2015-01-01
Immunoassays have been translated into microfluidic device formats, but significant challenges relating to upstream sample processing still limit their applications. Here, stimuli-responsive polymer–antibody conjugates are utilized in a microfluidic immunoassay to enable rapid biomarker purification and enrichment as well as sensitive detection. The conjugates were constructed by covalently grafting poly(N-isopropylacrylamide) (PNIPAAm), a thermally responsive polymer, to the lysine residues of anti-prostate specific antigen (PSA) Immunoglobulin G (IgG) using carbodiimide chemistry via the polymer end-carboxylate. The antibody-PNIPAAm (capture) conjugates and antibody-alkaline phosphatase (detection) conjugates formed sandwich immunocomplexes via PSA binding in 50% human plasma. The complexes were loaded into a recirculating poly(dimethylsiloxane) microreactor, equipped with micropumps and transverse flow features, for subsequent separation, enrichment, and quantification. The immunocomplexes were captured by heating the solution to 39 °C, mixed over the transverse features for 2 min, and washed with warm buffer. In one approach, the assay utilized immunocomplex solution that was contained in an 80 nL microreactor, which was loaded with solution at room temperature and subsequently heated to 39 °C. The assay took 25 min and resulted in 37 pM PSA limit of detection (LOD), which is comparable to a plate ELISA employing the same antibody pair. In another approach, the microreactor was preheated to 39 °C, and immunocomplex solution was flowed through the reactor, mixed, and washed. When the specimen volume was increased to 7.5 μL by repeating the capture process three times, the higher specimen volume led to immunocomplex enrichment within the microreactor. The resulting assay LOD was 0.5 pM, which is 2 orders of magnitude lower than the plate ELISA. Both approaches generate antigen specific signal over a clinically significant range. The sample processing capabilities and subsequent utility in a biomarker assay demonstrate the opportunity for stimuli-responsive polymer–protein conjugates in novel diagnostic technologies. PMID:25405605
Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian
2017-01-01
Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.
Yang, Tingzhen; Vdovenko, Marina; Jin, Xue; Sakharov, Ivan Yu; Zhao, Shulin
2014-07-01
A microfluidic competitive enzyme immunoassay based on chemiluminescence resonance energy transfer (CRET) was developed for highly sensitive detection of neuron-specific enolase (NSE). The CRET system consisted of horseradish peroxidase (HRP)/luminol as a light donor and fluorescein isothiocyanate as an acceptor. When fluorescein isothiocyanate-labeled antibody binds with HRP-labeled antigen to form immunocomplex, the donor and acceptor are brought close each other and CRET occurs in the immunocomplex. In the MCE, the immunocomplex and excess HRP-NSE were separated, and the chemiluminescense intensity of immunocomplex was used to estimate NSE concentration. The calibration curve showed a linearity in the range of NSE concentrations from 9.0 to 950 pM with a correlation coefficient of 0.9964. Based on a S/N of 3, the detection limit for NSE determination was estimated to be 4.5 pM, which is two-order magnitude lower than that of without CRET detection. This assay was applied for NSE quantification in human serum. The obtained results demonstrated that the proposed immunoassay may serve as an alternative tool for clinical analysis of NSE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein.
Sinawang, Prima Dewi; Rai, Varun; Ionescu, Rodica E; Marks, Robert S
2016-03-15
An Electrochemical Lateral Flow Immunosensor (ELFI) is developed combining screen-printed gold electrodes (SPGE) enabling quantification together with the convenience of a lateral flow test strip. A cellulose glassy fiber paper conjugate pad retains the marker immunoelectroactive nanobeads which will bind to the target analyte of interest. The specific immunorecognition event continues to occur along the lateral flow bed until reaching the SPGE-capture antibodies at the end of the cellulosic lateral flow strip. The rationale of the immunoassay consists in the analyte antigen NS1 protein being captured selectively and specifically by the dengue NS1 antibody conjugated onto the immunonanobeads thus forming an immunocomplex. With the aid of a running buffer, the immunocomplexes flow and reach the immuno-conjugated electrode surface and form specific sandwich-type detection due to specific, molecular recognition, while unbound beads move along past the electrodes. The successful sandwich immunocomplex formation is then recorded electrochemically. Specific detection of NS1 is translated into an electrochemical signal contributed by a redox label present on the bead-immobilized detection dengue NS1 antibody while a proportional increase of faradic current is observed with increase in analyte NS1 protein concentration. The first generation ELFI prototype is simply assembled in a cassette and successfully demonstrates wide linear range over a concentration range of 1-25 ng/mL with an ultrasensitive detection limit of 0.5 ng/mL for the qualitative and quantitative detection of analyte dengue NS1 protein. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of a noncompetitive phage anti-immunocomplex assay for brominated diphenyl ether 47
Kim, Hee-Joo; Rossotti, Martin A.; Ahn, Ki Chang; González-Sapienza, Gualberto G.; Gee, Shirley J.; Musker, Ruthie; Hammock, Bruce D.
