosomal protein L37 gene family, which are constitutively expressed even during transitions from quiescence to active cell proliferation or terminal differentiation, in all tissues and all vertebrates investigated.
Lin, Youshan Melissa; Lim, Jessica Fang Yan; Lee, Jialing; Choolani, Mahesh; Chan, Jerry Kok Yen; Reuveny, Shaul; Oh, Steve Kah Weng
2016-06-01
Cartilage tissue engineering with human mesenchymal stromal cells (hMSC) is promising for allogeneic cell therapy. To achieve large-scale hMSC propagation, scalable microcarrier-based cultures are preferred over conventional static cultures on tissue culture plastic. Yet it remains unclear how microcarrier cultures affect hMSC chondrogenic potential, and how this potential is distinguished from that of tissue culture plastic. Hence, our study aims to compare the chondrogenic potential of human early MSC (heMSC) between microcarrier-spinner and tissue culture plastic cultures. heMSC expanded on either collagen-coated Cytodex 3 microcarriers in spinner cultures or tissue culture plastic were harvested for chondrogenic pellet differentiation with empirically determined chondrogenic inducer bone morphogenetic protein 2 (BMP2). Pellet diameter, DNA content, glycosaminoglycan (GAG) and collagen II production, histological staining and gene expression of chondrogenic markers including SOX9, S100β, MMP13 and ALPL, were investigated and compared in both conditions. BMP2 was the most effective chondrogenic inducer for heMSC. Chondrogenic pellets generated from microcarrier cultures developed larger pellet diameters, and produced more DNA, GAG and collagen II per pellet with greater GAG/DNA and collagen II/DNA ratios compared with that of tissue culture plastic. Moreover, they induced higher expression of chondrogenic genes (e.g., S100β) but not of hypertrophic genes (e.g., MMP13 and ALPL). A similar trend showing enhanced chondrogenic potential was achieved with another microcarrier type, suggesting that the mechanism is due to the agitated nature of microcarrier cultures. This is the first study demonstrating that scalable microcarrier-spinner cultures enhance the chondrogenic potential of heMSC, supporting their use for large-scale cell expansion in cartilage cell therapy. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Effects of 2G on Gene Expression of Stress-Related Hormones in Rat Placenta
NASA Technical Reports Server (NTRS)
Benson, S.; Talyansky, Y.; Moyer, E. L.; Lowe, M.; Baer, L. A.; Ronca, A. E.
2017-01-01
Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and quantified the expression levels of the genes of interest relative to the GAPDH housekeeping gene, using RT-qPCR and gene-specific cDNA probes. Elucidation of glucocorticoid transfer and synthesis in the placenta can provide new insights into the unique dynamics of mammalian development in microgravity and guide future multi-generational studies in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk; Bourdon-Lacombe, Julie, E-mail: julie.bourdon-lacombe@hc-sc.gc.ca
Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strandmore » breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA repair, apoptosis, and muscle contraction. • Effects of a single exposure to CBNPs lasted until 42 d post-exposure. • A single exposure to CBNPs induced a biphasic inflammatory response in gene expression.« less
Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Feronjy, Robert; Spira, Avrum; Schadt, Eric E.; Powell, Charles A.; Zhu, Jun
2015-01-01
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology. PMID:25569234
Kovalchuk, Anna; Rodriguez-Juarez, Rocio; Ilnytskyy, Yaroslav; Byeon, Boseon; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Kolb, Bryan; Kovalchuk, Olga
2016-01-01
Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. This condition is known as chemo brain. The molecular and cellular mechanisms of chemo brain remain obscure. Here, we analyzed the effects of two cytotoxic chemotherapy drugs—cyclophosphamide (CPP) and mitomycin C (MMC) - on transcriptomic and epigenetic changes in the murine prefrontal cortex (PFC) and hippocampal regions. We for the first time showed that CPP and MMC treatments led to profound sex- and brain region-specific alterations in gene expression profiles. Gene expression changes were most prominent in the PFC tissues of female mice 3 weeks after MMC treatment, and the gene expression response was much greater for MCC than CPP exposure. MMC exposure resulted in oxidative DNA damage, evidenced by accumulation of 8-oxo-2′-deoxyguanosine (8-oxodG) and a decrease in the level of 8-oxodG repair protein OGG1 in the PFC of female animals 3 weeks after treatment. MMC treatment decreased global DNA methylation and increased DNA hydroxymethylation in the PFC tissues of female mice. The majority of the changes induced by chemotherapy in the PFC tissues of female mice resembled those that occur during the brain's aging processes. Therefore, our study suggests a link between chemotherapy-induced chemo brain and brain aging, and provides an important roadmap for future analysis. PMID:27032448
Levin, Theodore R; Corley, Douglas A; Jensen, Christopher D; Marks, Amy R; Zhao, Wei K; Zebrowski, Alexis M; Quinn, Virginia P; Browne, Lawrence W; Taylor, William R; Ahlquist, David A; Lidgard, Graham P; Berger, Barry M
2017-03-01
Fecal immunochemical test (FIT) screening detects most asymptomatic colorectal cancers. Combining FIT screening with stool-based genetic biomarkers increases sensitivity for cancer, but whether DNA biomarkers (biomarkers) differ for cancers detected versus missed by FIT screening has not been evaluated in a community-based population. To evaluate tissue biomarkers among Kaiser Permanente Northern California patients diagnosed with colorectal cancer within 2 years after FIT screening. FIT-negative and FIT-positive colorectal cancer patients 50-77 years of age were matched on age, sex, and cancer stage. Adequate DNA was isolated from paraffin-embedded specimens in 210 FIT-negative and 211 FIT-positive patients. Quantitative allele-specific real-time target and signal amplification assays were performed for 7 K-ras mutations and 10 aberrantly methylated DNA biomarkers (NDRG4, BMP3, SFMBT2_895, SFMBT2_896, SFMBT2_897, CHST2_7890, PDGFD, VAV3, DTX1, CHST2_7889). One or more biomarkers were found in 414 of 421 CRCs (98.3%). Biomarker expression was not associated with FIT status, with the exception of higher SFMBT2_897 expression in FIT-negative (194 of 210; 92.4%) than in FIT-positive cancers (180 of 211; 85.3%; p = 0.02). There were no consistent differences in biomarker expression by FIT status within age, sex, stage, and cancer location subgroups. The biomarkers of a currently in-use multi-target stool DNA test (K-ras, NDRG4, and BMP3) and eight newly characterized methylated biomarkers were commonly expressed in tumor tissue specimens, independent of FIT result. Additional study using stool-based testing with these new biomarkers will allow assessment of sensitivity, specificity, and clinical utility.
Habib, Samy L.; Liang, Sitai
2014-01-01
Recent study from our laboratory showed that patients with diabetes are at a higher risk of developing kidney cancer. In the current study, we have explored one of the mechanisms by which diabetes accelerates tumorigenesis in the kidney. Kidney cancer tissue from patients with diabetes showed a higher activity of Akt and decreased in total protein of tuberin compared to kidney cancer patient without diabetes or diabetes alone. In addition, a significant increase in phospho-Akt/tuberin expression was associated with an increase in Ki67 expression and activation of mTOR in kidney tumor with or without diabetes compared to diabetes alone. In addition, decrease in tuberin expression resulted in a significant decrease in protein expression of OGG1 and increased in oxidative DNA damage, 8-oxodG in kidney tissues from patients with cancer or cancer+diabetes. Importantly, these data showed that the majority of the staining of Akt/tuberin/p70S6K phosphorylation was more prominently in the tubular cells. In addition, accumulation of oxidative DNA damage is localized only in the nucleus of tubular cells within the cortex region. These data suggest that Akt/tuberin/mTOR pathway plays an important role in the regulation DNA damage and repair pathways that may predispose diabetic kidneys to pathogenesis of renal cell carcinoma. PMID:24797175
Owman, C; Blay, P; Nilsson, C; Lolait, S J
1996-11-12
Using PCR with degenerate primers and screening of a human B-cell lymphoblast cDNA library, a full-length cDNA encoding a 375-amino-acid protein was isolated. It contains seven regions of hydrophobic amino acids probably representing membrane-spanning domains of a novel heptahelix receptor, tentatively named CMKRL2. It shows nearly 30% overall identity with the high-affinity IL8 receptor and similar degree of homology with other chemoattractant receptors, including the "fusin" coreceptors for HIV1. Measurements of various transduction pathways following application of a panel of chemokines to transfected cells failed to evoke any reproducible response. Although the natural ligand for CMKRL2 could, thus, not be identified, receptor expression in spleen and lymph nodes as well as in Burkitt's lymphoma (irrespective of EBV status) supports a functional role in activated B-cells. Receptor message was ubiquitously distributed in normal peripheral tissues and CNS, suggesting that CMKRL2 is expressed in widespread cell populations, such as macrophages and neuroglia.
Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul
2011-01-01
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.
Curie, Thomas; Franken, Paul
2011-01-01
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518
Beery, Annaliese K; McEwen, Lisa M; MacIsaac, Julia L; Francis, Darlene D; Kobor, Michael S
2016-01-01
This article is part of a Special Issue "Parental Care". Since the first report of maternal care effects on DNA methylation in rats, epigenetic modifications of the genome in response to life experience have become the subject of intense focus across many disciplines. Oxytocin receptor expression varies in response to early experience, and both oxytocin signaling and methylation status of the oxytocin receptor gene (Oxtr) in blood have been related to disordered social behavior. It is unknown whether Oxtr DNA methylation varies in response to early life experience, and whether currently employed peripheral measures of Oxtr methylation reflect variation in the brain. We examined the effects of early life rearing experience via natural variation in maternal licking and grooming during the first week of life on behavior, physiology, gene expression, and epigenetic regulation of Oxtr across blood and brain tissues (mononucleocytes, hippocampus, striatum, and hypothalamus). Rats reared by "high" licking-grooming (HL) and "low" licking-grooming (LL) rat dams exhibited differences across study outcomes: LL offspring were more active in behavioral arenas, exhibited lower body mass in adulthood, and showed reduced corticosterone responsivity to a stressor. Oxtr DNA methylation was significantly lower at multiple CpGs in the blood of LL versus HL males, but no differences were found in the brain. Across groups, Oxtr transcript levels in the hypothalamus were associated with reduced corticosterone secretion in response to stress, congruent with the role of oxytocin signaling in this region. Methylation of specific CpGs at a high or low level was consistent across tissues, especially within the brain. However, individual variation in DNA methylation relative to these global patterns was not consistent across tissues. These results suggest that blood Oxtr DNA methylation may reflect early experience of maternal care, and that Oxtr methylation across tissues is highly concordant for specific CpGs, but that inferences across tissues are not supported for individual variation in Oxtr methylation. Copyright © 2015 Elsevier Inc. All rights reserved.
Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K
1999-09-01
We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.
Transient expression and activity of human DNA polymerase iota in loach embryos.
Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E
2012-02-01
Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.
Beaster-Jones, Laura; Schubert, Michael; Holland, Linda Z
2007-08-01
To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branchiostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C. intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C. intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost.
Freije, J M; Díez-Itza, I; Balbín, M; Sánchez, L M; Blasco, R; Tolivia, J; López-Otín, C
1994-06-17
A cDNA coding for a new human matrix metalloproteinase (MMP) has been cloned from a cDNA library derived from a breast tumor. The isolated cDNA contains an open reading frame coding for a polypeptide of 471 amino acids. The predicted protein sequence displays extensive similarity to the previously known MMPs and presents all the structural features characteristic of the members of this protein family, including the well conserved PRCGXPD motif, involved in the latency of the enzyme and the zinc-binding domain (HEXGHXXXXXHS). In addition, this novel human MMP contains in its amino acid sequence several residues specific to the collagenase subfamily (Tyr-214, Asp-235, and Gly-237) and lacks the 9-residue insertion present in the stromelysins. According to these structural characteristics, the MMP described herein has been tentatively called collagenase-3, since it represents the third member of this subfamily, composed at present of fibroblast and neutrophil collagenases. The collagenase-3 cDNA was expressed in a vaccinia virus system, and the recombinant protein was able to degrade fibrillar collagens, providing support to the hypothesis that the isolated cDNA codes for an authentic collagenase. Northern blot analysis of RNA from normal and pathological tissues demonstrated the existence in breast tumors of three different mRNA species, which seem to be the result of the utilization of different polyadenylation sites present in the 3'-noncoding region of the gene. By contrast, no collagenase-3 mRNA was detected either by Northern blot or RNA polymerase chain reaction analysis with RNA from other human tissues, including normal breast, mammary fibroadenomas, liver, placenta, ovary, uterus, prostate, and parotid gland. On the basis of the increased expression of collagenase-3 in breast carcinomas and the absence of detectable expression in normal tissues, a possible role for this metalloproteinase in the tumoral process is proposed.
Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus.
Watanabe, Takayuki; Sadamoto, Hisayo; Aonuma, Hitoshi
2013-12-01
In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into L-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.
The organization and expression of the mdm2 gene.
de Oca Luna, R M; Tabor, A D; Eberspaecher, H; Hulboy, D L; Worth, L L; Colman, M S; Finlay, C A; Lozano, G
1996-05-01
The mdm2 gene encodes a zinc finger protein that negatively regulates p53 function by binding and masking the p53 transcriptional activation domain. Two different promoters control expression of mdm2, one of which is also transactivated by p53. We cloned and characterized the mdm2 gene from a murine 129 library. It contained at least 12 exons and spanned approximately 25 kb of DNA. Sequencing of the mdm2 gene revealed three nucleotide differences that resulted in amino acid substitutions in the previously published mdm2 sequence. Sequencing of normal BalbC/J DNA and the original cosmid clone isolated from the 3T3DM cell line revealed that they are identical, suggesting that the published sequence is in error at these three positions. In addition, we analyzed the expression pattern of mdm2 and found ubiquitous low-level expression throughout embryo development and in adult tissues. Analysis of mRNA from numerous tissues for several mdm2 spliced variants that had been identified in the transformed 3T3DM cell line revealed that these variants could not be detected in the developing embryo or in adult tissues.
Bai, Yu; Zhang, Quan-Geng; Wang, Xin-Hua
2014-12-11
Gliomas are the most common human brain tumors. Glioblastoma, also known as glioblastoma multiform (GBM), is the most aggressive, malignant, and lethal glioma. The investigation of prognostic and diagnostic molecular biomarkers in glioma patients to provide direction on clinical practice is urgent. Recent studies demonstrated that abnormal DNA methylation states play a key role in the pathogenesis of this kind of tumor. In this study, we want to identify a novel biomarker related to glioma initiation and find the role of the glioma-related gene. We performed a methylation-specific microarray on the promoter region to identify methylation gene(s) that may affect outcome of GBM patients. Normal and GBM tissues were collected from Tiantan Hospital. Genomic DNA was extracted from these tissues and analyzed with a DNA promoter methylation microarray. Testis derived transcript (TES) protein expression was analyzed by immunohistochemistry in paraffin-embedded patient tissues. Western blotting was used to detect TES protein expression in the GBM cell line U251 with or without 5-aza-dC treatment. Cell apoptosis was evaluated by flow cytometry analysis using Annexin V/PI staining. We found that the TES promoter was hypermethylated in GBM compared to normal brain tissues under DNA promoter methylation microarray analysis. The GBM patients with TES hypermethylation had a short overall survival (P <0.05, log-rank test). Among GBM samples, reduced TES protein level was detected in 33 (89.2%) of 37 tumor tissues by immunohistochemical staining. Down regulation of TES was also correlated with worse patient outcome (P <0.05, log-rank test). Treatment on the GBM cell line U251 with 5-aza-dC can greatly increase TES expression, confirming the hypermethylation of TES promoter in GBM. Up-regulation of TES prompts U251 apoptosis significantly. This study demonstrated that both TES promoter hypermethylation and down-regulated protein expression significantly correlated with worse patient outcome. Treatment on the GBM cell line (U251) with 5-aza-dC can highly release TES expression resulting in significant apoptosis in these cells. Our findings suggest that the TES gene is a novel tumor suppressor gene and might represent a valuable prognostic marker for glioblastoma, indicating a potential target for future GBM therapy.
Nota, Florencia; Cambiagno, Damián A; Ribone, Pamela; Alvarez, María E
2015-06-01
DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhang, Yi; Cao, Jia; Meng, Yanni; Qu, Chunying; Shen, Feng; Xu, Leiming
2018-01-01
Xeroderma pigmentosum group C (XPC) is a DNA-damage-recognition gene active at the early stage of DNA repair. XPC also participates in regulation of cell-cycle checkpoint and DNA-damage-induced apoptosis. In the present study, the expression levels of genes involved in nucleotide excision repair (NER) were assessed in human colorectal cancer (CRC) tissue. This analysis revealed that expression of XPC mRNA significantly increased in colorectal carcinoma tissues compared with matched normal controls. Expression of XPC gradually increased along with the degree of progression of CRC. In vitro, an XTT assay demonstrated that small interfering RNA (siRNA) targeting XPC significantly increased the sensitivity of CRC SW480 cells to cisplatin, whereas cells transfected with a XPC-overexpression plasmid became more resistant to cisplatin. Furthermore, flow cytometry revealed that the proportion of apoptotic cells significantly increased in XPC-knockdown cells upon cisplatin treatment. However, the overexpression XPC significantly increased the resistance of cells to cisplatin. In vivo, tumor growth was significantly reduced in tumor-bearing mice when the XPC gene was knocked down. Upregulation of the expression of pro-apoptotic Bcl-associated X and downregulation of the anti-apoptotic B-cell lymphoma 2 proteins was observed in the implanted tumor tissue. In conclusion, XPC serves a key role in chemotherapeutic sensitivity of CRC to cisplatin, meaning that it may be a potential target for chemotherapy of CRC. PMID:29616110
Effects of bone sialoprotein on pancreatic cancer cell growth, invasion and metastasis.
Kayed, Hany; Kleeff, Jörg; Keleg, Shereen; Felix, Klaus; Giese, Thomas; Berger, Martin R; Büchler, Markus W; Friess, Helmut
2007-01-08
Bone sialoprotein (BSP) is an acidic glycoprotein that plays an important role in cancer cell growth, migration and invasion. The expression, localization and possible function of BSP in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) were analyzed by QRT-PCR, laser capture microdissection, DNA microarray analysis, immunoblotting, radioimmunoassays and immunohistochemistry as well as cell growth, invasion, scattering, and adhesion assays. BSP mRNA was detected in 40.7% of normal, in 80% of CP and in 86.4% of PDAC samples. The median BSP mRNA levels were 6.1 and 0.9copies/microl cDNA in PDAC and CP tissues, respectively, and zero copies/microl cDNA in normal pancreatic tissues. BSP was weakly present in the cytoplasm of islet cells and ductal cells in 20% of normal pancreatic tissues. BSP was localized in the tubular complexes of both CP and PDAC, as well as in pancreatic cancer cells. Five out of 8 pancreatic cancer cell lines expressed BSP mRNA. Recombinant BSP (rBSP) inhibited Capan-1 and SU8686 pancreatic cancer cell growth, with a maximal effect of -46.4+/-12.0% in Capan-1 cells and -45.7+/-14.5% in SU8686 cells. rBSP decreased the invasion of SU8686 cells by -59.1+/-11.2% and of Capan-1 cells by -13.3+/-3.8% (P<0.05), whereas it did not affect scattering or adhesion of both cell lines. In conclusion, endogenous BSP expression levels in pancreatic cancer cells and low to absent BSP expression in the surrounding stromal tissue elements may indirectly act to enhance the proliferation and invasion of pancreatic cancer cells.
Soibam, Benjamin
2017-11-01
Super-enhancers are characterized by high levels of Mediator binding and are major contributors to the expression of their associated genes. They exhibit high levels of local chromatin interactions and a higher order of local chromatin organization. On the other hand, lncRNAs can localize to specific DNA sites by forming a RNA:DNA:DNA triplex, which in turn can contribute to local chromatin organization. In this paper, we characterize a new class of lncRNAs called super-lncRNAs that target super-enhancers and which can contribute to the local chromatin organization of the super-enhancers. Using a logistic regression model based on the number of RNA:DNA:DNA triplex sites a lncRNA forms within the super-enhancer, we identify 442 unique super-lncRNA transcripts in 27 different human cell and tissue types; 70% of these super-lncRNAs were tissue restricted. They primarily harbor a single triplex-forming repeat domain, which forms an RNA:DNA:DNA triplex with multiple anchor DNA sites (originating from transposable elements) within the super-enhancers. Super-lncRNAs can be grouped into 17 different clusters based on the tissue or cell lines they target. Super-lncRNAs in a particular cluster share common short structural motifs and their corresponding super-enhancer targets are associated with gene ontology terms pertaining to the tissue or cell line. Super-lncRNAs may use these structural motifs to recruit and transport necessary regulators (such as transcription factors and Mediator complexes) to super-enhancers, influence chromatin organization, and act as spatial amplifiers for key tissue-specific genes associated with super-enhancers. © 2017 Soibam; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Cadet, Patrick; Mantione, Kirk J; Stefano, George B
2003-05-15
Studies from our laboratory have revealed a novel mu opiate receptor, mu 3, which is expressed in both vascular tissues and leukocytes. The mu 3 receptor is selective for opiate alkaloids and is insensitive to opioid peptides. We now identify the mu 3 receptor at the molecular level using a 441-bp conserved region of the mu 1 receptor. Sequence analysis of the isolated cDNA suggests that it is a novel, alternatively spliced variant of the mu opiate receptor gene. To determine whether protein expressed from this cDNA exhibits the biochemical characteristics expected of the mu 3 receptor, the cDNA clone was expressed in a heterologous system. At the functional level, COS-1 cells transfected with the mu 3 receptor cDNA exhibited dose-dependent release of NO following treatment with morphine, but not opioid peptides (i.e., Met-enkephalin). Naloxone was able to block the effect of morphine on COS-1 transfected cells. Nontransfected COS-1 cells did not produce NO in the presence of morphine or the opioid peptides at similar concentrations. Receptor binding analysis with [(3)H]dihydromorphine further supports the opiate alkaloid selectivity and opioid peptide insensitivity of this receptor. These data suggest that this new mu opiate receptor cDNA encodes the mu 3 opiate receptor, since it exhibits biochemical characteristics known to be unique to this receptor (opiate alkaloid selective and opioid peptide insensitive). Furthermore, using Northern blot, RT-PCR, and sequence analysis, we have demonstrated the expression of this new mu variant in human vascular tissue, mononuclear cells, polymorphonuclear cells, and human neuroblastoma cells.
Vaarala, M H; Porvari, K S; Kyllönen, A P; Mustonen, M V; Lukkarinen, O; Vihko, P T
1998-09-25
A cDNA library specific for mRNA over-expressed in prostate cancer was generated by subtractive hybridization of transcripts originating from prostatic hyperplasia and cancer tissues. cDNA encoding ribosomal proteins L4, L5, L7a, L23a, L30, L37, S14 and S18 was found to be present among 100 analyzed clones. Levels of ribosomal mRNA were significantly higher at least in one of the prostate-cancer cell lines, LNCaP, DU-145 and PC-3, than in hyperplastic tissue, as determined by slot-blot hybridization. Furthermore, L23a- and S14-transcript levels were significantly elevated in PC-3 cells as compared with those in the normal prostate epithelial cell line PrEC. Generally, dramatic changes in the mRNA content of the ribosomal proteins were not detected, the most evident over-expression being that of L37 mRNA, which was 3.4 times more abundant in LNCaP cells than in hyperplastic prostate tissue. The over-expression of L7a and L37 mRNA was confirmed in prostate-cancer tissue samples by in situ hybridization. Elevated cancer-related expression of L4 and L30 has not been reported, but levels of the other ribosomal proteins are known to be increased in several types of cancers. These results therefore suggest that prostate cancer is comparable with other types of cancers, in that a larger pool of some ribosomal proteins is gained during the transformation process, by an unknown mechanism.
NUOVO, Gerard J.; GRINSZTEJN, Beatriz; FRIEDMAN, Ruth K.; VELOSO, Valdiléa G.; CUNHA, Cynthia B.; COUTINHO, José R.; VIANNA-ANDRADE, Cecilia; OLIVEIRA, Nathalia S.; WOODHAM, Andrew W.; DA SILVA, Diane M.; KAST, W. Martin
2016-01-01
Objective The aim of the current study was to evaluate secretory leukocyte protease inhibitor (SLPI) expression in anal biopsies from HIV-positive (HIV+) individuals, and compare that to anal intraepithelial neoplasia (AIN) diagnoses and human papillomavirus (HPV) status. Design This is a cross-sectional study of a cohort of 54 HIV+ (31 males and 23 females) from an AIDS clinic in Rio de Janeiro, Brazil. Methods The study material consisted of anorectal tissue biopsies obtained from HIV+ subjects, which were used to construct tissue microarray paraffin blocks for immunohistochemical analysis of SLPI expression. Biopsies were evaluated by an expert pathologist and classified as low-grade anal intraepithelial neoplasia (AIN1), high-grade anal intraepithelial neoplasia (AIN2/3), or normal squamous epithelium. Additionally, DNA from the biopsies was extracted and analyzed for the presence of low- or high-risk HPV DNA. Results Histologically normal squamous epithelium from the anorectal region showed strong positive SLPI staining in 17/20 (85%) samples. In comparison, 9/17 (53%) dysplastic squamous epithelial samples from AIN1 patients showed strong SLPI staining, and only 5/17 (29%) samples from AIN2-3 patients exhibited strong SPLI staining, which both were significantly fewer than those from normal tissue (p=0.005). Furthermore, there was a significantly higher proportion of samples in which oncogenic high-risk HPV genotypes were detected in low SLPI expressing tissues than that in tissues with high SLPI expression (p=0.040). Conclusion Taken together these results suggest that low SLPI expression is associated with high-risk HPV infections in the development of AIN. PMID:27149102
Varley, J M; Armour, J; Swallow, J E; Jeffreys, A J; Ponder, B A; T'Ang, A; Fung, Y K; Brammar, W J; Walker, R A
1989-06-01
We have analysed the organisation of the retinoblastoma (RB1) gene in 77 primary breast carcinomas, in metastatic tissue derived from 16 of those primary tumours, and in a variety of benign breast lesions. Expression of RB1 was also assessed in most samples by immunohistochemical detection of the RB1 protein in tissue sections. Structural abnormalities to RB1 were detected in DNA from 15/77 (19%) of primary breast carcinomas examined. Where DNA was available from metastatic tissue derived from such primary tumours, the same aberration could be detected. No alterations were seen in benign breast lesions. 16/56 (29%) of tumours examined for expression by immunohistochemical methods showed a proportion of tumour cells to be completely negative for the RB1 protein. All tumours in which a structural alteration to RB1 was detected had a proportion of negative cells, except for one case where all cells were positive. Several primary tumour samples were identified where there was no detectable structural change to the gene, but there was loss of expression in some tumour cells. The data presented here demonstrate that changes to the RB1 gene leading to loss of expression of both alleles are frequent in primary human breast tumours.
Casein expression in cytotoxic T lymphocytes.
Grusby, M J; Mitchell, S C; Nabavi, N; Glimcher, L H
1990-01-01
A cDNA that expresses a mRNA restricted to cytotoxic T lymphocytes (CTL) and mammary tissue has been isolated and characterized. The deduced amino acid sequence from this cDNA shows extensive homology with the previously reported amino acid sequence for rat alpha-casein. Indeed, the presence of a six-residue-repeated motif that is specific for rodent alpha-caseins strongly supports the identification of this cDNA as mouse alpha-casein. Northern (RNA) blot analysis of many hematopoietic cell types revealed that this gene is restricted to CTL, being expressed in four of six CTL lines examined. Furthermore, CTL that express this gene were also found to express other members of the casein gene family, such as beta- and kappa-casein. These results suggest that caseins may be important in CTL function, and their potential role in CTL-mediated lysis is discussed. Images PMID:2395885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Wenbin; Cui Zhihong; Ao Lin
To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. Themore » prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.« less
SMAD3 Is Upregulated in Human Osteoarthritic Cartilage Independent of the Promoter DNA Methylation.
Aref-Eshghi, Erfan; Liu, Ming; Razavi-Lopez, Seyd Babak; Hirasawa, Kensuke; Harper, Patricia E; Martin, Glynn; Furey, Andrew; Green, Roger; Sun, Guang; Rahman, Proton; Zhai, Guangju
2016-02-01
To compare SMAD3 gene expression between human osteoarthritic and healthy cartilage and to examine whether expression is regulated by the promoter DNA methylation of the gene. Human cartilage samples were collected from patients undergoing total hip/knee joint replacement surgery due to primary osteoarthritis (OA), and from patients with hip fractures as controls. DNA/RNA was extracted from the cartilage tissues. Real-time quantitative PCR was performed to measure gene expression, and Sequenom EpiTyper was used to assay DNA methylation. Mann-Whitney test was used to compare the methylation and expression levels between OA cases and controls. Spearman rank correlation coefficient was calculated to examine the association between the methylation and gene expression. A total of 58 patients with OA (36 women, 22 men; mean age 64 ± 9 yrs) and 55 controls (43 women, 12 men; mean age 79 ± 10 yrs) were studied. SMAD3 expression was on average 83% higher in OA cartilage than in controls (p = 0.0005). No difference was observed for DNA methylation levels in the SMAD3 promoter region between OA cases and controls. No correlation was found between SMAD3 expression and promoter DNA methylation. Our study demonstrates that SMAD3 is significantly overexpressed in OA. This overexpression cannot be explained by DNA methylation in the promoter region. The results suggest that the transforming growth factor-β/SMAD3 pathway may be overactivated in OA cartilage and has potential in developing targeted therapies for OA.
Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs.
Hossain, Md Shakhawat; Kawakatsu, Taiji; Kim, Kyung Do; Zhang, Ning; Nguyen, Cuong T; Khan, Saad M; Batek, Josef M; Joshi, Trupti; Schmutz, Jeremy; Grimwood, Jane; Schmitz, Robert J; Xu, Dong; Jackson, Scott A; Ecker, Joseph R; Stacey, Gary
2017-04-01
Chromatin modifications, such as cytosine methylation of DNA, play a significant role in mediating gene expression in plants, which affects growth, development, and cell differentiation. As root hairs are single-cell extensions of the root epidermis and the primary organs for water uptake and nutrients, we sought to use root hairs as a single-cell model system to measure the impact of environmental stress. We measured changes in cytosine DNA methylation in single-cell root hairs as compared with multicellular stripped roots, as well as in response to heat stress. Differentially methylated regions (DMRs) in each methylation context showed very distinct methylation patterns between cell types and in response to heat stress. Intriguingly, at normal temperature, root hairs were more hypermethylated than were stripped roots. However, in response to heat stress, both root hairs and stripped roots showed hypomethylation in each context, especially in the CHH context. Moreover, expression analysis of mRNA from similar tissues and treatments identified some associations between DMRs, genes and transposons. Taken together, the data indicate that changes in DNA methylation are directly or indirectly associated with expression of genes and transposons within the context of either specific tissues/cells or stress (heat). © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Franks, Tamera; Kiser, Rebecca; Coalter, Vicky; Smedley, Jeremy; Piatak, Michael; Mellors, John W.; Lifson, Jeffrey D.; Ambrose, Zandrea
2013-01-01
Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood. PMID:24367650
Ludlow, Andrew T; Gratidão, Laila; Ludlow, Lindsay W; Spangenburg, Espen E; Roth, Stephen M
2017-04-01
What is the central question of this study? A positive association between telomere length and exercise training has been shown in cardiac tissue of mice. It is currently unknown how each bout of exercise influences telomere-length-regulating proteins. We sought to determine how a bout of exercise altered the expression of telomere-length-regulating genes and a related signalling pathway in cardiac tissue of mice. What is the main finding and its importance? Acute exercise altered the expression of telomere-length-regulating genes in cardiac tissue and might be related to altered mitogen-activated protein kinase signalling. These findings are important in understanding how exercise provides a cardioprotective phenotype with ageing. Age is the greatest risk factor for cardiovascular disease. Telomere length is shorter in the hearts of aged mice compared with young mice, and short telomere length has been associated with an increased risk of cardiovascular disease. One year of voluntary wheel-running exercise attenuates the age-associated loss of telomere length and results in altered gene expression of telomere-length-maintaining and genome-stabilizing proteins in heart tissue of mice. Understanding the early adaptive response of the heart to an endurance exercise bout is paramount to understanding the impact of endurance exercise on heart tissue and cells. To this end, we studied mice before (BL), immediately after (TP1) and 1 h after a treadmill running bout (TP2). We measured the changes in expression of telomere-related genes (shelterin components), DNA-damage-sensing (p53 and Chk2) and DNA-repair genes (Ku70 and Ku80) and mitogen-activated protein kinase (MAPK) signalling. The TP1 animals had increased TRF1 and TRF2 protein and mRNA levels, greater expression of DNA-repair and -response genes (Chk2 and Ku80) and greater protein content of phosphorylated p38 MAPK compared with both BL and TP2 animals. These data provide insights into how physiological stressors remodel the heart tissue and how an early adaptive response mediated by exercise may be maintaining telomere length and/or stabilizing the heart genome through the upregulation of telomere-protective genes. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Molecular Cloning and Sequencing of Channel Catfish, Ictalurus punctatus, Cathepsin H and L cDNA
USDA-ARS?s Scientific Manuscript database
Cathepsin H and L, a lysosomal cysteine endopeptidase of the papain family, are ubiquitously expressed and involve in antigen processing. In this communication, the channel catfish cathepsin H and L transcripts were sequenced and analyzed. Total RNA from tissues was extracted and cDNA libraries we...
Bellavia, Daniele; Dimarco, Eufrosina; Naselli, Flores; Caradonna, Fabio
2013-10-01
We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status. © 2013 Elsevier Inc. All rights reserved.
Akdag, Mehmet Zulkuf; Dasdag, Suleyman; Canturk, Fazile; Karabulut, Derya; Caner, Yusuf; Adalier, Nur
2016-09-01
Wireless internet (Wi-Fi) providers have become essential in our daily lives, as wireless technology is evolving at a dizzying pace. Although there are different frequency generators, one of the most commonly used Wi-Fi devices are 2.4GHz frequency generators. These devices are heavily used in all areas of life but the effect of radiofrequency (RF) radiation emission on users is generally ignored. Yet, an increasing share of the public expresses concern on this issue. Therefore, this study intends to respond to the growing public concern. The purpose of this study is to reveal whether long term exposure of 2.4GHz frequency RF radiation will cause DNA damage of different tissues such as brain, kidney, liver, and skin tissue and testicular tissues of rats. The study was conducted on 16 adult male Wistar-Albino rats. The rats in the experimental group (n=8) were exposed to 2.4GHz frequency radiation for over a year. The rats in the sham control group (n=8) were subjected to the same experimental conditions except the Wi-Fi generator was turned off. After the exposure period was complete the possible DNA damage on the rat's brain, liver, kidney, skin, and testicular tissues was detected through the single cell gel electrophoresis assay (comet) method. The amount of DNA damage was measured as percentage tail DNA value. Based on the DNA damage results determined by the single cell gel electrophoresis (Comet) method, it was found that the% tail DNA values of the brain, kidney, liver, and skin tissues of the rats in the experimental group increased more than those in the control group. The increase of the DNA damage in all tissues was not significant (p>0.05). However the increase of the DNA damage in rat testes tissue was significant (p<0.01). In conclusion, long-term exposure to 2.4GHz RF radiation (Wi-Fi) does not cause DNA damage of the organs investigated in this study except testes. The results of this study indicated that testes are more sensitive organ to RF radiation. Copyright © 2016 Elsevier B.V. All rights reserved.
