Sample records for tissue factor gene

  1. Identification of normalization factors for quantitative real-time RT-PCR analysis of gene expression in Pacific abalone Haliotis discus hannai

    NASA Astrophysics Data System (ADS)

    Qiu, Reng; Sun, Boguang; Fang, Shasha; Sun, Li; Liu, Xiao

    2013-03-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is widely used in studies of gene expression. In most of these studies, housekeeping genes are used as internal references without validation. To identify appropriate reference genes for qRT-PCR in Pacific abalone Haliotis discus hannai, we examined the transcription stability of six housekeeping genes in abalone tissues in the presence and absence of bacterial infection. For this purpose, abalone were infected with the bacterial pathogen Vibrio anguillarum for 12 h and 48 h. The mRNA levels of the housekeeping genes in five tissues (digestive glands, foot muscle, gill, hemocyte, and mantle) were determined by qRT-PCR. The PCR data was subsequently analyzed with the geNorm and NormFinder algorithms. The results show that in the absence of bacterial infection, elongation factor-1-alpha and beta-actin were the most stably expressed genes in all tissues, and thus are suitable as cross-tissue type normalization factors. However, we did not identify any universal reference genes post infection because the most stable genes varied between tissue types. Furthermore, for most tissues, the optimal reference genes identified by both algorithms at 12 h and 48 h post-infection differed. These results indicate that bacterial infection induced significant changes in the expression of abalone housekeeping genes in a manner that is dependent on tissue type and duration of infection. As a result, different normalization factors must be used for different tissues at different infection points.

  2. DNA replication machinery is required for development in Drosophila.

    PubMed

    Kohzaki, Hidetsugu; Asano, Maki; Murakami, Yota

    2018-01-01

     In Drosophila , some factors involved in chromosome replication seem to be involved in gene amplification and endoreplication, which are actively utilized in particular tissue development, but direct evidence has not been shown. Therefore, we examined the effect of depletion of replication factors on these processes. First, we confirmed RNAi knockdown can be used for the depletion of replication factors by comparing the phenotypes of RNAi knockdown and deletion or point mutants of the components of DNA licensing factor, MCM2, MCM4 and Cdt1. Next, we found that tissue-specific RNAi knockdown of replication factors caused tissue-specific defects, probably due to defects in DNA replication. In particular, we found that depletion inhibited gene amplification of the chorion gene in follicle cells and endoreplication in salivary glands, showing that chromosomal DNA replication factors are required for these processes. Finally, using RNAi, we screened the genes for chromosomal DNA replication that affected tissue development. Interestingly, wing specific knockdown of Mcm10 induced wing formation defects. These results suggest that some components of chromosomal replication machinery are directly involved in tissue development.

  3. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    PubMed

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  4. Gene therapy with growth factors for periodontal tissue engineering–A review

    PubMed Central

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  5. Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome

    PubMed Central

    Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964

  6. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    PubMed

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy.

    PubMed

    Li, Kuei-Chang; Hu, Yu-Chen

    2015-05-01

    Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.

    PubMed

    Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk

    2015-06-01

    The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme.

  9. Shared molecular networks in orofacial and neural tube development.

    PubMed

    Kousa, Youssef A; Mansour, Tamer A; Seada, Haitham; Matoo, Samaneh; Schutte, Brian C

    2017-01-30

    Single genetic variants can affect multiple tissues during development. Thus it is possible that disruption of shared gene regulatory networks might underlie syndromic presentations. In this study, we explore this idea through examination of two critical developmental programs that control orofacial and neural tube development and identify shared regulatory factors and networks. Identification of these networks has the potential to yield additional candidate genes for poorly understood developmental disorders and assist in modeling and perhaps managing risk factors to prevent morbidly and mortality. We reviewed the literature to identify genes common between orofacial and neural tube defects and development. We then conducted a bioinformatic analysis to identify shared molecular targets and pathways in the development of these tissues. Finally, we examine publicly available RNA-Seq data to identify which of these genes are expressed in both tissues during development. We identify common regulatory factors in orofacial and neural tube development. Pathway enrichment analysis shows that folate, cancer and hedgehog signaling pathways are shared in neural tube and orofacial development. Developing neural tissues differentially express mouse exencephaly and cleft palate genes, whereas developing orofacial tissues were enriched for both clefting and neural tube defect genes. These data suggest that key developmental factors and pathways are shared between orofacial and neural tube defects. We conclude that it might be most beneficial to focus on common regulatory factors and pathways to better understand pathology and develop preventative measures for these birth defects. Birth Defects Research 109:169-179, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Customized biomaterials to augment chondrocyte gene therapy.

    PubMed

    Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J

    2017-04-15

    A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins. The present manuscript focuses on the enhancement of chondrocyte gene therapy through the modification of scaffold materials to enhance the retention of targeted gene products. This study combined tissue engineering and gene therapy, where customized biomaterials augmented the action of IGF-I by enhancing the retention of protein produced by transfection of the IGF-I gene. This approach enabled tuning of binding of IGF-I to alginate, which increased GAG and HYPRO production by transfected chondrocytes. To our knowledge, peptide-based modification of materials to augment growth factor-targeted gene therapy has not been reported previously. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. A Novel Combination of Homeobox Genes Is Expressed in Mesenchymal Chorionic Stem/Stromal Cells in First Trimester and Term Pregnancies

    PubMed Central

    Liu, Haiying; Murthi, Padma; Qin, Sharon; Kusuma, Gina D.; Borg, Anthony J.; Knöfler, Martin; Haslinger, Peter; Manuelpillai, Ursula; Pertile, Mark D.; Abumaree, Mohamed

    2014-01-01

    Human chorionic mesenchymal stem/stromal cells (CMSCs) derived from the placenta are similar to adult tissue-derived MSCs. The aim of this study was to investigate the role of these cells in normal placental development. Transcription factors, particularly members of the homeobox gene family, play crucial roles in maintaining stem cell proliferation and lineage specification in embryonic tissues. In adult tissues and organs, stem cells proliferate at low levels in their niche until they receive cues from the microenvironment to differentiate. The homeobox genes that are expressed in the CMSC niche in placental tissues have not been identified. We used the novel strategy of laser capture microdissection to isolate the stromal component of first trimester villi and excluded the cytotrophoblast and syncytiotrophoblast layers that comprise the outer layer of the chorionic villi. Microarray analysis was then used to screen for homeobox genes in the microdissected tissue. Candidate homeobox genes were selected for further RNA analysis. Immunohistochemistry of candidate genes in first trimester placental villous stromal tissue revealed homeobox genes Meis1, myeloid ectropic viral integration site 1 homolog 2 (MEIS2), H2.0-like Drosophila (HLX), transforming growth factor β-induced factor (TGIF), and distal-less homeobox 5 (DLX5) were expressed in the vascular niche where CMSCs have been shown to reside. Expression of MEIS2, HLX, TGIF, and DLX5 was also detected in scattered stromal cells. Real-time polymerase chain reaction and immunocytochemistry verified expression of MEIS2, HLX, TGIF, and DLX5 homeobox genes in first trimester and term CMSCs. These data suggest a combination of regulatory homeobox genes is expressed in CMSCs from early placental development to term, which may be required for stem cell proliferation and differentiation. PMID:24692208

  12. Sequence and Expression Analyses of Ethylene Response Factors Highly Expressed in Latex Cells from Hevea brasiliensis

    PubMed Central

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors. PMID:24971876

  13. Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis.

    PubMed

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.

  14. Constitutive gene expression and specification of tissue identity in adult planarian biology

    PubMed Central

    Reddien, Peter W.

    2011-01-01

    Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require mechanisms that specify tissue identity in the adult. Critical roles for Wnt and BMP signaling in regeneration and maintenance of the body axes have been uncovered, among other regulatory factors. Available data indicate that genes involved in positional identity regulation at key embryonic stages in other animals display persisting regionalized expression in adult planarians. These expression patterns suggest that a constitutively active gene expression map exists for maintenance of the planarian body. Planarians therefore present a fertile ground for identification of factors regulating regionalization of the metazoan body plan and for study of the attributes of these factors that can lead to maintenance and regeneration of adult tissues. PMID:21680047

  15. Expression of Folliculogenesis-Related Genes in Vitrified Human Ovarian Tissue after Two Weeks In Vitro Culture.

    PubMed

    Shams Mofarahe, Zahra; Salehnia, Mojdeh; Ghaffari Novin, Marefat; Ghorbanmehr, Nassim; Fesharaki, Mohammad Gholami

    2017-01-01

    This study was designed to evaluate the effects of vitrification and in vitro culture of human ovarian tissue on the expression of oocytic and follicular cell-related genes. In this experimental study, ovarian tissue samples were obtained from eight transsexual women. Samples were cut into small fragments and were then assigned to vitrified and non-vitrified groups. In each group, some tissue fragments were divided into un-cultured and cultured (in α-MEM medium for 2 weeks) subgroups. The normality of follicles was assessed by morphological observation under a light microscope using hematoxylin and eosin (H&E) staining. Expression levels of factor in the germ line alpha ( FIGLA ), KIT ligand ( KL ), growth differentiation factor 9 ( GDF-9 ) and follicle stimulating hormone receptor ( FSHR ) genes were quantified in both groups by real-time reverse transcriptase polymerase chain reaction (RT-PCR) at the beginning and the end of culture. The percentage of normal follicles was similar between non-cultured vitrified and non-vitrified groups (P>0.05), however, cultured tissues had significantly fewer normal follicles than non-cultured tissues in both vitrified and non-vitrified groups (P<0.05). In both cultured groups the rate of primary and secondary follicles was significantly higher than non-cultured tissues (P<0.05). The expression of all examined genes was not significantly altered in both non-cultured groups. Whiles, in comparison with cultured tissues non-cultured tissues, the expression of FIGLA gene was significantly decreased, KL gene was not changed, GDF-9 and FSHR genes was significantly increased (P<0.05). Human ovarian vitrification following in vitro culture has no impairing effects on follicle normality and development and expression of related-genes. However, in vitro culture condition has deleterious effects on normality of follicles.

  16. Gene delivery for periodontal tissue engineering: current knowledge - future possibilities.

    PubMed

    Chen, Fa-Ming; Ma, Zhi-Wei; Wang, Qin-Tao; Wu, Zhi-Fen

    2009-08-01

    The cellular and molecular events of periodontal healing are coordinated and regulated by an elaborate system of signaling molecules, pointing to a primary strategy for functional periodontal compartment regeneration to replicate components of the natural cellular microenvironment by providing an artificial extracellular matrix (ECM) and by delivering growth factors. However, even with optimal carriers, the localized delivery of growth factors often requires a large amount of protein to stimulate significant effects in vivo, which increases the risk and unwanted side effects. A simple and relatively new approach to bypassing this dilemma involves converting cells into protein producing factories. This is done by a so-called gene delivery method, where therapeutic agents to be delivered are DNA plasmids that include the gene encoding desired growth factors instead of recombinant proteins. As localized depots of genes, novel gene delivery systems have the potential to release their cargo in a sustained and controlled manner and finally provide time- and space- dependent levels of encoded proteins during all stages of tissue regrowth, offering great versatility in their application and prompting new tissue engineering strategy in periodontal regenerative medicine. However, gene therapy in Periodontology is clearly in its infancy. Significant efforts still need to be made in developing safe and effective delivery platforms and clarifying how gene delivery, in combination with tissue engineering, may mimic the critical aspects of natural biological processes occurring in periodontal development and repair. The aim of this review is to trace an outline of the state-of-the-art in the application of gene delivery and tissue engineering strategies for periodontal healing and regeneration.

  17. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases.

    PubMed

    Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y; Yeger-Lotem, Esti

    2014-06-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases.

  18. Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding

    PubMed Central

    Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.

    2013-01-01

    Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810

  19. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  20. Hormone-dependent control of developmental timing through regulation of chromatin accessibility

    PubMed Central

    Uyehara, Christopher M.; Nystrom, Spencer L.; Niederhuber, Matthew J.; Leatham-Jensen, Mary; Ma, Yiqin; Buttitta, Laura A.

    2017-01-01

    Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility. PMID:28536147

  1. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  2. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs.

    PubMed

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2013-06-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.

  3. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862

  4. Late Multiple Organ Surge in Interferon-Regulated Target Genes Characterizes Staphylococcal Enterotoxin B Lethality

    PubMed Central

    Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.

    2014-01-01

    Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153

  5. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.

    PubMed

    Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees

    2018-06-07

    The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.

  6. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.

    PubMed

    Huang, Ji; Zheng, Juefei; Yuan, Hui; McGinnis, Karen

    2018-06-07

    Transcription factors (TFs) are proteins that can bind to DNA sequences and regulate gene expression. Many TFs are master regulators in cells that contribute to tissue-specific and cell-type-specific gene expression patterns in eukaryotes. Maize has been a model organism for over one hundred years, but little is known about its tissue-specific gene regulation through TFs. In this study, we used a network approach to elucidate gene regulatory networks (GRNs) in four tissues (leaf, root, SAM and seed) in maize. We utilized GENIE3, a machine-learning algorithm combined with large quantity of RNA-Seq expression data to construct four tissue-specific GRNs. Unlike some other techniques, this approach is not limited by high-quality Position Weighed Matrix (PWM), and can therefore predict GRNs for over 2000 TFs in maize. Although many TFs were expressed across multiple tissues, a multi-tiered analysis predicted tissue-specific regulatory functions for many transcription factors. Some well-studied TFs emerged within the four tissue-specific GRNs, and the GRN predictions matched expectations based upon published results for many of these examples. Our GRNs were also validated by ChIP-Seq datasets (KN1, FEA4 and O2). Key TFs were identified for each tissue and matched expectations for key regulators in each tissue, including GO enrichment and identity with known regulatory factors for that tissue. We also found functional modules in each network by clustering analysis with the MCL algorithm. By combining publicly available genome-wide expression data and network analysis, we can uncover GRNs at tissue-level resolution in maize. Since ChIP-Seq and PWMs are still limited in several model organisms, our study provides a uniform platform that can be adapted to any species with genome-wide expression data to construct GRNs. We also present a publicly available database, maize tissue-specific GRN (mGRN, https://www.bio.fsu.edu/mcginnislab/mgrn/ ), for easy querying. All source code and data are available at Github ( https://github.com/timedreamer/maize_tissue-specific_GRN ).

  7. Diversity and Complexity in Chromatin Recognition by TFII-I Transcription Factors in Pluripotent Embryonic Stem Cells and Embryonic Tissues

    PubMed Central

    Makeyev, Aleksandr V.; Enkhmandakh, Badam; Hong, Seung-Hyun; Joshi, Pujan; Shin, Dong-Guk; Bayarsaihan, Dashzeveg

    2012-01-01

    GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a “feed-forward model” of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells. PMID:22970219

  8. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues.

    PubMed

    Makeyev, Aleksandr V; Enkhmandakh, Badam; Hong, Seung-Hyun; Joshi, Pujan; Shin, Dong-Guk; Bayarsaihan, Dashzeveg

    2012-01-01

    GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a "feed-forward model" of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells.

  9. Virulence Factor Genes in Staphylococcus aureus Isolated From Diabetic Foot Soft Tissue and Bone Infections.

    PubMed

    Víquez-Molina, Gerardo; Aragón-Sánchez, Javier; Pérez-Corrales, Cristian; Murillo-Vargas, Christian; López-Valverde, María Eugenia; Lipsky, Benjamin A

    2018-03-01

    The aim of this study is to describe the presence of genes encoding for 4 virulence factors (pvl, eta, etb, and tsst), as well as the mecA gene conferring resistance to beta-lactam antibiotics, in patients with diabetes and a staphylococcal foot infection. We have also analyzed whether isolates of Staphylococcus aureus from bone infections have a different profile for these genes compared with those from exclusively soft tissue infections. In this cross-sectional study of a prospectively recruited series of patients admitted to the Diabetic Foot Unit, San Juan de Dios Hospital, San José, Costa Rica with a moderate or severe diabetic foot infection (DFI), we collected samples from infected soft tissue and from bone during debridement. During the study period (June 1, 2014 to May 31, 2016), we treated 379 patients for a DFI. S aureus was isolated from 101 wound samples, of which 43 were polymicrobial infections; we only included the 58 infections that were monomicrobial S aureus for this study. Infections were exclusively soft tissue in 17 patients (29.3%) while 41 (70.7%) had bone involvement (osteomyelitis). The mecA gene was detected in 35 cases (60.3%), pvl gene in 4 cases (6.9%), and tsst gene in 3 (5.2%). We did not detect etA and etB in any of the cases. There were no differences in the profile of S aureus genes encoding for virulence factors (pvl, etA, etB, and tsst) recovered from DFIs between those with just soft tissue compared to those with osteomyelitis. However, we found a significantly higher prevalence of pvl+ strains of S aureus associated with soft tissue compared with bone infections. Furthermore, we observed a significantly longer time to healing among patients infected with mecA+ (methicillin-resistant) S aureus (MRSA).

  10. Stable Binding of the Conserved Transcription Factor Grainy Head to its Target Genes Throughout Drosophila melanogaster Development

    PubMed Central

    Nevil, Markus; Bondra, Eliana R.; Schulz, Katharine N.; Kaplan, Tommy; Harrison, Melissa M.

    2017-01-01

    It has been suggested that transcription factor binding is temporally dynamic, and that changes in binding determine transcriptional output. Nonetheless, this model is based on relatively few examples in which transcription factor binding has been assayed at multiple developmental stages. The essential transcription factor Grainy head (Grh) is conserved from fungi to humans, and controls epithelial development and barrier formation in numerous tissues. Drosophila melanogaster, which possess a single grainy head (grh) gene, provide an excellent system to study this conserved factor. To determine whether temporally distinct binding events allow Grh to control cell fate specification in different tissue types, we used a combination of ChIP-seq and RNA-seq to elucidate the gene regulatory network controlled by Grh during four stages of embryonic development (spanning stages 5–17) and in larval tissue. Contrary to expectations, we discovered that Grh remains bound to at least 1146 genomic loci over days of development. In contrast to this stable DNA occupancy, the subset of genes whose expression is regulated by Grh varies. Grh transitions from functioning primarily as a transcriptional repressor early in development to functioning predominantly as an activator later. Our data reveal that Grh binds to target genes well before the Grh-dependent transcriptional program commences, suggesting it sets the stage for subsequent recruitment of additional factors that execute stage-specific Grh functions. PMID:28007888

  11. DNA methylation of the Klf14 gene region in whole blood cells provides prediction for the chronic inflammation in the adipose tissue.

    PubMed

    Iwaya, Chihiro; Kitajima, Hidetoshi; Yamamoto, Ken; Maeda, Yasutaka; Sonoda, Noriyuki; Shibata, Hiroki; Inoguchi, Toyoshi

    2018-03-11

    Krüppel-Like Factor 14 (KLF14) gene, which appears to be a master regulator of gene expression in the adipose tissue and have previously been associated with BMI and Type 2 diabetes (T2D) by large genome-wide association studies. In order to find predictive biomarkers for the development of T2D, it is necessary to take epigenomic changes affected by environmental factors into account. This study focuses on ageing and obesity, which are T2D risk factors, and examines epigenetic changes and inflammatory changes. We investigated DNA methylation changes in the Klf14 promoter region in different organs of mice for comparing aging and weight. We found that methylation levels of these sites were increased with aging and weight in the spleen, the adipose tissue, the kidney, the lung, the colon and the whole blood cells. In addition, in the spleen, the adipose tissue and the whole blood, these epigenetic changes were also significantly associated with inflammatory levels. Moreover, not only Klf14, but also expression levels of some downstream genes were decreased with methylation in the spleen, the adipose tissue and the whole blood cells. Taken together, our results suggest that methylation changes of Klf14 in those tissues may be associated with changes in gene expression and inflammation on the adipose tissue of obesity and T2D. In addition, the methylation changes in the whole blood cells may serve as a predictive epigenetic biomarker for the development of T2D. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Evaluation of endogenous control genes for gene expression studies across multiple tissues and in the specific sets of fat- and muscle-type samples of the pig.

    PubMed

    Gu, Y R; Li, M Z; Zhang, K; Chen, L; Jiang, A A; Wang, J Y; Li, X W

    2011-08-01

    To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples. © 2011 Blackwell Verlag GmbH.

  13. Transcriptome-Wide Mega-Analyses Reveal Joint Dysregulation of Immunologic Genes and Transcription Regulators in Brain and Blood in Schizophrenia

    PubMed Central

    Hess, Jonathan L.; Tylee, Daniel S.; Barve, Rahul; de Jong, Simone; Ophoff, Roel A.; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J.; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T.; Glatt, Stephen J.

    2016-01-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n = 315) and from ex-vivo blood tissues (n = 578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. PMID:27450777

  14. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia.

    PubMed

    Hess, Jonathan L; Tylee, Daniel S; Barve, Rahul; de Jong, Simone; Ophoff, Roel A; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T; Glatt, Stephen J

    2016-10-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. Published by Elsevier B.V.

  15. Gene expression profile of the fibrotic response in the peritoneal cavity.

    PubMed

    Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E

    2010-01-01

    The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic responses.

  16. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    PubMed

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  17. AAV vector encoding human VEGF165-transduced pectineus muscular flaps increase the formation of new tissue through induction of angiogenesis in an in vivo chamber for tissue engineering: A technique to enhance tissue and vessels in microsurgically engineered tissue.

    PubMed

    Moimas, Silvia; Manasseri, Benedetto; Cuccia, Giuseppe; Stagno d'Alcontres, Francesco; Geuna, Stefano; Pattarini, Lucia; Zentilin, Lorena; Giacca, Mauro; Colonna, Michele R

    2015-01-01

    In regenerative medicine, new approaches are required for the creation of tissue substitutes, and the interplay between different research areas, such as tissue engineering, microsurgery and gene therapy, is mandatory. In this article, we report a modification of a published model of tissue engineering, based on an arterio-venous loop enveloped in a cross-linked collagen-glycosaminoglycan template, which acts as an isolated chamber for angiogenesis and new tissue formation. In order to foster tissue formation within the chamber, which entails on the development of new vessels, we wondered whether we might combine tissue engineering with a gene therapy approach. Based on the well-described tropism of adeno-associated viral vectors for post-mitotic tissues, a muscular flap was harvested from the pectineus muscle, inserted into the chamber and transduced by either AAV vector encoding human VEGF165 or AAV vector expressing the reporter gene β-galactosidase, as a control. Histological analysis of the specimens showed that muscle transduction by AAV vector encoding human VEGF165 resulted in enhanced tissue formation, with a significant increase in the number of arterioles within the chamber in comparison with the previously published model. Pectineus muscular flap, transduced by adeno-associated viral vectors, acted as a source of the proangiogenic factor vascular endothelial growth factor, thus inducing a consistent enhancement of vessel growth into the newly formed tissue within the chamber. In conclusion, our present findings combine three different research fields such as microsurgery, tissue engineering and gene therapy, suggesting and showing the feasibility of a mixed approach for regenerative medicine.

  18. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    PubMed

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  20. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA

    PubMed Central

    Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.

    2013-01-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928

  1. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Complement factor H is expressed in adipose tissue in association with insulin resistance.

    PubMed

    Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel

    2010-01-01

    Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.

  4. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype

    PubMed Central

    2013-01-01

    Background The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and “stemcellness” has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells. Results Transcriptomics, in silico analysis, real-time polymerase chain reaction (PCR) and western blots were performed on isolated stem cells from subcutaneous abdominal WAT of morbidly obese patients (ASCmo) and of non-obese individuals (ASCn). ASCmo and ASCn gene expression clustered separately from each other. ASCmo showed downregulation of “stemness” genes and upregulation of adipogenic and inflammatory genes with respect to ASCn. Moreover, the application of bioinformatics and Ingenuity Pathway Analysis (IPA) showed that the transcription factor Smad3 was tentatively affected in obese ASCmo. Validation of this target confirmed a significantly reduced Smad3 nuclear translocation in the isolated ASCmo. Conclusions The transcriptomic profile of the stem cells reservoir in obese subcutaneous WAT is highly modified with significant changes in genes regulating stemcellness, lineage commitment and inflammation. In addition to body mass index, cardiovascular risk factor clustering further affect the ASC transcriptomic profile inducing loss of multipotency and, hence, capacity for tissue repair. In summary, the stem cells in the subcutaneous WAT niche of obese patients are already committed to adipocyte differentiation and show an upregulated inflammatory gene expression associated to their loss of stemcellness. PMID:24040759

  5. Msx homeobox gene family and craniofacial development.

    PubMed

    Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping

    2003-12-01

    Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.

  6. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling.

    PubMed

    Basse, Astrid L; Dixen, Karen; Yadav, Rachita; Tygesen, Malin P; Qvortrup, Klaus; Kristiansen, Karsten; Quistorff, Bjørn; Gupta, Ramneek; Wang, Jun; Hansen, Jacob B

    2015-03-19

    Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.

  7. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    PubMed Central

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  8. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    PubMed

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  9. Two-way learning with one-way supervision for gene expression data.

    PubMed

    Wong, Monica H T; Mutch, David M; McNicholas, Paul D

    2017-03-04

    A family of parsimonious Gaussian mixture models for the biclustering of gene expression data is introduced. Biclustering is accommodated by adopting a mixture of factor analyzers model with a binary, row-stochastic factor loadings matrix. This particular form of factor loadings matrix results in a block-diagonal covariance matrix, which is a useful property in gene expression analyses, specifically in biomarker discovery scenarios where blood can potentially act as a surrogate tissue for other less accessible tissues. Prior knowledge of the factor loadings matrix is useful in this application and is reflected in the one-way supervised nature of the algorithm. Additionally, the factor loadings matrix can be assumed to be constant across all components because of the relationship desired between the various types of tissue samples. Parameter estimates are obtained through a variant of the expectation-maximization algorithm and the best-fitting model is selected using the Bayesian information criterion. The family of models is demonstrated using simulated data and two real microarray data sets. The first real data set is from a rat study that investigated the influence of diabetes on gene expression in different tissues. The second real data set is from a human transcriptomics study that focused on blood and immune tissues. The microarray data sets illustrate the biclustering family's performance in biomarker discovery involving peripheral blood as surrogate biopsy material. The simulation studies indicate that the algorithm identifies the correct biclusters, most optimally when the number of observation clusters is known. Moreover, the biclustering algorithm identified biclusters comprised of biologically meaningful data related to insulin resistance and immune function in the rat and human real data sets, respectively. Initial results using real data show that this biclustering technique provides a novel approach for biomarker discovery by enabling blood to be used as a surrogate for hard-to-obtain tissues.

  10. A mixture model-based approach to the clustering of microarray expression data.

    PubMed

    McLachlan, G J; Bean, R W; Peel, D

    2002-03-01

    This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/

  11. Genomewide analysis of TCP transcription factor gene family in Malus domestica.

    PubMed

    Xu, Ruirui; Sun, Peng; Jia, Fengjuan; Lu, Longtao; Li, Yuanyuan; Zhang, Shizhong; Huang, Jinguang

    2014-12-01

    Teosinte branched 1/cycloidea/proliferating cell factor 1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are involved in various biological processes, including development and plant metabolism pathways. In this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and conserved domains of MdTCP proteins. Expression analysis from microarray data showed that the expression levels of 28 and 51 MdTCP genes changed during the ripening and rootstock-scion interaction processes, respectively. The expression patterns of 12 selected MdTCP genes were analysed in different tissues and in response to abiotic stresses. All of the selected genes were detected in at least one of the tissues tested, and most of them were modulated by adverse treatments indicating that the MdTCPs were involved in various developmental and physiological processes. To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family. These results provide valuable information for studies on functions of the TCP transcription factor genes in apple.

  12. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.

    PubMed

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M; Remsberg, Jarrett R; Jager, Jennifer; Soccio, Raymond E; Steger, David J; Lazar, Mitchell A

    2015-06-26

    Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. Copyright © 2015, American Association for the Advancement of Science.

  13. Genetic engineering for skeletal regenerative medicine.

    PubMed

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  14. Quantitative real time RT-PCR study of pathogen-induced gene expression in rock bream (Oplegnathus fasciatus): internal controls for data normalization.

    PubMed

    Zhang, Bao-cun; Sun, Li; Xiao, Zhi-zhong; Hu, Yong-hua

    2014-06-01

    Rock bream Oplegnathus fasciatus is an important economic fish species. In this study, we evaluated the appropriateness of six housekeeping genes as internal controls for quantitative real-time PCR (RT-qPCR) analysis of gene expression in rock bream before and after pathogen infection. The expression of the selected genes in eight tissues infected with Vibrio alginolyticus or megalocytivirus was determined by RT-qPCR, and the PCR data were analyzed with geNorm and NormFinder algorithms. The results showed that before pathogen infection, mediator of RNA polymerase II transcription subunit 8 and β-actin were ranked as the most stable genes across the examined tissues. After bacterial or viral infection, the stabilities of the housekeeping genes varied to significant extents in tissue-dependent manners, and no single pair of genes was identified as suitable references for all tissues for either of the pathogen stimuli. In addition, for the majority of tissues, the most stable genes during bacterial infection differed from those during viral infection. Nevertheless, optimum reference genes were identified for each tissue under different conditions. Taken together, these results indicate that tissue type and the nature of the infectious agent used in the study can all influence the choice of normalization factors, and that the optimum reference genes identified in this study will provide a useful guidance for the selection of internal controls in future RT-PCR study of gene expression in rock bream. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

    PubMed Central

    Slocombe, S P; Piffanelli, P; Fairbairn, D; Bowra, S; Hatzopoulos, P; Tsiantis, M; Murphy, D J

    1994-01-01

    The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo. PMID:8016261

  16. The association between runt-related transcription factor 3 gene promoter methylation and gastric cancer: A meta-analysis.

    PubMed

    Liu, Xu; Wang, Lina; Guo, Yongtie

    2016-10-01

    To systematically evaluate the relationship of the methylation of the human-runt-related transcription factor 3 (RUNX3) promoter region and gastric cancer risk through meta-analysis. The studies published in PubMed, EMBASE, Ovid, and CNKI were retrieved. The association between RUNX3 gene promoter methylation and gastric cancer was analyzed using Stata 11.0 (http://www.stata.com; Stata Corporation, College Station, TX, USA) and Review Man 5.0 software (http://ims.cochrane.org/revman/download). Seventeen studies are included in the analysis. Meta-analysis reveals that the odds ratio of the methylation of the RUNX3 promoter region in gastric was 7.32 (95% confidence interval: 5.12-10.47), which was significant higher than the normal gastric tissues (P < 0.05). The RUNX3 gene promoter methylation rate was much higher in tumor tissue than that in normal gastric tissue in patient with gastric cancer, which indicates a close association between gastric cancer and RUNX3 gene promoter methylation.

  17. Aspirin Enhances Osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and Modulates the Expression Profile of Growth Factor-Associated Genes in PDLSCs.

    PubMed

    Abd Rahman, Fazliny; Mohd Ali, Johari; Abdullah, Mariam; Abu Kasim, Noor Hayaty; Musa, Sabri

    2016-07-01

    This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs). Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay. ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35). ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.

  18. RNA-Seq analysis of Gtf2ird1 knockout epidermal tissue provides potential insights into molecular mechanisms underpinning Williams-Beuren syndrome.

    PubMed

    Corley, Susan M; Canales, Cesar P; Carmona-Mora, Paulina; Mendoza-Reinosa, Veronica; Beverdam, Annemiek; Hardeman, Edna C; Wilkins, Marc R; Palmer, Stephen J

    2016-06-13

    Williams-Beuren Syndrome (WBS) is a genetic disorder associated with multisystemic abnormalities, including craniofacial dysmorphology and cognitive defects. It is caused by a hemizygous microdeletion involving up to 28 genes in chromosome 7q11.23. Genotype/phenotype analysis of atypical microdeletions implicates two evolutionary-related transcription factors, GTF2I and GTF2IRD1, as prime candidates for the cause of the facial dysmorphology. Using a targeted Gtf2ird1 knockout mouse, we employed massively-parallel sequencing of mRNA (RNA-Seq) to understand changes in the transcriptional landscape associated with inactivation of Gtf2ird1 in lip tissue. We found widespread dysregulation of genes including differential expression of 78 transcription factors or coactivators, several involved in organ development including Hey1, Myf6, Myog, Dlx2, Gli1, Gli2, Lhx2, Pou3f3, Sox2, Foxp3. We also found that the absence of GTF2IRD1 is associated with increased expression of genes involved in cellular proliferation, including growth factors consistent with the observed phenotype of extreme thickening of the epidermis. At the same time, there was a decrease in the expression of genes involved in other signalling mechanisms, including the Wnt pathway, indicating dysregulation in the complex networks necessary for epidermal differentiation and facial skin patterning. Several of the differentially expressed genes have known roles in both tissue development and neurological function, such as the transcription factor Lhx2 which regulates several genes involved in both skin and brain development. Gtf2ird1 inactivation results in widespread gene dysregulation, some of which may be due to the secondary consequences of gene regulatory network disruptions involving several transcription factors and signalling molecules. Genes involved in growth factor signalling and cell cycle progression were identified as particularly important for explaining the skin dysmorphology observed in this mouse model. We have noted that a number of the dysregulated genes have known roles in brain development as well as epidermal differentiation and maintenance. Therefore, this study provides clues as to the underlying mechanisms that may be involved in the broader profile of WBS.

  19. Tissue-specific NETs alter genome organization and regulation even in a heterologous system.

    PubMed

    de Las Heras, Jose I; Zuleger, Nikolaj; Batrakou, Dzmitry G; Czapiewski, Rafal; Kerr, Alastair R W; Schirmer, Eric C

    2017-01-02

    Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes.

  20. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    PubMed

    Chan, Pek-Lan; Rose, Ray J; Abdul Murad, Abdul Munir; Zainal, Zamri; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses.

  1. Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance

    PubMed Central

    Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel

    2010-01-01

    OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances. PMID:19833879

  2. The ESR1 and GPX1 gene expression level in human malignant and non-malignant breast tissues.

    PubMed

    Król, Magdalena B; Galicki, Michał; Grešner, Peter; Wieczorek, Edyta; Jabłońska, Ewa; Reszka, Edyta; Morawiec, Zbigniew; Wąsowicz, Wojciech; Gromadzińska, Jolanta

    2018-01-01

    The aim of this study was to establish whether the gene expression of estrogen receptor alpha (encoded by ESR1) correlates with the expression of glutathione peroxidase 1 (encoded by GPX1) in the tumor and adjacent tumor-free breast tissue, and whether this correlation is affected by breast cancer. Such relationships may give further insights into breast cancer pathology with respect to the status of estrogen receptor. We used the quantitative real-time PCR technique to analyze differences in the expression levels of the ESR1 and GPX1 genes in paired malignant and non-malignant tissues from breast cancer patients. ESR1 and GPX1 expression levels were found to be significantly down-regulated by 14.7% and 7.4% (respectively) in the tumorous breast tissue when compared to the non-malignant one. Down-regulation of these genes was independent of the tumor histopathology classification and clinicopathological factors, while the ESR1 mRNA level was reduced with increasing tumor grade (G1: 103% vs. G2: 85.8% vs. G3: 84.5%; p<0.05). In the non-malignant and malignant breast tissues, the expression levels of ESR1 and GPX1 were significantly correlated with each other (Rs=0.450 and Rs=0.360; respectively). Our data suggest that down-regulation of ESR1 and GPX1 was independent of clinicopathological factors. Down-regulation of ESR1 gene expression was enhanced by the development of the disease. Moreover, GPX1 and ESR1 gene expression was interdependent in the malignant breast tissue and further work is needed to determine the mechanism underlying this relationship.

  3. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    PubMed

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  4. Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators

    NASA Technical Reports Server (NTRS)

    Belaguli, N. S.; Sepulveda, J. L.; Nigam, V.; Charron, F.; Nemer, M.; Schwartz, R. J.

    2000-01-01

    Combinatorial interaction among cardiac tissue-restricted enriched transcription factors may facilitate the expression of cardiac tissue-restricted genes. Here we show that the MADS box factor serum response factor (SRF) cooperates with the zinc finger protein GATA-4 to synergistically activate numerous myogenic and nonmyogenic serum response element (SRE)-dependent promoters in CV1 fibroblasts. In the absence of GATA binding sites, synergistic activation depends on binding of SRF to the proximal CArG box sequence in the cardiac and skeletal alpha-actin promoter. GATA-4's C-terminal activation domain is obligatory for synergistic coactivation with SRF, and its N-terminal domain and first zinc finger are inhibitory. SRF and GATA-4 physically associate both in vivo and in vitro through their MADS box and the second zinc finger domains as determined by protein A pullout assays and by in vivo one-hybrid transfection assays using Gal4 fusion proteins. Other cardiovascular tissue-restricted GATA factors, such as GATA-5 and GATA-6, were equivalent to GATA-4 in coactivating SRE-dependent targets. Thus, interaction between the MADS box and C4 zinc finger proteins, a novel regulatory paradigm, mediates activation of SRF-dependent gene expression.

  5. Expression of Selenoprotein Genes Is Affected by Obesity of Pigs Fed a High-Fat Diet123

    PubMed Central

    Zhao, Hua; Li, Ke; Tang, Jia-Yong; Zhou, Ji-Chang; Wang, Kang-Ning; Xia, Xin-Jie; Lei, Xin Gen

    2015-01-01

    Background: Relations of the 25 mammalian selenoprotein genes with obesity and the associated inflammation remain unclear. Objective: This study explored impacts of high-fat diet-induced obesity on inflammation and expressions of selenoprotein and obesity-related genes in 10 tissues of pigs. Methods: Plasma and 10 tissues were collected from pigs (n = 10) fed a corn-soy–based control diet or that diet containing 3–7% lard from weanling to finishing (180 d). Plasma concentrations (n = 8) of cytokines and thyroid hormones and tissue mRNA abundance (n = 4) of 25 selenoprotein genes and 16 obesity-related genes were compared between the pigs fed the control and high-fat diets. Stepwise regression was applied to analyze correlations among all these measures, including the previously reported body physical and plasma biochemical variables. Results: The high-fat diet elevated (P < 0.05) plasma concentrations of tumor necrosis factor α, interleukin-6, leptin, and leptin receptor by 29–42% and affected (P < 0.05–0.1) tissue mRNA levels of the selenoprotein and obesity-related genes in 3 patterns. Specifically, the high-fat diet up-regulated 12 selenoprotein genes in 6 tissues, down-regulated 13 selenoprotein genes in 7 tissues, and exerted no effect on 5 genes in any tissue. Body weights and plasma triglyceride concentrations of pigs showed the strongest regressions to tissue mRNA abundances of selenoprotein and obesity-related genes. Among the selenoprotein genes, selenoprotein V and I were ranked as the strongest independent variables for the regression of phenotypic and plasma measures. Meanwhile, agouti signaling protein, adiponectin, and resistin genes represented the strongest independent variables of the obesity-related genes for the regression of tissue selenoprotein mRNA. Conclusions: The high-fat diet induced inflammation in pigs and affected their gene expression of selenoproteins associated with thioredoxin and oxidoreductase systems, local tissue thyroid hormone activity, endoplasmic reticulum protein degradation, and phosphorylation of lipids. This porcine model may be used to study interactive mechanisms between excess fat intake and selenoprotein function. PMID:25972525

  6. Expression of Selenoprotein Genes Is Affected by Obesity of Pigs Fed a High-Fat Diet.

    PubMed

    Zhao, Hua; Li, Ke; Tang, Jia-Yong; Zhou, Ji-Chang; Wang, Kang-Ning; Xia, Xin-Jie; Lei, Xin Gen

    2015-07-01

    Relations of the 25 mammalian selenoprotein genes with obesity and the associated inflammation remain unclear. This study explored impacts of high-fat diet-induced obesity on inflammation and expressions of selenoprotein and obesity-related genes in 10 tissues of pigs. Plasma and 10 tissues were collected from pigs (n = 10) fed a corn-soy-based control diet or that diet containing 3-7% lard from weanling to finishing (180 d). Plasma concentrations (n = 8) of cytokines and thyroid hormones and tissue mRNA abundance (n = 4) of 25 selenoprotein genes and 16 obesity-related genes were compared between the pigs fed the control and high-fat diets. Stepwise regression was applied to analyze correlations among all these measures, including the previously reported body physical and plasma biochemical variables. The high-fat diet elevated (P < 0.05) plasma concentrations of tumor necrosis factor α, interleukin-6, leptin, and leptin receptor by 29-42% and affected (P < 0.05-0.1) tissue mRNA levels of the selenoprotein and obesity-related genes in 3 patterns. Specifically, the high-fat diet up-regulated 12 selenoprotein genes in 6 tissues, down-regulated 13 selenoprotein genes in 7 tissues, and exerted no effect on 5 genes in any tissue. Body weights and plasma triglyceride concentrations of pigs showed the strongest regressions to tissue mRNA abundances of selenoprotein and obesity-related genes. Among the selenoprotein genes, selenoprotein V and I were ranked as the strongest independent variables for the regression of phenotypic and plasma measures. Meanwhile, agouti signaling protein, adiponectin, and resistin genes represented the strongest independent variables of the obesity-related genes for the regression of tissue selenoprotein mRNA. The high-fat diet induced inflammation in pigs and affected their gene expression of selenoproteins associated with thioredoxin and oxidoreductase systems, local tissue thyroid hormone activity, endoplasmic reticulum protein degradation, and phosphorylation of lipids. This porcine model may be used to study interactive mechanisms between excess fat intake and selenoprotein function. © 2015 American Society for Nutrition.

  7. Roles of lignin biosynthesis and regulatory genes in plant development

    PubMed Central

    Yoon, Jinmi; Choi, Heebak

    2015-01-01

    Abstract Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non‐lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism. PMID:26297385

  8. Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors.

    PubMed

    Schiessl, Katharina; Muiño, Jose M; Sablowski, Robert

    2014-02-18

    Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.

  9. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  10. Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids

    PubMed Central

    2013-01-01

    Background Ginger (Zingiber officinale) and turmeric (Curcuma longa) accumulate important pharmacologically active metabolites at high levels in their rhizomes. Despite their importance, relatively little is known regarding gene expression in the rhizomes of ginger and turmeric. Results In order to identify rhizome-enriched genes and genes encoding specialized metabolism enzymes and pathway regulators, we evaluated an assembled collection of expressed sequence tags (ESTs) from eight different ginger and turmeric tissues. Comparisons to publicly available sorghum rhizome ESTs revealed a total of 777 gene transcripts expressed in ginger/turmeric and sorghum rhizomes but apparently absent from other tissues. The list of rhizome-specific transcripts was enriched for genes associated with regulation of tissue growth, development, and transcription. In particular, transcripts for ethylene response factors and AUX/IAA proteins appeared to accumulate in patterns mirroring results from previous studies regarding rhizome growth responses to exogenous applications of auxin and ethylene. Thus, these genes may play important roles in defining rhizome growth and development. Additional associations were made for ginger and turmeric rhizome-enriched MADS box transcription factors, their putative rhizome-enriched homologs in sorghum, and rhizomatous QTLs in rice. Additionally, analysis of both primary and specialized metabolism genes indicates that ginger and turmeric rhizomes are primarily devoted to the utilization of leaf supplied sucrose for the production and/or storage of specialized metabolites associated with the phenylpropanoid pathway and putative type III polyketide synthase gene products. This finding reinforces earlier hypotheses predicting roles of this enzyme class in the production of curcuminoids and gingerols. Conclusion A significant set of genes were found to be exclusively or preferentially expressed in the rhizome of ginger and turmeric. Specific transcription factors and other regulatory genes were found that were common to the two species and that are excellent candidates for involvement in rhizome growth, differentiation and development. Large classes of enzymes involved in specialized metabolism were also found to have apparent tissue-specific expression, suggesting that gene expression itself may play an important role in regulating metabolite production in these plants. PMID:23410187

  11. Expression of transcription factor Pokemon in non-small cell lung cancer and its clinical significance.

    PubMed

    Zhao, Zhi-hong; Wang, Sheng-fa; Yu, Liang; Wang, Ju; Chang, Hao; Yan, Wei-li; Fu, Kai; Zhang, Jian

    2008-03-05

    Transcription factor Pokemon, a central regulation gene of the important tumor suppressor ARF gene, exerted its activity by acting upstream of many tumor-suppressing genes and proto-oncogenes. Its expression in non-small cell lung cancer (NSCLC) and its clinical significance remains unclear. The aim of this study was to investigate the expression of Pokemon in NSCLC and to explore its correlation with the clinical pathological characteristics and its influence on patients' prognosis. Fifty-five cases of NSCLC were involved in this study. The expression of Pokemon in the tumor tissue, the corresponding tumor adjacent tissue and the surrounding tissue was detected via reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, with the aim of investigating the correlation between the expression of Pokemon in tumor tissue of NSCLC and its clinical pathological characteristics. Moreover, a prognostic analysis was carried out based upon the immunohistochemical (IHC) detection of the expression of Pokemon gene in archival tumor specimens (5 years ago) of 62 cases of NSCLC. Statistical significance of the expression of Pokemon mRNA and protein was determined in the tumor tissue, the tumor adjacent tissue and the surrounding tissue (P<0.05). The expression of Pokemon was determined not to be associated with the patients' sex, age, smoking condition, tumor differentiation degree, histology and lymph node metastasis condition. However, its relationship with TNM staging was established (P<0.05). Furthermore, it was shown that the survival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression (P=0.004), therefore, the expression of Pokemon is believed to be an independent factor affecting prognosis (P=0.034). Pokemon was over-expressed in NSCLC tissue and the expression of Pokemon might be of clinical significance in non-small cell lung cancer prognostic evaluation.

  12. Serum response factor: positive and negative regulation of an epithelial gene expression network in the destrin mutant cornea

    PubMed Central

    Kawakami-Schulz, Sharolyn V.; Verdoni, Angela M.; Sattler, Shannon G.; Jessen, Erik; Kao, Winston W.-Y.; Ikeda, Akihiro

    2014-01-01

    Increased angiogenesis, inflammation, and proliferation are hallmarks of diseased tissues, and in vivo models of these disease phenotypes can provide insight into disease pathology. Dstncorn1 mice, deficient for the actin depolymerizing factor destrin (DSTN), display an increase of serum response factor (SRF) that results in epithelial hyperproliferation, inflammation, and neovascularization in the cornea. Previous work demonstrated that conditional ablation of Srf from the corneal epithelium of Dstncorn1 mice returns the cornea to a wild-type (WT) like state. This result implicated SRF as a major regulator of genes that contributes to abnormal phenotypes in Dstncorn1 cornea. The purpose of this study is to identify gene networks that are affected by increased expression of Srf in the Dstncorn1 cornea. Microarray analysis led to characterization of gene expression changes that occur when conditional knockout of Srf rescues mutant phenotypes in the cornea of Dstncorn1 mice. Comparison of gene expression values from WT, Dstncorn1 mutant, and Dstncorn1 rescued cornea identified >400 differentially expressed genes that are downstream from SRF. Srf ablation had a significant effect on genes associated with epithelial cell-cell junctions and regulation of actin dynamics. The majority of genes affected by SRF are downregulated in the Dstncorn1 mutant cornea, suggesting that increased SRF negatively affects transcription of SRF gene targets. ChIP-seq analysis on Dstncorn1 mutant and WT tissue revealed that, despite being present in higher abundance, SRF binding is significantly decreased in the Dstncorn1 mutant cornea. This study uses a unique model combining genetic and genomic approaches to identify genes that are regulated by SRF. These findings expand current understanding of the role of SRF in both normal and abnormal tissue homeostasis. PMID:24550211

  13. Coagulation factor VII is regulated by androgen receptor in breast cancer.

    PubMed

    Naderi, Ali

    2015-02-01

    Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach.

    PubMed

    Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M; Jiang, Tao; Wirtel, Anthony J; Deng, Meng; Lv, Qing; Nair, Lakshmi S; Doty, Steven B; Laurencin, Cato T

    2008-08-12

    One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials.

  15. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach

    PubMed Central

    Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M.; Jiang, Tao; Wirtel, Anthony J.; Deng, Meng; Lv, Qing; Nair, Lakshmi S.; Doty, Steven B.; Laurencin, Cato T.

    2008-01-01

    One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials. PMID:18678895

  16. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction.

    PubMed

    Sánchez, J; Palou, A; Picó, C

    2009-12-01

    This study aimed to assess the effects of carbohydrate (CHO) and fat intake on the expression of key genes related with nutrient partitioning and metabolism in main tissues involved in energy metabolism (white adipose tissue, liver, and skeletal muscle). Rats were studied under different conditions: feeding state, 24 h fasting, and 12 h refeeding after 24 h fasting with isocaloric amounts of CHO or fat. Fat, but not CHO, refeeding was associated with an increase in serum and liver triglyceride content. Main changes in gene expression elicited by CHO compared with fat refeeding were: 1) higher expression levels of genes related with lipogenesis (PPARgamma2, ChREBP, FAS), glucose uptake and metabolism (GLUT4, HKII), fatty acid uptake (LPL, CD36), and lipolysis (ATGL, HSL) in white adipose tissue; 2) higher expression levels of genes related with lipogenesis (FAS, SCD1) but lower ones related with fatty acid uptake (CD36) and oxidation (PPARalpha, CPT1, PDK4) in liver; and 3) higher expression levels of GLUT4 but lower ones related with fatty acid oxidation (PDK4 and UCP3) in muscle. It is worth mentioning that both CHO and fat refeeding resulted in a robust increase in both hepatic mRNA and circulating levels of fibroblast growth factor-21, compared with fasted levels. In summary, these results, showing marked differences in gene expression after CHO and fat refeeding, can explain diet-associated differences in fuel handling and partitioning between tissues; in addition, a role of fibroblast growth factor-21 in metabolic adaptations, not only in the ketotic state but also to face an unbalanced nutritional situation, is suggested.

  17. A pilot systematic genomic comparison of recurrence risks of hepatitis B virus-associated hepatocellular carcinoma with low- and high-degree liver fibrosis.

    PubMed

    Yoo, Seungyeul; Wang, Wenhui; Wang, Qin; Fiel, M Isabel; Lee, Eunjee; Hiotis, Spiros P; Zhu, Jun

    2017-12-07

    Chronic hepatitis B virus (HBV) infection leads to liver fibrosis, which is a major risk factor in hepatocellular carcinoma (HCC) and an independent risk factor of recurrence after HCC tumor resection. The HBV genome can be inserted into the human genome, and chronic inflammation may trigger somatic mutations. However, how HBV integration and other genomic changes contribute to the risk of tumor recurrence with regards to the different degree of liver fibrosis is not clearly understood. We sequenced mRNAs of 21 pairs of tumor and distant non-neoplastic liver tissues of HBV-HCC patients and performed comprehensive genomic analyses of our RNAseq data and public available HBV-HCC sequencing data. We developed a robust pipeline for sensitively identifying HBV integration sites based on sequencing data. Simulations showed that our method outperformed existing methods. Applying it to our data, 374 and 106 HBV host genes were identified in non-neoplastic liver and tumor tissues, respectively. When applying it to other RNA sequencing datasets, consistently more HBV integrations were identified in non-neoplastic liver than in tumor tissues. HBV host genes identified in non-neoplastic liver samples significantly overlapped with known tumor suppressor genes. More significant enrichment of tumor suppressor genes was observed among HBV host genes identified from patients with tumor recurrence, indicating the potential risk of tumor recurrence driven by HBV integration in non-neoplastic liver tissues. We also compared SNPs of each sample with SNPs in a cancer census database and inferred samples' pathogenic SNP loads. Pathogenic SNP loads in non-neoplastic liver tissues were consistently higher than those in normal liver tissues. Additionally, HBV host genes identified in non-neoplastic liver tissues significantly overlapped with pathogenic somatic mutations, suggesting that HBV integration and somatic mutations targeting the same set of genes are important to tumorigenesis. HBV integrations and pathogenic mutations showed distinct patterns between low and high liver fibrosis patients with regards to tumor recurrence. The results suggest that HBV integrations and pathogenic SNPs in non-neoplastic tissues are important for tumorigenesis and different recurrence risk models are needed for patients with low and high degrees of liver fibrosis.