2010-01-01
We present a new application of the noncompetitive phage anti-immunocomplex assay (PHAIA) by converting an existing competitive assay to a versatile noncompetitive sandwich-type format using immunocomplex binding phage-borne peptides to detect the brominated flame retardant, brominated diphenyl ether 47 (BDE 47). Three phage-displayed 9-mer disulfide-constrained peptides that recognize the BDE 47–polyclonal antibody immunocomplex were isolated. The resulting PHAIAs showed variable sensitivities, and the most sensitive peptide had a dose–response curve with an SC50 (concentration of analyte producing 50% saturation of the signal) of 0.7 ng/ml BDE 47 and a linear range of 0.3–2 ng/ml, which was nearly identical to the best heterologous competitive format (IC50 of 1.8 ng/ml, linear range of 0.4–8.5/ml). However, the PHAIA was 1400-fold better than homologous competitive assay. The validation of the PHAIA with extracts of house furniture foam as well as human and calf sera spiked with BDE 47 showed overall recovery of 80–113%. The PHAIA was adapted to a dipstick format (limit of detection of 3.0 ng/ml), and a blind test with six random extracts of local house furniture foams showed that the results of the PHAIA and dipstick assay were consistent, giving the same positive and negative detection. PMID:20152791
2015-01-01
To develop a more sensitive immunoassay for malachite green (MG) and leucomalachite green (LMG), we identified the immunocomplex binding phage-borne peptides for use in the noncompetitive phage anti-immunocomplex assay (PHAIA). An anti-LMG monoclonal antibody (mAb) was used to select immunocomplex binding peptides from a circular random eight-amino-acid phage-displayed library. After three rounds of panning-elution, five peptides that bound the LMG–mAb immunocomplex were obtained. One of the phage-borne peptide clones that resulted in an assay with the highest sensitivity was chosen for further research. The concentration of LMG producing 50% of the saturated signal and the limit of detection of the assay were 7.02 and 0.55 ng/mL, respectively, with a linear range of 1.35 to 21.56 ng/mL. The PHAIA based on the same antibody was 16 times more sensitive compared to the competitive immunoassay. PHAIA was used to analyze LMG, MG, and two mixtures of spiked fish samples, with validation by high-performance liquid chromatography (HPLC) with fluorescence detector. Results showed a good correlation (R2LMG = 0.9841; R2MG = 0.993; R2Mixture = 0.9903) between the data of PHAIA and HPLC, thus the assay was an efficient method for monitoring food safety. PMID:25077381
[Systemic lupus erythematodes].
Lukác, J; Rovenský, J; Lukácová, O; Kozáková, D
2006-01-01
Systemic lupus erythematodes (SLE) is chronic autoimmune disease, characteristic by production of autoantibodies against different autoantigens. Etiopathogenesis in not precise determinated, but genetic, immunologic, hormonal factors or influence of environment are assumed. It manifests by various symptoms and it can affect whichever organ or system in the body. Clinical manifestation are due chronic inflammation in the tissues, which is caused first of all by deposit of immunocomplex and by cytotoxic damage. At the last decades the mortality of patients with SLE is markly lower and their live is prolong. In spite of this diagnostic, to follow up and therapy of this disease is complicated and it requires the colaboration of more branches of medicine.
Peng, Zhaofeng; Chen, Zhaopeng; Jiang, Jianhui; Zhang, Xiaobing; Shen, Guoli; Yu, Ruqin
2007-01-30
This study reports a novel, simple and sensitive immunoassay using fluorescence quenching caused by gold nanoparticles coated with antibody. The method is based on a non-competitive heterogeneous immunoassay of human IgG conducted by the typical procedure of sandwich immunocomplex formation. Goat anti-human IgG was first adsorbed on polystyrene microwells, and human IgG analyte was captured by the primary antibody and then sandwiched by antibody labeled with gold nanoparticles. The sandwich-type immunocomplex was subsequently dissociated by the mixed solution of sodium hydroxide and trisodium citrate, the solution obtained, which contains gold nanoparticles coated with antibody, was used to quench fluorescence. The fluorescence intensity of fluorescein at 517 nm was inversely proportional to the logarithm of the concentration of human IgG in the dynamic range of 10-5000 ng mL(-1) with a detection limit of 4.7 ng mL(-1). The electrochemical experiments and the UV-vis measurements were applied to demonstrate whether the immunogold was dissociated completely and whether the gold nanoparticles aggregated after being dissociated, respectively. The proposed system can be extended to detect target molecules such as other kinds of antigen and DNA strands, and has broad potential applications in disease diagnosis.
Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D; González-Sapienza, Gualberto; González-Techera, Andrés
2018-05-15
Our group has previously developed immunoassays for noncompetitive detection of small molecules based on the use of phage borne anti-immunocomplex peptides. Recently, we substituted the phage particles by biotinylated synthetic anti-immunocomplex peptides complexed with streptavidin and named these constructs nanopeptamers. In this work, we report the results of combining AlphaLisa, a commercial luminescent oxygen channeling bead system, with nanopeptamers for the development of a noncompetitive homogeneous assay for the detection of small molecules. The signal generation of AlphaLisa assays relies on acceptor-donor bead proximity induced by the presence of the analyte (a macromolecule) simultaneously bound by antibodies immobilized on the surface of these beads. In the developed assay, termed as nanoAlphaLisa, bead proximity is sustained by the presence of a small model molecule (atrazine, MW = 215) using an antiatrazine antibody captured on the acceptor bead and an atrazine nanopeptamer on the donor bead. Atrazine is one of the most used pesticides worldwide, and its monitoring in water has relevant human health implications. NanoAlphaLisa allowed the homogeneous detection of atrazine down to 0.3 ng/mL in undiluted water samples in 1 h, which is 10-fold below the accepted limit in drinking water. NanoAlphaLisa has the intrinsic advantages for automation and high-throughput, simple, and fast homogeneous detection of target analytes that AlphaLisa assay provides.
NASA Astrophysics Data System (ADS)
Starodub, Nickolaj F.; Fedorenko, Leonid L.; Starodub, Valentyna M.; Dikiy, S. P.; Svechnikov, Sergey V.
1997-02-01
The photoluminescence of the porous silicon obtained by special procedure with the usage of the chemical and laser beam treatment of silicon crystal was investigated in water, buffer and solution containing sodium chloride. It was demonstrated that the intensity of the photoluminescence did not practically change at the above mentioned conditions as well as after antigen or antibody immobilization on the porous silicon surface. But this parameter of the photoluminescence dramatically decreased in case of specific immune complex formation on the silicon surface. The level of the photoluminescence extinguishing depended on duration and intensity of immune reaction. It is proposed to use discovered effect for creation of the immunosensors based on the direct registration of immunocomplex formation.