Disruption of PCNA-lamins A/C interactions by prelamin A induces DNA replication fork stalling.
Cobb, Andrew M; Murray, Thomas V; Warren, Derek T; Liu, Yiwen; Shanahan, Catherine M
2016-09-02
The accumulation of prelamin A is linked to disruption of cellular homeostasis, tissue degeneration and aging. Its expression is implicated in compromised genome stability and increased levels of DNA damage, but to date there is no complete explanation for how prelamin A exerts its toxic effects. As the nuclear lamina is important for DNA replication we wanted to investigate the relationship between prelamin A expression and DNA replication fork stability. In this study we report that the expression of prelamin A in U2OS cells induced both mono-ubiquitination of proliferating cell nuclear antigen (PCNA) and subsequent induction of Pol η, two hallmarks of DNA replication fork stalling. Immunofluorescence microscopy revealed that cells expressing prelamin A presented with high levels of colocalisation between PCNA and γH2AX, indicating collapse of stalled DNA replication forks into DNA double-strand breaks. Subsequent protein-protein interaction assays showed prelamin A interacted with PCNA and that its presence mitigated interactions between PCNA and the mature nuclear lamina. Thus, we propose that the cytotoxicity of prelamin A arises in part, from it actively competing against mature lamin A to bind PCNA and that this destabilises DNA replication to induce fork stalling which in turn contributes to genomic instability.
Tissue Specific and Hormonal Regulation of Gene Expression
1997-08-01
interference assays were performed. These assays identify DNA bases that, when modified, interfere with the binding of the nuclear factor to the hCRH promoter...thymidine residues. The DNA bases that when modified affected the binding of the protein are noted with arrows, and their location in the hCRH...indicated. B. Methylation interference. The fragments were partially methylated using dimethyl sulfate. The DNA bases that when modified affected the
Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander
2002-06-28
Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.
Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES
2012-01-01
Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs), a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100) DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100) tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can effectively enhance anti-tumor potency of a gene-based cancer vaccine via the induction of RANTES expression at the skin immunization site. PMID:22494696
Pusterla, N; Wilson, W D; Conrad, P A; Barr, B C; Ferraro, G L; Daft, B M; Leutenegger, C M
2006-09-09
This study was designed to determine the relative levels of gene transcription of selected pathogens and cytokines in the brain and spinal cord of 12 horses with equine protozoal myeloencephalitis (EPM), 11 with equine herpesvirus type 1 (EHV-1) myeloencephalopathy, and 12 healthy control horses by applying a real time pcr to the formalin-fixed and paraffin-embedded tissues. Total rna was extracted from each tissue, transcribed to complementary dna (cDNA) and assayed for Sarcocystis neurona, Neospora hughesi, EHV-1, equine GAPDH (housekeeping gene), tumour necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-1beta, IL-2, IL-4, IL-6, IL-8, IL-10 AND IL-12 p40. S neurona cdna was detected in the neural tissue from all 12 horses with EPM, and two of them also had amplifiable cDNA of N hughesi. The relative levels of transcription of protozoal cdna ranged from 1 to 461 times baseline (mean 123). All the horses with ehv-1 myeloencephalopathy had positive viral signals by PCR with relative levels of transcription ranging from 1 to 1618 times baseline (mean 275). All the control horses tested negative for S neurona, N hughesi and EHV-1 cdna. The cytokine profiles of each disease indicated a balance between pro- and anti-inflammatory markers. In the horses with epm the pro-inflammatory Th1 cytokines (IL-8, TNF-alpha and IFN-gamma) were commonly expressed but the anti-inflammatory Th2 cytokines (IL-4, IL-6 AND IL-10) were absent or rare. In the horses with ehv-1 the proinflammatory cytokine IL-8 was commonly expressed, but IL-10 and IFN-gamma were not, and TNF-alpha was rare. Tissue from the control horses expressed only the gene GAPDH.
The nuclear-factor kappaB pathway is activated in pterygium.
Siak, Jay Jyh Kuen; Ng, See Liang; Seet, Li-Fong; Beuerman, Roger W; Tong, Louis
2011-01-05
Pterygium is a prevalent ocular surface disease with unknown pathogenesis. The authors investigated the role of nuclear factor kappa B (NF-κB) transcription factors in pterygium. Surgically excised primary pterygia were studied compared with uninvolved conjunctiva tissues. NF-κB activation was evaluated using Western blot analysis, ELISA, and DNA-binding assays. Primary pterygium fibroblasts were treated with TNF-α (20 ng/mL), and NF-κB activation was evaluated using immunocytochemistry, Western blot analysis, phospho-IκBα ELISA, and DNA-binding assays. TNF-α stimulation of NF-κB target genes RelB, NFKB2, RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 in pterygium fibroblasts was compared with that in primary tenon fibroblasts by real-time PCR. Phosphorylation of IκBα (Ser32) was increased in pterygia tissues compared with uninvolved conjunctiva tissues, as determined by Western blot analysis and ELISA. IκBα expression was decreased, whereas nuclear RelA and p50 DNA-binding capacities were increased. Within 30 minutes of treatment with TNF-α, pterygium fibroblasts showed increased IκBα phosphorylation and nuclear translocation of RelA and p50. Treatment with TNF-α beyond 12 hours resulted in increased nuclear expression of RelB, p100, and p52. Furthermore, the upregulation of RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 expression was more pronounced in TNF-α-treated pterygium fibroblasts than in tenon fibroblasts. The NF-κB pathway is shown for the first time to be activated in pterygia tissues compared with normal conjunctiva tissues. Stimulation by the inflammatory cytokine TNF-α can activate both canonical and noncanonical NF-κB pathways in pterygium fibroblasts with concomitant upregulation of NF-κB target genes.
Ben, Jin; Jabs, Ethylin Wang; Chong, Samuel S
2005-06-01
Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant clefting disorders recently discovered to be caused by mutations in the IRF6 (Interferon Regulatory Factor 6) gene. The IRF gene family consists of nine members encoding transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 remains unknown. We have isolated a full-length zebrafish irf6 cDNA, which encodes a 492 amino acid protein that contains a Smad-IRF interaction motif and a DNA-binding domain. The zebrafish irf6 gene consists of eight exons and maps to linkage group 22 closest to marker unp1375. By in situ hybridization analysis of embryo whole-mounts and cryosections, we demonstrate that irf6 is first expressed as a maternal transcript. During gastrulation, irf6 expression was concentrated in the forerunner cells. From the bud stage to the 3-somite stage, irf6 expression was observed in the Kupffer's vesicle. No expression could be detected at the 6-somite and 10-somite stages. At the 14-somite stage, expression was detected in the otic placode. At the 17-somite stage, strong expression was also observed in the cloaca. During the pharyngula, hatch and larva periods up to 5 days post-fertilization, irf6 was expressed in the pharyngeal arches, olfactory and otic placodes, and in the epithelial cells of endoderm derived tissues. The latter tissues include the mouth, pharynx, esophagus, endodermal lining of swim bladder, liver, exocrine pancreas, and associated ducts. Overall, the zebrafish expression data are consistent with the observations of lip pits in VWS patients, as well as more recent reports of alae nasi, otitis media and sensorineural hearing loss documented in some patients.
Leontovich, Alexey A; Intine, Robert V; Sarras, Michael P
2016-01-01
Metabolic memory (MM) is defined as the persistence of diabetic (DM) complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes) were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6-13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes.
Epstein-Barr Virus Infection in Chronically Inflamed Periapical Granulomas
Makino, Kosuke; Takeichi, Osamu; Hatori, Keisuke; Imai, Kenichi; Ochiai, Kuniyasu; Ogiso, Bunnai
2015-01-01
Periapical granulomas are lesions around the apex of a tooth caused by a polymicrobial infection. Treatment with antibacterial agents is normally performed to eliminate bacteria from root canals; however, loss of the supporting alveolar bone is typically observed, and tooth extraction is often selected if root canal treatment does not work well. Therefore, bacteria and other microorganisms could be involved in this disease. To understand the pathogenesis of periapical granulomas more precisely, we focused on the association with Epstein-Barr virus (EBV) using surgically removed periapical granulomas (n = 32). EBV DNA was detected in 25 of 32 periapical granulomas (78.1%) by real-time PCR, and the median number of EBV DNA copies was approximately 8,688.01/μg total DNA. In contrast, EBV DNA was not detected in healthy gingival tissues (n = 10); the difference was statistically significant according to the Mann-Whitney U test (p = 0.0001). Paraffin sections were also analyzed by in situ hybridization to detect EBV-encoded small RNA (EBER)-expressing cells. EBER was detected in the cytoplasm and nuclei of B cells and plasma cells in six of nine periapical granulomas, but not in healthy gingival tissues. In addition, immunohistochemical analysis for latent membrane protein 1 (LMP-1) of EBV using serial tissue sections showed that LMP-1-expressing cells were localized to the same areas as EBER-expressing cells. These data suggest that B cells and plasma cells in inflamed granulomas are a major source of EBV infection, and that EBV could play a pivotal role in controlling immune cell responses in periapical granulomas. PMID:25884725
Rambhatla, Lakshmi; Ram-Mohan, Sumati; Cheng, Jennifer J; Sherley, James L
2005-04-15
Because they are long-lived and cycle continuously, adult stem cells (ASCs) are predicted as the most common precursor for cancers in adult mammalian tissues. Two unique attributes have been proposed to restrict the carcinogenic potential of ASCs. These are asymmetric self-renewal that limits their number and immortal DNA strand cosegregation that limits their accumulation of mutations due to DNA replication errors. Until recently, the molecular basis and regulation of these important ASC-specific functions were unknown. We developed engineered cultured cells that exhibit asymmetric self-renewal and immortal DNA strand cosegregation. These model cells were used to show that both ASC-specific functions are regulated by the p53 cancer gene. Previously, we proposed that IMP dehydrogenase (IMPDH) was an essential factor for p53-dependent asymmetric self-renewal. We now confirm this proposal and provide quantitative evidence that asymmetric self-renewal is acutely sensitive to even modest changes in IMPDH expression. These analyses reveal that immortal DNA strand cosegregation is also regulated by IMPDH and confirm the original implicit precept that immortal DNA strand cosegregation is specific to cells undergoing asymmetric self-renewal (i.e., ASCs). With IMPDH being the rate-determining enzyme for guanine ribonucleotide (rGNP) biosynthesis, its requirement implicates rGNPs as important regulators of ASC asymmetric self-renewal and immortal DNA strand cosegregation. An in silico analysis of global gene expression data from human cancer cell lines underscored the importance of p53-IMPDH-rGNP regulation for normal tissue cell kinetics, providing further support for the concept that ASCs are key targets for adult tissue carcinogenesis.
Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures.
Gonzales, Veronica K; de Mulder, Eric L W; de Boer, Trix; Hannink, Gerjon; van Tienen, Tony G; van Heerde, Waander L; Buma, Pieter
2013-11-01
Concerns over fetal bovine serum (FBS) limit the clinical application of cultured tissue-engineered constructs. Therefore, we investigated if platelet-rich plasma (PRP) can fully replace FBS for meniscus tissue engineering purposes. Human PRP and platelet-poor plasma (PPP) were isolated from three healthy adult donors. Human meniscal fibrochondrocytes (MFCs) were isolated from resected tissue after a partial meniscectomy on a young patient. Passage-4 MFCs were cultured in monolayer for 24 h, and 3 and 7 days. Six different culture media were used containing different amounts of either PRP or PPP and compared to a medium containing 10% FBS. dsDNA was quantified, and gene expression levels of collagen types I and II and aggrecan were measured at different time points with quantitative polymerase chain reaction in the cultured MFCs. After 7 days, the dsDNA quantity was significantly higher in MFCs cultured in 10% and 20% PRP compared to the other PRP and PPP conditions, but equal to 10% FBS. Collagen type I expression was lower in MFCs cultured with medium containing 5% PRP, 10% and 20% PPP compared to FBS. When medium with 10% PRP or 20% PRP was used, expressions were not significantly different from medium containing 10% FBS. Collagen type II expression was absent in all medium conditions. Aggrecan expression did not show differences between the different media used. However, after 7 days a higher aggrecan expression was measured in most culture conditions, except for 5% PRP, which was similar compared to FBS. Statistical significance was found between donors at various time points in DNA quantification and gene expression, but the same donors were not statistically different in all conditions. At 7 days cell cultured with 10% PRP and 20% PRP showed a higher density, with large areas of clusters, compared to other conditions. In an MFC culture medium, FBS can be replaced by 10% PRP or 20% PRP without altering proliferation and gene expression of human MFCs.
NASA Astrophysics Data System (ADS)
Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.
2016-07-01
Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.
[Laser microdissection for biology and medicine].
Podgornyĭ, O V; Lazarev, V N; Govorun, V M
2012-01-01
For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.
Breton, Sophie; Bouvet, Karim; Auclair, Gabrielle; Ghazal, Stephanie; Sietman, Bernard E.; Johnson, Nathan A.; Bettinazzi, Stefano; Dtewart, Donald T.; Guerra, Davide
2017-01-01
Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy.
Hidaka, Yoshie; Suzuki, Masakazu
2004-06-01
Four types of calcitonin are produced in salmonid fish, although their functional diversity is almost unknown. To explore the significance of these isoforms, we have characterized salmon-type calcitonin (sCT) mRNAs in the rainbow trout (Oncorhynchus mykiss), and examined their tissue distribution. In addition to the previously isolated sCT-I cDNAs, two new forms of sCT cDNA were cloned from the ultimobranchial gland, and one of them (sCT-IV cDNA) was predicted to encode an N-terminal peptide of 80 amino acid residues, a putative cleavage site Lys-Arg, sCT-IV, a cleavage and amidation sequence Gly-Lys-Lys-Arg, and a C-terminal peptide of 18 amino acids. The sCT-IV precursor was 78% identical with the rainbow trout sCT-I precursors. The other cloned cDNA encoded a precursor for a novel CT, sCT-V. The sCT-V peptide was different from sCT-IV by only one amino acid residue: Val at position 8 in the latter was replaced by Met. The sCT-V precursor had 80 and 90% identity with the sCT-I and -IV precursors respectively. No cDNA clones were obtained for sCTs-II or -III.Tissue distribution of sCT-I, -IV and -V mRNAs was examined by RT-PCR and specific cleavage with restriction enzymes. An amplified fragment from sCT-I mRNA was detected not only in the ultimobranchial gland, but also in the gills, testis and ovary. RT-PCR analysis coupled to restriction digestion further revealed that sCT-IV mRNA was expressed in both the testis and the ultimobranchial gland. The expression sites of sCT-IV mRNA were localized to the Leydig cells of the testis and to the parenchymal cells of the ultimobranchial gland, by in situ hybridization histochemistry. Although the amino acid sequence of sCT-V peptide was nearly the same as that of sCT-IV, the sCT-V gene showed a much wider pattern of expression: the band amplified by RT-PCR was detected in all the tissues examined except the kidney, gills and blood cells. The sCT-V mRNA was shown to be localized in the parenchymal cells of the ultimobranchial gland, but not in other tissues at the cellular level, suggesting very low expression of sCT-V mRNA in those tissues. Our results show different patterns of tissue expression of three types of sCT genes in the rainbow trout, suggesting that sCTs-I, -IV and -V might differ in their local actions.
Xu, Min-jie; Zhang, Cong; Yang, Zhigang
2018-01-01
Dopamine (DA) plays a modulatory role in numerous physiological processes such as light adaptation and food intake, and exerts these functions through DA receptors (DARs). This study presents, for the first time, isolation and characterization of the dopamine receptor 2(DA2 receptor) cDNA from the intestinal tissue of Eriocheir sinensis, an economically important freshwater aquaculture species in China. The DA2 receptor cDNA sequence, which was obtained by rapid amplification of cDNA ends, is 2369bp long, encode peptide of 589 amino acid, and is highly homologous to related sequences in crustaceans. Analysis of the deduced amino acid sequence and the structure of the DA2 indicated that this receptor is a member of the family of G protein-coupled receptors (GPCRs), as it contains seven transmembrane domains and other common signatures of GPCRs. RT-PCR showed that the expression of the DA2 receptor gene was distributed in various tissues, and high expression levels were observed in the cranial ganglia and the thoracic ganglia. Further study of the effect of photoperiod on DA2 expression showed that constant darkness induced a significant increase in DA2 expression in the cranial ganglia. Finally, analysis of DA2 receptor expression under different feeding statuses showed that there was significantly greater expression in the hepatopancreas and intestines after feeding than before feeding, but there were no differences in expression between the before feeding and during feeding periods in either tissue. Our results indicate that the DA2 receptor structurally belongs to the family of G protein-coupled receptors, and that the cranial ganglia are the main tissues in which the DA2 receptor participates in light adaptation during dark hours. In addition, the DA2 receptor in E. sinensis may be involved in the physiological regulation of the hepatopancreas and digestive tract after the ingestion of food. This study provides a foundation for further exploration of the light adaptation and digestive functions of the DA2 receptor in decapods. PMID:29554147
Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet
2013-01-01
Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become “immortal”) by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism. PMID:23691139
Sun, Ai-Jun; Gao, Hai-Bo; Liu, Gao; Ge, Heng-Fa; Ke, Zun-Ping; Li, Sen
2017-07-01
Colorectal cancer is the second most deadly malignancy in the United States. However, the currently screening options had their limitation. Novel biomarkers for colorectal cancer detections are necessary to reduce the mortality. The clinical information, mRNA expression levels and DNA methylation information of colorectal cancer were downloaded from TCGA. The patients were separated into training group and testing group based on their platforms for DNA methylation. Beta values of DNA methylation from tumor tissues and normal tissues were utilized to figure out the position that were differentially methylated. The expression levels of mRNA of thirteen genes, whose CpG islands were differentially methylated, were extracted from the RNA-Seq results from TCGA. The probabilities whether the mRNA was differentially expressed between tumor and normal samples were calculated using Student's t-test. Logistic regression and decision tree were built for cancer detection and their performances were evaluated by the area under the curve (AUC). Twenty-four genomic locations were differentially methylated, which could be mapped to eleven genes. Nine out of eleven genes had differentially expressed mRNA levels, which were used to build the model for cancer detection. The final detection models consisting of mRNA expression levels of these nine genes had great performances on both training group and testing group. The model that constructed in this study suggested MSX1 and DCLK1 might be used in colorectal cancer detection or as target of cancer therapies. J. Cell. Physiol. 232: 1879-1884, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sysel, Annette M.; Valli, Victor E.; Bauer, Joseph A.
2015-01-01
Cancer cells have an obligate need for cobalamin (vitamin B12) to enable DNA synthesis necessary for cellular replication. This study quantified the immunohistochemical expression of the cobalamin transport protein (transcobalamin II; TCII), cell surface receptor (transcobalamin II-R; TCII-R) and proliferation protein (Ki-67) in naturally occurring canine and feline malignant tumors, and compared these results to expression in corresponding adjacent normal tissues. All malignant tumor tissues stained positively for TCII, TCII-R and Ki-67 proteins; expression varied both within and between tumor types. Expression of TCII, TCII-R and Ki-67 was significantly higher in malignant tumor tissues than in corresponding adjacent normal tissues in both species. There was a strong correlation between TCII and TCII-R expression, and a modest correlation between TCII-R and Ki-67 expression in both species; a modest association between TCII and Ki-67 expression was present in canine tissues only. These results demonstrate a quantifiable, synchronous up-regulation of TCII and TCII-R expression by proliferating canine and feline malignant tumors. The potential to utilize these proteins as biomarkers to identify neoplastic tissues, streamline therapeutic options, evaluate response to anti-tumor therapy and monitor for recurrent disease has important implications in the advancement of cancer management for both human and companion animal patients. PMID:25633912
Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A.; Kuiper, Raoul V.; Curbo, Sophie; Karlsson, Anna
2013-01-01
A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK+/− transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK+/−TK2−/− mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK+/−TK2−/− mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency. PMID:23288848
Laoong-u-thai, Yanisa; Zhao, Baoping; Phongdara, Amornrat; Ako, Harry; Yang, Jinzeng
2009-01-01
Small ubiquitin-like modifiers (SUMO) work in a similar way as ubiquitin to alter the biological properties of a target protein by conjugation. A shrimp SUMO cDNA named LvSUMO-1 was identified in Litopenaeus vannamei. LvSUMO-1 cDNA contains a coding sequence of 282 nucleotides with untranslated regions of 37 bp at 5'-end and 347 bp at 3'-end, respectively. The deduced 93 amino acids exhibit 83% identity with the Western Honeybee SUMO-1, and more than 65% homologies with human and mouse SUMO-1. LvSUMO-1 mRNA is expressed in most L. vannamei tissues with the highest level in hepatopancrease. The mRNA expression of LvSUMO-1 over development stages in L. Vammamei is distinguished by a low level in nauplius stage and relatively high level in postlarva stage with continuous expression until juvenile stage. The LvSUMO-1 protein and its conjugated proteins are detected in both cytoplasm and nucleus in several tissues. Interestingly, LvSUMO-1 mRNA levels are high in abdominal muscle during the premolt stage, wherein it has significant activities of protein degradation, suggesting its possible role in the regulation of shrimp muscle protein degradation. PMID:19240809
Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc
2011-01-01
Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.
Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc
2011-01-01
Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345
Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro
2007-05-01
Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent's non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent's method is not suitable for ROKU.
Hitzler, J K; Witte, D P; Jenkins, N A; Copeland, N G; Gilbert, D J; Naeve, C W; Look, A T; Morris, S W
1999-07-01
The NPM-MLF1 fusion protein is expressed in blasts from patients with myelodysplasia/acute myeloid leukemia (MDS/AML) containing the t(3;5) chromosomal rearrangement. Nucleophosmin (NPM), a previously characterized nucleolar phosphoprotein, contributes to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lymphoma (NPM-ALK) and acute promyelocytic leukemia (NPM-RARalpha). By contrast, the function of the carboxy-terminal fusion partner, myelodysplasia/myeloid leukemia factor 1 (MLF1), is unknown. To aid in understanding normal MLF1 function, we isolated the murine cDNA, determined the chromosomal localization of Mlf1, and defined its tissue expression by in situ hybridization. Mlf1 was highly similar to its human homologue (86% and 84% identical nucleotide and amino acid sequence, respectively) and mapped to the central region of chromosome 3, within a segment lacking known mouse mutations. Mlf1 tissue distribution was restricted during both development and postnatal life, with high levels present only in skeletal, cardiac, and selected smooth muscle, gonadal tissues, and rare epithelial tissues including the nasal mucosa and the ependyma/choroid plexus in the brain. Mlf1 transcripts were undetectable in the lympho-hematopoietic organs of both the embryonic and adult mouse, suggesting that NPM-MLF1 contributes to the genesis of MDS/AML in part by enforcing the ectopic overexpression of MLF1 within hematopoietic tissues.
Identification of a rice metal tolerance protein OsMTP11 as a manganese transporter
Zhang, Mei; Liu, Baoxiu
2017-01-01
Metal tolerance proteins (MTPs) are a gene family of cation efflux transporters that occur widely in plants and might serve an essential role in metal homeostasis and tolerance. Our research describes the identification, characterization, and localization of OsMTP11, a member of the MTP family from rice. OsMTP11 was expressed constitutively and universally in different tissues in rice plant. Heterologous expression in yeast showed that OsMTP11 complemented the hypersensitivity of mutant strains to Mn, and also complemented yeast mutants to other metals, including Co and Ni. Real time RT-PCR analysis demonstrated OsMTP11 expression was substantially enhanced following 4 h under Cd, Zn, Ni, and Mn treatments, suggesting possible roles of OsMTP11 involvement in heavy metal stress responses. Promoter analysis by transgenic assays with GUS as a reporter gene and mRNA in situ hybridization experiments showed that OsMTP11 was expressed specifically in conducting tissues in rice. DNA methylation assays of genomic DNA in rice treated with Cd, Zn, Ni, and Mn revealed that decreased DNA methylation levels were present in the OsMTP11 promoter region, which was consistent with OsMTP11 induced-expression patterns resulting from heavy metal stress. This result suggested that DNA methylation is one of major factors regulating expression of OsMTP11 through epigenetic mechanisms. OsMTP11 fused to green fluorescent protein (GFP) localized to the entire onion epidermal cell cytoplasm, while vacuolar membrane exhibited increased GFP signals, consistent with an OsMTP11 function in cation sequestration. Our results indicated that OsMTP11 might play vital roles in Mn and other heavy metal transportation in rice. PMID:28394944
Upregulation of human DNA binding protein A (dbpA) in gastric cancer cells.
Wang, Guo-rong; Zheng, Yan; Che, Xiang-ming; Wang, Xin-yang; Zhao, Jia-hui; Wu, Kai-jie; Zeng, Jin; Pan, Chen-en; He, Da-lin
2009-10-01
To determine the effect of human DNA binding protein (dbpA) on the biology of gastric cancer cells. DbpA expression was analyzed by Western blot analysis and immunofluorescence staining in gastric cancer tissues and cell lines. A dbpA-specific small interference (si) RNA was designed and synthesized. Suppressive effect of siRNA on dbpA expression was assessed by real-time RT-PCR. Transwell migration and colony formation assays were used to assess the inhibitory effects of dbpA siRNA on cell invasion and tumorigenesis in vitro. Drug-sensitivity was evaluated using a conventional 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The expression of dbpA was upregulated in gastric cancer tissues and cell lines as compared to adjacent normal tissues or gastric epithelial cells. siRNA treatment successfully silenced dbpA expression. Silencing of dbpA increased expression of E-cadherin, decreased expression of adenomatous polyposis coli (APC), beta-catenin and cyclin D1, but had no effect on expression of NF-kappaB. Silencing of dbpA also suppressed cell invasion and colony formation of SGC7901 cells, and enhanced their chemosensitivity to 5-fluorouracil. DbpA plays an important role in the pathogenesis and development of gastric cancer, and the process involves E-cadherin, APC, beta-catenin and cyclin D1. Silencing of dbpA might be a novel therapeutic strategy for increasing chemosensitivity to 5-fluorouracil in gastric cancer.
Sui, M X; Wang, H H; Wang, Z W
2015-11-24
The current study aimed to investigate the coding sequence, polymorphisms, and expression of the RERG gene in indigenous Chinese goats. cDNA of RERG, obtained through reverse transcription PCR was analyzed using bioinformatic techniques. Polymorphisms in the exon regions of the RERG gene were identified and their associations with growth traits in three varieties of indigenous Chinese goats were investigated. Expression of the RERG gene in three goat breeds of the same age was detected using real-time quantitative PCR. The results revealed that the cDNA of RERG, which contained a complete open reading frame of 20-620 bp, was 629 bp in length. The associated accession numbers in GenBank are JN672576, JQ917222, and JN580309 for the QianBei Ma goat, the GuiZhou white goat, and the GuiZhou black goat, respectively. Four consistent SNP sites were found in the exon regions of the RERG gene for the three goat breeds. mRNA expression of the RERG gene differed between different tissues in adult goats of same age. The highest expression was observed in lung and spleen tissues, while the lowest expression was recorded in thymus gland tissue. In addition, the expression of the RERG gene in the muscle of Guizhou white goat, GuiZhou black goat, and QianBei Ma goat decreased sequentially. Our results lay the foundations for further investigation into the role of the RERG gene in goat growth traits.
Banas, Tomasz; Pitynski, Kazimierz; Mikos, Marcin; Cielecka-Kuszyk, Joanna
2017-09-13
DNA fragmentation factor 40 (DFF40) is a key executor of apoptosis. It localizes to the nucleus together with DNA fragmentation factor 45 (DFF45), which acts as a DFF40 inhibitor and chaperone. B-cell lymphoma (Bcl-2) protein is a proven antiapoptotic factor present in the cytoplasm. In this study, we aimed to investigate DFF40, DFF45, and Bcl-2 immunoexpression in endometrial polyps (EPs) and benign endometrial hyperplasia (BEH) tissue compared with that in normal proliferative endometrium (NPE) and normal secretory endometrium (NSE) as well as normal post menopausal endometrium (NAE). This study used archived samples from 65 and 62 cases of EPs and BEH, respectively. The control group consisted of 52 NPE, 54 NSE, and 54 NAE specimens. Immunohistochemistry was used to detect DFF40, DFF45, and Bcl-2. DFF40, DFF45, and Bcl-2 were more highly expressed in the glandular layer of EPs and BEH compared with the stroma, and this was not influenced by menopausal status. Both glandular and stromal expression of DFF40, DFF45, and Bcl-2 were significantly higher in EPs compared with NPE, NSE, and NAE. Glandular BEH tissue showed significantly higher DFF40, DFF45, and Bcl-2 expression than in NPE, NSE, and NAE. No differences in the glandular expression of DFF40, DFF45, and Bcl-2 were observed between EP and BEH tissues, while Bcl-2 stromal expression in BEH was significantly lower than in EPs. Glandular, menopause-independent DFF40, DFF45, and Bcl-2 overexpression may play an important role in the pathogenesis of EPs and BEH.
Cannon, Matthew V.; Buchner, David A.; Hester, James; Miller, Hadley; Sehayek, Ephraim; Nadeau, Joseph H.; Serre, David
2014-01-01
Aims Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we characterize the phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic changes induced by maternal diet in adult offspring. Methods We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart. We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results Maternal diet had a significant effect on the body weight of the offspring when they were fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. We did not detect any effect of the maternal diet on DNA methylation in the liver. Conclusions Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver. PMID:24594983
Shalaby, Sally M; El-Shal, Amal S; Abdelaziz, Lobna A; Abd-Elbary, Eman; Khairy, Mostafa M
2018-02-20
Rectal cancer involves one-third of colorectal cancers (CRCs). Recently, data supported that DNA methylation have a role in CRC pathogenesis. In the present study we aimed to analyze the methylation status of MGMT and ERCC1 promoter regions in blood and tissue of patients with benign and malignant rectal tumors. We also studied the methylated MGMT and ERCC1 genes and their relations with clinicopathological features. Furthermore, we suggested that methylation may play a critical function in the regulation of MGMT and ERCC1 expression. Fifty patients with non-metastatic cancer rectum and 43 patients with benign rectal lesions were involved in the study. DNA extraction from blood and rectal specimens was done to analyze the methylation status of MGMT and ERCC1 genes by methylation-specific PCR method. RNA was extracted also to determine the expression levels of these genes by real time-PCR. The frequency of MGMT and ERCC1 methylation was significantly higher in rectum cancers than in benign tumors both for the tissue and the blood (p<0.001). There was no relation between MGMT or ERCC1 methylation and clinicopathological features; while they were correlated with the response to therapy. An interesting finding that the agreement of the methylation levels in the blood and rectal tissue was classified as good (κ=0.78) for MGMT gene and as very good (κ=0.85) for ERCC1. Lastly, the MGMT and ERCC1 genes methylation was associated with down-regulation of their mRNA expression when compared with the non-methylated status. Our findings provided evidence that both blood and tumor tissue MGMT and ERCC1 methylation were associated with cancer rectum. MGMT or ERCC1 methylation in blood could be suitable non-invasive biomarkers differentiating benign and malignant rectal tumors. Furthermore, the methylation of the MGMT and ERCC1 promoter regions was associated with down-regulation of their mRNA expression. Copyright © 2017 Elsevier B.V. All rights reserved.
ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors.
Skamagki, Maria; Correia, Cristina; Yeung, Percy; Baslan, Timour; Beck, Samuel; Zhang, Cheng; Ross, Christian A; Dang, Lam; Liu, Zhong; Giunta, Simona; Chang, Tzu-Pei; Wang, Joye; Ananthanarayanan, Aparna; Bohndorf, Martina; Bosbach, Benedikt; Adjaye, James; Funabiki, Hironori; Kim, Jonghwan; Lowe, Scott; Collins, James J; Lu, Chi-Wei; Li, Hu; Zhao, Rui; Kim, Kitai
2017-09-01
Induced pluripotent stem cells (iPSCs), which are used to produce transplantable tissues, may particularly benefit older patients, who are more likely to suffer from degenerative diseases. However, iPSCs generated from aged donors (A-iPSCs) exhibit higher genomic instability, defects in apoptosis and a blunted DNA damage response compared with iPSCs generated from younger donors. We demonstrated that A-iPSCs exhibit excessive glutathione-mediated reactive oxygen species (ROS) scavenging activity, which blocks the DNA damage response and apoptosis and permits survival of cells with genomic instability. We found that the pluripotency factor ZSCAN10 is poorly expressed in A-iPSCs and addition of ZSCAN10 to the four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) during A-iPSC reprogramming normalizes ROS-glutathione homeostasis and the DNA damage response, and recovers genomic stability. Correcting the genomic instability of A-iPSCs will ultimately enhance our ability to produce histocompatible functional tissues from older patients' own cells that are safe for transplantation.
Rapid in silico cloning of genes using expressed sequence tags (ESTs).
Gill, R W; Sanseau, P
2000-01-01
Expressed sequence tags (ESTs) are short single-pass DNA sequences obtained from either end of cDNA clones. These ESTs are derived from a vast number of cDNA libraries obtained from different species. Human ESTs are the bulk of the data and have been widely used to identify new members of gene families, as markers on the human chromosomes, to discover polymorphism sites and to compare expression patterns in different tissues or pathologies states. Information strategies have been devised to query EST databases. Since most of the analysis is performed with a computer, the term "in silico" strategy has been coined. In this chapter we will review the current status of EST databases, the pros and cons of EST-type data and describe possible strategies to retrieve meaningful information.
Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery.
Lee, Dongwon; Zhang, Weidong; Shirley, Shawna A; Kong, Xiaoyuan; Hellermann, Gary R; Lockey, Richard F; Mohapatra, Shyam S
2007-01-01
Thiolated chitosan appears to possess enhanced mucoadhesiveness and cell penetration properties, however, its potential in gene-drug delivery remains unknown. Herein, we report on a highly effective gene delivery system utilizing a 33-kDa thiol-modified chitosan derivative. Thiolated chitosan was prepared by the reaction with thioglycolic acid. Nanocomplexes of unmodified chitosan or thiolated chitosan with plasmid DNA encoding green fluorescenct protein (GFP) were characterized for their size, zeta potential, their ability to bind and protect plasmid DNA from degradation. The transfection efficiency of thiolated chitosan and sustained gene expression were evaluated in various cell lines in vitro and in Balb/c mice in vivo. Thiolated chitosan-DNA nanocomplexes ranged in size from 75 to 120 nm in diameter and from +2.3 to 19.7 mV in zeta potential, depending on the weight ratio of chitosan to DNA. Thiolated chitosan, CSH360, exhibited effective physical stability and protection against DNase I digestion at a weight ratio>or=2.5:1. CSH360/DNA nanocomplexes induced significantly (P<0.01) higher GFP expression in HEK293, MDCK and Hep-2 cell lines than unmodified chitosan. Nanocomplexes of disulphide-crosslinked CSH360/DNA showed a sustained DNA release and continuous expression in cultured cells lasting up to 60 h post transfection. Also, intranasal administration of crosslinked CSH360/DNA nanocomplexes to mice yielded gene expression that lasted for at least 14 days. Thiolated chitosans condense pDNA to form nanocomplexes, which exhibit a significantly higher gene transfer potential and sustained gene expression upon crosslinking, indicating their great potential for gene therapy and tissue engineering.