  18. Association between infection of virulence cagA gene Helicobacter pylori and laryngeal squamous cell carcinoma

    PubMed Central

    Burduk, Paweł Krzysztof

    2013-01-01

    Background The aim of the study was to evaluate the presence of cagA gene Helicobacter pylori in etiopathogenesis of initiation and development of larynx squamous cell carcinoma (LSCC) and its predictable role as a prognostic factor. Material/Methods The prospective, controlled study involved a series of 75 patients (65 male, 10 female, mean age 59.1 years, range 43 to 79 years) with larynx cancer. Samples of larynx cancerous tissue, each of 10–15 mg, were obtained from fresh tissues and were used for nucleic acid purification. DNA was extracted from 225 samples (larynx tumor – I (75), margin of tumor and normal tissue – II (75) and normal larynx tissue from opposite side to the tumor – III). All samples were subjected to H. pylori ureA detection by the PCR H. pylori diagnostic test. Samples that were positive for ureA H. pylori gene were evaluated for cagA H. pylori gene. Results Presence of H. pylori cagA gene was identified in 46,7% to 49,3% of 75 H. pylori ureA gene-positive larynx cancer depending of tissue location. There was a correlation of high incidence of positive cagA gene in larynx cancer tissue in supraglottic versus subglottic and glottic location. We observed a predominance of cagA gene in LSCC in patients with positive cervical lymph nodes and clinical stage T3 and T4. Conclusions H. pylori is present in larynx tissue and may be a possible carcinogen or co-carcinogen in LSCC development, but that must be addressed by future investigations. The presence of cagA gene in larynx cancer tissues significantly decreases survival rate and increases the disease recurrence possibilities. PMID:23860397

  19. Association between infection of virulence cagA gene Helicobacter pylori and laryngeal squamous cell carcinoma.

    PubMed

    Burduk, Paweł Krzysztof

    2013-07-17

    The aim of the study was to evaluate the presence of cagA gene Helicobacter pylori in etiopathogenesis of initiation and development of larynx squamous cell carcinoma (LSCC) and its predictable role as a prognostic factor. The prospective, controlled study involved a series of 75 patients (65 male, 10 female, mean age 59.1 years, range 43 to 79 years) with larynx cancer. Samples of larynx cancerous tissue, each of 10-15 mg, were obtained from fresh tissues and were used for nucleic acid purification. DNA was extracted from 225 samples (larynx tumor - I (75), margin of tumor and normal tissue - II (75) and normal larynx tissue from opposite side to the tumor - III). All samples were subjected to H. pylori ureA detection by the PCR H. pylori diagnostic test. Samples that were positive for ureA H. pylori gene were evaluated for cagA H. pylori gene. Presence of H. pylori cagA gene was identified in 46,7% to 49,3% of 75 H. pylori ureA gene-positive larynx cancer depending of tissue location. There was a correlation of high incidence of positive cagA gene in larynx cancer tissue in supraglottic versus subglottic and glottic location. We observed a predominance of cagA gene in LSCC in patients with positive cervical lymph nodes and clinical stage T3 and T4. H. pylori is present in larynx tissue and may be a possible carcinogen or co-carcinogen in LSCC development, but that must be addressed by future investigations. The presence of cagA gene in larynx cancer tissues significantly decreases survival rate and increases the disease recurrence possibilities.

  20. Venom-Related Transcripts from Bothrops jararaca Tissues Provide Novel Molecular Insights into the Production and Evolution of Snake Venom

    PubMed Central

    Junqueira-de-Azevedo, Inácio L.M.; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R.

    2015-01-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. PMID:25502939

  1. Altered Molecular Expression of the TLR4/NF-κB Signaling Pathway in Mammary Tissue of Chinese Holstein Cattle with Mastitis

    PubMed Central

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis. PMID:25706977

  2. Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis.

    PubMed

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.

  3. Brain angiogenic gene-expression in congenital heart disease.

    PubMed

    Sánchez, Olga; Ruiz-Romero, Aina; Domínguez, Carmen; Ferrer, Queralt; Ribera, Irene; Rodríguez-Sureda, Víctor; Alijotas, Jaume; Arévalo, Sílvia; Carreras, Elena; Cabero, Lluís; Llurba, Elisa

    2017-12-05

    To analyze potential differences in the expression of antiangiogenic and angiogenic factors and of genes associated with chronic hypoxia in cerebral tissue from euploid fetuses with congenital heart disease (CHD) and control fetuses. Cerebral tissue was obtained from 15 fetuses with CHD and 12 control fetuses undergoing termination of pregnancy. Expression profiles of the antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1), the angiogenic vascular endothelial growth factor-A (VEGF-A) and placental growth factor (PlGF), and genes associated with chronic hypoxia were determined by real-time PCR in tissue from the frontal cortex and from basal ganglia-hypothalamus. sFlt-1 expression was 48% higher in the frontal cortex (p=0.0431) and 72% higher in the basal ganglia-hypothalamus (p=0.0369) of CHD fetuses than controls. VEGF-A expression was 60% higher in the basal ganglia-hypothalamus (p=0.0432) of CHD fetuses. The expression of hypoxia-inducible factor-2α (HIF-2α) in the basal ganglia-hypothalamus was 98% higher in CHD fetuses (p=0.0456). An overall dysregulation of angiogenesis with a net balance towards an antiangiogenic environment was observed in the cerebral tissue from fetuses with CHD, suggesting that these fetuses may have an intrinsic angiogenic impairment that could contribute to impaired brain perfusion and abnormal neurological development later in life. This article is protected by copyright. All rights reserved.

  4. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    PubMed Central

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  5. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    PubMed Central

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  6. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    PubMed

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  7. Tissue Elasticity Regulated Tumor Gene Expression: Implication for Diagnostic Biomarkers of Primitive Neuroectodermal Tumor

    PubMed Central

    Vu, Long T.; Keschrumrus, Vic; Zhang, Xi; Zhong, Jiang F.; Su, Qingning; Kabeer, Mustafa H.; Loudon, William G.; Li, Shengwen Calvin

    2015-01-01

    Background The tumor microenvironment consists of both physical and chemical factors. Tissue elasticity is one physical factor contributing to the microenvironment of tumor cells. To test the importance of tissue elasticity in cell culture, primitive neuroectodermal tumor (PNET) stem cells were cultured on soft polyacrylamide (PAA) hydrogel plates that mimics the elasticity of brain tissue compared with PNET on standard polystyrene (PS) plates. We report the molecular profiles of PNET grown on either PAA or PS. Methodology/Principal Findings A whole-genome microarray profile of transcriptional expression between the two culture conditions was performed as a way to probe effects of substrate on cell behavior in culture. The results showed more genes downregulated on PAA compared to PS. This led us to propose microRNA (miRNA) silencing as a potential mechanism for downregulation. Bioinformatic analysis predicted a greater number of miRNA binding sites from the 3' UTR of downregulated genes and identified as specific miRNA binding sites that were enriched when cells were grown on PAA—this supports the hypothesis that tissue elasticity plays a role in influencing miRNA expression. Thus, Dicer was examined to determine if miRNA processing was affected by tissue elasticity. Dicer genes were downregulated on PAA and had multiple predicted miRNA binding sites in its 3' UTR that matched the miRNA binding sites found enriched on PAA. Many differentially regulated genes were found to be present on PS but downregulated on PAA were mapped onto intron sequences. This suggests expression of alternative polyadenylation sites within intron regions that provide alternative 3' UTRs and alternative miRNA binding sites. This results in tissue specific transcriptional downregulation of mRNA in humans by miRNA. We propose a mechanism, driven by the physical characteristics of the microenvironment by which downregulation of genes occur. We found that tissue elasticity-mediated cytokines (TGFβ2 and TNFα) signaling affect expression of ECM proteins. Conclusions Our results suggest that tissue elasticity plays important roles in miRNA expression, which, in turn, regulate tumor growth or tumorigenicity. PMID:25774514

  8. Characterization of Transcriptional Complexity during Adipose Tissue Development in Bovines of Different Ages and Sexes

    PubMed Central

    Zhou, Yang; Sun, Jiajie; Li, Congjun; Wang, Yanhong; Li, Lan; Cai, Hanfang; Lan, Xianyong; Lei, Chuzhao; Zhao, Xin; Chen, Hong

    2014-01-01

    Background Adipose tissue has long been recognized to play an extremely important role in development. In bovines, it not only serves a fundamental function but also plays a key role in the quality of beef and, consequently, has drawn much public attention. Age and sex are two key factors that affect the development of adipose tissue, and there has not yet been a global study detailing the effects of these two factors on expressional differences of adipose tissues. Results In this study, total RNA from the back fat of fetal bovines, adult bulls, adult heifers and adult steers were used to construct libraries for Illumina next-generation sequencing. We detected the expression levels of 12,233 genes, with over 3,000 differently expressed genes when comparing fetal and adult patterns and an average of 1000 differently expressed genes when comparing adult patterns. Multiple Gene Ontology terms and pathways were found to be significantly enriched for these differentially expressed genes. Of the 12,233 detected genes, a total of 4,753 genes (38.85%) underwent alternative splicing events, and over 50% were specifically expressed in each library. Over 4,000 novel transcript units were discovered for one library, whereas only approximately 30% were considered to have coding ability, which supplied a large amount of information for the lncRNA study. Additionally, we detected 56,564 (fetal bovine), 65,154 (adult bull), 78,061 (adult heifer) and 86,965 (adult steer) putative single nucleotide polymorphisms located in coding regions of the four pooled libraries. Conclusion Here, we present, for the first time, a complete dataset involving the spatial and temporal transcriptome of bovine adipose tissue using RNA-seq. These data will facilitate the understanding of the effects of age and sex on the development of adipose tissue and supply essential information towards further studies on the genomes of beef cattle and other related mammals. PMID:24983926

  9. Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.

    PubMed

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan

    2015-02-01

    Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (P<0.05), as well as GSN, KIT, KLK5, SERPINB5 and STC2 genes (P<0.01). Insignificant differences (P<0.07) were observed for CCNA1, CLU, DLC1, GABRP and IL6 genes. The ontological gene analyses revealed that the majority of the deregulated genes in the HNEpi samples were part of the functional gene group directly associated with BC origin and prognosis. Functional analysis showed that the most frequent gene deregulations occurred in genes associated with apoptosis and cell cycle regulation in BCTis samples, and with angiogenesis, regulation of the cell cycle and transcriptional activity in HNEpi samples. The molecular profiling of HNEpi breast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.

  10. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  11. Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2012-01-01

    Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970

  12. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

    PubMed

    Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew

    2011-03-01

    The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.

  13. Expression of chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) in bladder transitional cell carcinoma.

    PubMed

    Ham, Won Sik; Lee, Joo Hyoung; Yu, Ho Song; Choi, Young Deuk

    2008-10-01

    An analysis of differentially expressed genes (DEGs) between bladder transitional cell carcinoma (TCC) and the surrounding urothelium to help identify what lies behind the mechanism of multifocal tumor development has not yet been performed. We sought to find a new DEG related to the development of bladder TCC. Thirty-nine bladder TCC tissues paired with normal-appearing urothelium tissues obtained from the same patient were used as subjects. Initially, we compared the messenger RNA (mRNA) profiles between normal-appearing urothelium and TCC tissue of 1 patient by using annealing control primer (ACP)-based GeneFishing polymerase chain reaction (PCR) and selective amplification of family members (SAFM) PCR to identify potential DEGs. To validate the results of the ACP data, reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on those of all 39 patients. Among the several DEGs discovered in the ACP data, 1 DEG was chosen as the candidate for the RT-PCR, that is present or markedly upregulated in normal-appearing urothelial tissue compared with TCC tissue. Gene sequence searching revealed that this DEG is chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Downregulation of COUP-TFI mRNA expression in TCC tissue compared to normal-appearing urothelium tissue of the same patient, irrespective of tumor stage and grade, was confirmed by RT-PCR in 39 patients. Our results suggest that the loss of COUP-TFI may play a role in the transition from normal epithelium to TCC. Further characterization of the COUP-TFI gene is expected to give us informations about bladder TCC tumorigenesis.

  14. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer.

    PubMed

    Buchlis, George; Podsakoff, Gregory M; Radu, Antonetta; Hawk, Sarah M; Flake, Alan W; Mingozzi, Federico; High, Katherine A

    2012-03-29

    In previous work we transferred a human factor IX-encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer.

  15. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer

    PubMed Central

    Buchlis, George; Podsakoff, Gregory M.; Radu, Antonetta; Hawk, Sarah M.; Flake, Alan W.; Mingozzi, Federico

    2012-01-01

    In previous work we transferred a human factor IX–encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer. PMID:22271447

  16. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition.

    PubMed

    Li, Baojun; Qiao, Liying; An, Lixia; Wang, Weiwei; Liu, Jianhua; Ren, Youshe; Pan, Yangyang; Jing, Jiongjie; Liu, Wenzhong

    2018-05-08

    The level of fat deposition in carcass is a crucial factor influencing meat quality. Guangling Large-Tailed (GLT) and Small-Tailed Han (STH) sheep are important local Chinese fat-tailed breeds that show distinct patterns of fat depots. To gain a better understanding of fat deposition, transcriptome profiles were determined by RNA-sequencing of perirenal, subcutaneous, and tail fat tissues from both the sheep breeds. The common highly expressed genes (co-genes) in all the six tissues, and the genes that were differentially expressed (DE genes) between these two breeds in the corresponding tissues were analyzed. Approximately 47 million clean reads were obtained for each sample, and a total of 17,267 genes were annotated. Of the 47 highly expressed co-genes, FABP4, ADIPOQ, FABP5, and CD36 were the four most highly transcribed genes among all the known genes related to adipose deposition. FHC, FHC-pseudogene, and ZC3H10 were also highly expressed genes and could, thus, have roles in fat deposition. A total of 2091, 4233, and 4131 DE genes were identified in the perirenal, subcutaneous, and tail fat tissues between the GLT and STH breeds, respectively. Gene Ontology (GO) analysis showed that some DE genes were associated with adipose metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that PPAR signaling pathway and ECM-receptor interaction were specifically enriched. Four genes, namely LOC101102230, PLTP, C1QTNF7, and OLR1 were up-regulated and two genes, SCD and UCP-1, were down-regulated in all the tested tissues of STH. Among the genes involved in ECM-receptor interaction, the genes encoding collagens, laminins, and integrins were quite different depending on the depots or the breeds. In STH, genes such as LAMB3, RELN, TNXB, and ITGA8, were identified to be up regulated and LAMB4 was observed to be down regulated. This study unravels the complex transcriptome profiles in sheep fat tissues, highlighting the candidate genes involved in fat deposition. Further studies are needed to investigate the roles of the candidate genes in fat deposition and in determining the meat quality of sheep.

  17. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone.

    PubMed

    Xu, Menglin; Wang, Xiangdong

    2017-08-01

    Lung cancer is the leading cause of death from cancer. Mucins are glycoproteins with high molecular weight, responsible for cell growth, differentiation, and signaling, and were proposed to be correlated with gene heterogeneity of lung cancer. Here, we report aberrant expression of mucin genes and tumor necrosis factor receptors in lung adenocarcinoma tissues compared with normal tissues in GEO datasets. Mucin-1 (MUC1) gene was selected and considered as the target gene; furthermore, the expression pattern of adenocarcinomic cells (A549, H1650, or H1299 cells) was validated under the stimulation with tumor necrosis factor-alpha (TNFα) or dexamethasone (DEX), separately. MUC1 gene interference was done to A549 cells to show its role in sensitivity of lung cancer cells to TNFα and DEX. Results of our experiments indicate that MUC1 may regulate the influence of inflammatory mediators in effects of glucocorticoids (GCs), as a regulatory target to improve therapeutics. It shows the potential effect of MUC1 and GCs in lung adenocarcinoma (LADC), which may help in LADC treatment in the future.

  18. Oligonucleotide microarray analysis reveals dysregulation of energy-related metabolism in insulin-sensitive tissues of type 2 diabetes patients.

    PubMed

    Wang, M; Wang, X C; Zhao, L; Zhang, Y; Yao, L L; Lin, Y; Peng, Y D; Hu, R M

    2014-06-17

    Impaired insulin action within skeletal muscle, adipose tissue, and the liver is an important characteristic of type 2 diabetes (T2D). In order to identify common underlying defects in insulin-sensitive tissues that may be involved in the pathogenesis of T2D, the gene expression profiles of skeletal muscle, visceral adipose tissue, and liver from autopsy donors with or without T2D were examined using oligonucleotide microarrays and quantitative reverse transcriptase-PCR. Compared with controls, 691 genes were commonly dysregulated in these three insulin-sensitive tissues of humans with T2D. These co-expressed genes were enriched within the mitochondrion, with suggested involvement in energy metabolic processes such as glycolysis and gluconeogenesis, fatty acid beta oxidative, tricarboxylic acid cycle, and electron transport. Genes related to energy metabolism were mostly downregulated in diabetic skeletal muscle and visceral adipose tissue, while they were upregulated in the diabetic liver. This observed dysregulation in energy-related metabolism may be the underlying factor leading to the molecular mechanisms responsible for the insulin resistance of patients with T2D.

  19. A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    PubMed Central

    Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.

    2011-01-01

    Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity. PMID:21915269

  20. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    PubMed

    Morton, Nicholas M; Nelson, Yvonne B; Michailidou, Zoi; Di Rollo, Emma M; Ramage, Lynne; Hadoke, Patrick W F; Seckl, Jonathan R; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J; Dunbar, Donald R

    2011-01-01

    Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  1. Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray.

    PubMed

    Boswell, Mikki G; Wells, Melissa C; Kirk, Lyndsey M; Ju, Zhenlin; Zhang, Ziping; Booth, Rachell E; Walter, Ronald B

    2009-03-01

    Gene expression profiling using DNA microarray technology is a useful tool for assessing gene transcript level responses after an organism is exposed to environmental stress. Herein, we detail results from studies using an 8 k medaka (Oryzias latipes) microarray to assess modulated gene expression patterns upon hypoxia exposure of the live-bearing aquaria fish, Xiphophorus maculatus. To assess the reproducibility and reliability of using the medaka array in cross-genus hybridization, a two-factor ANOVA analysis of gene expression was employed. The data show the tissue source of the RNA used for array hybridization contributed more to the observed response of modulated gene targets than did the species source of the RNA. In addition, hierarchical clustering via heat map analyses of groupings of tissues and species (Xiphophorus and medaka) suggests that hypoxia induced similar responses in the same tissues from these two diverse aquatic model organisms. Our Xiphophorus results indicate 206 brain, 37 liver, and 925 gill gene targets exhibit hypoxia induced expression changes. Analysis of the Xiphophorus data to determine those features exhibiting a significant (p<0.05)+/-3 fold change produced only two gene targets within brain tissue and 80 features within gill tissue. Of these 82 characterized features, 39 were identified via homology searching (cut-off E-value of 1 x 10(-5)) and placed into one or more biological process gene ontology groups. Among these 39 genes, metabolic energy changes and manipulation was the most affected biological pathway (13 genes).

  2. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development. © 2017 Elsevier Inc. All rights reserved.

  3. Increased lipoprotein lipase activity in non-small cell lung cancer tissue predicts shorter patient survival.

    PubMed

    Trost, Zoran; Sok, Miha; Marc, Janja; Cerne, Darko

    2009-07-01

    Cumulative evidence suggests the involvement of lipoprotein lipase (LPL) in tumor progression. We tested the hypothesis that increased LPL activity in resectable non-small cell lung cancer (NSCLC) tissue and the increased LPL gene expression in the surrounding non-cancer lung tissue found in our previous study are predictors of patient survival. Forty two consecutive patients with resected NSCLC were enrolled in the study. Paired samples of lung cancer tissue and adjacent non-cancer lung tissue were collected from resected specimens for baseline LPL activity and gene expression estimation. During a 4-year follow-up, 21 patients died due to tumor progression. One patient died due to a non-cancer reason and was not included in Cox regression analysis. High LPL activity in cancer tissue (relative to the adjacent non-cancer lung tissue) predicted shorter survival, independently of standard prognostic factors (p=0.003). High gene expression in the non-cancer lung tissue surrounding the tumor had no predictive value. Our study further underlines the involvement of cancer tissue LPL activity in tumor progression.

  4. Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver.

    PubMed

    Anatskaya, Olga V; Vinogradov, Alexander E

    2007-01-01

    To elucidate the functional significance of genome multiplication in somatic tissues, we performed a large-scale analysis of ploidy-associated changes in expression of non-tissue-specific (i.e., broadly expressed) genes in the heart and liver of human and mouse (6585 homologous genes were analyzed). These species have inverse patterns of polyploidization in cardiomyocytes and hepatocytes. The between-species comparison of two pairs of homologous tissues with crisscross contrast in ploidy levels allows the removal of the effects of species and tissue specificity on the profile of gene activity. The different tests performed from the standpoint of modular biology revealed a consistent picture of ploidy-associated alteration in a wide range of functional gene groups. The major effects consisted of hypoxia-inducible factor-triggered changes in main cellular processes and signaling pathways, activation of defense against DNA lesions, acceleration of protein turnover and transcription, and the impairment of apoptosis, the immune response, and cytoskeleton maintenance. We also found a severe decline in aerobic respiration and stimulation of sugar and fatty acid metabolism. These metabolic rearrangements create a special type of metabolism that can be considered intermediate between aerobic and anaerobic. The metabolic and physiological changes revealed (reflected in the alteration of gene expression) help explain the unique ability of polyploid tissues to combine proliferation and differentiation, which are separated in diploid tissues. We argue that genome multiplication promotes cell survival and tissue regeneration under stressful conditions.

  5. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    PubMed Central

    Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519

  6. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.

    PubMed

    Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana

    2016-01-01

    The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.

  7. Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage

    PubMed Central

    Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong

    2016-01-01

    The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris. PMID:27853303

  8. Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage.

    PubMed

    Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong

    2016-11-17

    The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris.

  9. Hypoxia as a target for tissue specific gene therapy.

    PubMed

    Rhim, Taiyoun; Lee, Dong Yun; Lee, Minhyung

    2013-12-10

    Hypoxia is a hallmark of various ischemic diseases such as ischemic heart disease, ischemic limb, ischemic stroke, and solid tumors. Gene therapies for these diseases have been developed with various therapeutic genes including growth factors, anti-apoptotic genes, and toxins. However, non-specific expression of these therapeutic genes may induce dangerous side effects in the normal tissues. To avoid the side effects, gene expression should be tightly regulated in an oxygen concentration dependent manner. The hypoxia inducible promoters and enhancers have been evaluated as a transcriptional regulation tool for hypoxia inducible gene therapy. The hypoxia inducible UTRs were also used in gene therapy for spinal cord injury as a translational regulation strategy. In addition to transcriptional and translational regulations, post-translational regulation strategies have been developed using the HIF-1α ODD domain. Hypoxia inducible transcriptional, translational, and post-translational regulations are useful for tissue specific gene therapy of ischemic diseases. In this review, hypoxia inducible gene expression systems are discussed and their applications are introduced. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Adipose Gene Expression Profile Changes With Lung Allograft Reperfusion.

    PubMed

    Diamond, Joshua M; Arcasoy, Selim; McDonnough, Jamiela A; Sonett, Joshua R; Bacchetta, Matthew; D'Ovidio, Frank; Cantu, Edward; Bermudez, Christian A; McBurnie, Amika; Rushefski, Melanie; Kalman, Laurel H; Oyster, Michelle; D'Errico, Carly; Suzuki, Yoshikazu; Giles, Jon T; Ferrante, Anthony; Lippel, Matthew; Singh, Gopal; Lederer, David J; Christie, Jason D

    2017-01-01

    Obesity is a risk factor for primary graft dysfunction (PGD), a form of lung injury resulting from ischemia-reperfusion after lung transplantation, but the impact of ischemia-reperfusion on adipose tissue is unknown. We evaluated differential gene expression in thoracic visceral adipose tissue (VAT) before and after lung reperfusion. Total RNA was isolated from thoracic VAT sampled from six subjects enrolled in the Lung Transplant Body Composition study before and after allograft reperfusion and quantified using the Human Gene 2.0 ST array. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed enrichment for genes involved in complement and coagulation cascades and Jak-STAT signaling pathways. Overall, 72 genes were upregulated and 56 genes were downregulated in the postreperfusion time compared with baseline. Long pentraxin-3, a gene and plasma protein previously associated with PGD, was the most upregulated gene (19.5-fold increase, p = 0.04). Fibronectin leucine-rich transmembrane protein-3, a gene associated with cell adhesion and receptor signaling, was the most downregulated gene (4.3-fold decrease, p = 0.04). Ischemia-reperfusion has a demonstrable impact on gene expression in visceral adipose tissue in our pilot study of nonobese, non-PGD lung transplant recipients. Future evaluation will focus on differential adipose tissue gene expression and the development of PGD after transplant. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Isolation and expression analysis of FTZ-F1 encoding gene of black rock fish ( Sebastes schlegelii)

    NASA Astrophysics Data System (ADS)

    Shafi, Muhammad; Wang, Yanan; Zhou, Xiaosu; Ma, Liman; Muhammad, Faiz; Qi, Jie; Zhang, Quanqi

    2013-03-01

    Sex related FTZ-F1 is a transcriptional factor regulating the expression of fushi tarazu (a member of the orphan nuclear receptors) gene. In this study, FTZ-F1 gene ( FTZ-F1) was isolated from the testis of black rockfish ( Sebastes schlegeli) by homology cloning. The full-length cDNA of S. schlegeli FTZ-F1 ( ssFTZ-F1) contained a 232bp 5' UTR, a 1449bp ORF encoding FTZ-F1 (482 amino acid residules in length) with an estimated molecular weight of 5.4kD and a 105bp 3' UTR. Sequence, tissue distribution and phylogenic analysis showed that ssFTZ-F1 belonged to FTZ group, holding highly conserved regions including I, II and III FTZ-F1 boxes and an AF-2 hexamer. Relatively high expression was observed at different larva stages. In juveniles (105 days old), the transcript of ssFTZ-F1 can be detected in all tissues and the abuncance of the gene transcript in testis, ovary, spleen and brain was higher than that in other tissues. In mature fish, the abundance of gene transcript was higher in testis, ovary, spleen and brain than that in liver (trace amount), and the gene was not transcribed in other tissues. The highest abundance of gene transcript was always observed in gonads of both juvenile and mature fish. In addition, the abundance of gene transcript in male tissues were higher than that in female tissue counterparts ( P<0.05).

  12. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    PubMed Central

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses. PMID:24927412

  13. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    PubMed

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  14. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    PubMed

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  15. Differential gene expression and alternative splicing between diploid and tetraploid watermelon

    PubMed Central

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A.; Vajja, Venkata G.; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K.; Levi, Amnon; Wehner, Todd; Reddy, Umesh K.

    2015-01-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. PMID:25520388

  16. PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue.

    PubMed

    Klinger, P; Lukassen, S; Ferrazzi, F; Ekici, A B; Hotfiel, T; Swoboda, B; Aigner, T; Gelse, K

    2017-01-01

    Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation.

  17. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    PubMed

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  18. Developmental expression patterns of candidate co-factors for vertebrate Six family transcription factors

    PubMed Central

    Neilson, Karen M.; Pignoni, Francesca; Yan, Bo; Moody, Sally A.

    2010-01-01

    Six family transcription factors play important roles in craniofacial development. Their transcriptional activity can be modified by co-factor proteins. Two Six genes and one co-factor gene (Eya1) are involved in the human Branchio-otic (BO) and Branchio-otic-renal (BOR) syndromes. However, mutations in Six and Eya genes only account for about half of these patients. To discover potential new causative genes, we searched the Xenopus genome for orthologues of Drosophila co-factor proteins that interact with the fly Six-related factor, SO. We identified 33 Xenopus genes with high sequence identity to 20 of the 25 fly SO-interacting proteins. We provide the developmental expression patterns of the Xenopus orthologues for 11 of the fly genes, and demonstrate that all are expressed in developing craniofacial tissues with at least partial overlap with Six1/Six2. We speculate that these genes may function as Six-interacting partners with important roles in vertebrate craniofacial development and perhaps congenital syndromes. PMID:21089078

  19. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    PubMed

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  20. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus

    PubMed Central

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Xu, Xinfu; Wang, Rui; Li, Jiana

    2017-01-01

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed (Brassica napus). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B. napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B. napus and its parental lines and for molecular breeding studies of bZIP genes in B. napus. PMID:29064393

  1. Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors.

    PubMed

    Furrer, Daniela; Lemieux, Julie; Côté, Marc-André; Provencher, Louise; Laflamme, Christian; Barabé, Frédéric; Jacob, Simon; Michaud, Annick; Diorio, Caroline

    2016-12-01

    Amplification of the human epidermal growth factor receptor 2 (HER2) gene is associated with worse prognosis and decreased overall survival in breast cancer patients. The HER2 gene contains several polymorphisms; two of the best-characterized HER2 polymorphisms are Ile655Val and Ala1170Pro. The aim of this study was to evaluate the association between these two HER2 polymorphisms in normal breast and breast cancer tissues and known breast cancer prognostic factors in a retrospective cohort study of 73 women with non-metastatic HER2-positive breast cancer. HER2 polymorphisms were assessed in breast cancer tissue and normal breast tissue using TaqMan assay. Ala1170Pro polymorphism in normal breast tissue was associated with age at diagnosis (p = 0.007), tumor size (p = 0.004) and lymphovascular invasion (p = 0.06). Similar significant associations in cancer tissues were observed. No association between the Ile655Val polymorphism and prognostic factors were observed. However, we found significant differences in the distribution of Ile655Val (p = 0.03) and Ala1170Pro (p = 0.01) genotypes between normal breast and breast tumor tissues. This study demonstrates that only the Ala1170Pro polymorphism is associated with prognostic factors in HER2-positive breast cancer patients. Moreover, our results suggest that both HER2 polymorphisms could play a significant role in carcinogenesis in non-metastatic HER2-positive breast cancer women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    PubMed

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data

    PubMed Central

    O'Connor, Timothy; Bodén, Mikael

    2017-01-01

    Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599

  4. Tissue-specific regulation of malic enzyme by thyroid hormone in the neonatal rat.

    PubMed

    Sood, A; Schwartz, H L; Oppenheimer, J H

    1996-05-15

    Two recent studies have claimed that thyroid hormone administration accelerates malic enzyme gene expression in the neonatal brain in contrast to the well-documented lack of effect of triiodothyronine on malic enzyme gene expression in the adult brain. Since these observations conflict with earlier observations in our laboratory, we reinvestigated the effect of thyroid hormone status on the ontogeny of malic enzyme gene expression in the neonatal rat. Neither hypothyroidism nor hyperthyroidism influenced the ontogenesis of malic enzyme activity in neonatal brain whereas the patterns of gene expression and enzyme activity in liver were markedly affected. Our results suggest that tissue-specific factors in brain block thyroid hormone-induced gene expression by thyroid hormone.

  5. The Role of T-Cell Leukemia Translocation-Associated Gene Protein in Human Tumorigenesis and Osteoclastogenesis

    PubMed Central

    Kotake, Shigeru; Yago, Toru; Kawamoto, Manabu; Nanke, Yuki

    2012-01-01

    Synovial tissues of patients with rheumatoid arthritis (RA) include factors regulating bone resorption, such as receptor activator NF-κB ligand (RANKL), TNF-α, IL-6, IL-17, and IFN-γ. However, in addition to these cytokines, other factors expressed in synovial tissues may play a role in regulating bone resorption. In 2009, we demonstrated that novel peptides from T-cell leukemia translocation-associated gene (TCTA) protein expressed in synovial tissues from patients with RA inhibit human osteoclastogenesis, preventing cellular fusion via the interaction between TCTA protein and a putative counterpart molecule. Only a few studies on the role of TCTA protein have been reported. Genomic Southern blots demonstrated a reduced TCTA signal in three of four small cell lung cancer cell lines, suggesting the loss of one of the two copies of the gene. In the current paper, we reviewed the roles of TCTA protein in lung cancer cell lines and human osteoclastogenesis. PMID:22174563

  6. Recent advances in gene-enhanced bone tissue engineering.

    PubMed

    Betz, Volker M; Kochanek, Stefan; Rammelt, Stefan; Müller, Peter E; Betz, Oliver B; Messmer, Carolin

    2018-03-30

    The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Post-Mortem Stability of RNA in Skeletal Muscle and Adipose Tissue and the Tissue-Specific Expression of Myostatin, Perilipin and Associated Factors in the Horse

    PubMed Central

    Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2014-01-01

    Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue depots and skeletal muscles. Perilipin gene and protein were almost exclusively expressed by adipose tissue. PMID:24956155

  8. Root cementum may modulate gene expression during periodontal regeneration: a preliminary study in humans.

    PubMed

    Gonçalves, Patricia F; Lima, Liana L; Sallum, Enilson A; Casati, Márcio Z; Nociti, Francisco H

    2008-02-01

    Previous data demonstrated that root cementum may affect periodontal regeneration. As such, this study aimed to explore further possible mechanisms involved in this process by investigating in humans whether root cementum modulates gene expression in the regenerating tissue formed under membrane-protected intrabony defects. Thirty subjects with deep intrabony defects (> or =5 mm; 2- or 3-wall) were selected and assigned to the control or test group. The control group received scaling and root planing with the removal of granulation tissue and root cementum; the test group underwent removal of granulation tissue and soft microbial deposits by cleaning the root surface with a microbrush and saline solution, aiming at cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Twenty-one days later, the newly formed tissue under the membrane was assessed for the expression of the following genes: alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), platelet-derived growth factor-alpha (PDGFA), bone sialoprotein (BSP), and basic fibroblast growth factor (bFGF). Data analysis demonstrated that mRNA levels for PDGFA, BSP, and bFGF were higher in the sites where root cementum was kept in place compared to the sites where root cementum was removed completely as part of the periodontal therapy (P <0.05); in contrast, OCN levels were lower (P <0.05). No difference for ALP or OPN was observed between the control and test groups (P >0.05). Root cementum may modulate the expression of growth and mineral-associated factors during periodontal regeneration.

  9. Altered Gene and Protein Expressions in Torn Rotator Cuff Tendon Tissues in Diabetic Patients.

    PubMed

    Chung, Seok Won; Choi, Bo Mi; Kim, Ja Yeon; Lee, Yong-Soo; Yoon, Jong Pil; Oh, Kyung-Soo; Park, Kyung Sik

    2017-03-01

    To analyze and compare the gene and protein expression characteristics in torn rotator cuff tendon tissues between diabetic and nondiabetic patients. This was a pilot study. Twelve samples of rotator cuff tendon tissue from diabetic patients (mean age, 62.3 ± 9.9 years) and 12 age- and sex-matched nondiabetic tendon tissues (62.3 ± 9.9 years) were acquired from the torn tendon end of medium rotator cuff tears during arthroscopic surgery, after applying the same inclusion and exclusion criteria. Expressions of various genes of interest, including collagens I and III, matrix metalloprotease (MMP)-2, MMP-3, MMP-9, MMP-13, interleukin (IL)-1, IL-6, insulin-like growth factor-1, vascular endothelial growth factor, tenomodulin, tumor necrosis factor-α, and p53, were analyzed with real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, immunohistochemistry and western blot assay were performed for the genes that revealed significantly different expressions in real-time qRT-PCR between groups. Gene expression levels of MMP-9, MMP-13, IL-6, and tenomodulin were significantly higher in the diabetic than in the nondiabetic group by real-time qRT-PCR analyses (P = .011, .004, .009, and .010, respectively). The density of cells expressing MMP-9 and IL-6 was significantly increased in the torn tendons of the diabetic patients on immunohistochemical analysis, and the density of MMP-9 and IL-6 protein expressions was significantly higher in the diabetic group on western blot (P = .018 and .044, respectively). Diabetic torn cuff tendon tissues showed MMP-9 and IL-6 overexpressions compared with controls. The overexpressions of MMP-9 and IL-6 may be one of the explanations for the high healing failure rate after rotator cuff repair in the diabetic patients. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. Syndecan-2 Is a Novel Target of Insulin-Like Growth Factor Binding Protein-3 and Is Over-Expressed in Fibrosis

    PubMed Central

    Ruiz, Ximena D.; Mlakar, Logan R.; Yamaguchi, Yukie; Su, Yunyun; Larregina, Adriana T.; Pilewski, Joseph M.; Feghali-Bostwick, Carol A.

    2012-01-01

    Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3. PMID:22900087

  11. Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis.

    PubMed

    Ruiz, Ximena D; Mlakar, Logan R; Yamaguchi, Yukie; Su, Yunyun; Larregina, Adriana T; Pilewski, Joseph M; Feghali-Bostwick, Carol A

    2012-01-01

    Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.

  12. Gene expression analysis of immunostained endothelial cells isolated from formaldehyde-fixated paraffin embedded tumors using laser capture microdissection--a technical report.

    PubMed

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E

    2009-12-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by reverse transcription-PCR (RT-PCR) and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4 degrees C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. Glyceraldehyde-3-phosphate dehydrogenase and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM.

  13. A Caenorhabditis elegans protein with a PRDM9-like SET domain localizes to chromatin-associated foci and promotes spermatocyte gene expression, sperm production and fertility.

    PubMed

    Engert, Christoph G; Droste, Rita; van Oudenaarden, Alexander; Horvitz, H Robert

    2018-04-01

    To better understand the tissue-specific regulation of chromatin state in cell-fate determination and animal development, we defined the tissue-specific expression of all 36 C. elegans presumptive lysine methyltransferase (KMT) genes using single-molecule fluorescence in situ hybridization (smFISH). Most KMTs were expressed in only one or two tissues. The germline was the tissue with the broadest KMT expression. We found that the germline-expressed C. elegans protein SET-17, which has a SET domain similar to that of the PRDM9 and PRDM7 SET-domain proteins, promotes fertility by regulating gene expression in primary spermatocytes. SET-17 drives the transcription of spermatocyte-specific genes from four genomic clusters to promote spermatid development. SET-17 is concentrated in stable chromatin-associated nuclear foci at actively transcribed msp (major sperm protein) gene clusters, which we term msp locus bodies. Our results reveal the function of a PRDM9/7-family SET-domain protein in spermatocyte transcription. We propose that the spatial intranuclear organization of chromatin factors might be a conserved mechanism in tissue-specific control of transcription.

  14. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  15. Illegitimate transcription: transcription of any gene in any cell type.

    PubMed Central

    Chelly, J; Concordet, J P; Kaplan, J C; Kahn, A

    1989-01-01

    Using in vitro amplification of cDNA by the polymerase chain reaction, we have detected spliced transcripts of various tissue-specific genes (genes for anti-Müllerian hormone, beta-globin, aldolase A, and factor VIIIc) in human nonspecific cells, such as fibroblasts, hepatoma cells, and lymphoblasts. In rats, erythroid- and liver-type pyruvate kinase transcripts were also detected in brain, lung, and muscle. The abundance of these "illegitimate" transcripts is very low; yet, their existence and the possibility of amplifying them by the cDNA polymerase chain reaction provide a powerful tool to analyze pathological transcripts of any tissue-specific gene by using any accessible cell. Images PMID:2495532

  16. Expression of osteoprotegerin, RNAK and RANKL genes in femoral head avascular necrosis and related signaling pathway.

    PubMed

    Miao, Qingtang; Hao, Sibin; Li, Hongmei; Sun, Fang; Wang, Xueling

    2015-01-01

    Femoral head avascular necrosis (AVN) causes the damage of hip joint and related dysfunctions, thus consisting of a clinical challenge. Osteoprotegerin (OPG), receptor activator of nuclear factor κB (RANK) and its ligand (RANKL) all regulate the formation of bones via gene transcriptional regulation for the balance between osteoblasts and osteoclasts. This study thus investigated the expressional profiles of OPG, RANK and RANKL genes in AVN patients, and explored related molecular mediating pathways. Real-time qPCR was used to measure the gene expression of OPG, RANK and RANKL genes in AVN femoral head tissue samples from 42 patients, along with normal tissues. Western blotting analysis was performed to quantify protein levels of OPG and RANKL. There was a trend but not statistically significant elevation of mRNA levels of OPG in femoral head AVN tissues compared to normal tissues (P>0.05). The expression of RNAK and RNAKL, however, was significantly elevated in necrotic tissues (P<0.05). No significant difference in protein levels of OPG or RANKL between groups. The expression of OPG, RANK and RANKL genes exert a crucial role in the progression of AVN, suggesting their roles in mediating bone homeostasis and potential effects on bone destruction.

  17. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  18. Transcriptomic responses to wounding: meta-analysis of gene expression microarray data.

    PubMed

    Sass, Piotr Andrzej; Dąbrowski, Michał; Charzyńska, Agata; Sachadyn, Paweł

    2017-11-07

    A vast amount of microarray data on transcriptomic response to injury has been collected so far. We designed the analysis in order to identify the genes displaying significant changes in expression after wounding in different organisms and tissues. This meta-analysis is the first study to compare gene expression profiles in response to wounding in as different tissues as heart, liver, skin, bones, and spinal cord, and species, including rat, mouse and human. We collected available microarray transcriptomic profiles obtained from different tissue injury experiments and selected the genes showing a minimum twofold change in expression in response to wounding in prevailing number of experiments for each of five wound healing stages we distinguished: haemostasis & early inflammation, inflammation, early repair, late repair and remodelling. During the initial phases after wounding, haemostasis & early inflammation and inflammation, the transcriptomic responses showed little consistency between different tissues and experiments. For the later phases, wound repair and remodelling, we identified a number of genes displaying similar transcriptional responses in all examined tissues. As revealed by ontological analyses, activation of certain pathways was rather specific for selected phases of wound healing, such as e.g. responses to vitamin D pronounced during inflammation. Conversely, we observed induction of genes encoding inflammatory agents and extracellular matrix proteins in all wound healing phases. Further, we selected several genes differentially upregulated throughout different stages of wound response, including established factors of wound healing in addition to those previously unreported  in this context such as PTPRC and AQP4. We found that transcriptomic responses to wounding showed similar traits in a diverse selection of tissues including skin, muscles, internal organs and nervous system. Notably, we distinguished transcriptional induction of inflammatory genes not only in the initial response to wounding, but also later, during wound repair and tissue remodelling.

  19. Gene expression of tumour necrosis factor and insulin signalling-related factors in subcutaneous adipose tissue during the dry period and in early lactation in dairy cows.

    PubMed

    Sadri, H; Bruckmaier, R M; Rahmani, H R; Ghorbani, G R; Morel, I; van Dorland, H A

    2010-10-01

    Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFα), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, β-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFα concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement. © 2010 Blackwell Verlag GmbH.

  20. PDGFRα plays a crucial role in connective tissue remodeling.

    PubMed

    Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo

    2015-12-07

    Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.

  1. PDGFRα plays a crucial role in connective tissue remodeling

    PubMed Central

    Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo

    2015-01-01

    Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling. PMID:26639755

  2. Systematic Analysis of the Functional Relevance of Nuclear Structure and Mechanics in Breast Cancer Progression

    DTIC Science & Technology

    2014-07-01

    Device Fabrication The migration devices were fabricated at the Cornell NanoScale Science and Technology Facility (CNF) using standard lithography ...mutations interfere with tissue-specific genes: lamin mutations may inhibit binding to tissue-specific factors [27] or lead to abnormal gene activation...mutations associated with stri- ated muscle disease can interfere with coupling to SUN proteins [77,78], emerin [59,77], Klaroid (a Drosophila nesprin

  3. Distinct modes of gene regulation by a cell-specific transcriptional activator.

    PubMed

    Sengupta, Tanushri; Cohet, Nathalie; Morlé, François; Bieker, James J

    2009-03-17

    The architectural layout of a eukaryotic RNA polymerase II core promoter plays a role in general transcriptional activation. However, its role in tissue-specific expression is not known. For example, differing modes of its recognition by general transcription machinery can provide an additional layer of control within which a single tissue-restricted transcription factor may operate. Erythroid Kruppel-like factor (EKLF) is a hematopoietic-specific transcription factor that is critical for the activation of subset of erythroid genes. We find that EKLF interacts with TATA binding protein-associated factor 9 (TAF9), which leads to important consequences for expression of adult beta-globin. First, TAF9 functionally supports EKLF activity by enhancing its ability to activate the beta-globin gene. Second, TAF9 interacts with a conserved beta-globin downstream promoter element, and ablation of this interaction by beta-thalassemia-causing mutations decreases its promoter activity and disables superactivation. Third, depletion of EKLF prevents recruitment of TAF9 to the beta-globin promoter, whereas depletion of TAF9 drastically impairs beta-promoter activity. However, a TAF9-independent mode of EKLF transcriptional activation is exhibited by the alpha-hemoglobin-stabilizing protein (AHSP) gene, which does not contain a discernable downstream promoter element. In this case, TAF9 does not enhance EKLF activity and depletion of TAF9 has no effect on AHSP promoter activation. These studies demonstrate that EKLF directs different modes of tissue-specific transcriptional activation depending on the architecture of its target core promoter.

  4. Integrative analyses of conserved WNT clusters and their co-operative behaviour in human breast cancer

    PubMed Central

    Qurrat-ul-Ain; Seemab, Umair; Nawaz, Sulaman; Rashid, Sajid

    2011-01-01

    In human, WNT gene clusters are highly conserved at specie level and associated with carcinogenesis. Among them, WNT-10A and WNT-6 genes clustered in chromosome 2q35 are homologous to WNT-10B and WNT-1 located in chromosome 12q13, respectively. In an attempt to study co-regulation, the coordinated expression of these genes was monitored in human breast cancer tissues. As compared to normal tissue, both WNT-10A and WNT-10B genes exhibited lower expression while WNT-6 and WNT-1 showed increased expression in breast cancer tissues. The co-expression pattern was elaborated by detailed phylogenetic and syntenic analyses. Moreover, the intergenic and intragenic regions for these gene clusters were analyzed for studying the transcriptional regulation. In this context, adequate conserved binding sites for SOX and TCF family of transcriptional factors were observed. We propose that SOX9 and TCF4 may compete for binding at the promoters of WNT family genes thus regulating the disease phenotype. PMID:22355234

  5. Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis.

    PubMed

    Luo, Jun; Dunn, Thomas; Ewing, Charles; Sauvageot, Jurga; Chen, Yidong; Trent, Jeffrey; Isaacs, William

    2002-05-15

    Despite the high prevalence of benign prostatic hyperplasia (BPH) in the aging male, little is known regarding the etiology of this disease. A better understanding of the molecular etiology of BPH would be facilitated by a comprehensive analysis of gene expression patterns that are characteristic of benign growth in the prostate gland. Since genes differentially expressed between BPH and normal prostate tissues are likely to reflect underlying pathogenic mechanisms involved in the development of BPH, we performed comparative gene expression analysis using cDNA microarray technology to identify candidate genes associated with BPH. Total RNA was extracted from a set of 9 BPH specimens from men with extensive hyperplasia and a set of 12 histologically normal prostate tissues excised from radical prostatectomy specimens. Each of these 21 RNA samples was labeled with Cy3 in a reverse transcription reaction and cohybridized with a Cy5 labeled common reference sample to a cDNA microarray containing 6,500 human genes. Normalized fluorescent intensity ratios from each hybridization experiment were extracted to represent the relative mRNA abundance for each gene in each sample. Weighted gene and random permutation analyses were performed to generate a subset of genes with statistically significant differences in expression between BPH and normal prostate tissues. Semi-quantitative PCR analysis was performed to validate differential expression. A subset of 76 genes involved in a wide range of cellular functions was identified to be differentially expressed between BPH and normal prostate tissues. Semi-quantitative PCR was performed on 10 genes and 8 were validated. Genes consistently upregulated in BPH when compared to normal prostate tissues included: a restricted set of growth factors and their binding proteins (e.g. IGF-1 and -2, TGF-beta3, BMP5, latent TGF-beta binding protein 1 and -2); hydrolases, proteases, and protease inhibitors (e.g. neuropathy target esterase, MMP2, alpha-2-macroglobulin); stress response enzymes (e.g. COX2, GSTM5); and extracellular matrix molecules (e.g. laminin alpha 4 and beta 1, chondroitin sulfate proteoglycan 2, lumican). Genes consistently expressing less mRNA in BPH than in normal prostate tissues were less commonly observed and included the transcription factor KLF4, thrombospondin 4, nitric oxide synthase 2A, transglutaminase 3, and gastrin releasing peptide. We identified a diverse set of genes that are potentially related to benign prostatic hyperplasia, including genes both previously implicated in BPH pathogenesis as well as others not previously linked to this disease. Further targeted validation and investigations of these genes at the DNA, mRNA, and protein levels are warranted to determine the clinical relevance and possible therapeutic utility of these genes. Copyright 2002 Wiley-Liss, Inc.

  6. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis

    PubMed Central

    Sharma, Anupma; Wai, Ching Man; Ming, Ray

    2017-01-01

    Abstract Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. PMID:28922793

  7. Nerves and Tissue Repair.

    DTIC Science & Technology

    1994-07-01

    axolotl limbs are transected the concentration of transferrin in the distal limb tissue declines rapidly and limb regeneration stops. These results...transferrin binding and expression of the transferrin gene in cells of axolotl peripheral nerve indicate that both uptake and synthesis of this factor occur

  8. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes.

    PubMed

    Yong, Seok-Beom; Song, Yoonsung; Kim, Yong-Hee

    2017-12-01

    Obesity is an increasingly prevalent global health problem. Due to its close relations with metabolic diseases and cancer, new therapeutic approaches for treating obesity and obesity-induced metabolic diseases are required. Visceral white adipose tissue (WAT) has been closely associated with obesity-induced inflammation and adipose tissue macrophages (ATMs) are responsible for obesity-induced inflammation by releasing inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6. TNF-α converting enzyme (TACE) is a transmembrane enzyme that induces the enzymatic cleavage and release of inflammatory cytokines. In this study, we developed a nonviral gene delivery system consisting of an oligopeptide (ATS-9R) that can selectively target visceral ATMs. In here we shows visceral adipose tissue-dominant inflammatory gene over-expressions in obese mouse and our strategy enabled the preferential delivery of therapeutic genes to visceral ATMs and successfully achieved ATM-targeted gene silencing. Finally, ATS-9R-mediated TACE gene silencing in visceral ATMs alleviated visceral fat inflammation and improved type 2 diabetes by reducing whole body inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery.