Nakamura, Tsukasa; Ushigome, Hidetaka; Watabe, Kiyoko; Imanishi, Yui; Masuda, Koji; Matsuyama, Takehisa; Harada, Shumpei; Koshino, Katsuhiro; Iida, Taku; Nobori, Shuji; Yoshimura, Norio
2017-04-01
Immunocomplex capture fluorescence analysis (ICFA) is an attractive method to detect donor-specific anti-HLA antibodies (DSA) and HLA antigen complexes. Currently, antibody-mediated rejection (AMR) due to DSA is usually diagnosed by C4d deposition and serological DSA detection. Conversely, there is a discrepancy between these findings frequently. Thereupon, our graft ICFA technique may contribute to establish the diagnosis of AMR. Graft samples were obtained by a percutaneous needle biopsy. Then, the specimen was dissolved in PBS by the lysis buffer. Subsequently, HLA antigens were captured by anti-HLA beads. Then, DSA-HLA complexes were detected by PE-conjugated anti-human IgG antibodies, where DSA had already reacted with the allograft in vivo, analyzed by a Luminex system. A ratio (sample MFI/blank beads MFI) was calculated: ≥ 1.0 was determined as positive. We found that DSA-HLA complexes in the graft were successfully detected from only slight positive 1.03 to 79.27 in a chronic active AMR patient by graft ICFA. Next, positive graft ICFA had predicted the early phase of AMR (MFI ratio: 1.38) even in patients with no serum DSA. Finally, appropriate therapies for AMR deleted DSA deposition (MFI ratio from 0.3 to 0.7) from allografts. This novel application would detect early phase or incomplete pathological cases of AMR, which could lead to a correct diagnosis and initiation of appropriate therapies. Moreover, graft ICFA might address a variety of long-standing questions in terms of DSA. AMR: Antibody-mediated rejection; DSA: Donor-specific antibodies; ICFA: Immunocomplex capture fluorescence analysis.
Veloso, Mariana P; Neves, Precil D M M; Jorge, Lectícia B; Dias, Cristiane B; Yu, Luis; Pinheiro, Rafaela B B; Testagrossa, Leonardo A; Malheiros, Denise M; Balbo, Bruno E P; Lerário, Antônio M; Onuchic, Luiz F; Woronik, Viktoria
2017-01-01
Alport syndrome (AS) is a disorder of collagen IV, a component of glomerular basement membrane (GBM). The association of AS and immunocomplex nephropathies is uncommon. This is a case of a 37-year-old woman with family history of X-linked AS, including 4 affected sons. This patient developed full-blown nephrotic syndrome along a 3-month period, a presentation not consistent with AS progression. This scenario suggested an alternative diagnosis. A kidney biopsy was therefore performed, showing membranous nephropathy (MN) in addition to GBM structural alterations compatible with AS. Whole exome sequencing also confirmed the diagnosis of X-linked AS, revealing a heterozygous pathogenic mutation in COL4A5. While a negative serum anti-phospholipase A2 receptor did not rule out a primary form of MN, it was also uncertain whether positive serologic tests for syphilis could represent a secondary factor. It is currently unknown whether this unusual association represents AS susceptibility to immunocomplex-mediated diseases or simply an association of 2 disorders. © 2017 S. Karger AG, Basel.
Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection.
Yin, Hui-qiong; Jia, Min-xian; Shi, Li-jun; Liu, Jun; Wang, Rui; Lv, Mao-min; Ma, Yu-yuan; Zhao, Xiong; Zhang, Jin-gang
2014-01-01
A gold nanoparticle (GNP) probe-based assay (GNPA) modified from the bio-barcode assay (BCA) was developed for ultrasensitive detection of ricin, a potential biothreat agent. In the GNPA, a chain of ricin was captured by a GNP probe coated with polyclonal antibodies and single-stranded signal DNA. A magnetic microparticle (MMP) probe coated with ricin A chain monoclonal antibody was then added to form an immuno-complex. After being magnetically separated, the immuno-complex containing the single-stranded signal DNA was characterized by PCR and real-time PCR. A detection limit of 10(-2) fg/ml was determined for the ricin A chain; this is eight orders of magnitude more sensitive than that achieved with an ELISA and two orders more sensitive than that obtained with the BCA. The coefficients of variation (CV) of the intra- and inter-assay values ranged from 3.82-6.46%. The results here show that this novel assay is an ultrasensitive method for detection of ricin proteins and may be suitable for the ultrasensitive detection of other proteins.
[Clinical analysis of 6 cases of Bartter syndrome].
Yin, Fang-mei; Zheng, Fang-qiu; Zhang, Xin; Wu, Mei-jun; Wei, Hong-yan; Ma, Zhong-shu; Lu, Biao; Qiu, Ming-cai
2011-03-01
To summarize the clinical characteristics of Bartter syndrome and investigate its pathogenesis. The clinical data of 6 cases of Bartter syndrome at our hospital from November 2006 to May 2010 were analyzed retrospectively. The onset age of Bartter syndrome was 13-35 years old. The main symptoms included weakness (6/6), paralysis (1/6), numbness (5/6) and tetany (4/6). All patients had normal blood pressure. The biochemical tests showed persistent hypokalemia, metabolic alkalosis (6/6) and hyperreninemia. The pathological examination of deltoid muscle biopsy showed the swelling, degeneration and necrosis of myocytes and the deposition of immunocomplex in myolemma. And the pathological examination of renal biopsy showed the hyperplasia of juxtaglomerular apparatus (5/6) and the deposition of immunocomplex. All symptoms were relieved after a therapy of potassium supplementation or a combination of indomethacin, spironolactone and immunosuppressant. When such clinical features as weakness, paralysis, tetany, hypokalemic alkalosis and normotension are encountered, Bartter syndrome should be suspected. Serum electrolytes, blood gas analysis and activation of the renin-angiotensin-aldosterone system should be examined for a definite diagnosis. The treatment of choice includes potassium and magnesium supplementation or in combination with prostaglandin synthetase inhibitor, aldosterone antagonist and immunosuppressant. Immunologic mechanism may participate in the course of Bartter syndrome.