Alvarez-Pérez, Marco Antonio; Narayanan, Sampath; Zeichner-David, Margarita; Rodríguez Carmona, Bruno; Arzate, Higinio
2006-03-01
Cementum is a unique mineralized connective tissue that covers the root surfaces of the teeth. The cementum is critical for appropriate maturation of the periodontium, both during development as well as that associated with regeneration of periodontal tissues, IU; however, one major impediment to understand the molecular mechanisms that regulate periodontal regeneration is the lack of cementum markers. Here we report on the identification and characterization of one such differentially human expressed gene, termed "cementum protein-23" (CP-23) that appears to be periodontal ligament and cementum-specific. We screened human cementum tumor-derived cDNA libraries by transient expression in COS-7 cells and "panning" with a rabbit polyclonal antibody against a cementoblastoma conditioned media-derived protein (CP). One isolated cDNA, CP-23, was expressed in E. coli and polyclonal antibodies against the recombinant human CP-23 were produced. Expression of CP-23 protein by cells of the periodontium was examined by Northern blot and in situ hybridization. Expression of CP-23 transcripts in human cementoblastoma-derived cells, periodontal ligament cells, human gingival fibroblasts and alveolar bone-derived cells was determined by RT-PCR. Our results show that we have isolated a 1374-bp human cDNA containing an open reading frame that encodes a polypeptide with 247 amino acid residues, with a predicted molecular mass of 25.9 kDa that represents CP species. The recombinant human CP-23 protein cross-reacted with antibodies against CP and type X collagen. Immunoscreening of human periodontal tissues revealed that CP-23 gene product is localized to the cementoid matrix of cementum and cementoblasts throughout the entire surface of the root, cell subpopulations of the periodontal ligament as well as cells located paravascularly to the blood vessels into the periodontal ligament. Furthermore, 98% of putative cementoblasts and 15% of periodontal ligament cells cultured in vitro expressed CP-23 gene product. Cementoblastoma cells and periodontal ligament cells contained a 5.0 kb CP-23 mRNA. In situ hybridization showed strong expression of CP-23 mRNA on cementoblast, cell subpopulations of the periodontal ligament and cells located around blood vessels into the periodontal ligament. Our results demonstrate that CP-23 represents a novel, tissue-specific-gene product being expressed by periodontal ligament subpopulations and cementoblasts. These findings offer the possibility to determine the cellular and molecular events that regulate the cementogenesis process during root development. Furthermore, it might provide new venues for the design of translational studies aimed at achieving predictable new cementogenesis and regeneration of the periodontal tissues.
The Use of EST Expression Matrixes for the Quality Control of Gene Expression Data
Milnthorpe, Andrew T.; Soloviev, Mikhail
2012-01-01
EST expression profiling provides an attractive tool for studying differential gene expression, but cDNA libraries' origins and EST data quality are not always known or reported. Libraries may originate from pooled or mixed tissues; EST clustering, EST counts, library annotations and analysis algorithms may contain errors. Traditional data analysis methods, including research into tissue-specific gene expression, assume EST counts to be correct and libraries to be correctly annotated, which is not always the case. Therefore, a method capable of assessing the quality of expression data based on that data alone would be invaluable for assessing the quality of EST data and determining their suitability for mRNA expression analysis. Here we report an approach to the selection of a small generic subset of 244 UniGene clusters suitable for identification of the tissue of origin for EST libraries and quality control of the expression data using EST expression information alone. We created a small expression matrix of UniGene IDs using two rounds of selection followed by two rounds of optimisation. Our selection procedures differ from traditional approaches to finding “tissue-specific” genes and our matrix yields consistency high positive correlation values for libraries with confirmed tissues of origin and can be applied for tissue typing and quality control of libraries as small as just a few hundred total ESTs. Furthermore, we can pick up tissue correlations between related tissues e.g. brain and peripheral nervous tissue, heart and muscle tissues and identify tissue origins for a few libraries of uncharacterised tissue identity. It was possible to confirm tissue identity for some libraries which have been derived from cancer tissues or have been normalised. Tissue matching is affected strongly by cancer progression or library normalisation and our approach may potentially be applied for elucidating the stage of normalisation in normalised libraries or for cancer staging. PMID:22412959
van Zyl, Leonel; von Arnold, Sara; Bozhkov, Peter; Chen, Yongzhong; Egertsdotter, Ulrika; MacKay, John; Sederoff, Ronald R.; Shen, Jing; Zelena, Lyubov
2002-01-01
Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few conifer cDNA libraries have been sequenced. Because of the high level of sequence conservation between Pinus and Picea we have investigated the use of arrays from one genus for studies of gene expression in the other. The partial cDNAs from 384 identifiable genes expressed in differentiating xylem of Pinus taeda were printed on nylon membranes in randomized replicates. These were hybridized with labelled cDNA from needles or embryogenic cultures of Pinus taeda, P. sylvestris and Picea abies, and with labelled cDNA from leaves of Nicotiana tabacum. The Spearman correlation of gene expression for pairs of conifer species was high for needles (r2 = 0.78 − 0.86), and somewhat lower for embryogenic cultures (r2 = 0.68 − 0.83). The correlation of gene expression for tobacco leaves and needles of each of the three conifer species was lower but sufficiently high (r2 = 0.52 − 0.63) to suggest that many partial gene sequences are conserved in angiosperms and gymnosperms. Heterologous probing was further used to identify tissue-specific gene expression over species boundaries. To evaluate the significance of differences in gene expression, conventional parametric tests were compared with permutation tests after four methods of normalization. Permutation tests after Z-normalization provide the highest degree of discrimination but may enhance the probability of type I errors. It is concluded that arrays of cDNA from loblolly pine are useful for studies of gene expression in other pines or spruces. PMID:18629264
Zhu, Ling; Song, Linsheng; Zhang, Huan; Zhao, Jianmin; Li, Chenghua; Xu, Wei
2008-06-01
Apoptosis is an active process of cell death, which is an integral part of growth and development in multicellular organisms. The defender against cell death 1 (DAD1), the regulatory protein to inhibit the apoptosis process, was first cloned from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA end (RACE). The full-length cDNA of the A. irradians DAD1 was 607 bp, consist of a 5'-terminal untranslated region (UTR) of 63 bp, a 3'-terminal UTR of 205 bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 339 bp. The deduced amino acid sequence of the A. irradians DAD1 showed 75.5% identity to Araneus ventricosus, 74.5% to Drosophila melanogaster, and 73.6% to Homo sapiens, Sus scrofa, Mesocricetus auratus, Rattus norvegicus and Mus musculus. Excluding the Saccharomyces cerevisiae DAD1 homologue, all animal DAD1 including A. irradians DAD1 homologue formed a subgroup and all plant DAD1 proteins formed another subgroup in the phylogenetic analysis. The A. irradians DAD1 was expressed in all examined tissues including adductor muscle, mantle, gills, digestive gland, gonad and hemolymph, suggesting that A. irradians DAD1 is expressed in most body tissues. Furthermore, the mRNA expression levels of A. irradians DAD1 gene of hemolymph were particularly high after injury, suggesting that the gene is responsive to injury stimuli.
Cloning and expression of the rat homologue of the Huntington disease gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, I.; Epplen, J.T.; Riess, O.
1994-09-01
Huntington`s disease (HD) is an autosomal dominant neurodegenerative disorder which is manifested usually in adult life. The age of onset is variable and leads to progressive symptoms including involuntary choreatic movements and various cognitive and psychiatric disturbances. Recently, a gene (IT15) was cloned containing a (CAG){sub n} repeat which is elongated and unstable in HD patients. IT15 is widely expressed in human tissues but unrelated to any known deduced protein sequence. To further investigate the HD gene, 15 rat cDNA libraries were screened. 24 clones have been identified covering the Huntingtin gene. Comparison of the Huntingtin gene between human andmore » rat revealed homologies between 80% and 87% at the DNA level and about 90% at the protein level. These analyses will help to define biologically important sequence regions, e.g., via evolutionary conservation. One clone contains the (CAG){sub n} repeat which consists of eight triplets compared to seven triplets in the mouse and a median of 17 in human. As in humans there are two transcripts arising from differential 3{prime}-polyadenylation. In the 3{prime}UTR a stretch of about 280 bp is exchanged for a 250 bp fragment with no homology in rodents and man. The cDNA clones are currently used to study Huntingtin gene expression during development in rodent tissues. RNA in situ hybridization of embryonic sections shows predominant signals in all neuronal tissues. In contrast to previously published data Huntingtin mRNA expression in testis is increased in spermatocytes vs. spermatogonia.« less
Ewald, Erin R.; Wand, Gary S.; Seifuddin, Fayaz; Yang, Xiaoju; Tamashiro, Kellie L.; Potash, James B.; Zandi, Peter; Lee, Richard S.
2014-01-01
Summary Background Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing’s disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Methods Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Results Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R2 = 0.68, P = 7.1×10−10) and brain (R2 = 0.33, P = 0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R2 = 0.49, P = 2.7×10−5) and expression (R2 = 0.43, P = 3.5×10−5) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Conclusion Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues. PMID:24767625
Ewald, Erin R; Wand, Gary S; Seifuddin, Fayaz; Yang, Xiaoju; Tamashiro, Kellie L; Potash, James B; Zandi, Peter; Lee, Richard S
2014-06-01
Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing's disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R(2)=0.68, P=7.1×10(-10)) and brain (R(2)=0.33, P=0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R(2)=0.49, P=2.7×10(-5)) and expression (R(2)=0.43, P=3.5×10(-5)) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Human herpes simplex viruses in benign and malignant thyroid tumours.
Jensen, Kirk; Patel, Aneeta; Larin, Alexander; Hoperia, Victoria; Saji, Motoyasu; Bauer, Andrew; Yim, Kevin; Hemming, Val; Vasko, Vasyl
2010-06-01
To test the hypothesis that herpes viruses may have a role in thyroid neoplasia, we analysed thyroid tissues from patients with benign (44) and malignant (65) lesions for HSV1 and HSV2 DNA. Confirmatory studies included direct sequencing, analysis of viral gene expression, and activation of viral-inducible signalling pathways. Expression of viral entry receptor nectin-1 was examined in human samples and in cancer cell lines. In vitro experiments were performed to explore the molecular mechanisms underlying thyroid cancer cell susceptibility to HSV. HSV DNA was detected in 43/109 (39.4%) examined samples. HSV capsid protein expression correlated with HSV DNA status. HSV-positive tumours were characterized by activation of virus-inducible signalling such as interferon-beta expression and nuclear NFkappaB expression. Lymphocyte infiltration and oncocytic cellular features were common in HSV-positive tumours. HSV1 was detected with the same frequency in benign and malignant thyroid tumours. HSV2 was significantly associated with papillary thyroid cancer and the presence of lymph node metastases. The expression of HSV entry receptor nectin-1 was increased in thyroid tumours compared to normal thyroid tissue and further increased in papillary thyroid cancer. Nectin-1 expression was detected in all examined thyroid cancer cell lines. Nectin-1 expression in cancer cells correlated with their susceptibility to HSV. Inhibition of PI3K/AKT or MAPK/ERK signalling did not affect the level of nectin-1 expression but decreased thyroid cancer cell susceptibility to HSV. These findings showed that HSV is frequently detected in thyroid cancer. During tumour progression, thyroid cells acquire increased susceptibility to HSV due to increased expression of viral entry mediator nectin-1 and activation of mitogenic signalling in cancer cells.
Particle bombardment - mediated gene transfer and GFP transient expression in Seteria viridis.
Mookkan, Muruganantham
2018-04-03
Setaria viridis is one of the most important model grasses in studying monocot plant biology. Transient gene expression study is a very important tool in plant biotechnology, functional genomics, and CRISPR-Cas9 genome editing technology via particle bombardment. In this study, a particle bombardment-mediated protocol was developed to introduce DNA into Setaria viridis in vitro leaf explants. In addition, physical and biological parameters, such as helium pressure, distance from stopping screen to the target tissues, DNA concentration, and number of bombardments, were tested and optimized. Optimum concentration of transient GFP expression was achieved using 1.5 ug plasmid DNA with 0.6 mm gold particles and 6 cm bombardment distance, using 1,100 psi. Doubling the bombardment instances provides the maximum number of foci of transient GFP expression. This simple protocol will be helpful for genomics studies in the S. viridis monocot model.
Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan
2015-10-01
The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.
DNA Electrochemistry Shows DNMT1 Methyltransferase Hyperactivity in Colorectal Tumors.
Furst, Ariel L; Barton, Jacqueline K
2015-07-23
DNMT1, the most abundant human methyltransferase, is responsible for translating the correct methylation pattern during DNA replication, and aberrant methylation by DNMT1 has been linked to tumorigenesis. We have developed a sensitive signal-on electrochemical assay for the measurement of DNMT1 activity in crude tissue lysates. We have further analyzed ten tumor sets and have found a direct correlation between DNMT1 hyperactivity and tumorous tissue. In the majority of samples analyzed, the tumorous tissue has significantly higher DNMT1 activity than the healthy adjacent tissue. No such correlation is observed in measurements of DNMT1 expression by qPCR, DNMT1 protein abundance by western blotting, or DNMT1 activity using a radiometric DNA labeling assay. DNMT1 hyperactivity can result from both protein overexpression and enzyme hyperactivity. DNMT1 activity measured electrochemically provides a direct measure of activity in cell lysates and, as a result, provides a sensitive and early indication of cancerous transformation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Perfilyev, Alexander; Dahlman, Ingrid; Gillberg, Linn; Rosqvist, Fredrik; Iggman, David; Volkov, Petr; Nilsson, Emma; Risérus, Ulf; Ling, Charlotte
2017-04-01
Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses. Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial. Design: We studied the effects of 7 wk of excessive SFA ( n = 17) or PUFA ( n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue. Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase ( FTO ), interleukin 6 ( IL6 ), insulin receptor ( INSR ), neuronal growth regulator 1 ( NEGR1 ), and proopiomelanocortin ( POMC )] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing ( ADIPOQ )] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 ( ACOX1 ) and FAT atypical cadherin 1 ( FAT1 )], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 ( FABP1 ), fatty acid binding protein 2 ( FABP2 ), melanocortin 2 receptor ( MC2R ), MC3R , PPARG coactivator 1 α ( PPARGC1A ), and tumor necrosis factor ( TNF ), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA methylation of 12 CpG sites that was annotated to 9 genes [e.g., mitogen-activated protein kinase 7 ( MAPK7 ), melanin concentrating hormone receptor 1 ( MCHR1 ), and splicing factor SWAP homolog ( SFRS8 )] was associated with the degree of weight increase in response to extra energy intake. Conclusions: SFA overfeeding and PUFA overfeeding induce distinct epigenetic changes in human adipose tissue. In addition, we present data that suggest that baseline DNA methylation can predict weight increase in response to overfeeding in humans. This trial was registered at clinicaltrials.gov as NCT01427140. © 2017 American Society for Nutrition.
2011-01-01
Background The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations. Results This paper describes the sequencing, de novo assembly and analysis from the transcriptome of eight tissues of ten wild great tits. Approximately 4.6 million sequences and 1.4 billion bases of DNA were generated and assembled into 95,979 contigs, one third of which aligned with known Taeniopygia guttata (zebra finch) and Gallus gallus (chicken) transcripts. The majority (78%) of the remaining contigs aligned within or very close to regions of the zebra finch genome containing known genes, suggesting that they represented precursor mRNA rather than untranscribed genomic DNA. More than 35,000 single nucleotide polymorphisms and 10,000 microsatellite repeats were identified. Eleven percent of contigs were expressed in every tissue, while twenty one percent of contigs were expressed in only one tissue. The function of those contigs with strong evidence for tissue specific expression and contigs expressed in every tissue was inferred from the gene ontology (GO) terms associated with these contigs; heart and pancreas had the highest number of highly tissue specific GO terms (21.4% and 28.5% respectively). Conclusions In summary, the transcriptomic data generated in this study will contribute towards efforts to assemble and annotate the great tit genome, as well as providing the markers required to perform gene mapping studies in wild populations. PMID:21635727
Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2.
Fukuda, Tomokazu; Scott, Gregory; Komatsu, Yoshihiro; Araya, Runa; Kawano, Masako; Ray, Manas K; Yamada, Masahisa; Mishina, Yuji
2006-04-01
BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines. Published 2006 Wiley-Liss, Inc.
Srivastava, Meera; Montagna, Cristina; Leighton, Ximena; Glasman, Mirta; Naga, Shanmugam; Eidelman, Ofer; Ried, Thomas; Pollard, Harvey B.
2003-01-01
Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes. PMID:14608035
Friis, Thor Einar; Stephenson, Sally; Xiao, Yin; Whitehead, Jon
2014-01-01
The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes. PMID:24447069
Prusinski Fernung, Lauren E; Al-Hendy, Ayman; Yang, Qiwei
2018-01-01
Although uterine fibroids (UFs) continue to place a major burden on female reproductive health, the mechanisms behind their origin remain undetermined. Normal myometrial stem cells may be transformed into tumor-initiating stem cells, causing UFs, due to unknown causes of somatic mutations in MED12, found in up to 85% of sporadically formed UFs. It is well established in other tumor types that defective DNA repair increases the risk of such tumorigenic somatic mutations, mechanisms not yet studied in UFs. To examine the putative cause(s) of this stem cell transformation, we analyzed DNA repair within stem cells from human UFs compared to those from adjacent myometrium to determine whether DNA repair in fibroid stem cells is compromised. Human fibroid (F) and adjacent myometrial (Myo) stem cells were isolated from fresh tissues, and gene expression relating to DNA repair was analyzed. Fibroid stem cells differentially expressed DNA repair genes related to DNA double- (DSBs) and single-strand breaks. DNA damage was measured using alkaline comet assay. Additionally, DNA DSBs were induced in these stem cells and DNA DSB repair evaluated (1) by determining changes in phosphorylation of DNA DSB-related proteins and (2) by determining differences in γ-H2AX foci formation and relative DNA repair protein RAD50 expression. Overall, F stem cells demonstrated increased DNA damage and altered DNA repair gene expression and signaling, suggesting that human F stem cells demonstrate impaired DNA repair. Compromised F stem cell DNA repair may contribute to further mutagenesis and, consequently, further growth and propagation of UF tumors.
Sasu, Alciona; Herman, Hildegard; Mariasiu, Teodora; Rosu, Marcel; Balta, Cornel; Anghel, Nicoleta; Miutescu, Eftimie; Cotoraci, Coralia; Hermenean, Anca
2015-10-01
Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We investigated the protective effects of silymarin on epirubicin-induced mucosal barrier injury in CD-1 mice. Immunohistochemical activity of both pro-apoptotic Bax and anti-apoptotic Bcl-2 markers, together with p53, cyt-P450 expression and DNA damage analysis on stomach, small intestine and colon were evaluated. Our results indicated stronger expression for cyt P450 in all analyzed gastrointestinal tissues of Epi group, which demonstrate intense drug detoxification. Bax immunopositivity was intense in the absorptive enterocytes and lamina connective cells of the small intestine, surface epithelial cells of the stomach and also in the colonic epithelium and lamina concomitant with a decreased Bcl-2 expression in all analyzed tissues. Epirubicin-induced gastrointestinal damage was verified by a goblet cell count and morphology analysis on histopathological sections stained for mucins. In all analyzed tissues, Bax immunopositivity has been withdrawn by highest dose of silymarin concomitant with reversal of Bcl-2 intensity at a level comparable with control. p53 expression was found in all analyzed tissues and decreased by high dose of silymarin. Also, DNA internucleosomal fragmentation was observed in the Epi groups for all analyzed tissues was almost suppressed at 100 mg/kg Sy co-treatment. Histological aspect and goblet cell count were restored at a highest dose of Sy for both small and large intestine. In conclusion, our findings suggest that silymarin may prevent cellular damage of epirubicin-induced toxicity and was effective in reducing the severity indicators of gastrointestinal mucositis in mice.
Cell and tissue microarray technologies for protein and nucleic acid expression profiling.
Cardano, Marina; Diaferia, Giuseppe R; Falavigna, Maurizio; Spinelli, Chiara C; Sessa, Fausto; DeBlasio, Pasquale; Biunno, Ida
2013-02-01
Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform.
Kozhevnikova, E N; Leshchenko, A E; Pindyurin, A V
2018-05-01
At the level of DNA organization into chromatin, there are mechanisms that define gene expression profiles in specialized cell types. Genes within chromatin regions that are located at the nuclear periphery are generally expressed at lower levels; however, the nature of this phenomenon remains unclear. These parts of chromatin interact with nuclear lamina proteins like Lamin B1 and, therefore, can be identified in a given cell type by chromatin profiling of these proteins. In this study, we created and tested a Dam Identification (DamID) system induced by Cre recombinase using Lamin B1 and mouse embryonic fibroblasts. This inducible system will help to generate genome-wide profiles of chromatin proteins in given cell types and tissues with no need to dissect tissues from organs or separate cells from tissues, which is achieved by using specific regulatory DNA elements and due to the high sensitivity of the method.
Sonne, Si Brask; Yadav, Rachita; Yin, Guangliang; Dalgaard, Marlene Danner; Myrmel, Lene Secher; Gupta, Ramneek; Wang, Jun; Madsen, Lise; Kajimura, Shingo; Kristiansen, Karsten
2017-04-03
The present study aimed to identify genes exhibiting concomitant obesity-dependent changes in DNA methylation and gene expression in adipose tissues in the mouse using diet-induced obese (DIO) C57BL/6J and genetically obese ob/ob mice as models. Mature adipocytes were isolated from epididymal and inguinal adipose tissues of ob/ob and DIO C57BL/6J mice. DNA methylation was analyzed by MeDIP-sequencing and gene expression by microarray analysis. The majority of differentially methylated regions (DMRs) were hypomethylated in obese mice. Global methylation of long interspersed elements indicated that hypomethylation did not reflect methyl donor deficiency. In both DIO and ob/ob mice, we observed more obesity-associated methylation changes in epididymal than in inguinal adipocytes. Assignment of DMRs to promoter, exon, intron and intergenic regions demonstrated that DIO-induced changes in DNA methylation in C57BL/6J mice occurred primarily in exons, whereas inguinal adipocytes of ob/ob mice exhibited a higher enrichment of DMRs in promoter regions than in other regions of the genome, suggesting an influence of leptin on DNA methylation in inguinal adipocytes. We observed altered methylation and expression of 9 genes in epididymal adipocytes, including the known obesity-associated genes, Ehd2 and Kctd15, and a novel candidate gene, Irf8, possibly involved in immune type 1/type2 balance. The use of 2 obesity models enabled us to dissociate changes associated with high fat feeding from those associated with obesity per se. This information will be of value in future studies on the mechanisms governing the development of obesity and changes in adipocyte function associated with obesity.
Waggoner, S E; Baunoch, D A; Anderson, S A; Leigh, F; Zagaja, V G
1998-09-01
Clear cell adenocarcinomas (CCAs) of the vagina and cervix are rare tumors that often overexpress wild-type p53. In vitro, expression of protooncogene bcl-2 can block p53-mediated apoptosis. The objective of this study was to determine if bcl-2 is expressed in CCAs and whether this expression is associated with inhibition of apoptosis. Twenty-one paraffin-embedded clear cell adenocarcinomas were immunohistochemically stained for bcl-2 (antibody M 887, Dako, Carpinteria, CA) and DNA fragmentation (ApopTag, Oncor, Gaithersburg, MD), a marker for apoptosis. Fifteen tumors were associated with in utero exposure to diethylstilbestrol (DES). Prior p53 gene analysis had indicated the presence of wild-type p53 in each tumor. Human lymphoid tissue containing bcl-2-expressing lymphocytes and DNase I-exposed CCA tissue sections were used as positive controls for the bcl-2 and apoptosis assays, respectively. Expression of bcl-2 and DNA fragmentation was classified (0 to 3+) according to percentage of positive cells and intensity of staining. Expression of bcl-2 was identified in each CCA examined, and was strongly positive (2+ to 3+) in 18 of 21 samples. Despite the presence of wild-type p53, only 4 of 21 tumors showed evidence of apoptosis as assessed through DNA fragmentation. DNA damage leads to increased intracellular p53 levels. Overexpression of p53 induces apoptosis as a means of protecting organisms from the development of malignancy. CCAs of the vagina and cervix, which contain wild-type p53 genes and often overexpress p53 protein, presumably have evolved mechanisms to avoid p53-induced apoptosis. Our observations are consistent with the hypothesis that overexpression of bcl-2 can inhibit p53-mediated apoptosis and suggest a mechanism by which these rare tumors can arise without mutation of the p53 gene.
Hanson, J M; Mol, J A; Meij, B P
2010-05-01
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the IL-6 family that activates the hypothalamic-pituitary-adrenal axis and promotes corticotrope cell differentiation during development. The aim of this study was to investigate the expression of LIF and its receptor (LIFR) in the canine pituitary gland and in corticotrope adenomas, and to perform a mutation analysis of LIFR. Using immunohistochemistry, immunofluorescence, and quantitative expression analysis, LIF and LIFR expression were studied in pituitary glands of control dogs and in specimens of corticotrope adenoma tissue collected through hypophysectomy in dogs with pituitary-dependent hypercortisolism (PDH, Cushing's disease). Using sequence analysis, cDNA was screened for mutations in the LIFR. In the control pituitary tissues and corticotrope adenomas, there was a low magnitude of LIF expression. The LIFR, however, was highly expressed and co-localized with ACTH(1-24) expression. Cytoplasmatic immunoreactivity of LIFR was preserved in corticotrope adenomas and adjacent nontumorous cells of pars intermedia. No mutation was found on mutation analysis of the complete LIFR cDNA. Surprisingly, nuclear to perinuclear immunoreactivity for LIFR was present in nontumorous pituitary cells of the pars distalis in 10 of 12 tissue specimens from PDH dogs. These data show that LIFR is highly co-expressed with adrenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH) in the canine pituitary gland and in corticotrope adenomas. Nuclear immunoreactivity for LIFR in nontumorous cells of the pars distalis may indicate the presence of a corticotrope adenoma. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Downregulation of SASH1 correlates with tumor progression and poor prognosis in ovarian carcinoma
REN, XIAOYAN; LIU, YIFEI; TAO, YUMEI; ZHU, GUOXIANG; PEI, MEILAN; ZHANG, JIANGUO; LIU, JIAN
2016-01-01
SAM- and SH3-domain containing 1 (SASH1) is a recently identified tumor suppressor gene that is required in the tumorigenesis of breast and other solid carcinomas. The SASH1 protein contains SH3 and SAM domains, indicating that it may serve an important role in intracellular signal transduction. The purpose of the present study was to investigate the expression of SASH1 in ovarian carcinoma and the correlation between its expression with clinical pathological features and clinical significance, and the effect of SASH1 on cell proliferation, apoptosis and migration of ovarian SKOV3 cells. The human ovarian carcinoma tissues and adjacent normal tissues were collected following surgery. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression levels of SASH1 mRNA and protein, respectively. The expression levels of SASH1 mRNA and protein in ovarian carcinoma tissues were significantly lower than that observed in adjacent normal tissues (P<0.05). The expression levels of SASH1 in samples from patients without lymph nodes metastasis and patients with early FIGO stage was lower than those with lymph nodes metastasis and patients with advanced FIGO stage (P<0.05). Flow cytometry analysis and Transwell invasion chamber experiments were used to investigate the effect of SASH1 on the cell proliferation, apoptosis and migration of SKOV3 cells. The recombinant plasmid pcDNA3.1-SASH1 was constructed and transfected into SKOV3 cells. In addition, the SKOV3 cells in the pcDNA3.1-SASH1 group exhibited significantly reduced cell growth, proliferation, and migration ability compared to the empty vector group and normal group (P<0.01). There were a greater number of apoptotic cells in the pcDNA3.1-SASH1 group compared to the empty vector group and normal group (P<0.01). Taken together, these results indicated that SASH1 may be a tumor suppressor gene in ovarian carcinoma, and SASH1 expression inhibited growth, proliferation and migration, and enhanced apoptosis of SKOV3 cells. PMID:27123075
Downregulation of SASH1 correlates with tumor progression and poor prognosis in ovarian carcinoma.
Ren, Xiaoyan; Liu, Yifei; Tao, Yumei; Zhu, Guoxiang; Pei, Meilan; Zhang, Jianguo; Liu, Jian
2016-05-01
SAM- and SH3-domain containing 1 (SASH1) is a recently identified tumor suppressor gene that is required in the tumorigenesis of breast and other solid carcinomas. The SASH1 protein contains SH3 and SAM domains, indicating that it may serve an important role in intracellular signal transduction. The purpose of the present study was to investigate the expression of SASH1 in ovarian carcinoma and the correlation between its expression with clinical pathological features and clinical significance, and the effect of SASH1 on cell proliferation, apoptosis and migration of ovarian SKOV3 cells. The human ovarian carcinoma tissues and adjacent normal tissues were collected following surgery. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression levels of SASH1 mRNA and protein, respectively. The expression levels of SASH1 mRNA and protein in ovarian carcinoma tissues were significantly lower than that observed in adjacent normal tissues (P<0.05). The expression levels of SASH1 in samples from patients without lymph nodes metastasis and patients with early FIGO stage was lower than those with lymph nodes metastasis and patients with advanced FIGO stage (P<0.05). Flow cytometry analysis and Transwell invasion chamber experiments were used to investigate the effect of SASH1 on the cell proliferation, apoptosis and migration of SKOV3 cells. The recombinant plasmid pcDNA3.1-SASH1 was constructed and transfected into SKOV3 cells. In addition, the SKOV3 cells in the pcDNA3.1-SASH1 group exhibited significantly reduced cell growth, proliferation, and migration ability compared to the empty vector group and normal group (P<0.01). There were a greater number of apoptotic cells in the pcDNA3.1-SASH1 group compared to the empty vector group and normal group (P<0.01). Taken together, these results indicated that SASH1 may be a tumor suppressor gene in ovarian carcinoma, and SASH1 expression inhibited growth, proliferation and migration, and enhanced apoptosis of SKOV3 cells.
Wang, Chunping; Lu, Yinying; Chen, Yan; Feng, Yongyi; An, Linjing; Wang, Xinzhen; Su, Shuhui; Bai, Wenlin; Zhou, Lin; Yang, Yongping; Xu, Dongping
2009-01-01
To determine the long-term prognosis of hepatocellular carcinoma (HCC) after argon-helium cryoablation and identify the risk factors that predict metastasis and recurrence. A total of 156 patients with hepatitis B-related HCC less than 5 cm in diameter who underwent curative cryoablation were followed up prospectively for tumor metastasis and recurrence. Immunohistochemistry was used to analyze the expression of vascular endothelial growth factor (VEGF). HBV basal core promoter (BCP) and precore mutations were detected by DNA sequence analysis. Post-treatment prognostic factors influencing survival, tumor metastasis and recurrence were assessed by univariate and multivariate analyses. The variables included the expression of VEGF in HCC tissues, clinical and pathologic characteristics of patients, and HBV features (HBV DNA level, HBV genotype, BCP mutation). The median follow-up period of the 156 patients was 37 months (range 8-48 months). The 1-, 2-, and 3-year overall survival rates were 92, 82 and 64%, respectively. The 1-, 2-, and 3-year recurrence-free survival rates were 72, 56 and 43%, respectively. Eighty-five patients (54.5%) had tumor recurrence or metastasis. The multivariate analysis showed that Child-Pugh class and the expression of VEGF in HCC tissues could be used as independent prognostic factors for overall survival. Meanwhile, the expression of VEGF in HCC tissues and HBV BCP mutations were found to be independent prognostic factors for recurrence-free survival. Strong expression of VEGF in HCC tissues and HBV BCP mutations are important risk predictors for recurrence or metastasis of HCC smaller than 5 cm in diameter.
Bernstein, Harris; Prasad, Anil; Holubec, Hana; Bernstein, Carol; Payne, Claire M; Ramsey, Lois; Dvorakova, Katerina; Wilson, Megan; Warneke, James A; Garewal, Harinder
2006-06-01
Pms2 protein is a component of the DNA mismatch repair complex responsible both for post-replication correction of DNA nucleotide mispairs and for early steps in apoptosis. Germline mutations in DNA mismatch repair genes give rise to hereditary non-polyposis colon cancer, which accounts for about 4% of colon cancers. However, little is known about the expression of mismatch repair proteins in relation to sporadic colon cancer, which accounts for the great majority of colon cancers. Multiple samples were taken from the non-neoplastic flat mucosa of colon resections from patients with no colonic neoplasia, a tubulovillous adenoma, or an adenocarcinoma. Expression of Pms2 was assessed using semiquantitative immunohistochemistry. Apoptosis was assessed in polychrome-stained epoxy sections using morphologic criteria. Samples from patients without colonic neoplasia had moderate to strong staining for Pms2 in cell nuclei at the base of crypts, while samples from 2 of the 3 colons with a tubulovillous adenoma, and from 6 of the 10 colons with adenocarcinomas, showed reduced Pms2 expression. Samples from patients with an adenocarcinoma that had reduced Pms2 expression also exhibited reduced apoptosis capability in nearby tissue samples, evidenced when this paired tissue was stressed ex vivo with bile acid. Reduced Pms2 expression in the colonic mucosa may be an early step in progression to colon cancer. This reduction may cause decreased mismatch repair, increased genetic instability, and/or reduced apoptotic capability. Immunohistochemical determination of reduced Pms2 expression, upon further testing, may prove to be a promising early biomarker of risk of progression to malignancy.
NASA Astrophysics Data System (ADS)
Li, Siping; He, Feng; Wen, Haishen; Li, Jifang; Si, Yufeng; Liu, Mingyuan; He, Huiwen; Huang, Zhengju
2017-04-01
Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes, which can help the animals with development, growth and survival. In this study, we assessed the DNA methylation levels in three tissues (gonad, kidney and gill) of half smooth tongue sole under the salinity stress. The methylation-sensitive amplification polymorphism (MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli. Fish were subjected to 15 salinity treatment for 7 and 60 days, respectively. A total of 11259 fragments were amplified with 8 pairs of selective primers. The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed, which were 32.76% and 47.32% in gonad; 38.13% and 37.69% in kidney; 37.58% and 34.96% in gill, respectively. In addition, the significant difference was observed in gonad between females and males, indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes. Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days, probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing. With the adjustment for 60 days, total and hemi-methylation prominently went back to its normal levels to obtain equilibrium. Particularly, full methylation levels were steady along with salinity stress to maintain the stability of gene expression. Additionally, the data showed that gonads in females and gills in males were superior in adaptability. As a result, DNA methylation regulates tissue- specific epiloci, and may respond to salinity stress by regulating gene expression to maintain animal survival and activity.