    PubMed

    Niemi, Henna; Honkonen, Krista; Korpisalo, Petra; Huusko, Jenni; Kansanen, Emilia; Merentie, Mari; Rissanen, Tuomas T; André, Helder; Pereira, Teresa; Poellinger, Lorenz; Alitalo, Kari; Ylä-Herttuala, Seppo

    2014-10-01

    Cardiovascular patients suffer from reduced blood flow leading to ischaemia and impaired tissue metabolism. Unfortunately, an increasing group of elderly patients cannot be treated with current revascularization methods. Thus, new treatment strategies are urgently needed. Hypoxia-inducible factors (HIFs) upregulate the expression of angiogenic mediators together with genes involved in energy metabolism and recovery of ischaemic tissues. Especially, HIF-2α is a novel factor, and only limited information is available about its therapeutic potential. Gene transfers with adenoviral HIF-1α and HIF-2α were performed into the mouse heart and rabbit ischaemic hindlimbs. Angiogenesis was evaluated by histology. Left ventricle function was analysed with echocardiography. Perfusion in rabbit skeletal muscles and energy recovery after electrical stimulation-induced exercise were measured with ultrasound and (31)P-magnetic resonance spectroscopy ((31)P-MRS), respectively. HIF-1α and HIF-2α gene transfers increased capillary size up to fivefold in myocardium and ischaemic skeletal muscles. Perfusion in skeletal muscles was increased by fourfold without oedema. Especially, AdHIF-1α enhanced the recovery of ischaemic muscles from electrical stimulation-induced energy depletion. Special characteristic of HIF-2α gene transfer was a strong capillary growth in muscle connective tissue and that HIF-2α gene transfer maintained left ventricle function. We conclude that both AdHIF-1α and AdHIF-2α gene transfers induced beneficial angiogenesis in vivo. Transient moderate increases in angiogenesis improved energy recovery after exercise in ischaemic muscles. This study shows for the first time that a moderate increase in angiogenesis is enough to improve tissue energy metabolism, which is potentially a very useful feature for cardiovascular gene therapy. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  10. A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples

    PubMed Central

    Esteve-Codina, Anna; Arpi, Oriol; Martinez-García, Maria; Pineda, Estela; Mallo, Mar; Gut, Marta; Carrato, Cristina; Rovira, Anna; Lopez, Raquel; Tortosa, Avelina; Dabad, Marc; Del Barco, Sonia; Heath, Simon; Bagué, Silvia; Ribalta, Teresa; Alameda, Francesc; de la Iglesia, Nuria

    2017-01-01

    The molecular classification of glioblastoma (GBM) based on gene expression might better explain outcome and response to treatment than clinical factors. Whole transcriptome sequencing using next-generation sequencing platforms is rapidly becoming accepted as a tool for measuring gene expression for both research and clinical use. Fresh frozen (FF) tissue specimens of GBM are difficult to obtain since tumor tissue obtained at surgery is often scarce and necrotic and diagnosis is prioritized over freezing. After diagnosis, leftover tissue is usually stored as formalin-fixed paraffin-embedded (FFPE) tissue. However, RNA from FFPE tissues is usually degraded, which could hamper gene expression analysis. We compared RNA-Seq data obtained from matched pairs of FF and FFPE GBM specimens. Only three FFPE out of eleven FFPE-FF matched samples yielded informative results. Several quality-control measurements showed that RNA from FFPE samples was highly degraded but maintained transcriptomic similarities to RNA from FF samples. Certain issues regarding mutation analysis and subtype prediction were detected. Nevertheless, our results suggest that RNA-Seq of FFPE GBM specimens provides reliable gene expression data that can be used in molecular studies of GBM if the RNA is sufficiently preserved. PMID:28122052

  11. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  12. Research Resource: Aorta- and Liver-Specific ERα-Binding Patterns and Gene Regulation by Estrogen

    PubMed Central

    Gordon, Francesca K.; Vallaster, Caroline S.; Westerling, Thomas; Iyer, Lakshmanan K.; Brown, Myles

    2014-01-01

    Estrogen has vascular protective effects in premenopausal women and in women younger than 60 years who are receiving hormone replacement therapy. However, estrogen also increases the risks of breast and uterine cancers and of venous thromboses linked to up-regulation of coagulation factors in the liver. In mouse models, the vasculoprotective effects of estrogen are mediated by the estrogen receptor α (ERα) transcription factor. Here, through next-generation sequencing approaches, we show that almost all of the genes regulated by 17β-estradiol (E2) differ between mouse aorta and mouse liver, ex vivo, and that this difference is associated with a distinct genomewide distribution of ERα on chromatin. Bioinformatic analysis of E2-regulated promoters and ERα binding site sequences identify several transcription factors that may determine the tissue specificity of ERα binding and E2-regulated genes, including the enrichment of NF-κB, AML1, and AP1 sites in the promoters of E2 down-regulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggest ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. PMID:24992180

  13. A convex optimization approach for identification of human tissue-specific interactomes.

    PubMed

    Mohammadi, Shahin; Grama, Ananth

    2016-06-15

    Analysis of organism-specific interactomes has yielded novel insights into cellular function and coordination, understanding of pathology, and identification of markers and drug targets. Genes, however, can exhibit varying levels of cell type specificity in their expression, and their coordinated expression manifests in tissue-specific function and pathology. Tissue-specific/tissue-selective interaction mechanisms have significant applications in drug discovery, as they are more likely to reveal drug targets. Furthermore, tissue-specific transcription factors (tsTFs) are significantly implicated in human disease, including cancers. Finally, disease genes and protein complexes have the tendency to be differentially expressed in tissues in which defects cause pathology. These observations motivate the construction of refined tissue-specific interactomes from organism-specific interactomes. We present a novel technique for constructing human tissue-specific interactomes. Using a variety of validation tests (Edge Set Enrichment Analysis, Gene Ontology Enrichment, Disease-Gene Subnetwork Compactness), we show that our proposed approach significantly outperforms state-of-the-art techniques. Finally, using case studies of Alzheimer's and Parkinson's diseases, we show that tissue-specific interactomes derived from our study can be used to construct pathways implicated in pathology and demonstrate the use of these pathways in identifying novel targets. http://www.cs.purdue.edu/homes/mohammas/projects/ActPro.html mohammadi@purdue.edu. © The Author 2016. Published by Oxford University Press.

  14. Analysis of the Transcriptomes Downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch Signaling Pathways in Drosophila melanogaster

    PubMed Central

    Nfonsam, Landry E.; Cano, Carlos; Mudge, Joann; Schilkey, Faye D.; Curtiss, Jennifer

    2012-01-01

    Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans. PMID:22952997

  15. Role of Apoptosis in the Development of Uterine Leiomyoma: Analysis of Expression Patterns of Bcl-2 and Bax in Human Leiomyoma Tissue With Clinical Correlations.

    PubMed

    Csatlós, Éva; Máté, Szabolcs; Laky, Marcella; Rigó, János; Joó, József Gábor

    2015-07-01

    To describe gene expression patterns of the apoptotic regulatory genes Bcl and Bax in human uterine leiomyoma tissue. To investigate the relationship between alterations of gene expression patterns and several relevant clinical parameters. We obtained samples from 101 cases undergoing surgery for uterine leiomyoma for gene expression analysis of the Bcl-2 and Bax genes. Gene expression was quantified using RT-PCR technique. In the leiomyoma group, the Bcl-2 gene was significantly overexpressed compared with the control group although there was no such difference in the gene expression of Bax. Gene activity of Bcl-2 positively correlated with the tumor number in individual uterine leiomyoma cases. Although there was no significant correlation between the length of the cumulative lactation period before the development of uterine leiomyoma and Bcl-2 gene expression in the leiomyoma tissue, we observed a trend for a shorter cumulative lactation period to be associated with overexpression of the Bcl-2 gene. Overexpression of the antiapoptotic Bcl-2 gene appeared to be a factor in the development of uterine leiomyoma, whereas gene activity of the proapoptotic Bax gene did not seem to play a role in the process.

  16. Deregulation of an imprinted gene network in prostate cancer

    PubMed Central

    Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A

    2014-01-01

    Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes. PMID:24513574

  17. Deregulation of an imprinted gene network in prostate cancer.

    PubMed

    Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A

    2014-05-01

    Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.

  18. Tissue-Specific Profiling Reveals Transcriptome Alterations in Arabidopsis Mutants Lacking Morphological Phenotypes[C][W

    PubMed Central

    Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John

    2013-01-01

    Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549

  19. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  20. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Bammler, Theo K; Gallagher, Evan P; Stapleton, Patricia L; Beyer, Richard P; Farin, Federico M; Hardiman, Gary; Schlenk, Daniel

    2015-12-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.

  1. Oxygen and tissue culture affect placental gene expression.

    PubMed

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    PubMed Central

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-01-01

    Background Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα) values showed overexpression (198%). Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism. PMID:17725831

  3. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue.

    PubMed

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-08-28

    Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFalpha) values showed overexpression (198%). Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  4. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    PubMed

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  5. Function of Hevea brasiliensis NAC1 in dehydration-induced laticifer differentiation and latex biosynthesis.

    PubMed

    Cao, Yuxin; Zhai, Jinling; Wang, Qichao; Yuan, Hongmei; Huang, Xi

    2017-01-01

    HbNAC1 is a transcription factor in rubber plants whose expression is induced by dehydration, leading to latex biosynthesis. Laticifer is a special tissue in Hevea brasiliensis where natural rubber is biosynthesized and accumulated. In young stems of epicormic shoots, the differentiation of secondary laticifers can be induced by wounding, which can be prevented when the wounding site is wrapped. Using this system, differentially expressed genes were screened by suppression subtractive hybridization (SSH) and macroarray analyses. This led to the identification of several dehydration-related genes that could be involved in laticifer differentiation and/or latex biosynthesis, including a NAC transcription factor (termed as HbNAC1). Tissue sections confirmed that local tissue dehydration was a key signal for laticifer differentiation. HbNAC1 was localized at the nucleus and showed strong transcriptional activity in yeast, suggesting that HbNAC1 is a transcription factor. Furthermore, HbNAC1 was found to bind to the cis-element CACG in the promoter region of the gene encoding the small rubber particle protein (SRPP). Transgenic experiments also confirmed that HbNAC1 interacted with the SRPP promoter when co-expressed, and enhanced expression of the reporter gene β-glucuronidase occurred in planta. In addition, overexpression of HbNAC1 in tobacco plants conferred drought tolerance. Together, the data suggest that HbNAC1 might be involved in dehydration-induced laticifer differentiation and latex biosynthesis.

  6. Stem cell-associated genes are extremely poor prognostic factors for soft-tissue sarcoma patients.

    PubMed

    Taubert, H; Würl, P; Greither, T; Kappler, M; Bache, M; Bartel, F; Kehlen, A; Lautenschläger, C; Harris, L C; Kaushal, D; Füssel, S; Meye, A; Böhnke, A; Schmidt, H; Holzhausen, H-J; Hauptmann, S

    2007-11-01

    Cancer stem cells can play an important role in tumorigenesis and tumor progression. However, it is still difficult to detect and isolate cancer stem cells. An alternative approach is to analyse stem cell-associated gene expression. We investigated the coexpression of three stem cell-associated genes, Hiwi, hTERT and survivin, by quantitative real-time-PCR in 104 primary soft-tissue sarcomas (STS). Multivariate Cox's proportional hazards regression analyses allowed correlating gene expression with overall survival for STS patients. Coexpression of all three stem cell-associated genes resulted in a significantly increased risk of tumor-related death. Importantly, tumors of patients with the poorest prognosis were of all four tumor stages, suggesting that their risk is based upon coexpression of stem cell-associated genes rather than on tumor stage.

  7. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data.

    PubMed

    Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S

    2016-01-01

    Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers.

  8. The function and evolution of Msx genes: pointers and paradoxes.

    PubMed

    Davidson, D

    1995-10-01

    The Msx genes of vertebrates comprise a small family of chromosomally unlinked homeobox-containing genes related to the Drosophila gene muscle-segment homeobox (msh). Despite their ancient pedigree, the Msx genes are expressed in a range of vertebrate-specific tissues, including neural crest, cranial sensory placodes, bone and teeth. They are active in numerous systems, which have been used as models to study pattern formation and tissue interaction, and are, therefore, attracting a growing interest among developmental biologists. But beyond their presumed role as transcription factors, we do not know what their functions are in the cell or the embryo. Here, I review recent evidence that is beginning to address this problem and might eventually increase our understanding of how the vertebrate embryo has evolved.

  9. Assessment of stem cell differentiation based on genome-wide expression profiles.

    PubMed

    Godoy, Patricio; Schmidt-Heck, Wolfgang; Hellwig, Birte; Nell, Patrick; Feuerborn, David; Rahnenführer, Jörg; Kattler, Kathrin; Walter, Jörn; Blüthgen, Nils; Hengstler, Jan G

    2018-07-05

    In recent years, protocols have been established to differentiate stem and precursor cells into more mature cell types. However, progress in this field has been hampered by difficulties to assess the differentiation status of stem cell-derived cells in an unbiased manner. Here, we present an analysis pipeline based on published data and methods to quantify the degree of differentiation and to identify transcriptional control factors explaining differences from the intended target cells or tissues. The pipeline requires RNA-Seq or gene array data of the stem cell starting population, derived 'mature' cells and primary target cells or tissue. It consists of a principal component analysis to represent global expression changes and to identify possible problems of the dataset that require special attention, such as: batch effects; clustering techniques to identify gene groups with similar features; over-representation analysis to characterize biological motifs and transcriptional control factors of the identified gene clusters; and metagenes as well as gene regulatory networks for quantitative cell-type assessment and identification of influential transcription factors. Possibilities and limitations of the analysis pipeline are illustrated using the example of human embryonic stem cell and human induced pluripotent cells to generate 'hepatocyte-like cells'. The pipeline quantifies the degree of incomplete differentiation as well as remaining stemness and identifies unwanted features, such as colon- and fibroblast-associated gene clusters that are absent in real hepatocytes but typically induced by currently available differentiation protocols. Finally, transcription factors responsible for incomplete and unwanted differentiation are identified. The proposed method is widely applicable and allows an unbiased and quantitative assessment of stem cell-derived cells.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).

  10. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    PubMed Central

    Castagnola, Anaïs; Stock, S. Patricia

    2014-01-01

    This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol. PMID:24634779

  11. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca

    PubMed Central

    Wei, Wei; Hu, Yang; Cui, Meng-Yuan; Han, Yong-Tao; Gao, Kuan; Feng, Jia-Yue

    2016-01-01

    Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors play versatile functions in multiple processes of plant growth and development. However, no systematic study has been performed in strawberry. In this study, 19 FvTCP genes were identified in the diploid woodland strawberry (Fragaria vesca) accession Heilongjiang-3. Phylogenetic analysis suggested that the FvTCP genes were classified into two main classes, with the second class further divided into two subclasses, which was supported by the exon-intron organizations and the conserved motif structures. Promoter analysis revealed various cis-acting elements related to growth and development, hormone and/or stress responses. We analyzed FvTCP gene transcript accumulation patterns in different tissues and fruit developmental stages. Among them, 12 FvTCP genes exhibited distinct tissue-specific transcript accumulation patterns. Eleven FvTCP genes were down-regulated in different fruit developmental stages, while five FvTCP genes were up-regulated. Transcripts of FvTCP genes also varied with different subcultural propagation periods and were induced by hormone treatments and biotic and abiotic stresses. Subcellular localization analysis showed that six FvTCP-GFP fusion proteins showed distinct localizations in Arabidopsis mesophyll protoplasts. Notably, transient over-expression of FvTCP9 in strawberry fruits dramatically affected the expression of a series of genes implicated in fruit development and ripening. Taken together, the present study may provide the basis for functional studies to reveal the role of this gene family in strawberry growth and development. PMID:28066489

  12. Discrete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock

    PubMed Central

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J.; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M.; Remsberg, Jarrett R.; Jager, Jennifer; Soccio, Raymond E.; Steger, David J.; Lazar, Mitchell A.

    2015-01-01

    SUMMARY Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erbα utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. PMID:26044300

  13. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis).

    PubMed

    Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin

    2015-11-01

    The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.

  14. Elasmobranch qPCR reference genes: a case study of hypoxia preconditioned epaulette sharks

    PubMed Central

    2010-01-01

    Background Elasmobranch fishes are an ancient group of vertebrates which have high potential as model species for research into evolutionary physiology and genomics. However, no comparative studies have established suitable reference genes for quantitative PCR (qPCR) in elasmobranchs for any physiological conditions. Oxygen availability has been a major force shaping the physiological evolution of vertebrates, especially fishes. Here we examined the suitability of 9 reference candidates from various functional categories after a single hypoxic insult or after hypoxia preconditioning in epaulette shark (Hemiscyllium ocellatum). Results Epaulette sharks were caught and exposed to hypoxia. Tissues were collected from 10 controls, 10 individuals with single hypoxic insult and 10 individuals with hypoxia preconditioning (8 hypoxic insults, 12 hours apart). We produced sequence information for reference gene candidates and monitored mRNA expression levels in four tissues: cerebellum, heart, gill and eye. The stability of the genes was examined with analysis of variance, geNorm and NormFinder. The best ranking genes in our study were eukaryotic translation elongation factor 1 beta (eef1b), ubiquitin (ubq) and polymerase (RNA) II (DNA directed) polypeptide F (polr2f). The performance of the ribosomal protein L6 (rpl6) was tissue-dependent. Notably, in one tissue the analysis of variance indicated statistically significant differences between treatments for genes that were ranked as the most stable candidates by reference gene software. Conclusions Our results indicate that eef1b and ubq are generally the most suitable reference genes for the conditions and tissues in the present epaulette shark studies. These genes could also be potential reference gene candidates for other physiological studies examining stress in elasmobranchs. The results emphasise the importance of inter-group variation in reference gene evaluation. PMID:20416043

  15. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer.

  16. Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2.

    PubMed

    Eames, B Frank; Sharpe, Paul T; Helms, Jill A

    2004-10-01

    Across vertebrates, there are three principal skeletal tissues: bone, persistent cartilage, and replacement cartilage. Although each tissue has a different evolutionary history and functional morphology, they also share many features. For example, they function as structural supports, they are comprised of cells embedded in collagen-rich extracellular matrix, and they derive from a common embryonic stem cell, the osteochondroprogenitor. Occasionally, homologous skeletal elements can change tissue type through phylogeny. Together, these observations raise the possibility that skeletal tissue identity is determined by a shared set of genes. Here, we show that misexpression of either Sox9 or Runx2 can substitute bone with replacement cartilage or can convert persistent cartilage into replacement cartilage and vice versa. Our data also suggest that these transcription factors function in a molecular hierarchy in which chondrogenic factors dominate. We propose a binary molecular code that determines whether skeletal tissues form as bone, persistent cartilage, or replacement cartilage. Finally, these data provide insights into the roles that master regulatory genes play during evolutionary change of the vertebrate skeleton.

  17. In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column.

    PubMed

    Chatterjee, Sumantra; Sivakamasundari, V; Yap, Sook Peng; Kraus, Petra; Kumar, Vibhor; Xing, Xing; Lim, Siew Lan; Sng, Joel; Prabhakar, Shyam; Lufkin, Thomas

    2014-12-05

    Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development.

  18. TCF-1 participates in the occurrence of dedifferentiated chondrosarcoma.

    PubMed

    Xu, Xiaolong; Tang, Xiaodong; Guo, Wei; Yang, Kang; Ren, Tingting

    2016-10-01

    The present study demonstrated that T cell factor 1 (TCF-1) protein, a component of the canonical Wnt/β-catenin signaling pathway, can regulate the expression of runt-related transcription factor 2 (runx2) gene and Sry-related HMG box 9 (sox9) gene, which may participate in the differentiation of chondrosarcoma. Dedifferentiated chondrosarcoma (DDCS) is a special variant of conventional chondrosarcoma (CCS), associated with poor survival and high metastasis rate. However, little is known about the mechanism of its occurrence; thus, no effective treatment is available except surgery. Earlier, high expression of runx2 and low expression of sox9 were found in DDCS compared with CCS. Using Western blot to detect clinical tissue samples (including 8 CCS samples and 8 DDCS samples) and immunohistochemistry to detect 85 different-grade chondrosarcoma specimens, a high expression of TCF-1 in DDCS tissues was found compared with CCS tissues. This difference in expression was related to patients' prognosis. Results of luciferase, chromatin immunoprecipitation, and gel electrophoresis mobility shift assays demonstrated that TCF-1 protein could bind to the promoter of runx2 gene directly and sox9 gene indirectly. Hence, it could regulate expression of runx2 gene positively and sox9 gene negatively. Furthermore, in vitro and in vivo experiments showed that TCF-1 protein was closely related to the phenotype and aggressiveness of chondrosarcoma. In conclusion, this study proved that TCF-1 participates in the dedifferentiation of DDCS, which may be mediated by runx2 gene and sox9 gene. Also, TCF-1 can be of important prognostic value and a promising therapeutic target for DDCS patients.

  19. Characterization of reference genes for qPCR analysis in various tissues of the Fujian oyster Crassostrea angulata

    NASA Astrophysics Data System (ADS)

    Pu, Fei; Yang, Bingye; Ke, Caihuan

    2015-07-01

    Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 ( ACT-2), elongation factor 1 alpha ( EF-1α), elongation factor 1 beta ( EF-1β), glyceraldehyde-3-phosphate dehydrogenase ( GAPDH), ubiquitin ( UBQ), β-tubulin ( β-TUB), and 18S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene ( Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ and β-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further functional genomics studies in this economically valuable marine bivalve.

  20. Integration of lncRNA and mRNA Transcriptome Analyses Reveals Genes and Pathways Potentially Involved in Calf Intestinal Growth and Development during the Early Weeks of Life

    PubMed Central

    Do, Duy N.; Dudemaine, Pier-Luc; Fomenky, Bridget E.

    2018-01-01

    A better understanding of the factors that regulate growth and immune response of the gastrointestinal tract (GIT) of calves will promote informed management practices in calf rearing. This study aimed to explore genomics (messenger RNA (mRNA)) and epigenomics (long non-coding RNA (lncRNA)) mechanisms regulating the development of the rumen and ileum in calves. Thirty-two calves (≈5-days-old) were reared for 96 days following standard procedures. Sixteen calves were humanely euthanized on experiment day 33 (D33) (pre-weaning) and another 16 on D96 (post-weaning) for collection of ileum and rumen tissues. RNA from tissues was subjected to next generation sequencing and 3310 and 4217 mRNAs were differentially expressed (DE) between D33 and D96 in ileum and rumen tissues, respectively. Gene ontology and pathways enrichment of DE genes confirmed their roles in developmental processes, immunity and lipid metabolism. A total of 1568 (63 known and 1505 novel) and 4243 (88 known and 4155 novel) lncRNAs were detected in ileum and rumen tissues, respectively. Cis target gene analysis identified BMPR1A, an important gene for a GIT disease (juvenile polyposis syndrome) in humans, as a candidate cis target gene for lncRNAs in both tissues. LncRNA cis target gene enrichment suggested that lncRNAs might regulate growth and development in both tissues as well as posttranscriptional gene silencing by RNA or microRNA processing in rumen, or disease resistance mechanisms in ileum. This study provides a catalog of bovine lncRNAs and set a baseline for exploring their functions in calf GIT development. PMID:29510583

  1. Integration of lncRNA and mRNA Transcriptome Analyses Reveals Genes and Pathways Potentially Involved in Calf Intestinal Growth and Development during the Early Weeks of Life.

    PubMed

    Ibeagha-Awemu, Eveline M; Do, Duy N; Dudemaine, Pier-Luc; Fomenky, Bridget E; Bissonnette, Nathalie

    2018-03-05

    A better understanding of the factors that regulate growth and immune response of the gastrointestinal tract (GIT) of calves will promote informed management practices in calf rearing. This study aimed to explore genomics (messenger RNA (mRNA)) and epigenomics (long non-coding RNA (lncRNA)) mechanisms regulating the development of the rumen and ileum in calves. Thirty-two calves (≈5-days-old) were reared for 96 days following standard procedures. Sixteen calves were humanely euthanized on experiment day 33 (D33) (pre-weaning) and another 16 on D96 (post-weaning) for collection of ileum and rumen tissues. RNA from tissues was subjected to next generation sequencing and 3310 and 4217 mRNAs were differentially expressed (DE) between D33 and D96 in ileum and rumen tissues, respectively. Gene ontology and pathways enrichment of DE genes confirmed their roles in developmental processes, immunity and lipid metabolism. A total of 1568 (63 known and 1505 novel) and 4243 (88 known and 4155 novel) lncRNAs were detected in ileum and rumen tissues, respectively. Cis target gene analysis identified BMPR1A , an important gene for a GIT disease (juvenile polyposis syndrome) in humans, as a candidate cis target gene for lncRNAs in both tissues. LncRNA cis target gene enrichment suggested that lncRNAs might regulate growth and development in both tissues as well as posttranscriptional gene silencing by RNA or microRNA processing in rumen, or disease resistance mechanisms in ileum. This study provides a catalog of bovine lncRNAs and set a baseline for exploring their functions in calf GIT development.

  2. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Agarwal, Aditya Vikram; Asif, Mehar Hasan; Sangwan, Neelam Singh; Sangwan, Rajender Singh; Trivedi, Prabodh Kumar

    2015-01-01

    Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania. PMID:26688389

  3. Multi-Tissue Omics Analyses Reveal Molecular Regulatory Networks for Puberty in Composite Beef Cattle

    PubMed Central

    Cánovas, Angela; Reverter, Antonio; DeAtley, Kasey L.; Ashley, Ryan L.; Colgrave, Michelle L.; Fortes, Marina R. S.; Islas-Trejo, Alma; Lehnert, Sigrid; Porto-Neto, Laercio; Rincón, Gonzalo; Silver, Gail A.; Snelling, Warren M.; Medrano, Juan F.; Thomas, Milton G.

    2014-01-01

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver). These tissues were collected from pre- and post-pubertal Brangus heifers (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus) derived from a population of cattle used to identify quantitative trait loci associated with fertility traits (i.e., age of first observed corpus luteum (ACL), first service conception (FSC), and heifer pregnancy (HPG)). In order to exploit the power of complementary omics analyses, pre- and post-puberty co-expression gene networks were constructed by combining the results from genome-wide association studies (GWAS), RNA-Seq, and bovine transcription factors. Eight tissues among pre-pubertal and post-pubertal Brangus heifers revealed 1,515 differentially expressed and 943 tissue-specific genes within the 17,832 genes confirmed by RNA-Seq analysis. The hypothalamus experienced the most notable up-regulation of genes via puberty (i.e., 204 out of 275 genes). Combining the results of GWAS and RNA-Seq, we identified 25 loci containing a single nucleotide polymorphism (SNP) associated with ACL, FSC, and (or) HPG. Seventeen of these SNP were within a gene and 13 of the genes were expressed in uterus or endometrium. Multi-tissue omics analyses revealed 2,450 co-expressed genes relative to puberty. The pre-pubertal network had 372,861 connections whereas the post-pubertal network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, DACH2, PROP1, SIX6, etc.). Results from these multi-tissue omics analyses improve understanding of the number of genes and their complex interactions for puberty in cattle. PMID:25048735

  4. Advanced therapies for the treatment of hemophilia: future perspectives.

    PubMed

    Liras, Antonio; Segovia, Cristina; Gabán, Aline S

    2012-12-13

    Monogenic diseases are ideal candidates for treatment by the emerging advanced therapies, which are capable of correcting alterations in protein expression that result from genetic mutation. In hemophilia A and B such alterations affect the activity of coagulation factors VIII and IX, respectively, and are responsible for the development of the disease. Advanced therapies may involve the replacement of a deficient gene by a healthy gene so that it generates a certain functional, structural or transport protein (gene therapy); the incorporation of a full array of healthy genes and proteins through perfusion or transplantation of healthy cells (cell therapy); or tissue transplantation and formation of healthy organs (tissue engineering). For their part, induced pluripotent stem cells have recently been shown to also play a significant role in the fields of cell therapy and tissue engineering. Hemophilia is optimally suited for advanced therapies owing to the fact that, as a monogenic condition, it does not require very high expression levels of a coagulation factor to reach moderate disease status. As a result, significant progress has been possible with respect to these kinds of strategies, especially in the fields of gene therapy (by using viral and non-viral vectors) and cell therapy (by means of several types of target cells). Thus, although still considered a rare disorder, hemophilia is now recognized as a condition amenable to gene therapy, which can be administered in the form of lentiviral and adeno-associated vectors applied to adult stem cells, autologous fibroblasts, platelets and hematopoietic stem cells; by means of non-viral vectors; or through the repair of mutations by chimeric oligonucleotides. In hemophilia, cell therapy approaches have been based mainly on transplantation of healthy cells (adult stem cells or induced pluripotent cell-derived progenitor cells) in order to restore alterations in coagulation factor expression.

  5. Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer.

    PubMed

    Lee, J H; Koh, J T; Shin, B A; Ahn, K Y; Roh, J H; Kim, Y J; Kim, K K

    2001-02-01

    Genes involving angiogenesis and metastasis play an important role in the progression and infiltration of cancer. We examined the expressions of various angiostatic and potential invasion/metastasis suppressor genes through RT-PCR analyses in 32 gastric cancer specimens with or without distant metastasis. The expressions of the invasion/metastasis suppressor, nm23 and E-cadherin increased much more in the cancer tissue (CT) and metastatic lymph node (MLN) than in the extraneoplastic mucosa (EM) and non-metastatic lymph node (NLN), respectively. The expressions of the angiostatic factor, angiopoietin 2 and thrombospondin 2 increased in the CT and MLN as compared with the EM and NLN, respectively. The newly cloned angiostatic factor, brain-specific angiogenesis inhibitor 1 (BAI1) decreased much more in the CT and MLN than the EM and NLN, respectively. However, BAI1 increased in the CT compared with the EM among the patients with poor prognosis and distant metastasis, such as liver or peritoneum. The expressions of the invasive factor, matrix metalloproteinase-2 and its suppressor, tissue inhibitor metalloproteinase-2 (TIMP-2) increased in the CM as compared with the EM, but the increased expression pattern of these genes in the CT became blunted among the patients with good prognosis. Our results indicate that BAI1 and TIMP-2 expressions in the extraneoplastic mucosa and non-metastatic lymph nodes were not suppressed in the patients with good prognosis, but increased expressions of angiopoietin 2, thrombospondin 2, TIMP-2, nm23 and E-cadherin in the tumor tissue did not lead to a long survival after operation. It is suggested that the extent of BAI1 and TIMP-2 expression in the gastric mucosa may be an important prognostic factor for predicting survival in gastric cancer.

  6. Selection of reference genes for qRT-PCR analysis of gene expression in sea cucumber Apostichopus japonicus during aestivation

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Chen, Muyan; Wang, Tianming; Sun, Lina; Xu, Dongxue; Yang, Hongsheng

    2014-11-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a technique that is widely used for gene expression analysis, and its accuracy depends on the expression stability of the internal reference genes used as normalization factors. However, many applications of qRT-PCR used housekeeping genes as internal controls without validation. In this study, the expression stability of eight candidate reference genes in three tissues (intestine, respiratory tree, and muscle) of the sea cucumber Apostichopus japonicus was assessed during normal growth and aestivation using the geNorm, NormFinder, delta CT, and RefFinder algorithms. The results indicate that the reference genes exhibited significantly different expression patterns among the three tissues during aestivation. In general, the β-tubulin (TUBB) gene was relatively stable in the intestine and respiratory tree tissues. The optimal reference gene combination for intestine was 40S ribosomal protein S18 (RPS18), TUBB, and NADH dehydrogenase (NADH); for respiratory tree, it was β-actin (ACTB), TUBB, and succinate dehydrogenase cytochrome B small subunit (SDHC); and for muscle it was α-tubulin (TUBA) and NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 13 (NDUFA13). These combinations of internal control genes should be considered for use in further studies of gene expression in A. japonicus during aestivation.

  7. RNA Extraction from Animal and Human's Cancerous Tissues: Does Tissue Matter?

    PubMed

    Samadani, Ali Akbar; Nikbakhsh, Novin; Fattahi, Sadegh; Pourbagher, Roghayeh; Aghajanpour Mir, Seyyed Mohsen; Mousavi Kani, Narges; Abedian, Zeinab; Akhavan-Niaki, Haleh

    2015-01-01

    The reliability of gene expression profiling, based technologies and methods to find transcriptional differences representative of the original samples is influenced by the quality of the extracted RNA. Hence, RNA extraction is the first step to investigate the gene expression and its function. Consequently, the quality of extracted RNA is really significant. Correspondingly, this research was accomplished to optimize the RNA extraction methods and compare the amounts of tissue or quality of tissue. Relatively, the cancerous tissue of human stomach in fresh and frozen conditions and also the mouse fresh tissue were studied. Some factors like the amount of samples, efficacy differences of diverse extraction buffers (TriPure, Trizol) and also the efficacy of b-mercaptoethanol were compared and investigated. The results indicated that the less amount (1-2 mg) compared to other amounts (2-5 mg, 5-15 mg) yielded the best quality and the RNA bands (5S, 18S, 28S) were observed perfectly. Relatively, comparing and measuring some kinds of buffers (Trizol, TriPure) indicated no difference in RNA extraction quality. The last investigated factor was the effect of b- mercaptoethanol which was used along with TriPure to remove the RNAse. Conclusively, no effective impression was observed.

  8. Oryzanol Modifies High Fat Diet-Induced Obesity, Liver Gene Expression Profile, and Inflammation Response in Mice.

    PubMed

    Wang, Long; Lin, Qinlu; Yang, Tao; Liang, Ying; Nie, Ying; Luo, Yi; Shen, Junjun; Fu, Xiangjin; Tang, Yiping; Luo, Feijun

    2017-09-27

    In Western countries and China, the dietary habit of high calories usually results in hyperlipidemia, which is closely associated with cardiovascular diseases. In the study, we investigated the antihyperlipidemic effect of oryzanol and its molecular mechanism in the high fat diet (HFD) mouse model. In total, 60 ICR mice were randomly divided into control group, HFD group, and HFD+Ory group. The mice from the HFD+Ory group were additionally fed with 100 mg/kg of oryzanol by intragastric administration. Our data indicated that oryzanol treatment for 10 weeks significantly reduced bodyweight, liver weight, and adipose tissues weight of the mice; lowered the contents of total cholesterol (TC), triglycerides (TG), and low density lipoprotein-cholesterol (LDL-C); and elevated high density lipoprotein-cholesterol (HDL-C) in the plasma of HFD mice. Compared with the HFD group, H&E staining showed that oryzanol treatment decreased the size of fat droplets of liver tissues and the size of adipocytes. Gene chip data found that oryzanol administration caused 32 genes to increase expressions while 60 genes had reduced expressions in the liver tissues of HFD mice. IPA software was used to analyze the protein interaction network and found that transcript factor NF-κB located in the central role of network, meaning NF-κB may have important function in the lipid-lowering effect of oryzanol. Western blotting and RT-qPCR confirmed that lipid metabolism-related gene expressions were obviously regulated by oryzanol administration. Oryzanol also inhibited expressions of inflammatory factor in the liver tissues of HDF mice. Taken together, our data indicate that oryzanol treatment can regulate lipid metabolism-related gene expressions and inhibit HDF-caused obesity in mice.

  9. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis.

    PubMed

    Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi

    2017-09-01

    Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.

    PubMed

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-05-09

    A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.

  11. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas.

    PubMed

    Hélias-Rodzewicz, Zofia; Pérot, Gaëlle; Chibon, Frédéric; Ferreira, Céline; Lagarde, Pauline; Terrier, Philippe; Coindre, Jean-Michel; Aurias, Alain

    2010-12-01

    In a series of 404 adult soft tissue sarcomas, analyzed by array-CGH, we have observed in approximately 10% of them a genomic amplification of either chromosome bands 11q22 or 3p12. These two amplicons likely target the YAP1 and VGLL3 genes, respectively. Both genes encode proteins that are cofactors of the TEAD family of transcription factors. Very good correlations between amplification and expression levels were observed. Welch test analyses of transcriptome data demonstrate that tumors with amplicons share a large set of upregulated and downregulated genes. Inhibition of YAP1 and VGLL3 in cell lines with these amplifications/overexpressions leads to similar phenotypes: decrease of proliferation rate, and to a lesser extent decrease of migration properties. These data, and the fact that these amplicons are observed either in de-differentiated liposarcomas or in undifferentiated pleomorphic sarcomas, suggest that these genetics events could be involved in oncogenesis and progression of soft tissue sarcomas. © 2010 Wiley-Liss, Inc.

  12. Expression of connective tissue growth factor in the livers of non-viral hepatocellular carcinoma patients with metabolic risk factors.

    PubMed

    Akahoshi, Keiichi; Tanaka, Shinji; Mogushi, Kaoru; Shimada, Shu; Matsumura, Satoshi; Akiyama, Yoshimitsu; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru

    2016-09-01

    The incidence of hepatocellular carcinoma (HCC) associated with metabolic risk factors, such as diabetes and obesity, has been increasing. However, the underlying mechanism that links these diseases remains unclear. We performed genome-wide expression analysis of human liver tissues of non-viral HCC patients with or without metabolic risk factors. The upregulated genes that associated with diabetes and obesity were investigated by in vitro and in vivo experiments, and immunohistochemistry of human liver tissues was performed. Among the upregulated genes, connective tissue growth factor (CTGF) expression was induced to a greater extent by combined glucose and insulin administration to human hepatoma cells. Genome-wide expression analysis revealed upregulation of a chemokine network in CTGF-overexpressing hepatoma cells, which displayed an increased ability to induce in vitro activation of macrophages, and in vivo infiltration of liver macrophages. Immunohistochemistry of human liver tissues validated the correlations between CTGF expression and diabetes or obesity as well as activation of liver macrophages in patients with non-viral HCC. Recurrence-free survival was significantly poorer in the CTGF-positive patients compared with the CTGF-negative patients (p = 0.002). Multivariate analysis determined that CTGF expression (HR 2.361; 95 % CI 1.195-4.665; p = 0.013) and vascular invasion (HR 2.367; 95 % CI 1.270-4.410; p = 0.007) were independent prognostic factors for recurrence of non-viral HCC. Our data suggest that CTGF could be involved in oncogenic pathways promoting non-viral HCC associated with metabolic risk factors via induction of liver inflammation and is expected to be a novel HCC risk biomarker and potential therapeutic target.

  13. Pax2 regulates a fadd-dependent molecular switch that drives tissue fusion during eye development.

    PubMed

    Viringipurampeer, Ishaq A; Ferreira, Todd; DeMaria, Shannon; Yoon, Jookyung J; Shan, Xianghong; Moosajee, Mariya; Gregory-Evans, Kevin; Ngai, John; Gregory-Evans, Cheryl Y

    2012-05-15

    Tissue fusion is an essential morphogenetic mechanism in development, playing a fundamental role in developing neural tube, palate and the optic fissure. Disruption of genes associated with the tissue fusion can lead to congenital malformations, such as spina bifida, cleft lip/palate and ocular coloboma. For instance, the Pax2 transcription factor is required for optic fissure closure, although the mechanism of Pax2 action leading to tissue fusion remains elusive. This lack of information defining how transcription factors drive tissue morphogenesis at the cellular level is hampering new treatments options. Through loss- and gain-of-function analysis, we now establish that pax2 in combination with vax2 directly regulate the fas-associated death domain (fadd) gene. In the presence of fadd, cell proliferation is restricted in the developing eye through a caspase-dependent pathway. However, the loss of fadd results in a proliferation defect and concomitant activation of the necroptosis pathway through RIP1/RIP3 activity, leading to an abnormal open fissure. Inhibition of RIP1 with the small molecule drug necrostatin-1 rescues the pax2 eye fusion defect, thereby overcoming the underlying genetic defect. Thus, fadd has an essential physiological function in protecting the developing optic fissure neuroepithelium from RIP3-dependent necroptosis. This study demonstrates the molecular hierarchies that regulate a cellular switch between proliferation and the apoptotic and necroptotic cell death pathways, which in combination drive tissue morphogenesis. Furthermore, our data suggest that future therapeutic strategies may be based on small molecule drugs that can bypass the gene defects causing common congenital tissue fusion defects.

  14. ABFs, a family of ABA-responsive element binding factors.

    PubMed

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  15. Modification of tissue-factor mRNA and protein response to thrombin and interleukin 1 by high glucose in cultured human endothelial cells.

    PubMed

    Boeri, D; Almus, F E; Maiello, M; Cagliero, E; Rao, L V; Lorenzi, M

    1989-02-01

    Because diabetic vascular disease is accompanied by a state of hypercoagulability, manifested by increased thrombin activity and foci of intravascular coagulation, we investigated whether a specific procoagulant property of the endothelium--production and surface expression of tissue factor--is modified by elevated glucose concentrations. In unperturbed human vascular endothelial cells, tissue factor mRNA and expression of the functional protein were undetectable and were not induced by 10-12 days of exposure to 30 mM glucose. In thrombin-stimulated cultures, tissue-factor expression was related inversely to cellular density, with confluent cultures producing (per 10(5) cells) half the amount of tissue factor measured in sparse cultures. Cells exposed to high glucose and studied when cell number and thymidine incorporation were identical to control cells manifested increased tissue-factor mRNA level and functional protein production in response to thrombin (P = .002). This effect was not attributable to hypertonicity and was not observed after short exposure to high glucose. In contrast, the tissue-factor response to interleukin 1, a modulator of endothelial function in the context of host defense, was decreased in cells cultured in high glucose (P = .04). These findings indicate that exposure to high glucose can alter tissue-factor gene expression in perturbed vascular endothelium. The reciprocal effects of high glucose on the tissue-factor response to thrombin and interleukin 1 points to different pathways of tissue-factor stimulation by the two agents and suggests functional consequences pertinent to the increased thrombin activity and compromised host-defense mechanisms observed in diabetes.

  16. Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus).

    PubMed

    Yang, Chang Geng; Wang, Xian Li; Tian, Juan; Liu, Wei; Wu, Fan; Jiang, Ming; Wen, Hua

    2013-09-15

    Quantitative real-time reverse-transcriptase polymerase chain reaction (RT-qPCR) has been used frequently to study gene expression related to fish immunology. In such studies, a stable reference gene should be selected to correct the expression of the target gene. In this study, seven candidate reference genes (glyceraldehyde-3-phosphate dehydrogenase (GADPH), ubiquitin-conjugating enzyme (UBCE), 18S ribosomal RNA (18S rRNA), beta-2-microglobulin (B2M), elongation factor 1 alpha (EF1A), tubulin alpha chain-like (TUBA) and beta actin (ACTB)), were selected to analyze their stability and normalization in seven tissues (liver, spleen, kidney, brain, heart, muscle and intestine) of Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae or Streptococcus iniae, respectively. The results showed that all the candidate reference genes exhibited tissue-dependent transcriptional variations. With PBS injection as a control, UBCE was the most stable and suitable single reference gene in the intestine, liver, brain, kidney, and spleen after S. iniae infection, and in the liver, kidney, and spleen after S. agalactiae infection. EF1A was the most suitable in heart and muscle after S. iniae or S. agalactiae infection. GADPH was the most suitable gene in intestine and brain after S. agalactiae infection. In normal conditions, UBCE and 18S rRNA were the most stably expressed genes across the various tissues. These results showed that for RT-qPCR analysis of tilapia, selecting two or more reference genes may be more suitable for cross-tissue analysis of gene expression. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Differential gene expression and alternative splicing between diploid and tetraploid watermelon.

    PubMed

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A; Vajja, Venkata G; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K; Levi, Amnon; Wehner, Todd; Reddy, Umesh K

    2015-03-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers.

    PubMed

    Ruh, Anelice Calixto; Frigo, Lúcio; Cavalcanti, Marcos Fernando Xisto Braga; Svidnicki, Paulo; Vicari, Viviane Nogaroto; Lopes-Martins, Rodrigo Alvaro Brandão; Leal Junior, Ernesto Cesar Pinto; De Isla, Natalia; Diomede, Francesca; Trubiani, Oriana; Favero, Giovani Marino

    2018-01-01

    Pressure ulcers (PU) are wounds located mainly on bone surfaces where the tissue under pressure suffers ischemia leading to cellular lesion and necrosis , its causes and the healing process depend on several factors. The aim of this study was evaluating the gene expression of inflammatory/reparative factors: IL6, TNF, VEGF, and TGF, which take part in the tissue healing process under effects of low-level laser therapy (LLLT). In order to perform lesion area analysis, PUs were photographed and computer analyzed. Biochemical analysis was performed sa.mpling ulcer border tissue obtained through biopsy before and after laser therapy and quantitative real-time PCR (qRT-PCR) analysis. The study comprised eight individuals, mean age sixty-two years old, and sacroiliac and calcaneous PU, classified as degree III and IV according to the National Pressure Ulcer Advisory Panel (NPUAP). PUs were irradiated with low-level laser (InGaAIP, 100 mW, 660 nm), energy density 2 J/cm 2 , once a day, with intervals of 24 h, totaling 12 applications. The lesion area analysis revealed averaged improvement of the granulation tissue size up to 50% from pre- to post-treatment. qRT-PCR analysis revealed that IL6 values were not significantly different before and after treatment, TNF gene expression was reduced, and VEFG and TGF-β gene expression increased after treatment. After LLLT, wounds presented improvement in gross appearance, with increase in factors VEFG and TGF-β, and reduction of TNF; despite our promising results, they have to be analyzed carefully as this study did not have a control group.

  19. Toll-like receptor 6 and connective tissue growth factor are significantly upregulated in mitomycin-C-treated urothelial carcinoma cells under hydrostatic pressure stimulation.

    PubMed

    Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Chen, Wen-Yih; Ruaan, Ruoh-Chyu; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng

    2014-06-01

    Urothelial carcinoma (UC) is the most common histologic subtype of bladder cancer. The administration of mitomycin C (MMC) into the bladder after transurethral resection of the bladder tumor (TURBT) is a common treatment strategy for preventing recurrence after surgery. We previously applied hydrostatic pressure combined with MMC in UC cells and found that hydrostatic pressure synergistically enhanced MMC-induced UC cell apoptosis through the Fas/FasL pathways. To understand the alteration of gene expressions in UC cells caused by hydrostatic pressure and MMC, oligonucleotide microarray was used to explore all the differentially expressed genes. After bioinformatics analysis and gene annotation, Toll-like receptor 6 (TLR6) and connective tissue growth factor (CTGF) showed significant upregulation among altered genes, and their gene and protein expressions with each treatment of UC cells were validated by quantitative real-time PCR and immunoblotting. Under treatment with MMC and hydrostatic pressure, UC cells showed increasing apoptosis using extrinsic pathways through upregulation of TLR6 and CTGF.

  20. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis

    PubMed Central

    Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.

    2002-01-01

    Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730

  1. Genome-Wide Analysis Using Exon Arrays Demonstrates an Important Role for Expression of Extra-Cellular Matrix, Fibrotic Control and Tissue Remodelling Genes in Dupuytren's Disease

    PubMed Central

    Ham, Seungmin; de Kretser, David; Southwick, Graeme; Sprung, Carl N.

    2013-01-01

    Dupuytren's disease (DD) is a classic example of pathological fibrosis which results in a debilitating disorder affecting a large sector of the human population. It is characterized by excessive local proliferation of fibroblasts and over-production of collagen and other components of extracellular matrix (ECM) in the palmar fascia. The fibrosis progressively results in contracture of elements between the palmar fascia and skin causing flexion deformity or clawing of the fingers and a severe reduction in hand function. While much is known about the pathogenesis and surgical treatment of DD, little is known about the factors that cause its onset and progression, despite many years of research. Gene expression patterns in DD patients now offers the potential to identify genes that direct the pathogenesis of DD. In this study we used primary cultures of fibroblasts derived from excisional biopsies of fibrotic tissue from DD patients to compare the gene expression profiles on a genome-wide basis with normal control fibroblasts. Our investigations have identified genes that may be involved with DD pathogenesis including some which are directly relevant to fibrosis. In particular, these include significantly reduced expression levels of three matrix metallopeptidases (MMP1, MMP3, MMP16), follistatin, and STAT1, and significantly increased expression levels of fibroblast growth factors (FGF9, FGF11), a number of collagen genes and other ECM genes in DD patient samples. Many of these gene products are known to be involved in fibrosis, tumour formation and in the normal processes of tissue remodelling. In addition, alternative splicing was identified in some DD associated genes. These highly sensitive genomic investigations provide new insight into the molecular mechanisms that may underpin the development and progression of DD. PMID:23554969

  2. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity

    PubMed Central

    Lavado, Ramon; Bammler, Theo K.; Gallagher, Evan P.; Stapleton, Patricia L.; Beyer, Richard P.; Farin, Federico M.; Hardiman, Gary; Schlenk, Daniel

    2015-01-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  3. Pre-Treatment of Human Mesenchymal Stem Cells With Inflammatory Factors or Hypoxia Does Not Influence Migration to Osteoarthritic Cartilage and Synovium.

    PubMed

    Leijs, Maarten J C; van Buul, Gerben M; Verhaar, Jan A N; Hoogduijn, Martin J; Bos, Pieter K; van Osch, Gerjo J V M

    2017-04-01

    Mesenchymal stem cells (MSCs) are promising candidates as a cell-based therapy for osteoarthritis (OA), although current results are modest. Pre-treatment of MSCs before application might improve their therapeutic efficacy. Pre-treatment of MSCs with inflammatory factors or hypoxia will improve their migration and adhesion capacities toward OA-affected tissues. Controlled laboratory study. We used real-time polymerase chain reaction to determine the effects of different fetal calf serum (FCS) batches, platelet lysate (PL), hypoxia, inflammatory factors, factors secreted by OA tissues, and OA synovial fluid (SF) on the expression of 12 genes encoding chemokine or adhesion receptors. Migration of MSCs toward factors secreted by OA tissues was studied in vitro, and attachment of injected MSCs was evaluated in vivo in healthy and OA knees of male Wistar rats. Different FCS batches, PL, or hypoxia did not influence the expression of the migration and adhesion receptor genes. Exposure to inflammatory factors altered the expression of CCR1, CCR4, CD44, PDGFRα, and PDGFRβ. MSCs migrated toward factors secreted by OA tissues in vitro. Neither pre-treatment with inflammatory factors nor the presence of OA influenced MSC migration in vitro or adhesion in vivo. Factors secreted by OA tissues increase MSC migration in vitro. In vivo, no difference in MSC adhesion was found between OA and healthy knees. Pre-treatment with inflammatory factors influenced the expression of migration and adhesion receptors of MSCs but not their migration in vitro or adhesion in vivo. To improve the therapeutic capacity of intra-articular injection of MSCs, they need to remain intra-articular for a longer period of time. Pre-treatment of MSCs with hypoxia or inflammatory factors did not increase the migration or adhesion capacity of MSCs and will therefore not likely prolong their intra-articular longevity. Alternative approaches to prolong the intra-articular presence of MSCs should be developed to increase the therapeutic effect of MSCs in OA.

  4. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yan; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Yu Lian

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat bodymore » nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.« less

  5. DNA methylation links genetics, fetal environment, and an unhealthy lifestyle to the development of type 2 diabetes.

    PubMed

    Nilsson, Emma; Ling, Charlotte

    2017-01-01

    Type 2 diabetes is a complex trait with both environmental and hereditary factors contributing to the overall pathogenesis. One link between genes, environment, and disease is epigenetics influencing gene transcription and, consequently, organ function. Genome-wide studies have shown altered DNA methylation in tissues important for glucose homeostasis including pancreas, liver, skeletal muscle, and adipose tissue from subjects with type 2 diabetes compared with nondiabetic controls. Factors predisposing for type 2 diabetes including an adverse intrauterine environment, increasing age, overweight, physical inactivity, a family history of the disease, and an unhealthy diet have all shown to affect the DNA methylation pattern in target tissues for insulin resistance in humans. Epigenetics including DNA methylation may therefore improve our understanding of the type 2 diabetes pathogenesis, contribute to development of novel treatments, and be a useful tool to identify individuals at risk for developing the disease.

  6. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci

    PubMed Central

    Ju, Jin Hyun; Crystal, Ronald G.

    2017-01-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL. PMID:28505156

  7. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.

    PubMed

    Ju, Jin Hyun; Shenoy, Sushila A; Crystal, Ronald G; Mezey, Jason G

    2017-05-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL.

  8. The effect of dietary carbohydrate on genes for fatty acid synthase and inflammatory cytokines in adipose tissues from lean and obese subjects.