Zhen, Le; Ford, Nicole; Gale, Debra K; Roesijadi, Guritno; Rorrer, Gregory L
2016-05-15
A selective and label-free biosensor for detection of the explosive compound 2,4,6-trinitrotoluene (TNT) in aqueous solution was developed based on the principle of photoluminescence quenching of upon immunocomplex formation with antibody-functionalized diatom frustule biosilica. The diatom frustule is an intricately nanostructured, highly porous biogenic silica material derived from the shells of microscopic algae called diatoms. This material emits strong visible blue photoluminescence (PL) upon UV excitation. PL-active frustule biosilica was isolated from cultured cells of the marine diatom Pinnularia sp. and functionalized with a single chain variable fragment (scFv) derived from an anti-TNT monoclonal antibody. When TNT was bound to the anti-TNT scFv-functionalized diatom frustule biosilica, the PL emission from the biosilica was partially quenched due to the electrophilic nature of the nitro (-NO2) groups on the TNT molecule. The dose-response curve for immunocomplex formation of TNT on the scFv-functionalized diatom frustule biosilica had a half-saturation binding constant of 6.4 ± 2.4·10(-8)M and statistically-significant measured detection limit of 3.5·10(-8)M. The binding and detection were selective for TNT and TNB (trinitrobenzene) but not RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) or 2,6-DNT (2,6-dinitrotoluene). Copyright © 2016. Published by Elsevier B.V.
He, Yang-Yang; Yan, Yu; Zhang, Hui-Fang; Lin, Yi-Huang; Chen, Yu-Cai; Yan, Yi; Wu, Ping; Fang, Jian-Song; Yang, Shu-Hui; Du, Guan-Hua
2016-01-01
Systemic lupus erythematosus (SLE), with a high incidence rate and insufficient therapy worldwide, is a complex disease involving multiple organs characterized primarily by inflammation due to deposition of immunocomplexes formed by production of autoantibodies. The mechanism of SLE remains unclear, and the disease still cannot be cured. We used pristane to induce SLE in female BALB/c mice. Methyl salicylate 2-O-β-d-lactoside (MSL; 200, 400, and 800 mg/kg) was orally administered 45 days after pristane injection for 4.5 months. The results showed that MSL antagonized the increasing levels of multiple types of antibodies and cytokines in lupus mice. MSL was found to suppress joint swelling and have potent inhibitory effect on arthritis-like symptoms. MSL also significantly decreased the spleen index and expression of inflammatory markers in the lupus mice. MSL protected the kidneys of lupus mice from injury through inhibiting the expression of inflammatory cytokines and reducing the IgG and C3 immunocomplex deposits. Further Western blot assays revealed that the downregulation of the intracellular inflammatory signals of NFκB and JAK/STAT3 might be the potential molecular mechanisms of the pharmacological activity of MSL against SLE in vivo. These findings may demonstrate that MSL has the potential to be a useful and highly effective treatment for SLE. PMID:27729775
The role of immunoglobulin A in prolonged and relapsing hepatitis A virus infections.
Dotzauer, Andreas; Heitmann, Alke; Laue, Thomas; Kraemer, Leena; Schwabe, Kerstin; Paulmann, Dajana; Flehmig, Bertram; Vallbracht, Angelika
2012-04-01
Hepatitis A virus (HAV) infections result in different courses of the disease, varying between normal, prolonged and relapsing. However, the reason for these heterogeneous clinical appearances is not understood. As HAV-anti-HAV IgA immunocomplexes (HAV-IgA) infect hepatocytes, IgA was postulated as a carrier supporting hepatotropic transport of HAV, and it was speculated that this carrier mechanism contributes to the various clinical outcomes. In this study, the IgA-carrier mechanism was investigated in a mouse model. We show that HAV-IgA immunocomplexes efficiently reached the liver not only in HAV-seronegative mice, but also, and this is in contrast to free-HAV particles, in immunized HAV-seropositive animals. This IgA-mediated transport of HAV to the liver in the presence of immunity depended on the stage of development of the immune response. We conclude that over a period of several weeks after infection, anti-HAV IgA is able to promote an enterohepatic cycling of HAV, resulting in continuous endogenous reinfections of the liver. Our experiments indicate that highly avid IgG antibodies, which are present at later times of the infection, can terminate the reinfections. However, the endogenous reinfections in the presence of a developing neutralizing immunity might contribute to prolonged as well as to relapsing courses of HAV infections. Furthermore, the results show that serum IgA may act as an infection protracting factor.
NF-κB involvement in hyperoxia-induced myocardial damage in newborn rat hearts.
Zara, Susi; De Colli, Marianna; Rapino, Monica; Di Valerio, Valentina; Marconi, Guya Diletta; Cataldi, Amelia; Macchi, Veronica; De Caro, Raffaele; Porzionato, Andrea
2013-11-01
Premature newborns are frequently exposed to hyperoxia ventilation and some literature data indicate the possibility of hyperoxia-induced myocardial damage. Since nuclear factor κB (NF-κB) is a crucial signaling molecule involved in physiological response to hyperoxia in different cell types as well as in various tissues, our attention has been focused on the role played by NF-κB pathway in response to moderate and severe hyperoxia exposure in rat neonatal heart tissue. Akt and IκBα levels, involved in NF-κB activation, along with the balance between apoptotic and survival pathways have also been investigated. Experimental design of the study has involved exposure of newborn rats to room air (controls), 60 % O2 (moderate hyperoxia), or 95 % O2 (severe hyperoxia) for the first two postnatal weeks. Morphological analysis shows a less compact tissue in rat heart exposed to moderate hyperoxia and a decreased number of nuclei in samples exposed to severe hyperoxia. A significant increase of NF-κB positive nuclei percentage and p-IκBα expression in samples exposed to 95 % hyperoxia compared to control and to 60 % hyperoxia is evidenced; in parallel, an increase of pAkt/Akt ratio in both samples exposed to 95 and 60 % hyperoxia is shown. Furthermore, a more evident cytochrome c/Apaf-1 immunocomplex and a decreased Bcl2 expression in 95 % hyperoxia-exposed sample compared to 60 % exposed one is evidenced. In conclusion, our findings suggest the involvement of the NF-κB pathway and Akt signaling in the mechanisms of myocardial hyperoxic damage in the newborns, with particular reference to the induction of oxidative stress-related apoptosis.