Wang, Li; Tan, Rui-Zhi; Zhang, Zhi-Xia; Yin, Rui; Zhang, Yong-Liang; Cui, Wei-Jia; He, Tao
2018-01-01
Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol ® resistance in cells, a Taxol ® -resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol ® ) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol ® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol ® -resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol ® , Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.
Damasdi, Miklos; Kovacs, Krisztina; Farkas, Nelli; Jakab, Ferenc; Kovacs, Gyula
2017-10-01
Development of penile cancers is attributed to HPV-related carcinogenesis. Our aim was to analyze HPV positivity and TLR4, p16 ink4a and p53 expression. HPV presence was assessed with virus-specific TaqMan PCR and HPV Genotyping Test in 31 penile cancers. Immunohistochemistry was carried out on tissue microarray. TLR4 expression was detected in 4 of the 16 HPV positive and 13 of the 15 HPV negative tumors. We found a significant inverse correlation between HPV positivity and TLR4 expression (p=0.0006). Ten of the 16 HPV-positive but none of the 15 HPV-negative tumors expressed p16INK4a. A significant correlation was seen between p53 expression and lack of HPV DNA (p=0.0191) as well as between TLR4 and p53 expression (p=0.0198) in penile cancers. Our findings suggest a protective role of TLR4 expression against HPV DNA integration and the viral and non-viral carcinogenesis of penile cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Bock, Stephanie; Mullins, Christina S; Klar, Ernst; Pérot, Philippe; Maletzki, Claudia; Linnebacher, Michael
2018-01-01
Endogenous retroviruses are remnants of retroviral infections. In contrast to their human counterparts, murine endogenous retroviruses (mERV) still can synthesize infectious particles and retrotranspose. Xenotransplanted human cells have occasionally been described to be mERV infected. With genetic engineered mice and patient-derived xenografts (PDXs) on the rise as eminent research tools, we here systematically investigated, if different tumor models harbor mERV infections. Relevant mERV candidates were first preselected by next generation sequencing (NGS) analysis of spontaneous lymphomas triggered by colorectal cancer (CRC) PDX tissue. Two primer systems were designed for each of these candidates (AblMLV, EcoMLV, EndoPP, MLV, and preXMRV) and implemented in an quantitative real-time (RT-qPCR) screen using murine tissues ( n = 11), PDX-tissues ( n = 22), PDX-derived cell lines ( n = 13), and patient-derived tumor cell lines ( n = 14). The expression levels of mERV varied largely both in the PDX samples and in the mouse tissues. No mERV signal was, however, obtained from cDNA or genomic DNA of CRC cell lines. Expression of EcoMLV was higher in PDX than in murine tissues; for EndoPP it was the opposite. These two were thus further investigated in 40 additional PDX. In addition, four patient-derived cell lines free of any mERV expression were subcutaneously injected into immunodeficient mice. Outgrowing cell-derived xenografts barely expressed EndoPP. In contrast, the expression of EcoMLV was even higher than in surrounding mouse tissues. This expression gradually vanished within few passages of re-cultivated cells. In summary, these results strongly imply that: (i) PDX and murine tissues in general are likely to be contaminated by mERV, (ii) mERV are expressed transiently and at low level in fresh PDX-derived cell cultures, and (iii) mERV integration into the genome of human cells is unlikely or at least a very rare event. Thus, mERVs are stowaways present in murine cells, in PDX tissues and early thereof-derived cell cultures. We conclude that further analysis is needed concerning their impact on results obtained from studies performed with PDX but also with murine tumor models.
Xia, Zhenfang; Gale, William L.; Chang, Xiaotian; Langenau, David; Patino, Reynaldo; Maule, Alec G.; Densmore, Llewellyn D.
2000-01-01
An estrogen receptor β (ERβ) cDNA fragment was amplified by RT-PCR of total RNAextracted from liver and ovary of immature channel catfish. This cDNA fragment was used to screen an ovarian cDNA library made from an immature female fish. A clone was obtained that contained an open reading frame encoding a 575-amino-acid protein with a deduced molecular weight of 63.9 kDa. Maximum parsimony and Neighbor Joining analyses were used to generate a phylogenetic classification of channel catfish ERβ on the basis of 25 full-length teleost and tetrapod ER sequences. The consensus tree obtained indicated the existence of two major vertebrate ER subtypes, α and β. Within each subtype, and in accordance with established phylogenetic relationships, teleost and tetrapod ER were monophyletic confirming the results of a previous analysis (Z. Xiaet al., 1999, Gen. Comp. Endocrinol. 113, 360–368). Extracts of COS-7 cells transfectedwith channel catfish ERβ cDNA bound estrogen with high affinity (Kd = 0.21 nM) and specificity. The affinity of channel catfish ERβ for estrogen was higher than previously reported for channel catfish ERα. As determined by qualitative RT-PCR, the tissue distributions of ERα and ERβ were similar but not identical. Both ER subtypes were present in ovary and testis. ERα was found in all other tissues examined from juvenile and mature fish of both sexes. ERβ was also found in most tissues except, in most cases, whole blood and head kidney. Interestingly, the pattern of expression of ER subtypes in head kidney always corresponded to the pattern in whole blood. In conclusion, we isolated a channel catfish ERβ with ligand-binding affinity and tissue expression patterns different from ERα. Also, we confirmed the validity of our previously proposed general classification scheme for vertebrate ER into α and β subtypes and within each subtype, into teleost and tetrapod clades.
Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues
NASA Astrophysics Data System (ADS)
Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.
2016-03-01
Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.
Xiong, Xianrong; Fu, Mei; Lan, Daoliang; Li, Jian; Zi, Xiangdong; Zhong, Jincheng
2015-01-01
Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators, which play crucial roles in tumor angiogenesis and mammalian development, and regulate the transcription of genes involved in oxygen homeostasis in response to hypoxia. However, information on HIF-1α and HIF-2α in yak (Bos grunniens) is scarce. The complete coding region of yak HIF-2α was cloned, its mRNA expression in several tissues were determined, and the expression levels were compared with those of closely related low-altitude cattle (Bos taurus), and the methylation status of promoter regions were analyzed to better understand the roles of HIF-1α and HIF-2α in domesticated yak. The yak HIF-2α cDNA was cloned and sequenced in the present work reveals the evolutionary conservation through multiple sequence alignment, although 15 bases changed, resulting in 8 amino acid substitutions in the translated proteins in cattle. The tissue-specific expression results showed that HIF-1α is ubiquitously expressed, whereas HIF-2α expression is limited to endothelial tissues (kidney, heart, lung, spleen, and liver) and blood in yak. Both HIF-1α and HIF-2α expressions were higher in yak tissues than in cattle. The HIF-1α expression level is much higher in yak than cattle in these organs, except for the lung (P < 0.05), but the HIF-2α gene is significantly different in the heart, spleen, and kidney (P < 0.05). Furthermore, the methylation levels in the 5' flanking regulatory regions of HIF-1α and HIF-2α in yak kidney were significantly decreased than cattle counterparts (P < 0.05). Identifying these genes and the comparison of different expressions facilitates the understanding of the biological high-altitude hypoxic stress response mechanism and may assist current medical research to understand hypoxia-related diseases.
Green, Benjamin B; Marsit, Carmen J
2015-06-01
Strong evidence implicates maternal environmental exposures in contributing to adverse outcomes during pregnancy and later in life through the developmental origins of health and disease hypothesis. Recent research suggests these effects are mediated through the improper regulation of DNA methylation in offspring tissues, specifically placental tissue, which plays a critical role in fetal development. This article reviews the relevant literature relating DNA methylation in multiple tissues at or near delivery to several prenatal environmental toxicants and stressors, including cigarette smoke, endocrine disruptors, heavy metals, as well as maternal diet. These human studies expand upon previously reported outcomes in animal model interventions and include effects on both imprinted and non-imprinted genes. We have also noted some of the strengths and limitations in the approaches used, and consider the appropriate interpretation of these findings in terms of their effect size and their relationship to differential gene expression and potential health outcomes. The studies suggest an important role of DNA methylation in mediating the effects of the intrauterine environment on children's health and a need for additional research to better clarify the role of this epigenetic mechanism as well as others.
Iddawela, Mahesh; Rueda, Oscar; Eremin, Jenny; Eremin, Oleg; Cowley, Jed; Earl, Helena M; Caldas, Carlos
2017-07-11
An absence of reliable molecular markers has hampered individualised breast cancer treatments, and a major limitation for translational research is the lack of fresh tissue. There are, however, abundant banks of formalin-fixed paraffin-embedded (FFPE) tissue. This study evaluated two platforms available for the analysis of DNA copy number and gene expression using FFPE samples. The cDNA-mediated annealing, selection, extension, and ligation assay (DASL™) has been developed for gene expression analysis and the Molecular Inversion Probes assay (Oncoscan™), were used for copy number analysis using FFPE tissues. Gene expression and copy number were evaluated in core-biopsy samples from patients with breast cancer undergoing neoadjuvant chemotherapy (NAC). Forty-three core-biopsies were evaluated and characteristic copy number changes in breast cancers, gains in 1q, 8q, 11q, 17q and 20q and losses in 6q, 8p, 13q and 16q, were confirmed. Regions that frequently exhibited gains in tumours showing a pathological complete response (pCR) to NAC were 1q (55%), 8q (40%) and 17q (40%), whereas 11q11 (37%) gain was the most frequent change in non-pCR tumours. Gains associated with poor survival were 11q13 (62%), 8q24 (54%) and 20q (47%). Gene expression assessed by DASL correlated with immunohistochemistry (IHC) analysis for oestrogen receptor (ER) [area under the curve (AUC) = 0.95], progesterone receptor (PR)(AUC = 0.90) and human epidermal growth factor type-2 receptor (HER-2) (AUC = 0.96). Differential expression analysis between ER+ and ER- cancers identified over-expression of TTF1, LAF-4 and C-MYB (p ≤ 0.05), and between pCR vs non-pCRs, over-expression of CXCL9, AREG, B-MYB and under-expression of ABCG2. This study was an integrative analysis of copy number and gene expression using FFPE core biopsies and showed that molecular marker data from FFPE tissues were consistent with those in previous studies using fresh-frozen samples. FFPE tissue can provide reliable information and will be a useful tool in molecular marker studies. Trial registration number ISRCTN09184069 and registered retrospectively on 02/06/2010.
Bardhan, Kankana; Paschall, Amy V; Yang, Dafeng; Chen, May R; Simon, Priscilla S; Bhutia, Yangzom D; Martin, Pamela M; Thangaraju, Muthusamy; Browning, Darren D; Ganapathy, Vadivel; Heaton, Christopher M; Gu, Keni; Lee, Jeffrey R; Liu, Kebin
2015-07-01
Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A have been the subject of extensive studies; however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wild-type mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoter to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoter to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer, and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. ©2015 American Association for Cancer Research.
Bardhan, Kankana; Paschall, Amy V.; Yang, Dafeng; Chen, May R.; Simon, Priscilla S.; Bhutia, Yangzom; Martin, Pamela M.; Thangaraju, Muthusamy; Browning, Darren D.; Ganapathy, Vadivel; Heaton, Christopher M.; Gu, Keni; Lee, Jeffrey R.; Liu, Kebin
2015-01-01
Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A has been the subject of extensive studies, however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wildtype mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoters to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoters to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. PMID:25735954
Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression
Bonvicini, Francesca; Manaresi, Elisabetta; Di Furio, Francesca; De Falco, Luisa; Gallinella, Giorgio
2012-01-01
CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression. The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections. The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19. PMID:22413013
Yin, Haifeng; Nichols, Teresa D; Horowitz, Jonathan M
2010-07-01
The Sp-family of transcription factors is comprised by nine members, Sp1-9, that share a highly conserved DNA-binding domain. Sp2 is a poorly characterized member of this transcription factor family that is widely expressed in murine and human cell lines yet exhibits little DNA-binding or trans-activation activity in these settings. As a prelude to the generation of a "knock-out" mouse strain, we isolated a mouse Sp2 cDNA and performed a detailed analysis of Sp2 transcription in embryonic and adult mouse tissues. We report that (1) the 5' untranslated region of Sp2 is subject to alternative splicing, (2) Sp2 transcription is regulated by at least two promoters that differ in their cell-type specificity, (3) one Sp2 promoter is highly active in nine mammalian cell lines and strains and is regulated by at least five discrete stimulatory and inhibitory elements, (4) a variety of sub-genomic messages are synthesized from the Sp2 locus in a tissue- and cell-type-specific fashion and these transcripts have the capacity to encode a novel partial-Sp2 protein, and (5) RNA in situ hybridization assays indicate that Sp2 is widely expressed during mouse embryogenesis, particularly in the embryonic brain, and robust Sp2 expression occurs in neurogenic regions of the post-natal and adult brain. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Gómez, Raúl; Castro, Ana; Martínez, Jessica; Rodríguez-García, Víctor; Burgués, Octavio; Tarín, Juan J; Cano, Antonio
2018-06-22
The system integrated by the receptor activator of nuclear factor kappa B (RANK) and its ligand, RANKL, modulates the role of hormones in the genesis and progression of breast tumors. We investigated whether the expression of RANK was related with clinicopathological features of primary endometrial tumors. Immunohistochemistry was used in an endometrial cancer tissue array containing samples from 36 tumors. The amount of RANK mRNA was examined in a tissue scan cDNA array containing cDNA from 40 tumors. Normal endometrium was examined for comparison. Immunohistochemical analyses showed that RANK expression was higher in malignant than in normal endometrium ( p < 0.05). RANK expression was related to histological grade (Pearson correlation index = 0.484, p < 0.001), but not to tumor stage or to age of the women. The gene expression was similar in malignant and normal endometrium. The study of RANK isoforms confirmed that the overall relative abundance of the three clearly identified transcripts was similar in normal and pathological endometrium. RANK protein expression increased from normal to malignant endometrium, and the expression level was related with tumor grade but not with stage or the age of subjects in endometrial cancer. In contrast, similar comparisons showed no change in RANK gene expression.
Lu, Peng-Wei; Li, Lin; Wang, Fang; Gu, Yuan-Ting
2018-06-01
The study intends to investigate the effects of long non-coding RNA HOST2 (lncRNA HOST2) on cell migration and invasion by regulating microRNA let-7b (let-7b) in breast cancer. Breast cancer and adjacent normal tissues were collected from 98 patients with breast cancer. Breast cancer MCF-7 cells were divided into the blank, negative control (NC), pcDNA3-Mock, siHOST2, let-7b inhibitor, pcDNA3-HOST2, let-7b mimic, pcDNA3-HOST2 + let-7b mimic, and siHOST2 + let-7b inhibitor groups. RT-qPCR was used to detect the mRNA expressions of HOST2, let-7b, and c-Myc. Western blotting was conducted to measure the c-Myc expression. Scratch test and Transwell assay were applied to detect the cell motility, migration, and invasion. Xenograft tumor in nude mice was performed to evaluate the effect of different transfection on the tumor growth. Compared with adjacent normal tissues, HOST2 expression was higher but let-7b expression lower in breast cancer tissues. HOST2 expression in breast cancer cells was remarkably increased compared with that in the normal breast epithelial MCF-10A cells. In MCF-7 cells, in comparison with the blank and NC groups, expressions of HOST2 and c-Myc were reduced, but let-7b expression was remarkably elevated in the siHOST2 and let-7b mimic groups; the let-7b inhibitor group exhibited higher expressions of HOST2 and c-Myc but lower let-7b expression. Overexpression of HOST2 could promote cell motility, migration and invasion, thus enhancing the growth of breast cancer tumor. By inhibiting HOST2, opposite trends were found. LncRNA HOST2 promotes cell migration and invasion by inhibiting let-7b in breast cancer patients. © 2017 Wiley Periodicals, Inc.
Mosquera Orgueira, Adrián
2015-01-01
DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression.
Structure, organization and expression of common carp (Cyprinus carpio L.) SLP-76 gene.
Huang, Rong; Sun, Xiao-Feng; Hu, Wei; Wang, Ya-Ping; Guo, Qiong-Lin
2008-05-01
SLP-76 is an important member of the SLP-76 family of adapters, and it plays a key role in TCR signaling and T cell function. Partial cDNA sequence of SLP-76 of common carp (Cyprinus carpio L.) was isolated from thymus cDNA library by the method of suppression subtractive hybridization (SSH). Subsequently, the full length cDNA of carp SLP-76 was obtained by means of 3' RACE and 5' RACE, respectively. The full length cDNA of carp SLP-76 was 2007 bp, consisting of a 5'-terminal untranslated region (UTR) of 285 bp, a 3'-terminal UTR of 240 bp, and an open reading frame of 1482 bp. Sequence comparison showed that the deduced amino acid sequence of carp SLP-76 had an overall similarity of 34-73% to that of other species homologues, and it was composed of an NH2-terminal domain, a central proline-rich domain, and a C-terminal SH2 domain. Amino acid sequence analysis indicated the existence of a Gads binding site R-X-X-K, a 10-aa-long sequence which binds to the SH3 domain of LCK in vitro, and three conserved tyrosine-containing sequence in the NH2-terminal domain. Then we used PCR to obtain a genomic DNA which covers the entire coding region of carp SLP-76. In the 9.2k-long genomic sequence, twenty one exons and twenty introns were identified. RT-PCR results showed that carp SLP-76 was expressed predominantly in hematopoietic tissues, and was upregulated in thymus tissue of four-month carp compared to one-year old carp. RT-PCR and virtual northern hybridization results showed that carp SLP-76 was also upregulated in thymus tissue of GH transgenic carp at the age of four-months. These results suggest that the expression level of SLP-76 gene may be related to thymocyte development in teleosts.
Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Harris, Craig; Dolinoy, Dana C.
2014-01-01
While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng/g), BPA concentrations were lower in matched placenta (<0.05-25.4 ng/g) and kidney (0.08-11.1 ng/g) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3 and 59.2% in placenta, 79.5 and 66.4% in fetal liver, and 77.9 and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value <0.001) and CCGG content (p-value <0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus. PMID:25434263
Characterization and Expression Analysis of Genes Directing Galactomannan Synthesis in Coffee
Pré, Martial; Caillet, Victoria; Sobilo, Julien; McCarthy, James
2008-01-01
Background and Aims Galactomannans act as storage reserves for the seeds in some plants, such as guar (Cyamopsis tetragonoloba) and coffee (Coffea arabica and Coffea canephora). In coffee, the galactomannans can represent up to 25 % of the mass of the mature green coffee grain, and they exert a significant influence on the production of different types of coffee products. The objective of the current work was to isolate and characterize cDNA encoding proteins responsible for galactomannan synthesis in coffee and to study the expression of the corresponding transcripts in the developing coffee grain from C. arabica and C. canephora, which potentially exhibit slight galactomannan variations. Comparative gene expression analysis was also carried out for several other tissues of C. arabica and C. canephora. Methods cDNA banks, RACE-PCR and genome walking were used to generate full-length cDNA for two putative coffee mannan synthases (ManS) and two galactomannan galactosyl transferases (GMGT). Gene-specific probe-primer sets were then generated and used to carry out comparative expression analysis of the corresponding genes in different coffee tissues using quantitative RT-PCR Key Results Two of the putative galactomannan biosynthetic genes, ManS1 and GMGT1, were demonstrated to have very high expression in the developing coffee grain of both Coffea species during endosperm development, consistent with our proposal that these two genes are responsible for the production of the majority of the galactomannans found in the grain. In contrast, the expression data presented indicates that the ManS2 gene product is probably involved in the synthesis of the galactomannans found in green tissue. Conclusions The identification of genes implicated in galactomannan synthesis in coffee are presented. The data obtained will enable more detailed studies on the biosynthesis of this important component of coffee grain and contribute to a better understanding of some functional differences between grain from C. arabica and C. canephora. PMID:18562467
Wallace, Aaron; West, Kim; Rothman, Alan L; Ennis, Francis A; Lu, Shan; Wang, Shixia
2013-10-01
In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8(+) T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses.
Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration
Sato, Ayako; Kajiya, Hiroshi; Mori, Nana; Sato, Hironobu; Fukushima, Tadao; Kido, Hirofumi
2017-01-01
The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration. PMID:28060874
Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.
Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang
2011-03-10
Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.
Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression
2011-01-01
Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Results Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Conclusions Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy. PMID:21392388
Yan, Aifen; Zhang, Lingjuang; Tang, Zhiguo; Zhang, Yanhong; Qin, Chaobin; Li, Bo; Li, Wensheng; Lin, Haoran
2011-07-01
Orexin-A and -B, collectively called orexins, are hypothalamic neuropeptides involved in the regulation of food intake, sleep and energy balance. In this study, the full-length cDNA of prepro-orexin was isolated from the hypothalamus of orange-spotted grouper (Epinephelus coioides) using RT-PCR and RACE. The grouper prepro-orexin cDNA is 711 bp in length and encodes a 149-amino acid precursor protein that contains a 46-amino acid signal peptide, a 43-amino acid mature orexin-A peptide, a 27-amino acid mature orexin-B peptide and a 33-amino acid C terminus of unknown function. The tissue distribution and ontogeny of prepro-orexin were examined by quantitative real-time PCR. We found that the prepro-orexin mRNA is widely expressed in brain and peripheral tissues, with abundant expression in the hypothalamus. During the embryonic development, prepro-orexin mRNA was first detected in neurula stage embryos, and its expression gradually increased during the remainder of embryogenesis. Our analysis of grouper hypothalamic prepro-orexin expression showed that prepro-orexin mRNA levels were greater in the light phase than in the dark phase and increased significantly at meal-time. Intraperitoneal injection of orexin-A caused a dose-related increase in hypothalamus NPY mRNA expression level after 4h. Orexin-A also increased NPY mRNA expression level from static hypothalamic fragments incubation. Our results imply that orexin may be involved in feeding in the orange-spotted grouper and orexin-A is a stimulator of NPY mRNA expression in vivo and in vitro. Copyright © 2011 Elsevier Inc. All rights reserved.
Anisimov, Sergey V; Khavinson, Vladimir Kh; Anisimov, Vladimir N
2004-01-01
Aging is associated with significant alterations in gene expression in numerous organs and tissues. Anti-aging therapy with peptide bioregulators holds much promise for the correction of age-associated changes, making a screening for their molecular targets in tissues an important question of modern gerontology. The synthetic tetrapeptide Cortagen (Ala-Glu-Asp-Pro) was obtained by directed synthesis based on amino acid analysis of natural brain cortex peptide preparation Cortexin. In humans, Cortagen demonstrated a pronounced therapeutic effect upon the structural and functional posttraumatic recovery of peripheral nerve tissue. Importantly, other effects were also observed in cardiovascular and cerebrovascular parameters. Based on these latter observations, we hypothesized that acute course of Cortagen treatment, large-scale transcriptome analysis, and identification of transcripts with altered expression in heart would facilitate our understanding of the mechanisms responsible for this peptide biological effects. We therefore analyzed the expression of 15,247 transcripts in the heart of female 6-months CBA mice receiving injections of Cortagen for 5 consecutive days was studied by cDNA microarrays. Comparative analysis of cDNA microarray hybridisation with heart samples from control and experimental group revealed 234 clones (1,53% of the total number of clones) with significant changes of expression that matched 110 known genes belonging to various functional categories. Maximum up- and down-regulation was +5.42 and -2.86, respectively. Intercomparison of changes in cardiac expression profile induced by synthetic peptides (Cortagen, Vilon, Epitalon) and pineal peptide hormone melatonin revealed both common and specific effects of Cortagen upon gene expression in heart.
Hitzler, Johann K.; Witte, David P.; Jenkins, Nancy A.; Copeland, Neal G.; Gilbert, Debra J.; Naeve, Clayton W.; Look, A. Thomas; Morris, Stephan W.
1999-01-01
The NPM-MLF1 fusion protein is expressed in blasts from patients with myelodysplasia/acute myeloid leukemia (MDS/AML) containing the t(3;5) chromosomal rearrangement. Nucleophosmin (NPM), a previously characterized nucleolar phosphoprotein, contributes to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lymphoma (NPM-ALK) and acute promyelocytic leukemia (NPM-RARα). By contrast, the function of the carboxy-terminal fusion partner, myelodysplasia/myeloid leukemia factor 1 (MLF1), is unknown. To aid in understanding normal MLF1 function, we isolated the murine cDNA, determined the chromosomal localization of Mlf1, and defined its tissue expression by in situ hybridization. Mlf1 was highly similar to its human homologue (86% and 84% identical nucleotide and amino acid sequence, respectively) and mapped to the central region of chromosome 3, within a segment lacking known mouse mutations. Mlf1 tissue distribution was restricted during both development and postnatal life, with high levels present only in skeletal, cardiac, and selected smooth muscle, gonadal tissues, and rare epithelial tissues including the nasal mucosa and the ependyma/choroid plexus in the brain. Mlf1 transcripts were undetectable in the lympho-hematopoietic organs of both the embryonic and adult mouse, suggesting that NPM-MLF1 contributes to the genesis of MDS/AML in part by enforcing the ectopic overexpression of MLF1 within hematopoietic tissues. PMID:10393836
Expression profiling suggests a regulatory role of gallbladder in lipid homeostasis
Yuan, Zuo-Biao; Han, Tian-Quan; Jiang, Zhao-Yan; Fei, Jian; Zhang, Yi; Qin, Jian; Tian, Zhi-Jie; Shang, Jun; Jiang, Zhi-Hong; Cai, Xing-Xing; Jiang, Yu; Zhang, Sheng-Dao; Jin, Gang
2005-01-01
AIM: To examine expression profile of gallbladder using microarray and to investigate the role of gallbladder in lipid homeostasis. METHODS: 33P-labelled cDNA derived from total RNA of gallbladder tissue was hybridized to a cDNA array representing 17000 cDNA clusters. Genes with intensities ≥2 and variation <0.33 between two samples were considered as positive signals with subtraction of background chosen from an area where no cDNA was spotted. The average gray level of two gallbladders was adopted to analyze its bioinformatics. Identified target genes were confirmed by touch-down polymerase chain reaction and sequencing. RESULTS: A total of 11 047 genes expressed in normal gallbladder, which was more than that predicted by another author, and the first 10 genes highly expressed (high gray level in hybridization image), e.g., ARPC5 (2225.88±90.46), LOC55972 (2220.32±446.51) and SLC20A2 (1865.21±98.02), were related to the function of smooth muscle contraction and material transport. Meanwhile, 149 lipid-related genes were expressed in the gallbladder, 89 of which were first identified (with gray level in hybridization image), e.g., FASN (11.42±2.62), APOD (92.61±8.90) and CYP21A2 (246.11±42.36), and they were involved in each step of lipid metabolism pathway. In addition, 19 of those 149 genes were gallstone candidate susceptibility genes (with gray level in hybridization image), e.g., HMGCR (10.98±0.31), NPC1 (34.88±12.12) and NR1H4 (16.8±0.65), which were previously thought to be expressed in the liver and/or intestine tissue only. CONCLUSION: Gallbladder expresses 11 047 genes and takes part in lipid homeostasis. PMID:15810076
Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.
Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P
1995-07-01
Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.
TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.
Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu
2017-04-01
The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer. © 2017 International Federation for Cell Biology.
Rodríguez-Calvo, Ricardo; Serrano, Lucía; Coll, Teresa; Moullan, Norman; Sánchez, Rosa M; Merlos, Manuel; Palomer, Xavier; Laguna, Juan C; Michalik, Liliane; Wahli, Walter; Vázquez-Carrera, Manuel
2008-08-01
Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.
Mathieu, Olivier; Jasencakova, Zuzana; Vaillant, Isabelle; Gendrel, Anne-Valérie; Colot, Vincent; Schubert, Ingo; Tourmente, Sylvette
2003-01-01
In the Arabidopsis accession Columbia, 5S rDNA is located in the pericentromeric heterochromatin of chromosomes 3, 4, and 5. Both a major and some minor 5S rRNA species are expressed from chromosomes 4 and 5, whereas the genes on chromosome 3 are not transcribed. Here, we show that 5S rDNA methylation is reduced in 2-day-old seedlings versus 4-day-old or older aerial plant tissues, and the minor 5S rRNA species are expressed most abundantly at this stage. Similarly, when 5S rDNA is demethylated by 5-azacytidine treatment or via the decrease in DNA methylation1 (ddm1) mutation, the expression of minor 5S rRNA species is increased. We also show that in leaf nuclei of mature wild-type plants, the transcribed fraction of 5S rDNA forms loops that emanate from chromocenters. These loops, which are enlarged in nuclei of mature ddm1 plants, are enriched for histone H3 acetylated at Lys-9 and methylated at Lys-4 compared with the heterochromatic chromocenters. Up to 4 days after germination, heterochromatin is not fully developed: the 5S rDNA resides in prechromocenters, does not form conspicuous loops, and shows the lowest transcription level. Our results indicate that the expression and chromatin organization of 5S rRNA genes change during heterochromatin establishment. PMID:14630972
DNA and RNA profiling of excavated human remains with varying postmortem intervals.
van den Berge, M; Wiskerke, D; Gerretsen, R R R; Tabak, J; Sijen, T
2016-11-01
When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.
Differential tissue expression of enhanced green fluorescent protein in 'green mice'.
Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei
2010-06-01
In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.
Cell and Tissue Microarray Technologies for Protein and Nucleic Acid Expression Profiling
Cardano, Marina; Diaferia, Giuseppe R.; Falavigna, Maurizio; Spinelli, Chiara C.; Sessa, Fausto; DeBlasio, Pasquale
2013-01-01
Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform. PMID:23172795
Xu, De-Quan; Zhang, Yi-Bing; Xiong, Yuan-Zhu; Gui, Jian-Fang; Jiang, Si-Wen; Su, Yu-Hong
2003-07-01
Using suppression subtractive hybridization (SSH) technique, forward and reverse subtracted cDNA libraries were constructed between Longissimus muscles from Meishan and Landrace pigs. A housekeeping gene, G3PDH, was used to estimate the efficiency of subtractive cDNA. In two cDNA libraries, G3PDH was subtracted very efficiently at appropriate 2(10) and 2(5) folds, respectively, indicating that some differentially expressed genes were also enriched at the same folds and the two subtractive cDNA libraries were very successful. A total of 709 and 673 positive clones were isolated from forward and reverse subtracted cDNA libraries, respectively. Analysis of PCR showed that most of all plasmids in the clones contained 150-750 bp inserts. The construction of subtractive cDNA libraries between muscle tissue from different pig breeds laid solid foundations for isolating and identifying the genes determining muscle growth and meat quality, which will be important to understand the mechanism of muscle growth, determination of meat quality and practice of molecular breeding.
Goetz, Frederick W; Norberg, Birgitta; McCauley, Linda A R; Iliev, Dimitar B
2004-03-01
The full-length cDNA for the cod (Gadus morhua) StAR was cloned by RT-PCR and library screening using ovarian RNA. From the library screening, 2 size classes of cDNA were obtained; a 1577 bp cDNA (cStAR1) and a 2851 bp cDNA (cStAR2). The cStAR1 cDNA presumably encodes a protein of 286 amino acids. The cStAR2 cDNA was composed of 6 separated sequences that contained all of the coding regions of cStAR1 when added together, but also contained 5 noncoding regions not observed in cStAR1. Polymerase chain reactions of cod genomic DNA produced products slightly larger than cStAR2. The sequence of these products were the same as cStAR2 but revealed one additional noncoding region (intron). Thus, the fish StAR gene contains the same number of exons (7) and introns (6) as observed in mammals, but is approximately half the size of the mammalian gene. Using Northern analysis and RT-PCR, cStAR1 expression was observed only in testes, ovaries and head kidneys. Polymerase chain reaction products were also observed using cDNA from steroidogenic tissues and primers designed to regions specific for cStAR2, indicating that cStAR2 is expressed in tissues and may account for the presence of larger transcripts observed on Northern blots.
Characterization of embryo-specific genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Z.R.
1988-01-01
The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that are not expressed in mature tissues -- the embryogenic genes. In order to isolate these genes, we immunized a rabbit with total extracts of somatic embryos of carrot, and enriched the anti-embryo antiserum for antibodies reacting with extracts of carrot somatic embryos. Using this enriched antiserum, we screened a lambda gt11 cDNA library constructed from embryo poly A{sup +} RNA, and isolated 10 cDNA clones that detect embryogenic mRNAs. Monospecific antibodies have beenmore » purified for proteins corresponding to each cDNA sequence. Four cDNA clones were further characterized in terms of the expression of their corresponding mRNA and protein in somatic embryos of carrot. In some cases, comparable gene sequences or products have been detected in somatic and zygotic embryos of other plant species. The characteristics of these 4 cDNA clones -- clone Nos. 8, 59, and 66 -- are described in this report. 3 figs.« less
Rusz, Orsolya; Pál, Margit; Szilágyi, Éva; Rovó, László; Varga, Zoltán; Tomisa, Bernadett; Fábián, Gabriella; Kovács, Levente; Nagy, Olga; Mózes, Petra; Reisz, Zita; Tiszlavicz, László; Deák, Péter; Kahán, Zsuzsanna
2017-04-01
DNA damage response failure may influence the efficacy of DNA-damaging treatments. We determined the expression of 16 genes involved in distinct DNA damage response pathways, in association with the response to standard therapy. Twenty patients with locoregionally advanced, squamous cell head and neck carcinoma were enrolled. The treatment included induction chemotherapy (iChT) with docetaxel, cisplatin and 5-fluorouracil followed by concomitant chemoradiotherapy (ChRT) or radiotherapy (RT) alone. The volumetric metabolic therapeutic response was determined by [18F]FDG-PET/CT. In the tumor and matched normal tissues collected before treatment, the gene expressions were examined via the quantitative real-time polymerase chain reaction (qRT-PCR). The down-regulation of TP53 was apparently associated with a poor response to iChT, its up-regulation with complete regression in 2 cases. 7 cases with down-regulated REV1 expression showed complete regression after ChRT/RT, while 1 case with REV1 overexpression was resistant to RT. The overexpression of WRN was an independent predictor of tumor relapse. Our results suggest that an altered expression of REV1 predicts sensitivity to RT, while WRN overexpression is an unfavorable prognostic factor.
Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae
2011-07-01
Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.
Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells.
Yan, Z; DeGregori, J; Shohet, R; Leone, G; Stillman, B; Nevins, J R; Williams, R S
1998-03-31
Cdc6 has a critical regulatory role in the initiation of DNA replication in yeasts, but its function in mammalian cells has not been characterized. We show here that Cdc6 is expressed selectively in proliferating but not quiescent mammalian cells, both in culture and within tissues of intact animals. During the transition from a growth-arrested to a proliferative state, transcription of mammalian Cdc6 is regulated by E2F proteins, as revealed by a functional analysis of the human Cdc6 promoter and by the ability of exogenously expressed E2F proteins to stimulate the endogenous Cdc6 gene. Immunodepletion of Cdc6 by microinjection of anti-Cdc6 antibody blocks initiation of DNA replication in a human tumor cell line. We conclude that expression of human Cdc6 is regulated in response to mitogenic signals though transcriptional control mechanisms involving E2F proteins, and that Cdc6 is required for initiation of DNA replication in mammalian cells.