    PubMed

    Hudgins, Lisa C; Baday, Aline; Hellerstein, Marc K; Parker, Thomas S; Levine, Daniel M; Seidman, Cynthia E; Neese, Richard A; Tremaroli, Jolanta D; Hirsch, Jules

    2008-04-01

    Hepatic de novo lipogenesis (DNL) is markedly stimulated in humans by low-fat diets enriched in simple sugars. However, the dietary responsiveness of the key enzyme controlling DNL in human adipose tissue, fatty acid synthase (FAS), is uncertain. Adipose tissue mRNA for FAS is increased in lean and obese subjects when hepatic DNL is elevated by a eucaloric, low-fat, high-sugar diet. Twelve lean and seven obese volunteers were given two eucaloric diets (10% vs. 30% fat; 75% vs. 55% carbohydrate; sugar/starch 60/40) each for 2 weeks by a random-order cross-over design. FAS mRNA in abdominal and gluteal adipose tissues was compared to hepatic DNL measured in serum by isotopic and nonisotopic methods. Adipose tissue mRNA for tumor necrosis factor-alpha and IL-6, which are inflammatory cytokines that modulate DNL, was also assayed. The low-fat high-sugar diet induced a 4-fold increase in maximum hepatic DNL (P<.001) but only a 1.3-fold increase in adipose tissue FAS mRNA (P=.029) and no change in cytokine mRNA. There was a borderline significant positive correlation between changes in FAS mRNA and hepatic DNL (P=.039). Compared to lean subjects, obese subjects had lower levels of FAS mRNA and higher levels of cytokine mRNA (P<.001). The results suggest that key elements of human adipose tissue DNL are less responsive to dietary carbohydrate than is hepatic DNL and may be regulated by diet-independent factors. Irrespective of diet, there is reduced expression of the FAS gene and increased expression of cytokine genes in adipose tissues of obese subjects.

  9. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model.

    PubMed

    Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M

    1990-09-01

    The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.

  10. Cereal transformation through particle bombardment

    NASA Technical Reports Server (NTRS)

    Casas, A. M.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    The review focuses on experiments that lead to stable transformation in cereals using microprojectile bombardment. The discussion of biological factors that affect transformation examines target tissues and vector systems for gene transfer. The vector systems include reporter genes, selectable markers, genes of agronomic interest, and vector constructions. Other topics include physical parameters that affect DNA delivery, selection of stably transformed cells and plant regeneration, and analysis of gene expression and transmission to the progeny.

  11. BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma.

    PubMed

    Kertes, Darlene A; Bhatt, Samarth S; Kamin, Hayley S; Hughes, David A; Rodney, Nicole C; Mulligan, Connie J

    2017-01-01

    The BDNF gene codes for brain-derived neurotrophic factor, a growth factor involved in neural development, cell differentiation, and synaptic plasticity. Present in both the brain and periphery, BDNF plays critical roles throughout the body and is essential for placental and fetal development. Rodent studies show that early life stress, including prenatal stress, broadly alters BDNF methylation, with presumed changes in gene expression. No studies have assessed prenatal exposure to maternal traumatic stress and BDNF methylation in humans. This study examined associations of prenatal exposure to maternal stress and BDNF methylation at CpG sites across the BDNF gene. Among 24 mothers and newborns in the eastern Democratic Republic of Congo, a region with extreme conflict and violence to women, maternal experiences of war trauma and chronic stress were associated with BDNF methylation in umbilical cord blood, placental tissue, and maternal venous blood. Associations of maternal stress and BDNF methylation showed high tissue specificity. The majority of significant associations were observed in putative transcription factor binding regions. This is the first study in humans to examine BDNF methylation in relation to prenatal exposure to maternal stress in three tissues simultaneously and the first in any mammalian species to report associations of prenatal stress and BDNF methylation in placental tissue. The findings add to the growing body of evidence highlighting the importance of considering epigenetic effects when examining the impacts of trauma and stress, not only for adults but also for offspring exposed via effects transmitted before birth.

  12. A proximal promoter region of Arabidopsis DREB2C confers tissue-specific expression under heat stress.

    PubMed

    Chen, Huan; Je, Jihyun; Song, Chieun; Hwang, Jung Eun; Lim, Chae Oh

    2012-09-01

    The dehydration-responsive element-binding factor 2C (DREB2C) is a member of the CBF/DREB subfamily of proteins, which contains a single APETALA2/Ethylene responsive element-binding factor (AP2/ERF) domain. To identify the expression pattern of the DREB2C gene, which contains multiple transcription cis-regulatory elements in its promoter, an approximately 1.4 kb upstream DREB2C sequence was fused to the β-glucuronidase reporter gene (GUS) and the recombinant p1244 construct was transformed into Arabidopsis thaliana (L.) Heynh. The promoter of the gene directed prominent GUS activity in the vasculature in diverse young dividing tissues. Upon applying heat stress (HS), GUS staining was also enhanced in the vasculature of the growing tissues. Analysis of a series of 5'-deletions of the DREB2C promoter revealed that a proximal upstream sequence sufficient for the tissue-specific spatial and temporal induction of GUS expression by HS is localized in the promoter region between -204 and -34 bps relative to the transcriptional start site. Furthermore, electrophoretic mobility shift assay (EMSA) demonstrated that nuclear protein binding activities specific to a -120 to -32 bp promoter fragment increased after HS. These results indicate that the TATA-proximal region and some latent trans-acting factors may cooperate in HS-induced activation of the Arabidopsis DREB2C promoter. © 2012 Institute of Botany, Chinese Academy of Sciences.

  13. Comparative Transcriptome Analysis of Chinary, Assamica and Cambod tea (Camellia sinensis) Types during Development and Seasonal Variation using RNA-seq Technology

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Chawla, Vandna; Sharma, Eshita; Mahajan, Pallavi; Shankar, Ravi; Yadav, Sudesh Kumar

    2016-11-01

    Tea quality and yield is influenced by various factors including developmental tissue, seasonal variation and cultivar type. Here, the molecular basis of these factors was investigated in three tea cultivars namely, Him Sphurti (H), TV23 (T), and UPASI-9 (U) using RNA-seq. Seasonal variation in these cultivars was studied during active (A), mid-dormant (MD), dormant (D) and mid-active (MA) stages in two developmental tissues viz. young and old leaf. Development appears to affect gene expression more than the seasonal variation and cultivar types. Further, detailed transcript and metabolite profiling has identified genes such as F3‧H, F3‧5‧H, FLS, DFR, LAR, ANR and ANS of catechin biosynthesis, while MXMT, SAMS, TCS and XDH of caffeine biosynthesis/catabolism as key regulators during development and seasonal variation among three different tea cultivars. In addition, expression analysis of genes related to phytohormones such as ABA, GA, ethylene and auxin has suggested their role in developmental tissues during seasonal variation in tea cultivars. Moreover, differential expression of genes involved in histone and DNA modification further suggests role of epigenetic mechanism in coordinating global gene expression during developmental and seasonal variation in tea. Our findings provide insights into global transcriptional reprogramming associated with development and seasonal variation in tea.

  14. Comparative Transcriptome Analysis of Chinary, Assamica and Cambod tea (Camellia sinensis) Types during Development and Seasonal Variation using RNA-seq Technology.

    PubMed

    Kumar, Ajay; Chawla, Vandna; Sharma, Eshita; Mahajan, Pallavi; Shankar, Ravi; Yadav, Sudesh Kumar

    2016-11-17

    Tea quality and yield is influenced by various factors including developmental tissue, seasonal variation and cultivar type. Here, the molecular basis of these factors was investigated in three tea cultivars namely, Him Sphurti (H), TV23 (T), and UPASI-9 (U) using RNA-seq. Seasonal variation in these cultivars was studied during active (A), mid-dormant (MD), dormant (D) and mid-active (MA) stages in two developmental tissues viz. young and old leaf. Development appears to affect gene expression more than the seasonal variation and cultivar types. Further, detailed transcript and metabolite profiling has identified genes such as F3'H, F3'5'H, FLS, DFR, LAR, ANR and ANS of catechin biosynthesis, while MXMT, SAMS, TCS and XDH of caffeine biosynthesis/catabolism as key regulators during development and seasonal variation among three different tea cultivars. In addition, expression analysis of genes related to phytohormones such as ABA, GA, ethylene and auxin has suggested their role in developmental tissues during seasonal variation in tea cultivars. Moreover, differential expression of genes involved in histone and DNA modification further suggests role of epigenetic mechanism in coordinating global gene expression during developmental and seasonal variation in tea. Our findings provide insights into global transcriptional reprogramming associated with development and seasonal variation in tea.

  15. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-03-07

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.

  16. bmp15l, figla, smc1bl, and larp6l are preferentially expressed in germ cells in Atlantic salmon (Salmo salar L.).

    PubMed

    Kleppe, Lene; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Andersson, Eva; Juanchich, Amélie; Wargelius, Anna

    2017-01-01

    Atlantic salmon is a valuable commercial aquaculture species that would benefit economically and environmentally by controlling precocious puberty and preventing escapees from reproducing with wild populations. One solution to both these challenges is the production of sterile individuals by inhibiting the formation of germ cells, but achieving this requires more information on the specific factors that control germ cell formation. Here, we identified and characterized novel factors that are preferentially expressed in Atlantic salmon germ cells by screening for gonad-specific genes using available adult multi-tissue transcriptomes. We excluded genes with expression in tissues other than gonads based on quantity of reads, and then a subset of genes was selected for verification in a multi-tissue PCR screen. Four gonad-specific genes (bmp15l, figla, smc1bl, and larp6l) were chosen for further characterization, namely: germ cell specificity, investigated by comparing mRNA abundance in wild-type and germ cell-free gonads by quantitative real-time PCR, and cellular location, visualized by in situ hybridization. All four genes were expressed in both testis and ovary, and preferentially within the germ cells of both sexes. These genes may be essential players in salmon germ cell development, and could be important for future studies aiming to understand and control reproduction. Mol. Reprod. Dev. 84: 76-87, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells.

    PubMed

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    PubMed

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  19. Expression of epicardial adipose tissue thermogenic genes in patients with reduced and preserved ejection fraction heart failure.

    PubMed

    Pérez-Belmonte, Luis M; Moreno-Santos, Inmaculada; Gómez-Doblas, Juan J; García-Pinilla, José M; Morcillo-Hidalgo, Luis; Garrido-Sánchez, Lourdes; Santiago-Fernández, Concepción; Crespo-Leiro, María G; Carrasco-Chinchilla, Fernando; Sánchez-Fernández, Pedro L; de Teresa-Galván, Eduardo; Jiménez-Navarro, Manuel

    2017-01-01

    Epicardial adipose tissue has been proposed to participate in the pathogenesis of heart failure. The aim of our study was to assess the expression of thermogenic genes (Uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and PR-domain-missing 16 (PRDM16) in epicardial adipose tissue in patients with heart failure, stablishing the difference according to left ventricular ejection fraction (reduced or preserved). Among the 75 patients in our study, 42.7% (n=32) had reduced left ventricular ejection fraction. UCP1, PGC1α and PRDM16 mRNA in EAT were significantly lower in patients with reduced left ventricular ejection fraction. Multiple regression analysis showed that age, male gender, body max index, presence of obesity, type-2-diabetes mellitus, hypertension and coronary artery disease and left ventricular ejection fraction were associated with the expression levels of UCP1, PGC1α and PRDM16 mRNA. Thermogenic genes expressions in epicardial adipose tissue (UCP1: OR 0.617, 95%CI 0.103-0.989, p=0.042; PGC1α: OR 0.416, 95%CI 0.171-0.912, p=0.031; PRDM16: OR 0.643, 95%CI 0.116-0.997, p=0.044) were showed as protective factors against the presence of heart failure with reduced left ventricular ejection fraction, and age (OR 1.643, 95%CI 1.001-3.143, p=0.026), presence of coronary artery disease (OR 6.743, 95%CI 1.932-15.301, p<0.001) and type-2-diabetes mellitus (OR 4.031, 95%CI 1.099-7.231, p<0.001) were associated as risk factors. The adequate expression of thermogenic genes has been shown as possible protective factors against heart failure with reduced ejection fraction, suggesting that a loss of functional epicardial adipose tissue brown-like features would participate in a deleterious manner on heart metabolism. Thermogenic genes could represent a future novel therapeutic target in heart failure.

  20. Promoter methylation, mRNA expression of goat tumor‑associated genes and mRNA expression of DNA methyltransferase in enzootic nasal tumors.

    PubMed

    Quan, Zifang; Ye, Ni; Hao, Zhongxiang; Wen, Caifang; Liao, Hong; Zhang, Manli; Luo, Lu; Cao, Sanjie; Wen, Xintian; Wu, Rui; Yan, Qigui

    2015-10-01

    The aim of the present study was to investigate the promoter methylation status and mRNA expression of goat tumor‑associated genes, in addition to the mRNA expression of DNA methyltransferase genes in enzootic nasal tumors (ENT). Methylation‑specific polymerase chain reaction and SYBR Green reverse transcription‑quantitative polymerase chain reaction were used to detect the methylation status and the mRNA expression levels of DNA methyltransferases (DNMTs), O6‑methylguanine‑DNA methyltransferase (MGMT), the tumor suppressor genes P73, P53, GADD45G, CHFR and THBS1, the transcription factor CEBPA, the proto‑oncogenes KRAS, NRAS and C‑myc and EGFR in 24 nasal tumor tissue samples and 20 normal nasal epithelia tissue samples. The associations between promoter methylation and DNMT, and promoter methylation and mRNA expression of the genes were analyzed. The results indicated that the expression levels of DNMT1 increased by 56% compared with those in normal nasal epithelial tissues, while MGMT, DNMT3a and DNMT3b had similar expression levels in the two tissue types. The expression levels of P53 decreased by 36.8% and those of THBS1 by 43%, while C‑myc increased by 2.9‑fold and CEBPA by 2‑fold compared with that in normal nasal epithelial tissues. GADD45G, P73, CHFR and NRAS were observed to have similar expression levels in the two tissue types. However, no expression was observed for EGFR and KRAS. CHFR, GADD45G and THBS1 were identified to be methylated in tumor suppressor genes. The methylation expression rate of the CHFR gene was ~60% in the two tissue types and for THBS1 it was 100% in the nasal tumor tissues as opposed to 20% in the normal nasal epithelial tissues. The exhaustive methylation expression rate of GADD45G was 62.5% and the partial methylation expression rate was 37.5% in nasal tumor tissue, while no methylation was observed in normal nasal epithelial tissues. C‑myc was the only gene identified to be methylated amongst proto‑oncogenes. The methylation expression rate of C‑myc was 87.5% in nasal tumor tissues and 15% in normal nasal epithelial tissues. The methylation expression rate of CEBPA was 100% in nasal tumor tissues and 40% in normal nasal epithelial tissues. The methylation expression rate of the EGFR gene was ~80% in the two tissues. In summary, the present study identified abnormal methylation of the C‑myc, CEBPA, GADD45G and THBS1 genes in nasal tumor tissues. The expression levels of DNMT1, C‑myc and CEBPA were upregulated and the expression of P53 and THBSI were downregulated in nasal tumor tissues, with a significant difference between the two groups (P<0.05). Therefore, it is suggested that these six genes may be used as diagnostic marker candidates for ENT. The results may serve as a foundation for screening of tumor‑specific markers for early diagnosis of ENT and further investigate the epigenetic mechanisms of enzootic nasal tumor virus (ENTV)‑induced nasal epithelium cell carcinoma.

  1. Maternal nutrient restriction in early gestation upregulates myogenic genes in cattle fetal muscle tissue

    USDA-ARS?s Scientific Manuscript database

    Prenatal myogenesis is a critical factor in determining the muscle growth potential of cattle. We hypothesized that maternal nutrient restriction during early gestation would alter the transcriptome of fetal primordial muscle tissue in cattle. A total of 14 Angus-cross heifers were estrus synchroniz...

  2. Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation

    USDA-ARS?s Scientific Manuscript database

    Unlike with other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organiz...

  3. Fli1 and Ets1 have distinct roles in connective tissue growth factor/CCN2 gene regulation and induction of the profibrotic gene program.

    PubMed

    Nakerakanti, Sashidhar S; Kapanadze, Bagrat; Yamasaki, Masaomi; Markiewicz, Margaret; Trojanowska, Maria

    2006-09-01

    CCN2 (connective tissue growth factor), an important regulator of angiogenesis, chondrogenesis, and wound healing, is overexpressed in a majority of fibrotic diseases and in various tumors. This study investigated regulation of CCN2 gene expression by Ets family of transcription factors, focusing on two members, Fli1 and Ets1, with deregulated expression during fibrosis and tumorigenesis. We show that Ets1 and Fli1 have opposite effects on CCN2 gene expression. Ets1 functions as an activator of CCN2 transcription, whereas Fli1 acts as a repressor. A functional Ets binding site was mapped at -114 within the CCN2 promoter. This site not only mediates stimulation by Ets factors, including Ets1, Ets2, and GABPalpha/beta, but is also required for the transforming growth factor (TGF)-beta response. The contrasting functions of Ets1 and Fli1 in regulation of the CCN2 gene were confirmed by suppressing their endogenous levels using adenoviral vectors expressing specific small interfering RNAs. Additional experiments using chromatin immunoprecipitation assays have revealed that in fibroblasts both Ets1 and Fli1 occupy the CCN2 promoter. TGF-beta stimulation resulted in displacement of Fli1 from the CCN2 promoter and a transient inhibition of Fli1 synthesis. Moreover, reduction of Fli1 expression resulted in up-regulation of COL1A1 and COL1A2 genes and down-regulation of the MMP1 gene. Thus, inhibition of Fli1 recapitulated some of the key effects of TGF-beta, suggesting that Fli1 suppression is involved in activation of the profibrotic gene program in fibroblasts. On the other hand, activation of the CCN2 gene downstream of Ets1 is consistent with its role in angiogenesis and extracellular matrix remodeling. This study strongly supports a critical role of Fli1 and Ets1 in the pathological extracellular matrix regulation during fibrosis and cancer.

  4. Characteristics of yak platelet derived growth factors-alpha gene and expression in brain tissues.

    PubMed

    Huang, Zhenhua; Pan, Yangyang; Liu, Penggang; Yu, Sijiu; Cui, Yan

    2017-05-29

    Platelet derived growth factors (PDGFs) are key components of autocrine and paracrine signaling, both of which play important roles in mammalian developmental processes. PDGF expression levels also relate to oxygen levels. The characteristics of yak PDGFs, which are indigenous to hypoxic environments, have not been clearly described until the current study. We amplified the open reading frame encoding yak (Bos grunniens) platelet derived growth factor-a (PDGFA) from a yak skin tissue cDNA library by reverse transcriptase polymerase chain reaction (PCR) using specific primers and Sanger dideoxy sequencing. Expression of PDGFA mRNA in different portions of yak brain tissue (cerebrum, cerebellum, hippocampus, and spinal cord) was detected by quantitative real-time PCR (qRT-PCR). PDGFA protein expression levels and its location in different portions of the yak brain were evaluated by western blot and immunohistochemistry. We obtained a yak PDGFA 755 bp cDNA gene fragment containing a 636 bp open reading frame, encoding 211 amino acids (GenBank: KU851801). Phylogenetic analysis shows yak PDGFA to be well conserved, having 98.1% DNA sequence identity to homologous Bubalus bubalus and Bos taurus PDGFA genes. However, eight nucleotides in the yak DNA sequence and four amino acids in the yak protein sequence differ from the other two species. PDGFA is widely expressed in yak brain tissue, and furthermore, PDGFA expression in the cerebrum and cerebellum are higher than in the hippocampus and spinal cord (p > 0.05). PDGFA was observed by immunohistochemistry in glial cells of the cerebrum, cerebellum, and hippocampus, as well as in pyramidal cells of the cerebrum, and Purkinje cell bodies of the hippocampus, but not in glial cells of the spinal cord. The PDGFA gene is well conserved in the animal kingdom; however, the yak PDGFA gene has unique characteristics and brain expression patterns specific to this high elevation species.

  5. Biomimetic 3D tissue printing for soft tissue regeneration.

    PubMed

    Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo

    2015-09-01

    Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Histone-Targeted Nucleic Acid Delivery for Tissue Regenerative Applications

    NASA Astrophysics Data System (ADS)

    Munsell, Erik V.

    Nucleic acid delivery has garnered significant attention as an innovative therapeutic approach for treating a wide variety of diseases. However, the design of non-viral delivery systems that negotiate efficient intracellular trafficking and nuclear entry represents a significant challenge. Overcoming these hurdles requires a combination of well-controlled materials approaches with techniques to understand and direct cellular delivery. Recent investigations have highlighted the roles histone tail sequences play in directing nuclear delivery and retention, as well as activating DNA transcription. We established the ability to recapitulate these natural histone tail activities within non-viral gene nanocarriers, driving gene transfer/expression by enabling effective navigation to the nucleus via retrograde vesicular trafficking. A unique finding of this histone-targeted approach was that nanocarriers gained enhanced access to the nucleus during mitosis. The work described in this dissertation builds off of these fundamental insights to facilitate the translation of this histone-targeted delivery approach toward regenerative medicine applications. During native tissue repair, actively proliferating mesenchymal stem cells (MSCs) respond to a complex series of growth factor signals that direct their differentiation. Accordingly, the investigations in this work focused on utilizing the histone-targeted nanocarriers to enhance osteogenic growth factor gene transfer in dividing MSCs leading to augmented MSC chondrogenic differentiation, an essential first step in skeletal tissue repair. Concurrently, additional studies focused on optimizing the histone-targeted nanocarrier design strategy to enable improved plasmid DNA (pDNA) binding stability and tunable harnessing of native cellular processing pathways for enhanced gene transfer. Overall, the work presented herein demonstrated substantial increases in growth factor expression following histone-targeted gene transfer. This enhanced expression enabled more robust levels of chondrogenesis in MSCs than treatments with equivalent amounts of recombinant growth factor protein. Additionally, nanocarrier design optimization provided effective pDNA condensation and controllable interactions with native histone effectors. Importantly, these optimized nanocarriers conferred stable nanoplex formation and maintained transfection efficiency under physiologically relevant conditions. Taken together, these advances may help drive the clinical translation of histone-targeted nucleic acid delivery strategies for the regeneration of damaged tissue following traumatic injury.

  7. Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master.

    PubMed

    Sartorelli, Vittorio; Puri, Pier Lorenzo

    2018-05-19

    Since its discovery as a skeletal muscle-specific transcription factor able to reprogram somatic cells into differentiated myofibers, MyoD has provided an instructive model to understand how transcription factors regulate gene expression. Reciprocally, studies of other transcriptional regulators have provided testable hypotheses to further understand how MyoD activates transcription. Using MyoD as a reference, in this review, we discuss the similarities and differences in the regulatory mechanisms employed by tissue-specific transcription factors to access DNA and regulate gene expression by cooperatively shaping the chromatin landscape within the context of cellular differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Current concepts in periodontal bioengineering

    PubMed Central

    Taba, M.; Jin, Q.; Sugai, J.V.; Giannobile, W.V.

    2008-01-01

    Repair of tooth supporting alveolar bone defects caused by periodontal and peri-implant tissue destruction is a major goal of reconstructive therapy. Oral and craniofacial tissue engineering has been achieved with limited success by the utilization of a variety of approaches such as cell-occlusive barrier membranes, bone substitutes and autogenous block grafting techniques. Signaling molecules such as growth factors have been used to restore lost tooth support because of damage by periodontal disease or trauma. This paper will review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Several different polymer delivery systems that aid in the targeting of proteins, genes and cells to periodontal and peri-implant defects will be highlighted. Results from preclinical and clinical trials will be reviewed using the topical application of bone morphogenetic proteins (BMP-2 and BMP-7) and platelet-derived growth factor-BB (PDGF) for periodontal and peri-implant regeneration. The paper concludes with recent research on the use of ex vivo and in vivo gene delivery strategies via gene therapy vectors encoding growth promoting and inhibiting molecules (PDGF, BMP, noggin and others) to regenerate periodontal structures including bone, periodontal ligament and cementum. PMID:16238610

  9. Expression between African American and Caucasian Prostate Cancer Tissue Reveals that Stroma is the Site of Aggressive Changes

    PubMed Central

    Kinseth, Matthew A.; Jia, Zhenyu; Rahmatpanah, Farahnaz; Sawyers, Anne; Sutton, Manuel; Wang-Rodriguez, Jessica; Mercola, Dan; McGuire, Kathleen L.

    2013-01-01

    In prostate cancer, race/ethnicity is the highest risk factor after adjusting for age. African Americans have more aggressive tumors at every clinical stage of the disease, resulting in poorer prognosis and increased mortality. A major barrier to identifying crucial gene activity differences is heterogeneity, including tissue composition variation intrinsic to the histology of prostate cancer. We hypothesized differences in gene expression in specific tissue types would reveal mechanisms involved in the racial disparities of prostate cancer. We examined seventeen pairs of arrays for African Americans and Caucasians that were formed by closely matching the samples based on the known tissue type composition of the tumors. Using pair wise T-test we found significantly altered gene expression between African Americans and Caucasians. Independently, we performed multiple linear regression analyses to associate gene expression with race considering variation in percent tumor and stroma tissue. The majority of differentially expressed genes were associated with tumor-adjacent stroma rather than tumor tissue. Extracellular matrix, Integrin family and signaling mediators of the epithelial-to-mesenchymal transition pathways were all down regulated in stroma of African Americans. Using MetaCore (GeneGo Inc.) analysis, we observed that 35% of significant (p < 10-3) pathways identified EMT and 25% identified immune response pathways especially for Interleukins -2, -4, -5, -6, -7, -10, -13, -15 and -22 as the major changes. Our studies reveal that altered immune and EMT processes in tumor-adjacent stroma may be responsible for the aggressive nature of prostate cancer in African Americans. PMID:23754304

  10. Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels

    PubMed Central

    Sadasivam, Devendran A.; Huang, Der-Hwa

    2016-01-01

    Pluripotent stem cells often adopt a unique developmental program while retaining certain flexibility. The molecular basis of such properties remains unclear. Using differentiation of pluripotent Drosophila imaginal tissues as assays, we examined the contribution of epigenetic factors in ectopic activation of Hox genes. We found that over-expression of Trithorax H3K4 methyltransferase can induce ectopic adult appendages by selectively activating the Hox genes Ultrabithorax and Sex comb reduced in wing and leg discs, respectively. This tissue-specific inducibility correlates with the presence of paused RNA polymerase II in the promoter-proximal region of these genes. Although the Antennapedia promoter is paused in eye-antenna discs, it cannot be induced by Trx without a reduction in histone variants or their chaperones, suggesting additional control by the nucleosomal architecture. Lineage tracing and pulse-chase experiments revealed that the active state of Hox genes is maintained substantially longer in mutants deficient for HIRA, a chaperone for the H3.3 variant. In addition, both HIRA and H3.3 appeared to act cooperatively with the Polycomb group of epigenetic repressors. These results support the involvement of H3.3-mediated nucleosome turnover in restoring the repressed state. We propose a regulatory framework integrating transcriptional pausing, histone modification, nucleosome architecture and turnover for cell lineage maintenance. PMID:26926299

  11. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling.

    PubMed

    Khan, Sumbul Jawed; Abidi, Syeda Nayab Fatima; Skinner, Andrea; Tian, Yuan; Smith-Bolton, Rachel K

    2017-07-01

    Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth.

  12. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling

    PubMed Central

    Skinner, Andrea; Tian, Yuan

    2017-01-01

    Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth. PMID:28753614

  13. Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon K; Fogarty, Zach; Larson, Melissa C; Cheville, John; Riska, Shaun; Baheti, Saurabh; Weber, Alexandra M; Nair, Asha A; Wang, Liang; O'Brien, Daniel; Davila, Jaime; Schaid, Daniel J; Thibodeau, Stephen N

    2017-10-17

    Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis -acting associations due to study limitations. While trans -eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans -eQTL associations are mediated by cis -regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis -mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans -eQTL associations that were significantly mediated by cis -regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B , and target trans -genes with known HNF response elements ( MIA2 , SRC , SEMA6A , KIF12 ). We additionally identified evidence of cis -acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1 . The majority of these cis -mediator relationships demonstrated trans -eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.

  14. Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System.

    PubMed

    Vallejos Baier, Raul; Picao-Osorio, Joao; Alonso, Claudio R

    2017-10-27

    Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, themore » ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.« less

  16. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici)

    PubMed Central

    Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh

    2018-01-01

    The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK), sigma factor binding protein1 (SIB1) and with other WRKY members including WRKY70, WRKY1, and WRKY40, to respond various biotic and abiotic stresses. The STRING results were further validated through Predicted Tomato Interactome Resource (PTIR) database. The CELLO2GO web server revealed the functional gene ontology annotation and protein subcellular localization, which predicted that SolyWRKY33 is involved in amelioration of biological stress (39.3%) and other metabolic processes (39.3%). The protein (SolyWRKY33) most probably located inside the nucleus (91.3%) with having transcription factor binding activity. We conclude that the defense response following the Fol challenge was accompanied by differential expression of the SolyWRKY4(↓), SolyWRKY33(↑) and SolyWRKY37(↑) transcripts. The biochemical changes are occupied by elicitation of H2O2 generation and accumulation and enhanced lignified tissues. PMID:29709017

  17. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici).

    PubMed

    Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh; Singh, Surendra

    2018-01-01

    The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK), sigma factor binding protein1 (SIB1) and with other WRKY members including WRKY70, WRKY1, and WRKY40, to respond various biotic and abiotic stresses. The STRING results were further validated through Predicted Tomato Interactome Resource (PTIR) database. The CELLO2GO web server revealed the functional gene ontology annotation and protein subcellular localization, which predicted that SolyWRKY33 is involved in amelioration of biological stress (39.3%) and other metabolic processes (39.3%). The protein (SolyWRKY33) most probably located inside the nucleus (91.3%) with having transcription factor binding activity. We conclude that the defense response following the Fol challenge was accompanied by differential expression of the SolyWRKY4(↓), SolyWRKY33(↑) and SolyWRKY37(↑) transcripts. The biochemical changes are occupied by elicitation of H2O2 generation and accumulation and enhanced lignified tissues.

  18. Methylation of tissue factor pathway inhibitor 2 as a prognostic biomarker for hepatocellular carcinoma after hepatectomy.

    PubMed

    Sun, Feng-Kai; Sun, Qi; Fan, Yu-Chen; Gao, Shuai; Zhao, Jing; Li, Feng; Jia, Yi-Bin; Liu, Chuan; Wang, Li-Yuan; Li, Xin-You; Ji, Xiang-Fen; Wang, Kai

    2016-02-01

    Methylation of tissue factor pathway inhibitor 2 (TFPI2) gene has been detected in hepatocellular carcinoma (HCC). However, the clinicopathologcial significance and prognostic value of TFPI2 methylation in HCC remains largely unknown. This study aimed to investigate the prognostic value of TFPI2 methylation in HCC after hepatectomy. Methylation status of TFPI2 gene was examined in 178 surgical specimens of HCC and 20 normal liver samples using methylation-specific polymerase chain reaction. Methylation of TFPI2 gene was detected in 44.9% (80 of 178) of primary HCC samples, 10.7% (19 of 178) of the corresponding non-tumorous liver samples, and 5.0% (1/20) of the normal liver samples. The mRNA concentrations of TFPI2 in primary HCC tissues were significantly lower than those in corresponding non-tumorous liver tissues and those in normal liver tissues. TFPI2 methylation was significantly associated with higher TNM stage. Patients with TFPI2 methylation demonstrated a significantly poorer prognosis than those without TFPI2 methylation for both overall survival and disease-free survival (P < 0.001, respectively). Multivariate analyses confirmed that TFPI2 methylation was an independent prognostic factor for both overall survival (P = 0.002) and disease-free survival (P = 0.000) in HCC after hepatectomy. Moreover, TFPI2 methylation was found to be the only independent predictor for early tumor recurrence of HCC after resection based on multivariate analysis (P = 0.002). Methylation of TFPI2 predicts high risk of advanced tumor stage, early tumor recurrence, and poor prognosis, and it could be a potential prognostic biomarker in patients with HCC after hepatectomy. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. The oncogenic gene fusion TMPRSS2: ERG is not a diagnostic or prognostic marker for ovarian cancer

    PubMed Central

    Huang, Lillian; Schauer, Isaiah G; Zhang, Jing; Mercado-Uribe, Imelda; Deavers, Michael T; Huang, Jiaoti; Liu, Jinsong

    2011-01-01

    TMPRSS2:ERG is a gene fusion resulting from the chromosomal rearrangement of the androgen-regulated TMPRSS2 gene and the ETS transcription factor ERG, leading to the over-expression of the oncogenic molecule ERG. This gene rearrangement has been found in approximately half of all prostate cancers and ERG overexpression is considered as a novel diagnostic marker for prostate carcinoma. However, little is known about the role of the TMPRSS2:ERG gene fusion in ovarian cancer. The purpose of this study was to test ERG expression in ovarian cancer and its potential as a diagnostic marker for ovarian carcinoma progression. A tissue microarray containing 180 ovarian cancer tissues of various pathological types and grades were examined by immunohistochemical analysis for expression of ERG. We also used 40 prostate carcinoma tissues and 40 normal tissues for comparison in parallel experiments. ERG-positive expression was detected in 40% of the prostate tumor cancer, as well as in internal positive control endothelial cells, confirming over-expression of ERG in prostate cancer at relatively the same rate observed by others. In contrast, all of the ovarian tumor patient tissues of varying histologic types were ERG-negative, despite some positivity in endothelial cells. These results suggest that the oncogenic gene fusion TMPRSS2:ERG does not occur in ovarian cancer relative to prostate cancer. Therefore, development of ERG expression profile would not be a useful diagnostic or prognostic marker for ovarian cancer patient screening. PMID:22076164

  20. The oncogenic gene fusion TMPRSS2: ERG is not a diagnostic or prognostic marker for ovarian cancer.

    PubMed

    Huang, Lillian; Schauer, Isaiah G; Zhang, Jing; Mercado-Uribe, Imelda; Deavers, Michael T; Huang, Jiaoti; Liu, Jinsong

    2011-01-01

    TMPRSS2:ERG is a gene fusion resulting from the chromosomal rearrangement of the androgen-regulated TMPRSS2 gene and the ETS transcription factor ERG, leading to the over-expression of the oncogenic molecule ERG. This gene rearrangement has been found in approximately half of all prostate cancers and ERG overexpression is considered as a novel diagnostic marker for prostate carcinoma. However, little is known about the role of the TMPRSS2:ERG gene fusion in ovarian cancer. The purpose of this study was to test ERG expression in ovarian cancer and its potential as a diagnostic marker for ovarian carcinoma progression. A tissue microarray containing 180 ovarian cancer tissues of various pathological types and grades were examined by immunohistochemical analysis for expression of ERG. We also used 40 prostate carcinoma tissues and 40 normal tissues for comparison in parallel experiments. ERG-positive expression was detected in 40% of the prostate tumor cancer, as well as in internal positive control endothelial cells, confirming over-expression of ERG in prostate cancer at relatively the same rate observed by others. In contrast, all of the ovarian tumor patient tissues of varying histologic types were ERG-negative, despite some positivity in endothelial cells. These results suggest that the oncogenic gene fusion TMPRSS2:ERG does not occur in ovarian cancer relative to prostate cancer. Therefore, development of ERG expression profile would not be a useful diagnostic or prognostic marker for ovarian cancer patient screening.

  1. Combining laser-assisted microdissection (LAM) and RNA-seq allows to perform a comprehensive transcriptomic analysis of epidermal cells of Arabidopsis embryo.

    PubMed

    Sakai, Kaori; Taconnat, Ludivine; Borrega, Nero; Yansouni, Jennifer; Brunaud, Véronique; Paysant-Le Roux, Christine; Delannoy, Etienne; Martin Magniette, Marie-Laure; Lepiniec, Loïc; Faure, Jean Denis; Balzergue, Sandrine; Dubreucq, Bertrand

    2018-01-01

    Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm 2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.

  2. Down-regulation of BAX gene during carcinogenesis and acquisition of resistance to 5-FU in colorectal cancer.

    PubMed

    Manoochehri, Mehdi; Karbasi, Ashraf; Bandehpour, Mojgan; Kazemi, Bahram

    2014-04-01

    Carcinogenesis and resistance to chemotherapy could be as results of expression variations in apoptosis regulating genes. Changes in the expression of apoptosis interfering genes may contribute to colorectal carcinogenesis and resistance to 5-Flourouracil (5-FU) during treatment schedule period. The present study aimed to evaluate the expression of pro-apoptotic and anti-apoptotic genes in colorectal cancer tumor tissues, normal adjacent tissues, and tumor colorectal cancer cell line during acquiring resistance to 5-FU in HT-29 based on Bolus treatment protocol. The normal and tumor tissues were obtained from hospital after surgery and total RNA was extracted for expression analysis. The HT-29 colorectal cancer cell line was cultured and exposed with 5-FU in three stages based on Bolus protocol. The MTT assay and Real Time PCR were carried out to determine the sensitivity to the drug and expression of desired genes, respectively. The obtained data showed that Proapoptotic genes, BAX and BID, were down-regulated in resistant derivate cells compared to wild type HT-29 cells. On the other hand Antiapoptotic genes, CIAP1 and XIAP, showed upregulation in resistant cells compared to wild type ones. Furthermore, BAX and FAS genes showed down-regulation in tumor samples in comparison to normal adjacent tissues. In conclusion, the results of our study suggest that BAX down-regulation could contribute as an important factor during both colorectal carcinogenesis and cell resistance to 5-FU.

  3. The Role of the Immune Response in the Pathogenesis of Thyroid Eye Disease: A Reassessment

    PubMed Central

    Rosenbaum, James T.; Choi, Dongseok; Wong, Amanda; Wilson, David J.; Grossniklaus, Hans E.; Harrington, Christina A.; Dailey, Roger A.; Ng, John D.; Steele, Eric A.; Czyz, Craig N.; Foster, Jill A.; Tse, David; Alabiad, Chris; Dubovy, Sander; Parekh, Prashant K.; Harris, Gerald J.; Kazim, Michael; Patel, Payal J.; White, Valerie A.; Dolman, Peter J.; Edward, Deepak P.; Alkatan, Hind M.; al Hussain, Hailah; Selva, Dinesh; Yeatts, R. Patrick; Korn, Bobby S.; Kikkawa, Don O.; Stauffer, Patrick; Planck, Stephen R.

    2015-01-01

    Background Although thyroid eye disease is a common complication of Graves’ disease, the pathogenesis of the orbital disease is poorly understood. Most authorities implicate the immune response as an important causal factor. We sought to clarify pathogenesis by using gene expression microarray. Methods An international consortium of ocular pathologists and orbital surgeons contributed formalin fixed orbital biopsies. RNA was extracted from orbital tissue from 20 healthy controls, 25 patients with thyroid eye disease (TED), 25 patients with nonspecific orbital inflammation (NSOI), 7 patients with sarcoidosis and 6 patients with granulomatosis with polyangiitis (GPA). Tissue was divided into a discovery set and a validation set. Gene expression was quantified using Affymetrix U133 Plus 2.0 microarrays which include 54,000 probe sets. Results Principal component analysis showed that gene expression from tissue from patients with TED more closely resembled gene expression from healthy control tissue in comparison to gene expression characteristic of sarcoidosis, NSOI, or granulomatosis with polyangiitis. Unsupervised cluster dendrograms further indicated the similarity between TED and healthy controls. Heat maps based on gene expression for cytokines, chemokines, or their receptors showed that these inflammatory markers were associated with NSOI, sarcoidosis, or GPA much more frequently than with TED. Conclusion This is the first study to compare gene expression in TED to gene expression associated with other causes of exophthalmos. The juxtaposition shows that inflammatory markers are far less characteristic of TED relative to other orbital inflammatory diseases. PMID:26371757

  4. Genomewide identification and expression analysis of the ARF gene family in apple.

    PubMed

    Luo, Xiao-Cui; Sun, Mei-Hong; Xu, Rui-Rui; Shu, Huai-Rui; Wang, Jia-Wei; Zhang, Shi-Zhong

    2014-12-01

    Auxin response factors (ARF) are transcription factors that regulate auxin responses in plants. Although the genomewide analysis of this family has been performed in some species, little is known regarding ARF genes in apple (Malus domestica). In this study, 31 putative apple ARF genes have been identified and located within the apple genome. The phylogenetic analysis revealed that MdARFs could be divided into three subfamilies (groups I, II and III). The predicted MdARFs were distributed across 15 of 17 chromosomes with different densities. In addition, the analysis of exon-intron junctions and of the intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profile analyses of MdARF genes were performed in different tissues (root, stem, leaf, flower and fruit), and all the selected genes were expressed in at least one of the tissues that were tested, which indicated that MdARFs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this report is the first to provide a genomewide analysis of the apple ARF gene family. This study provides valuable information for understanding the classification and putative functions of the ARF signal in apple.

  5. Taiman acts as a coactivator of Yorkie in the Hippo pathway to promote tissue growth and intestinal regeneration.

    PubMed

    Wang, Chao; Yin, Meng-Xin; Wu, Wei; Dong, Liang; Wang, Shimin; Lu, Yi; Xu, Jinjin; Wu, Wenqing; Li, Sheng; Zhao, Yun; Zhang, Lei

    2016-01-01

    The Hippo signaling pathway regulates tissue growth and organ size through controlling cell growth, proliferation and apoptosis. During these processes, the coactivator Yorkie partners with the transcription factor Scalloped to mediate Hippo pathway-regulated cellular functions. Here, we demonstrate that Taiman facilitates the activity of Yorkie. First, Taiman overexpression upregulates Hippo pathway-responsive genes and induces tissue overgrowth. Second, the loss of tai downregulates the expression of Hippo pathway target genes and reduces organ size as well as tissue overgrowth caused by Yorkie overexpression. Furthermore, we provide evidence that Taiman binds to Yorkie and facilitates the activity of Yorkie-Scalloped to activate the transcription of several Hippo pathway target genes. Moreover, we found that the C-terminus of Taiman is indispensable for the function of Taiman in Hippo signaling. Finally, we demonstrate that Taiman is also required in intestinal stem cell proliferation. Our findings suggest Taiman is an essential coactivator of Yorkie.

  6. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  7. Transcriptional responses of metallothionein gene to different stress factors in Pacific abalone (Haliotis discus hannai).

    PubMed

    Lee, Sang Yoon; Nam, Yoon Kwon

    2016-11-01

    A novel metallothionein (MT) gene from the Pacific abalone H. discus hannai was characterized and its mRNA expression patterns (tissue distribution, developmental expression and differential expression in responsive to various in vivo stimulatory treatments) were examined. Abalone MT shares conserved structural features with previously known gastropod orthologs at both genomic (i.e., tripartite organization) and amino acid (conserved Cys motifs) levels. The 5'-flanking regulatory region of abalone MT gene displayed various transcription factor binding motifs particularly including ones related with metal regulation and stress/immune responses. Tissue distribution and basal expression patterns of MT mRNAs indicated a potential association between ovarian MT expression and sexual maturation. Developmental expression pattern suggested the maternal contribution of MT mRNAs to embryonic and early larval developments. Abalone MT mRNAs could be significantly induced by various heavy metals in different tissues (gill, hepatopancreas, muscle and hemocyte) in a tissue- and/or metal-dependent fashion. In addition, the abalone MT gene was highly modulated in responsive to other non-metal, stimulatory treatments such as immune challenge (LPS, polyI:C and bacterial injections), hypoxia (decrease from normoxia 8 ppm-2 ppm), thermal elevation (increase from 20 °C to 30 °C), and xenobiotic exposure (250 ppb of 17α-ethynylestradiol and 0.25 ppb of 2,3,7,8-tetrachlorodibenzodioxin) where differential expression patterns were toward either up- or down-regulation depending on types of stimulations and tissues examined. Taken together, our results highlight that MT is a multifunctional effector playing in wide criteria of cellular pathways especially associated with development and stress responses in this abalone species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

    PubMed

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Kang, Jong-Goo; Yang, Tae-Jin; Nou, Ill-Sup

    2015-07-20

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  9. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    PubMed

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  10. Toxicity of Doxorubicin on Pig Liver After Chemoembolization with Doxorubicin-loaded Microspheres: A Pilot DNA-microarrays and Histology Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verret, Valentin, E-mail: valentin.verret@archimmed.com; Namur, Julien; Ghegediban, Saieda Homayra

    The potential mechanisms accounting for the hepatotoxicity of doxorubicin-loaded microspheres in chemoembolization were examined by combining histology and DNA-microarray techniques.The left hepatic arteries of two pigs were embolized with 1 mL of doxorubicin-loaded (25 mg; (DoxMS)) or non-loaded (BlandMS) microspheres. The histopathological effects of the embolization were analyzed at 1 week. RNAs extracted from both the embolized and control liver areas were hybridized onto Agilent porcine microarrays. Genes showing significantly different expression (p < 0.01; fold-change > 2) between two groups were classified by biological process. At 1 week after embolization, DoxMS caused arterial and parenchymal necrosis in 51 andmore » 38 % of embolized vessels, respectively. By contrast, BlandMS did not cause any tissue damage. Up-regulated genes following embolization with DoxMS (vs. BlandMS, n = 353) were mainly involved in cell death, apoptosis, and metabolism of doxorubicin. Down-regulated genes (n = 120) were mainly related to hepatic functions, including enzymes of lipid and carbohydrate metabolisms. Up-regulated genes included genes related to cell proliferation (growth factors and transcription factors), tissue remodeling (MMPs and several collagen types), inflammatory reaction (interleukins and chemokines), and angiogenesis (angiogenic factors and HIF1a pathway), all of which play an important role in liver healing and regeneration. DoxMS caused lesions to the liver, provoked cell death, and disturbed liver metabolism. An inflammatory repair process with cell proliferation, tissue remodeling, and angiogenesis was rapidly initiated during the first week after chemoembolization. This pilot study provides a comprehensive method to compare different types of DoxMS in healthy animals or tumor models.« less

  11. Genome-wide analysis of TCP family in tobacco.

    PubMed

    Chen, L; Chen, Y Q; Ding, A M; Chen, H; Xia, F; Wang, W F; Sun, Y H

    2016-05-23

    The TCP family is a transcription factor family, members of which are extensively involved in plant growth and development as well as in signal transduction in the response against many physiological and biochemical stimuli. In the present study, 61 TCP genes were identified in tobacco (Nicotiana tabacum) genome. Bioinformatic methods were employed for predicting and analyzing the gene structure, gene expression, phylogenetic analysis, and conserved domains of TCP proteins in tobacco. The 61 NtTCP genes were divided into three diverse groups, based on the division of TCP genes in tomato and Arabidopsis, and the results of the conserved domain and sequence analyses further confirmed the classification of the NtTCP genes. The expression pattern of NtTCP also demonstrated that majority of these genes play important roles in all the tissues, while some special genes exercise their functions only in specific tissues. In brief, the comprehensive and thorough study of the TCP family in other plants provides sufficient resources for studying the structure and functions of TCPs in tobacco.

  12. Epigenetic Changes of the ESR1 Gene in Breast Tissue of Healthy Women: A Missing Link with Breast Cancer Risk Factors?

    PubMed

    Daraei, Abdolreza; Izadi, Pantea; Khorasani, Ghasemali; Nafissi, Nahid; Naghizadeh, Mohammad Mehdi; Younosi, Nasim; Meysamie, Alipasha; Mansoori, Yaser; Bastami, Milad; Tavakkoly-Bazzaz, Javad

    2017-08-01

    Reproductive history and obesity are among the well-recognized risk factors in the development of breast cancer, which are partially mediated by the increased exposure of breast tissues to estrogens. However, only a few studies have investigated the link between these risk factors and the pattern of methylation signatures in the breast tissue of healthy women. The role of the estrogen receptor 1 (ESR1) gene hypermethylation is reportedly important in the development of breast cancer. Thus, it is speculated that such ESR1 epigenetic changes may be influenced or shaped by obesity and reproductive history-related factors before and during breast carcinogenesis. Breast samples were collected from 120 cancer-free women who had undergone cosmetic mammoplasty. DNA was extracted from the breast tissues and, then, the methylation levels at the promoter and exon 1 regions of the ESR1 gene CpG island were determined by using the methylated DNA immunoprecipitation-quantitative PCR assay. The methylation level of the ESR1 promoter observed in women with a body mass index (BMI) ≥30 kg/m 2 (p ≤ 0.001) was higher than in the subgroups of women of BMI <25 kg/m 2 (p < 0.001) and BMI 25-29 kg/m 2 (p < 0.001) and was also higher in postmenopausal women compared with that in premenopausal women (p = 0.046). Pearson correlation coefficient analyses also showed that the high methylation of the ESR1 promoter was correlated with increasing age (r = -0.246, p = 0.007) and BMI (r = -0.331, p ≤ 0.001). Finally, linear multivariate regression revealed a significant association between high methylation rates in the ESR1 gene promoter and increased BMI (β = -0.285, 95% CI = -0.457 to -0.113, p = 0.001). Furthermore, a higher methylation level at the ESR1 gene exon 1 was found in the BMI ≥ 30 kg/m 2 subgroup compared to the BMI 25-29 kg/m 2 subgroup (p = 0.023). These findings provide new hints about the relationship between epigenetic changes within the ESR1 gene CpG island and postmenopausal obesity and aging in cancer-free women. In terms of lifestyle intervention opportunities, this study also highlights the significance and feasibility of such interventions for BMI as a modifiable risk factor.

  13. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparative analysis of laparoscopic and ultrasound-guided biopsy methods for gene expression analysis in transgenic goats.

    PubMed

    Melo, C H; Sousa, F C; Batista, R I P T; Sanchez, D J D; Souza-Fabjan, J M G; Freitas, V J F; Melo, L M; Teixeira, D I A

    2015-07-31

    The present study aimed to compare laparoscopic (LP) and ultrasound-guided (US) biopsy methods to obtain either liver or splenic tissue samples for ectopic gene expression analysis in transgenic goats. Tissue samples were collected from human granulocyte colony stimulating factor (hG-CSF)-transgenic bucks and submitted to real-time PCR for the endogenous genes (Sp1, Baff, and Gapdh) and the transgene (hG-CSF). Both LP and US biopsy methods were successful in obtaining liver and splenic samples that could be analyzed by PCR (i.e., sufficient sample sizes and RNA yield were obtained). Although the number of attempts made to obtain the tissue samples was similar (P > 0.05), LP procedures took considerably longer than the US method (P = 0.03). Finally, transgene transcripts were not detected in spleen or liver samples. Thus, for the phenotypic characterization of a transgenic goat line, investigation of ectopic gene expression can be made successfully by LP or US biopsy, avoiding the traditional approach of euthanasia.

  15. Endothelin-1 gene regulation

    PubMed Central

    Stow, Lisa R.; Jacobs, Mollie E.; Wingo, Charles S.; Cain, Brian D.

    2011-01-01

    Over two decades of research have demonstrated that the peptide hormone endothelin-1 (ET-1) plays multiple, complex roles in cardiovascular, neural, pulmonary, reproductive, and renal physiology. Differential and tissue-specific production of ET-1 must be tightly regulated in order to preserve these biologically diverse actions. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (edn1). Studies conducted on a variety of cell types have identified key transcription factors that govern edn1 expression. With few exceptions, the cis-acting elements bound by these factors have been mapped in the edn1 regulatory region. Recent evidence has revealed new roles for some factors originally believed to regulate edn1 in a tissue or hormone-specific manner. In addition, other mechanisms involved in epigenetic regulation and mRNA stability have emerged as important processes for regulated edn1 expression. The goal of this review is to provide a comprehensive overview of the specific factors and signaling systems that govern edn1 activity at the molecular level.—Stow, L. R., Jacobs, M. E., Wingo, C. S., Cain, B. D. Endothelin-1 gene regulation. PMID:20837776

  16. Redundant role of tissue-selective TAF(II)105 in B lymphocytes.

    PubMed

    Freiman, Richard N; Albright, Shane R; Chu, Leslie E; Zheng, Shuang; Liang, Hong-Erh; Sha, William C; Tjian, Robert

    2002-09-01

    Regulated gene expression is a complex process achieved through the function of multiple protein factors acting in concert at a given promoter. The transcription factor TFIID is a central component of the machinery regulating mRNA synthesis by RNA polymerase II. This large multiprotein complex is composed of the TATA box binding protein (TBP) and several TBP-associated factors (TAF(II)s). The recent discovery of multiple TBP-related factors and tissue-specific TAF(II)s suggests the existence of specialized TFIID complexes that likely play a critical role in regulating transcription in a gene- and tissue-specific manner. The tissue-selective factor TAF(II)105 was originally identified as a component of TFIID derived from a human B-cell line. In this report we demonstrate the specific induction of TAF(II)105 in cultured B cells in response to bacterial lipopolysaccharide (LPS). To examine the in vivo role of TAF(II)105, we have generated TAF(II)105-null mice by homologous recombination. Here we show that B-lymphocyte development is largely unaffected by the absence of TAF(II)105. TAF(II)105-null B cells can proliferate in response to LPS, produce relatively normal levels of resting antibodies, and can mount an immune response by producing antigen-specific antibodies in response to immunization. Taken together, we conclude that the function of TAF(II)105 in B cells is likely redundant with the function of other TAF(II)105-related cellular proteins.