Chemiluminescence generation and detection in a capillary-driven microfluidic chip
NASA Astrophysics Data System (ADS)
Ramon, Charlotte; Temiz, Yuksel; Delamarche, Emmanuel
2017-02-01
The use of microfluidic technology represents a strong opportunity for providing sensitive, low-cost and rapid diagnosis at the point-of-care and such a technology might therefore support better, faster and more efficient diagnosis and treatment of patients at home and in healthcare settings both in developed and developing countries. In this work, we consider luminescence-based assays as an alternative to well-established fluorescence-based systems because luminescence does not require a light source or expensive optical components and is therefore a promising detection method for point-of-care applications. Here, we show a proof-of-concept of chemiluminescence (CL) generation and detection in a capillary-driven microfluidic chip for potential immunoassay applications. We employed a commercial acridan-based reaction, which is catalyzed by horseradish peroxidase (HRP). We investigated CL generation under flow conditions using a simplified immunoassay model where HRP is used instead of the complete sandwich immunocomplex. First, CL signals were generated in a capillary microfluidic chip by immobilizing HRP on a polydimethylsiloxane (PDMS) sealing layer using stencil deposition and flowing CL substrate through the hydrophilic channels. CL signals were detected using a compact (only 5×5×2.5 cm3) and custom-designed scanner, which was assembled for less than $30 and comprised a 128×1 photodiode array, a mini stepper motor, an Arduino microcontroller, and a 3D-printed housing. In addition, microfluidic chips having specific 30-μm-deep structures were fabricated and used to immobilize ensembles of 4.50 μm beads functionalized with HRP so as to generate high CL signals from capillary-driven chips.
Design of an NF-kB Activation-Coupled Apoptotic Molecule for Prostate Cancer Therapy
2008-07-31
p65-LS) hetero-dimer. We used this immunocomplex for caspase activity assay using a colorimetric caspase activity assay kit ( Biovision ). The...by a Caspase-3 colorimetric assay kit ( BioVision ). The purified Caspase-3 (10 ng) was used as a positive control in the assay. As shown in Figure...caspase-3 activity assay with a caspase-3 activity assay kit ( BioVision ). The activity of caspase-3 is in an arbitrary unit. 16 c), co-expressed
Molecular Mechanisms of Hormone-Refractory Prostate Cancer
2005-02-01
Helsinki, Finland Bmx/Etk, a member of the Tec/ Btk family of nonrecep- signals that lead to the regulation of cell motility (reviewed in tor kinases...member of the with anti-Cas antibodies. Tec/ Btk family of tyrosine kinases (37). In addition to the SH2, In vitro immunocomplex kinase assays were...which corre- MgC12). The immunoprecipitates were equally divided and resuspendedon in 18 g1 of kinase buffer with or without 1 tM Src inhibitor SU6656
1989-03-10
fragment of the HIV-1 genome was isolated from XBH10 and inserted into an M13 phage vector. Mutations were introduced by use of 25-mer oligonucleotides which... M13 by Eco RI and religated into the corresponding position of pHXB2gpt. The mutant AS was prepared directly from pHXB2gpt by digestion with Nde I and...detect immunocomplexes. Molecular Cloning and Sequencing of Proviral DNA A X phage library was constructed from the genomic DNA isolated from Hut78 cells
Wakayama, Hideki; Henares, Terence G; Jigawa, Kaede; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki
2013-11-21
A combination of an enzyme-labeled antibody release coating and a novel fluorescent enzyme substrate-copolymerized hydrogel in a microchannel for a single-step, no-wash microfluidic immunoassay is demonstrated. This hydrogel discriminates the free enzyme-conjugated antibody from an antigen-enzyme-conjugated antibody immunocomplex based on the difference in molecular size. A selective and sensitive immunoassay, with 10-1000 ng mL(-1) linear range, is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Guodong; Wu, Hong
2008-03-03
We present a poly(guanine)-functionalized silica nanoparticle (NP) label-based electrochemical immunoassay for sensitively detecting 2,4,6-trinitrotoluene (TNT). This immunoassay takes advantage of magnetic bead–based platform for competitive displacement immunoreactions and separation, and use electroactive nanoparticles as labels for signal amplification. For this assay, anti-TNT-coated magnetic beads interacted with TNT analog-conjugated poly(guanine)-silica NPs and formed analog-anti-TNT immunocomplexes on magnetic beads. The immunocomplexes coated magnetic beads were exposed to TNT samples, which resulted in displacing the analog conjugated poly(guanine) silica NPs into solution by TNT. In contrast, there are no guanine residues releasing into the solution in the absence of TNT. The reaction solutionmore » was then separated from the magnetic beads and transferred to the electrode surface for electrochemical measurements of guanine oxidation with Ru(bpy)32+ as mediator. The sensitivity of this TNT assay was greatly enhanced through dual signal amplifications: 1) a large amount of guanine residues on silica nanoparticles is introduced into the test solution by displacement immunoreactions and 2) a Ru(bpy)32+-induced guanine catalytic oxidation further enhances the electrochemical signal. Some experimental parameters for the nanoparticle label-based electrochemical immunoassay were studied and the performance of this assay was evaluated. The method is found to be very sensitive and the detection limit of this assay is ~ 0.1 ng mL-1 TNT. The electrochemical immunoassay based on the poly[guanine]-functionalized silica NP label offers a new approach for sensitive detection of explosives.« less
Wang, Yang; Ruan, Qingyu; Lei, Zhi-Chao; Lin, Shui-Chao; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong
2018-04-17
Digital microfluidics (DMF) is a powerful platform for a broad range of applications, especially immunoassays having multiple steps, due to the advantages of low reagent consumption and high automatization. Surface enhanced Raman scattering (SERS) has been proven as an attractive method for highly sensitive and multiplex detection, because of its remarkable signal amplification and excellent spatial resolution. Here we propose a SERS-based immunoassay with DMF for rapid, automated, and sensitive detection of disease biomarkers. SERS tags labeled with Raman reporter 4-mercaptobenzoic acid (4-MBA) were synthesized with a core@shell nanostructure and showed strong signals, good uniformity, and high stability. A sandwich immunoassay was designed, in which magnetic beads coated with antibodies were used as solid support to capture antigens from samples to form a beads-antibody-antigen immunocomplex. By labeling the immunocomplex with a detection antibody-functionalized SERS tag, antigen can be sensitively detected through the strong SERS signal. The automation capability of DMF can greatly simplify the assay procedure while reducing the risk of exposure to hazardous samples. Quantitative detection of avian influenza virus H5N1 in buffer and human serum was implemented to demonstrate the utility of the DMF-SERS method. The DMF-SERS method shows excellent sensitivity (LOD of 74 pg/mL) and selectivity for H5N1 detection with less assay time (<1 h) and lower reagent consumption (∼30 μL) compared to the standard ELISA method. Therefore, this DMF-SERS method holds great potentials for automated and sensitive detection of a variety of infectious diseases.