Cloning and expression analysis of Zmglp1, a new germin-like protein gene in maize.
Fan, Zhanmin; Gu, Hongya; Chen, Xiaowei; Song, Hui; Wang, Qian; Liu, Meihua; Qu, Li-Jia; Chen, Zhangliang
2005-06-17
The cDNA and genomic DNA of a green tissue-specific gene were cloned from maize (Zea mays L.) using cDNA-amplified fragment length polymorphism (cDNA-AFLP) and library screening. The deduced protein was highly similar to Hordeum vulgare germin-like protein 1 (HvGLP1), and the maize gene was therefore designated Zmglp1. Northern blot specifically detected the mRNA of Zmglp1 in young whorl leaves at the early-whorl stage. However, at the late-whorl, tassel, and silk stages, Zmglp1 transcripts were highly abundant in young whorl leaves; less abundant in mature leaves, young tassels, and cobs; and not detectable in roots, immature kernels, and stalks. RNA in situ hybridization revealed that Zmglp1 expressed only in mesophyllous, phloem, and guard cells in the young whorl leaves. Deletion analysis of the promoter in transgenic Arabidopsis resulted in the identification of several regions containing important regulatory cis-elements controlling the expression levels and circadian rhythm-oscillated patterns of Zmglp1.
Kang, Seong W.; Madkour, Mahmoud; Kuenzel, Wayne J.
2017-01-01
DNA methylation was reported as a possible stress-adaptation mechanism involved in the transcriptional regulation of stress responsive genes. Limited data are available on effects of psychological stress and early-life nutritional stress on DNA methylation regulators [DNMTs: DNA (cytosine-5)-methyltransferase 1 (DNMT1), DNMT1 associated protein (DMAP1), DNMT 3 alpha (DNMT3A) and beta (DNMT3B)] in avian species. The objectives of this study were to: (1) investigate changes in expression of DNMT1, DMAP1, DNMT3A, and DNMT3B following acute (AS) or chronic immobilization stress (CS); (2) test immediate effect of early-life nutritional stress [food deprivation (FD) for 12 h (12hFD) or 36 h (36hFD) at the post-hatching period] on expression of DNA methylation regulators and glucocorticoid receptor (GR), and the long-term effect of early-life nutritional stress at 6 weeks of age. Expression of DNMTs and plasma corticosterone (CORT) concentration decreased by CS compared to AS (p < 0.05), indicating differential roles of DNA methylation regulators in the stress response. Plasma CORT at 12hFD and 36hFD birds increased compared to control birds (12hF and 36hF), but there were no significant differences in plasma CORT of 12hFD and 36hFD birds at 6 weeks of age compared to 6 week controls. DNMT1, DMAP1, and DNMT3B expression in the anterior pituitary increased by 12hFD, but decreased at 36hFD compared to their controls (P < 0.05). In liver, DNMT1, DNMT3A, and DNMT3B expression decreased by 12hFD, however, no significant changes occurred at 36hFD. Expression of DMAP1, DNMT3A, and DNMT3B in anterior pituitary and DMAP1 and DNMT3A expression in liver at 6 weeks of age were higher in 36hFD stressed birds compared to controls as well as 12hFD stressed birds. Hepatic GR expression decreased by 12hFD and increased by 36hFD (p < 0.05). Expression patterns of GR in the liver of FD stress-induced birds persisted until 6 weeks of age, suggesting the possible lifelong involvement of liver GR in early-life nutritional stress response of birds. Taken together, results suggest that DNA methylation regulator genes are tissue-specifically responsive to acute and chronic stress, and hepatic GR may play a critical role in regulating the early-life nutritional stress response of birds. In addition, the downregulation of DNMT1 and DMAP1 may be one of the adaptive mechanisms to chronic early-life nutritional stress via passive demethylation. PMID:29270191
Detection of ovarian matrix metalloproteinase mRNAs by in situ hybridization.
Rosewell, Katherine L; Curry, Thomas E
2009-01-01
In situ hybridization represents a powerful technique to localize DNA or RNA of interest at the chromosomal or cellular level. In endocrine tissues composed of diverse and varied cell types, in situ hybridization has allowed the identification of specific cells responsible for the expression of genes controlling the function of the tissue. Our laboratory has routinely used this approach to understand the cellular expression of genes associated with the growth of the ovarian follicle, rupture of the follicle, and transformation of the ruptured follicle into the corpus luteum. The current study outlines the procedural details of in situ detection of mRNA in tissues and illustrates the utility of this approach in identifying the ovarian cells expressing the matrix metalloproteinases and their endogenous inhibitors, the TIMPs, in the human ovary.
Sequence, molecular properties, and chromosomal mapping of mouse lumican
NASA Technical Reports Server (NTRS)
Funderburgh, J. L.; Funderburgh, M. L.; Hevelone, N. D.; Stech, M. E.; Justice, M. J.; Liu, C. Y.; Kao, W. W.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1995-01-01
PURPOSE. Lumican is a major proteoglycan of vertebrate cornea. This study characterizes mouse lumican, its molecular form, cDNA sequence, and chromosomal localization. METHODS. Lumican sequence was determined from cDNA clones selected from a mouse corneal cDNA expression library using a bovine lumican cDNA probe. Tissue expression and size of lumican mRNA were determined using Northern hybridization. Glycosidase digestion followed by Western blot analysis provided characterization of molecular properties of purified mouse corneal lumican. Chromosomal mapping of the lumican gene (Lcn) used Southern hybridization of a panel of genomic DNAs from an interspecific murine backcross. RESULTS. Mouse lumican is a 338-amino acid protein with high-sequence identity to bovine and chicken lumican proteins. The N-terminus of the lumican protein contains consensus sequences for tyrosine sulfation. A 1.9-kb lumican mRNA is present in cornea and several other tissues. Antibody against bovine lumican reacted with recombinant mouse lumican expressed in Escherichia coli and also detected high molecular weight proteoglycans in extracts of mouse cornea. Keratanase digestion of corneal proteoglycans released lumican protein, demonstrating the presence of sulfated keratan sulfate chains on mouse corneal lumican in vivo. The lumican gene (Lcn) was mapped to the distal region of mouse chromosome 10. The Lcn map site is in the region of a previously identified developmental mutant, eye blebs, affecting corneal morphology. CONCLUSIONS. This study demonstrates sulfated keratan sulfate proteoglycan in mouse cornea and describes the tools (antibodies and cDNA) necessary to investigate the functional role of this important corneal molecule using naturally occurring and induced mutants of the murine lumican gene.
Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro
2007-01-01
Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent’s non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent’s method is not suitable for ROKU. PMID:19936074
Promoter methylation assay of SASH1 gene in hepatocellular carcinoma.
Peng, Liu; Wei, He; Liren, Li
2014-01-01
To analyse the relationship between the expression of SASH1 and its methylation level in human hepatocellular carcinoma. Expression levels of SASH1 were examined with real-time PCR (RT-PCR) in tissues and cells, and methylation analysis was performed with MassArray. The expression levels of SASH1 were strongly reduced in liver cancer tissues compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed different CpG sites in SASH1 promoter shared similar methylation pattern between liver cancer tissues and adjacent normal tissues and the CpG sites of significant difference in methylation level were found as follows: CpG_3, CpG_17, CpG_21.22, CpG_25, CpG_26.27, CpG_28, CpG_34.35.36 and CpG_51.52. Moreover, 5-aza-2'-deoxycytidine treatment of Hep-G2 cell line caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation degree in the promoter region of SASH1 gene, particularly CpG_26.27 sites, possibly repressed SASH1 expression in liver cancer.
Promoter methylation assay of SASH1 gene in breast cancer.
Sheyu, Lin; Hui, Liu; Junyu, Zhang; Jiawei, Xu; Honglian, Wang; Qing, Sang; Hengwei, Zhang; Xuhui, Guo; Qinghe, Xing; Lin, He
2013-01-01
To analyze the relationship between the expression of SASH1 and its methylation level of SASH1 gene promoter in human breast cancer. Expression levels of SASH1 were examined in breast cancer tissues and adjacent normal tissues with immunohistochemistry and with real time PCR (RT-PCR) methylation analysis was performed with MassArray. Immunohistochemistry showed that SASH1 expression was strongly reduced in breast cancer compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed that CpG sites in SASH1 promoter shared similar methylation pattern in tumor tissue and adjacent normal tissue. The CpG sites with significant difference in methylation level were CpG_26.27 and CpG_54.55. Moreover, 5-aza-2'-deoxycytidine (5-Aza-dc) treatment of tumor cell line MDA-MB-231 caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation level in the promoter region of gene SASH1, particularly CpG_26.27 or CpG_54.55 sites, possibly repressed SASH1 expression in breast cancer.
Taylor, Julia A; Shioda, Keiko; Mitsunaga, Shino; Yawata, Shiomi; Angle, Brittany M; Nagel, Susan C; Vom Saal, Frederick S; Shioda, Toshi
2018-02-01
Exposure of mammalian fetuses to endocrine disruptors can increase the risk of adult-onset diseases. We previously showed that exposure of mouse fetuses to bisphenol A (BPA) caused adult-onset obesity. To examine roles of epigenetic changes in this delayed toxicity, we determined the effects of fetal mouse exposure to BPA on genome-wide DNA methylation and messenger RNA (mRNA) expression in gonadal white adipose tissues (WATs) by deep sequencing, bisulfite pyrosequencing, and real-time quantitative polymerase chain reaction. Pregnant CD-1 mice (F0) were dosed daily with 0, 5, or 500 μg/kg/d BPA during gestational days 9 to 18, and the weaned F1 animals were fed ad libitum with standard chow until they were euthanized at 19 weeks old. In the vehicle-exposed F1 animals, fggy promoter showed a clear bimodal pattern of very strong (55% to 95%) or very weak (5% to 30%) DNA methylation occurring at nearly equal incidence with no intermediate strength. Promoter hypermethylation completely suppressed mRNA expression. BPA exposure eliminated this naturally occurring dichotomy, shifting fggy promoter toward the hypomethylation state to release transcriptional suppression. The strength of Fggy mRNA expression significantly correlated with increased whole body weight and gonadal fat weight of males but not females. Bioinformatics studies showed that expression of Fggy mRNA is stronger in mouse WATs than in brown adipose tissues and enhanced in gonadal fat by diet-induced obesity. These observations suggest that prenatal exposure to BPA may disrupt the physiological bimodal nature of epigenetic regulation of fggy in mouse WATs, possibly contributing to the adult-onset obesity phenotype. Copyright © 2018 Endocrine Society.
Molecular characterization of immortalized normal and dysplastic oral cell lines.
Dickman, Christopher T D; Towle, Rebecca; Saini, Rajan; Garnis, Cathie
2015-05-01
Cell lines have been developed for modeling cancer and cancer progression. The molecular background of these cell lines is often unknown to those using them to model disease behaviors. As molecular alterations are the ultimate drivers of cell phenotypes, having an understanding of the molecular make-up of these systems is critical for understanding the disease biology modeled. Six immortalized normal, one immortalized dysplasia, one self-immortalized dysplasia, and two primary normal cell lines derived from oral tissues were analyzed for DNA copy number changes and changes in both mRNA and miRNA expression using SMRT-v.2 genome-wide tiling comparative genomic hybridization arrays, Agilent Whole Genome 4x44k expression arrays, and Exiqon V2.M-RT-PCR microRNA Human panels. DNA copy number alterations were detected in both normal and dysplastic immortalized cell lines-as well as in the single non-immortalized dysplastic cell line. These lines were found to have changes in expression of genes related to cell cycle control as well as alterations in miRNAs that are deregulated in clinical oral squamous cell carcinoma tissues. Immortal lines-whether normal or dysplastic-had increased disruption in expression relative to primary lines. All data are available as a public resource. Molecular profiling experiments have identified DNA, mRNA, and miRNA alterations for a panel of normal and dysplastic oral tissue cell lines. These data are a valuable resource to those modeling diseases of the oral mucosa, and give insight into the selection of model cell lines and the interpretation of data from those lines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Howarth, Jonathan R; Parmar, Saroj; Barraclough, Peter B; Hawkesford, Malcolm J
2009-02-01
A sulphate deficiency-induced gene, sdi1, has been identified by cDNA-amplified fragment length polymorphism (AFLP) analysis utilizing field-grown, nutrient-deficient wheat (Triticum aestivum var. Hereward). The expression of sdi1 was specifically induced in leaf and root tissues in response to sulphate deficiency, but was not induced by nitrogen, phosphorus, potassium or magnesium deficiency. Expression was also shown to increase in plant tissues as the external sulphate concentration in hydroponically grown plants was reduced from 1.0 to 0.0 mm. On this basis, sdi1 gene expression has potential as a sensitive indicator of sulphur nutritional status in wheat. Genome-walking techniques were used to clone the 2.7-kb region upstream of sdi1 from genomic DNA, revealing several cis-element motifs previously identified as being associated with sulphur responses in plants. The Arabidopsis thaliana gene most highly homologous to sdi1 is At5g48850, which was also demonstrated to be induced by sulphur deficiency, an observation confirmed by the analysis of microarray data available in the public domain. The expression of Atsdi1 was induced more rapidly than previously characterized sulphur-responsive genes in the period immediately following the transfer of plants to sulphur-deficient medium. Atsdi1 T-DNA 'knockout' mutants were shown to maintain higher tissue sulphate concentrations than wild-type plants under sulphur-limiting conditions, indicating a role in the utilization of stored sulphate under sulphur-deficient conditions. The structural features of the sdi1 gene and its application in the genetic determination of the sulphur nutritional status of wheat crops are discussed.
Iwaya, Chihiro; Kitajima, Hidetoshi; Yamamoto, Ken; Maeda, Yasutaka; Sonoda, Noriyuki; Shibata, Hiroki; Inoguchi, Toyoshi
2018-03-11
Krüppel-Like Factor 14 (KLF14) gene, which appears to be a master regulator of gene expression in the adipose tissue and have previously been associated with BMI and Type 2 diabetes (T2D) by large genome-wide association studies. In order to find predictive biomarkers for the development of T2D, it is necessary to take epigenomic changes affected by environmental factors into account. This study focuses on ageing and obesity, which are T2D risk factors, and examines epigenetic changes and inflammatory changes. We investigated DNA methylation changes in the Klf14 promoter region in different organs of mice for comparing aging and weight. We found that methylation levels of these sites were increased with aging and weight in the spleen, the adipose tissue, the kidney, the lung, the colon and the whole blood cells. In addition, in the spleen, the adipose tissue and the whole blood, these epigenetic changes were also significantly associated with inflammatory levels. Moreover, not only Klf14, but also expression levels of some downstream genes were decreased with methylation in the spleen, the adipose tissue and the whole blood cells. Taken together, our results suggest that methylation changes of Klf14 in those tissues may be associated with changes in gene expression and inflammation on the adipose tissue of obesity and T2D. In addition, the methylation changes in the whole blood cells may serve as a predictive epigenetic biomarker for the development of T2D. Copyright © 2018 Elsevier Inc. All rights reserved.
Metabolic effects of dietary sugar beet pulp or wheat bran in growing female pigs.
Weber, T E; Kerr, B J
2012-02-01
An experiment was conducted to determine the effects of feeding a moderate level of 2 different fiber sources on energy metabolites; mitochondrial biogenesis in the intestine, liver, and muscle; and the expression of some genes that regulate energy metabolism in intestine, liver, muscle, and adipose tissue. Female pigs (n = 36; BW = 15.0 ± 0.7 kg) were fed diets containing no added fiber, 12.5% sugar beet pulp (SBP), or 12.5% wheat bran (WB) for 24 d. Blood samples were collected on d 7 and 24 for cholesterol, glucose, NEFA, and triglyceride analyses. At completion of the experiment, ileum, colon, subcutaneous adipose, and LM samples were obtained from a subset (n = 6) of pigs fed each diet for analysis of tissue mitochondrial DNA (mtDNA) content and mRNA abundance by quantitative real-time reverse-transcription PCR. Glycogen and triglyceride content of liver and LM were determined, and colon content VFA was also determined. The addition of SBP or WB to the diet had no effect (P > 0.55) on ADG, ADFI, or G:F. Serum NEFA and triglycerides were increased (P < 0.05) in pigs fed SBP compared with pigs fed the control diet or WB on d 7, and NEFA remained increased (P < 0.05) on d 24 in pigs fed SBP. Dietary fiber had no effect (P > 0.24) on glycogen and triglyceride content of liver or LM, but colonic acetate concentrations were increased (P < 0.05) in pigs fed either SBP or WB. Pigs fed WB had an increased (P < 0.05) mtDNA content in ileum tissue and increased (P < 0.05) citrate synthase mRNA in colon tissue. In the liver, feeding either SBP or WB led to a decrease (P < 0.05) in mtDNA content, whereas feeding WB decreased (P < 0.05) mtDNA abundance in the LM, and feeding either SBP or WB decreased (P < 0.05) expression of citrate synthase mRNA. Quantitative reverse-transcription PCR revealed that feeding WB increased (P < 0.05) proliferating cell nuclear antigen mRNA abundance in the ileum and colon. Feeding WB increased (P < 0.05) mRNA abundance of a regulator of mitochondrial biogenesis, PPAR coactivator 1 α, in ileum tissue, and increased (P < 0.05) mRNA abundance of another mediator of mitochondrial biogensis, sirtuin 1, in colon tissue. Colonic mRNA expression of fasting-induced adipose factor was increased (P < 0.05) in pigs fed either SBP or WB, and adipose triglyceride lipase mRNA abundance was increased (P < 0.05) in adipose tissue of pigs fed SBP. These data indicate that increasing dietary fiber can increase the capacity of the intestine for oxidative metabolism and induce a repartitioning of energy metabolites depending on fiber source.
Yu, Lei; Dawe, Robert J; Boyle, Patricia A; Gaiteri, Chris; Yang, Jingyun; Buchman, Aron S; Schneider, Julie A; Arfanakis, Konstantinos; De Jager, Philip L; Bennett, David A
2017-12-01
Alteration of ex vivo magnetic resonance imaging transverse relaxation is associated with late-life cognitive decline even after controlling for common neuropathologic conditions. However, the underlying neurobiology of this association is unknown. To investigate the association between brain gene expression, DNA methylation, and alteration of magnetic resonance imaging transverse relaxation in late-life cognitive decline. Data came from 2 community-based longitudinal cohort studies of aging and dementia, the Religious Orders Study, which began in 1993, and the Rush Memory and Aging Project, which began in 1997. All participants agreed to undergo annual clinical evaluations and to donate their brains after death. By October 24, 2016, a total of 1358 individuals had died and had brain autopsies that were approved by board-certified neuropathologists. Of those, 552 had undergone ex vivo imaging. The gene expression analysis was limited to 174 individuals with both imaging and brain RNA sequencing data. The DNA methylation analysis was limited to 225 individuals with both imaging and brain methylation data. Maps of ex vivo magnetic resonance imaging transverse relaxation were generated using fast spin echo imaging. The target was a composite measure of the transverse relaxation rate (R2) that was associated with cognitive decline after controlling for common neuropathologic conditions. Next-generation RNA sequencing and DNA methylation data were generated using frozen tissue from the dorsolateral prefrontal cortex. Genome-wide association analysis was used to investigate gene expression and, separately, DNA methylation for signals associated with the R2 measure. Of the 552 individuals with ex vivo imaging data, 394 were women and 158 were men, and the mean (SD) age at death was 90.4 (6.0) years. Four co-expressed genes (PADI2 [Ensembl ENSG00000117115], ZNF385A [Ensembl ENSG00000161642], PSD2 [Ensembl ENSG00000146005], and A2ML1 [Ensembl ENSG00000166535]) were identified, of which higher expressions were associated with slower R2. The association of R2 with cognitive decline was attenuated when the gene expression signals were added to the model, such that the mean (SE) coefficient of association was reduced from 0.028 (0.008) (P < .001) to 0.019 (0.009) (P = .03). The DNA methylation scan did not detect a genome-wide significant signal, but it revealed an anticorrelation between R2 and DNA methylation in many of the cytosine-guanine dinucleotides. Brain gene expression and DNA methylation dysregulations are implicated in the alteration of brain tissue properties associated with late-life cognitive decline above and beyond the influence of common neuropathologic conditions.
Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolverton, C.K.; Leaman, D.W.; White, M.E.
1990-02-26
Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probedmore » with {sup 32}P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus.« less
Human active X-specific DNA methylation events showing stability across time and tissues
Joo, Jihoon Eric; Novakovic, Boris; Cruickshank, Mark; Doyle, Lex W; Craig, Jeffrey M; Saffery, Richard
2014-01-01
The phenomenon of X chromosome inactivation in female mammals is well characterised and remains the archetypal example of dosage compensation via monoallelic expression. The temporal series of events that culminates in inactive X-specific gene silencing by DNA methylation has revealed a ‘patchwork' of gene inactivation along the chromosome, with approximately 15% of genes escaping. Such genes are therefore potentially subject to sex-specific imbalance between males and females. Aside from XIST, the non-coding RNA on the X chromosome destined to be inactivated, very little is known about the extent of loci that may be selectively silenced on the active X chromosome (Xa). Using longitudinal array-based DNA methylation profiling of two human tissues, we have identified specific and widespread active X-specific DNA methylation showing stability over time and across tissues of disparate origin. Our panel of X-chromosome loci subject to methylation on Xa reflects a potentially novel mechanism for controlling female-specific X inactivation and sex-specific dimorphisms in humans. Further work is needed to investigate these phenomena. PMID:24713664
PromoterCAD: data-driven design of plant regulatory DNA
Cox, Robert Sidney; Nishikata, Koro; Shimoyama, Sayoko; Yoshida, Yuko; Matsui, Minami; Makita, Yuko; Toyoda, Tetsuro
2013-01-01
Synthetic promoters can control the timing, location and amount of gene expression for any organism. PromoterCAD is a web application for designing synthetic promoters with altered transcriptional regulation. We use a data-first approach, using published high-throughput expression and motif data from for Arabidopsis thaliana to guide DNA design. We demonstrate data mining tools for finding motifs related to circadian oscillations and tissue-specific expression patterns. PromoterCAD is built on the LinkData open platform for data publication and rapid web application development, allowing new data to be easily added, and the source code modified to add new functionality. PromoterCAD URL: http://promotercad.org. LinkData URL: http://linkdata.org. PMID:23766287
Shen, Siming; Casaccia-Bonnefil, Patrizia
2008-01-01
The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed. PMID:17999198
Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa
2013-01-01
Background Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation. Results We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes. Conclusions DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements. PMID:23799904
Microbial Dysbiosis Is Associated with Human Breast Cancer
Xuan, Caiyun; Shamonki, Jaime M.; Chung, Alice; DiNome, Maggie L.; Chung, Maureen; Sieling, Peter A.; Lee, Delphine J.
2014-01-01
Breast cancer affects one in eight women in their lifetime. Though diet, age and genetic predisposition are established risk factors, the majority of breast cancers have unknown etiology. The human microbiota refers to the collection of microbes inhabiting the human body. Imbalance in microbial communities, or microbial dysbiosis, has been implicated in various human diseases including obesity, diabetes, and colon cancer. Therefore, we investigated the potential role of microbiota in breast cancer by next-generation sequencing using breast tumor tissue and paired normal adjacent tissue from the same patient. In a qualitative survey of the breast microbiota DNA, we found that the bacterium Methylobacterium radiotolerans is relatively enriched in tumor tissue, while the bacterium Sphingomonas yanoikuyae is relatively enriched in paired normal tissue. The relative abundances of these two bacterial species were inversely correlated in paired normal breast tissue but not in tumor tissue, indicating that dysbiosis is associated with breast cancer. Furthermore, the total bacterial DNA load was reduced in tumor versus paired normal and healthy breast tissue as determined by quantitative PCR. Interestingly, bacterial DNA load correlated inversely with advanced disease, a finding that could have broad implications in diagnosis and staging of breast cancer. Lastly, we observed lower basal levels of antibacterial response gene expression in tumor versus healthy breast tissue. Taken together, these data indicate that microbial DNA is present in the breast and that bacteria or their components may influence the local immune microenvironment. Our findings suggest a previously unrecognized link between dysbiosis and breast cancer which has potential diagnostic and therapeutic implications. PMID:24421902
[Neuroepigenetics: Desoxyribonucleic acid methylation in Alzheimer's disease and other dementias].
Mendioroz Iriarte, Maite; Pulido Fontes, Laura; Méndez-López, Iván
2015-05-21
DNA methylation is an epigenetic mechanism that controls gene expression. In Alzheimer's disease (AD), global DNA hypomethylation of neurons has been described in the human cerebral cortex. Moreover, several variants in the methylation pattern of candidate genes have been identified in brain tissue when comparing AD patients and controls. Specifically, DNA methylation changes have been observed in PSEN1 and APOE, both genes previously being involved in the pathophysiology of AD. In other degenerative dementias, methylation variants have also been described in key genes, such as hypomethylation of the SNCA gene in Parkinson's disease and dementia with Lewy bodies or hypermethylation of the GRN gene promoter in frontotemporal dementia. The finding of aberrant DNA methylation patterns shared by brain tissue and peripheral blood opens the door to use those variants as epigenetic biomarkers in the diagnosis of neurodegenerative diseases. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Terry, Richard; Turczyk, Brian M.; Yang, Joyce L.; Lee, Ho Suk; Aach, John; Zhang, Kun; Church, George M.
2014-01-01
RNA sequencing measures the quantitative change in gene expression over the whole transcriptome, but it lacks spatial context. On the other hand, in situ hybridization provides the location of gene expression, but only for a small number of genes. Here we detail a protocol for genome-wide profiling of gene expression in situ in fixed cells and tissues, in which RNA is converted into cross-linked cDNA amplicons and sequenced manually on a confocal microscope. Unlike traditional RNA-seq our method enriches for context-specific transcripts over house-keeping and/or structural RNA, and it preserves the tissue architecture for RNA localization studies. Our protocol is written for researchers experienced in cell microscopy with minimal computing skills. Library construction and sequencing can be completed within 14 d, with image analysis requiring an additional 2 d. PMID:25675209
Cytoskeleton structure and total methylation of mouse cardiac and lung tissue during space flight.
Ogneva, Irina V; Loktev, Sergey S; Sychev, Vladimir N
2018-01-01
The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased.
Cytoskeleton structure and total methylation of mouse cardiac and lung tissue during space flight
Loktev, Sergey S.; Sychev, Vladimir N.
2018-01-01
The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased. PMID:29768411
Rai, Muhammad Farooq; Schmidt, Eric J; McAlinden, Audrey; Cheverud, James M; Sandell, Linda J
2013-11-06
Tissue regeneration is a complex trait with few genetic models available. Mouse strains LG/J and MRL are exceptional healers. Using recombinant inbred strains from a large (LG/J, healer) and small (SM/J, nonhealer) intercross, we have previously shown a positive genetic correlation between ear wound healing, knee cartilage regeneration, and protection from osteoarthritis. We hypothesize that a common set of genes operates in tissue healing and articular cartilage regeneration. Taking advantage of archived histological sections from recombinant inbred strains, we analyzed expression of candidate genes through branched-chain DNA technology directly from tissue lysates. We determined broad-sense heritability of candidates, Pearson correlation of candidates with healing phenotypes, and Ward minimum variance cluster analysis for strains. A bioinformatic assessment of allelic polymorphisms within and near candidate genes was also performed. The expression of several candidates was significantly heritable among strains. Although several genes correlated with both ear wound healing and cartilage healing at a marginal level, the expression of four genes representing DNA repair (Xrcc2, Pcna) and Wnt signaling (Axin2, Wnt16) pathways was significantly positively correlated with both phenotypes. Cluster analysis accurately classified healers and nonhealers for seven out of eight strains based on gene expression. Specific sequence differences between LG/J and SM/J were identified as potential causal polymorphisms. Our study suggests a common genetic basis between tissue healing and osteoarthritis susceptibility. Mapping genetic variations causing differences in diverse healing responses in multiple tissues may reveal generic healing processes in pursuit of new therapeutic targets designed to induce or enhance regeneration and, potentially, protection from osteoarthritis.
Efficacy of the MEK Inhibitor Cobimetinib and its Potential Application to Colorectal Cancer Cells.
Gong, Shu; Xu, Dongsheng; Zhu, Jialin; Zou, Fangdong; Peng, Rui
2018-05-22
Mutations in the Ras/Raf/MEK/ERK pathway are detected in 50% of colorectal cancer cases and play a crucial role in cancer development and progression. Cobimetinib is a MEK inhibitor approved for the treatment of advanced melanoma and inhibits the cell viability of other types of cancer cells. HCT116 colorectal cancer cells were treated with cobimetinib, and MTT assay, colony formation assay, and flow cytometry were used to evaluate cell viability, cell cycle, and apoptosis, respectively. The expression of genes associated with the cell cycle and apoptosis were evaluated by quantitative real-time PCR and western blotting. To explore use of cobimetinib in colorectal cancer treatment and further understand its mechanisms, RNA-seq technology was used to identify differentially expressed genes (DEGs) between cobimetinib-treated and untreated HCT116 cells. Furthermore, we compared these DEGs with Gene Expression Omnibus data from colorectal cancer tissues and normal colonic epithelial tissues. We found that cobimetinib not only inhibited cell proliferation but also induced G1 phase arrest and apoptosis in HCT116 colorectal cancer cells, suggesting that cobimetinib may useful in colorectal cancer therapy. After cobimetinib treatment, 3,495 DEGs were obtained, including 2,089 upregulated genes and 1,406 downregulated genes, and most of these DEGs were enriched in the cell cycle, DNA replication, and DNA damage repair pathways. Our results revealed that some genes with high expression in colorectal cancer tissues were downregulated by cobimetinib in HCT116 cells, including CCND1, E2F1, CDC25C, CCNE2, MYC, and PCNA. These genes have vital roles in DNA replication and the cell cycle. Furthermore, genes with low expression in colorectal cancer tissues were upregulated by cobimetinib, including PRKCA, PI3K, RTK, and PKC. Based on our results, the PKC and PI3K pathways were activated after cobimetinib treatment, and inhibition of these two pathways can increase the cytotoxicity of cobimetinib in HCT116 cells. Notably, cobimetinib appeared to enhance the efficacy of 5-fluorouracil (5-FU) by decreasing TYMS expression, high expression of which is responsible for 5-FU resistance in colorectal cancer. Our results suggest the potential use of cobimetinib in colorectal cancer therapy. © 2018 The Author(s). Published by S. Karger AG, Basel.
MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer
Suh, Seong O.; Chen, Yi; Zaman, Mohd Saif; Hirata, Hiroshi; Yamamura, Soichiro; Shahryari, Varahram; Liu, Jan; Tabatabai, Z.Laura; Kakar, Sanjay; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir
2011-01-01
MiR-145 is downregulated in various cancers including prostate cancer. However, the underlying mechanisms of miR-145 downregulation are not fully understood. Here, we reported that miR-145 was silenced through DNA hypermethylation and p53 mutation status in laser capture microdissected (LCM) prostate cancer and matched adjacent normal tissues. In 22 of 27 (81%) prostate tissues, miR-145 was significantly downregulated in the cancer compared with the normal tissues. Further studies on miR-145 downregulation mechanism showed that miR-145 is methylated at the promoter region in both prostate cancer tissues and 50 different types of cancer cell lines. In seven cancer cell lines with miR-145 hypermethylation, 5-aza-2′-deoxycytidine treatment dramatically induced miR-145 expression. Interestingly, we also found a significant correlation between miR-145 expression and the status of p53 gene in both LCM prostate tissues and 47 cancer cell lines. In 29 cell lines with mutant p53, miR-145 levels were downregulated in 28 lines (97%), whereas in 18 cell lines with wild-type p53 (WT p53), miR-145 levels were downregulated in only 6 lines (33%, P < 0.001). Electrophoretic mobility shift assay showed that p53 binds to the p53 response element upstream of miR-145, but the binding was inhibited by hypermethylation. To further confirm that p53 binding to miR-145 could regulate miR-145 expression, we transfected WT p53 and MUT p53 into PC-3 cells and found that miR-145 is upregulated by WT p53 but not with MUTp53. The apoptotic cells are increased after WT p53 transfection. In summary, this is the first report documenting that downregulation of miR-145 is through DNA methylation and p53 mutation pathways in prostate cancer. PMID:21349819
Brain region-specific altered expression and association of mitochondria-related genes in autism
2012-01-01
Background Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients. Conclusions Our study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted. PMID:23116158
Brain region-specific altered expression and association of mitochondria-related genes in autism.
Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Matsuzaki, Hideo; Miyachi, Taishi; Yamada, Satoru; Tsujii, Masatsugu; Tsuchiya, Kenji J; Matsumoto, Kaori; Iwata, Yasuhide; Suzuki, Katsuaki; Ichikawa, Hironobu; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio
2012-11-01
Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients. Our study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted.