  17. Cytosolic Double-Stranded DNA as a Damage-Associated Molecular Pattern Induces the Inflammatory Response in Rat Pancreatic Stellate Cells: A Plausible Mechanism for Tissue Injury-Associated Pancreatitis

    PubMed Central

    Nakamura, Taichi; Ito, Tetsuhide; Igarashi, Hisato; Uchida, Masahiko; Hijioka, Masayuki; Oono, Takamasa; Fujimori, Nao; Niina, Yusuke; Suzuki, Koichi; Jensen, Robert T.; Takayanagi, Ryoichi

    2012-01-01

    Pancreatitis is an inflammatory disease of unknown causes. There are many triggers causing pancreatitis, such as alcohol, common bile duct stone, virus and congenital or acquired stenosis of main pancreatic duct, which often involve tissue injuries. Pancreatitis often occurs in sterile condition, where the dead/dying pancreatic parenchymal cells and the necrotic tissues derived from self-digested-pancreas were observed. However, the causal relationship between tissue injury and pancreatitis and how tissue injury could induce the inflammation of the pancreas were not elucidated fully until now. This study demonstrates that cytosolic double-stranded DNA increases the expression of several inflammatory genes (cytokines, chemokines, type I interferon, and major histocompatibility complex) in rat pancreatic stellate cells. Furthermore, these increase accompanied the multiple signal molecules genes, such as interferon regulatory factors, nuclear factor-kappa B, low-molecular-weight protein 2, and transporter associated with antigen processing 1. We suggest that this phenomenon is a plausible mechanism that might explain how cell damage of the pancreas or tissue injury triggers acute, chronic, and autoimmune pancreatitis; it is potentially relevant to host immune responses induced during alcohol consumption or other causes. PMID:22550608

  18. A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue

    PubMed Central

    Rönn, Tina; Volkov, Petr; Davegårdh, Cajsa; Dayeh, Tasnim; Hall, Elin; Olsson, Anders H.; Nilsson, Emma; Tornberg, Åsa; Dekker Nitert, Marloes; Eriksson, Karl-Fredrik; Jones, Helena A.; Groop, Leif; Ling, Charlotte

    2013-01-01

    Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism. PMID:23825961

  19. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  20. Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters.

    PubMed

    Gagniuc, Paul; Ionescu-Tirgoviste, Constantin

    2012-09-28

    The main function of gene promoters appears to be the integration of different gene products in their biological pathways in order to maintain homeostasis. Generally, promoters have been classified in two major classes, namely TATA and CpG. Nevertheless, many genes using the same combinatorial formation of transcription factors have different gene expression patterns. Accordingly, we tried to ask ourselves some fundamental questions: Why certain genes have an overall predisposition for higher gene expression levels than others? What causes such a predisposition? Is there a structural relationship of these sequences in different tissues? Is there a strong phylogenetic relationship between promoters of closely related species? In order to gain valuable insights into different promoter regions, we obtained a series of image-based patterns which allowed us to identify 10 generic classes of promoters. A comprehensive analysis was undertaken for promoter sequences from Arabidopsis thaliana, Drosophila melanogaster, Homo sapiens and Oryza sativa, and a more extensive analysis of tissue-specific promoters in humans. We observed a clear preference for these species to use certain classes of promoters for specific biological processes. Moreover, in humans, we found that different tissues use distinct classes of promoters, reflecting an emerging promoter network. Depending on the tissue type, comparisons made between these classes of promoters reveal a complementarity between their patterns whereas some other classes of promoters have been observed to occur in competition. Furthermore, we also noticed the existence of some transitional states between these classes of promoters that may explain certain evolutionary mechanisms, which suggest a possible predisposition for specific levels of gene expression and perhaps for a different number of factors responsible for triggering gene expression. Our conclusions are based on comprehensive data from three different databases and a new computer model whose core is using Kappa index of coincidence. To fully understand the connections between gene promoters and gene expression, we analyzed thousands of promoter sequences using our Kappa Index of Coincidence method and a specialized Optical Character Recognition (OCR) neural network. Under our criteria, 10 classes of promoters were detected. In addition, the existence of "transitional" promoters suggests that there is an evolutionary weighted continuum between classes, depending perhaps upon changes in their gene products.

  1. LcMYB1 Is a Key Determinant of Differential Anthocyanin Accumulation among Genotypes, Tissues, Developmental Phases and ABA and Light Stimuli in Litchi chinensis

    PubMed Central

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes. PMID:24466010

  2. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss.

    PubMed

    Benton, Miles C; Johnstone, Alice; Eccles, David; Harmon, Brennan; Hayes, Mark T; Lea, Rod A; Griffiths, Lyn; Hoffman, Eric P; Stubbs, Richard S; Macartney-Coxson, Donia

    2015-01-22

    Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3' untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.

  3. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere lengthmore » of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.« less

  4. Comparative transcriptional analysis of three human ligaments with distinct biomechanical properties

    PubMed Central

    Lorda-Diez, Carlos I; Canga-Villegas, Ana; Cerezal, Luis; Plaza, Santiago; Hurlé, Juan M; García-Porrero, Juan A; Montero, Juan A

    2013-01-01

    One major aim of regenerative medicine targeting the musculoskeletal system is to provide complementary and/or alternative therapeutic approaches to current surgical therapies, often involving the removal and prosthetic substitution of damaged tissues such as ligaments. For these approaches to be successful, detailed information regarding the cellular and molecular composition of different musculoskeletal tissues is required. Ligaments have often been considered homogeneous tissues with common biomechanical properties. However, advances in tissue engineering research have highlighted the functional relevance of the organisational and compositional differences between ligament types, especially in those with higher risks of injury. The aim of this study was to provide information concerning the relative expression levels of a subset of key genes (including extracellular matrix components, transcription factors and growth factors) that confer functional identity to ligaments. We compared the transcriptomes of three representative human ligaments subjected to different biomechanical demands: the anterior cruciate ligament (ACL); the ligamentum teres of the hip (LT); and the iliofemoral ligament (IL). We revealed significant differences in the expression of type I collagen, elastin, fibromodulin, biglycan, transforming growth factor β1, transforming growth interacting factor 1, hypoxia-inducible factor 1-alpha and transforming growth factor β-induced gene between the IL and the other two ligaments. Thus, considerable molecular heterogeneity can exist between anatomically distinct ligaments with differing biomechanical demands. However, the LT and ACL were found to show remarkable molecular homology, suggesting common functional properties. This finding provides experimental support for the proposed role of the LT as a hip joint stabiliser in humans. PMID:24128114

  5. The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness

    PubMed Central

    Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.

    2014-01-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412

  6. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    PubMed

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.

  7. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Keigo; Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp; Yamamoto, Satomi

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response.more » ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.« less

  8. Arabidopsis thaliana gonidialess A/Zuotin related factors (GlsA/ZRF) are essential for maintenance of meristem integrity.

    PubMed

    Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June

    2016-05-01

    Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.

  9. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients

    PubMed Central

    Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Kappler, Matthias

    2017-01-01

    The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression. PMID:29215551

  10. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients.

    PubMed

    Greither, Thomas; Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Taubert, Helge; Kappler, Matthias

    2017-12-07

    The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (r s = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients' disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.

  11. Gene expression associated with suicide attempts in US veterans (Open Access)

    DTIC Science & Technology

    2017-09-05

    schizophrenia who had died from suicide. This gene codes for a cytokine that is part of the tumor necrosis factor family. In addition, the PIK3C3...expression level of eIF2 (and mTOR and WNT) was downregulated in one published report examining post- mortem tissue in people who had a schizophrenia ...HK. Suicide candidate genes associated with bipolar disorder and schizophrenia : an exploratory gene expression profiling analysis of post-mortem

  12. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots.

    PubMed

    Özsu, Nesibe; Monteiro, Antónia

    2017-10-16

    One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait's evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal-regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the pattern to aid in eyespot origins. New transcription factors that may be providing different identities to distinct wing sectors, and genes with sexually dimorphic expression in the eyespots were also identified.

  13. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    PubMed

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3'UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. CONCLUSIONS MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  14. Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition

    PubMed Central

    Summerfield, Taryn L.; Yu, Lianbo; Gulati, Parul; Zhang, Jie; Huang, Kun; Romero, Roberto; Kniss, Douglas A.

    2011-01-01

    A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-κB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals. PMID:21655103

  15. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava.

    PubMed

    Ren, Meng Yun; Feng, Ren Jun; Shi, Hou Rui; Lu, Li Fang; Yun, Tian Yan; Peng, Ming; Guan, Xiao; Zhang, Heng; Wang, Jing Yi; Zhang, Xi Yan; Li, Cheng Liang; Chen, Yan Jun; He, Peng; Zhang, Yin Dong; Xie, Jiang Hui

    2017-01-01

    Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5' upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had differential expression levels of genes involved in ethylene signaling in response to the stresses tested. Moreover, after several gene duplication events, the spatiotemporally differential expression pattern of homologous genes in response to abiotic and biotic stresses may imply their functional diversity as a mechanism for adapting to the environment. Our data provide a framework for further research on the molecular mechanisms of cassava resistance to drought stress and provide a foundation for breeding drought-resistant new cultivars.

  16. Expression patterns of members of the ethylene signaling–related gene families in response to dehydration stresses in cassava

    PubMed Central

    Shi, Hou Rui; Lu, Li Fang; Yun, Tian Yan; Peng, Ming; Guan, Xiao; Zhang, Heng; Wang, Jing Yi; Zhang, Xi Yan; Li, Cheng Liang; Chen, Yan Jun; He, Peng; Zhang, Yin Dong; Xie, Jiang Hui

    2017-01-01

    Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5’ upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had differential expression levels of genes involved in ethylene signaling in response to the stresses tested. Moreover, after several gene duplication events, the spatiotemporally differential expression pattern of homologous genes in response to abiotic and biotic stresses may imply their functional diversity as a mechanism for adapting to the environment. Our data provide a framework for further research on the molecular mechanisms of cassava resistance to drought stress and provide a foundation for breeding drought-resistant new cultivars. PMID:28542282

  17. [Non-viral gene therapy approach for regenerative recovery of skin wounds in mammals].

    PubMed

    Efremov, A M; Dukhovlinov, I V; Dizhe, E B; Burov, S V; Leko, M V; Akif'ev, B N; Mogilenko, D A; Ivanov, I A; Perevozchikov, A P; Orlov, S V

    2010-01-01

    The rate and character of skin tissue regeneration after wounds, burns and other traumas depend on the cell proliferation within damaged area. Acceleration of healing by stimulation of cell proliferation and extracellular matrix synthesis is one of the most important tasks of modern medicine. There are gene therapy approaches to wound treatment consisting in the transfer of genes encoding mitogenic growth factors to wound area. The most important step in the development of gene therapy approaches is the design of gene delivery tools. In spite of high efficacy of viral vectors, the non-viral means have some preferences (low toxicity, low immunogenity, safety and the absence of backside effects). Among non-viral gene delivery tools, molecular conjugates are the most popular because of their efficacy, simplicity, and the capacity to the targeted gene transfer. In the present work we have developed two molecular conjugates--NLS-TSF7 and NLS-TSF12 consisting of the modified signal of nuclear localization of T-antigen of SV40 virus (cationic part) and the peptide ligands of mammalian transferrin receptor (ligand part). These conjugates bind to plasmid DNA with formation of polyelectrolytic complexes and are capable to deliver plasmid DNA into cells expressing transferrin receptors by receptor-mediated endocytosis. Transfer of the expression vector of luciferase gene in the complex with molecular conjugate NLS-TSF7 to murine surface tissues led to about 100 fold increasing of luciferase activity in comparison with the transfer of free expression vector. Treatment of slash wounds in mice with the complexes of expression vector of synthetic human gene encoding insulin-like growth factor 1 with molecular conjugates NLS-TSF7 led to acceleration of healing in comparison with mice treated with free expression vector. The results obtained confirm the high efficiency of the developed regenerative gene therapy approach for the treatment of damaged skin tissues in mammals.

  18. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    PubMed

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new bFGF gene enhanced tissue engineering strategy could be of potential benefit to accelerate bone healing, especially in defects caused by atrophic nonunion and avascular necrosis of the femoral head.

  19. The purple cauliflower arises from activation of a MYB transcription factor.

    PubMed

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L; Li, Li

    2010-11-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal.

  20. The Purple Cauliflower Arises from Activation of a MYB Transcription Factor1[W][OA

    PubMed Central

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L.; Li, Li

    2010-01-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal. PMID:20855520

  1. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    PubMed

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and NormFinder-designated-reference genes. The use of 2 different statistical algorithms results in the identification of different combinations of flax HKGs for expression data normalization. Despite such differences, the use of geNorm-designated- and NormFinder-designated-reference genes enabled us to accurately compare the expression levels of a flax MYB gene in different organs and tissues. Our identification and validation of suitable flax HKGs will facilitate future developmental transcriptomic studies in this economically-important plant.

  2. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed genes were overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer. PMID:23978847

  3. YY1 Regulates Melanocyte Development and Function by Cooperating with MITF

    PubMed Central

    Bell, Robert J. A.; Tran, Thanh-Nga T.; Haq, Rizwan; Liu, Huifei; Love, Kevin T.; Langer, Robert; Anderson, Daniel G.; Larue, Lionel; Fisher, David E.

    2012-01-01

    Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP–seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)—a general mechanism which may confer tissue-specific gene expression in multiple lineages. PMID:22570637

  4. EPConDB: a web resource for gene expression related to pancreatic development, beta-cell function and diabetes.

    PubMed

    Mazzarelli, Joan M; Brestelli, John; Gorski, Regina K; Liu, Junmin; Manduchi, Elisabetta; Pinney, Deborah F; Schug, Jonathan; White, Peter; Kaestner, Klaus H; Stoeckert, Christian J

    2007-01-01

    EPConDB (http://www.cbil.upenn.edu/EPConDB) is a public web site that supports research in diabetes, pancreatic development and beta-cell function by providing information about genes expressed in cells of the pancreas. EPConDB displays expression profiles for individual genes and information about transcripts, promoter elements and transcription factor binding sites. Gene expression results are obtained from studies examining tissue expression, pancreatic development and growth, differentiation of insulin-producing cells, islet or beta-cell injury, and genetic models of impaired beta-cell function. The expression datasets are derived using different microarray platforms, including the BCBC PancChips and Affymetrix gene expression arrays. Other datasets include semi-quantitative RT-PCR and MPSS expression studies. For selected microarray studies, lists of differentially expressed genes, derived from PaGE analysis, are displayed on the site. EPConDB provides database queries and tools to examine the relationship between a gene, its transcriptional regulation, protein function and expression in pancreatic tissues.

  5. The hopes and fears of in utero gene therapy for genetic disease--a review.

    PubMed

    Coutelle, C; Themis, M; Waddington, S; Gregory, L; Nivsarkar, M; Buckley, S; Cook, T; Rodeck, C; Peebles, D; David, A

    2003-10-01

    Somatic gene delivery in utero is a novel approach to gene therapy for genetic disease. It is based on the concept that application of gene therapy vectors to the fetus in utero may prevent the development of early disease related tissue damage, may allow targeting of otherwise inaccessible organs, tissues and still expanding stem cell populations and may also provide postnatal tolerance against the therapeutic transgenic protein. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently expressed concerns raised by this still experimental, potentially preventive gene therapy approach. We describe and discuss the choice of vectors, of animal models and routes of administration to the fetus. We address potential risk factors of prenatal gene therapy such as vector toxicity, inadvertent germ line modification, developmental aberration and oncogenesis as well as specific risks of this procedure for the fetus and mother and discuss their ethical implications.

  6. Regulation of vascular endothelial growth factor-C by tumor necrosis factor-α in the conjunctiva and pterygium.

    PubMed

    Dong, Yoko; Kase, Satoru; Dong, Zhenyu; Fukuhara, Junichi; Tagawa, Yoshiaki; Ishizuka, Erdal Tan; Murata, Miyuki; Shinmei, Yasuhiro; Ohguchi, Takeshi; Kanda, Atsuhiro; Noda, Kousuke; Ishida, Susumu

    2016-08-01

    Vascular endothelial growth factor C (VEGF-C) plays an important role in the development of a pterygium through lymphangiogenesis. We examined the association between VEGF-C and tumor necrosis factor-α (TNF-α) in the pathogenesis of pterygia. Cultured conjunctival epithelial cells were treated with TNF-α, and the gene expression levels of VEGFC were evaluated by quantitative polymerase chain reaction (qPCR) and VEGF-C protein expression levels were measured using an enzyme-linked immunosorbent assay (ELISA). In addition, using ELISA, we evaluated the VEGF-C protein expression in the supernatants of cultured conjunctival epithelial cells, in which we neutralized TNF-α using anti‑TNF-α antibody. The gene expression of tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A), known as TNF receptor 1 (TNFR1), was confirmed using reverse transcription PCR in cultured conjunctival epithelial cells. Immunofluorescence microscopy was used to examine the localization of VEGF-C and TNFR1 in pterygium tissues and TNFR1 expression in cultured conjunctival epithelial cells. Immunohistochemistry was used to examine the localization of TNFR1 in pterygia and normal conjunctival tissues. VEGFC gene expression increased in cultured conjunctival epithelial cells 24 h after the addition of TNF-α. The secretion of VEGF-C protein was significantly increased 48 h after the stimulation of cultured conjunctival epithelial cells with TNF-α. Increased VEGF-C protein secretion stimulated by TNF-α was significantly reduced by anti-TNF-α neutralizing antibody treatment. In cultured conjunctival epithelial cells, TNFRSF1A and TNFR1 were expressed. TNFR1 was immunolocalized in normal conjunctival tissues and in human pterygium tissues as well as in VEGF‑C‑positive epithelial cells from human pterygia. Our data demonstrate that TNF-α mediates VEGF-C expression, which plays a critical role in the pathogenesis of pterygia.

  7. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple.

    PubMed

    Su, Hongyan; Zhang, Shizhong; Yuan, Xiaowei; Chen, Changtian; Wang, Xiao-Fei; Hao, Yu-Jin

    2013-10-01

    NAC (NAM, ATAF1,2, and CUC2) proteins constitute one of the largest families of plant-specific transcription factors. To date, little is known about the NAC genes in the apple (Malus domestica). In this study, a total of 180 NAC genes were identified in the apple genome and were phylogenetically clustered into six groups (I-VI) with the NAC genes from Arabidopsis and rice. The predicted apple NAC genes were distributed across all of 17 chromosomes at various densities. Additionally, the gene structure and motif compositions of the apple NAC genes were analyzed. Moreover, the expression of 29 selected apple NAC genes was analyzed in different tissues and under different abiotic stress conditions. All of the selected genes, with the exception of four genes, were expressed in at least one of the tissues tested, which indicates that the NAC genes are involved in various aspects of the physiological and developmental processes of the apple. Encouragingly, 17 of the selected genes were found to respond to one or more of the abiotic stress treatments, and these 17 genes included not only the expected 7 genes that were clustered with the well-known stress-related marker genes in group IV but also 10 genes located in other subgroups, none of which contains members that have been reported to be stress-related. To the best of our knowledge, this report describes the first genome-wide analysis of the apple NAC gene family, and the results should provide valuable information for understanding the classification and putative functions of this family. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR

    PubMed Central

    2014-01-01

    Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level of expression stability across three different olive cultivars, Barnea, Frantoio and Picual, however the combination of the three most stable reference genes do vary amongst individual cultivars. This study will provide guidance to other researchers to select reference genes for normalization against target genes by qPCR across tissues obtained from the mesocarp region of the olive fruit in the cultivars, Barnea, Frantoio and Picual. PMID:24884716

  9. A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells.

    PubMed

    Yang, Yajie; Boss, Isaac W; McIntyre, Lauren M; Renne, Rolf

    2014-08-08

    Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue specific gene expression. Advances in target identification technologies and molecular interaction databases have allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate underlying mechanisms of KSHV pathogenesis. Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types. However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling, bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of putative direct targets to a larger set of genes. This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and influencing signaling pathways, to counter the host anti-viral response and to promote proliferation and survival of infected cells. The targeted GRNs are more reproducible and informative than target gene identification, and our approach can be applied to other regulatory factors of interest.

  10. Determination of internal controls for quantitative real time RT-PCR analysis of the effect of Edwardsiella tarda infection on gene expression in turbot (Scophthalmus maximus).

    PubMed

    Dang, Wei; Sun, Li

    2011-02-01

    In recent years, quantitative real time reverse transcriptase-PCR (qRT-PCR) has been used frequently in the study of gene expression in turbot (Scophthalmus maximus) in relation to bacterial infection. However, no investigations on appropriate qRT-PCR reference genes have been documented. In this report, we determined the potential of eight housekeeping genes, i.e. β-actin (ACTB), ribosomal protein L17 (RPL17), α-tubulin (TUBA), elongation factor-1-α(EF1A), β-2-Microglobulin (B2M), RNA polymerase II subunit D (RPSD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 18S ribosomal RNA (18S rRNA), as internal standards for qRT-PCR analysis of gene expression in turbot as a function of bacterial infection. For this purpose, the expression of the eight housekeeping genes in seven turbot tissues was determined by qRT-PCR before and after bacterial challenge, and the data were analyzed with the geNorm and NormFinder algorisms. The results showed that the expression of all the examined genes exhibited tissue-dependent variations both before and after bacterial challenge. Before bacterial challenge, geNorm and NormFinder identified RPSD as the gene that showed least tissue specific expression. At 12 h post-bacterial infection, geNorm ranked ACTB/GAPDH, 18S rRNA/ACTB, ACTB/GAPDH, 18S rRNA/ACTB, RPL17/TUBA, RPSD/GAPDH, and RPSD/B2M, respectively, as the most stably expressed genes in liver, spleen, kidney, gill, heart, muscle, and brain. Comparable ranking orders were produced by NormFinder. Similar results were obtained at 24 h post-bacterial infection. Taken together, these results indicate that RPSD is the most stable gene across tissue types under normal physiological conditions and that, during bacterial infection, ACTB might be used as an internal standard for the normalization of gene expression in immune relevant organs; however, no single gene or single pair of genes in the examined set of housekeeping genes can serve as a universal reference across all tissue types under the condition of bacterial infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis.

    PubMed

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Kassner, Stefan S; Zügel, Stefanie; Hörmann, Karl; Kinscherf, Ralf; Goessler, Ulrich Reinhart

    2011-08-01

    Tissue engineering of skeletal muscle is an encouraging possibility for the treatment of muscle loss through the creation of functional muscle tissue in vitro from human stem cells. Currently, the preferred stem cells are primary, non-immunogenic satellite cells ( = myoblasts). The objective of this study was to determine the expression patterns of myogenic markers within the human satellite cell population during their differentiation into multinucleated myotubes for an accurate characterization of stem cell behaviour. Satellite cells were incubated (for 1, 4, 8, 12 or 16 days) with a culture medium containing either a low [ = differentiation medium (DM)] or high [ = growth medium (GM)] concentration of growth factors. Furthermore, we performed a quantitative gene expression analysis of well-defined differentiation makers: myogenic factor 5 (MYF5), myogenin (MYOG), skeletal muscle αactin1 (ACTA1), embryonic (MYH3), perinatal (MYH8) and adult skeletal muscle myosin heavy chain (MYH1). Additionally, the fusion indices of forming myotubes of MYH1, MYH8 and ACTA1 were calculated. We show that satellite cells incubated with DM expressed multiple characteriztic features of mature skeletal muscles, verified by time-dependent upregulation of MYOG, MYH1, MYH3, MYH8 and ACTA1. However, satellite cells incubated with GM did not reveal all morphological aspects of muscle differentiation. Immunocytochemical investigations with antibodies directed against the differentiation markers showed correlations between the gene expression and differentiation. Our data provide information about time-dependent gene expression of differentiation markers in human satellite cells, which can be used for maturation analyses in skeletal muscle tissue-engineering applications. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Vitamin D for Cancer Prevention: Global Perspective

    DTIC Science & Technology

    2009-07-01

    selfish gene . New York: Oxford University Press; 2006. 106. Armitage P, Doll R. The two-stage theory of carcinogenesis in relation to the age...cadherin and beta-catenin in the action of vitamin D metabolites against colon cancer cells. in tissue culture and identified several relevant genes ...specific to a particular gene , but its hallmark is persistent alteration in the DNA molecule or in factors that influence the expression of various regions

  13. Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development1[C][W][OA

    PubMed Central

    Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine

    2009-01-01

    Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12–35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality. PMID:19144766

  14. SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.

    PubMed

    Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan

    2013-04-30

    The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.

  15. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus.

    PubMed

    Cheng, Hongtao; Hao, Mengyu; Wang, Wenxiang; Mei, Desheng; Tong, Chaobo; Wang, Hui; Liu, Jia; Fu, Li; Hu, Qiong

    2016-09-08

    SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for understanding the crucial roles of BnaSBP genes in plant development and other biological processes.

  16. Comprehensive analysis of gene expression patterns in Friedreich's ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers

    PubMed Central

    Li, Yanjie; Lu, Yue; Lin, Kevin; Hauser, Lauren A.; Lynch, David R.

    2017-01-01

    ABSTRACT Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients homozygous for GAA expansions have low FXN mRNA and protein levels when compared with heterozygous carriers or healthy controls. Frataxin is a mitochondrial protein involved in iron–sulfur cluster synthesis, and many FRDA phenotypes result from deficiencies in cellular metabolism due to lowered expression of FXN. Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. For instance, FXN mRNA and protein levels as well as FXN GAA-repeat tract lengths are routinely determined using all of these cell types. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Herein, we conducted unbiased RNA sequencing to profile the transcriptomes of fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals. Bioinformatic analyses revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins in FRDA fibroblasts. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in FRDA fibroblasts. Finally, comparison of genes differentially expressed in FRDA fibroblasts to three previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results indicate that gene expression profiling of cells derived from peripheral tissues can, in fact, consistently reveal novel molecular pathways of the disease. When performed on statistically meaningful sample group sizes, unbiased global profiling analyses utilizing peripheral tissues are critical for the discovery and validation of FRDA disease biomarkers. PMID:29125828

  17. Epigenetic changes in solid and hematopoietic tumors.

    PubMed

    Toyota, Minoru; Issa, Jean-Pierre J

    2005-10-01

    There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.

  18. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/Myeloid Leukemia Factor 2 (MLF2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuefer, M.U.; Valentine, V.; Behm, F.G.

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, and MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal regionmore » frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements. 19 refs., 2 figs.« less

  19. Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium.

    PubMed

    Nallasamy, Shanmugasundaram; Li, Quanxi; Bagchi, Milan K; Bagchi, Indrani C

    2012-01-01

    The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2(d/d)), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2(d/d) mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated β-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy.

  20. Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line.

    PubMed

    Wu, Yimin; Lu, Yunzhe; Hu, Yanfen; Li, Rong

    2005-11-01

    In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105. Copyright 2005 Wiley-Liss, Inc.

  1. Comparative Transcriptomic Analysis of Rectal Tissue from Beef Steers Revealed Reduced Host Immunity in Escherichia coli O157:H7 Super-Shedders

    PubMed Central

    Wang, Ou; Liang, Guanxiang; McAllister, Tim A.; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo

    2016-01-01

    Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7. PMID:26959367

  2. Comparative Transcriptomic Analysis of Rectal Tissue from Beef Steers Revealed Reduced Host Immunity in Escherichia coli O157:H7 Super-Shedders.

    PubMed

    Wang, Ou; Liang, Guanxiang; McAllister, Tim A; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo

    2016-01-01

    Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7.

  3. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  4. Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva

    PubMed Central

    2013-01-01

    Background The ACVR1 gene encodes a type I receptor for bone morphogenetic proteins (BMPs). Mutations in the ACVR1 gene are associated with Fibrodysplasia Ossificans Progressiva (FOP), a rare and extremely disabling disorder characterized by congenital malformation of the great toes and progressive heterotopic endochondral ossification in muscles and other non-skeletal tissues. Several aspects of FOP pathophysiology are still poorly understood, including mechanisms regulating ACVR1 expression. This work aimed to identify regulatory elements that control ACVR1 gene transcription. Methods and results We first characterized the structure and composition of human ACVR1 gene transcripts by identifying the transcription start site, and then characterized a 2.9 kb upstream region. This region showed strong activating activity when tested by reporter gene assays in transfected cells. We identified specific elements within the 2.9 kb region that are important for transcription factor binding using deletion constructs, co-transfection experiments with plasmids expressing selected transcription factors, site-directed mutagenesis of consensus binding-site sequences, and by protein/DNA binding assays. We also characterized a GC-rich minimal promoter region containing binding sites for the Sp1 transcription factor. Conclusions Our results showed that several transcription factors such as Egr-1, Egr-2, ZBTB7A/LRF, and Hey1, regulate the ACVR1 promoter by binding to the -762/-308 region, which is essential to confer maximal transcriptional activity. The Sp1 transcription factor acts at the most proximal promoter segment upstream of the transcription start site. We observed significant differences in different cell types suggesting tissue specificity of transcriptional regulation. These findings provide novel insights into the molecular mechanisms that regulate expression of the ACVR1 gene and that could be targets of new strategies for future therapeutic treatments. PMID:24047559

  5. Isolation of tissues and preservation of RNA from intact, germinated barley grain.

    PubMed

    Betts, Natalie S; Berkowitz, Oliver; Liu, Ruijie; Collins, Helen M; Skadhauge, Birgitte; Dockter, Christoph; Burton, Rachel A; Whelan, James; Fincher, Geoffrey B

    2017-08-01

    Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Adipose tissue CIDEA is associated, independently of weight variation, to change in insulin resistance during a longitudinal weight control dietary program in obese individuals.

    PubMed

    Montastier, Emilie; Déjean, Sébastien; Le Gall, Caroline; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie

    2014-01-01

    Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance. Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index. Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals. The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight variation. ClinicalTrials.gov NCT00390637.

  7. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    PubMed

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI < 25 kg/m2) and obese (BMI > 30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  8. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress.

    PubMed

    Bushman, B Shaun; Amundsen, Keenan L; Warnke, Scott E; Robins, Joseph G; Johnson, Paul G

    2016-01-13

    Kentucky bluegrass (Poa pratensis L.) is a prominent turfgrass in the cool-season regions, but it is sensitive to salt stress. Previously, a relatively salt tolerant Kentucky bluegrass accession was identified that maintained green colour under consistent salt applications. In this study, a transcriptome study between the tolerant (PI 372742) accession and a salt susceptible (PI 368233) accession was conducted, under control and salt treatments, and in shoot and root tissues. Sample replicates grouped tightly by tissue and treatment, and fewer differentially expressed transcripts were detected in the tolerant PI 372742 samples compared to the susceptible PI 368233 samples, and in root tissues compared to shoot tissues. A de novo assembly resulted in 388,764 transcripts, with 36,587 detected as differentially expressed. Approximately 75 % of transcripts had homology based annotations, with several differences in GO terms enriched between the PI 368233 and PI 372742 samples. Gene expression profiling identified salt-responsive gene families that were consistently down-regulated in PI 372742 and unlikely to contribute to salt tolerance in Kentucky bluegrass. Gene expression profiling also identified sets of transcripts relating to transcription factors, ion and water transport genes, and oxidation-reduction process genes with likely roles in salt tolerance. The transcript assembly represents the first such assembly in the highly polyploidy, facultative apomictic Kentucky bluegrass. The transcripts identified provide genetic information on how this plant responds to and tolerates salt stress in both shoot and root tissues, and can be used for further genetic testing and introgression.

  9. Layer-by-layer assembled multilayers and polymeric nanoparticles for drug delivery in tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Mehrotra, Sumit

    Tissues and organs in vivo are structured in three dimensional (3-D) ordered assemblies to maintain their metabolic functions. In the case of an injury, certain tissues lack the regenerative abilities without an external supportive environment. In order to regenerate the natural in vivo environment post-injury, there is a need to design three-dimensional (3-D) tissue engineered constructs of appropriate dimensions along with strategies that can deliver growth factors or drugs at a controlled rate from such constructs. This thesis focuses on the applications of hydrogen bonded (H-bonded) nanoscale layer-by-layer (LbL) assembled multilayers for time controlled drug delivery, fabrication of polymeric nanoparticles as drug delivery carriers, and engineering 3-D cellular constructs. Axonal regeneration in the central nervous system after spinal cord injury is often disorganized and random. To support linear axonal growth into spinal cord lesion sites, certain growth factors, such as brain-derived neurotrophic factor (BDNF), needs to be delivered at a controlled rate from an array of uniaxial channels patterned in a scaffold. In this study, we demonstrate for the first time that H-bonded LbL assembled degradable thin films prepared over agarose hydrogel, whereby the protein was loaded separately from the agarose fabrication, provided sustained release of protein under physiological conditions for more than four weeks. Further, patterned agarose scaffolds implanted at the site of a spinal cord injury forms a reactive cell layer of leptomeningeal fibroblasts in and around the scaffold. This limits the ability of axons to reinnervate the spinal cord. To address this challenge, we demonstrate the time controlled release of an anti-mitotic agent from agarose hydrdgel to control the growth of the reactive cell layer of fibroblasts. Challenges in tissue engineering can also be addressed using gene therapy approaches. Certain growth factors in the body are known to inhibit axonal growth and nerve repair. Therefore, another possible method to promote axonal growth is to silence the genes to inhibit the production of such growth factors. Small interfering RNA (siRNA) is a powerful therapeutic tool which knocks-down the gene function. Gene therapy approaches to knock-down a gene in mammalian cells, requires optimal selection of a transfection carrier for the siRNA. In this study, 25 kDa linear polyethylenimine (LPEI) was shown as a promising transfection carrier for siRNA delivery in-vitro. LPEI-siRNA complex nanoparticles were optimized for efficient siRNA delivery. Further, effort was made to fabricate LPEI particles of novel shapes, as particle shapes potentially have an impact on gene delivery efficiency. Finally, LbL assembled polyelectrolyte multilayers (PEMs) were engineered to tune surface properties to modulate the cell adhesion on a surface, to stamp and fabricate self-standing thin PEMs to create 3-D cellular constructs.

  10. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD.

    PubMed

    Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Foronjy, Robert F; Feronjy, Robert; Spira, Avrum; Schadt, Eric E; Powell, Charles A; Zhu, Jun

    2015-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.

  11. Gene-specific cell labeling using MiMIC transposons

    PubMed Central

    Gnerer, Joshua P.; Venken, Koen J. T.; Dierick, Herman A.

    2015-01-01

    Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. PMID:25712101

  12. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    PubMed Central

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  13. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  14. Differential expression of cysteine desulfurases in soybean

    PubMed Central

    2011-01-01

    Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression. PMID:22099069

  15. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways.

    PubMed

    Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P

    2017-07-01

    Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.

  16. Evolution of a tissue-specific splicing network

    PubMed Central

    Taliaferro, J. Matthew; Alvarez, Nehemiah; Green, Richard E.; Blanchette, Marco; Rio, Donald C.

    2011-01-01

    Alternative splicing of precursor mRNA (pre-mRNA) is a strategy employed by most eukaryotes to increase transcript and proteomic diversity. Many metazoan splicing factors are members of multigene families, with each member having different functions. How these highly related proteins evolve unique properties has been unclear. Here we characterize the evolution and function of a new Drosophila splicing factor, termed LS2 (Large Subunit 2), that arose from a gene duplication event of dU2AF50, the large subunit of the highly conserved heterodimeric general splicing factor U2AF (U2-associated factor). The quickly evolving LS2 gene has diverged from the splicing-promoting, ubiquitously expressed dU2AF50 such that it binds a markedly different RNA sequence, acts as a splicing repressor, and is preferentially expressed in testes. Target transcripts of LS2 are also enriched for performing testes-related functions. We therefore propose a path for the evolution of a new splicing factor in Drosophila that regulates specific pre-mRNAs and contributes to transcript diversity in a tissue-specific manner. PMID:21406555

  17. Tissue factor transcription driven by Egr-1 is a critical mechanism of murine pulmonary fibrin deposition in hypoxia

    PubMed Central

    Yan, Shi-Fang; Zou, Yu Shan; Gao, Yun; Zhai, Chao; Mackman, Nigel; Lee, Stephen L.; Milbrandt, Jeffrey; Pinsky, David; Kisiel, Walter; Stern, David

    1998-01-01

    Local hypoxemia and stasis trigger thrombosis. We have demonstrated previously that in a murine model of normobaric hypoxia pulmonary fibrin deposition is a result of expression of tissue factor, especially in oxygen-deprived mononuclear phagocytes (MPs). We now show that transcription factor early-growth-response gene product (Egr-1) is rapidly activated in hypoxia, both in vitro and in vivo, and is responsible for transcription and expression of tissue factor in hypoxic lung. MPs and HeLa cells subjected to hypoxia (pO2 ≈13 torr) had increased levels of tissue factor transcripts (≈18-fold) and an increased rate of transcription (≈15-fold), based on nuclear run-on analysis. Gel-shift analysis of nuclear extracts from hypoxic MPs and HeLa cells demonstrated increased DNA-binding activity at the serum response region (SRR; −111/+14 bp) of the tissue factor promoter at Egr-1 motifs. Using 32P-labeled Egr consensus oligonucleotide, we observed induction of DNA-binding activity in nuclear extracts from hypoxic lung and HeLa cells because of activation of Egr-1, by means of supershift analysis. Transient transfection of HeLa cells with chimeric plasmids containing wild-type or mutant SRR from the tissue factor promoter showed that intact Sp1 sites are necessary for basal promoter activity, whereas the integrity of Egr-1 sites was required for hypoxia-enhanced expression. A central role for Egr-1 in hypoxia-mediated tissue factor expression was confirmed by experiments with homozygous Egr-1 null mice; wild-type mice subjected to oxygen deprivation expressed tissue factor and showed fibrin deposition, but hypoxic homozygous Egr-1 null mice displayed neither tissue factor nor fibrin. These data delineate a novel biology for hypoxia-induced fibrin deposition, in which oxygen deprivation-induced activation of Egr-1, resulting in expression of tissue factor, has an unexpected and central role. PMID:9653181

  18. Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer.

    PubMed

    Cui, X Y; Tinholt, M; Stavik, B; Dahm, A E A; Kanse, S; Jin, Y; Seidl, S; Sahlberg, K K; Iversen, N; Skretting, G; Sandset, P M

    2016-02-01

    ESSENTIALS: A hypoxic microenvironment is a common feature of tumors that may influence activation of coagulation. MCF-7 and SK-BR-3 breast cancer cells and breast cancer tissue samples were used. The results showed transcriptional repression of tissue factor pathway inhibitor expression in hypoxia. Hypoxia-inducible factor 1α may be a target for the therapy of cancer-related coagulation and thrombosis. Activation of coagulation is a common finding in patients with cancer, and is associated with an increased risk of venous thrombosis. As a hypoxic microenvironment is a common feature of solid tumors, we investigated the role of hypoxia in the regulation of tissue factor (TF) pathway inhibitor (TFPI) expression in breast cancer. To explore the transcriptional regulation of TFPI by hypoxia-inducible factor (HIF)-1α in breast cancer cells and their correlation in breast cancer tissues. MCF-7 and SK-BR-3 breast cancer cells were cultured in 1% oxygen or treated with cobalt chloride (CoCl2 ) to mimic hypoxia. Time-dependent and dose-dependent downregulation of TFPI mRNA (quantitative RT-PCR) and of free TFPI protein (ELISA) were observed in hypoxia. Western blotting showed parallel increases in the levels of HIF-1α protein and TF. HIF-1α inhibitor abolished or attenuated the hypoxia-induced downregulation of TFPI. Luciferase reporter assay showed that both hypoxia and HIF-1α overexpression caused strong repression of TFPI promoter activity. Subsequent chromatin immunoprecipitation and mutagenesis analysis demonstrated a functional hypoxia response element within the TFPI promoter, located at -1065 to -1060 relative to the transcriptional start point. In breast cancer tissue samples, gene expression analyses showed a positive correlation between the mRNA expression of TFPI and that of HIF-1α. This study demonstrates that HIF-1α is involved in the transcriptional regulation of the TFPI gene, and suggests that a hypoxic microenvironment inside a breast tumor may induce a procoagulant state in breast cancer patients. © 2015 International Society on Thrombosis and Haemostasis.

  19. Impact of static magnetic fields on human myoblast cell cultures.

    PubMed

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Kassner, Stefan S; Faber, Anne; Sauter, Alexander; Schulz, Johannes D; Hörmann, Karl; Kinscherf, Ralf; Goessler, Ulrich Reinhart

    2011-12-01

    Treatment of skeletal muscle loss due to trauma or tumor ablation therapy still lacks a suitable clinical approach. Creation of functional muscle tissue in vitro using the differentiation potential of human satellite cells (myoblasts) is a promising new research field called tissue engineering. Strong differentiation stimuli, which can induce formation of myofibers after cell expansion, have to be identified and evaluated in order to create sufficient amounts of neo-tissue. The objective of this study was to determine the influence of static magnetic fields (SMF) on human satellite cell cultures as one of the preferred stem cell sources in skeletal muscle tissue engineering. Experiments were performed using human satellite cells with and without SMF stimulation after incubation with a culture medium containing low [differentiation medium (DM)] or high [growth medium (GM)] concentrations of growth factors. Proliferation analysis using the alamarBlue assay revealed no significant influence of SMF on cell division. Real-time RT-PCR of the following marker genes was investigated: myogenic factor 5 (MYF5), myogenic differentiation antigen 1 (MYOD1), myogenin (MYOG), skeletal muscle α1 actin (ACTA1), and embryonic (MYH3), perinatal (MYH8) and adult (MYH1) skeletal muscle myosin heavy chain. We detected an influence on marker gene expression by SMF in terms of a down-regulation of the marker genes in cell cultures treated with SMF and DM, but not in cell cultures treated with SMF and GM. Immunocytochemical investigations using antibodies directed against the differentiation markers confirmed the gene expression results and showed an enhancement of maturation after stimulation with GM and SMF. Additional calculation of the fusion index also revealed an increase in myotube formation in cell cultures treated with SMF and GM. Our findings show that the effect of SMF on the process of differentiation depends on the growth factor concentration in the culture medium in human satellite cultures. SMF alone enhances the maturation of human satellite cells treated with GM, but not satellite cells that were additionally stimulated with serum cessation. Therefore, further investigations are necessary before consideration of SMF for skeletal muscle tissue engineering approaches.

  20. Serum- and Growth-Factor-Free Three-Dimensional Culture System Supports Cartilage Tissue Formation by Promoting Collagen Synthesis via Sox9–Col2a1 Interaction

    PubMed Central

    Ahmed, Nazish; Iu, Jonathan; Brown, Chelsea E.; Taylor, Drew Wesley

    2014-01-01

    Objective: One of the factors preventing clinical application of regenerative medicine to degenerative cartilage diseases is a suitable source of cells. Chondrocytes, the only cell type of cartilage, grown in vitro under culture conditions to expand cell numbers lose their phenotype along with the ability to generate hyaline cartilaginous tissue. In this study we determine that a serum- and growth-factor-free three-dimensional (3D) culture system restores the ability of the passaged chondrocytes to form cartilage tissue in vitro, a process that involves sox9. Methods: Bovine articular chondrocytes were passaged twice to allow for cell number expansion (P2) and cultured at high density on 3D collagen-type-II-coated membranes in high glucose content media supplemented with insulin and dexamethasone (SF3D). The cells were characterized after monolayer expansion and following 3D culture by flow cytometry, gene expression, and histology. The early changes in signaling transduction pathways during redifferentiation were characterized. Results: The P2 cells showed a progenitor-like antigen profile of 99% CD44+ and 40% CD105+ and a gene expression profile suggestive of interzone cells. P2 in SF3D expressed chondrogenic genes and accumulated extracellular matrix. Downregulating insulin receptor (IR) with HNMPA-(AM3) or the PI-3/AKT kinase pathway (activated by insulin treatment) with Wortmannin inhibited collagen synthesis. HNMPA-(AM3) reduced expression of Col2, Col11, and IR genes as well as Sox6 and -9. Co-immunoprecipitation and chromatin immunoprecipitation analyses of HNMPA-(AM3)-treated cells showed binding of the coactivators Sox6 and Med12 with Sox9 but reduced Sox9–Col2a1 binding. Conclusions: We describe a novel culture method that allows for increase in the number of chondrocytes and promotes hyaline-like cartilage tissue formation in part by insulin-mediated Sox9–Col2a1 binding. The suitability of the tissue generated via this approach for use in joint repair needs to be examined in vivo. PMID:24606204

  1. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases

    PubMed Central

    Carter, Chris J.; France, James; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb (P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor. PMID:29311898

  2. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases.

    PubMed

    Carter, Chris J; France, James; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis . Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis /host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb ( P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database ( P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis /host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.

  3. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function

    PubMed Central

    Cermakian, Nicolas; Whitmore, David; Foulkes, Nicholas S.; Sassone-Corsi, Paolo

    2000-01-01

    Most clock genes encode transcription factors that interact to elicit cooperative control of clock function. Using a two-hybrid system approach, we have isolated two different partners of zebrafish (zf) CLOCK, which are similar to the mammalian BMAL1 (brain and muscle arylhydrocarbon receptor nuclear translocator-like protein 1). The two homologs, zfBMAL1 and zfBMAL2, contain conserved basic helix–loop–helix-PAS (Period-Arylhydrocarbon receptor-Singleminded) domains but diverge in the carboxyl termini, thus bearing different transcriptional activation potential. As for zfClock, the expression of both zfBmals oscillates in most tissues in the animal. However, in many tissues, the peak, levels, and kinetics of expression are different between the two genes and for the same gene from tissue to tissue. These results support the existence of independent peripheral oscillators and suggest that zfBMAL1 and zfBMAL2 may exert distinct circadian functions, interacting differentially with zfCLOCK at various times in different tissues. Our findings also indicate that multiple controls may be exerted by the central clock and/or that peripheral oscillators can differentially interpret central clock signals. PMID:10760301

  4. Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes

    PubMed Central

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian

    2014-01-01

    Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918

  5. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    PubMed

    Lu, Hong; Patil, Prabhu; Van Sluys, Marie-Anne; White, Frank F; Ryan, Robert P; Dow, J Maxwell; Rabinowicz, Pablo; Salzberg, Steven L; Leach, Jan E; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J

    2008-01-01

    Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates.

  6. Alterations in expression pattern of splicing factors in epithelial ovarian cancer and its clinical impact.

    PubMed

    Iborra, Severine; Hirschfeld, Marc; Jaeger, Markus; Zur Hausen, Axel; Braicu, Iona; Sehouli, Jalid; Gitsch, Gerald; Stickeler, Elmar

    2013-07-01

    Alternative splicing represents an important nuclear mechanism in the posttranscriptional regulation of gene expression, which is frequently altered during tumorigenesis. Previously, we described marked changes in alternative splicing of the CD44 gene in ovarian and breast cancer as well as specific induction of distinct splicing factors during tumor development. The present study was focused on the expression profiles of different splicing factors, including classical serine-arginine (SR) proteins including ASF/SF2, hTra2β1, hTra2α, and Y-box-binding protein (YB-1) in physiological and malignant epithelial ovarian tissue to evaluate their expression pattern with regard to tumor development and disease progression. Expression levels of the different splicing factors were analyzed in physiological epithelial ovarian tissue samples, primary tumors, and metastatic samples of patients with a diagnosis of epithelial ovarian cancer using quantified reverse transcription polymerase chain reaction analysis. We examined more closely the splicing factor hTra2β1 using Western blot analysis and immunohistochemistry. The analysis revealed a marked and specific induction of ASF/SF2, SRp20, hTra2β1, and YB-1 in primary tumors as well as in their metastatic sites. However, in our patient cohort, no induction was seen for the other investigated splicing factors SRp55, SRp40, and hTra2α. Our results suggest a specific induction of distinct splicing factors in ovarian cancer tumorigenesis. The involvement of hTra2β1, YB-1, SRp20, and ASF/SF2 in exon recognition and alternative splicing may be important for gene regulation of alternatively spliced genes like CD44 with potential functional consequences in this tumor type leading to progression and metastasis.

  7. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  8. Trends in tissue engineering research.

    PubMed

    Hacker, Michael C; Mikos, Antonios G

    2006-08-01

    For more than a decade, Tissue Engineering has been devoted to the reporting and discussion of scientific advances in the interdisciplinary field of tissue engineering. In this study, 779 original articles published in the journal since its inception were analyzed and classified according to different attributes, such as focus of research and tissue of interest, to reveal trends in tissue engineering research. In addition, the use of different biomaterials, scaffold architectures, surface and bulk modification agents, cells, differentiation factors, gene delivery vectors, and animal models was examined. The results of this survey show interesting trends over time and by continental origin.

  9. A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning

    PubMed Central

    Martin, Elizabeth M.; Fry, Rebecca C.

    2016-01-01

    Abstract A biological mechanism by which exposure to environmental contaminants results in gene-specific CpG methylation patterning is currently unknown. We hypothesize that gene-specific CpG methylation is related to environmentally perturbed transcription factor occupancy. To test this hypothesis, a database of 396 genes with altered CpG methylation either in cord blood leukocytes or placental tissue was compiled from 14 studies representing assessments of six environmental contaminants. Subsequently, an in silico approach was used to identify transcription factor binding sites enriched among the genes with altered CpG methylation in relationship to the suite of environmental contaminants. For each study, the sequences of the promoter regions (representing −1000 to +500 bp from the transcription start site) of all genes with altered CpG methylation were analyzed for enrichment of transcription factor binding sites. Binding sites for a total of 56 unique transcription factors were identified to be enriched within the promoter regions of the genes. Binding sites for the Kidney-Enriched Krupple-like Factor 15, a known responder to endogenous stress, were enriched ( P  < 0.001–0.041) among the genes with altered CpG methylation associated for five of the six environmental contaminants. These data support the transcription factor occupancy theory as a potential mechanism underlying environmentally-induced gene-specific CpG methylation. PMID:27066266

  10. Biological characterization of soft tissue sarcomas.

    PubMed

    Hayashi, Takuma; Horiuchi, Akiko; Sano, Kenji; Kanai, Yae; Yaegashi, Nobuo; Aburatani, Hiroyuki; Konishi, Ikuo

    2015-12-01

    Soft tissue sarcomas are neoplastic malignancies that typically arise in tissues of mesenchymal origin. The identification of novel molecular mechanisms leading to mesenchymal transformation and the establishment of new therapies and diagnostic biomarker has been hampered by several critical factors. First, malignant soft tissue sarcomas are rarely observed in the clinic with fewer than 15,000 newly cases diagnosed each year in the United States. Another complicating factor is that soft tissue sarcomas are extremely heterogeneous as they arise in a multitude of tissues from many different cell lineages. The scarcity of clinical materials coupled with its inherent heterogeneity creates a challenging experimental environment for clinicians and scientists. Faced with these challenges, there has been extremely limited advancement in clinical treatment options available to patients as compared to other malignant tumours. In order to glean insight into the pathobiology of soft tissue sarcomas, scientists are now using mouse models whose genomes have been specifically tailored to carry gene deletions, gene amplifications, and somatic mutations commonly observed in human soft tissue sarcomas. The use of these model organisms has been successful in increasing our knowledge and understanding of how alterations in relevant oncogenic and/or tumour suppressive signal cascades, i.e., interferon-γ (IFN-γ), tumour protein 53 (TP53) and/or retinoblastoma (RB) pathway directly impact sarcomagenesis. It is the goal of many in the physiological community that the use of several mouse models will serve as powerful in vivo tools for further understanding of sarcomagenesis and potentially identify new diagnostic biomarker and therapeutic strategies against human soft tissue sarcomas.