Gan, Ning; Du, Xiaowen; Cao, Yuting; Hu, Futao; Li, Tianhua; Jiang, Qianli
2013-03-25
An ultrasensitive portable electrochemical immunosensor for human immunodeficiency virus p24 (HIV p24) antigen detection has been developed, whereby the detection sensitivity was 1000 times higher than that of the ELISA method. Firstly, a novel HRP enzyme-antibody copolymer (EV-p24 Ab2) was synthesized through an EnVision regent (EV, a dextrin amine skeleton anchoring more than 100 molecules of HRP and 15 molecules of anti IgG), then incubated in the secondary antibody of p24. Secondly, the copolymer was immobilized on the gold nanocolloids (AuNPs) to fabricate a novel signal tag (AuNPs/EV-p24 Ab2). Subsequently, a sandwich-type immunoreaction would take place between the capture probe (silicon dioxide-coated magnetic Fe₃O₄ nanoparticles (MNPs) labeled with the primary p24 antibody (MNPs-p24 Ab1)), p24 (different concentrations) and the signal tag [AuNPs/EV-p24 Ab2)] to form the immunocomplex. Finally, the immunocomplex was absorbed on the surface of screen printed carbon electrode (SPCE) by a magnet and immersed in the o-hydroxyl phenol (HQ) and H₂O₂. The large amounts of HRP on the signal tag can catalyze the oxidation of HQ by H₂O₂, which can induce an amplified reductive current. Moreover, the capture probe could improve the accumulation ability of p24 and facilitate its separation from the substrate through the magnet. Under optimal conditions, the proposed immunoassay exhibited good sensitivity to p24 within a certain concentration range from 0.001 to 10.00 ng/mL, with a detection limit of 0.5 pg/mL (S/N = 3). The proposed method can be used for real-time and early detection of HIV-infected people.
Mechanisms of Dyslipoproteinemias in Systemic Lupus Erythematosus
Borba, Eduardo F.; Carvalho, Jozelio F.; Bonfá, Eloísa
2006-01-01
Autoimmunity and inflammation are associated with marked changes in lipid and lipoprotein metabolism in SLE. Autoantibodies and cytokines are able to modulate lipoprotein lipase (LPL) activity, a key enzyme in lipid metabolism, with a consequent “lupus pattern” of dyslipoproteinemia characterized by elevated levels of very low-density lipoprotein cholesterol (VLDL) and triglycerides (TG) and lower high-density lipoprotein cholesterol (HDL) levels. This pattern favors an enhanced LDL oxidation with a subsequent deleterious foam cell formation. Autoantibodies and immunocomplexes may aggravate this oxidative injury by inducing accumulation and deposition of oxLDL in endothelial cells. Drugs and associated diseases usually magnify the close interaction of these factors and further promote the proatherogenic environment of this disease. PMID:17162363
Grushka, N G; Pavlovych, S I; Bryzgina, T M; Sukhina, V S; Makogon, N V; Yanchiy, R I
2015-01-01
There were performed the studies of genotoxic stress and the ways of immunocompetent cells death (apoptosis and necrosis) in the modeling of immune system damage by immunization of CBA mice with the bovine serum albumin. Immunofluorescence studies of immunized mice were established the fixation of immune complexes in liver tissue, spleen, kidney and the aorta. Histological studies of these organs showed vascular system affection and, to a lesser extent, parenchyma. It has been shown that DNA comets index increases in 1,4 time in the lymph node cells and in 1,5 time in the thymus cells in the presence of BSA immunization. We also observed an increase in the number of cells with maximum damage DNA thymus preparations (3.4 fold) and lymph nodes (3.3-fold), respectively, indicating strong genotoxic stress. There were shown the reduce of live ICC number and their death increase, including the pro-inflammatory and immunogenic necrotic way. In that way, data which were obtained on the experimental model is evidenced that generalized immunecomplex pathologic process leads to DNA damage and ICC death both central and peripheral organs of the immune system. ICC genotoxic stress and their death amplification by the necrotic way may play a significant role in the immunecomplex deseases development. These factors of peripheral blood lymphocytes can serve as a prospective test system for assessing the severity of autoimmune and immune complex diseases and their treatment effectiveness.