Hølvold, Linn Benjaminsen; Fredriksen, Børge N; Bøgwald, Jarl; Dalmo, Roy A
2013-09-01
The use of poly-(D,L-lactic-co-glycolic) acid (PLGA) particles as carriers for DNA delivery has received considerable attention in mammalian studies. DNA vaccination of fish has been shown to elicit durable transgene expression, but no reports exist on intramuscular administration of PLGA-encapsulated plasmid DNA (pDNA). We injected Atlantic salmon (Salmo salar L.) intramuscularly with a plasmid vector containing a luciferase (Photinus pyralis) reporter gene as a) naked pDNA, b) encapsulated into PLGA nano- (~320 nm) (NP) or microparticles (~4 μm) (MP), c) in an oil-based formulation, or with empty particles of both sizes. The ability of the different pDNA-treatments to induce transgene expression was analyzed through a 70-day experimental period. Anatomical distribution patterns and depot effects were determined by tracking isotope labeled pDNA. Muscle, head kidney and spleen from all treatment groups were analyzed for proinflammatory cytokines (TNF-α, IL-1β), antiviral genes (IFN-α, Mx) and cytotoxic T-cell markers (CD8, Eomes) at mRNA transcription levels at days 1, 2, 4 and 7. Histopathological examinations were performed on injection site samples from days 2, 7 and 30. Injection of either naked pDNA or the oil-formulation was superior to particle treatments for inducing transgene expression at early time-points. Empty particles of both sizes were able to induce proinflammatory immune responses as well as degenerative and inflammatory pathology at the injection site. Microparticles demonstrated injection site depots and an inflammatory pathology comparable to the oil-based formulation. In comparison, the distribution of NP-encapsulated pDNA resembled that of naked pDNA, although encapsulation into NPs significantly elevated the expression of antiviral genes in all tissues. Together the results indicate that while naked pDNA is most efficient for inducing transgene expression, the encapsulation of pDNA into NPs up-regulates antiviral responses that could be of benefit to DNA vaccination. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yi, Deqing; Yuan, Yue; Jin, Lei; Zhou, Guodong; Zhu, Huiping; Finnell, Richard H; Ren, Aiguo
2015-01-01
Maternal exposure to polycyclic aromatic hydrocarbons (PAHs) has been shown to be associated with an elevated risk for neural tube defects (NTDs). In the human body, PAHs are bioactivated and the resultant reactive epoxides can covalently bind to DNA to form PAH-DNA adducts, which may, in turn, cause transcription errors, changes in gene expression or altered patterns of apoptosis. During critical developmental phases, these changes can result in abnormal morphogenesis. We aimed to examine the relationship between the levels of PAH-DNA adducts in cord blood and cord tissue and the risk of NTDs. From 2010 to 2012, 60 NTD cases and 60 healthy controls were recruited from a population-based birth defects surveillance system in five counties of Shanxi Province in Northern China, where the emission of PAHs remains one of the highest in the country and PAHs exposure is highly prevalent. PAH-DNA adducts in cord blood of 15 NTD cases and 15 control infants, and in cord tissue of 60 NTD cases and 60 control infants were measured using the (32)P-postlabeling method. PAH-DNA adduct levels in cord blood tend to be higher in the NTD group (28.5 per 10(8) nucleotides) compared with controls (19.7 per 10(8) nucleotides), although the difference was not statistically significant (P=0.377). PAH-DNA adducts in cord tissue were significantly higher in the NTD group (24.6 per 10(6) nucleotides) than in the control group (15.3 per 10(6) nucleotides), P=0.010. A positive dose-response relationship was found between levels of PAH-DNA adducts in cord tissue and the risk of NTDs (P=0.009). When the lowest tertile was used as the referent and potential confounding factors were adjusted for, a 1.03-fold (95% CI, 0.37-2.89) and 2.96-fold (95% CI, 1.16-7.58) increase in the risk of NTDs was observed for fetuses whose cord tissue PAH-DNA adduct levels were in the second and highest tertile, respectively. High levels of PAH-DNA adducts in fetal tissues were associated with increased risks of NTDs. Copyright © 2014 Elsevier Inc. All rights reserved.
Hu, Ting; Yang, Pei; Zhu, Hongmei; Chen, Xinlian; Xie, Xiaoyan; Yang, Mei; Liu, Shanling; Wang, He
2015-04-02
Persistent high-risk human papillomavirus (HR-HPV) infection has been implicated in the development of high-grade cervical intraepithelial neoplasia (CIN) and cervical cancer. Invariant natural killer T (iNKT) cells produce large amounts of cytokines to regulate immune responses. However, the role of iNKT cells in human persistent HPV-infected cervical tissues is unknown. In our study, 201 patients with diagnoses ranging from normal ectocervical tissue to CINIII from June 2010 to May 2012 were enrolled. HPV DNA and HPV types were detected using the hybrid capture-2 HPV DNA test. Flow cytometry was used to investigate iNKT and CD3+ T cell infiltration into cervical tissues. Real-time quantitative reverse transcription-polymerase chain reaction was used to study IFN-γ expression and immunohistochemistry was used to determine CD3+ T cell distribution. A significant increase in iNKT cells was observed in HPV-positive cervical tissues (p < 0.05), especially in CINII-III (p < 0.01). IFN-γ expression was also increased in HPV-positive cervical tissues (p < 0.05). CD3+ T cells were detected among both epithelium and stromal layers in cervical tissues, and the percentage of CD3+ T cells in HPV-positive cervical tissues was similar to that in HPV-negative cervical tissues (p > 0.05). The iNKT cell aggregation in cervical tissues during the progression from HPV infection to CIN indicates that iNKT cells might play an important role in suppressing immunity. IFN-γ expression could also be related to the HPV infection status. Preventing the accumulation or functioning of iNKT cells in cervical tissues may be a viable method to prevent the development of CIN. The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2521874671514142.
ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors
Skamagki, Maria; Correia, Cristina; Yeung, Percy; Baslan, Timour; Beck, Samuel; Zhang, Cheng; Ross, Christian A.; Dang, Lam; Liu, Zhong; Giunta, Simona; Chang, Tzu-Pei; Wang, Joye; Ananthanarayanan, Aparna; Bohndorf, Martina; Bosbach, Benedikt; Adjaye, James; Funabiki, Hironori; Kim, Jonghwan; Lowe, Scott; Collins, James J.; Lu, Chi-Wei; Li, Hu; Zhao, Rui; Kim, Kitai
2018-01-01
Induced pluripotent stem cells (iPSCs), which are used to produce transplantable tissues, may particularly benefit older patients, who are more likely to suffer from degenerative diseases. However, iPSCs generated from aged donors (A-iPSCs) exhibit higher genomic instability, defects in apoptosis and a blunted DNA damage response compared with iPSCs generated from younger donors. We demonstrated that A-iPSCs exhibit excessive glutathione-mediated reactive oxygen species (ROS) scavenging activity, which blocks the DNA damage response and apoptosis and permits survival of cells with genomic instability. We found that the pluripotency factor ZSCAN10 is poorly expressed in A-iPSCs and addition of ZSCAN10 to the four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) during A-iPSC reprogramming normalizes ROS–glutathione homeostasis and the DNA damage response, and recovers genomic stability. Correcting the genomic instability of A-iPSCs will ultimately enhance our ability to produce histocompatible functional tissues from older patients’ own cells that are safe for transplantation. PMID:28846095
Abbasi, A; Moghadam, A A; Kahrarian, Z; Abbsavaran, R; Yari, K; Alizadeh, E
2017-08-15
Leptin is a 16-kDa peptide hormone secreted by adipose tissue that participates in the regulation of energy homeostasis. The aim of this study was to determine the effect of leptin injection on mRNA expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and comparison of PPAR-γ mRNA expression in rat's adipose and liver tissue. Twenty adult male rats were divided into the following groups: Group 1asa control (n=10) that did not receive any treatment. Group 2as a treatment (n=10) that received leptin (30 µg ⁄ kg BW) intraperitoneally (ip) for two successive days. Blood samples were taken before and one day after second leptin injection for triglyceride (TG), Free Fatty Acid (FFA), HLD-cholesterol, and LDL-cholesterol measurement. Total RNA was extractedfrom the adipose tissue and liver tissues of rats. Adipose and liver tissue cells' cDNA was synthesized to characterize the expression of PPAR-γ. Gene expression of PPAR-γ mRNA was tested by RT- PCR technique. Results show leptin decreases expression of PPAR-γ on rat. Low levels of PPAR-γ mRNA were detected in adipose and liver tissues of treatment rats in comparison to control group. In treatment group, the level of PPAR-γ mRNA in liver tissue was very lower than the adipose tissue. The levels of HDL and FFA in treatment rats were increased whereas serum levels TG, VLDL and LDL were not changed. It is concluded that leptin signal with suppressing of PPAR-γ mRNA expression in rat's adipose and liver tissues can result in lipolysis instead of lipogenesis.
NASA Astrophysics Data System (ADS)
Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai
2015-12-01
The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.
2011-01-01
Background Mycobacterium avium subspecies paratuberculosis (MAP) is suspected to be a causative agent in human Crohn's disease (CD). Recent evidence suggests that pathogenic mycobacteria and MAP can induce the expression of Matrix Metalloproteinases (MMP), which are the main proteases in the pathogenesis of mucosal ulcerations in inflammatory bowel disease (IBD). Within this study we assessed the prevalence of intestinal MAP specific DNA in patients with Crohn's disease, ulcerative colitis (UC), and healthy controls. We further analysed regulation patterns of MMPs in mucosal tissues of UC patients with and without intestinal MAP DNA detection. Methods Colonic biopsy samples were obtained from 63 Norwegian and German IBD patients and 21 healthy controls. RNA was quantified by quantitative real-time polymerase chain reaction (PCR) to study MMP gene expression in both pathological and healthy mucosal specimens. The presence of MAP DNA in colonic mucosa was examined using MAP specific PCR. Results MAP DNA was detected in 20% of UC patients and 33% of healthy controls but only in 7% of patients with CD. UC patients treated with corticosteroids exhibited a significantly increased frequency of intestinal MAP DNA compared to those not receiving corticosteroids. Expression of MMP-1, -2, -7, -9, -13, -19, -28 and TNF-α did not differ between UC patients with presence of intestinal MAP DNA compared to those without. MMP-2, MMP-9 and MMP-13 were significantly decreased in UC patients receiving corticosteroids. Conclusions The presence of intestinal MAP specific DNA is not associated with altered MMP expression in UC in vivo. Corticosteroids are associated with increased detection of intestinal MAP DNA and decreased expression of certain MMPs. Frequent detection of MAP DNA in healthy controls might be attributable to the wide environmental distribution of MAP and its presence in the food-chain. PMID:21477272
van de Vrugt, H J; Cheng, N C; de Vries, Y; Rooimans, M A; de Groot, J; Scheper, R J; Zhi, Y; Hoatlin, M E; Joenje, H; Arwert, F
2000-04-01
Fanconi anemia (FA) is an autosomal recessive disorder in humans characterized by bone marrow failure, cancer predisposition, and cellular hypersensitivity to cross-linking agents such as mitomycin C and diepoxybutane. FA genes display a caretaker function essential for maintenance of genomic integrity. We have cloned the murine homolog of FANCA, the gene mutated in the major FA complementation group (FA-A). The full-length mouse Fanca cDNA consists of 4503 bp and encodes a protein with a predicted molecular weight of 161 kDa. The deduced Fanca mouse protein shares 81% amino acid sequence similarity and 66% identity with the human protein. The nuclear localization signal and partial leucine zipper consensus motifs found in the human FANCA protein were also present in the murine homolog. In spite of the species difference, the murine Fanca cDNA was capable of correcting the cross-linker sensitive phenotype of human FA-A cells, suggesting functional conservation. Based on Northern as well as Western blots, Fanca was mainly expressed in lymphoid tissues, testis, and ovary. This expression pattern correlates with some of the clinical symptoms observed in FA patients. The availability of the murine Fanca cDNA now allows the gene to be studied in experimental mouse models.
Down-regulate of Djrfc2 causes tissues hypertrophy during planarian regeneration.
Guo, Qi; Zhao, Guixia; Ni, Jiajia; Guo, Yanan; Zhang, Yizhe; Tian, Qingnan; Zhang, Shoutao
2017-11-25
Planarians are an ideal model organism for regeneration research due to their amazing ability to regenerate. DNA replication is crucial for genome stability. Replication factor C (RFC), which is a replication factor C-like complex and plays an important role during DNA replication in eukaryotes, has been reported as a wound response factor during planarian regeneration. However, how RFC controls regeneration in planarians by regulating DNA replication remains to be explained. Here, we used a two-dimensional electrophoresis (2-DE) proteomic approach to identify differentially expressed proteins in intact and regenerated planarians. Approximately 132 protein spots showed differences between intact and regenerative tissues. We selected 21 significantly expressed protein spots and processed them using TOF MS analysis. Finally, we cloned three of these candidate genes (Djhsp70, Djrfc2, Djfaim), focusing on the function of Djrfc2 during regeneration. We found that the distribution of Djrfc2 tends toward the wound site. RNA interference (RNAi) of Djrfc2 increases the number of dividing cells and the expression level of planarian neoblast marker genes, which may result in hyper-proliferation. Our studies use an available approach to directly study the regeneration dynamic at the protein level and provide further evidence to support a function of Djrfc2 in planarian regeneration. Copyright © 2017. Published by Elsevier Inc.
UGT2B17 and SULT1A1 gene copy number variation (CNV) detection by LabChip microfluidic technology.
Gaedigk, Andrea; Gaedigk, Roger; Leeder, J Steven
2010-05-01
Gene copy number variations (CNVs) are increasingly recognized to play important roles in the expression of genes and hence on their respective enzymatic activities. This has been demonstrated for a number of drug metabolizing genes, such as UDP-glucuronosyltransferases 2B17 (UGT2B17) and sulfotransferase 1A1 (SULT1A1), which are subject to genetic heterogeneity, including CNV. Quantitative assays to assess gene copy number are therefore becoming an integral part of accurate genotype assessment and phenotype prediction. In this study, we evaluated a microfluidics-based system, the Bio-Rad Experion system, to determine the power and utility of this platform to detect UGT2B17 and SULT1A1 CNV in DNA samples derived from blood and tissue. UGT2B17 is known to present with 0, 1 or 2 and SULT1A1 with up to 5 gene copies. Distinct clustering (p<0.001) into copy number groups was achieved for both genes. DNA samples derived from blood exhibited less inter-run variability compared to DNA samples obtained from liver tissue. This variability may be caused by tissue-specific PCR inhibitors as it could be overcome by using DNA from another tissue, or after the DNA had undergone whole genome amplification. This method produced results comparable to those reported for other quantitative test platforms.
Kobayashi, Kazuhiro; Hama, Takanori; Murakami, Kasumi; Ogawa, Rei
2016-01-01
Objective: In this study, we evaluated the effect of scalp massage on hair in Japanese males and the effect of stretching forces on human dermal papilla cells in vitro. Methods: Nine healthy men received 4 minutes of standardized scalp massage per day for 24 weeks using a scalp massage device. Total hair number, hair thickness, and hair growth rate were evaluated. The mechanical effect of scalp massage on subcutaneous tissue was analyzed using a finite element method. To evaluate the effect of mechanical forces, human dermal papilla cells were cultured using a 72-hour stretching cycle. Gene expression change was analyzed using DNA microarray analyses. In addition, expression of hair cycle-related genes including IL6, NOGGIN, BMP4, and SMAD4 were evaluated using real-time reverse transcription-polymerase chain reaction. Results: Standardized scalp massage resulted in increased hair thickness 24 weeks after initiation of massage (0.085 ± 0.003 mm vs 0.092 ± 0.001 mm). Finite element method showed that scalp massage caused z-direction displacement and von Mises stress on subcutaneous tissue. In vitro, DNA microarray showed gene expression change significantly compared with nonstretching human dermal papilla cells. A total of 2655 genes were upregulated and 2823 genes were downregulated. Real-time reverse transcription-polymerase chain reaction demonstrated increased expression of hair cycle–related genes such as NOGGIN, BMP4, SMAD4, and IL6ST and decrease in hair loss–related genes such as IL6. Conclusions: Stretching forces result in changes in gene expression in human dermal papilla cells. Standardized scalp massage is a way to transmit mechanical stress to human dermal papilla cells in subcutaneous tissue. Hair thickness was shown to increase with standardized scalp massage. PMID:26904154
Rivière, Guillaume; Lienhard, Daniel; Andrieu, Thomas; Vieau, Didier; Frey, Brigitte M; Frey, Felix J
2011-04-01
Somatic angiotensin-converting enzyme (sACE) is crucial in cardiovascular homeostasis and displays a tissue-specific profile. Epigenetic patterns modulate genes expression and their alterations were implied in pathologies including hypertension. However, the influence of DNA methylation and chromatin condensation state on the expression of sACE is unknown. We examined whether such epigenetic mechanisms could participate in the control of sACE expression in vitro and in vivo. We identified two CpG islands in the human ace-1 gene 3 kb proximal promoter region. Their methylation abolished the luciferase activity of ace-1 promoter/reporter constructs transfected into human liver (HepG2), colon (HT29), microvascular endothelial (HMEC-1) and lung (SUT) cell lines (p < 0.001). Bisulphite sequencing revealed a cell-type specific basal methylation pattern of the ace-1 gene -1,466/+25 region. As assessed by RT-qPCR, inhibition of DNA methylation by 5-aza-2'-deoxycytidine and/or of histone deacetylation by trichostatin A highly stimulated sACE mRNA expression cell-type specifically (p < 0.001 vs. vehicle treated cells). In the rat, in vivo 5-aza-cytidine injections demethylated the ace-1 promoter and increased sACE mRNA expression in the lungs and liver (p = 0.05), but not in the kidney. In conclusion, the expression level of somatic ACE is modulated by CpG-methylation and histone deacetylases inhibition. The basal methylation pattern of the promoter of the ace-1 gene is cell-type specific and correlates to sACE transcription. DNMT inhibition is associated with altered methylation of the ace-1 promoter and a cell-type and tissue-specific increase of sACE mRNA levels. This study indicates a strong influence of epigenetic mechanisms on sACE expression.
Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice.
Wang, Rui; Zhu, Menglin; Ye, Rongjian; Liu, Zuoxiong; Zhou, Fei; Chen, Hao; Lin, Yongjun
2015-12-11
As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice.
Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Marietta, Y.W.T. Lee; Ernest, Y.C. Lee; Zhang, Zhongtao
2015-01-01
During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21WAF1, DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21WAF1 and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21WAF1, Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value. PMID:26059433
Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao
2015-05-20
During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.
DNA methylation abnormalities in congenital heart disease.
Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A
2015-01-01
Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.
Abnormal expression and mutation of p53 in cervical cancer--a study at protein, RNA and DNA levels.
Ngan, H Y; Tsao, S W; Liu, S S; Stanley, M
1997-02-01
The objectives of this study are to document the status of p53 expression and mutation in cervical cancer at protein, RNA and DNA levels and to relate this to the presence of HPV. Biopsy specimens from one hundred and three squamous cell carcinoma of the cervix and histologically normal ectocervix were analysed. Fresh tissues were extracted for protein, RNA and DNA and flash frozen tissue cryostat sectioned for immunohistochemical staining. HPV DNA status was determined by PCR using L1 consensus primers and typed for HPV 16 and 18 with E6 specific primers. p53 expression was determined at the protein level by Western blotting on protein extracts and at RNA level by Northern blotting. There was no p53 overexpression or mutation detectable in the protein extracts. Three of 65 (4.6%) of the carcinomas were positive for p53 by immunostaining with the polyclonal antibody CM1. Overexpression at the RNA level was detected in 2 of 32 (6.3%) carcinomas. p53 mutation was screened for by PCR/SSCP (single strand conformation polymorphism) followed by sequencing to define the site of mutation. Two of the cervical cancers (2.0%) showed mutation in p53 in exons 7 or 8. The mutation rate in HPV positive tumours was 1.2% (1/81) and in HPV negative tumours was 5.2% (1/19). p53 overexpression or mutation does not seem to play a significant role in cervical carcinomas.
Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study.
Faridi, Mohammad Shazib; Jaiswal, Mahabir Saran Das; Goel, Sudhir K
2015-07-01
Gastrin and cholecystokinin (CCK) receptors are trophic for various gastrointestinal malignancies. Their role in gallbladder cancer has not been widely studied. To identify expression of CCK-A and CCK-B receptors in the tissue and blood of patients suffering from carcinoma (CA) gallbladder and gallstone disease and to compare expression of CCK A and B receptors in the gall bladder tissue and blood of healthy individuals and patients of CA gallbladder, and gallstone diseases. Forty nine subjects of both genders were recruited, comprising of 22 patients of CA gall bladder, 19 cases of cholelithiasis and, 8 normal gallbladders obtained from patients operated for trauma of the biliary system or Whipple's procedure. RNA extraction and cDNA formation for CCK-A and CCK-B receptors were carried out. Real Time PCR was performed on cDNA and threshold cycle (Ct) value of each sample was obtained and ΔCt was calculated. Chi-square test for comparing two groups and ANOVA test for comparing multiple groups were applied and if p<0.05 then Dunnett-C test was performed. Both CCK-A and CCK-B receptors were expressed irrespective of its origin in all tissues and blood samples studied; be it normal, Cholelithiasis or CA gallbladder and there was no difference among them (p>0.05). This preliminary study showed higher expression of CCK-A receptors in patients of cholelithiasis and decreased expression of CCK-A receptors in patients of CA gallbladder as compared to normal gallbladder although it did not rise to statistical significance.
Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study
Jaiswal, Mahabir Saran Das; Goel, Sudhir K.
2015-01-01
Background: Gastrin and cholecystokinin (CCK) receptors are trophic for various gastrointestinal malignancies. Their role in gallbladder cancer has not been widely studied. Objectives: To identify expression of CCK-A and CCK-B receptors in the tissue and blood of patients suffering from carcinoma (CA) gallbladder and gallstone disease and to compare expression of CCK A and B receptors in the gall bladder tissue and blood of healthy individuals and patients of CA gallbladder, and gallstone diseases. Materials and Methods: Forty nine subjects of both genders were recruited, comprising of 22 patients of CA gall bladder, 19 cases of cholelithiasis and, 8 normal gallbladders obtained from patients operated for trauma of the biliary system or Whipple’s procedure. RNA extraction and cDNA formation for CCK-A and CCK-B receptors were carried out. Real Time PCR was performed on cDNA and threshold cycle (Ct) value of each sample was obtained and ΔCt was calculated. Chi-square test for comparing two groups and ANOVA test for comparing multiple groups were applied and if p<0.05 then Dunnett-C test was performed. Observation and Results: Both CCK-A and CCK-B receptors were expressed irrespective of its origin in all tissues and blood samples studied; be it normal, Cholelithiasis or CA gallbladder and there was no difference among them (p>0.05). Conclusion: This preliminary study showed higher expression of CCK-A receptors in patients of cholelithiasis and decreased expression of CCK-A receptors in patients of CA gallbladder as compared to normal gallbladder although it did not rise to statistical significance. PMID:26393162
García, Normand; Salamanca, Fabio; Astudillo-de la Vega, Horacio; Curiel-Quesada, Everardo; Alvarado, Isabel; Peñaloza, Rosenda; Arenas, Diego
2005-01-01
Background Breast cancer is one of the most frequent causes of death in Mexican women over 35 years of age. At molecular level, changes in many genetic networks have been reported as associated with this neoplasia. To analyze these changes, we determined gene expression profiles of tumors from Mexican women with breast cancer at different stages and compared these with those of normal breast tissue samples. Methods 32P-radiolabeled cDNA was synthesized by reverse transcription of mRNA from fresh sporadic breast tumor biopsies, as well as normal breast tissue. cDNA probes were hybridized to microarrays and expression levels registered using a phosphorimager. Expression levels of some genes were validated by real time RT-PCR and immunohistochemical assays. Results We identified two subgroups of tumors according to their expression profiles, probably related with cancer progression. Ten genes, unexpressed in normal tissue, were turned on in some tumors. We found consistent high expression of Bik gene in 14/15 tumors with predominant cytoplasmic distribution. Conclusion Recently, the product of the Bik gene has been associated with tumoral reversion in different neoplasic cell lines, and was proposed as therapy to induce apoptosis in cancers, including breast tumors. Even though a relationship among genes, for example those from a particular pathway, can be observed through microarrays, this relationship might not be sufficient to assign a definitive role to Bik in development and progression of the neoplasia. The findings herein reported deserve further investigation. PMID:16060964
Characterization and expression of cyp19a gene in the Chinese giant salamander Andrias davidianus.
Hu, Qiaomu; Xiao, Hanbing; Tian, HaiFeng; Meng, Yan
2016-02-01
We cloned the full length cyp19a of Chinese giant salamander Andrias davidianus, determined its distribution in tissues and developing gonads, and analyzed the CpG methylation pattern of the cyp19a promoter. The results revealed isoforms of 1706 bp (G arom) and 1698 bp (B arom) in length, differing in the 5' flanking region, both encoding 502 amino acids. The G arom gene was observed mainly in the ovary and kidney, with little in other investigated tissues, while B arom expression was high in the brain, ovary, testis, and pituitary, with low or undetected expression in other examined tissues. Total aromatase expression was high in the ovary; moderate in the kidney, brain, testis, and pituitary; and low in the remaining tissues. G arom expression was significantly higher in the ovary than in the testis and gradually decreased with maturation of the salamander. A single injection of methyltestosterone or letrozole resulted in ovarian G arom expression decreasing over a 12-96 h period. A 1366 bp sequence of the cyp19a promoter was cloned and shown to be conserved in selected species. CpG methylation level was negatively correlated with cyp19a expression in the examined tissues and developing ovaries. Five and three CpG methylation sites positively correlated with DNA methylation levels in tissues and developing ovary, suggesting that they play an important role in regulating cyp19a expression. The aromatase gene showed two isoforms with distinct expression patterns, and the promoter methylation level at specific CpG sites was associated with variation in expression profiles of tissues and developing ovaries. Copyright © 2015 Elsevier Inc. All rights reserved.
Diurnal oscillation of SBE expression in sorghum endosperm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chuanxin; Mutisya, J.; Rosenquist, S.
2009-01-15
Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum was cloned and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was expressed also in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 days after pollination. This ismore » different from barley and maize where SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.« less
Xia, Jixiang; Martinez, Angela; Daniell, Henry; Ebert, Steven N
2011-06-02
Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun") delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI) methods. Plasmid DNA carrying the firefly luciferase (LUC) reporter gene under the control of the human Cytomegalovirus (CMV) promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter) using different DNA Loading Ratios (DLRs), and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50) at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results demonstrate that different tissues show different expression kinetics following gene transfer of the same reporter plasmid to different mouse tissues in vivo. We evaluated superficial (skin) and abdominal organ (liver) targets, and found that reporter gene expression peaked within the first two days post-transfer in each case, but declined most rapidly in the skin (3-4 days) compared to liver (10-14 days). This information is essential for designing effective gene therapy strategies in different target tissues.
Shi, Ying; Cao, Jiaofei; Gao, Jane; Zheng, Liang; Goodwin, Andrew; An, Chang Hyoek; Patel, Avignat; Lee, Janet S; Duncan, Steven R; Kaminski, Naftali; Pandit, Kusum V; Rosas, Ivan O; Choi, Augustine M K; Morse, Danielle
2012-09-01
The discovery that retinoic acid-related orphan receptor (Rora)-α is highly expressed in lungs of patients with COPD led us to hypothesize that Rora may contribute to the pathogenesis of emphysema. To determine the role of Rora in smoke-induced emphysema. Cigarette smoke extract in vitro and elastase or cigarette smoke exposure in vivo were used to model smoke-related cell stress and airspace enlargement. Lung tissue from patients undergoing lung transplantation was examined for markers of DNA damage and Rora expression. Rora expression was induced by cigarette smoke in mice and in cell culture. Gene expression profiling of Rora-null mice exposed to cigarette smoke demonstrated enrichment for genes involved in DNA repair. Rora expression increased and Rora translocated to the nucleus after DNA damage. Inhibition of ataxia telangiectasia mutated decreased the induction of Rora. Gene silencing of Rora attenuated apoptotic cell death in response to cigarette smoke extract, whereas overexpression of Rora enhanced apoptosis. Rora-deficient mice were protected from elastase and cigarette smoke induced airspace enlargement. Finally, lungs of patients with COPD showed evidence of increased DNA damage even in the absence of active smoking. Taken together, these findings suggest that DNA damage may contribute to the pathogenesis of emphysema, and that Rora has a previously unrecognized role in cellular responses to genotoxicity. These findings provide a potential link between emphysema and features of premature ageing, including enhanced susceptibility to lung cancer.
Protzel, C; Knoedel, J; Zimmermann, U; Woenckhaus, C; Poetsch, M; Giebel, J
2007-11-01
Clinical outcome of penile squamous cell carcinoma (PSCC) largely depends on the presence of lymph node metastasis. In search of a valuable marker predicting the risk for metastasis, the expression of Ki67 was investigated immunohistochemically in primary tumors and compared to presence of inguinal lymph node metastasis. As human papilloma virus (HPV) is thought to affect Ki67 expression, we evaluated whether occurrence of HPV DNA correlates to Ki67 score or metastatic potential. Samples originated from patients subjected to resection of invasive SCC of penis. Immunohistochemistry was done on paraffin-embedded sections using a monoclonal antibody against Ki67. After DNA isolation from paraffin embedded tissue the presence of HPV 6/11, HPV 16 and HPV 18 DNA was analyzed by PCR. Statistical analysis was done using two tail unpaired t test and Chi-square test. Four of 28 patients showed a weak Ki67 expression, without displaying lymph node metastasis. Among 17 patients showing an intermediate Ki67 index, eight exhibited metastases while in all seven patients with a strong expression of Ki67 lymph node metastases were found. The median Ki67 expression in metastastic lesions was significantly different (50.3%) from tumors without lymph node metastasis (31.8%) (p=0.024). Furthermore, a correlation between presence of HPV DNA and strong Ki67 expression was determined (p=0.009). Since our study demonstrated a strong Ki67 labeling index significantly associated to positive lymph nodes, we suggest Ki67 expression as a prognostic marker for lymph node metastasis in penile squamous carcinoma.
Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.
Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A
2015-08-15
Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.
Next-gen tissue: preservation of molecular and morphological fidelity in prostate tissue.
Gillard, Marc; Tom, Westin R; Antic, Tatjana; Paner, Gladell P; Lingen, Mark W; VanderWeele, David J
2015-01-01
Personalization of cancer therapy requires molecular evaluation of tumor tissue. Traditional tissue preservation involves formalin fixation, which degrades the quality of nucleic acids. Strategies to bank frozen prostate tissue can interfere with diagnostic studies. PAXgene is an alternative fixative that preserves protein and nucleic acid quality. Portions of prostates obtained from autopsy specimens were fixed in either 10% buffered formalin or PAXgene, and processed and embedded in paraffin. Additional sections were immediately embedded in OCT and frozen. DNA and RNA were extracted from the formalin-fixed, PAXgene-fixed, or frozen tissue. Quantitative PCR was used to compare the quality of DNA and RNA obtained from all three tissue types. In addition, 5 μm sections were cut from specimens devoid of cancer and from prostate cancer specimens obtained at prostatectomy and fixed in PAXgene. They were either stained with hematoxylin and eosin or interrogated with antibodies for p63, PSA and p504. Comparable tissue morphology was observed in both the formalin and PAXgene-fixed specimens. Similarly, immunohistochemical expression of the P63, PSA and P504 proteins was comparable between formalin and PAXgene fixation techniques. DNA from the PAXgene-fixed tissue was of similar quality to that from frozen tissue. RNA was also amplified with up to 8-fold greater efficiency in the PAXgene fixed tissue compared to the formalin-fixed tissue. Prostate specimens fixed with PAXgene have preserved histologic morphology, stain appropriately, and have preserved quality of nucleic acids. PAXgene fixation facilitates the use of prostatectomy tissue for molecular biology techniques such as next-generation sequencing.
Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun
2013-01-01
There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription–polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level. PMID:23593441
Song, Je Seon; Hwang, Dong Hwan; Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun
2013-01-01
There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilnytskyy, Yaroslav; Zemp, Franz J.; Koturbash, Igor
To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show thatmore » miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.« less
Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence
Shiao, Yih-Horng; Leighty, Robert M.; Wang, Cuiju; Ge, Xin; Crawford, Erik B.; Spurrier, Joshua M.; McCann, Sean D.; Fields, Janet R.; Fornwald, Laura; Riffle, Lisa; Driver, Craig; Quiñones, Octavio A.; Wilson, Ralph E.; Kasprzak, Kazimierz S.; Travlos, Gregory S.; Alvord, W. Gregory; Anderson, Lucy M.
2011-01-01
Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures. PMID:21765958
Depletion of Pokemon gene inhibits hepatocellular carcinoma cell growth through inhibition of H-ras.
Zhang, Quan-Le; Tian, De-An; Xu, Xiang-Jiang
2011-01-01
Pokemon is a transcription repressor which plays a critical role in cell transformation and malignancy. However, little is known about its effect on the development and progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression of Pokemon in human HCC tissues and the biological behavior of Pokemon in HCC cells in which it is overexpressed. We also explored the expression of potential downstream cofactors of Pokemon. Reverse transcription polymerase chain reaction and Western blot analysis were used to investigate the expression of Pokemon in tissues of 30 HCC patients. We then examined cell proliferation or apoptosis and β-catenin or H-ras expression in Pokemon-depleted HepG(2) cells using DNA vector-based RNA interference technology. Pokemon was markedly expressed in 22/30 (73.3%) HCC tissues, with expression levels higher than in adjacent normal liver tissues (p < 0.05); expression is correlated with tumor size. In contrast, depletion of Pokemon inhibited proliferation of HepG(2) or induced apoptosis. Also, H-ras expression decreased to a large extent. Pokemon exerts its oncogenic activity in the development of HCC by promoting cancer cell growth and reducing apoptosis, and the effect may be mediated by H-ras. Copyright © 2011 S. Karger AG, Basel.
TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells
Yamamoto, Eiichiro; Harada, Taku; Aoki, Hironori; Maruyama, Reo; Toyota, Mutsumi; Sasaki, Yasushi; Sugai, Tamotsu; Tokino, Takashi; Nakase, Hiroshi
2016-01-01
Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells. PMID:27977763
Wei, Tao; Sun, Yuena; Shi, Ge; Wang, Rixin; Xu, Tianjun
2012-09-01
Heat shock proteins (HSPs) play crucial roles in the immune response of vertebrates. In order to study immune defense mechanism of heat shock protein gene in miiuy croaker (Miichthys miiuy), a cDNA encoding heat shock protein 70 (designated Mimi-HSP70) gene was cloned from miiuy croaker. The cDNA was 2195 bp in length, consisting of an open reading frame (ORF) of 1917 bp encoding a polypeptide of 638 amino acids with estimated molecular mass of 70.3 kDa and theoretical isoelectric point of 5.55. Genomic DNA structure analysis revealed that the Mimi-HSP70 gene contain no introns in coding region and four SNPs with 373 C/T, 789 G/A, 1005 C/T, and 1185 G/A were detected by direct sequencing of 20 samples from six different populations. BLAST analysis, structure comparison and phylogenetic analysis indicated that Mimi-HSP70 should be an inducible cytosolic member of the HSP70 family. The deduced amino acid sequence of Mimi-HSP70 had 82.4%-92.2% identity with those of vertebrate. A real-time quantitative RT-PCR demonstrated that the HSP70 gene was ubiquitously expressed in ten normal tissues. Under different temperature shock stress, the expression of Mimi-HSP70 gene in miiuy croaker increased at first and then decreased with the rise of temperature, finally, reached a maximum level in liver, spleen and kidney tissues. Infection of miiuy croaker with Vibrio anguillarum resulted in significant changes expression of Mimi-HSP70 gene in the immune-related tissues. These results indicated that expression analysis of Mimi-HSP70 gene provide theoretical basis to further study the mechanism of anti-adverseness in the miiuy croaker. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.
Hosseinkhani, Hossein; Tabata, Yasuhiko
2005-11-28
This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in the tumor tissue injected with the PEG-introduced cationized dextran-plasmid DNA complex plus the subsequent US irradiation. We conclude that complexation with the PEG-introduced cationized dextran combined with US irradiation is a promising way to target the plasmid DNA to the tumor for gene expression.
A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.
Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S
2003-06-01
The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.
Mosquera Orgueira, Adrián
2015-01-01
DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression. PMID:26029238
Assessing the potential for AAV vector genotoxicity in a murine model
Li, Hojun; Malani, Nirav; Hamilton, Shari R.; Schlachterman, Alexander; Bussadori, Giulio; Edmonson, Shyrie E.; Shah, Rachel; Arruda, Valder R.; Mingozzi, Federico; Fraser Wright, J.; Bushman, Frederic D.