  11. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α.

    PubMed

    Ryan, V H; Trayhurn, P; Hunter, L; Morris, P J; German, A J

    2011-10-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P=0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2 nM: approximately 4-fold; 20 nM: approximately 14-fold; P=0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone, similar dose- and time-dependent effects were noted. However, no effects were seen when adipocytes from the gonadal WAT depot were treated with rosiglitazone. The induction of 11β-HSD-1 expression, by the pro-inflammatory cytokine tumor necrosis factor α and by lipopolysaccharide may have implications for the pathogenesis of obesity and its associated diseases in the dog. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Synergism between a half-site and an imperfect estrogen-responsive element, and cooperation with COUP-TFI are required for estrogen receptor (ER) to achieve a maximal estrogen-stimulation of rainbow trout ER gene.

    PubMed

    Petit, F G; Métivier, R; Valotaire, Y; Pakdel, F

    1999-01-01

    In all oviparous, liver represents one of the main E2-target tissues where estrogen receptor (ER) constitutes the key mediator of estrogen action. The rainbow trout estrogen receptor (rtER) gene expression is markedly up-regulated by estrogens and the sequences responsible for this autoregulation have been located in a 0.2 kb upstream transcription start site within - 40/- 248 enhancer region. Absence of interference with steroid hormone receptors and tissue-specific factors and a conserved basal transcriptional machinery between yeast and higher eukaryotes, make yeast a simple assay system that will enable determination of important cis-acting regulatory sequences within rtER gene promoter and identification of transcription factors implicated in the regulation of this gene. Deletion analysis allowed to show a synergistic effect between an imperfect estrogen-responsive element (ERE) and a consensus half-ERE to achieve a high hormone-dependent transcriptional activation of the rtER gene promoter in the presence of stably expressed rtER. As in mammalian cells, here we observed a positive regulation of the rtER gene promoter by the chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) through enhancing autoregulation. Using a point mutation COUP-TFI mutant unable to bind DNA demonstrates that enhancement of rtER gene autoregulation requires the interaction of COUP-TFI to the DNA. Moreover, this enhancement of transcriptional activation by COUP-TFI requires specifically the AF-1 transactivation function of ER and can be observed in the presence of E2 or 4-hydroxytamoxifen but not ICI 164384. Thus, this paper describes the reconstitution of a hormone-responsive transcription unit in yeast in which the regulation of rtER gene promoter could be enhanced by the participation of cis-elements and/or trans-acting factors, such as ER itself or COUP-TF.

  13. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  14. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis.

    PubMed

    Findeisen, Hannes M; Pearson, Kevin J; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; de Cabo, Rafael; Bruemmer, Dennis

    2011-04-14

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G(1)→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.

  15. Oxidative Stress Accumulates in Adipose Tissue during Aging and Inhibits Adipogenesis

    PubMed Central

    Findeisen, Hannes M.; Pearson, Kevin J.; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L.; Cohn, Dianne; Heywood, Elizabeth B.; de Cabo, Rafael; Bruemmer, Dennis

    2011-01-01

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G1→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction. PMID:21533223

  16. Enhanced Expression of Interleukin-1α and Tumor Necrosis Factor Receptor-Associated Protein 1 in Ileal Tissues of Cattle Infected with Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Aho, Abraham D.; McNulty, Amanda M.; Coussens, Paul M.

    2003-01-01

    Infection with Mycobacterium avium subsp. paratuberculosis is associated with high levels of morbidity, decreased production, and early culling in dairy cattle. Clinical symptoms of Johne's disease include persistent diarrhea, inappetence, and resultant weight loss due to chronic inflammation of the small intestine. Although the presence or absence of intestinal lesions cannot be used as a definitive indicator of M. avium subsp. paratuberculosis infection, most infected cattle exhibit significant changes to intestinal mucosa, with the focus of pathology surrounding the ileal cecal junction. Typical pathology of M. avium subsp. paratuberculosis infection includes inflammation, thickening of the lumenal wall, and hyperplasia in draining lymph nodes. To further understand the pathology of Johne's disease, we compared the gene expression profiles of ileal tissues from Johne's disease-positive (n = 6), and Johne's disease-negative (n = 5) Holstein cattle. Gene expression profiles were compared with a bovine total leukocyte (BOTL-3) cDNA microarray. Genes that were expressed at significantly higher levels (>1.5-fold; P < 0.05) in tissues from Johne's disease-infected animals relative to noninfected animals included those encoding tumor necrosis factor receptor-associated protein 1 (TRAF1), interleukin-1α (IL-1α), MCP-2, N-cadherin, and β1 integrin (CD29). Dramatic upregulation of IL-1α (21.5-fold) and TRAF1 (27.5-fold) gene expression in tissues of Johne's disease-positive cows relative to tissues from control cows was confirmed by quantitative real-time PCR. Western blot analysis confirmed that IL-1α and TRAF1 mRNA levels resulted in increased protein expression in tissues of Johne's disease-positive cattle relative to tissues from control cattle. High levels of IL-1α can produce symptoms similar to those found in clinical Johne's disease. Taken together, the data presented in this report suggest that many outward symptoms of Johne's disease may be due to IL-1α toxicity. In addition, enhanced levels of TRAF1 could result in cells within the lesions of Johne's disease-positive cattle that are highly resistant to TNF-α-induced signaling. PMID:14573670

  17. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    PubMed

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  18. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    PubMed

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  19. Identification and characterization of Rhox13, a novel X-linked mouse homeobox gene

    PubMed Central

    Geyer, Christopher B.; Eddy, Edward M.

    2008-01-01

    Homeobox genes encode transcription factors whose expression organizes programs of development. A number of homeobox genes expressed in reproductive tissues have been identified recently, including a colinear cluster on the X chromosome in mice. This has led to an increased interest in understanding the role(s) of homeobox genes in regulating development of reproductive tissues including the testis, ovary, and placenta. Here we report the identification and characterization of a novel homeobox gene of the paired-like class on the X chromosome distal to the reproductive homeobox (Rhox) cluster in mice. Transcripts are found in the testis and ovary as early as 13.5 days post-coitum (dpc). Transcription ceases in the ovary by 3 days post-partum (dpp), but continues in the testis through adulthood. The Rhox13 gene encodes a 25.3 kDa protein expressed in the adult testis in germ cells at the basal aspect of the seminiferous epithelium. PMID:18675325

  20. Role of LRF/Pokemon in lineage fate decisions

    PubMed Central

    Lunardi, Andrea; Guarnerio, Jlenia; Wang, Guocan

    2013-01-01

    In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family. PMID:23396304

  1. Constraints on the evolution of a doublesex target gene arising from doublesex’s pleiotropic deployment

    PubMed Central

    Luo, Shengzhan D.; Baker, Bruce S.

    2015-01-01

    “Regulatory evolution,” that is, changes in a gene’s expression pattern through changes at its regulatory sequence, rather than changes at the coding sequence of the gene or changes of the upstream transcription factors, has been increasingly recognized as a pervasive evolution mechanism. Many somatic sexually dimorphic features of Drosophila melanogaster are the results of gene expression regulated by the doublesex (dsx) gene, which encodes sex-specific transcription factors (DSXF in females and DSXM in males). Rapid changes in such sexually dimorphic features are likely a result of changes at the regulatory sequence of the target genes. We focused on the Flavin-containing monooxygenase-2 (Fmo-2) gene, a likely direct dsx target, to elucidate how sexually dimorphic expression and its evolution are brought about. We found that dsx is deployed to regulate the Fmo-2 transcription both in the midgut and in fat body cells of the spermatheca (a female-specific tissue), through a canonical DSX-binding site in the Fmo-2 regulatory sequence. In the melanogaster group, Fmo-2 transcription in the midgut has evolved rapidly, in contrast to the conserved spermathecal transcription. We identified two cis-regulatory modules (CRM-p and CRM-d) that direct sexually monomorphic or dimorphic Fmo-2 transcription, respectively, in the midguts of these species. Changes of Fmo-2 transcription in the midgut from sexually dimorphic to sexually monomorphic in some species are caused by the loss of CRM-d function, but not the loss of the canonical DSX-binding site. Thus, conferring transcriptional regulation on a CRM level allows the regulation to evolve rapidly in one tissue while evading evolutionary constraints posed by other tissues. PMID:25675536

  2. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice.

    PubMed

    Welborn, Joshua P; Davis, Matthew G; Ebers, Steven D; Stodden, Genna R; Hayashi, Kanako; Cheatwood, Joseph L; Rao, Manjeet K; MacLean, James A

    2015-07-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. © 2015 by the Society for the Study of Reproduction, Inc.

  3. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice1

    PubMed Central

    Welborn, Joshua P.; Davis, Matthew G.; Ebers, Steven D.; Stodden, Genna R.; Hayashi, Kanako; Cheatwood, Joseph L.; Rao, Manjeet K.; MacLean, James A.

    2015-01-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. PMID:25972016

  4. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit.

    PubMed

    Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O'Connell, Mary A

    2014-02-01

    Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (Capsicum chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent Capsium annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16-20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. Copyright © 2013. Published by Elsevier Ireland Ltd.

  5. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit

    PubMed Central

    Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O’Connell, Mary A.

    2013-01-01

    Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (C. chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent C. annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16–20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. PMID:24388515

  6. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    PubMed

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Gene expression analysis in calcific tendinopathy of the rotator cuff.

    PubMed

    Oliva, F; Barisani, D; Grasso, A; Maffulli, N

    2011-06-20

    We evaluated the expression of several genes involved in tissue remodelling and bone development in patients with calcific tendinopathy of the rotator cuff. Biopsies from calcified and non-calcified areas were obtained from 10 patients (8 women and 2 men; average age: 55 years; range: 40-68) with calcific tendinopathy of the rotator cuff. To evaluate the expression of selected genes, RNA extraction, cDNA synthesis and quantitative polymerase chain reaction (PCR) were performed. A significantly increased expression of tissue transglutaminase (tTG)2 and its substrate, osteopontin, was detected in the calcific areas compared to the levels observed in the normal tissue from the same subject with calcific tendinopathy, whereas a modest increase was observed for catepsin K. There was also a significant decrease in mRNA expression of Bone Morphogenetic Protein (BMP)4 and BMP6 in the calcific area. BMP-2, collagen V and vascular endothelial growth factor (VEGF) did not show significant differences. Collagen X and matrix metalloproteinase (MMP)-9 were not detectable. A variation in expression of these genes could be characteristic of this form tendinopathy, since an increased level of these genes has not been detected in other forms of tendon lesions.

  8. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity.

    PubMed

    Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E

    2017-01-01

    Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. Copyright © 2017 by the Endocrine Society.

  9. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity

    PubMed Central

    Puttabyatappa, Muraly; Al-Alem, Linah F.; Zakerkish, Farnosh; Rosewell, Katherine L.; Brännström, Mats

    2017-01-01

    Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. PMID:27813674

  10. Deep Sequencing of the Fruit Transcriptome and Lipid Accumulation in a Non-Seed Tissue of Chinese Tallow, a Potential Biofuel Crop.

    PubMed

    Divi, Uday K; Zhou, Xue-Rong; Wang, Penghao; Butlin, Jamie; Zhang, Dong-Mei; Liu, Qing; Vanhercke, Thomas; Petrie, James R; Talbot, Mark; White, Rosemary G; Taylor, Jennifer M; Larkin, Philip; Singh, Surinder P

    2016-01-01

    Chinese tallow (Triadica sebifera) is a valuable oilseed-producing tree that can grow in a variety of conditions without competing for food production, and is a promising biofuel feedstock candidate. The fruits are unique in that they contain both saturated and unsaturated fat present in the tallow and seed layer, respectively. The tallow layer is poorly studied and is considered only as an external fatty deposition secreted from the seed. In this study we show that tallow is in fact a non-seed cellular tissue capable of triglyceride synthesis. Knowledge of lipid synthesis and storage mechanisms in tissues other than seed is limited but essential to generate oil-rich biomass crops. Here, we describe the annotated transcriptome assembly generated from the fruit coat, tallow and seed tissues of Chinese tallow. The final assembly was functionally annotated, allowing for the identification of candidate genes and reconstruction of lipid pathways. A tallow tissue-specific paralog for the transcription factor gene WRINKLED1 (WRI1) and lipid droplet-associated protein genes, distinct from those expressed in seed tissue, were found to be active in tallow, underpinning the mode of oil synthesis and packaging in this tissue. Our data have established an excellent knowledge base that can provide genetic and biochemical insights for engineering non-seed tissues to accumulate large amounts of oil. In addition to the large data set of annotated transcripts, the study also provides gene-based simple sequence repeat and single nucleotide polymorphism markers. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis).

    PubMed

    Pan, Feng; Wang, Yue; Liu, Huanglong; Wu, Min; Chu, Wenyuan; Chen, Danmei; Xiang, Yan

    2017-06-27

    The SQUAMOSA promoter binding protein-like (SPL) proteins are plant-specific transcription factors (TFs) that function in a variety of developmental processes including growth, flower development, and signal transduction. SPL proteins are encoded by a gene family, and these genes have been characterized in two model grass species, Zea mays and Oryza sativa. The SPL gene family has not been well studied in moso bamboo (Phyllostachys edulis), a woody grass species. We identified 32 putative PeSPL genes in the P. edulis genome. Phylogenetic analysis arranged the PeSPL protein sequences in eight groups. Similarly, phylogenetic analysis of the SBP-like and SBP proteins from rice and maize clustered them into eight groups analogous to those from P. edulis. Furthermore, the deduced PeSPL proteins in each group contained very similar conserved sequence motifs. Our analyses indicate that the PeSPL genes experienced a large-scale duplication event ~15 million years ago (MYA), and that divergence between the PeSPL and OsSPL genes occurred 34 MYA. The stress-response expression profiles and tissue-specificity of the putative PeSPL gene promoter regions showed that SPL genes in moso bamboo have potential biological functions in stress resistance as well as in growth and development. We therefore examined PeSPL gene expression in response to different plant hormone and drought (polyethylene glycol-6000; PEG) treatments to mimic biotic and abiotic stresses. Expression of three (PeSPL10, -12, -17), six (PeSPL1, -10, -12, -17, -20, -31), and nine (PeSPL5, -8, -9, -14, -15, -19, -20, -31, -32) genes remained relatively stable after treating with salicylic acid (SA), gibberellic acid (GA), and PEG, respectively, while the expression patterns of other genes changed. In addition, analysis of tissue-specific expression of the moso bamboo SPL genes during development showed differences in their spatiotemporal expression patterns, and many were expressed at high levels in flowers and leaves. The PeSPL genes play important roles in plant growth and development, including responses to stresses, and most of the genes are expressed in different tissues. Our study provides a comprehensive understanding of the PeSPL gene family and may enable future studies on the function and evolution of SPL genes in moso bamboo.

  12. Gene Therapy of Bone Morphogenetic Protein for Periodontal Tissue Engineering

    PubMed Central

    Jin, Q-M.; Anusaksathien, O.; Webb, S.A.; Rutherford, R.B.; Giannobile, W.V.

    2009-01-01

    Background The reconstruction of lost periodontal support including bone, ligament, and cementum is a major goal of therapy. Bone morphogenetic proteins (BMPs) have shown much potential in the regeneration of the periodontium. Limitations of BMP administration to periodontal lesions include need for high-dose bolus delivery, BMP transient biological activity, and low bioavailability of factors at the wound site. Gene transfer offers promise as an alternative treatment strategy to deliver BMPs to periodontal tissues. Methods This study utilized ex vivo BMP-7 gene transfer to stimulate tissue engineering of alveolar bone wounds. Syngeneic dermal fibroblasts (SDFs) were transduced ex vivo with adenoviruses encoding either green fluorescent protein (Ad-GFP or control virus), BMP-7 (Ad-BMP-7), or an antagonist of BMP bioactivity, noggin (Ad-noggin). Transduced cells were seeded onto gelatin carriers and then transplanted to large mandibular alveolar bone defects in a rat wound repair model. Results Ad-noggin treatment tended to inhibit osteogenesis as compared to the control-treated and Ad-BMP-7-treated specimens. The osseous lesions treated by Ad-BMP-7 gene delivery demonstrated rapid chrondrogenesis, with subsequent osteogenesis, cementogenesis and predictable bridging of the periodontal bone defects. Conclusion These results demonstrate the first successful evidence of periodontal tissue engineering using ex vivo gene transfer of BMPs and offers a new approach for repairing periodontal defects. PMID:12666709

  13. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development.

    PubMed Central

    Hardtke, C S; Berleth, T

    1998-01-01

    The vascular tissues of flowering plants form networks of interconnected cells throughout the plant body. The molecular mechanisms directing the routes of vascular strands and ensuring tissue continuity within the vascular system are not known, but are likely to depend on general cues directing plant cell orientation along the apical-basal axis. Mutations in the Arabidopsis gene MONOPTEROS (MP) interfere with the formation of vascular strands at all stages and also with the initiation of the body axis in the early embryo. Here we report the isolation of the MP gene by positional cloning. The predicted protein product contains functional nuclear localization sequences and a DNA binding domain highly similar to a domain shown to bind to control elements of auxin inducible promoters. During embryogenesis, as well as organ development, MP is initially expressed in broad domains that become gradually confined towards the vascular tissues. These observations suggest that the MP gene has an early function in the establishment of vascular and body patterns in embryonic and post-embryonic development. PMID:9482737

  14. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation.

    PubMed

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.

  15. Changes of gene expression of iron regulatory proteins during turpentine oil-induced acute-phase response in the rat.

    PubMed

    Sheikh, Nadeem; Dudas, Jozsef; Ramadori, Giuliano

    2007-07-01

    In the present study, turpentine oil was injected in the hind limb muscle of the rat to stimulate an acute-phase response (APR). The changes in the gene expression of cytokines and proteins known to be involved in the iron regulatory pathway were then studied in the liver and in extra-hepatic tissue. In addition to the strong upregulation of interleukin-6 (IL-6) and IL-1 beta observed in the inflamed muscle, an upregulation of the genes for IL1-beta and tumor necrosis factor-alpha, but not IL-6, were detectable in the liver. Hepatic Hepc gene expression increased to a maximum at 6 h after the onset of APR. An upregulation of transferrin, transferrin receptor 1 (TfR1), TfR2, ferritin-H, iron responsive element binding protein-1 (IRP1), IRP2 and divalent metal transporter gene expression was also found. Hemojuvelin (Hjv)-, ferroportin 1-, Dcytb-, hemochromatosis-gene- and hephaestin gene expression was downregulated. Hepcidin (Hepc) gene expression was not only detectable in extra-hepatic tissues such as heart, small intestine, colon, spleen and kidney but it was also upregulated under acute-phase conditions, with the Hjv gene being regulated antagonistically. Fpn-1 gene expression was downregulated significantly in heart, colon and spleen. Most of the genes of the known proteins involved in iron metabolism are expressed not only in the liver but also in extra-hepatic tissues. Under acute-phase conditions, acute-phase cytokines (eg IL-6) may modulate the gene expression of such proteins not only in the liver but also in other organs.

  16. Cold exposure down-regulates immune response pathways in ferret aortic perivascular adipose tissue.

    PubMed

    Reynés, Bàrbara; van Schothorst, Evert M; García-Ruiz, Estefanía; Keijer, Jaap; Palou, Andreu; Oliver, Paula

    2017-05-03

    Perivascular adipose tissue (PVAT) surrounds blood vessels and releases paracrine factors, such as cytokines, which regulate local inflammation. The inflammatory state of PVAT has an important role in vascular disease; a pro-inflammatory state has been related with atherosclerosis development, whereas an anti-inflammatory one is protective. Cold exposure beneficially affects immune responses and, could thus impact the pathogenesis of cardiovascular diseases. In this study, we investigated the effects of one-week of cold exposure at 4°C of ferrets on aortic PVAT (aPVAT) versus subcutaneous adipose tissue. Ferrets were used because of the similarity of their adipose tissues to those of humans. A ferret-specific Agilent microarray was designed to cover the complete ferret genome and global gene expression analysis was performed. The data showed that cold exposure altered gene expression mainly in aPVAT. Most of the regulated genes were associated with cell cycle, immune response and gene expression regulation, and were mainly down-regulated. Regarding the effects on immune response, cold acclimation decreased the expression of genes involved in antigen recognition and presentation, cytokine signalling and immune system maturation and activation. This immunosuppressive gene expression pattern was depot-specific, as it was not observed in the inguinal subcutaneous depot. Interestingly, this depression in immune response related genes was also evident in peripheral blood mononuclear cells (PBMC). In conclusion, these results reveal that cold acclimation produces an inhibition of immune response-related pathways in aPVAT, reflected in PBMC, indicative of an anti-inflammatory response, which can potentially be exploited for the enhancement or maintenance of cardiovascular health.

  17. Vitamin D Receptor gene (VDR) transcripts in bone, cartilage, muscles and blood and microarray analysis of vitamin D responsive genes expression in paravertebral muscles of Juvenile and Adolescent Idiopathic Scoliosis patients

    PubMed Central

    2012-01-01

    Background VDR may be considered as a candidate gene potentially related to Idiopathic Scoliosis susceptibility and natural history. Transcriptional profile of VDR mRNA isoforms might be changed in the structural tissues of the scoliotic spine and potentially influence the expression of VDR responsive genes. The purpose of the study was to determine differences in mRNA abundance of VDR isoforms in bone, cartilage and paravertebral muscles between tissues from curve concavity and convexity, between JIS and AIS and to identify VDR responsive genes differentiating Juvenile and Adolescent Idiopathic Scoliosis in paravertebral muscles. Methods In a group of 29 patients with JIS and AIS, specimens of bone, cartilage, paravertebral muscles were harvested at the both sides of the curve apex together with peripheral blood samples. Extracted total RNA served as a matrix for VDRs and VDRl mRNA quantification by QRT PCR. Subsequent microarray analysis of paravertebral muscular tissue samples was performed with HG U133A chips (Affymetrix). Quantitative data were compared by a nonparametric Mann Whitney U test. Microarray results were analyzed with GeneSpring 11GX application. Matrix plot of normalized log-intensities visualized the degree of differentiation between muscular tissue transcriptomes of JIS and AIS group. Fold Change Analysis with cutoff of Fold Change ≥2 identified differentially expressed VDR responsive genes in paravertebral muscles of JIS and AIS. Results No significant differences in transcript abundance of VDR isoforms between tissues of the curve concavity and convexity were found. Statistically significant difference between JIS and AIS group in mRNA abundance of VDRl isoform was found in paravertebral muscles of curve concavity. Higher degree of muscular transcriptome differentiation between curve concavity and convexity was visualized in JIS group. In paravertebral muscles Tob2 and MED13 were selected as genes differentially expressed in JIS and AIS group. Conclusions In Idiopathic Scolioses transcriptional activity and alternative splicing of VDR mRNA in osseous, cartilaginous, and paravertebral muscular tissues are tissue specific and equal on both sides of the curve. The number of mRNA copies of VDRl izoform in concave paravertebral muscles might be one of the factors differentiating JIS and AIS. In paravertebral muscles Tob2 and Med13 genes differentiate Adolescent and Juvenile type of Idiopathic Scoliosis. PMID:23259508

  18. Gene Expression of Tissue-Specific Molecules in Ex vivo Dermacentor variabilis (Acari: Ixodidae) During Rickettsial Exposure

    PubMed Central

    SUNYAKUMTHORN, PIYANATE; PETCHAMPAI, NATTHIDA; GRASPERGE, BRITTON J.; KEARNEY, MICHAEL T.; SONENSHINE, DANIEL E.; MACALUSO, KEVIN R.

    2014-01-01

    Ticks serve as both vectors and the reservoir hosts capable of transmitting spotted fever group Rickettsia by horizontal and vertical transmission. Persistent maintenance of Rickettsia species in tick populations is dependent on the specificity of the tick and Rickettsia relationship that limits vertical transmission of particular Rickettsia species, suggesting host-derived mechanisms of control. Tick-derived molecules are differentially expressed in a tissue-specific manner in response to rickettsial infection; however, little is known about tick response to specific rickettsial species. To test the hypothesis that tissue-specific tick-derived molecules are uniquely responsive to rickettsial infection, a bioassay to characterize the tick tissue-specific response to different rickettsial species was used. Whole organs of Dermacentor variabilis (Say) were exposed to either Rickettsia montanensis or Rickettsia amblyommii, two Rickettsia species common, or absent, in field-collected D. variabilis, respectively, for 1 and 12 h and harvested for quantitative real time-polymerase chain reaction assays of putative immune-like tick-derived factors. The results indicated that tick genes are differently expressed in a temporal and tissue-specific manner. Genes encoding glutathione S-transferase 1 (dvgst1) and Kunitz protease inhibitor (dvkpi) were highly expressed in midgut, and rickettsial exposure downregulated the expression of both genes. Two other genes encoding glutathione S-transferase 2 (dvgst2) and β-thymosin (dvβ-thy) were highly expressed in ovary, with dvβ-thy expression significantly downregulated in ovaries exposed to R. montanensis, but not R. amblyommii, at 12-h postexposure, suggesting a selective response. Deciphering the tissue-specific molecular interactions between tick and Rickettsia will enhance our understanding of the key mechanisms that mediate rickettsial infection in ticks. PMID:24180114

  19. Decreased lipogenesis-promoting factors in adipose tissue in postmenopausal women with overweight on a Paleolithic-type diet.

    PubMed

    Blomquist, Caroline; Chorell, Elin; Ryberg, Mats; Mellberg, Caroline; Worrsjö, Evelina; Makoveichuk, Elena; Larsson, Christel; Lindahl, Bernt; Olivecrona, Gunilla; Olsson, Tommy

    2017-10-26

    We studied effects of diet-induced postmenopausal weight loss on gene expression and activity of proteins involved in lipogenesis and lipolysis in adipose tissue. Fifty-eight postmenopausal women with overweight (BMI 32.5 ± 5.5) were randomized to eat an ad libitum Paleolithic-type diet (PD) aiming for a high intake of protein and unsaturated fatty acids or a prudent control diet (CD) for 24 months. Anthropometry, plasma adipokines, gene expression of proteins involved in fat metabolism in subcutaneous adipose tissue (SAT) and lipoprotein lipase (LPL) activity and mass in SAT were measured at baseline and after 6 months. LPL mass and activity were also measured after 24 months. The PD led to improved insulin sensitivity (P < 0.01) and decreased circulating triglycerides (P < 0.001), lipogenesis-related factors, including LPL mRNA (P < 0.05), mass (P < 0.01), and activity (P < 0.001); as well as gene expressions of CD36 (P < 0.05), fatty acid synthase, FAS (P < 0.001) and diglyceride acyltransferase 2, DGAT2 (P < 0.001). The LPL activity (P < 0.05) and gene expression of DGAT2 (P < 0.05) and FAS (P < 0.05) were significantly lowered in the PD group versus the CD group at 6 months and the LPL activity (P < 0.05) remained significantly lowered in the PD group compared to the CD group at 24 months. Compared to the CD, the PD led to a more pronounced reduction of lipogenesis-promoting factors in SAT among postmenopausal women with overweight. This could have mediated the favorable metabolic effects of the PD on triglyceride levels and insulin sensitivity.

  20. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana

    PubMed Central

    Ganapathi, T. R.

    2017-01-01

    Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana. PMID:28234982

  1. Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass

    DOE PAGES

    Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian; ...

    2018-04-24

    Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less

  2. Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian

    Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less

  3. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Completemore » descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral meristem identity gene (APETALA1 or AP1), auxin response factor gene (ETTIN), the gene encoding transcriptional factor of WD40 family (TRANSPARENTTESTAGLABRA1 or TTG1), and the auxin efflux carrier (PIN-FORMED2 or PIN2) gene. More than 220 transgenic lines of the 1st, 2nd and 3rd generations were analyzed for RNAi suppression phenotypes (Filichkin et. al., manuscript submitted). A total of 108 constructs were supplied by ORNL, UF and OSU and used to generate over 1,881 PCR verified transgenic Populus and over 300 PCR verified transgenic Arabidopsis events. The Populus transgenics alone required Agrobacterium co-cultivations of 124.406 explants.« less

  4. Transcriptional regulation of cranial sensory placode development

    PubMed Central

    Moody, Sally A.; LaMantia, Anthony-Samuel

    2015-01-01

    Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264

  5. Regulation of the human ascorbate transporter SVCT2 exon 1b gene by zinc-finger transcription factors

    PubMed Central

    Qiao, Huan; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. The present study focused on the gene regulation of the SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter doesn’t contain a classical TATA-box, we found that it does contain a functional initiator (Inr) that binds YY1 and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of the exon 1b gene. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3 both EGR-1 and -2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors, WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2. PMID:21335086

  6. No Effect of a Whey Growth Factor Extract during Resistance Training on Strength, Body Composition, or Hypertrophic Gene Expression in Resistance-Trained Young Men.

    PubMed

    Dale, Michael J; Coates, Alison M; Howe, Peter R C; Tomkinson, Grant R; Haren, Matthew T; Brown, Andrew; Caldow, Marissa; Cameron-Smith, David; Buckley, Jonathan D

    2017-06-01

    Growth factors can be isolated from bovine milk to form a whey growth factor extract (WGFE). This study examined whether WGFE promoted activation of the AKT/mTOR pathway enabling increased lean tissue mass and strength in resistance trained men. Forty six men with >6 months of resistance training (RT) experience performed 12 weeks of RT. Participants consumed 20 g/day of whey protein and were randomised to receive either 1.6 g WGFE/day (WGFE; n = 22) or 1.6 g cellulose/day (control, CONT; n = 24). The primary outcome was leg press one-repetition maximum (LP1-RM) which was assessed at baseline, 6 and 12 weeks. At baseline and 12 weeks body composition was assessed by dual energy x-ray absorptiometry, and muscle protein synthesis and gene expression were assessed (vastus lateralis biopsy) in a sub-sample (WGFE n = 10, CONT n = 10) pre- and 3 hr post-training. RT increased LP1-RM (+34.9%) and lean tissue mass (+2.3%; p < 0.05) with no difference between treatments (p > 0.48, treatment x time). Post-exercise P70 s6k phosphorylation increased acutely, FOXO3a phosphorylation was unaltered. There were no differences in kinase signalling or gene expression between treatments. Compared with CONT, WGFE did not result in greater increases in lean tissue mass or strength in experienced resistance trained men.

  7. CCN5, a Novel Transcriptional Repressor of the Transforming Growth Factor β Signaling Pathway ▿

    PubMed Central

    Sabbah, Michèle; Prunier, Céline; Ferrand, Nathalie; Megalophonos, Virginie; Lambein, Kathleen; De Wever, Olivier; Nazaret, Nicolas; Lachuer, Joël; Dumont, Sylvie; Redeuilh, Gérard

    2011-01-01

    CCN5 is a member of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family and was identified as an estrogen-inducible gene in estrogen receptor-positive cell lines. However, the role of CCN5 in breast carcinogenesis remains unclear. We report here that the CCN5 protein is localized mostly in the cytoplasm and in part in the nucleus of human tumor breast tissue. Using a heterologous transcription assay, we demonstrate that CCN5 can act as a transcriptional repressor presumably through association with histone deacetylase 1 (HDAC1). Microarray gene expression analysis showed that CCN5 represses expression of genes associated with epithelial-mesenchymal transition (EMT) as well as expression of key components of the transforming growth factor β (TGF-β) signaling pathway, prominent among them TGF-βRII receptor. We show that CCN5 is recruited to the TGF-βRII promoter, thereby providing a mechanism by which CCN5 restricts transcription of the TGF-βRII gene. Consistent with this finding, CCN5, we found, functions to suppress TGF-β-induced transcriptional responses and invasion that is concomitant with EMT. Thus, our data uncovered CCN5 as a novel transcriptional repressor that plays an important role in regulating tumor progression functioning, at least in part, by inhibiting the expression of genes involved in the TGF-β signaling cascade that is known to promote EMT. PMID:21262769

  8. The RNA Export Factor, Nxt1, Is Required for Tissue Specific Transcriptional Regulation

    PubMed Central

    Jiang, Jianqiao; White-Cooper, Helen

    2013-01-01

    The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex. PMID:23754955

  9. Research resource: Tissue-specific transcriptomics and cistromics of nuclear receptor signaling: a web research resource.

    PubMed

    Ochsner, Scott A; Watkins, Christopher M; LaGrone, Benjamin S; Steffen, David L; McKenna, Neil J

    2010-10-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that recruit coregulators and other transcription factors to gene promoters to effect regulation of tissue-specific transcriptomes. The prodigious rate at which the NR signaling field has generated high content gene expression and, more recently, genome-wide location analysis datasets has not been matched by a committed effort to archiving this information for routine access by bench and clinical scientists. As a first step towards this goal, we searched the MEDLINE database for studies, which referenced either expression microarray and/or genome-wide location analysis datasets in which a NR or NR ligand was an experimental variable. A total of 1122 studies encompassing 325 unique organs, tissues, primary cells, and cell lines, 35 NRs, and 91 NR ligands were retrieved and annotated. The data were incorporated into a new section of the Nuclear Receptor Signaling Atlas Molecule Pages, Transcriptomics and Cistromics, for which we designed an intuitive, freely accessible user interface to browse the studies. Each study links to an abstract, the MEDLINE record, and, where available, Gene Expression Omnibus and ArrayExpress records. The resource will be updated on a regular basis to provide a current and comprehensive entrez into the sum of transcriptomic and cistromic research in this field.

  10. miR-199a-5p regulates HIF-1α and OSGIN2 and its expression is correlated to soft-tissue sarcoma patients' outcome

    PubMed Central

    Keßler, Jacqueline; Rot, Swetlana; Bache, Matthias; Kappler, Matthias; Würl, Peter; Vordermark, Dirk; Taubert, Helge; Greither, Thomas

    2016-01-01

    Soft tissue sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin. Partly due to hypoxia, an aggressive and radioresistant phenotype frequently develops, resulting in poorer patient outcome. microRNAs (miRNAs) are tiny, non-coding regulators of gene expression and in situations of cellular stress situations may predict clinical progression and patient outcome. In the present study, hypoxia-associated miR-199a-5p expression in 96 soft tissue sarcoma samples was analysed by reverse transcription-quantitative polymerase chain reaction and associations between miR-199a-5p expression and patient clinicopathological characteristics and survival were measured. Additionally, luciferase reporter assays analyzed the post-transcriptional regulation of hypoxia-associated genes hypoxia-inducible factor 1α (HIF-1α), oxidative stress induced growth inhibitor 2 (OSGIN2) and vascular endothelial growth factor (VEGF) by miR-199a-5p. Survival analyses indicated that low expression of miR-199a-5p was significantly correlated with poorer tumor-specific survival (univariate Cox's-Regression analyses; relative risk=1.92, P=0.029). Furthermore, it was demonstrated that the 3′UTR of HIF-1α and OSGIN2 genes were regulated by miR-199a-5p in-vitro, although the 3′UTR of VEGF was not. To the best of our knowledge, this is the first report demonstrating the regulation of the 3′untranslated region of the OSGIN2 gene by miR-199a-5p and a significant correlation between low miR-199a-5p expression and a poor outcome of patients with soft tissue sarcoma. PMID:28101243

  11. Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation.

    PubMed

    Tramontana, S; Bionaz, M; Sharma, A; Graugnard, D E; Cutler, E A; Ajmone-Marsan, P; Hurley, W L; Loor, J J

    2008-08-01

    High-throughput microarray analysis is an efficient means of obtaining a genome-wide view of transcript profiles across physiological states. However, quantitative PCR (qPCR) remains the chosen method for high-precision mRNA abundance analysis. Essential for reliability of qPCR data is normalization using appropriate internal control genes (ICG), which is now, more than ever before, a fundamental step for accurate gene expression profiling. We mined mammary tissue microarray data on >13,000 genes at -34, -14, 0, 7, 14, 21, and 28 d relative to parturition in 27 crossbred primiparous gilts to identify suitable ICG. Initial analysis revealed TBK1, PCSK2, PTBP1, API5, VAPB, QTRT1, TRIM41, TMEM24, PPP2R5B, and AP1S1 as the most stable genes (sample/reference = 1 +/- 0.2). We also included 9 genes previously identified as ICG in bovine mammary tissue. Gene network analysis of the 19 genes identified AP1S1, API5, MTG1, VAPB, TRIM41, MRPL39, and RPS15A as having no known co-regulation. In addition, UXT and ACTB were added to this list, and mRNA abundance of these 9 genes was measured by qPCR. Expression of all 9 of these genes was decreased markedly during lactation. In a previous study with bovine mammary tissue, mRNA of stably expressed genes decreased during lactation due to a dilution effect brought about by large increases in expression of highly abundant genes. To verify this effect, highly abundant mammary genes such as CSN1S2, SCD, FABP3, and LTF were evaluated by qPCR. The tested ICG had a negative correlation with these genes, demonstrating a dilution effect in the porcine mammary tissue. Gene stability analysis identified API5, VABP, and MRPL39 as the most stable ICG in porcine mammary tissue and indicated that the use of those 3 genes was most appropriate for calculating a normalization factor. Overall, results underscore the importance of proper validation of internal controls for qPCR and highlight the limitations of using absence of time effects as the criteria for selection of appropriate ICG. Further, we showed that use of the same ICG from one organism might not be suitable for qPCR normalization in other species.

  12. Bioactive factors for tissue regeneration: state of the art.

    PubMed

    Ohba, Shinsuke; Hojo, Hironori; Chung, Ung-Il

    2012-07-01

    THERE ARE THREE COMPONENTS FOR THE CREATION OF NEW TISSUES: cell sources, scaffolds, and bioactive factors. Unlike conventional medical strategies, regenerative medicine requires not only analytical approaches but also integrative ones. Basic research has identified a number of bioactive factors that are necessary, but not sufficient, for organogenesis. In skeletal development, these factors include bone morphogenetic proteins (BMPs), transforming growth factor β TGF-β, Wnts, hedgehogs (Hh), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), SRY box-containing gene (Sox) 9, Sp7, and runt-related transcription factors (Runx). Clinical and preclinical studies have been extensively performed to apply the knowledge to bone and cartilage regeneration. Given the large number of findings obtained so far, it would be a good time for a multi-disciplinary, collaborative effort to optimize these known factors and develop appropriate drug delivery systems for delivering them.

  13. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    PubMed

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  14. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis.

    PubMed

    Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-Jye; Salton, Stephen R

    2012-11-01

    Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.

  15. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    PubMed

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    PubMed

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  17. Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development.

    PubMed

    Auden, Alana; Caddy, Jacinta; Wilanowski, Tomasz; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2006-10-01

    The Drosophila transcription factor Grainyhead (grh) is expressed in ectoderm-derived tissues where it regulates several key developmental events including cuticle formation, tracheal elongation and dorsal closure. Our laboratory has recently identified three novel mammalian homologues of the grh gene, Grainyhead-like 1, -2 and -3 (Grhl1-3) that rewrite the phylogeny of this family. Using gene targeting in mice, we have shown that Grhl3 is essential for neural tube closure, skin barrier formation and wound healing. Despite their extensive sequence homology, Grhl1 and Grhl2 are unable to compensate for loss of Grhl3 in these developmental processes. To explore this lack of redundancy, and to gain further insights into the functions of this gene family in mammalian development we have performed an extensive in situ hybridisation analysis. We demonstrate that, although all three Grhl genes are highly expressed in the developing epidermis, they display subtle differences in the timing and level of expression. Surprisingly, we also demonstrate differential expression patterns in non-ectoderm-derived tissues, including the heart, the lung, and the metanephric kidney. These findings expand our understanding of the unique role of Grhl3 in neurulation and epidermal morphogenesis, and provide a focus for further functional analysis of the Grhl genes during mouse embryogenesis.

  18. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet‐induced obese mice

    PubMed Central

    Takahashi, Yumiko; Sakurai, Mutsumi; Akimoto, Yukari; Tsushida, Tojiro; Oike, Hideaki; Ippoushi, Katsunari

    2015-01-01

    Scope To examine the effect of dietary quercetin on the function of epididymal adipose tissue (EAT) in Western diet‐induced obese mice. Methods and results C57BL/6J mice were fed a control diet; a Western diet high in fat, cholesterol, and sucrose; or the same Western diet containing 0.05% quercetin for 18 weeks. Supplementation with quercetin suppressed the increase in the number of macrophages, the decrease in the ratio of CD4+ to CD8+ T cells in EAT, and the elevation of plasma leptin and tumor necrosis factor α levels in mice fed the Western diet. Comprehensive gene expression analysis revealed that quercetin suppressed gene expression associated with the accumulation and activation of immune cells, including macrophages and lymphocytes in EAT. It also improved the expression of the oxidative stress‐sensitive transcription factor NFκB, NADPH oxidases, and antioxidant enzymes. Quercetin markedly increased gene expression associated with mitochondrial oxidative phosphorylation and mitochondrial DNA content. Conclusion Quercetin most likely universally suppresses the accumulation and activation of immune cells, including antiinflammatory cells, whereas it specifically increased gene expression associated with mitochondrial oxidative phosphorylation. Suppression of oxidative stress and NFκB activity likely contributed to the prevention of the accumulation and activation of immune cells and resulting chronic inflammation. PMID:26499876

  19. Alternative Polyadenylation in Glioblastoma Multiforme and Changes in Predicted RNA Binding Protein Profiles

    PubMed Central

    Shao, Jiaofang; Zhang, Jing; Zhang, Zengming; Jiang, Huawei; Lou, Xiaoyan; Foltz, Gregory; Lan, Qing; Huang, Qiang

    2013-01-01

    Abstract Alternative polyadenylation (APA) is widely present in the human genome and plays a key role in carcinogenesis. We conducted a comprehensive analysis of the APA products in glioblastoma multiforme (GBM, one of the most lethal brain tumors) and normal brain tissues and further developed a computational pipeline, RNAelements (http://sysbio.zju.edu.cn/RNAelements/), using covariance model from known RNA binding protein (RBP) targets acquired by RNA Immunoprecipitation (RIP) analysis. We identified 4530 APA isoforms for 2733 genes in GBM, and found that 182 APA isoforms from 148 genes showed significant differential expression between normal and GBM brain tissues. We then focused on three genes with long and short APA isoforms that show inconsistent expression changes between normal and GBM brain tissues. These were myocyte enhancer factor 2D, heat shock factor binding protein 1, and polyhomeotic homolog 1 (Drosophila). Using the RNAelements program, we found that RBP binding sites were enriched in the alternative regions between the first and the last polyadenylation sites, which would result in the short APA forms escaping regulation from those RNA binding proteins. To the best of our knowledge, this report is the first comprehensive APA isoform dataset for GBM and normal brain tissues. Additionally, we demonstrated a putative novel APA-mediated mechanism for controlling RNA stability and translation for APA isoforms. These observations collectively lay a foundation for novel diagnostics and molecular mechanisms that can inform future therapeutic interventions for GBM. PMID:23421905

  20. Epigenetic hereditary transcription profiles III, evidence for an epigenetic network resulting in gender, tissue and age-specific variation in overall transcription

    PubMed Central

    Simons, Johannes WIM

    2009-01-01

    Background We have previously shown that deviations from the average transcription profile of a group of functionally related genes are not only heritable, but also demonstrate specific patterns associated with age, gender and differentiation, thereby implicating genome-wide nuclear programming as the cause. To determine whether these results could be reproduced, a different micro-array database (obtained from two types of muscle tissue, derived from 81 human donors aged between 16 to 89 years) was studied. Results This new database also revealed the existence of age, gender and tissue-specific features in a small group of functionally related genes. In order to further analyze this phenomenon, a method was developed for quantifying the contribution of different factors to the variability in gene expression, and for generating a database limited to residual values reflecting constitutional differences between individuals. These constitutional differences, presumably epigenetic in origin, contribute to about 50% of the observed residual variance which is connected with a network of interrelated changes in gene expression with some genes displaying a decrease or increase in residual variation with age. Conclusion Epigenetic variation in gene expression without a clear concomitant relation to gene function appears to be a widespread phenomenon. This variation is connected with interactions between genes, is gender and tissue specific and is related to cellular aging. This finding, together with the method developed for analysis, might contribute to the elucidation of the role of nuclear programming in differentiation, aging and carcinogenesis Reviewers This article was reviewed by Thiago M. Venancio (nominated by Aravind Iyer), Hua Li (nominated by Arcady Mushegian) and Arcady Mushegian and J.P.de Magelhaes (nominated by G. Church). PMID:19796384

  1. Are specific gene expressions of extracellular matrix and nucleus pulposus affected by primary cell cultures prepared from intact or degenerative intervertebral disc tissues?

    PubMed

    Karaarslan, Numan; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin Yasar, Duygu; Kaplan, Necati; Akyuva, Yener; Gonultas, Aylin; Ates, Ozkan

    2018-01-22

    In this scientific research project, the researchers aimed to determine the gene expression patterns of nucleus pulposus (NP) in cell cultures obtained from degenerated or intact tissues. Whereas 12 of the cases were diagnosed with lumbar disc hernia and had undergone lumbar microdiscectomy, 12 cases had undergone traumatic intervertebral discectomy and corpectomy, along with discectomy after spinal trauma. NP-specific markers and gene expressions of the reagents of the extracellular matrix in the experimental setup were tested at the 0th, 24th, and 48th hours by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Visual evaluations were simultaneously made in all samples using invert and fluorescence microscopy. Vitality and proliferation analyses were evaluated by UV spectrophotometer. As a method of statistical evaluation, Spearman was used for categorical variants, and the Pearson correlation was used for variants with numerical and plain distribution. No association was found either between the tissue type and times (r=0.000; p=1.000) or between the region that the tissue was obtained from and hypoxia transcription factor-1 alpha (HIF-1α) gene expression (r=0.098; p=0.245). There was no correlation between cell proliferation and chondroadherin (CHAD) expression or between type II collagen (COL2A1) and CHAD gene expressions. It was found that CHAD and HIF-1α gene expressions and HIF-1α and COL2A1 gene expressions affected cell proliferation. Cell culture setups are of paramount importance because they may influence the pattern of changes in the gene expressions of the cells used in these setups.

  2. Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy.

    PubMed

    Niesen, Charles E; Xu, Jun; Fan, Xuemo; Li, Xiaojin; Wheeler, Christopher J; Mamelak, Adam N; Wang, Charles

    2013-01-01

    The molecular mechanism underlying tumor-induced epileptogenesis is poorly understood. Alterations in the peritumoral microenvironment are believed to play a significant role in inducing epileptogenesis. We hypothesize that the change of gene expression in brain peritumoral tissues may contribute to the increased neuronal excitability and epileptogenesis. To identify the genes possibly involved in tumor-induced epilepsy, a genome-wide gene expression profiling was conducted using Affymetrix HG U133 plus 2.0 arrays and RNAs derived from formalin-fixed paraffin embedded (FFPE) peritumoral cortex tissue slides from 5-seizure vs. 5-non-seizure low grade brain tumor patients. We identified many differentially expressed genes (DEGs). Seven dysregulated genes (i.e., C1QB, CALCRL, CCR1, KAL1, SLC1A2, SSTR1 and TYRO3) were validated by qRT-PCR, which showed a high concordance. Principal Component Analysis (PCA) showed that epilepsy subjects were clustered together tightly (except one sample) and were clearly separated from the non-epilepsy subjects. Molecular functional categorization showed that significant portions of the DEGs functioned as receptor activity, molecular binding including enzyme binding and transcription factor binding. Pathway analysis showed these DEGs were mainly enriched in focal adhesion, ECM-receptor interaction, and cell adhesion molecules pathways. In conclusion, our study showed that dysregulation of gene expression in the peritumoral tissues may be one of the major mechanisms of brain tumor induced-epilepsy. However, due to the small sample size of the present study, further validation study is needed. A deeper characterization on the dysregulated genes involved in brain tumor-induced epilepsy may shed some light on the management of epilepsy due to brain tumors.

  3. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress

    PubMed Central

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  4. L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.

    PubMed

    Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth

    2018-04-04

    Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos , a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. © 2018. Published by The Company of Biologists Ltd.

  5. Increased phosphatidylethanolamine N-methyltransferase gene expression in non-small-cell lung cancer tissue predicts shorter patient survival

    PubMed Central

    ZINRAJH, DAVID; HÖRL, GERD; JÜRGENS, GÜNTHER; MARC, JANJA; SOK, MIHA; CERNE, DARKO

    2014-01-01

    Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression. PMID:24932311

  6. Increased phosphatidylethanolamine N-methyltransferase gene expression in non-small-cell lung cancer tissue predicts shorter patient survival.

    PubMed

    Zinrajh, David; Hörl, Gerd; Jürgens, Günther; Marc, Janja; Sok, Miha; Cerne, Darko

    2014-06-01

    Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression.

  7. Three-dimensional organotypic culture: experimental models of mammalian biology and disease.

    PubMed

    Shamir, Eliah R; Ewald, Andrew J

    2014-10-01

    Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells.

  8. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions

    PubMed Central

    Krieg, Thomas; Abraham, David; Lafyatis, Robert

    2007-01-01

    Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742

  9. Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis.

    PubMed

    Robson, Andrew; Owens, Nick D L; Baserga, Susan J; Khokha, Mustafa K; Griffin, John N

    2016-10-26

    Because ribosomes are ubiquitously required for protein production, it was long assumed that any inherited defect in ribosome manufacture would be embryonically lethal. However, several human congenital diseases have been found to be associated with mutations in ribosome biogenesis factors. Surprisingly, despite the global requirement for ribosomes, these "ribosomopathies" are characterized by distinct and tissue specific phenotypes. The reasons for such tissue proclivity in ribosomopathies remain mysterious but may include differential expression of ribosome biogenesis factors in distinct tissues. Here we use in situ hybridization of labeled antisense mRNA probes and ultra high temporal resolution RNA-Seq data to examine and compare expression of 13 disease associated ribosome biogenesis factors at six key stages in Xenopus tropicalis development. Rather than being ubiquitously expressed during development, mRNAs of all examined ribosome biogenesis factors were highly enriched in specific tissues, including the cranial neural crest and ventral blood islands. Interestingly, expression of ribosome biogenesis factors demonstrates clear differences in timing, transcript number and tissue localization. Ribosome biogenesis factor expression is more spatiotemporally regulated during embryonic development than previously expected and correlates closely with many of the common ribosomopathy phenotypes. Our findings provide information on the dynamic use of ribosome production machinery components during development and advance our understanding of their roles in disease.

  10. Integrative Analysis of DNA Methylation and Gene Expression Data Identifies EPAS1 as a Key Regulator of COPD

    PubMed Central

    Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Feronjy, Robert; Spira, Avrum; Schadt, Eric E.; Powell, Charles A.; Zhu, Jun

    2015-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology. PMID:25569234

  11. Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits

    USDA-ARS?s Scientific Manuscript database

    MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3, both displaying high expressio...

  12. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/myeloid leukemia factor 2 (MLF2).

    PubMed

    Kuefer, M U; Look, A T; Williams, D C; Valentine, V; Naeve, C W; Behm, F G; Mullersman, J E; Yoneda-Kato, N; Montgomery, K; Kucherlapati, R; Morris, S W

    1996-07-15

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, the MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal region frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements.

  13. Effects of dietary supplementation with EPA and/or α-lipoic acid on adipose tissue transcriptomic profile of healthy overweight/obese women following a hypocaloric diet.