Gan, Ning; Du, Xiaowen; Cao, Yuting; Hu, Futao; Li, Tianhua; Jiang, Qianli
2013-01-01
An ultrasensitive portable electrochemical immunosensor for human immunodeficiency virus p24 (HIV p24) antigen detection has been developed, whereby the detection sensitivity was 1000 times higher than that of the ELISA method. Firstly, a novel HRP enzyme–antibody copolymer (EV-p24 Ab2) was synthesized through an EnVision regent (EV, a dextrin amine skeleton anchoring more than 100 molecules of HRP and 15 molecules of anti IgG), then incubated in the secondary antibody of p24. Secondly, the copolymer was immobilized on the gold nanocolloids (AuNPs) to fabricate a novel signal tag (AuNPs/EV-p24 Ab2). Subsequently, a sandwich-type immunoreaction would take place between the capture probe (silicon dioxide-coated magnetic Fe3O4 nanoparticles (MNPs) labeled with the primary p24 antibody (MNPs-p24 Ab1)), p24 (different concentrations) and the signal tag [AuNPs/EV-p24 Ab2)] to form the immunocomplex. Finally, the immunocomplex was absorbed on the surface of screen printed carbon electrode (SPCE) by a magnet and immersed in the o-hydroxyl phenol (HQ) and H2O2. The large amounts of HRP on the signal tag can catalyze the oxidation of HQ by H2O2, which can induce an amplified reductive current. Moreover, the capture probe could improve the accumulation ability of p24 and facilitate its separation from the substrate through the magnet. Under optimal conditions, the proposed immunoassay exhibited good sensitivity to p24 within a certain concentration range from 0.001 to 10.00 ng/mL, with a detection limit of 0.5 pg/mL (S/N = 3). The proposed method can be used for real-time and early detection of HIV-infected people. PMID:28809208
Semiconductor Quantum Dots for Biomedicial Applications
Shao, Lijia; Gao, Yanfang; Yan, Feng
2011-01-01
Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690
Immunological monitoring of dry-cleaning shop workers--exposure to tetrachloroethylene.
Andrýs, C; Hanovcová, I; Chýlková, V; Tejral, J; Eminger, S; Procházková, J
1997-09-01
A panel of immunological parameters has been examined in a group of dry-cleaning workers (n = 21) and in a control group of administrators (n = 16) from the same plant. The results were also compared to long-term laboratory reference values (LRV) (n = 14-311). External exposure to tetrachloroethylene (PER) was represented by TWA (8 h) values in the range 11-752 mg PER/m3. Biological monitoring showed an amount from 9 to 344 mg PER/m3 in exhaled air by the end of workshift. 1. The exposed dry-cleaning workers compared to the controls from the plant had statistically significant changes in metabolic activity of phagocytes, alpha 2-macroglobulin, C3 and C4 complement component, salivary secretory IgA, and blastic transformation test. Most of the values were within the range of normal values. 2. The exposed dry-cleaning workers had several abnormal immune parameters compared to the long-term laboratory values (LRV) especially in the alpha 2-macroglobulin, C3 and percentage of T-lymphocytes. Most of the changes, even those that were statistically significant, were still within the range of normal values, but they might be classified as trends or shifts away from normal (spontaneous blastic transformation, absolute number of phagocyting cells, coeruloplasmin, circulating immunocomplexes, serum lysozyme). 3. The non-exposed controls from the same plant showed both quantitative and qualitative differences when compared to the LRV. Changes were seen in IgG, C4, CSI and in increased spontaneous metabolic activity of leucocytes, total leucocyte count, absolute number of phagocyting cells, alpha 2-macroglobulin, prealbumin, C4, circulating immunocomplexes and serum lysozyme. 4. The distribution analysis of all results detected a large number of abnormal values in both groups, more in the at-risk group. 5. As inhalation was the main route of PER exposure it was concluded that the changes might represent aspects of the response of the respiratory immune system, mainly of the alveolar macrophages. Additional postinfection effects could not be excluded in both studied groups. Individual differences in immune reactivity as well as individual range of exposure should be taken into consideration.
Single particle electrochemical sensors and methods of utilization
Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA
2006-04-04
The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.
Bioelectrochemical Magnetic Immunosensing of Trichloropyridinol: A Potential Insecticide Biomarker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Timchalk, Chuck; Lin, Yuehe
2006-07-01
A magnetic beads-based bioelectrochemical magnetic immunosensor was developed for the fast and sensitive determination of the trichloropyridinol (TCP) biomarker in environmental samples. After liquid phrase competitive immunoreaction among a limited amount of TCP antibody coated-magnetic beads (Ab-MBs), TCP analyte, and horseradish peroxidase (HRP) labeled TCP (HRP-TCP), a magnet/glassy carbon (MGC) electrode was used to collect a TCP-Abs-MBs and a HRP-TCP-Ab-MBs immunocomplex assembly. The activity of HRP tracers bound to the beads was monitored with highly sensitive square wave voltammetry (SWV) by accumulating an electroactive enzymatic product to the MGC electrode surface under constant potential (0.5 V) during enzymatic reaction inmore » the presence of 3’,3’,5’,5’-tetramethylbenzidine (TMB)-H2O2 substrate solution. The electrochemical characteristics of substrate and product were investigated, and the parameters of the immunoassay were optimized.« less
Huang, Yong; Zhao, Shulin; Shi, Ming; Liu, Jinwen; Liang, Hong
2011-05-23
A microchip electrophoresis method with laser induced fluorescence detection was developed for the immunoassay of phenobarbital. The detection was based on the competitive immunoreaction between analyte phenobarbital and fluorescein isothiocyanate (FITC) labeled phenobarbital with a limited amount of antibody. The assay was developed by varying the borate concentration, buffer pH, separation voltage, and incubation time. A running buffer system containing 35 mM borate and 15 mM sodium dodecyl sulfate (pH 9.5), and 2800 V separation voltage provided analysis conditions for a high-resolution, sensitive, and repeatable assay of phenobarbital. Free FITC-labeled phenobarbital and immunocomplex were separated within 30s. The calibration curve for phenobarbital had a detection limit of 3.4 nM and a range of 8.6-860.0 nM. The assay could be used to determine the phenobarbital plasma concentration in clinical plasma sample. Copyright © 2011 Elsevier B.V. All rights reserved.