2011-01-01
Gene transfer using adeno-associated virus (AAV) vectors has great potential for treating human disease. Recently, questions have arisen about the safety of AAV vectors, specifically, whether integration of vector DNA in transduced cell genomes promotes tumor formation. This study addresses these questions with high-dose liver-directed AAV-mediated gene transfer in the adult mouse as a model (80 AAV-injected mice and 52 controls). After 18 months of follow-up, AAV-injected mice did not show a significantly higher rate of hepatocellular carcinoma compared with controls. Tumors in mice treated with AAV vectors did not have significantly different amounts of vector DNA compared with adjacent normal tissue. A novel high-throughput method for identifying AAV vector integration sites was developed and used to clone 1029 integrants. Integration patterns in tumor tissue and adjacent normal tissue were similar to each other, showing preferences for active genes, cytosine-phosphate-guanosine islands, and guanosine/cysteine-rich regions. Gene expression data showed that genes near integration sites did not show significant changes in expression patterns compared with genes more distal to integration sites. No integration events were identified as causing increased oncogene expression. Thus, we did not find evidence that AAV vectors cause insertional activation of oncogenes and subsequent tumor formation. PMID:21106988
MANOOCHEHRI, MEHDI; BORHANI, NASIM; KARBASI, ASHRAF; KOOCHAKI, AMENEH; KAZEMI, BAHRAM
2016-01-01
Aberrant DNA methylation has been investigated in carcinogenesis and as biomarker for the early detection of colorectal cancer (CRC). The present study aimed to define the methylation status in the regulatory elements of two proapoptotic genes, Fas cell surface death receptor (FAS) and BCL2-associated X protein (BAX). DNA methylation analysis was performed in tumor and adjacent normal tissue using HpaII/MspI restriction digestion and methylation-specific polymerase chain reaction (PCR). The results observed downregulation of the FAS and BAX genes in the CRC tissues compared with the adjacent normal samples. Furthermore, demethylation using 5-aza-2′-deoxycytidine treatment followed by reverse-transcription quantitative PCR were performed on the HT-29 cell line to measure BAX and FAS mRNA expression following demethylation. The 5-aza-2′-deoxycytidine treatment resulted in significant FAS gene upregulation in the HT-29 cell line, but no significant difference in BAX expression. Furthermore, analysis of CpG islands in the FAS gene promoter revealed that the FAS promoter was significantly hypermethylated in 53.3% of tumor tissues compared with adjacent normal samples. Taken together, the results indicate that decreased expression of the FAS gene due to hypermethylation of its promoter may lead to apoptotic resistance, and acts as an important step during colorectal carcinogenesis. PMID:27347139
Manoochehri, Mehdi; Borhani, Nasim; Karbasi, Ashraf; Koochaki, Ameneh; Kazemi, Bahram
2016-07-01
Aberrant DNA methylation has been investigated in carcinogenesis and as biomarker for the early detection of colorectal cancer (CRC). The present study aimed to define the methylation status in the regulatory elements of two proapoptotic genes, Fas cell surface death receptor (FAS) and BCL2-associated X protein (BAX). DNA methylation analysis was performed in tumor and adjacent normal tissue using Hpa II/ Msp I restriction digestion and methylation-specific polymerase chain reaction (PCR). The results observed downregulation of the FAS and BAX genes in the CRC tissues compared with the adjacent normal samples. Furthermore, demethylation using 5-aza-2'-deoxycytidine treatment followed by reverse-transcription quantitative PCR were performed on the HT-29 cell line to measure BAX and FAS mRNA expression following demethylation. The 5-aza-2'-deoxycytidine treatment resulted in significant FAS gene upregulation in the HT-29 cell line, but no significant difference in BAX expression. Furthermore, analysis of CpG islands in the FAS gene promoter revealed that the FAS promoter was significantly hypermethylated in 53.3% of tumor tissues compared with adjacent normal samples. Taken together, the results indicate that decreased expression of the FAS gene due to hypermethylation of its promoter may lead to apoptotic resistance, and acts as an important step during colorectal carcinogenesis.
Keller, Thomas E; Han, Priscilla; Yi, Soojin V
2016-04-01
Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.
Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P
1987-01-01
Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.
Wang, Tao; Zhou, Chaowei; Yuan, Dengyue; Lin, Fangjun; Chen, Hu; Wu, Hongwei; Wei, Rongbin; Xin, Zhiming; Liu, Ju; Gao, Yundi; Li, Zhiqiong
2014-10-01
Corticotropin-releasing hormone (CRH) is a potent mediator of endocrine, autonomic, behavioral, and immune responses to stress. For a better understanding of the structure and function of the CRH gene and to study its effect on feeding regulation in cyprinid fish, the cDNA of the CRH gene from the brain of Schizothorax prenanti was cloned and sequenced. The full-length CRH cDNA consisted of 1,046 bp with an open reading frame of 489 bp encoding a protein of 162 amino acids. Real-time quantitative PCR analyses revealed that CRH was widely expressed in central and peripheral tissues. In particular, high expression level of CRH was detected in brain. Furthermore, CRH mRNA expression was examined in different brain regions, especially high in hypothalamus. In addition, there was no significant change in CRH mRNA expression in fed group compared with the fasted group in the S. prenanti hypothalamus during short-term fasting. However, CRH gene expression presented significant decrease in the hypothalamus in fasted group compared with the fed group (P < 0.05) on day 7; thereafter, re-feeding could lead to a significant increase in CRH mRNA expression in fasted group on day 9. The results suggest that the CRH may play a critical role in feeding regulation in S. prenanti.
Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang
2016-10-01
The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.
Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh
2018-01-01
The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK), sigma factor binding protein1 (SIB1) and with other WRKY members including WRKY70, WRKY1, and WRKY40, to respond various biotic and abiotic stresses. The STRING results were further validated through Predicted Tomato Interactome Resource (PTIR) database. The CELLO2GO web server revealed the functional gene ontology annotation and protein subcellular localization, which predicted that SolyWRKY33 is involved in amelioration of biological stress (39.3%) and other metabolic processes (39.3%). The protein (SolyWRKY33) most probably located inside the nucleus (91.3%) with having transcription factor binding activity. We conclude that the defense response following the Fol challenge was accompanied by differential expression of the SolyWRKY4(↓), SolyWRKY33(↑) and SolyWRKY37(↑) transcripts. The biochemical changes are occupied by elicitation of H2O2 generation and accumulation and enhanced lignified tissues. PMID:29709017
Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh; Singh, Surendra
2018-01-01
The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK), sigma factor binding protein1 (SIB1) and with other WRKY members including WRKY70, WRKY1, and WRKY40, to respond various biotic and abiotic stresses. The STRING results were further validated through Predicted Tomato Interactome Resource (PTIR) database. The CELLO2GO web server revealed the functional gene ontology annotation and protein subcellular localization, which predicted that SolyWRKY33 is involved in amelioration of biological stress (39.3%) and other metabolic processes (39.3%). The protein (SolyWRKY33) most probably located inside the nucleus (91.3%) with having transcription factor binding activity. We conclude that the defense response following the Fol challenge was accompanied by differential expression of the SolyWRKY4(↓), SolyWRKY33(↑) and SolyWRKY37(↑) transcripts. The biochemical changes are occupied by elicitation of H2O2 generation and accumulation and enhanced lignified tissues.
DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta
Kwon, Seulgi; Park, Da Hye; Kim, Tae Wan; Kang, Deok Gyeong; Yu, Go Eun; Kim, Il-Suk; Park, Hwa Chun; Ha, Jeongim; Kim, Chul Wook
2017-01-01
Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows. PMID:28880934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Zhi; Kang Jinsong; Li Yang
2006-08-01
To explore the molecular mechanism of brain tissue injury induced by lipopolysaccharide (LPS), we studied the effects of endotoxic shock on rat brain cortex NF-{kappa}B and the effects of dexamethasone on these changes. Rats were randomly divided into LPS, LPS + dexamethasone, and control groups. The DNA-binding activity of NF-{kappa}B was observed using electrophoretic mobility shift assay (EMSA). Protein expression in nuclear extracts was studied using Western blots, and nuclear translocation was observed using immunohistochemistry. These indices were assayed at 1 h and 4 h after intravenous injection of LPS (4 mg.kg{sup -1}). EMSA showed significantly increased NF-{kappa}B DNA-binding activitymore » in nuclear extracts from the LPS group at both 1 h and 4 h after LPS injection, compared with the control group (P < 0.01). For the LPS group, the NF-{kappa}B DNA-binding activity was greater at 1 h than at 4 h (P < 0.05). The expression of p65 and p50 protein in the nuclear extracts was also increased, as compared with the control group. However, the expression of p65 and p50 protein from cytosolic extracts did not show any significant change. Dexamethasone down-regulated not only NF-{kappa}B DNA-binding activity but also the expression of p65 protein in the nuclear extracts. From these data, we have concluded that NF-{kappa}B activation and nuclear translocation of NF-{kappa}B play a key role in the molecular mechanism of brain tissue injury in endotoxic shock. Dexamethasone may alleviate brain injury by inhibiting NF-{kappa}B activation.« less
Xu, Yifang; Qin, Qinghong; Chen, Rushi; Wei, Changyuan; Mo, Qinguo
2018-07-20
Sirtuin 1 (SIRT1), class III histone deacetylase, plays an important character in cell proliferation, cell cycle, apoptosis, energy metabolism and DNA repair. In recent years, researchers have attached increasing attention on the role of SIRT1 in tumorigenesis, development and drug resistance. The effect of SIRT1 on breast cancer is still controversial and its exact role remains to be elucidated. In the present study, we investigated the significant role of SIRT1 in breast cancer by exploring the effect of SIRT1 on DNA polymerase delta1 (POLD1), the gene coding for DNA polymerase δ catalytic subunit p125. Immunohistochemistry showed that the protein expression level of SIRT1 was higher in breast cancer tissues relative to adjacent normal tissues. Knockdown of SIRT1 by shRNA decreased the proliferation, migration, and invasion of human breast cancer cell line MCF-7, while the overexpression of SIRT1 promoted the proliferation, migration, and invasion of MCF-7 cells. Clinically, the immunohistochemistry results revealed that the expression of SIRT1 was positively correlated with p125. Further analysis demonstrated that silencing of SIRT1 increased the expression of p53, while the expression level of POLD1/p125 decreased, and the result by overexpressing SIRT1 was opposite. Collectively, these data suggest that SIRT1 is an oncogenic factor in breast cancer cells and can be involved in the progression of breast cancer by inhibiting p53 and activating POLD1. Our finding provides new insights into the mechanisms of breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Tunstall, R G; Sharma, R A; Perkins, S; Sale, S; Singh, R; Farmer, P B; Steward, W P; Gescher, A J
2006-02-01
The natural polphenol, curcumin, retards the growth of intestinal adenomas in the Apc(Min+) mouse model of human familial adenomatous polyposis. In other preclinical models, curcumin downregulates the transcription of the enzyme cyclooxygenase-2 (COX-2) and decreases levels of two oxidative DNA adducts, the pyrimidopurinone adduct of deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We have studied COX-2 protein expression and oxidative DNA adduct levels in intestinal adenoma tissue from Apc(Min+) mice to try and differentiate between curcumin's direct pharmacodynamic effects and indirect effects via its inhibition of adenoma growth. Mice received dietary curcumin (0.2%) for 4 or 14 weeks. COX-2 protein, M1dG and 8-oxo-dG levels were measured by Western blot, immunochemical assay and liquid chromatography-mass spectrometry, respectively. In control Apc(Min+) mice, the levels of all three indices measured in adenoma tissue were significantly higher than levels in normal mucosa. Lifetime administration of curcumin reduced COX-2 expression by 66% (P = 0.01), 8-oxo-dG levels by 24% (P < 0.05) and M1dG levels by 39% (P < 0.005). Short-term feeding did not affect total adenoma number or COX-2 expression, but decreased M1dG levels by 43% (P < 0.01). COX-2 protein levels related to adenoma size. These results demonstrate the utility of measuring these oxidative DNA adduct levels to show direct antioxidant effects of dietary curcumin. The effects of long-term dietary curcumin on COX-2 protein levels appear to reflect retardation of adenoma development.
Lu, Yuanyuan; Fan, Chaonan; Liang, Aimin; Fan, Xiuqin; Wang, Rui; Li, Ping; Qi, Kemin
2018-06-21
Specific adipokines, such as adiponectin and resistin, are secreted from adipose tissue and are associated with the development of obesity. Supplementation of dietary SCFA can prevent and reverse high-fat-diet (HFD)-induced obesity. However, it is not clear whether SCFA ameliorate abnormal expression of adiponectin and resistin in the obese state. The aim of this study was to investigate the effects of SCFA on adiponectin and resistin's expressions in diet-induced obese mice, as well as the potential mechanisms associated with DNA methylation. C57BL/6J male mice were fed for 16 weeks with five types of HFD (34·9 % fat by wt., 60 % kJ) - a control HFD and four HFD with acetate (HFD-A), propionate (HFD-P), butyrate (HFD-B) and their admixture (HFD-SCFA). Meanwhile, a low-fat diet (4·3 % fat by wt., 10 % kJ) was used as the control group. The reduced mRNA levels of adiponectin and resistin in the adipose tissue of the HFD-fed mice were significantly reversed by dietary supplementation of acetate, propionate, butyrate or their admixture to the HFD. Moreover, the expressional changes of adiponectin and resistin induced by SCFA were associated with alterations in DNA methylation at their promoters, which was mediated by reducing the expressions of enzyme-catalysed DNA methyltransferase (DNMT1, 3a, 3b) and the methyl-CpG-binding domain protein 2 (MBD2) and suppressing the binding of these enzymes to the promoters of adiponectin and resistin. Our results indicate that SCFA may correct aberrant expressions of adiponectin and resistin in obesity by epigenetic regulation.
Watanabe, T; Sadamoto, Hitoshi; Aonuma, H
2011-10-01
Serotonin (5-HT) modulates various aspects of behaviours such as aggressive behaviour and circadian behaviour in the cricket. To elucidate the molecular basis of the cricket 5-HT system, we identified 5-HT-related genes in the field cricket Gryllus bimaculatus DeGeer. Complementary DNA of tryptophan hydroxylase and phenylalanine-tryptophan hydroxylase, which convert tryptophan into 5-hydroxy-L-tryptophan (5-HTP), and that of aromatic L-amino acid decarboxylase, which converts 5-HTP into 5-HT, were isolated from a cricket brain cDNA library. In addition, four 5-HT receptor genes (5-HT(1A) , 5-HT(1B) , 5-HT(2α) , and 5-HT(7) ) were identified. Expression analysis of the tryptophan hydroxylase gene TRH and phenylalanine-tryptophan hydroxylase gene TPH, which are selectively involved in neuronal and peripheral 5-HT synthesis in Drosophila, suggested that two 5-HT synthesis pathways co-exist in the cricket neuronal tissues. The four 5-HT receptor genes were expressed in various tissues at differential expression levels, suggesting that the 5-HT system is widely distributed in the cricket. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
The human GINS complex associates with Cdc45 and MCM and is essential for DNA replication
Aparicio, Tomás; Guillou, Emmanuelle; Coloma, Javier; Montoya, Guillermo; Méndez, Juan
2009-01-01
The GINS complex, originally discovered in Saccharomyces cerevisiae and Xenopus laevis, binds to DNA replication origins shortly before the onset of S phase and travels with the replication forks after initiation. In this study we present a detailed characterization of the human GINS (hGINS) homolog. Using new antibodies that allow the detection of endogenous hGINS in cells and tissues, we have examined its expression, abundance, subcellular localization and association with other DNA replication proteins. Expression of hGINS is restricted to actively proliferating cells. During the S phase, hGINS becomes part of a Cdc45–MCM–GINS (CMG) complex that is assembled on chromatin. Down-regulation of hGINS destabilizes CMG, causes a G1–S arrest and slows down ongoing DNA replication, effectively blocking cell proliferation. Our data support the notion that hGINS is an essential component of the human replisome. PMID:19223333
Long, Chunlan; He, Junlin; Liu, Xueqing; Chen, Xuemei; Gao, Rufei; Wang, Yingxiong; Ding, Yubin
2012-12-01
During the reproductive cycle, a number of genes controlling endometrial changes are regulated by DNA methylation, a common epigenetic modification. Because dietary folate affects DNA methylation, we determined whether a folate-deficient diet (FDD) alters DNA methylation in endometria of pseudopregnant mice, focusing on the homeobox A10 (Hoxa10) promoter. Mice were given an FDD or control diet for 40 to 45 days and examined on day 5 of pseudopregnancy. Compared to control mice, FDD mice had lower folate levels in liver and serum (P = .004). However, the FDD did not significantly affect DNA methylation within the cytosine-guanine dinucleotide (CpG)-rich Hoxa10 promoter, even when specific CpG sites were examined (P > .05). In endometrial tissue sections, the localization of anti-Hoxa10 staining was unchanged in FDD mice. Therefore, folate deficiency did not significantly affect promoter methylation or expression of Hoxa10.
Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana; ...
2016-02-04
Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels inmore » stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. Lastly, the identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana
Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels inmore » stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. Lastly, the identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.« less
Steward, N; Kusano, T; Sano, H
2000-09-01
A cDNA fragment encoding part of a DNA methyltransferase was isolated from maize. The putative amino acid sequence identically matched that deduced from a genomic sequence in the database (accession no. AF063403), and the corresponding gene was designated as ZmMET1. Bacterially expressed ZmMET1 actively methylated DNA in vitro. Transcripts of ZmMET1 could be shown to exclusively accumulate in actively proliferating cells of the meristems of mesocotyls and root apices, suggesting ZmMET1 expression to be associated with DNA replication. This was confirmed by simultaneous decrease of transcripts of ZmMET1 and histone H3, a marker for DNA replication, in seedlings exposed to wounding, desiccation and salinity, all of which suppress cell division. Cold stress also depressed both transcripts in root tissues. In contrast, however, accumulation of ZmMET1 transcripts in shoot mesocotyls was not affected by cold stress, whereas those for H3 sharply decreased. Such a differential accumulation of ZmMET1 transcripts was consistent with ZmMET1 protein levels as revealed by western blotting. Expression of ZmMET1 is thus coexistent, but not completely dependent on DNA replication. Southern hybridization analysis with a methylation-sensitive restriction enzyme revealed that cold treatment induced demethylation of DNA in the Ac/Ds transposon region, but not in other genes, and that such demethylation primarily occurred in roots. These results suggested that the methylation level was decreased selectively by cold treatment, and that ZmMET1 may, at least partly, prevent such demethylation.
Krishnan, Shuba; Paredes, João A.; Zhou, Xiaoshan; Kuiper, Raoul V.; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna
2014-01-01
Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2−/−) mice extended the life span of Tk2−/− mice from 3 weeks to at least 20 months. The Dm-dNK+/−Tk2−/− mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK+/−Tk2−/− mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK+/− mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. PMID:25296759
Krishnan, Shuba; Paredes, João A; Zhou, Xiaoshan; Kuiper, Raoul V; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna
2014-11-21
Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2(-/-)) mice extended the life span of Tk2(-/-) mice from 3 weeks to at least 20 months. The Dm-dNK(+/-)Tk2(-/-) mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK(+/-)Tk2(-/-) mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK(+/-) mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Son, Hye-Youn; Jeon, Yong-Hyun; Chung, June-Key; Kim, Chul-Woo
2016-12-01
In assessing the effectiveness of DNA vaccines, it is important to monitor: (1) the kinetics of target gene expression in vivo; and (2) the movement of cells that become transfected with the plasmid DNA used in the immunization of a subject. In this study, we used, as a visual imaging marker, expression of the transfected human sodium/iodide symporter (hNIS) gene, which enhances intracellular radio-pertechnetate (TcO4-) accumulation. After intradermal (i.d.) and systemic injection of mice with pcDNA-hNIS and radioactive Technetium-99m (Tc-99m), respectively, whole-body images were obtained by nuclear scintigraphy. The migration of mice cells transfected with the hNIS gene was monitored over a 2-week period by gamma-radioactivity counting of isolated cell populations and was demonstrated in peripheral lymphoid tissues, especially in the draining lymph nodes (dLNs). Beginning at 24 h after DNA inoculation and continuing for the 2-week monitoring period, hNIS-expressing cells were observed specifically in the T-cell-rich zones of the paracortical area of the dLNs. Over the same time period, high levels of INF-γ-secreting CD8 T-cells were found in the dLNs of the pcDNA-hNIS immunized mice. Tumor growth was also significantly retarded in the mice that received hNIS DNA immunization followed by inoculation with CT26 colorectal adenocarcinoma cells that had been transfected with the rat NIS gene (rNIS), which is 93% homologous to the hNIS gene. In conclusion, mouse cells transfected with hNIS DNA after i.d. immunization were found to traffic to the dLNs, and hNIS gene expression in these cells continued for at least 2 weeks post immunization. Furthermore, sequential presentation of NIS DNA to T-cells by migratory antigen presenting cells could induce NIS DNA-specific Th1 immune responses and thus retard the growth of NIS-expressing tumors. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Wenwan
2003-01-01
Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in thismore » manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.« less
Yang, H; Egan, J M; Rodgers, B D; Bernier, M; Montrose-Rafizadeh, C
1999-06-01
To identify novel seven transmembrane domain proteins from 3T3-L1 adipocytes, we used PCR to amplify 3T3-L1 adipocyte complementary DNA (cDNA) with primers homologous to the N- and C-termini of pancreatic glucagon-like peptide-1 (GLP-1) receptor. We screened a cDNA library prepared from fully differentiated 3T3-L1 adipocytes using a 500-bp cDNA PCR product probe. Herein describes the isolation and characterization of a 1.6-kb cDNA clone that encodes a novel 298-amino acid protein that we termed TPRA40 (transmembrane domain protein of 40 kDa regulated in adipocytes). TPRA40 has seven putative transmembrane domains and shows little homology with the known GLP-1 receptor or with other G protein-coupled receptors. The levels of TPRA40 mRNA and protein were higher in 3T3-L1 adipocytes than in 3T3-L1 fibroblasts. TPRA40 is present in a number of mouse and human tissues. Interestingly, TPRA40 mRNA levels were significantly increased by 2- to 3-fold in epididymal fat of 24-month-old mice vs. young controls as well as in db/db and ob/ob mice vs. nondiabetic control littermates. No difference in TPRA40 mRNA levels was observed in brain, heart, skeletal muscle, liver, or kidney. Furthermore, no difference in TPRA40 expression was detected in brown fat of ob/ob mice when compared with age-matched controls. Taken together, these data suggest that TPRA40 represents a novel membrane-associated protein whose expression in white adipose tissue is altered with aging and type 2 diabetes.
Xu, Jiguo; Gao, Xinfeng; Li, Xing; Ye, Qiao; Jebessa, Endashaw; Abdalla, Bahareldin Ali; Nie, Qinghua
2017-06-01
Follicle-stimulating hormone (FSH) and its receptor play a key role in the follicular development and regulation of steroidogenesis in the ovary and spermatogenesis in the testis. The purpose of this study was to characterize themuscovy duck FSHR gene, identify SNPs and their association with egg production traits in muscovy ducks. Here, we cloned the complementary DNA (cDNA) sequence of FSHR, and examined the expression patterns of FSHR gene in adult female muscovy duck tissues. The cloned cDNA of the muscovy duck FSHR gene shared high similarity to those of pekin duck (Anas platyrhynchos) (95.7%) and chicken (93.2%). Three different muscovy duck FSHR transcripts were identified. Quantitative real-time PCR (RT-qPCR) results showed that the FSHR gene was expressed in all the 14 tested tissues, and the highest expression level was seen in the ovary. A total of 16 SNPs were identified, among which, four SNPs were located in the coding region of FSHR. The SNP C320T is significantly associated with egg production at 59 weeks of age (P < 0.05), whereas the SNP A227G is significantly associated with age at first egg stage (P < 0.05). These results suggest that the two SNPs (A227G and C320T) of FSHR gene are associated with egg production traits and could be potential markers that can be used for marker-assisted selection programmes to increase egg production in muscovy duck.
Liu, Chunlai; Li, Yongwen; Dong, Yunlong; Zhang, Hongbing; Li, Ying; Liu, Hongyu; Chen, Jun
2016-09-20
The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.
An injectable spheroid system with genetic modification for cell transplantation therapy.
Uchida, Satoshi; Itaka, Keiji; Nomoto, Takahiro; Endo, Taisuke; Matsumoto, Yu; Ishii, Takehiko; Kataoka, Kazunori
2014-03-01
The new methodology to increase a therapeutic potential of cell transplantation was developed here by the use of three-dimensional spheroids of transplanting cells subsequent to the genetic modification with non-viral DNA vectors, polyplex nanomicelles. Particularly, spheroids in regulated size of 100-μm of primary hepatocytes transfected with luciferase gene were formed on the micropatterned culture plates coated with thermosensitive polymer, and were recovered in the form of injectable liquid suspension simply by cooling the plates. After subcutaneously transplanting these hepatocyte spheroids, efficient transgene expression was observed in host tissue for more than a month, whereas transplantation of a single-cell suspension from a monolayer culture resulted in an only transient expression. The spheroid system contributed to the preservation of innate functions of transplanted hepatocytes in the host tissue, such as albumin expression, thereby possessing high potential for expressing transgene. Intravital observation of transplanted cells showed that those from spheroid cultures had a tendency to localize in the vicinity of blood vessels, making a favorable microenvironment for preserving cell functionality. Furthermore, spheroids transfected with erythropoietin-expressing DNA showed a significantly higher hematopoietic effect than that of cell suspensions from monolayer cultures, demonstrating high potential of this genetically-modified spheroid transplantation system for therapeutic applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini1
Carpin, Sabine; Crèvecoeur, Michèle; Greppin, Hubert; Penel, Claude
1999-01-01
A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase. Despite the presence of a C-terminal propeptide, APRX was found in the apoplast. APRX protein and mRNA were found in the root, hypocotyls, and cotyledons. In situ hybridization showed that the APRX-encoding gene was expressed in many different tissues. The strongest expression was observed in root epidermis and in some cells of the stele, in differentiating tracheary elements of hypocotyl, in the lower and upper epidermis, in the palisade parenchyma of cotyledons, and in lateral and adventitious root primordia. In the hypocotyl hook there was an asymmetric expression, with the inner part containing more transcripts than the outer part. Treatment with 2,3,5-triiodobenzoic acid reduced the expression of the APRX-encoding gene in the lower part of the hypocotyl. Our observations suggest that APRX could be involved in lignin formation and that the transcription of its gene was related to auxin level. PMID:10398715
Distinct contributions of replication and transcription to mutation rate variation of human genomes.
Cui, Peng; Ding, Feng; Lin, Qiang; Zhang, Lingfang; Li, Ang; Zhang, Zhang; Hu, Songnian; Yu, Jun
2012-02-01
Here, we evaluate the contribution of two major biological processes--DNA replication and transcription--to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes. Copyright © 2012 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.
Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform.
Taylor, Jane; Moore, Hannah; Beaujean, Nathalie; Gardner, John; Wilmut, Ian; Meehan, Richard; Young, Lorraine
2009-05-01
Unlike the mouse embryo, where loss of DNA methylation in the embryonic nucleus leaves cleavage stage embryos globally hypomethylated, sheep preimplantation embryos retain high levels of methylation until the blastocyst stage. We have cloned and sequenced sheep Dnmt1 and found it to be highly conserved with both the human and mouse homologues. Furthermore, we observed that the transcript normally expressed in adult somatic tissues is highly abundant in sheep oocytes. Throughout sheep preimplantation development the protein is retained in the cytoplasm whereas Dnmt1 transcript production declines after the embryonic genome activation at the 8-16 cell stage. Attempts to clone oocyte-specific 5' regions of Dnmt1, known to be present in the mouse and human gene, were unsuccessful. However, a novel ovine Dnmt1 exon, theoretically encoding 13 amino acids, was found to be expressed in sheep oocytes, preimplantation embryos and early fetal lineages, but not in the adult tissue. RNAi-mediated knockdown of this novel transcript resulted in embryonic developmental arrest at the late morula stage, suggesting an essential role for this isoform in sheep blastocyst formation. (c) 2008 Wiley-Liss, Inc.
Yokoyama, Seiya; Higashi, Michiyo; Kitamoto, Sho; Oeldorf, Monika; Knippschild, Uwe; Kornmann, Marko; Maemura, Kosei; Kurahara, Hiroshi; Wiest, Edwin; Hamada, Tomofumi; Kitazono, Ikumi; Goto, Yuko; Tasaki, Takashi; Hiraki, Tsubasa; Hatanaka, Kazuhito; Mataki, Yuko; Taguchi, Hiroki; Hashimoto, Shinichi; Batra, Surinder K; Tanimoto, Akihide; Yonezawa, Suguru; Hollingsworth, Michael A
2016-07-05
Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC.
11β-HSD1 reduces metabolic efficacy and adiponectin synthesis in hypertrophic adipocytes.
Koh, Eun Hee; Kim, Ah-Ram; Kim, Hyunshik; Kim, Jin Hee; Park, Hye-Sun; Ko, Myoung Seok; Kim, Mi-Ok; Kim, Hyuk-Joong; Kim, Bum Joong; Yoo, Hyun Ju; Kim, Su Jung; Oh, Jin Sun; Woo, Chang-Yun; Jang, Jung Eun; Leem, Jaechan; Cho, Myung Hwan; Lee, Ki-Up
2015-06-01
Mitochondrial dysfunction in hypertrophic adipocytes can reduce adiponectin synthesis. We investigated whether 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression is increased in hypertrophic adipocytes and whether this is responsible for mitochondrial dysfunction and reduced adiponectin synthesis. Differentiated 3T3L1 adipocytes were cultured for up to 21 days. The effect of AZD6925, a selective 11β-HSD1 inhibitor, on metabolism was examined. db/db mice were administered 600 mg/kg AZD6925 daily for 4 weeks via gastric lavage. Mitochondrial DNA (mtDNA) content, mRNA expression levels of 11 β -H sd1 and mitochondrial biogenesis factors, adiponectin synthesis, fatty acid oxidation (FAO), oxygen consumption rate and glycolysis were measured. Adipocyte hypertrophy in 3T3L1 cells exposed to a long duration of culture was associated with increased 11 β -Hsd1 mRNA expression and reduced mtDNA content, mitochondrial biogenesis factor expression and adiponectin synthesis. These cells displayed reduced mitochondrial respiration and increased glycolysis. Treatment of these cells with AZD6925 increased adiponectin synthesis and mitochondrial respiration. Inhibition of FAO by etomoxir blocked the AZD6925-induced increase in adiponectin synthesis, indicating that 11β-HSD1-mediated reductions in FAO are responsible for the reduction in adiponectin synthesis. The expression level of 11 β -Hsd1 was higher in adipose tissues of db/db mice. Administration of AZD6925 to db/db mice increased the plasma adiponectin level and adipose tissue FAO. In conclusion, increased 11β-HSD1 expression contributes to reduced mitochondrial respiration and adiponectin synthesis in hypertrophic adipocytes. © 2015 Society for Endocrinology.
Yokoyama, Seiya; Higashi, Michiyo; Kitamoto, Sho; Oeldorf, Monika; Knippschild, Uwe; Kornmann, Marko; Maemura, Kosei; Kurahara, Hiroshi; Wiest, Edwin; Hamada, Tomofumi; Kitazono, Ikumi; Goto, Yuko; Tasaki, Takashi; Hiraki, Tsubasa; Hatanaka, Kazuhito; Mataki, Yuko; Taguchi, Hiroki; Hashimoto, Shinichi; Batra, Surinder K.; Tanimoto, Akihide; Yonezawa, Suguru; Hollingsworth, Michael A.
2016-01-01
Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC. PMID:27283771
Histone-Targeted Nucleic Acid Delivery for Tissue Regenerative Applications
NASA Astrophysics Data System (ADS)
Munsell, Erik V.
Nucleic acid delivery has garnered significant attention as an innovative therapeutic approach for treating a wide variety of diseases. However, the design of non-viral delivery systems that negotiate efficient intracellular trafficking and nuclear entry represents a significant challenge. Overcoming these hurdles requires a combination of well-controlled materials approaches with techniques to understand and direct cellular delivery. Recent investigations have highlighted the roles histone tail sequences play in directing nuclear delivery and retention, as well as activating DNA transcription. We established the ability to recapitulate these natural histone tail activities within non-viral gene nanocarriers, driving gene transfer/expression by enabling effective navigation to the nucleus via retrograde vesicular trafficking. A unique finding of this histone-targeted approach was that nanocarriers gained enhanced access to the nucleus during mitosis. The work described in this dissertation builds off of these fundamental insights to facilitate the translation of this histone-targeted delivery approach toward regenerative medicine applications. During native tissue repair, actively proliferating mesenchymal stem cells (MSCs) respond to a complex series of growth factor signals that direct their differentiation. Accordingly, the investigations in this work focused on utilizing the histone-targeted nanocarriers to enhance osteogenic growth factor gene transfer in dividing MSCs leading to augmented MSC chondrogenic differentiation, an essential first step in skeletal tissue repair. Concurrently, additional studies focused on optimizing the histone-targeted nanocarrier design strategy to enable improved plasmid DNA (pDNA) binding stability and tunable harnessing of native cellular processing pathways for enhanced gene transfer. Overall, the work presented herein demonstrated substantial increases in growth factor expression following histone-targeted gene transfer. This enhanced expression enabled more robust levels of chondrogenesis in MSCs than treatments with equivalent amounts of recombinant growth factor protein. Additionally, nanocarrier design optimization provided effective pDNA condensation and controllable interactions with native histone effectors. Importantly, these optimized nanocarriers conferred stable nanoplex formation and maintained transfection efficiency under physiologically relevant conditions. Taken together, these advances may help drive the clinical translation of histone-targeted nucleic acid delivery strategies for the regeneration of damaged tissue following traumatic injury.
NEIBank: Genomics and bioinformatics resources for vision research
Peterson, Katherine; Gao, James; Buchoff, Patee; Jaworski, Cynthia; Bowes-Rickman, Catherine; Ebright, Jessica N.; Hauser, Michael A.; Hoover, David
2008-01-01
NEIBank is an integrated resource for genomics and bioinformatics in vision research. It includes expressed sequence tag (EST) data and sequence-verified cDNA clones for multiple eye tissues of several species, web-based access to human eye-specific SAGE data through EyeSAGE, and comprehensive, annotated databases of known human eye disease genes and candidate disease gene loci. All expression- and disease-related data are integrated in EyeBrowse, an eye-centric genome browser. NEIBank provides a comprehensive overview of current knowledge of the transcriptional repertoires of eye tissues and their relation to pathology. PMID:18648525
Detection of human cytomegalovirus DNA replication in non-permissive Vero and 293 cells.