    PubMed

    Huerta, Ana E; Prieto-Hontoria, Pedro L; Fernández-Galilea, Marta; Escoté, Xavier; Martínez, J Alfredo; Moreno-Aliaga, María J

    2017-01-02

    In obesity, the increment of adiposity levels disrupts the whole body homeostasis, promoting an over production of oxidants and inflammatory mediators. The current study aimed to characterize the transcriptomic changes promoted by supplementation with eicosapentaenoic acid (EPA, 1.3 g/day), α-lipoic acid (0.3 g/day), or both (EPA + α-lipoic acid, 1.3 g/day + 0.3 g/day) in subcutaneous abdominal adipose tissue from overweight/obese healthy women, who followed a hypocaloric diet (30% of total energy expenditure) during ten weeks, by using a microarray approach. At the end of the intervention, a total of 33,297 genes were analyzed using Affymetrix GeneChip arrays. EPA promoted changes in extracellular matrix remodeling gene expression, besides a rise of genes associated with either chemotaxis or wound repair. α-Lipoic acid decreased expression of genes related with cell adhesion and inflammation. Furthermore, α-lipoic acid, especially in combination with EPA, upregulated the expression of genes associated with lipid catabolism while downregulated genes involved in lipids storage. Together, all these data suggest that some of the metabolic effects of EPA and α-lipoic acid could be related to their regulatory actions on adipose tissue metabolism. © 2016 BioFactors, 43(1):117-131, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  14. Oxidative stress and inflammation in retained placenta: a pilot study of protein and gene expression of GPX1 and NFκB.

    PubMed

    Endler, Margit; Saltvedt, Sissel; Eweida, Mohamed; Åkerud, Helena

    2016-12-06

    Retained placenta is associated with severe postpartum hemorrhage. Its etiology is unknown and its biochemistry has not been studied. We aimed to assess whether levels of the antioxidative enzyme Glutathione Peroxidase 1 (GPX1) and the transcription factor Nuclear Factor κβ (NFκβ), as markers of oxidative stress and inflammation, were affected in retained placentas compared to spontaneously released placentas from otherwise normal full term pregnancies. In a pilot study we assessed concentrations of GPX1 by ELISA and gene (mRNA) expression of GPX1, NFκβ and its inhibitor Iκβα, by quantitative real-time-PCR in periumbilical and peripheral samples from retained (n = 29) and non-retained (n = 31) placental tissue. Median periumbilical GPX1 concentrations were 13.32 ng/ml in retained placentas and 17.96 ng/ml in non-retained placentas (p = 0.22), peripheral concentrations were 13.27 ng/ml and 19.09 ng/ml (p = 0.08). Retained placental tissue was more likely to have a low GPX1 protein concentration (OR 3.82, p = 0.02 for periumbilical and OR 3.95, p = 0.02 for peripheral samples). Median periumbilical GPX1 gene expressions were 1.13 for retained placentas and 0.88 for non-retained placentas (p = 0.08), peripheral expression was 1.32 and 1.18 (p = 0.46). Gene expressions of NFκβ and Iκβα were not significantly different between retained and non-retained placental tissue. Women with retained placenta were more likely to have a low level of GPX1 protein concentration in placental tissue compared to women without retained placenta and retained placental tissue showed a tendency of lower median concentrations of GPX1 protein expression. This may indicate decreased antioxidative capacity as a component in this disorder but requires a larger sample to corroborate results.

  15. Molecular characterization and expression analysis of the myostatin gene and its association with growth traits in Noble scallop (Chlamys nobilis).

    PubMed

    Fan, Sigang; Xu, Youhou; Liu, Baosuo; He, Wenyao; Zhang, Bo; Su, Jiaqi; Yu, Dahui

    2017-10-01

    Myostatin (MSTN), also called growth and differentiation factor-8 (GDF-8), is a member of the transforming growth factor-β (TGF-β) superfamily and an inhibitor of muscle differentiation and growth. In this report, we identified and characterized a MSTN gene (CnMSTN) from the scallop Chlamys nobilis. The open reading frame of CnMSTN was 1374bp in length, encoding 457 amino acids. The structure of CnMSTN included a putative signal peptide, a TGF-β propeptide domain, and a conserved TGF-β domain. Phylogenetic analysis showed that the CnMSTN gene was clustered in the same subgroup with the MSTN gene found in Mollusca. Quantitative real-time PCR showed that the CnMSTN gene was widely expressed in all tissues tested, with the highest expression level observed in the adductor muscle. Six single nucleotide polymorphisms (SNPs) were identified in the promoter region, but no SNP was detected in the exon regions. Association analysis showed that SNP g.-579A/C had significant effects on body mass, soft-tissue mass, and adductor muscle mass. The CC and AC genotypes of g.-579A/C had significantly higher growth trait values than that of genotype AA (P<0.05). These results suggest that CnMSTN could be used as a candidate gene for the selective breeding of C. nobilis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Neural restrictive silencer factor and choline acetyltransferase expression in cerebral tissue of Alzheimer’s Disease patients: A pilot study

    PubMed Central

    González-Castañeda, Rocío E.; Sánchez-González, Víctor J.; Flores-Soto, Mario; Vázquez-Camacho, Gonzalo; Macías-Islas, Miguel A.; Ortiz, Genaro G.

    2013-01-01

    Decreased Choline Acetyltransferase (ChAT) brain level is one of the main biochemical disorders in Alzheimer’s Disease (AD). In rodents, recent data show that the CHAT gene can be regulated by a neural restrictive silencer factor (NRSF). The aim of the present work was to evaluate the gene and protein expression of CHAT and NRSF in frontal, temporal, entorhinal and parietal cortices of AD patient brains. Four brains from patients with AD and four brains from subjects without dementia were studied. Cerebral tissues were obtained and processed by the guanidine isothiocyanate method for RNA extraction. CHAT and NRSF gene and protein expression were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. CHAT gene expression levels were 39% lower in AD patients as compared to the control group (p < 0.05, U test). ChAT protein levels were reduced by 17% (p = 0.02, U test). NRSF gene expression levels were 86% higher in the AD group (p = 0.001, U test) as compared to the control group. In the AD subjects, the NRSF protein levels were 57% higher (p > 0.05, U test) than in the control subjects. These findings suggest for the first time that in the brain of AD patients high NRSF protein levels are related to low CHAT gene expression levels. PMID:23569405

  17. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development.

    PubMed

    Gao, Chao; Sun, Jianlei; Wang, Chongqi; Dong, Yumei; Xiao, Shouhua; Wang, Xingjun; Jiao, Zigao

    2017-01-01

    The basic/helix-loop-helix (bHLH) proteins constitute a superfamily of transcription factors that are known to play a range of regulatory roles in eukaryotes. Over the past few decades, many bHLH family genes have been well-characterized in model plants, such as Arabidopsis, rice and tomato. However, the bHLH protein family in peanuts has not yet been systematically identified and characterized. Here, 132 and 129 bHLH proteins were identified from two wild ancestral diploid subgenomes of cultivated tetraploid peanuts, Arachis duranensis (AA) and Arachis ipaensis (BB), respectively. Phylogenetic analysis indicated that these bHLHs could be classified into 19 subfamilies. Distribution mapping results showed that peanut bHLH genes were randomly and unevenly distributed within the 10 AA chromosomes and 10 BB chromosomes. In addition, 120 bHLH gene pairs between the AA-subgenome and BB-subgenome were found to be orthologous and 101 of these pairs were highly syntenic in AA and BB chromosomes. Furthermore, we confirmed that 184 bHLH genes expressed in different tissues, 22 of which exhibited tissue-specific expression. Meanwhile, we identified 61 bHLH genes that may be potentially involved in peanut-specific subterranean. Our comprehensive genomic analysis provides a foundation for future functional dissection and understanding of the regulatory mechanisms of bHLH transcription factors in peanuts.

  18. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars.

    PubMed

    Liu, Xiao-Jing; Chuang, Yao-Nung; Chiou, Chung-Yi; Chin, Dan-Chu; Shen, Fu-Quan; Yeh, Kai-Wun

    2012-08-01

    The anthocyanin-biosynthetic pathway was studied in flowers of Oncidium Gower Ramsey with yellow floral color and mosaic red anthocyanin in lip crests, sepals and petals, and compared with the anthocyanin biosynthesis in flowers of Oncidium Honey Dollp, a natural somatoclone derived from tissue culture of Gower Ramsey, with a yellow perianth without red anthocyanins in floral tissues. HPLC analysis revealed that the red anthocyanin in lip crests of the Gower Ramsey cultivar comprised peonidin-3-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, whereas Honey Dollp was devoid of anthocyanin compounds. Among the five anthocyanin-biosynthetic genes, OgCHS was actively expressed in lip crests of Gower Ramsey flowers, but no transcripts of OgCHS were detected in Honey Dollp floral tissues. Transient expression of OgCHS by bombardment confirmed that recovery of the OgCHS gene expression completed the anthocyanin pathway and produced anthocyanin compounds in lip crests of Honey Dollp flowers. Transcription factor genes regulating anthocyanin biosynthesis showed no distinctive differences in the expression level of OgMYB1, OgbHLH and OgWD40 between the two cultivars. A methylation assay revealed that the promoter of OgCHS was not methylated in Gower Ramsey, while a positive methylation effect was present in the upstream promoter region of OgCHS in Honey Dollp. Overall, our results suggest that the failure of anthocyanin accumulation in Honey Dollp floral tissues may be attributed to inactivation of the OgCHS gene resulting from the epigenetic methylation of 5'-upstream promoter region.

  19. A Sympathetic Neuron Autonomous Role for Egr3-Mediated Gene Regulation in Dendrite Morphogenesis and Target Tissue Innervation

    PubMed Central

    Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.

    2013-01-01

    Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373

  20. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    PubMed Central

    2013-01-01

    Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200

  1. Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action

    PubMed Central

    Martinez-Arguelles, Daniel B.; Papadopoulos, Vassilios

    2010-01-01

    Steroid hormones participate in organ development, reproduction, body homeostasis, and stress responses. The steroid machinery is expressed in a development- and tissue-specific manner, with the expression of these factors being tightly regulated by an array of transcription factors (TFs). Epigenetics provides an additional layer of gene regulation through DNA methylation and histone tail modifications. Evidence of epigenetic regulation of key steroidogenic enzymes is increasing, though this does not seem to be a predominant regulatory pathway. Steroid hormones exert their action in target tissues through steroid nuclear receptors belonging to the NR3A and NR3C families. Nuclear receptor expression levels and post-translational modifications regulate their function and dictate their sensitivity to steroid ligands. Nuclear receptors and TFs are more likely to be epigenetically regulated than proteins involved in steroidogenesis and have secondary impact on the expression of these steroidogenic enzymes. Here we review evidence for epigenetic regulation of enzymes, transcription factors, and nuclear receptors related to steroid biogenesis and action. PMID:20156469

  2. MSX-1 gene expression and regulation in embryonic palatal tissue.

    PubMed

    Nugent, P; Greene, R M

    1998-01-01

    The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.

  3. Regulatory role of AINTEGUMENTA in organ initiation and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krizek, Beth Allyn; Lebioda, Lukasz

    2005-03-01

    Although several members of the plant-specific AP2/ERF family of transcription factors are important developmental regulators, many genes in this large protein family remain uncharacterized. Here, we present a phylogenetic analysis of the18 genes that make up the AP2 subgroup of this family. We report expression analyses of seven Arabidopsis genes most closely related to the floral development gene AINTEGUMENTA and show that all AINTEGUMENTA-like (AIL) genes are transcribed in multiple tissues during development. They are expressed primarily in young actively dividing tissues of a plant and not in mature leaves or stems. The spatial distribution of AIL5, AIL6, and AIL7more » mRNA in inflorescences was characterized by in situ hybridization. Each of these genes is expressed in a spatially and temporally distinct pattern within inflorescence meristems and flowers. Ectopic expression of AIL5 resulted in a larger floral organ phenotype, similar to that resulting from ectopic expression of ANT. Our results are consistent with AIL genes having roles in specification of meristematic or division-competent states.« less

  4. Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue.

    PubMed

    Fatima, L A; Campello, R S; Santos, R de Souza; Freitas, H S; Frank, A P; Machado, U F; Clegg, D J

    2017-12-01

    Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.

  5. Transcriptomic Identification of ADH1B as a Novel Candidate Gene for Obesity and Insulin Resistance in Human Adipose Tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES)

    PubMed Central

    Winnier, Deidre A.; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A.; Hu, Shirley L.; Farook, Vidya S.; Coletta, Dawn K.; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D.; Arya, Rector; Carless, Melanie; Lehman, Donna M.; Curran, Joanne E.; Cromack, Douglas T.; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H. H.; DeFronzo, Ralph A.; Jenkinson, Christopher P.

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10-9), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits. PMID:25830378

  6. Minimal Phenotype of Mice Homozygous for a Null Mutation in the Forkhead/Winged Helix Gene, Mf2

    PubMed Central

    Kume, Tsutomu; Deng, Keyu; Hogan, Brigid L. M.

    2000-01-01

    Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2lacZ) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes. PMID:10648626

  7. Minimal phenotype of mice homozygous for a null mutation in the forkhead/winged helix gene, Mf2.

    PubMed

    Kume, T; Deng, K; Hogan, B L

    2000-02-01

    Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2(lacZ)) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes.

  8. Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing.

    PubMed

    Popov, Ivan K; Kwon, Taejoon; Crossman, David K; Crowley, Michael R; Wallingford, John B; Chang, Chenbei

    2017-06-15

    During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. In vitro investigation of the effect of matrix molecules on the behavior of colon cancer cells under the effect of geldanamycin derivative.

    PubMed

    Vural, Kamil; Kosova, Funda; Kurt, Feyzan Özdal; Tuğlu, İbrahim

    2017-10-01

    The chaperone-binding drug, 17-allylamino-17-demethoxygeldanamycin, has recently come into clinical use. It is a derivative of geldanamycin, an ansamycin benzoquinone antibiotic with anti-carcinogenic effect. Understanding the effect of this drug on the cancer cells and their niche is important for treatment. We applied 17-allylamino-17-demethoxygeldanamycin to colon cancer cell line (Colo 205) on matrix molecules to investigate the relationship of apoptosis with terminal deoxynucleotidyl transferase dUTP nick end labeling immunocytochemistry and related gene expression. We used laminin and collagen I for matrix molecules and vascular endothelial growth factor for angiogenic structure. We also examined apoptosis-related signaling pathway including mitochondrial proteins, cytochrome c, Bcl-2, caspase-9, Apaf-1 expression using real-time polymerase chain reaction. There was clear effect of 17-allylamino-17-demethoxygeldanamycin that killed more cells on tissue culture plastic compared to matrix molecules. The IC 50 value was 0.58 µg/mL for tissue culture plastic compared with 0.64 µg/mL for laminin and 0.75 µg/mL for collagen I. The analyses showed that more cells on matrix molecules underwent apoptosis compared to that on tissue culture plastic. Apoptosis-related gene expression was similar in which Bcl-2 expression decreased and proapoptotic gene expression of the cells on matrix molecules increased compared to that on tissue culture plastic. However, the application of 17-allylamino-17-demethoxygeldanamycin was more effective for the cells on collagen I compared to the cells on laminin. There was also a decrease in angiogenesis as shown by the vascular endothelial growth factor staining. This was more pronounced by coating of the tissue culture plastic with matrix molecules. Our results supported the anti-cancer effect of 17-allylamino-17-demethoxygeldanamycin, and this effect depended on matrix molecules. This effect occurs through apoptosis, and related genes were also altered. All these genes may serve for novel target under the effect of matrix substrate. However, correct interpretation of the results requires further studies.

  10. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    PubMed

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  11. Msx Homeobox Genes Critically Regulate Embryo Implantation by Controlling Paracrine Signaling between Uterine Stroma and Epithelium

    PubMed Central

    Nallasamy, Shanmugasundaram; Li, Quanxi; Bagchi, Milan K.; Bagchi, Indrani C.

    2012-01-01

    The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2 d/d), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2 d/d mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated β-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy. PMID:22383889

  12. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  13. Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation.

    PubMed

    Dong, Niu; Montanez, Belen; Creelman, Robert A; Cornish, Katrina

    2006-02-01

    A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.

  14. Gene-specific cell labeling using MiMIC transposons.

    PubMed

    Gnerer, Joshua P; Venken, Koen J T; Dierick, Herman A

    2015-04-30

    Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Gene therapy strategies for urological dysfunction.

    PubMed

    Chancellor, M B; Yoshimura, N; Pruchnic, R; Huard, J

    2001-07-01

    Novel molecular techniques such as conventional and ex vivo gene therapy, and tissue engineering have only recently been introduced to the field of urology. The lower urinary tract is ideally suited for minimally invasive therapy, and also ex vivo approaches would limit the risk of systemic side effects. Muscle-derived stem cells have been used successfully to treat stress incontinence, and rats with diabetic bladder dysfunction benefited from nerve growth factor (NGF)-based gene therapy. Nitric oxide synthase and capase-7 might provide suitable gene therapy targets for erectile dysfunction and benign prostatic hyperplasia, respectively.

  16. Genetics Home Reference: dermatofibrosarcoma protuberans

    MedlinePlus

    ... part of a large molecule called type I collagen, which strengthens and supports many tissues in the ... the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet derived growth factor ...

  17. Interleukin 35 and Hepatocyte Growth Factor; as a novel combined immune gene therapy for Multiple Sclerosis disease.

    PubMed

    Moghadam, Samira; Erfanmanesh, Maryam; Esmaeilzadeh, Abdolreza

    2017-11-01

    An autoimmune demyelination disease of the Central Nervous System, Multiple Sclerosis, is a chronic inflammation which mostly involves young adults. Suffering people face functional loss with a severe pain. Most current MS treatments are focused on the immune response suppression. Approved drugs suppress the inflammatory process, but factually, there is no definite cure for Multiple Sclerosis. Recently developed knowledge has demonstrated that gene and cell therapy as a hopeful approach in tissue regeneration. The authors propose a novel combined immune gene therapy for Multiple Sclerosis treatment using anti-inflammatory and remyelination of Interleukine-35 and Hepatocyte Growth Factor properties, respectively. In this hypothesis Interleukine-35 and Hepatocyte Growth Factor introduce to Mesenchymal Stem Cells of EAE mouse model via an adenovirus based vector. It is expected that Interleukine-35 and Hepatocyte Growth Factor genes expressed from MSCs could effectively perform in immunotherapy of Multiple Sclerosis. Copyright © 2017. Published by Elsevier Ltd.

  18. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis).

    PubMed

    Ito, T M; Polido, P B; Rampim, M C; Kaschuk, G; Souza, S G H

    2014-09-26

    Sweet orange (Citrus sinensis) plays an important role in the economy of more than 140 countries, but it is grown in areas with intermittent stressful soil and climatic conditions. The stress tolerance could be addressed by manipulating the ethylene response factor (ERF) transcription factors because they orchestrate plant responses to environmental stress. We performed an in silico study on the ERFs in the expressed sequence tag database of C. sinensis to identify potential genes that regulate plant responses to stress. We identified 108 putative genes encoding protein sequences of the AP2/ERF superfamily distributed within 10 groups of amino acid sequences. Ninety-one genes were assembled from the ERF family containing only one AP2/ERF domain, 13 genes were assembled from the AP2 family containing two AP2/ERF domains, and four other genes were assembled from the RAV family containing one AP2/ERF domain and a B3 domain. Some conserved domains of the ERF family genes were disrupted into a few segments by introns. This irregular distribution of genes in the AP2/ERF superfamily in different plant species could be a result of genomic losses or duplication events in a common ancestor. The in silico gene expression revealed that 67% of AP2/ERF genes are expressed in tissues with usual plant development, and 14% were expressed in stressed tissues. Because the AP2/ERF superfamily is expressed in an orchestrated way, it is possible that the manipulation of only one gene may result in changes in the whole plant function, which could result in more tolerant crops.

  19. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus).

    PubMed

    Liu, Chaoyang; Xie, Tao; Chen, Chenjie; Luan, Aiping; Long, Jianmei; Li, Chuhao; Ding, Yaqi; He, Yehua

    2017-07-01

    The MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level. In the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization. In this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.

  20. CRISPR mediated somatic cell genome engineering in the chicken.

    PubMed

    Véron, Nadège; Qu, Zhengdong; Kipen, Phoebe A S; Hirst, Claire E; Marcelle, Christophe

    2015-11-01

    Gene-targeted knockout technologies are invaluable tools for understanding the functions of genes in vivo. CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Here, we combined CRISPR with in vivo electroporation in the chicken embryo to efficiently target the transcription factor PAX7 in tissues of the developing embryo. This approach generated mosaic genetic mutations within a wild-type cellular background. This series of proof-of-principle experiments indicate that in vivo CRISPR-mediated cell genome engineering is an effective method to achieve gene loss-of-function in the tissues of the chicken embryo and it completes the growing genetic toolbox to study the molecular mechanisms regulating development in this important animal model. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis).

    PubMed

    Li, Wei; Xiang, Fen; Zhong, Micai; Zhou, Lingyun; Liu, Hongyan; Li, Saijun; Wang, Xuewen

    2017-05-10

    Applied nitrogen (N) fertilizer significantly increases the leaf yield. However, most N is not utilized by the plant, negatively impacting the environment. To date, little is known regarding N utilization genes and mechanisms in the leaf production. To understand this, we investigated transcriptomes using RNA-seq and amino acid levels with N treatment in tea (Camellia sinensis), the most popular beverage crop. We identified 196 and 29 common differentially expressed genes in roots and leaves, respectively, in response to ammonium in two tea varieties. Among those genes, AMT, NRT and AQP for N uptake and GOGAT and GS for N assimilation were the key genes, validated by RT-qPCR, which expressed in a network manner with tissue specificity. Importantly, only AQP and three novel DEGs associated with stress, manganese binding, and gibberellin-regulated transcription factor were common in N responses across all tissues and varieties. A hypothesized gene regulatory network for N was proposed. A strong statistical correlation between key genes' expression and amino acid content was revealed. The key genes and regulatory network improve our understanding of the molecular mechanism of N usage and offer gene targets for plant improvement.

  2. ROKU: a novel method for identification of tissue-specific genes.

    PubMed

    Kadota, Koji; Ye, Jiazhen; Nakai, Yuji; Terada, Tohru; Shimizu, Kentaro

    2006-06-12

    One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes. We describe a method, ROKU, which selects tissue-specific patterns from gene expression data for many tissues and thousands of genes. ROKU ranks genes according to their overall tissue specificity using Shannon entropy and detects tissues specific to each gene if any exist using an outlier detection method. We evaluated the capacity for the detection of various specific expression patterns using synthetic and real data. We observed that ROKU was superior to a conventional entropy-based method in its ability to rank genes according to overall tissue specificity and to detect genes whose expression pattern are specific only to objective tissues. ROKU is useful for the detection of various tissue-specific expression patterns. The framework is also directly applicable to the selection of diagnostic markers for molecular classification of multiple classes.

  3. Transcriptome architecture across tissues in the pig

    PubMed Central

    Ferraz, André LJ; Ojeda, Ana; López-Béjar, Manel; Fernandes, Lana T; Castelló, Anna; Folch, Josep M; Pérez-Enciso, Miguel

    2008-01-01

    Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome. PMID:18416811

  4. Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.).

    PubMed

    Charfeddine, Mariam; Saïdi, Mohamed Najib; Charfeddine, Safa; Hammami, Asma; Gargouri Bouzid, Radhia

    2015-04-01

    The ERF transcription factors belong to the AP2/ERF superfamily, one of the largest transcription factor families in plants. They play important roles in plant development processes, as well as in the response to biotic, abiotic, and hormone signaling. In the present study, 155 putative ERF transcription factor genes were identified from the potato (Solanum tuberosum) genome database, and compared with those from Arabidopsis thaliana. The StERF proteins are divided into ten phylogenetic groups. Expression analyses of five StERFs were carried out by semi-quantitative RT-PCR and compared with published RNA-seq data. These latter analyses were used to distinguish tissue-specific, biotic, and abiotic stress genes as well as hormone-responsive StERF genes. The results are of interest to better understand the role of the AP2/ERF genes in response to diverse types of stress in potatoes. A comprehensive analysis of the physiological functions and biological roles of the ERF family genes in S. tuberosum is required to understand crop stress tolerance mechanisms.

  5. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  6. Molecular cloning and characterization of the promoter region of the porcine apolipoprotein E gene.

    PubMed

    Xia, Jihan; Hu, Bingjun; Mu, Yulian; Xin, Leilei; Yang, Shulin; Li, Kui

    2014-05-01

    Apolipoprotein E (APOE), a component of lipoproteins plays an important role in the transport and metabolism of cholesterol, and is associated with hyperlipoproteinemia and Alzheimer's disease. In order to further understand the characterization of APOE gene, the promoter of APOE gene of Landrace pigs was analyzed in the present study. The genomic structure and amino acid sequence in pigs were analyzed and found to share high similarity in those of human but low similarity in promoter region. Real-time PCR revealed the APOE gene expression pattern of pigs in diverse tissues. The highest expression level was observed in liver, relatively low expression in other tissues, especially in stomach and muscle. Furthermore, the promoter expressing in Hepa 1-6 was significantly better at driving luciferase expression compared with C2C12 cell. After analysis of porcine APOE gene promoter regions, potential transcription factor binding sites were predicted and two GC signals, a TATA box were indicated. Results of promoter activity analysis indicated that one of potential regulatory elements was located in the region -669 to -259, which was essential for a high expression of the APOE gene. Promoter mutation and deletion analysis further suggested that the C/EBPA binding site within the APOE promoter was responsible for the regulation of APOE transcription. Electrophoretic mobility shift assays also showed the binding site of the transcription factor C/EBPA. This study advances our knowledge of the promoter of the porcine APOE gene.

  7. Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (Gossypium hirsutum).

    PubMed

    Li, Wen; Li, Deng-Di; Han, Li-Hong; Tao, Miao; Hu, Qian-Qian; Wu, Wen-Ying; Zhang, Jing-Bo; Li, Xue-Bao; Huang, Geng-Qing

    2017-08-31

    TCP proteins are plant-specific transcription factors (TFs), and perform a variety of physiological functions in plant growth and development. In this study, 74 non-redundant TCP genes were identified in upland cotton (Gossypium hirsutum L.) genome. Cotton TCP family can be classified into two classes (class I and class II) that can be further divided into 11 types (groups) based on their motif composition. Quantitative RT-PCR analysis indicated that GhTCPs display different expression patterns in cotton tissues. The majority of these genes are preferentially or specifically expressed in cotton leaves, while some GhTCP genes are highly expressed in initiating fibers and/or elongating fibers of cotton. Yeast two-hybrid results indicated that GhTCPs can interact with each other to form homodimers or heterodimers. In addition, GhTCP14a and GhTCP22 can interact with some transcription factors which are involved in fiber development. These results lay solid foundation for further study on the functions of TCP genes during cotton fiber development.

  8. Pathogenesis of ophthalmopathy in autoimmune thyroid disease.

    PubMed

    Heufelder, A E

    2000-01-01

    What causes GO is still a mystery, but the disease process results from a complex interplay of genetic and environmental factors. Genes such as those for HLA genes may determine a patient's susceptibility to the disease and its severity, but environmental factors, often unknown, may determine its course. Once established, the chronic inflammatory process within the orbital tissues appears to take on a momentum of its own. Given our current state of knowledge, the following working scheme for the pathogenesis of GO can be proposed (Fig. 1): On the background of a permissive immunogenetic milieu, circulating T cells in patients with GD, directed against certain antigens on thyroid follicular cells, recognize antigenic epitopes that are shared by tissues contained in the orbital space. Of the cell types residing in these tissues, preadipocytes and fibroblasts, most likely act as target and effector cells of the orbital immune process, respectively. This includes preadipocyte fibroblasts present in the perimysium of extraocular muscles, which do not appear to be immunologically different from those located in the orbital connective tissue. Orbital preadipocyte fibroblasts may be stimulated by unknown circulating or locally produced factors to differentiate into mature adipocytes that express increased levels of TSHr. How autoreactive T cells escape deletion and control by the immune system and come to be directed against a self-antigen presented by cells residing in the thyroid gland and extrathyroidal locations, is still unknown. Proliferation and expansion of autoreactive T cell clones may be due to mimicry of a host antigen by a microorganism, but this remains speculative. T cell recruitment into the orbital tissues is facilitated by certain chemokines and cytokines, which help to attract T cells by stimulating the expression of certain adhesion molecules (e.g., ICAM-1, VCAM-1, CD44) in vascular endothelium and connective tissue cells. These adhesion receptors are known to also play an important costimulatory role by activating T cells and facilitating antigen recognition, which amplifies the cellular immune process. Analysis of variable region genes of T cell antigen receptors in orbital T cells of patients with active GO has revealed their restricted TcR V gene usage, suggesting that antigen-driven selection and/or expansion of specific T cells may occur early in the evolution of GO. T cells and macrophages populating the orbital space are known to synthesize and release a [figure: see text] number of cytokines (most likely a Th1-type spectrum) into the surrounding tissue. Cytokines, oxygen free radicals and fibrogenic growth factors, released both from infiltrating inflammatory and residential cells, act upon orbital preadipocytes in a paracrine and autocrine manner to stimulate adipogenesis, fibroblast proliferation, glycosaminoglycan synthesis, and the expression of immunomodulatory molecules. Smoking, a well-known aggravating factor in GO, may aggravate tissue hypoxia and exert important immunomodulatory effects. The long held hypothesis of a thyroid cross-reactive antigen within the orbital tissues has recently gained significant support by an animal model of GO, and by in vitro and ex vivo studies. If confirmed in immunological studies, these data may well explain the localized infiltration of the orbital tissues by autoreactive lymphocytes that share intriguing molecular features with intrathyroidal lymphocytes. Local release of particular cytokines, TSHr-directed antibodies, or other factors might further enhance adipogenesis, glycosaminoglycan synthesis and expression of immunomodulatory proteins within the orbit. Other factors, including inflammatory cytokines, might act as counterbalancing inhibitors of these effects. However, if the net effect of these changes is to increase the volume of the fatty connective tissues within the orbit, then proptosis, extraocular muscle dysfunction, and periorbital congestion will ensue. Whether this hypothetical sequence of events will finally explain the involvement of the orbit in GD is unknown. Future studies will be aimed at identifying factors that might modulate adipogenesis in orbital cells and clarifying the link between adipogenesis and TSHr expression in the orbit. Taken together, a number of important details in the complex pathogenesis of GO have been resolved in recent years, but many challenges are still ahead. Elucidation of the primary antigen and how it is recognized by the immune system will be key issues.

  9. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  10. Discovery and validation of gene classifiers for endocrine-disrupting chemicals in zebrafish (danio rerio)

    PubMed Central

    2012-01-01

    Background Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of biomedical sciences. Many such classifiers discovered thus far lack vigorous statistical and experimental validations. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors was used in this study to search for classifiers of endocrine-disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and tissue-combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset. Results Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their targeted chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain. Conclusions The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions, thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier discovery effort. Classifier discovery based on individual TF networks could yield more mechanistically-oriented biomarkers. GSEA proved to be a flexible and effective tool for application of gene classifiers but a similar and more refined algorithm, connectivity mapping, should also be explored. The distribution characteristics of classifiers across tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish transcriptome involving some basic cellular functions. PMID:22849515

  11. Gene expression profiling of human breast tissue samples using SAGE-Seq.

    PubMed

    Wu, Zhenhua Jeremy; Meyer, Clifford A; Choudhury, Sibgat; Shipitsin, Michail; Maruyama, Reo; Bessarabova, Marina; Nikolskaya, Tatiana; Sukumar, Saraswati; Schwartzman, Armin; Liu, Jun S; Polyak, Kornelia; Liu, X Shirley

    2010-12-01

    We present a powerful application of ultra high-throughput sequencing, SAGE-Seq, for the accurate quantification of normal and neoplastic mammary epithelial cell transcriptomes. We develop data analysis pipelines that allow the mapping of sense and antisense strands of mitochondrial and RefSeq genes, the normalization between libraries, and the identification of differentially expressed genes. We find that the diversity of cancer transcriptomes is significantly higher than that of normal cells. Our analysis indicates that transcript discovery plateaus at 10 million reads/sample, and suggests a minimum desired sequencing depth around five million reads. Comparison of SAGE-Seq and traditional SAGE on normal and cancerous breast tissues reveals higher sensitivity of SAGE-Seq to detect less-abundant genes, including those encoding for known breast cancer-related transcription factors and G protein-coupled receptors (GPCRs). SAGE-Seq is able to identify genes and pathways abnormally activated in breast cancer that traditional SAGE failed to call. SAGE-Seq is a powerful method for the identification of biomarkers and therapeutic targets in human disease.

  12. Genome-Wide Analysis of Citrus R2R3MYB Genes and Their Spatiotemporal Expression under Stresses and Hormone Treatments

    PubMed Central

    He, Shaolan; Zheng, Yongqiang; Yi, Shilai; Lv, Qiang; Deng, Lie

    2014-01-01

    The R2R3MYB proteins represent one of the largest families of transcription factors, which play important roles in plant growth and development. Although genome-wide analysis of this family has been conducted in many species, little is known about R2R3MYB genes in citrus, In this study, 101 R2R3MYB genes has been identified in the citrus (Citrus sinesis and Citrus clementina) genomes, which are almost equal to the number of rice. Phylogenetic analysis revealed that they could be subdivided into 21 subgroups. The evolutionary relationships and the intro-exon organizations were also analyzed, revealing strong gene conservation but also the expansions of particular functional genes during the plant evolution. Tissue-specific expression profiles showed that 95 citrus R2R3MYB genes were expressed in at least one tissue and the other 6 genes showed very low expression in all tissues tested, suggesting that citrus R2R3MYB genes play important roles in the development of all citrus organs. The transcript abundance level analysis during abiotic conditions (NaCl, abscisic acid, jasmonic acid, drought and low temperature) identified a group of R2R3MYB genes that responded to one or multiple treatments, which showed a promising for improving citrus adaptation to stresses. Our results provided an essential foundation for the future selection of the citrus R2R3MYB genes for cloning and functional dissection with an aim of uncovering their roles in citrus growth and development. PMID:25473954

  13. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence.

    PubMed

    Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L

    2009-07-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (

  14. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence

    PubMed Central

    Shin, Dong-Ho; Webb, Barbara M.; Nakao, Miki; Smith, Sylvia L.

    2009-01-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and –d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (≤) amino acid identities with each other, 35.4 ~ 39.6% and 62.8 ~ 65.9% with factor I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1, 2 and 3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082 bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent. PMID:19423168

  15. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.

    PubMed

    Rhie, Suhn Kyong; Guo, Yu; Tak, Yu Gyoung; Yao, Lijing; Shen, Hui; Coetzee, Gerhard A; Laird, Peter W; Farnham, Peggy J

    2016-01-01

    Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms leading to the development of these cancers.

  16. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer.

    PubMed

    Chen, Jie; Li, Yan; Zheng, Qiupeng; Bao, Chunyang; He, Jian; Chen, Bin; Lyu, Dongbin; Zheng, Biqiang; Xu, Yu; Long, Ziwen; Zhou, Ye; Zhu, Huiyan; Wang, Yanong; He, Xianghuo; Shi, Yingqiang; Huang, Shenglin

    2017-03-01

    Circular RNAs (circRNAs) comprise a novel class of widespread non-coding RNAs that may regulate gene expression in eukaryotes. However, the characterization and function of circRNAs in human cancer remain elusive. Here we identified at least 5500 distinct circRNA candidates and a series of circRNAs that are differentially expressed in gastric cancer (GC) tissues compared with matched normal tissues. We further characterized one circRNA derived from the PVT1 gene and termed it as circPVT1. The expression of circPVT1 is often upregulated in GC tissues due to the amplification of its genomic locus. circPVT1 may promote cell proliferation by acting as a sponge for members of the miR-125 family. The level of circPVT1 was observed as an independent prognostic marker for overall survival and disease-free survival of patients with GC. Our findings suggest that circPVT1 is a novel proliferative factor and prognostic marker in GC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    PubMed

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.

  18. Sustained secretion of anti-tumor necrosis factor α monoclonal antibody from ex vivo genetically engineered dermal tissue demonstrates therapeutic activity in mouse model of rheumatoid arthritis.

    PubMed

    Zafir-Lavie, Inbal; Miari, Reem; Sherbo, Shay; Krispel, Simi; Tal, Osnat; Liran, Atar; Shatil, Tamar; Badinter, Felix; Goltsman, Haim; Shapir, Nir; Benhar, Itai; Neil, Garry A; Panet, Amos

    2017-08-01

    Rheumatoid arthritis (RA) is a symmetric inflammatory polyarthritis associated with high concentrations of pro-inflammatory, cytokines including tumor necrosis factor (TNF)-α. Adalimumab is a monoclonal antibody (mAb) that binds TNF-α, and is widely used to treat RA. Despite its proven clinical efficacy, adalimumab and other therapeutic mAbs have disadvantages, including the requirement for repeated bolus injections and the appearance of treatment limiting anti-drug antibodies. To address these issues, we have developed an innovative ex vivo gene therapy approach, termed transduced autologous restorative gene therapy (TARGT), to produce and secrete adalimumab for the treatment of RA. Helper-dependent (HD) adenovirus vector containing adalimumab light and heavy chain coding sequences was used to transduce microdermal tissues and cells of human and mouse origin ex vivo, rendering sustained secretion of active adalimumab. The genetically engineered tissues were subsequently implanted in a mouse model of RA. Transduced human microdermal tissues implanted in SCID mice demonstrated 49 days of secretion of active adalimumab in the blood, at levels of tens of microgram per milliliter. In addition, transduced autologous dermal cells were implanted in the RA mouse model and demonstrated statistically significant amelioration in RA symptoms compared to naïve cell implantation and were similar to recombinant adalimumab bolus injections. The results of the present study report microdermal tissues engineered to secrete active adalimumab as a proof of concept for sustained secretion of antibody from the novel ex vivo gene therapy TARGT platform. This technology may now be applied to a range of antibodies for the therapy of other diseases. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2010-07-01

    We have previously isolated and identified stem cells from human anterior cruciate ligament (ACL). The purpose of this study was to evaluate the differences in proliferation, differentiation, and extracellular matrix (ECM) formation abilities between bone marrow stem cells (BMSCs) and ACL-derived stem cells (LSCs) from the same donors when cultured with different growth factors, including basic fibroblast growth factor (bFGF), epidermal growth factor, and transforming growth factor-beta 1 (TGF-beta1). Ligament tissues and bone marrow aspirate were obtained from patients undergoing total knee arthroplasty and ACL reconstruction surgeries. Proliferation, colony formation, and population doubling capacity as well as multilineage differentiation potentials of LSCs and BMSCs were compared. Gene expression and ECM production for ligament engineering were also evaluated. It was found that BMSCs possessed better osteogenic differentiation potential than LSCs, while similar adipogenic and chondrogenic differentiation abilities were observed. Proliferation rates of both LSCs and BMSCs were enhanced by bFGF and TGF-beta1. TGF-beta1 treatment significantly increased the expression of type I collagen, type III collagen, fibronectin, and alpha-smooth muscle actin in LSCs, but TGF-beta1 only upregulated type I collagen and tenascin-c in BMSCs. Protein quantification further confirmed the results of differential gene expression and suggested that LSCs and BMSCs increase ECM production upon TGF-beta1 treatment. In summary, in comparison with BMSCs, LSCs proliferate faster and maintain an undifferentiated state with bFGF treatment, whereas under TGF-beta1 treatment, LSCs upregulate major tendinous gene expression and produce a robust amount of ligament ECM protein, making LSCs a potential cell source in future applications of ACL tissue engineering.

  20. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity

    PubMed Central

    2011-01-01

    Background The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. Methods Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL). For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. Results We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. Conclusions Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new transcription factors orchestrating the CERTL opens new alternatives for understanding gene expression regulation in uterine function. PMID:21272326

  1. Translational Research in Pediatrics IV: Solid Tissue Collection and Processing.

    PubMed

    Gillio-Meina, Carolina; Zielke, H Ronald; Fraser, Douglas D

    2016-01-01

    Solid tissues are critical for child-health research. Specimens are commonly obtained at the time of biopsy/surgery or postmortem. Research tissues can also be obtained at the time of organ retrieval for donation or from tissue that would otherwise have been discarded. Navigating the ethics of solid tissue collection from children is challenging, and optimal handling practices are imperative to maximize tissue quality. Fresh biopsy/surgical specimens can be affected by a variety of factors, including age, gender, BMI, relative humidity, freeze/thaw steps, and tissue fixation solutions. Postmortem tissues are also vulnerable to agonal factors, body storage temperature, and postmortem intervals. Nonoptimal tissue handling practices result in nucleotide degradation, decreased protein stability, artificial posttranslational protein modifications, and altered lipid concentrations. Tissue pH and tryptophan levels are 2 methods to judge the quality of solid tissue collected for research purposes; however, the RNA integrity number, together with analyses of housekeeping genes, is the new standard. A comprehensive clinical data set accompanying all tissue samples is imperative. In this review, we examined: the ethical standards relating to solid tissue procurement from children; potential sources of solid tissues; optimal practices for solid tissue processing, handling, and storage; and reliable markers of solid tissue quality. Copyright © 2016 by the American Academy of Pediatrics.

  2. Computation and application of tissue-specific gene set weights.

    PubMed

    Frost, H Robert

    2018-04-06

    Gene set testing, or pathway analysis, has become a critical tool for the analysis of highdimensional genomic data. Although the function and activity of many genes and higher-level processes is tissue-specific, gene set testing is typically performed in a tissue agnostic fashion, which impacts statistical power and the interpretation and replication of results. To address this challenge, we have developed a bioinformatics approach to compute tissuespecific weights for individual gene sets using information on tissue-specific gene activity from the Human Protein Atlas (HPA). We used this approach to create a public repository of tissue-specific gene set weights for 37 different human tissue types from the HPA and all collections in the Molecular Signatures Database (MSigDB). To demonstrate the validity and utility of these weights, we explored three different applications: the functional characterization of human tissues, multi-tissue analysis for systemic diseases and tissue-specific gene set testing. All data used in the reported analyses is publicly available. An R implementation of the method and tissue-specific weights for MSigDB gene set collections can be downloaded at http://www.dartmouth.edu/∼hrfrost/TissueSpecificGeneSets. rob.frost@dartmouth.edu.

  3. Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system

    PubMed Central

    Stoff-Khalili, Mariam A; Stoff, Alexander; Rivera, Angel A; Banerjee, Nilam S; Everts, Maaike; Young, Scott; Siegal, Gene P; Richter, Dirk F; Wang, Minghui; Dall, Peter; Mathis, J Michael; Zhu, Zeng B; Curiel, David T

    2005-01-01

    Introduction In view of the limited success of available treatment modalities for metastatic breast cancer, alternative and complementary strategies need to be developed. Adenoviral vector mediated strategies for breast cancer gene therapy and virotherapy are a promising novel therapeutic platform for the treatment of breast cancer. However, the promiscuous tropism of adenoviruses (Ads) is a major concern. Employing tissue specific promoters (TSPs) to restrict transgene expression or viral replication is an effective way to increase specificity towards tumor tissues and to reduce adverse effects in non-target tissues such as the liver. In this regard, candidate breast cancer TSPs include promoters of the genes for the epithelial glycoprotein 2 (EGP-2), cyclooxygenase-2 (Cox-2), α-chemokine SDF-1 receptor (stromal-cell-derived factor, CXCR4), secretory leukoprotease inhibitor (SLPI) and survivin. Methods We employed E1-deleted Ads that express the reporter gene luciferase under the control of the promoters of interest. We evaluated this class of vectors in various established breast cancer cell lines, primary breast cancer cells and finally in the most stringent preclinical available substrate system, constituted by precision cut tissue slices of human breast cancer and liver. Results Overall, the CXCR4 promoter exhibited the highest luciferase activity in breast cancer cell lines, primary breast cancer cells and breast cancer tissue slices. Importantly, the CXCR4 promoter displayed a very low activity in human primary fibroblasts and human liver tissue slices. Interestingly, gene expression profiles correlated with the promoter activities both in breast cancer cell lines and primary breast cancer cells. Conclusion These data suggest that the CXCR4 promoter has an ideal 'breast cancer-on/liver-off' profile, and could, therefore, be a powerful tool in Ad vector based gene therapy or virotherapy of the carcinoma of the breast. PMID:16457694

  4. Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells.

    PubMed

    Onaga, Masaaki; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Moriuchi, Akihiro; Nagata, Kenji; Hori, Takeshi; Hayash, Katsuhiro; Tsubouchi, Hirohito

    2003-11-01

    Hepatocellular carcinoma (HCC) is closely associated with chronic liver diseases, particularly cirrhosis. However, the genes involved in hepatocarcinogenesis in the context of developing cirrhosis remain unknown. This study aims to identify genes associated with early cirrhosis-associated hepatocarcinogenesis. We examined genes differentially expressed between the livers of normal rats and rats fed a choline-deficient, L-amino acid-defined (CDAA) diet using suppression subtractive hybridization. We examined both the expression in the liver and HCC tissues of osteoactivin (OA), isolated in this screen, and its effect on invasiveness and metastasis. OA mRNA was strongly expressed in the livers of rats fed the CDAA diet for 1-3 months. Moderate expression was sustained for 18 months. OA overexpression increased the invasiveness and metastasis of rat hepatoma cells in vitro and in vivo. In humans, OA expression was not detectable in normal liver tissues. While OA transcripts were detectable in cirrhotic nontumorous liver tissues surrounding HCCs, the majority of HCC tissue samples exhibited higher levels of OA expression than the surrounding normal tissue. These results indicate that OA is a novel factor involved in the progression of HCC via stimulation of tumor invasiveness and metastatic potential.

  5. Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration

    PubMed Central

    Flores, Natasha M.; Oviedo, Néstor J.; Sage, Julien

    2016-01-01

    The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians. PMID:27542689

  6. Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration.

    PubMed

    Flores, Natasha M; Oviedo, Néstor J; Sage, Julien

    2016-10-01

    The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Do anesthetics and sampling strategies affect transcription analysis of fish tissues?

    PubMed Central

    Olsvik, Pål A; Lie, Kai K; Hevrøy, Ernst M

    2007-01-01

    Background The aim of the current examination was to evaluate if sedation and anesthetic treatment techniques affect the quality of RNA extracted from liver, gill, head kidney and brain tissues in Atlantic salmon Salmo salar L. Blood parameters were measured and tissue specimens sampled in six groups of fish; one control group (0 minutes), two groups kept in pure seawater in 90 liter tanks for 30 and 120 minutes, two groups treated with the anesthetic isoeugenol for 30 and 120 minutes, and one group kept in pure seawater for 105 minutes and then anaesthetized with metacaine for 15 minutes. RNA quality was assessed with the NanoDrop ND-1000 spectrophotometer (260/280 and 260/230 nm ratios) and with the Agilent Bioanalyzer (28S/18S ratio and RIN data) in samples either preserved in liquefied nitrogen (N2) or in RNAlater. In addition, the transcriptional levels of two fast-responding genes were quantified in gill and brain tissues. Results The results show that physiological stress during sampling does not affect the quality of RNA extracted from fish specimens. However, prolonged sedation (2 hours) resulted in a metabolic alkalosis that again affected the transcriptional levels of genes involved in ionoregulation and respiration. In gills, Na+-K+-ATPase α1b was significantly downregulated and hypoxia inducible factor 1 (HIF1) significantly upregulated after two hours of treatment with isoeugenol, suggesting that this commonly used sedative affects osmo-regulation and respiration in the fish. The results also suggest that for tissue preservation in general it is better to flash-freeze fish specimens in liquefied N2 than to use RNAlater. Conclusion Prolonged sedation may affect the transcription of fast-responding genes in tissues of fish. Two hours of sedation with isoeugenol resulted in downregulation of the Na+-K+-ATPase α1b gene and upregulation of the HIF1 gene in gills of Atlantic salmon. The quality of RNA extracted from tissue specimens, however, was not affected by sedation treatment. Flash-freezing of tissue specimens seems to be the preferred preservation technique, when sampling fish tissue specimens for RNA extraction. PMID:17559653

  8. Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR.

    PubMed

    Xu, Yuanyuan; Zhu, Xianwen; Gong, Yiqin; Xu, Liang; Wang, Yan; Liu, Liwang

    2012-08-03

    Real-time quantitative reverse transcription PCR (RT-qPCR) is a rapid and reliable method for gene expression studies. Normalization based on reference genes can increase the reliability of this technique; however, recent studies have shown that almost no single reference gene is universal for all possible experimental conditions. In this study, eight frequently used reference genes were investigated, including Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Actin2/7 (ACT), Tubulin alpha-5 (TUA), Tubulin beta-1 (TUB), 18S ribosomal RNA (18SrRNA), RNA polymerase-II transcription factor (RPII), Elongation factor 1-b (EF-1b) and Translation elongation factor 2 (TEF2). Expression stability of candidate reference genes was examined across 27 radish samples, representing a range of tissue types, cultivars, photoperiodic and vernalization treatments, and developmental stages. The eight genes in these sample pools displayed a wide range of Ct values and were variably expressed. Two statistical software packages, geNorm and NormFinder showed that TEF2, RPII and ACT appeared to be relatively stable and therefore the most suitable for use as reference genes. These results facilitate selection of desirable reference genes for accurate gene expression studies in radish. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. De novo Transcriptome Analysis of Miscanthus lutarioriparius Identifies Candidate Genes in Rhizome Development

    PubMed Central

    Hu, Ruibo; Yu, Changjiang; Wang, Xiaoyu; Jia, Chunlin; Pei, Shengqiang; He, Kang; He, Guo; Kong, Yingzhen; Zhou, Gongke

    2017-01-01

    HIGHLIGHT De novo transcriptome profiling of five tissues reveals candidate genes putatively involved in rhizome development in M. lutarioriparius. Miscanthus lutarioriparius is a promising lignocellulosic feedstock for second-generation bioethanol production. However, the genomic resource for this species is relatively limited thus hampers our understanding of the molecular mechanisms underlying many important biological processes. In this study, we performed the first de novo transcriptome analysis of five tissues (leaf, stem, root, lateral bud and rhizome bud) of M. lutarioriparius with an emphasis to identify putative genes involved in rhizome development. Approximately 66 gigabase (GB) paired-end clean reads were obtained and assembled into 169,064 unigenes with an average length of 759 bp. Among these unigenes, 103,899 (61.5%) were annotated in seven public protein databases. Differential gene expression profiling analysis revealed that 4,609, 3,188, 1,679, 1,218, and 1,077 genes were predominantly expressed in root, leaf, stem, lateral bud, and rhizome bud, respectively. Their expression patterns were further classified into 12 distinct clusters. Pathway enrichment analysis revealed that genes predominantly expressed in rhizome bud were mainly involved in primary metabolism and hormone signaling and transduction pathways. Noteworthy, 19 transcription factors (TFs) and 16 hormone signaling pathway-related genes were identified to be predominantly expressed in rhizome bud compared with the other tissues, suggesting putative roles in rhizome formation and development. In addition, a predictive regulatory network was constructed between four TFs and six auxin and abscisic acid (ABA) -related genes. Furthermore, the expression of 24 rhizome-specific genes was further validated by quantitative real-time RT-PCR (qRT-PCR) analysis. Taken together, this study provide a global portrait of gene expression across five different tissues and reveal preliminary insights into rhizome growth and development. The data presented will contribute to our understanding of the molecular mechanisms underlying rhizome development in M. lutarioriparius and remarkably enrich the genomic resources of Miscanthus. PMID:28446913

  10. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 expression and regulation in uterine leiomyoma.

    PubMed

    Marsh, Erica E; Chibber, Shani; Wu, Ju; Siegersma, Kendra; Kim, Julie; Bulun, Serdar

    2016-04-01

    To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. Academic medical center. Leiomyoma and myometrial tissue samples and cultured cells. 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Changes in hormone profiles, growth factors, and mRNA expression of the related receptors in crop tissue, relative organ weight, and serum biochemical parameters in the domestic pigeon (Columba livia) during incubation and chick-rearing periods under artificial farming conditions.