Ellsmore, Victoria; Reid, G Gordon; Stow, Nigel D
2003-03-01
Human cytomegalovirus (HCMV) displays an exceptionally restricted host range in tissue culture with human fibroblasts being the principal fully permissive system. Nevertheless, immediate early (IE) proteins are expressed following infection of many non-permissive cell types of human, simian and murine origin, and viral origin-dependent DNA synthesis has been reconstituted by transfection of plasmids into Vero cells, a non-permissive line from African green monkey. We have examined the accumulation of HCMV strain AD169 DNA, and the replication of transfected HCMV origin-containing plasmids, in infected Vero and human embryonic kidney 293 cells, which were previously reported to express the major IE protein in a small proportion of infected cells but to be non-permissive for viral DNA synthesis. In Vero cells accumulation of origin-containing plasmid but not viral DNA occurred, whilst in 293 cells both DNAs accumulated. Immunofluorescence experiments indicated that following infection with 3 p.f.u. per cell, a small fraction of both cell types expressed the UL44 DNA replication protein. Neither cell line, however, supported the generation of infectious progeny virus. These results suggest that IE proteins expressed in Vero and 293 cells can induce the synthesis of early proteins capable of functioning in viral DNA replication, but there is a failure in later events on the pathway to infectious virus production. This provides further support for transfected Vero cells being a valid system in which to study HCMV DNA synthesis, and suggests that 293 cells may also prove useful in similar experiments.
Clinical Implications of Promoter Hypermethylation in RASSF1A and MGMT in Retinoblastoma1
Choy, Kwong Wai; Lee, Tom C; Cheung, Kin Fai; Fan, Dorothy S P; Lo, Kwok Wai; Beaverson, Katherine L; Abramson, David H; Lam, Dennis S C; Yu, Christopher B O; Pang, Chi Pui
2005-01-01
Abstract We investigated the epigenetic silencing and genetic changes of the RAS-associated domain family 1A (RASSF1A) gene and the O6-methylguanine-DNA methyltransferase (MGMT) gene in retinoblastoma. We extracted DNA from microdissected tumor and normal retina tissues of the same patient in 68 retinoblastoma cases. Promoter methylation in RASSF1A and MGMT was analyzed by methylation-specific PCR, RASSF1A sequence alterations in all coding exons by direct DNA sequencing, and RASSF1A expression by RT-PCR. Cell cycle staging was analyzed by flow cytometry. We detected RASSF1A promoter hypermethylation in 82% of retinoblastoma, in tumor tissues only but not in adjacent normal retinal tissue cells. There was no expression of RASSF1A transcripts in all hypermethylated samples, but RASSF1A transcripts were restored after 5-aza-2′-deoxycytidine treatment with no changes in cell cycle or apoptosis. No mutation in the RASSF1A sequence was found. MGMT hypermethylation was present in 15% of theretinoblastoma samples, and the absence of MGMT hypermethylation was associated (P = .002) with retinoblastoma at advanced Reese-Ellsworth tumor stage. Our results revealed a high RASSF1A hypermethylation frequency in retinoblastoma. The correlation of MGMT inactivation by promoter hypermethylation with lower-stage diseases indicated that MGMT hypermethylation provides useful prognostic information. Epigenetic mechanism plays an important role in the progression of retinoblastoma. PMID:15799820
Expression of human papillomavirus 6 in inverted papilloma arising in a renal transplant recipient.
Harris, M O; Beck, J C; Terrell, J E; McClatchey, K D; Carey, T E; Bradford, C R
1998-01-01
A 36-year-old renal transplant recipient taking cyclosporin A presented with bilateral nasal polypoid lesions involving the nasal septum and lateral nasal walls. Pathologic findings from surgical excision demonstrated inverted papilloma (IP) with focal atypia and mild dysplasia. DNA extracted from the tissue was tested with the polymerase chain reaction (PCR) using human papillomavirus (HPV) E6 and L1 consensus primers. This revealed amplification of the expected size fragment consistent with the presence of HPV DNA. Hybridization of PCR products with HPV type-specific oligonucleotide probes revealed a strong signal with only HPV 6. This result was confirmed by PCR amplification with HPV 6 type-specific primers. RNA extracted from the tissue was subjected to reverse transcription PCR (RT-PCR) with a primer pair specific for viral E6/E7 transcripts. The HPV early proteins, E6 and E7, are the transforming proteins implicated as critical for tumorigenesis. RT-PCR experiments generated products representing the E1/E4 spliced transcript originating from the E6/E6 promoter and a smaller unclassified fragment. These results provide evidence for HPV 6 E6/E7 expression in IP, lending credence to the concept that HPV may play a role in the origin of this neoplasm. Histologically normal nasal tissue from the same patient contained HPV DNA and similar transcripts to those described in the IP specimen.
Huang, Yong-Zhen; Sun, Jia-Jie; Zhang, Liang-Zhi; Li, Cong-Jun; Womack, James E.; Li, Zhuan-Jian; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong
2014-01-01
DNA methylation is a key epigenetic modification in mammals and plays important roles in muscle development. We sampled longissimus dorsi muscle (LDM) from a well-known elite native breed of Chinese Qinchuan cattle living within the same environment but displaying distinct skeletal muscle at the fetal and adult stages. We generated and provided a genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA for fetal and adult muscle studies. Integration analysis revealed a total of 77 and 1,054 negatively correlated genes with methylation in the promoter and gene body regions, respectively, in both the fetal and adult bovine libraries. Furthermore, we identified expression patterns of high-read genes that exhibit a negative correlation between methylation and expression from nine different tissues at multiple developmental stages of bovine muscle-related tissue or organs. In addition, we validated the MeDIP-Seq results by bisulfite sequencing PCR (BSP) in some of the differentially methylated promoters. Together, these results provide valuable data for future biomedical research and genomic and epigenomic studies of bovine skeletal muscle that may help uncover the molecular basis underlying economically valuable traits in cattle. This comprehensive map also provides a solid basis for exploring the epigenetic mechanisms of muscle growth and development. PMID:25306978
The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals
Duffié, Rachel; Ajjan, Sophie; Greenberg, Maxim V.; Zamudio, Natasha; Escamilla del Arenal, Martin; Iranzo, Julian; Okamoto, Ikuhiro; Barbaux, Sandrine; Fauque, Patricia; Bourc'his, Déborah
2014-01-01
Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development: Whether this form of transient genomic imprinting can impact the early embryonic transcriptome or even have life-long consequences on genome regulation and possibly phenotypes is currently unknown. Here, we report a maternal germline differentially methylated region (DMR) at the mouse Gpr1/Zdbf2 (DBF-type zinc finger-containing protein 2) locus, which controls the paternal-specific expression of long isoforms of Zdbf2 (Liz) in the early embryo. This DMR loses parental specificity by gain of DNA methylation at implantation in the embryo but is maintained in extraembryonic tissues. As a consequence of this transient, tissue-specific maternal imprinting, Liz expression is restricted to the pluripotent embryo, extraembryonic tissues, and pluripotent male germ cells. We found that Liz potentially functions as both Zdbf2-coding RNA and cis-regulatory RNA. Importantly, Liz-mediated events allow a switch from maternal to paternal imprinted DNA methylation and from Liz to canonical Zdbf2 promoter use during embryonic differentiation, which are stably maintained through somatic life and conserved in humans. The Gpr1/Zdbf2 locus lacks classical imprinting histone modifications, but analysis of mutant embryonic stem cells reveals fine-tuned regulation of Zdbf2 dosage through DNA and H3K27 methylation interplay. Together, our work underlines the developmental and evolutionary need to ensure proper Liz/Zdbf2 dosage as a driving force for dynamic genomic imprinting at the Gpr1/Zdbf2 locus. PMID:24589776
Logical Framework of Forensic Identification: Ability to Resist Fabricated DNA.
Wang, Zheng; Zhou, Di; Zhang, Suhua; Bian, Yingnan; Hu, Zhen; Zhu, Ruxin; Lu, Daru; Li, Chengtao
2015-12-01
Over the past 30 years, DNA analysis has revolutionized forensic science and has become the most useful single tool in the multifaceted fight against crime. Today, DNA profiling with sets of highly polymorphic autosomal short tandem repeat markers is widely employed and accepted in the courts due to its high discriminating power and reliability. However, an artificial bloodstain purposefully created using molecular biology techniques succeeded in tricking a leading forensic DNA laboratory. The disturbing possibility that a forensic DNA profile can be faked shocked the general public and the mass media, and generated serious discussion about the credibility of DNA evidence. Herein, we present two exemplary assays based on tissue-specific methylation patterns and cell-specific mRNA expression, respectively. These two assays can be integrated into the DNA analysis pipelines without consumption of additional samples. We show that the two assays can not only distinguish between artificial and genuine samples, but also provide information on tissue origin. The two assays were tested on natural and artificial bloodstains (generated by polymerase chain reaction and whole genome amplification technique) and the results illustrated that the logical framework of forensic identification is still useful for forensic identification with the high credibility.
BRCA1 and BRCA2 expression patterns and prognostic significance in digestive system cancers.
Wang, Gui-Hua; Zhao, Chun-Mei; Huang, Ying; Wang, Wei; Zhang, Shu; Wang, Xudong
2018-01-01
The role of BRCA1 and BRCA2 genes is mainly to maintain genome integrity in response to DNA damage through different mechanisms. Deregulation of BRCA1 and BRCA2 is associated with the development of tumor and altered sensitivity to chemotherapeutic agents. In this study, we determined protein expression of BRCA1 and BRCA2 in 4 digestive system cancers (gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer) by immunohistochemistry on tissue microarrays. A total of 1546 samples of 4 types of cancer tissues, their matched adjacent nontumor tissues, and corresponding benign tissues were studied, respectively. Immunohistochemistry expression patterns of the 2 proteins and their correlation with patients' clinical parameters and overall survival were analyzed. The results showed that low expression of cytoplasmic BRCA1 and BRCA2 was commonly associated with advanced tumor-lymph node-metastasis stage, whereas high expression of nuclear BRCA1 was generally correlated with advanced tumor stages in these cancers. High expression of cytoplasmic BRCA1 and BRCA2 had significantly favorable overall survival in digestive system cancers; in contrast, BRCA1 nuclear expression usually predicted poor outcomes. We conclude that BRCA1 and BRCA2 could be used as clinicopathological biomarkers to evaluate the prognosis of digestive system cancers. Copyright © 2017 Elsevier Inc. All rights reserved.
Hepatitis virus infection affects DNA methylation in mice with humanized livers.
Okamoto, Yasuyuki; Shinjo, Keiko; Shimizu, Yasuhiro; Sano, Tsuyoshi; Yamao, Kenji; Gao, Wentao; Fujii, Makiko; Osada, Hirotaka; Sekido, Yoshitaka; Murakami, Shuko; Tanaka, Yasuhito; Joh, Takashi; Sato, Shinya; Takahashi, Satoru; Wakita, Takaji; Zhu, Jingde; Issa, Jean-Pierre J; Kondo, Yutaka
2014-02-01
Cells of tumors associated with chronic inflammation frequently have altered patterns of DNA methylation, including hepatocellular carcinomas. Chronic hepatitis has also been associated with aberrant DNA methylation, but little is known about their relationship. Pyrosequencing was used to determine the methylation status of cultured Huh7.5.1 hepatoma cells after hepatitis C virus (HCV) infection. We also studied mice with severe combined immunodeficiency carrying the urokinase-type plasminogen activator transgene controlled by an albumin promoter (urokinase-type plasminogen activator/severe combined immunodeficient mice), in which up to 85% of hepatocytes were replaced by human hepatocytes (chimeric mice). Mice were given intravenous injections of hepatitis B virus (HBV) or HCV, liver tissues were collected, and DNA methylation profiles were determined at different time points after infection. We also compared methylation patterns between paired samples of hepatocellular carcinomas and adjacent nontumor liver tissues from patients. No reproducible changes in DNA methylation were observed after infection of Huh7.5.1 cells with HCV. Livers from HBV- and HCV-infected mice had genome-wide, time-dependent changes in DNA methylation, compared with uninfected urokinase-type plasminogen activator/severe combined immunodeficient mice. There were changes in 160 ± 63 genes in HBV-infected and 237 ± 110 genes in HCV-infected mice. Methylation of 149 common genes increased in HBV- and HCV-infected mice; methylation of some of these genes also increased in hepatocellular carcinoma samples from patients compared with nontumor tissues. Expression of Ifng, which is expressed by natural killer cells, increased significantly in chimeric livers, in concordance with induction of DNA methylation, after infection with HBV or HCV. Induction of Ifng was reduced after administration of an inhibitor of natural killer cell function (anti-asialo GM1). In chimeric mice with humanized livers, infection with HBV and HCV appears to activate a natural kill cell-dependent innate immune response. This contributes to the induction and accumulation of aberrant DNA methylation in human hepatocytes. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Characterization of human septic sera induced gene expression modulation in human myocytes
Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem
2009-01-01
To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886
Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.
2013-01-01
The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747
Peters, Linda M.; Belyantseva, Inna A.; Lagziel, Ayala; Battey, James F.; Friedman, Thomas B.; Morell, Robert J.
2007-01-01
Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome. PMID:17049805
Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors.
Sirsi, Shashank R; Hernandez, Sonia L; Zielinski, Lukasz; Blomback, Henning; Koubaa, Adel; Synder, Milo; Homma, Shunichi; Kandel, Jessica J; Yamashiro, Darrell J; Borden, Mark A
2012-01-30
Microbubble ultrasound contrast agents are being developed as image-guided gene carriers for targeted delivery in vivo. In this study, novel polyplex-microbubbles were synthesized, characterized and evaluated for systemic circulation and tumor transfection. Branched polyethylenimine (PEI; 25 kDa) was modified with polyethylene glycol (PEG; 5 kDa), thiolated and covalently attached to maleimide groups on lipid-coated microbubbles. The PEI-microbubbles demonstrated increasingly positive surface charge and DNA loading capacity with increasing maleimide content. The in vivo ultrasound contrast persistence of PEI-microbubbles was measured in the healthy mouse kidney, and a two-compartment pharmacokinetic model accounting for free and adherent microbubbles was developed to describe the anomalous time-intensity curves. The model suggested that PEI loading dramatically reduced free circulation and increased nonspecific adhesion to the vasculature. However, DNA loading to form polyplex-microbubbles increased circulation in the bloodstream and decreased nonspecific adhesion. PEI-microbubbles coupled to a luciferase bioluminescence reporter plasmid DNA were shown to transfect tumors implanted in the mouse kidney. Site-specific delivery was achieved using ultrasound applied over the tumor area following bolus injection of the DNA/PEI-microbubbles. In vivo imaging showed over 10-fold higher bioluminescence from the tumor region compared to untreated tissue. Ex vivo analysis of excised tumors showed greater than 40-fold higher expression in tumor tissue than non-sonicated control (heart) tissue. These results suggest that the polyplex-microbubble platform offers improved control of DNA loading and packaging suitable for ultrasound-guided tissue transfection. Copyright © 2011 Elsevier B.V. All rights reserved.
Xiao, Yongli; Sheng, Zong-Mei; Taubenberger, Jeffery K.
2015-01-01
The vast majority of surgical biopsy and post-mortem tissue samples are formalin-fixed and paraffin-embedded (FFPE), but this process leads to RNA degradation that limits gene expression analysis. As an example, the viral RNA genome of the 1918 pandemic influenza A virus was previously determined in a 9-year effort by overlapping RT-PCR from post-mortem samples. Using the protocols described here, the full genome of the 1918 virus at high coverage was determined in one high-throughput sequencing run of a cDNA library derived from total RNA of a 1918 FFPE sample after duplex-specific nuclease treatments. This basic methodological approach should assist in the analysis of FFPE tissue samples isolated over the past century from a variety of infectious diseases. PMID:26344216
Wang, Tao; Yuan, Dengyue; Zhou, Chaowei; Lin, Fangjun; Wei, Rongbin; Chen, Hu; Wu, Hongwei; Xin, Zhiming; Liu, Ju; Gao, Yundi; Chen, Defang; Yang, Shiyong; Wang, Yan; Pu, Yundan; Li, Zhiqiong
2016-06-01
Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.
Rondón-Barragán, Iang; Nozaki, Reiko; Hirono, Ikuo; Kondo, Hidehiro
2017-08-01
DNA vaccination is one method to protect farmed fish from viral and bacterial diseases. Chimeric antigens encoded by DNA vaccines have been shown to increase the resistance to viral diseases. Here, we sequenced the gene encoding lysosome-associated membrane protein-1 from Japanese flounder, Paralichthys olivaceus, (JfLAMP-1) and assessed its use in a chimeric DNA vaccine fused with the major capsule protein (MCP) from red seabream iridovirus (RSIV). JfLAMP-1 cDNA has a length of 1248 bp encoding 415 aa, which contains transmembrane and cytoplasmic domains. JfLAMP-1 is constitutively expressed in several tissues and its expression in spleen was upregulated following injection of formalin-killed cells (FKC) of Edwardsiella tarda. Immunofluorescence analysis showed that JfLAMP-1 is distributed in the small and large granules in the cytoplasm and groups close to the nucleus. The DNA encoding the luminal domain of JfLAMP-1 was replaced with the gene for the RSIV MCP, and the construct was cloned in an expression vector (pCIneo). Fish vaccinated with pCLAMP-MCP had significantly higher antibody levels than fish vaccinated with pCIneo vector harboring the MCP gene (p < 0.05) at day 30 post-vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular and characterization of NnPPO cDNA from lotus (Nelumbo nucifera) in rhizome browning.
Dong, C; Yu, A Q; Yang, M G; Zhou, M Q; Hu, Z L
2016-04-30
The complete cDNA (NnPPO) of polyphenol oxidase in Nelumbo nucifera was successfully isolated, using Rapid amplification cDNA end (RACE) assays. The full-length cDNA of NnPPO was 2069 bp in size, containing a 1791 bp open reading frame coding 597 amino acids. The putative NnPPO possessed the conserved active sites and domains for PPO function. Phylogenetic analysis revealed that NnPPO shared high homology with PPO of high plants, and the homology modeling proved that NnPPO had the typical structure of PPO family. In order to characterize the role of NnPPO, Real-time PCR assay demonstrated that NnPPO mRNA was expressed in different tissues of N. nucifera including young leave, rhizome, flower, root and leafstalk, with the highest expression in rhizome. Patterns of NnPPO expression in rhizome illustrated its mRNA level was significantly elevated, which was consistent with the change of NnPPO activity during rhizome browning. Therefore, transcriptional activation of NnPPO was probably the main reason causing rhizome browning.
[Expression of cell adhesion molecules in acute leukemia cell].
Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang
2002-11-01
To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.
Lu, M; Wang, L F; Du, X H; Yu, Y K; Pan, J B; Nan, Z J; Han, J; Wang, W X; Zhang, Q Z; Sun, Q P
2015-11-30
Various plant genes can be activated or inhibited by phytohormones under conditions of biotic and abiotic stress, especially in response to jasmonic acid (JA) and salicylic acid (SA). Interactions between JA and SA may be synergistic or antagonistic, depending on the stress condition. In this study, we cloned a full-length cDNA (LeWRKY1, GenBank accession No. FJ654265) from Lycopersicon esculentum by rapid amplification of cDNA ends. Sequence analysis showed that this gene is a group II WRKY transcription factor. Analysis of LeWRKY1 mRNA expression in various tissues by qRT-PCR showed that the highest and lowest expression occurred in the leaves and stems, respectively. In addition, LeWRKY1 expression was induced by JA and Botrytis cinerea Pers., but not by SA.
Yang, J; Yamamoto, M; Ishibashi, J; Taniai, K; Yamakawa, M
1998-08-01
An antibacterial protein, designated rhinocerosin, was purified to homogeneity from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros immunized with Escherichia coli. Based on the amino acid sequence of the N-terminal region, a degenerate primer was synthesized and reverse-transcriptase PCR was performed to clone rhinocerosin cDNA. As a result, a 279-bp fragment was obtained. The complete nucleotide sequence was determined by sequencing the extended rhinocerosin cDNA clone by 5' rapid amplification of cDNA ends. The deduced amino acid sequence of the mature portion of rhinocerosin was composed of 72 amino acids without cystein residues and was shown to be rich in glycine (11.1%) and proline (11.1%) residues. Comparison of the deduced amino acid sequence of rhinocerosin with those of other antibacterial proteins indicated that it has 77.8% and 44.6% identity with holotricin 2 and coleoptrecin, respectively. Rhinocerosin had strong antibacterial activity against E. coli, Streptococcus pyogenes, Staphylococcus aureus but not against Pseudomonas aeruginosa. Results of reverse-transcriptase PCR analysis of gene expression in different tissues indicated that the rhinocerosin gene is strongly expressed in the fat body and the Malpighian tubule, and weakly expressed in hemocytes and midgut. In addition, gene expression was inducible by bacteria in the fat body, the Malpighian tubule and hemocyte but constitutive expression was observed in the midgut.
Hermeyer, K; Jacobsen, B; Spergser, J; Rosengarten, R; Hewicker-Trautwein, M
2011-01-01
Pneumonic lesions occurring in calves after respiratory infection with Mycoplasma bovis are characterized by subacute or chronic suppurative bronchopneumonia with multiple foci of necrosis and by persistence of M. bovis antigen, which is frequently associated with phagocytes at the periphery of the necrotic foci. The aims of this study were: (1) to investigate the expression of inducible nitric oxide synthase (iNOS), nitrotyrosine (NT) and manganese superoxide dismutase (Mn-SOD) in the lung lesions of calves infected experimentally with M. bovis, and (2) to analyse the distribution and localization of M. bovis DNA by in-situ hybridization and correlate these findings with the immunohistochemical detection of M. bovis antigen. Phagocytic cells infiltrating the lung tissue were characterized using the markers CD68, S100A8 and S100A9. Lung tissue from 18 infected calves and three non-infected controls were examined. All infected calves had an increased number of cells expressing iNOS, NT and Mn-SOD in the inflamed lung tissue. These molecules were most strongly expressed by macrophages demarcating necrotic areas, by altered bronchiolar epithelial cells and by macrophages within obliterated bronchioles. Co-localization of M. bovis DNA, M. bovis antigen and macrophages expressing iNOS, NT and Mn-SOD was observed. These findings suggest that the generation of reactive oxygen and nitrogen species is involved in the development of severe chronic lung damage in M. bovis infection. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zi, Xiang-Dong; Chen, Da-Wen; Wang, Hong-Mei
2012-02-01
Prolactin (PRL) plays central roles in a wide range of body functions in mammals, and the actions are mediated by the specific cell surface receptor, the prolactin receptor (PRLR). To better understand the role of PRL in the yak (Bos grunniens), in the present study, we first cloned yak PRLR cDNA, and compared its mRNA expression in several tissues with cattle (Bos taurus). By reverse transcriptase-polymerase chain reaction (RT-PCR) strategy, we obtained full-length of yak PRLR cDNA sequence comprised of an open reading frame of 1746bp encoding a 581 amino acid protein, and contained a signal sequence and a transmembrane region. The intracellular domain had two pairs of cysteine residues and a WSXWS motif. The cytoplasmic domain comprised 323 residues and contained box 1 sequence. The yak PRLR shared 66.0-98.5% protein sequence identity with mammalian homologs. Real-time PCR analysis revealed that PRLR mRNA was higher in mammary tissue than in ovary and endometrium (P<0.01). During pregnancy, the ovary and mammary PRLR mRNA expression increased by 33- and 2.9-fold in yak, respectively, and increased by 46- and 3.8-fold in cattle, respectively. PRLR mRNA expression was higher (P<0.05) in mammary tissue and ovary of pregnant cow than that of pregnant yak. It is proposed that the increased ovarian and mammary PRLR mRNA expression during pregnancy may be associated with corpus luteum function for maintenance of pregnancy and mammary development for subsequent lactation. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claffey, K.P.; Herrera, V.L.; Brecher, P.
1987-12-01
A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less
Fan, FangFei; Yang, Xian; Cheng, Yuan; Kang, Yunyan; Chai, Xirong
2017-01-01
The DnaJ proteins which function as molecular chaperone played critical roles in plant growth and development and response to heat stress (HS) and also called heat shock protein 40 based on molecular weight. However, little was reported on this gene family in pepper. Recently, the release of the whole pepper genome provided an opportunity for identifying putative DnaJ homologous. In this study, a total of 76 putative pepper DnaJ genes (CaDnaJ01 to CaDnaJ76) were identified using bioinformatics methods and classified into five groups by the presence of the complete three domains (J-domain, zinc finger domain, and C-terminal domain). Chromosome mapping suggested that segmental duplication and tandem duplication were occurred in evolution. The multiple stress-related cis -elements were found in the promoter region of these CaDnaJ genes, which indicated that the CaDnaJs might be involved in the process of responding to complex stress conditions. In addition, expression profiles based on RNA-seq showed that the 47 CaDnaJs were expressed in at least one tissue tested. The result implied that they could be involved in the process of pepper growth and development. qRT-PCR analysis found that 80.60% (54/67) CaDnaJs were induced by HS, indicated that they could participated in pepper response to high temperature treatments. In conclusion, all these results would provide a comprehensive basis for further analyzing the function of CaDnaJ members and be also significant for elucidating the evolutionary relationship in pepper.
Fan, FangFei; Yang, Xian; Cheng, Yuan; Kang, Yunyan; Chai, Xirong
2017-01-01
The DnaJ proteins which function as molecular chaperone played critical roles in plant growth and development and response to heat stress (HS) and also called heat shock protein 40 based on molecular weight. However, little was reported on this gene family in pepper. Recently, the release of the whole pepper genome provided an opportunity for identifying putative DnaJ homologous. In this study, a total of 76 putative pepper DnaJ genes (CaDnaJ01 to CaDnaJ76) were identified using bioinformatics methods and classified into five groups by the presence of the complete three domains (J-domain, zinc finger domain, and C-terminal domain). Chromosome mapping suggested that segmental duplication and tandem duplication were occurred in evolution. The multiple stress-related cis-elements were found in the promoter region of these CaDnaJ genes, which indicated that the CaDnaJs might be involved in the process of responding to complex stress conditions. In addition, expression profiles based on RNA-seq showed that the 47 CaDnaJs were expressed in at least one tissue tested. The result implied that they could be involved in the process of pepper growth and development. qRT-PCR analysis found that 80.60% (54/67) CaDnaJs were induced by HS, indicated that they could participated in pepper response to high temperature treatments. In conclusion, all these results would provide a comprehensive basis for further analyzing the function of CaDnaJ members and be also significant for elucidating the evolutionary relationship in pepper. PMID:28507559
Identification of organ tissue types and skin from forensic samples by microRNA expression analysis.
Sauer, Eva; Extra, Antje; Cachée, Philipp; Courts, Cornelius
2017-05-01
The identification of organ tissues in traces recovered from scenes and objects with regard to violent crimes involving serious injuries can be of considerable relevance in forensic investigations. Molecular genetic approaches are provably superior to histological and immunological assays in characterizing organ tissues, and micro-RNAs (miRNAs), due to their cell type specific expression patterns and stability against degradation, emerged as a promising molecular species for forensic analyses, with a range of tried and tested indicative markers. Thus, herein we present the first miRNA based approach for the forensic identification of organ tissues. Using quantitative PCR employing an empirically derived strategy for data normalization and unbiased statistical decision making, we assessed the differential expression of 15 preselected miRNAs in tissues of brain, kidney, lung, liver, heart muscle, skeletal muscle and skin. We show that not only can miRNA expression profiling be used to reliably differentiate between organ tissues but also that this method, which is compatible with and complementary to forensic DNA analysis, is applicable to realistic forensic samples e.g. mixtures, aged and degraded material as well as traces generated by mock stabbings and experimental shootings at ballistic models. Copyright © 2017 Elsevier B.V. All rights reserved.
Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya
2017-01-01
Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed. PMID:28440489
Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya
2017-06-01
Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed.
Deficient Pms2, ERCC1, Ku86, CcOI in field defects during progression to colon cancer.
Nguyen, Huy; Loustaunau, Cristy; Facista, Alexander; Ramsey, Lois; Hassounah, Nadia; Taylor, Hilary; Krouse, Robert; Payne, Claire M; Tsikitis, V Liana; Goldschmid, Steve; Banerjee, Bhaskar; Perini, Rafael F; Bernstein, Carol
2010-07-28
In carcinogenesis, the "field defect" is recognized clinically because of the high propensity of survivors of certain cancers to develop other malignancies of the same tissue type, often in a nearby location. Such field defects have been indicated in colon cancer. The molecular abnormalities that are responsible for a field defect in the colon should be detectable at high frequency in the histologically normal tissue surrounding a colonic adenocarcinoma or surrounding an adenoma with advanced neoplasia (well on the way to a colon cancer), but at low frequency in the colonic mucosa from patients without colonic neoplasia. Using immunohistochemistry, entire crypts within 10 cm on each side of colonic adenocarcinomas or advanced colonic neoplasias were found to be frequently reduced or absent in expression for two DNA repair proteins, Pms2 and/or ERCC1. Pms2 is a dual role protein, active in DNA mismatch repair as well as needed in apoptosis of cells with excess DNA damage. ERCC1 is active in DNA nucleotide excision repair. The reduced or absent expression of both ERCC1 and Pms2 would create cells with both increased ability to survive (apoptosis resistance) and increased level of mutability. The reduced or absent expression of both ERCC1 and Pms2 is likely an early step in progression to colon cancer. DNA repair gene Ku86 (active in DNA non-homologous end joining) and Cytochrome c Oxidase Subunit I (involved in apoptosis) had each been reported to be decreased in expression in mucosal areas close to colon cancers. However, immunohistochemical evaluation of their levels of expression showed only low to modest frequencies of crypts to be deficient in their expression in a field defect surrounding colon cancer or surrounding advanced colonic neoplasia. We show, here, our method of evaluation of crypts for expression of ERCC1, Pms2, Ku86 and CcOI. We show that frequency of entire crypts deficient for Pms2 and ERCC1 is often as great as 70% to 95% in 20 cm long areas surrounding a colonic neoplasia, while frequency of crypts deficient in Ku86 has a median value of 2% and frequency of crypts deficient in CcOI has a median value of 16% in these areas. The entire colon is 150 cm long (about 5 feet) and has about 10 million crypts in its mucosal layer. The defect in Pms2 and ERCC1 surrounding a colon cancer thus may include 1 million crypts. It is from a defective crypt that colon cancer arises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina, Sarah; Department of Radiation Oncology, CHU/Université de Poitiers, Poitiers; Guerif, Stéphane
Purpose: Predictive factors for biochemical recurrence (BCR) in localized prostate cancer (PCa) after brachytherapy are insufficient to date. Cellular radiosensitivity depends on DNA double-strand breaks, mainly repaired by the nonhomologous end-joining (NHEJ) system. We analyzed whether the expression of NHEJ proteins can predict BCR in patients treated by brachytherapy for localized PCa. Methods and Materials: From 983 PCa cases treated by brachytherapy between March 2000 and March 2012, 167 patients with available biopsy material suitable for in situ analysis were included in the study. The median follow-up time was 47 months. Twenty-nine patients experienced BCR. All slides were reviewed to reassessmore » the Gleason score. Expression of the key NHEJ proteins DNA-PKcs, Ku70, and Ku80, and the proliferation marker Ki67, was studied by immunohistochemistry performed on tissue microarrays. Results: The Gleason scores after review (P=.06) tended to be associated with BCR when compared with the score initially reported (P=.74). Both the clinical stage (P=.02) and the pretreatment prostate-specific antigen level (P=.01) were associated with biochemical failure. Whereas the expression of Ku80 and Ki67 were not predictive of relapse, positive DNA-PKcs nuclear staining (P=.003) and higher Ku70 expression (P=.05) were associated with BCR. On multivariate analysis, among pretreatment variables, only DNA-PKcs (P=.03) and clinical stage (P=.02) remained predictive of recurrence. None of the patients without palpable PCa and negative DNA-PKcs expression experienced biochemical failure, compared with 32% of men with palpable and positive DNA-PKcs staining that recurred. Conclusions: Our results suggest that DNA-PKcs could be a predictive marker of BCR after brachytherapy, and this might be a useful tool for optimizing the choice of treatment in low-risk PCa patients.« less
Paschalidis, Konstantinos A.; Roubelakis-Angelakis, Kalliopi A.
2005-01-01
We previously gave a picture of the homeostatic characteristics of polyamine (PA) biosynthesis and conjugation in tobacco (Nicotiana tabacum) plant organs during development. In this work, we present the sites and regulation of PA catabolism related to cell division/expansion, cell cycle progression, and vascular development in the tobacco plant. Diamine oxidase (DAO), PA oxidase (PAO), peroxidases (POXs), and putrescine N-methyltransferase expressions follow temporally and spatially discrete patterns in shoot apical cells, leaves (apical, peripheral, and central regions), acropetal and basipetal petiole regions, internodes, and young and old roots in developing plants. DAO and PAO produce hydrogen peroxide, a plant signal molecule and substrate for POXs. Gene expression and immunohistochemistry analyses reveal that amine oxidases in developing tobacco tissues precede and overlap with nascent nuclear DNA and also with POXs and lignification. In mature and old tissues, flow cytometry indicates that amine oxidase and POX activities, as well as pao gene and PAO protein levels, coincide with G2 nuclear phase and endoreduplication. In young versus the older roots, amine oxidases and POX expression decrease with parallel inhibition of G2 advance and endoreduplication, whereas putrescine N-methyltransferase dramatically increases. In both hypergeous and hypogeous tissues, DAO and PAO expression occurs in cells destined to undergo lignification, suggesting a different in situ localization. DNA synthesis early in development and the advance in cell cycle/endocycle are temporally and spatially related to PA catabolism and vascular development. PMID:16040649
An Integrated Analysis of miRNA and mRNA Expressions in Non-Small Cell Lung Cancers
Ma, Lina; Huang, Yanyan; Zhu, Wangyu; Zhou, Shiquan; Zhou, Jihang; Zeng, Fang; Liu, Xiaoguang; Zhang, Yongkui; Yu, Jun
2011-01-01
Using DNA microarrays, we generated both mRNA and miRNA expression data from 6 non-small cell lung cancer (NSCLC) tissues and their matching normal control from adjacent tissues to identify potential miRNA markers for diagnostics. We demonstrated that hsa-miR-96 is significantly and consistently up-regulated in all 6 NSCLCs. We validated this result in an independent set of 35 paired tumors and their adjacent normal tissues, as well as their sera that are collected before surgical resection or chemotherapy, and the results suggested that hsa-miR-96 may play an important role in NSCLC development and has great potential to be used as a noninvasive marker for diagnosing NSCLC. We predicted potential miRNA target mRNAs based on different methods (TargetScan and miRanda). Further classification of miRNA regulated genes based on their relationship with miRNAs revealed that hsa-miR-96 and certain other miRNAs tend to down-regulate their target mRNAs in NSCLC development, which have expression levels permissive to direct interaction between miRNAs and their target mRNAs. In addition, we identified a significant correlation of miRNA regulation with genes coincide with high density of CpG islands, which suggests that miRNA may represent a primary regulatory mechanism governing basic cellular functions and cell differentiations, and such mechanism may be complementary to DNA methylation in repressing or activating gene expression. PMID:22046296