    PubMed

    Xie, P; Wan, X P; Bu, Z; Diao, E J; Gong, D Q; Zou, X T

    2018-06-01

    The present study was conducted to determine the changes in concentrations of hormones and growth factors and their related receptor gene expressions in crop tissue, relative organ weight, and serum biochemical parameters in male and female pigeons during incubation and chick-rearing periods under artificial farming conditions. Seventy-eight pairs of 60-week-old White King pigeons with 2 fertile eggs per pair were randomly divided into 13 groups by different breeding stages. Serum prolactin and insulin-like growth factor-1 (IGF-1) concentrations in crop tissue homogenates were the highest in both male and female pigeons at 1 d of chick-rearing (R1), while epidermal growth factor (EGF) in female pigeons peaked at d 17 of incubation (I17) (P < 0.05). mRNA expression of the prolactin and EGF receptors in the crop tissue increased at the end of incubation and the early chick-rearing stage in both sexes. However, estrogen, progesterone, and growth hormone receptor expression each decreased during the early chick-rearing stage (P < 0.05). In male pigeons, IGF-1 receptor gene expression reached its peak at R7, while in female pigeons, it increased at the end of incubation. The relative weight of breast and abdominal fat in both sexes and thighs in the males was lowest at R7, and then gradually increased to the incubation period level. Serum total protein, albumin, and globulin concentrations increased to the highest levels at I17 (P < 0.05). Total cholesterol, triglyceride, and low-density lipoprotein reached their highest values at I17 in male pigeons and R25 in female pigeons (P < 0.05). In conclusion, hormones, growth factors, and their receptors potentially underlie pigeon crop tissue development. Changes in organs and serum biochemical profiles suggested their different breeding-cycle patterns with sexual effects.

  12. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration.

    PubMed

    Kawai, Takamasa; Katagiri, Wataru; Osugi, Masashi; Sugimura, Yukiko; Hibi, Hideharu; Ueda, Minoru

    2015-04-01

    Periodontal tissue regeneration with the use of mesenchymal stromal cells (MSCs) has been regarded as a future cell-based therapy. However, low survival rates and the potential tumorigenicity of implanted MSCs could undermine the efficacy of cell-based therapy. The use of conditioned media from MSCs (MSC-CM) may be a feasible approach to overcome these limitations. The aim of this study was to confirm the effect of MSC-CM on periodontal regeneration. MSC-CM were collected during their cultivation. The concentrations of the growth factors in MSC-CM were measured with the use of enzyme-linked immunoassay. Rat MSCs (rMSCs) and human umbilical vein endothelial cells cultured in MSC-CM were assessed on wound-healing and angiogenesis. The expressions of osteogenetic- and angiogenic-related genes of rMSCs cultured in MSC-CM were quantified by means of real-time reverse transcriptase-polymerase chain reaction analysis. In vivo, periodontal defects were prepared in the rat models and the collagen sponges with MSC-CM were implanted. MSC-CM includes insulin-like growth factor-1, vascular endothelial growth factor, transforming growth factor-β1 and hepatocyte growth factor. In vitro, wound-healing and angiogenesis increased significantly in MSC-CM. The levels of expression of osteogenetic- and angiogenic-related genes were significantly upregulated in rMSCs cultured with MSC-CM. In vivo, in the MSC-CM group, 2 weeks after implantation, immunohistochemical analysis showed several CD31-, CD105-or FLK-1-positive cells occurring frequently. At 4 weeks after implantation, regenerated periodontal tissue was observed in MSC-CM groups. The use of MSC-CM may be an alternative therapy for periodontal tissue regeneration because several cytokines included in MSC-CM will contribute to many processes of complicated periodontal tissue regeneration. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Selection of Reliable Reference Genes for Gene Expression Studies on Rhododendron molle G. Don.

    PubMed

    Xiao, Zheng; Sun, Xiaobo; Liu, Xiaoqing; Li, Chang; He, Lisi; Chen, Shangping; Su, Jiale

    2016-01-01

    The quantitative real-time polymerase chain reaction (qRT-PCR) approach has become a widely used method to analyze expression patterns of target genes. The selection of an optimal reference gene is a prerequisite for the accurate normalization of gene expression in qRT-PCR. The present study constitutes the first systematic evaluation of potential reference genes in Rhododendron molle G. Don. Eleven candidate reference genes in different tissues and flowers at different developmental stages of R. molle were assessed using the following three software packages: GeNorm, NormFinder, and BestKeeper. The results showed that EF1- α (elongation factor 1-alpha), 18S (18s ribosomal RNA), and RPL3 (ribosomal protein L3) were the most stable reference genes in developing rhododendron flowers and, thus, in all of the tested samples, while tublin ( TUB ) was the least stable. ACT5 (actin), RPL3 , 18S , and EF1- α were found to be the top four choices for different tissues, whereas TUB was not found to favor qRT-PCR normalization in these tissues. Three stable reference genes are recommended for the normalization of qRT-PCR data in R. molle . Furthermore, the expression profiles of RmPSY (phytoene synthase) and RmPDS (phytoene dehydrogenase) were assessed using EF1- α, 18S , ACT5 , RPL3 , and their combination as internals. Similar trends were found, but these trends varied when the least stable reference gene TUB was used. The results further prove that it is necessary to validate the stability of reference genes prior to their use for normalization under different experimental conditions. This study provides useful information for reliable qRT-PCR data normalization in gene studies of R. molle .

  14. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64.

    PubMed

    Nuruzzaman, Mohammed; Sharoni, Akhter Most; Satoh, Kouji; Moumeni, Ali; Venuprasad, Ramiah; Serraj, Rachid; Kumar, Arvind; Leung, Hei; Attia, Kotb; Kikuchi, Shoshi

    2012-05-01

    The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.

  15. Topical Application of a Bioadhesive Black Raspberry Gel Modulates Gene Expression and Reduces Cyclooxygenase 2 Protein in Human Premalignant Oral Lesions

    PubMed Central

    Mallery, Susan R.; Zwick, Jared C.; Pei, Ping; Tong, Meng; Larsen, Peter E.; Shumway, Brian S.; Lu, Bo; Fields, Henry W.; Mumper, Russell J.; Stoner, Gary D.

    2010-01-01

    Reduced expression of proapoptotic and terminal differentiation genes in conjunction with increased levels of the proinflammatory and angiogenesis-inducing enzymes, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS), correlate with malignant transformation of oral intraepithelial neoplasia (IEN). Accordingly, this study investigated the effects of a 10% (w/w) freeze-dried black raspberry gel on oral IEN histopathology, gene expression profiles, intraepithelial COX-2 and iNOS proteins, and microvascular densities. Our laboratories have shown that freeze-dried black raspberries possess antioxidant properties and also induce keratinocyte apoptosis and terminal differentiation. Oral IEN tissues were hemisected to provide samples for pretreatment diagnoses and establish baseline biochemical and molecular variables. Treatment of the remaining lesional tissue (0.5 g gel applied four times daily for 6 weeks) began 1 week after the initial biopsy. RNA was isolated from snap-frozen IEN lesions for microarray analyses, followed by quantitative reverse transcription-PCR validation. Additional epithelial gene-specific quantitative reverse transcription-PCR analyses facilitated the assessment of target tissue treatment effects. Surface epithelial COX-2 and iNOS protein levels and microvascular densities were determined by image analysis quantified immunohistochemistry. Topical berry gel application uniformly suppressed genes associated with RNA processing, growth factor recycling, and inhibition of apoptosis. Although the majority of participants showed posttreatment decreases in epithelial iNOS and COX-2 proteins, only COX-2 reductions were statistically significant. These data show that berry gel application modulated oral IEN gene expression profiles, ultimately reducing epithelial COX-2 protein. In a patient subset, berry gel application also reduced vascular densities in the superficial connective tissues and induced genes associated with keratinocyte terminal differentiation. PMID:18559542

  16. [siRNA-mediated tissue factor knockdown in porcine neonatal islet cell clusters in vitro].

    PubMed

    Ji, Ming; Yi, Shounan; Yu, Deling; Wang, Wei

    2011-12-01

    To determine the genetic modification on neonatal porcine islet cell clusters (NICC) by small interfering RNA (siRNA)-mediated tissue factor (TF) knockdown in vitro. Porcine NICC were transfected with 5 pairs of designed siRNA respectively or in different combinations with lipofectamine 2000. Transfected NICC were analyzed for TF gene by real-time PCR to select the siRNA which worked best. Meanwhile, the viability of NICC after the TF siRNA transfection was examined by FACS. The efficiency of TF gene and protein suppression was measured by real-time PCR and and FACS respectively. Real-time PCR and FACS showed that a 60% reduction in the TF gene expression and a 50% reduction in the protien level of TF on NICC were achieved by transfecting 3 pairs of selected siRNA. The siRNA transfection had no significant effect on the viability of NICC which was analyzed by FACS. The expression of TF on porcine NICC is efficiently suppressed by 3 pairs of designed siRNA in vitro.

  17. ZNF750 is a p63 Target Gene that Induces KLF4 to Drive Terminal Epidermal Differentiation

    PubMed Central

    Sen, George L.; Boxer, Lisa D.; Webster, Dan E.; Bussat, Rose T.; Qu, Kun; Zarnegar, Brian J.; Johnston, Danielle; Siprashvili, Zurab; Khavari, Paul A.

    2012-01-01

    SUMMARY Disrupted epidermal differentiation characterizes numerous diseases that impact >25% of the population. In a search for dominant mediators of differentiation, we defined a requirement for ZNF750 in terminal epidermal differentiation. ZNF750 controlled genes mutated in numerous human skin diseases, including FLG, LOR, LCE3B, ALOXE3, and SPINK5. ZNF750 induced progenitor differentiation via an evolutionarily conserved C2H2 zinc finger motif. The epidermal master regulator, p63, bound the ZNF750 promoter and was necessary for its induction. ZNF750 restored differentiation to p63-deficient tissue, suggesting it acts downstream of p63. A search for functionally important ZNF750 targets via analysis of ZNF750-regulated genes identified KLF4, a transcription factor that activates late epidermal differentiation. ZNF750 binds to KLF4 at multiple sites flanking the transcriptional start site and controls its expression. ZNF750 thus directly links a tissue-specifying factor, p63, to an effector of terminal differentiation, KLF4, and represents a potential future target for disorders of this process. PMID:22364861

  18. Transcriptional control of stem cell fate by E2Fs and pocket proteins

    PubMed Central

    Julian, Lisa M.; Blais, Alexandre

    2015-01-01

    E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs. PMID:25972892

  19. β-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic β-oxidation and is Inversely Correlated with Cardiometabolic Risk Factors

    PubMed Central

    Roberts, Lee D.; Boström, Pontus; O’Sullivan, John F.; Schinzel, Robert T.; Lewis, Gregory D.; Dejam, Andre; Lee, Youn-Kyoung; Palma, Melinda J.; Calhoun, Sondra; Georgiadi, Anastasia; Chen, Ming-Huei; Ramachandran, Vasan S.; Larson, Martin G.; Bouchard, Claude; Rankinen, Tuomo; Souza, Amanda L.; Clish, Clary B.; Wang, Thomas J.; Estall, Jennifer L.; Soukas, Alexander A.; Cowan, Chad A.; Spiegelman, Bruce M.; Gerszten, Robert E.

    2014-01-01

    Summary The transcriptional co-activator peroxisome proliferator-activated receptor-gamma co-activator-1 α (PGC-1α) regulates metabolic genes in skeletal muscle, and contributes substantially to the response of muscle to exercise. Muscle specific PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolic profiling approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a novel small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipose tissue and fatty acid β-oxidation in hepatocytes both in vitro and in vivo through a PPARα mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases. PMID:24411942

  20. Novel liposomal combination treatments using dual genes knockdown in oral cancer treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jyun-Sian; Yeh, Chia-Hsien; Huang, Leaf; Hsu, Yih-Chih

    2018-02-01

    Small interfering RNA (siRNA) can be used to treat tumor because it can effectively knockdown target oncoprotein expression and it leads to cancer cell death and apoptosis. Hypoxia-inducible factors-1 (HIF-1) is a transcription factor gene. Its high expression of tumor hypoxia cells, activation of transcription factor HIF-1α and angiogenesis found in most cancerous tissues. HIF-1α protein in cancer cells are critical to cell survival, tumor growth and proliferation. Epidermal growth factor receptor (EGFR) gene is another common head and neck oncogene. The dual self-designed siRNA sequences were encapsulated in the lipid-calcium-phosphate (LCP) and targeted to sigma receptors on the surface of cancer cells via binding to amino ethyl anisamide (AEAA). We used human oral cancer cells to establish the xenograft animal model to study the combination therapy for therapeutic results.

  1. Expression and clinical significance of connective tissue growth factor in thyroid carcinomas.

    PubMed

    Wang, Guimin; Zhang, Wei; Meng, Wei; Liu, Jia; Wang, Peisong; Lin, Shan; Xu, Liyan; Li, Enmin; Chen, Guang

    2013-08-01

    To examine expression of the connective tissue growth factor (CTGF) gene in human thyroid cancer and establish whether a correlation exists between the presence of CTGF protein and clinicopathological parameters of the disease. CTGF protein expression was investigated retrospectively by immunohistochemical analysis of CTGF protein levels in thyroid tumour tissue. Associations between immunohistochemical score and several clinicopathological parameters were examined. In total, 131 thyroid tissue specimens were included. High levels of CTGF protein were observed in papillary thyroid carcinoma tissue; benign thyroid tumour tissue scored negatively for CTGF protein. In papillary thyroid carcinoma, there was a significant relationship between high CTGF protein levels and Union for International Cancer Control disease stage III-IV, and presence of lymph node metastasis. In papillary thyroid carcinomas, CTGF protein levels were not significantly associated with sex or age. These findings suggest that the CTGF protein level is increased in papillary thyroid carcinoma cells compared with benign thyroid tumours. CTGF expression might play a role in the development of malignant tumours in the thyroid.

  2. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  3. Methylation status regulates lipoprotein lipase expression in chronic lymphocytic leukemia.

    PubMed

    Abreu, Cecilia; Moreno, Pilar; Palacios, Florencia; Borge, Mercedes; Morande, Pablo; Landoni, Ana Inés; Gabus, Raul; Dighiero, Guillermo; Giordano, Mirta; Gamberale, Romina; Oppezzo, Pablo

    2013-08-01

    Among different prognostic factors in chronic lymphocytic leukemia (CLL), we previously demonstrated that lipoprotein lipase (LPL) is associated with an unmutated immunoglobulin profile and clinical poor outcome. Despite the usefulness of LPL for CLL prognosis, its functional role and the molecular mechanism regulating its expression are still open questions. Interaction of CLL B-cells with the tissue microenvironment favors disease progression by promoting malignant B-cell growth. Since tissue methylation can be altered by environmental factors, we investigated the methylation status of the LPL gene and the possibility that overexpression could be associated with microenvironment signals. Our results show that a demethylated state of the LPL gene is responsible for its anomalous expression in unmutated CLL cases and that this expression is dependent on microenvironment signals. Overall, this work proposes that an epigenetic mechanism, triggered by the microenvironment, regulates LPL expression in CLL disease.

  4. Determinants of Human Adipose Tissue Gene Expression: Impact of Diet, Sex, Metabolic Status, and Cis Genetic Regulation

    PubMed Central

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José; Roussel, Balbine; Combes, Marion; Valle, Carine; Villa-Vialaneix, Nathalie; Iacovoni, Jason S.; Martinez, J. Alfredo; Holst, Claus; Astrup, Arne; Vidal, Hubert; Clément, Karine; Hager, Jorg; Saris, Wim H. M.; Langin, Dominique

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases. PMID:23028366

  5. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

    PubMed Central

    Soucie, Erinn L.; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J.-C.; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H.

    2016-01-01

    Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. PMID:26797145

  6. Effect of living cellular sheets on the angiogenic potential of human microvascular endothelial cells.

    PubMed

    Villar, Cristina C; Zhao, Xiang R; Livi, Carolina B; Cochran, David L

    2015-05-01

    A fundamental issue limiting the efficacy of surgical approaches designed to correct periodontal mucogingival defects is that new tissues rely on limited sources of blood supply from the adjacent recipient bed. Accordingly, therapies based on tissue engineering that leverage local self-healing potential may represent promising alternatives for the treatment of mucogingival defects by inducing local vascularization. The aim of this study is to evaluate the effect of commercially available living cellular sheets (LCS) on the angiogenic potential of neonatal dermal human microvascular endothelial cells (HMVEC-dNeo). The effect of LCS on HMVEC-dNeo proliferation, migration, capillary tube formation, gene expression, and production of angiogenic factors was evaluated over time. LCS positively influenced HMVEC-dNeo proliferation and migration. Moreover, HMVEC-dNeo incubated with LCS showed transcriptional profiles different from those of untreated cells. Whereas increased expression of angiogenic genes predominated early on in response to LCS, late-phase responses were characterized by up- and downregulation of angiostatic and angiogenic genes. However, this trend was not confirmed at the protein level, as LCS induced increased production of most of the angiogenic factors tested (i.e., epidermal growth factor [EGF], heparin-binding EGF-like growth factor, interleukin 6, angiopoietin, platelet-derived growth factor-BB, placental growth factor, and vascular endothelial growth factor) throughout the investigational period. Finally, although LCS induced HMVEC-dNeo proliferation, migration, and expression of angiogenic factors, additional factors and environmental pressures are likely to be required to promote the development of complex, mesh-like vascular structures. LCS favor initial mechanisms that govern angiogenesis but failed to enhance or accelerate HMVEC-dNeo morphologic transition to complex vascular structures.

  7. Gene expression profiles of peripheral blood mononuclear cells reveal transcriptional signatures as novel biomarkers of cardiac remodeling in rats with aldosteronism and hypertensive heart disease.

    PubMed

    Gerling, Ivan C; Ahokas, Robert A; Kamalov, German; Zhao, Wenyuan; Bhattacharya, Syamal K; Sun, Yao; Weber, Karl T

    2013-12-01

    In searching for a noninvasive surrogate tissue mimicking the pro-oxidant/proinflammatory hypertensive heart disease (HHD) phenotype, we turned to peripheral blood mononuclear cells (PBMCs). We tested whether iterations in [Ca2+]i, [Zn2+]i, and oxidative stress in cardiomyocytes and PBMCs would complement each other, eliciting similar shifts in gene expression profiles in these tissues demonstrable during the preclinical (week 1) and pathological (week 4) stages of aldosterone/salt treatment (ALDOST). Inappropriate neurohormonal activation contributes to pathological remodeling of myocardium in HHD associated with aldosteronism. In rats receiving long-term ALDOST, evidence of reparative fibrosis replacing necrotic cardiomyocytes and coronary vasculopathy appears at week 4 associated with the induction of oxidative stress by mitochondria that overwhelms endogenous, largely Zn2+-based, antioxidant defenses. Biomarker-guided prediction of risk before the appearance of cardiac pathology would prove invaluable. In PBMCs and cardiomyocytes, quantitation of cytoplasmic free Ca2+ and Zn2+, H2O2, and 8-iosprostane levels and isolation of ribonucleic acid (RNA) and gene expression together with statistical and clustering analyses and confirmation of genes by in situ hybridization and reverse-transcription polymerase chain reaction were performed. Compared with controls, at weeks 1 and 4 of ALDOST, we found comparable increments in [Ca2+]i, [Zn2+]i, and 8-isoprotane coupled with increased H2O2 production in cardiac mitochondria and PBMCs, together with the common networks of expression profiles dominated by genes involved in oxidative stress, inflammation, and repair. These included 3 central Ingenuity pathway-linked genes: p38 mitogen-activated protein kinase, a stress-responsive protein; nuclear factor-κB, a redox-sensitive transcription factor and a proinflammatory cascade that it regulates; and transforming growth factor-β1, a fibrogenic cytokine involved in tissue repair. Significant overlapping demonstrated in the molecular mimicry of PBMCs and cardiomyocytes during preclinical and pathological stages of ALDOST implies that transcriptional signatures of PBMCs may serve as early noninvasive and novel sentinels predictive of impending pathological remodeling in HHD.

  8. Drought, Abscisic Acid and Transpiration Rate Effects on the Regulation of PIP Aquaporin Gene Expression and Abundance in Phaseolus vulgaris Plants

    PubMed Central

    AROCA, RICARDO; FERRANTE, ANTONIO; VERNIERI, PAOLO; CHRISPEELS, MAARTEN J.

    2006-01-01

    • Background and Aims Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. • Methods Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. • Key Results None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. • Conclusions The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured. PMID:17028296

  9. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  10. Human Endometrial DNA Methylome Is Cycle-Dependent and Is Associated With Gene Expression Regulation

    PubMed Central

    Houshdaran, Sahar; Zelenko, Zara; Irwin, Juan C.

    2014-01-01

    Human endometrium undergoes major gene expression changes, resulting in altered cellular functions in response to cyclic variations in circulating estradiol and progesterone, largely mediated by transcription factors and nuclear receptors. In addition to classic modulators, epigenetic mechanisms regulate gene expression during development in response to environmental factors and in some diseases and have roles in steroid hormone action. Herein, we tested the hypothesis that DNA methylation plays a role in gene expression regulation in human endometrium in different hormonal milieux. High throughput, genome-wide DNA methylation profiling of endometrial samples in proliferative, early secretory, and midsecretory phases revealed dynamic DNA methylation patterns with segregation of proliferative from secretory phase samples by unsupervised cluster analysis of differentially methylated genes. Changes involved different frequencies of gain and loss of methylation within or outside CpG islands. Comparison of changes in transcriptomes and corresponding DNA methylomes from the same samples revealed association of DNA methylation and gene expression in a number of loci, some important in endometrial biology. Human endometrial stromal fibroblasts treated in vitro with estradiol and progesterone exhibited DNA methylation changes in several genes observed in proliferative and secretory phase tissues, respectively. Taken together, the data support the observation that epigenetic mechanisms are involved in gene expression regulation in human endometrium in different hormonal milieux, adding endometrium to a small number of normal adult tissues exhibiting dynamic DNA methylation. The data also raise the possibility that the interplay between steroid hormone and methylome dynamics regulates normal endometrial functions and, if abnormal, may result in endometrial dysfunction and associated disorders. PMID:24877562

  11. Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death

    PubMed Central

    Cao, Chike; Liu, Yanling; Lehmann, Michael

    2007-01-01

    Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death. PMID:17339378

  12. Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice.

    PubMed

    Mihara, Masatomo; Aihara, Ken-ichi; Ikeda, Yasumasa; Yoshida, Sumiko; Kinouchi, Mizuho; Kurahashi, Kiyoe; Fujinaka, Yuichi; Akaike, Masashi; Matsumoto, Toshio

    2010-02-01

    The binding of thrombin to its receptor stimulates inflammatory cytokines including IL-6 and monocyte chemoattractant protein-1 (MCP-1); both are associated with the development of insulin resistance. Because increased adiposity enhanced the expression of coagulation factor VII that stimulates the coagulation pathway in adipose tissue, we tested whether the inhibition of thrombin action ameliorates insulin resistance in obese diabetic (Lpr(-/-):db/db) mice. The 4-wk administration of argatroban, a selective thrombin inhibitor, reduced fasting plasma glucose and ameliorated insulin resistance in these mice. It also reduced adipocyte size and macrophage infiltration into adipose tissue. The aberrant gene expression of MCP-1, IL-6, adiponectin, and factor VII and suppressed insulin receptor substrate-1-Akt signaling in adipose tissue of db/db mice were reversed by argatroban treatment. These results demonstrate that increased adiposity enhances the production of thrombin in adipose tissue by stimulating factor VII expression and suggest that increased thrombin activity in adipose tissue plays an important role in the development of insulin resistance via enhancing MCP-1 production, leading to macrophage infiltration and insulin receptor substrate-1-Akt pathway inactivation.

  13. ROKU: a novel method for identification of tissue-specific genes

    PubMed Central

    Kadota, Koji; Ye, Jiazhen; Nakai, Yuji; Terada, Tohru; Shimizu, Kentaro

    2006-01-01

    Background One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes. Results We describe a method, ROKU, which selects tissue-specific patterns from gene expression data for many tissues and thousands of genes. ROKU ranks genes according to their overall tissue specificity using Shannon entropy and detects tissues specific to each gene if any exist using an outlier detection method. We evaluated the capacity for the detection of various specific expression patterns using synthetic and real data. We observed that ROKU was superior to a conventional entropy-based method in its ability to rank genes according to overall tissue specificity and to detect genes whose expression pattern are specific only to objective tissues. Conclusion ROKU is useful for the detection of various tissue-specific expression patterns. The framework is also directly applicable to the selection of diagnostic markers for molecular classification of multiple classes. PMID:16764735

  14. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial.

    PubMed

    Perfilyev, Alexander; Dahlman, Ingrid; Gillberg, Linn; Rosqvist, Fredrik; Iggman, David; Volkov, Petr; Nilsson, Emma; Risérus, Ulf; Ling, Charlotte

    2017-04-01

    Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses. Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial. Design: We studied the effects of 7 wk of excessive SFA ( n = 17) or PUFA ( n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue. Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase ( FTO ), interleukin 6 ( IL6 ), insulin receptor ( INSR ), neuronal growth regulator 1 ( NEGR1 ), and proopiomelanocortin ( POMC )] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing ( ADIPOQ )] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 ( ACOX1 ) and FAT atypical cadherin 1 ( FAT1 )], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 ( FABP1 ), fatty acid binding protein 2 ( FABP2 ), melanocortin 2 receptor ( MC2R ), MC3R , PPARG coactivator 1 α ( PPARGC1A ), and tumor necrosis factor ( TNF ), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA methylation of 12 CpG sites that was annotated to 9 genes [e.g., mitogen-activated protein kinase 7 ( MAPK7 ), melanin concentrating hormone receptor 1 ( MCHR1 ), and splicing factor SWAP homolog ( SFRS8 )] was associated with the degree of weight increase in response to extra energy intake. Conclusions: SFA overfeeding and PUFA overfeeding induce distinct epigenetic changes in human adipose tissue. In addition, we present data that suggest that baseline DNA methylation can predict weight increase in response to overfeeding in humans. This trial was registered at clinicaltrials.gov as NCT01427140. © 2017 American Society for Nutrition.

  15. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.

    PubMed

    Pla, M; Vilardell, J; Guiltinan, M J; Marcotte, W R; Niogret, M F; Quatrano, R S; Pagès, M

    1993-01-01

    The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.

  16. IGF-1 Gene Transfer to Human Synovial MSCs Promotes Their Chondrogenic Differentiation Potential without Induction of the Hypertrophic Phenotype.

    PubMed

    Ikeda, Yasutoshi; Sakaue, Morito; Chijimatsu, Ryota; Hart, David A; Otsubo, Hidenori; Shimomura, Kazunori; Madry, Henning; Suzuki, Tomoyuki; Yoshikawa, Hideki; Yamashita, Toshihiko; Nakamura, Norimasa

    2017-01-01

    Mesenchymal stem cell- (MSC-) based therapy is a promising treatment for cartilage. However, repair tissue in general fails to regenerate an original hyaline-like tissue. In this study, we focused on increasing the expression levels for insulin-like growth factor-1 (IGF-1) to improve repair tissue quality. The IGF-1 gene was introduced into human synovial MSCs with a lentiviral vector and examined the levels of gene expression and morphological status of MSCs under chondrogenic differentiation condition using pellet cultures. The size of the pellets derived from IGF-1-MSCs were significantly larger than those of the control group. The abundance of glycosaminoglycan (GAG) was also significantly higher in the IGF-1-MSC group. The histology of the IGF-1-induced pellets demonstrated similarities to hyaline cartilage without exhibiting features of a hypertrophic chondrocyte phenotype. Expression levels for the Col2A1 gene and protein were significantly higher in the IGF-1 pellets than in the control pellets, but expression levels for Col10, MMP-13, ALP, and Osterix were not higher. Thus, IGF-1 gene transfer to human synovial MSCs led to an improved chondrogenic differentiation capacity without the detectable induction of a hypertrophic or osteogenic phenotype.

  17. Cytokines and pulmonary fibrosis.

    PubMed Central

    Gauldie, J.; Jordana, M.; Cox, G.

    1993-01-01

    Chronically inflamed and fibrotic tissue of the respiratory tract can be shown to actively express the genes and products of a number of powerful growth and differentiating factors. The initial activation of lung inflammatory cells, including alveolar macrophages, is presumed to result in the release of early acting cytokines such as IL-1 and TNF. Subsequent activation and possible phenotype alteration of the structural cells results in release of other growth factors and accumulation of blood derived inflammatory cells. These cells, once they have entered the tissue and become further activated, may begin to release their own autocrine factors and "feed back" some of the similar signals to the tissue cells in a paracrine manner, further inducing differentiation and phenotype change. These internal tissue cell and cytokine cascades could account for the chronic nature of the inflammation. Therapeutic intervention must therefore take into account the inflammatory component as well as the nature of the cytokines and structural cells involved in the propagation of the disease. PMID:8236078

  18. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    PubMed

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  19. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A) suppressed during prolonged physical inactivity (sitting)

    PubMed Central

    2012-01-01

    Background Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT) or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting. Methods Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests. Results These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A), a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions in rats, and exercise was relatively ineffective at counteracting this effect in both species. Conclusions These findings suggest that skeletal muscle may play an important role in hemostasis and that muscular inactivity may contribute to hemostatic disorders not only because of the slowing of blood flow per se, but also potentially because of the contribution from genes expressed locally in muscles, such as LPP1. PMID:23061662

  20. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer's disease and progressive supranuclear palsy brains.

    PubMed

    Huin, Vincent; Buée, Luc; Behal, Hélène; Labreuche, Julien; Sablonnière, Bernard; Dhaenens, Claire-Marie

    2017-10-03

    Alternative promoter usage is an important mechanism for transcriptome diversity and the regulation of gene expression. Indeed, this alternative usage may influence tissue/subcellular specificity, protein translation and function of the proteins. The existence of an alternative promoter for MAPT gene was considered for a long time to explain differential tissue specificity and differential response to transcription and growth factors between mRNA transcripts. The alternative promoter usage could explain partly the different tau proteins expression patterns observed in tauopathies. Here, we report on our discovery of a functional alternative promoter for MAPT, located upstream of the gene's second exon (exon 1). By analyzing genome databases and brain tissue from control individuals and patients with Alzheimer's disease or progressive supranuclear palsy, we identified novel shorter transcripts derived from this alternative promoter. These transcripts are increased in patients' brain tissue as assessed by 5'RACE-PCR and qPCR. We suggest that these new MAPT isoforms can be translated into normal or amino-terminal-truncated tau proteins. We further suggest that activation of MAPT's alternative promoter under pathological conditions leads to the production of truncated proteins, changes in protein localization and function, and thus neurodegeneration.

  1. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.

  2. Altered gene expression in the brain and ovaries of zebrafish (Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis and hypothesis generation.

    PubMed

    Villeneuve, L; Wang, Rong-Lin; Bencic, David C; Biales, Adam D; Martinović, Dalma; Lazorchak, James M; Toth, Gregory; Ankley, Gerald T

    2009-08-01

    As part of a research effort examining system-wide responses of the hypothalamic-pituitary-gonadal (HPG) axis in fish to endocrine-active chemicals (EACs) with different modes of action, zebrafish (Danio rerio) were exposed to 25 or 100 microg/L of the aromatase inhibitor fadrozole for 24, 48, or 96 h. Global transcriptional response in brain and ovarian tissue of fish exposed to 25 microg/L of fadrozole was compared to that in control fish using a commercially available, 22,000-gene oligonucleotide microarray. Transcripts altered in brain were functionally linked to differentiation, development, DNA replication, and cell cycle. Additionally, multiple genes associated with the one-carbon pool by folate pathway (KEGG 00670) were significantly up-regulated. Transcripts altered in ovary were functionally linked to cell-cell adhesion, extracellular matrix, vasculogenesis, and development. Promoter motif analysis identified GATA-binding factor 2, Ikaros 2, alcohol dehydrogenase gene regulator 1, myoblast-determining factor, and several heat shock factors as being associated with coexpressed gene clusters that were differentially expressed following exposure to fadrozole. Based on the transcriptional changes observed, it was hypothesized that fadrozole elicits neurodegenerative stress in brain tissue and that fish cope with this stress through proliferation of radial glial cells. Additionally, it was hypothesized that changes of gene expression in the ovary of fadrozole-exposed zebrafish reflect disruption of oocyte maturation and ovulation because of impaired vitellogenesis. These hypotheses and others derived from the microarray results provide a foundation for future studies aimed at understanding responses of the HPG axis to EACs and other chemical stressors.

  3. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription.

    PubMed

    Walker, Amy K; Shi, Yang; Blackwell, T Keith

    2004-04-09

    The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.

  4. Fungal and host transcriptome analysis of pH-regulated genes during colonization of apple fruits by Penicillium expansum.

    PubMed

    Barad, Shiri; Sela, Noa; Kumar, Dilip; Kumar-Dubey, Amit; Glam-Matana, Nofar; Sherman, Amir; Prusky, Dov

    2016-05-04

    Penicillium expansum is a destructive phytopathogen that causes decay in deciduous fruits during postharvest handling and storage. During colonization the fungus secretes D-gluconic acid (GLA), which modulates environmental pH and regulates mycotoxin accumulation in colonized tissue. Till now no transcriptomic analysis has addressed the specific contribution of the pathogen's pH regulation to the P. expansum colonization process. For this purpose total RNA from the leading edge of P. expansum-colonized apple tissue of cv. 'Golden Delicious' and from fungal cultures grown under pH 4 or 7 were sequenced and their gene expression patterns were compared. We present a large-scale analysis of the transcriptome data of P. expansum and apple response to fungal colonization. The fungal analysis revealed nine different clusters of gene expression patterns that were divided among three major groups in which the colonized tissue showed, respectively: (i) differing transcript expression patterns between mycelial growth at pH 4 and pH 7; (ii) similar transcript expression patterns of mycelial growth at pH 4; and (iii) similar transcript expression patterns of mycelial growth at pH 7. Each group was functionally characterized in order to decipher genes that are important for pH regulation and also for colonization of apple fruits by Penicillium. Furthermore, comparison of gene expression of healthy apple tissue with that of colonized tissue showed that differentially expressed genes revealed up-regulation of the jasmonic acid and mevalonate pathways, and also down-regulation of the glycogen and starch biosynthesis pathways. Overall, we identified important genes and functionalities of P. expansum that were controlled by the environmental pH. Differential expression patterns of genes belonging to the same gene family suggest that genes were selectively activated according to their optimal environmental conditions (pH, in vitro or in vivo) to enable the fungus to cope with varying conditions and to make optimal use of available enzymes. Comparison between the activation of the colonized host's gene responses by alkalizing Colletotrichum gloeosporioides and acidifying P. expansum pathogens indicated similar gene response patterns, but stronger responses to P. expansum, suggesting the importance of acidification by P. expansum as a factor in its increased aggressiveness.

  5. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis.

    PubMed

    Gavert, Nancy; Sheffer, Michal; Raveh, Shani; Spaderna, Simone; Shtutman, Michael; Brabletz, Thomas; Barany, Francis; Paty, Phillip; Notterman, Daniel; Domany, Eytan; Ben-Ze'ev, Avri

    2007-08-15

    L1-CAM, a neuronal cell adhesion receptor, is also expressed in a variety of cancer cells. Recent studies identified L1-CAM as a target gene of beta-catenin-T-cell factor (TCF) signaling expressed at the invasive front of human colon cancer tissue. We found that L1-CAM expression in colon cancer cells lacking L1-CAM confers metastatic capacity, and mice injected in their spleen with such cells form liver metastases. We identified ADAM10, a metalloproteinase that cleaves the L1-CAM extracellular domain, as a novel target gene of beta-catenin-TCF signaling. ADAM10 overexpression in colon cancer cells displaying endogenous L1-CAM enhanced L1-CAM cleavage and induced liver metastasis, and ADAM10 also enhanced metastasis in colon cancer cells stably transfected with L1-CAM. DNA microarray analysis of genes induced by L1-CAM in colon cancer cells identified a cluster of genes also elevated in a large set of human colon carcinoma tissue samples. Expression of these genes in normal colon epithelium was low. These results indicate that there is a gene program induced by L1-CAM in colon cancer cells that is also present in colorectal cancer tissue and suggest that L1-CAM can serve as target for colon cancer therapy.

  6. Stem cell regulatory gene expression in human adult dental pulp and periodontal ligament cells undergoing odontogenic/osteogenic differentiation.

    PubMed

    Liu, Lu; Ling, Junqi; Wei, Xi; Wu, Liping; Xiao, Yin

    2009-10-01

    During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. In this study, we investigated the differential expression of 84 stem cell-related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor beta (TGF-beta)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. This study has generated an overview of stem cell-related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-beta/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.

  7. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    PubMed

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of seven transcription factor families related to vascular development, which was observed among four representative species of seed and non-seed vascular plants, and nonvascular land and aquatic plants. The deep RNA-seq study of S. moellendorffii discovered extensive new gene contents, including novel coding genes, lncRNAs, AS events, and refined gene models. Compared to flowering vascular plants, S. moellendorffii displayed a less complexity in both gene structure, alternative splicing, and regulatory elements of vascular development. The study offered important insight into the evolution of vascular plants, and the regulation mechanism of vascular development in a non-seed plant.

  8. Comparative gene expression profiling of ADAMs, MMPs, TIMPs, EMMPRIN, EGF-R and VEGFA in low grade meningioma.

    PubMed

    Rooprai, Harcharan K; Martin, Andrew J; King, Andrew; Appadu, Usha D; Jones, Huw; Selway, Richard P; Gullan, Richard W; Pilkington, Geoffrey J

    2016-12-01

    MMPs (matrix metalloproteinases), ADAMs (a disintegrin and metalloproteinase) and TIMPs (tissue inhibitors of metalloproteinases) are implicated in invasion and angiogenesis: both are tissue remodeling processes involving regulated proteolysis of the extracellular matrix, growth factors and their receptors. The expression of these three groups and their correlations with clinical behaviour has been reported in gliomas but a similar comprehensive study in meningiomas is lacking. In this study, we aimed to evaluate the patterns of expression of 23 MMPs, 4 TIMPs, 8 ADAMs, selective growth factors and their receptors in 17 benign meningiomas using a quantitative real-time polymerase chain reaction (qPCR). Results indicated very high gene expression of 13 proteases, inhibitors and growth factors studied: MMP2 and MMP14, TIMP-1, -2 and -3, ADAM9, 10, 12, 15 and 17, EGF-R, EMMPRIN and VEGF-A, in almost every meningioma. Expression pattern analysis showed several positive correlations between MMPs, ADAMs, TIMPs and growth factors. Furthermore, our findings suggest that expression of MMP14, ADAM9, 10, 12, 15 and 17, TIMP-2, EGF-R and EMMPRIN reflects histological subtype of meningioma such that fibroblastic subtype had the highest mRNA expression, transitional subtype was intermediate and meningothelial type had the lowest expression. In conclusion, this is the first comprehensive study characterizing gene expression of 8 ADAMs in meningiomas. These neoplasms, although by histological definition benign, have invasive potential. Taken together, the selected elevated gene expression pattern may serve to identify targets for therapeutic intervention or indicators of biological progression and recurrence.

  9. Three-dimensional organotypic culture: experimental models of mammalian biology and disease

    PubMed Central

    Shamir, Eliah R.; Ewald, Andrew J.

    2015-01-01

    Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells. PMID:25237826

  10. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes

    PubMed Central

    Ho Sui, Shannan J.; Mortimer, James R.; Arenillas, David J.; Brumm, Jochen; Walsh, Christopher J.; Kennedy, Brian P.; Wasserman, Wyeth W.

    2005-01-01

    Targeted transcript profiling studies can identify sets of co-expressed genes; however, identification of the underlying functional mechanism(s) is a significant challenge. Established methods for the analysis of gene annotations, particularly those based on the Gene Ontology, can identify functional linkages between genes. Similar methods for the identification of over-represented transcription factor binding sites (TFBSs) have been successful in yeast, but extension to human genomics has largely proved ineffective. Creation of a system for the efficient identification of common regulatory mechanisms in a subset of co-expressed human genes promises to break a roadblock in functional genomics research. We have developed an integrated system that searches for evidence of co-regulation by one or more transcription factors (TFs). oPOSSUM combines a pre-computed database of conserved TFBSs in human and mouse promoters with statistical methods for identification of sites over-represented in a set of co-expressed genes. The algorithm successfully identified mediating TFs in control sets of tissue-specific genes and in sets of co-expressed genes from three transcript profiling studies. Simulation studies indicate that oPOSSUM produces few false positives using empirically defined thresholds and can tolerate up to 50% noise in a set of co-expressed genes. PMID:15933209

  11. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update.

    PubMed

    Sheikh, Ishfaq A; Ahmad, Ejaz; Jamal, Mohammad S; Rehan, Mohd; Assidi, Mourad; Tayubi, Iftikhar A; AlBasri, Samera F; Bajouh, Osama S; Turki, Rola F; Abuzenadah, Adel M; Damanhouri, Ghazi A; Beg, Mohd A; Al-Qahtani, Mohammed

    2016-10-17

    Preterm birth (PTB), birth at <37 weeks of gestation, is a significant global public health problem. World-wide, about 15 million babies are born preterm each year resulting in more than a million deaths of children. Preterm neonates are more prone to problems and need intensive care hospitalization. Health issues may persist through early adulthood and even be carried on to the next generation. Majority (70 %) of PTBs are spontaneous with about a half without any apparent cause and the other half associated with a number of risk factors. Genetic factors are one of the significant risks for PTB. The focus of this review is on single nucleotide gene polymorphisms (SNPs) that are reported to be associated with PTB. A comprehensive evaluation of studies on SNPs known to confer potential risk of PTB was done by performing a targeted PubMed search for the years 2007-2015 and systematically reviewing all relevant studies. Evaluation of 92 studies identified 119 candidate genes with SNPs that had potential association with PTB. The genes were associated with functions of a wide spectrum of tissue and cell types such as endocrine, tissue remodeling, vascular, metabolic, and immune and inflammatory systems. A number of potential functional candidate gene variants have been reported that predispose women for PTB. Understanding the complex genomic landscape of PTB needs high-throughput genome sequencing methods such as whole-exome sequencing and whole-genome sequencing approaches that will significantly enhance the understanding of PTB. Identification of high risk women, avoidance of possible risk factors, and provision of personalized health care are important to manage PTB.

  12. Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TA Reflects Molecular Switch in Commitment to Carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Tan, Ruimin; Opresko, Lee K.

    2009-11-01

    We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely non-overlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) andmore » D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired non-tumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1 and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.« less

  13. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.

    PubMed

    Peng, Fred Y; Weselake, Randall J

    2013-05-01

    The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops.

  14. Development of Defective and Persistent Sendai Virus Vector

    PubMed Central

    Nishimura, Ken; Sano, Masayuki; Ohtaka, Manami; Furuta, Birei; Umemura, Yoko; Nakajima, Yoshiro; Ikehara, Yuzuru; Kobayashi, Toshihiro; Segawa, Hiroaki; Takayasu, Satoko; Sato, Hideyuki; Motomura, Kaori; Uchida, Eriko; Kanayasu-Toyoda, Toshie; Asashima, Makoto; Nakauchi, Hiromitsu; Yamaguchi, Teruhide; Nakanishi, Mahito

    2011-01-01

    The ectopic expression of transcription factors can reprogram differentiated tissue cells into induced pluripotent stem cells. However, this is a slow and inefficient process, depending on the simultaneous delivery of multiple genes encoding essential reprogramming factors and on their sustained expression in target cells. Moreover, once cell reprogramming is accomplished, these exogenous reprogramming factors should be replaced with their endogenous counterparts for establishing autoregulated pluripotency. Complete and designed removal of the exogenous genes from the reprogrammed cells would be an ideal option for satisfying this latter requisite as well as for minimizing the risk of malignant cell transformation. However, no single gene delivery/expression system has ever been equipped with these contradictory characteristics. Here we report the development of a novel replication-defective and persistent Sendai virus (SeVdp) vector based on a noncytopathic variant virus, which fulfills all of these requirements for cell reprogramming. The SeVdp vector could accommodate up to four exogenous genes, deliver them efficiently into various mammalian cells (including primary tissue cells and human hematopoietic stem cells) and express them stably in the cytoplasm at a prefixed balance. Furthermore, interfering with viral transcription/replication using siRNA could erase the genomic RNA of SeVdp vector from the target cells quickly and thoroughly. A SeVdp vector installed with Oct4/Sox2/Klf4/c-Myc could reprogram mouse primary fibroblasts quite efficiently; ∼1% of the cells were reprogrammed to Nanog-positive induced pluripotent stem cells without chromosomal gene integration. Thus, this SeVdp vector has potential as a tool for advanced cell reprogramming and for stem cell research. PMID:21138846

  15. Hepatic differentiation potential of commercially available human mesenchymal stem cells.

    PubMed

    Ong, Shin-Yeu; Dai, Hui; Leong, Kam W

    2006-12-01

    The ready availability and low immunogenicity of commercially available mesenchymal stem cells (MSC) render them a potential cell source for the development of therapeutic products. With cell source a major bottleneck in hepatic tissue engineering, we investigated whether commercially available human MSC (hMSC) can transdifferentiate into the hepatic lineage. Based on previous studies that find rapid gain of hepatic genes in bone marrow-derived stem cells cocultured with liver tissue, we used a similar approach to drive hepatic differentiation by coculturing the hMSC with rat livers treated or untreated with gadolinium chloride (GdCl(3)). After a 24-hour coculture period with liver tissue injured by GdCl(3) in a Transwell configuration, approximately 34% of the cells differentiated into albumin-expressing cells. Cocultured cells were subsequently maintained with growth factors to complete the hepatic differentiation. Cocultured cells expressed more hepatic gene markers, and had higher metabolic functions and P450 activity than cells that were only differentiated with growth factors. In conclusion, commercially available hMSC do show hepatic differentiation potential, and a liver microenvironment in culture can provide potent cues to accelerate and deepen the differentiation. The ability to generate hepatocyte-like cells from a commercially available cell source would find interesting applications in liver tissue engineering.

  16. LIM Domain Only 2 Regulates Endothelial Proliferation, Angiogenesis, and Tissue Regeneration.

    PubMed

    Meng, Shu; Matrone, Gianfranco; Lv, Jie; Chen, Kaifu; Wong, Wing Tak; Cooke, John P

    2016-10-06

    LIM domain only 2 (LMO2, human gene) is a key transcription factor that regulates hematopoiesis and vascular development. However, its role in adult endothelial function has been incompletely characterized. In vitro loss- and gain-of-function studies on LMO2 were performed in human umbilical vein endothelial cells with lentiviral overexpression or short hairpin RNA knockdown (KD) of LMO2, respectively. LMO2 KD significantly impaired endothelial proliferation. LMO2 controls endothelial G1/S transition through transcriptional regulation of cyclin-dependent kinase 2 and 4 as determined by reverse transcription polymerase chain reaction (PCR), western blot, and chromatin immunoprecipitation, and also influences the expression of Cyclin D1 and Cyclin A1. LMO2 KD also impaired angiogenesis by reducing transforming growth factor-β (TGF-β) expression, whereas supplementation of exogenous TGF-β restored defective network formation in LMO2 KD human umbilical vein endothelial cells. In a zebrafish model of caudal fin regeneration, RT-PCR revealed that the lmo2 (zebrafish gene) gene was upregulated at day 5 postresection. The KD of lmo2 by vivo-morpholino injections in adult Tg(fli1:egfp) y1 zebrafish reduced 5-bromo-2'-deoxyuridine incorporation in endothelial cells, impaired neoangiogenesis in the resected caudal fin, and substantially delayed fin regeneration. The transcriptional factor LMO2 regulates endothelial proliferation and angiogenesis in vitro. Furthermore, LMO2 is required for angiogenesis and tissue healing in vivo. Thus, LMO2 is a critical determinant of vascular and tissue regeneration. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ...] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory... programs in the Cellular and Tissue Branch, Office of Cellular, Tissue and Gene Therapies, Center for...

  18. Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue

    PubMed Central

    Papachroni, Katerina K; Piperi, Christina; Levidou, Georgia; Korkolopoulou, Penelope; Pawelczyk, Leszek; Diamanti-Kandarakis, Evanthia; Papavassiliou, Athanasios G

    2010-01-01

    Abstract Connective tissue components – collagen types I, III and IV – surrounding the ovarian follicles undergo drastic changes during ovulation. Abnormal collagen synthesis and increased volume and density of ovarian stroma characterize the polycystic ovary syndrome (PCOS). During the ovulatory process, collagen synthesis is regulated by prolyl hydroxylase and lysyl oxidase (LOX) activity in ovarian follicles. LOX catalyzes collagen and elastin cross-linking and plays essential role in coordinating the control of ovarian extracellular matrix (ECM) during follicular development. We have recently shown accumulation of advanced glycation end products (AGEs), molecules that stimulate ECM production and abnormal collagen cross-linking, in ovarian tissue. However, the possible link between LOX and AGEs-induced signalling in collagen production and stroma formation in ovarian tissue from PCOS remains elusive. The present study investigates the hypothesis of AGE signalling pathway interaction with LOX gene activity in polycystic ovarian (PCO) tissue. We show an increased distribution and co-localization of LOX, collagen type IV and AGE molecules in the PCO tissue compared to control, as well as augmented expression of AGE signalling mediators/effectors, phospho(p)-ERK, phospho(p)-c-Jun and nuclear factor κB (NF-κB) in pathological tissue. Moreover, we demonstrate binding of AGE-induced transcription factors, NF-κB and activator protein-1 (AP-1) on LOX promoter, indicating a possible involvement of AGEs in LOX gene regulation, which may account for the documented increase in LOX mRNA and protein levels compared to control. These findings suggest that deposition of excess collagen in PCO tissue that induces cystogenesis may, in part, be due to AGE-mediated stimulation of LOX activity. PMID:19583806

  19. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and 
EML4-ALK-positive Lung Cancer Tissues].

    PubMed

    Liu, Chunlai; Li, Yongwen; Dong, Yunlong; Zhang, Hongbing; Li, Ying; Liu, Hongyu; Chen, Jun

    2016-09-20

    The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.

  20. Alpha-Lipoic Acid Alleviates Acute Inflammation and Promotes Lipid Mobilization During the Inflammatory Response in White Adipose Tissue of Mice.

    PubMed

    Guo, Jun; Gao, Shixing; Liu, Zhiqing; Zhao, Ruqian; Yang, Xiaojing

    2016-10-01

    Recently, white adipose tissue has been shown to exhibit immunological activity, and may play an important role in host defense and protection against bacterial infection. Αlpha-lipoic acid (α-LA) has been demonstrated to function as an anti-inflammatory and anti-oxidant agent. However, its influence on the inflammatory response and metabolic changes in white adipose tissue remains unknown. We used male C57BL/6 mice as models to study the effect of α-LA on the inflammatory response and metabolic changes in white adipose tissue after stimulation with lipopolysaccharide (LPS). The non-esterified fatty acid content was measured by an automatic biochemical analyzer. The expression of inflammation-, lipid- and energy metabolism-related genes and proteins was determined by quantitative real-time polymerase chain reaction and western blotting. The results indicated that α-LA significantly decreased the epididymis fat weight index and the non-esterified fatty acid content in plasma compared with the control group. LPS significantly increased the expression of inflammation genes and α-LA reduced their expression. The LPS-induced expression of nuclear factor-κB protein was decreased by α-LA. Regarding lipid metabolism, α-LA significantly counteracted the inhibitory effects of LPS on the expression of hormone-sensitive lipase gene and protein. α-LA evidently increased the gene expression of fatty acid transport protein 1 and cluster of differentiation 36. Regarding energy metabolism, α-LA significantly increased the expression of most of mitochondrial DNA-encoded genes compared with the control and LPS group. Accordingly, α-LA can alleviate acute inflammatory response and this action may be related with the promotion of lipid mobilization in white adipose tissue.

Top