1978-10-17
characteristics for optical second- harmonic generation. The collage component of conective tissue may be the principal site for the observed harmonic...Generation in Tissue ; Second Harmonic Generation in Collage; Glutathione, 5MB; Mechanisms; Conversion Efficiency; Significance of order UL AIM UY#m~wmev...sclera, and skin on 694 im. Q-switched ruby laser irradiation. A possible source of this second-harmonic generation was tissue collagen; because of
Force generation within tissues during development
NASA Astrophysics Data System (ADS)
Kasza, Karen
During embryonic development, multicellular tissues physically change shape, move, and grow. Changes in epithelial tissue organization are often accomplished by local movements of cells that are driven largely by forces generated by the motor protein myosin II. These forces are patterned to orient cell movements, resulting in changes in tissue shape and organization to build functional tissues and organs. To investigate the mechanisms of force generation in vivo, we use the fruit fly embryo as a model system. Spatial patterns of forces orient cell movements to drive rapid tissue elongation along the head-to-tail axis of the embryo. I will describe how studying embryos generated with engineered myosin variants provides insight into where, when, and how forces are generated to efficiently reorganize tissues. We found that a myosin variant that is locked-in to the active or ``on'' state accelerates cell movements, while two mutant myosin variants associated with human disease produce slowed cell movement. These myosin variants all disrupt tissue elongation, but live imaging and biophysical measurements reveal distinct effects on myosin organization and dynamics within cells and uncover mechanisms that control the spatial and temporal patterns of force generation. These studies shed light not only on how defects in force generation contribute to disease but also on physical principles at work in active, living materials.
Label-free immunosensor based on gold nanoparticle silver enhancement.
Yang, Minghui; Wang, Cunchang
2009-02-01
A label-free immunosensor for the sensitive detection of human immunoglobulin G (IgG) was prepared based on gold nanoparticle-silver enhancement detection with a simple charge-coupled device (CCD) detector. The gold nanoparticles, which were used as nuclei for the deposit of metallic silver and also for the adsorption of antibodies, were immobilized into wells of a 9-well chip. With the addition of silver enhancement buffer, metallic silver will deposit onto gold nanoparticles, causing darkness that can be optically measured by the CCD camera and quantified using ImageJ software. When antibody was immobilized onto the gold nanoparticles and antigen was captured, the formed immunocomplex resulted in a decrease of the darkness and the intensity of the darkness was in line with IgG concentrations from 0.05 to 10 ng/ml. The CCD detector is simple and portable, and the reported method has many desirable merits such as sensitivity and accuracy, making it a promising technique for protein detection.
Hu, Weihua; Chen, Hongming; Shi, Zhuanzhuan; Yu, Ling
2014-05-15
Surface plasmon resonance imaging (SPRi) is an intriguing technique for immunoassay with the inherent advantages of being high throughput, real time, and label free, but its sensitivity needs essential improvement for practical applications. Here, we report a dual signal amplification strategy using functional gold nanoparticles (AuNPs) followed by on-chip atom transfer radical polymerization (ATRP) for sensitive SPRi immunoassay of tumor biomarker in human serum. The AuNPs are grafted with an initiator of ATRP as well as a recognition antibody, where the antibody directs the specific binding of functional AuNPs onto the SPRi sensing surface to form immunocomplexes for first signal amplification and the initiator allows for on-chip ATRP of 2-hydroxyethyl methacrylate (HEMA) from the AuNPs to further enhance the SPRi signal. High sensitivity and broad dynamic range are achieved with this dual signal amplification strategy for detection of a model tumor marker, α-fetoprotein (AFP), in 10% human serum. Copyright © 2014 Elsevier Inc. All rights reserved.
Gao, Hongfei; Wen, Luke; Wu, Yuhua; Yan, Xiaohong; Li, Jun; Li, Xiaofei; Fu, Zhifeng; Wu, Gang
2018-05-23
A highly sensitive electrochemiluminescent (ECL) immunoassay targeting PAT/ bar protein was facilely developed for genetically modified (GM) rapeseed detection using carbon nanoparticles (CNPs) originally prepared from printer toner. In this work, CNPs linked with antibody for PAT/ bar protein were used to modify a working electrode. After an immunoreaction between the PAT/ bar protein and its antibody, the immunocomplex formed on the electrode receptor region resulted in an inhibition of electron transfer between the electrode surface and the ECL substance, thus led to a decrease of ECL response. Under the optimal conditions, the ECL responses linearly decreased as the increase of the PAT/ bar protein concentration and the GM rapeseed RF3 content in the ranges of 0.10-10 ng/mL and 0.050-1.0%, with the limits of detection of 0.050 ng/mL and 0.020% (S/N = 3). These results open a facile, sensitive, and rapid approach for the safety control of agricultural GM rape.
[Systemic lupus erythematosus in the pregnant patient. Implications for anesthesia].
Pastor Tomás, E; Guillén Antón, J; Vaquerizo Gareta, A; Lirola Grajales, P; Martínez García, R; Cuartero Lobera, J
2001-03-01
A 28-year-old woman with systemic lupus erythematosus and a history of aseptic meningitis, digestive bleeding due to thrombopenia and deep venous thrombosis underwent elective cesarean for transverse presentation at 35 weeks. Preoperative blood work-up showed an antinuclear antibody titre that was slightly positive and steroid treatment was started. Surgery operation was performed with general anesthesia. The outcome was satisfactory even though serious complications can develop during the management of anesthesia in such patients. Systemic lupus erythematosus is a chronic, multisystemic disease that mainly affects women of childbearing age. Antibodies and immunocomplexes play a fundamental role. Given the multiorgan involvement in this disease, preoperative study of the lupus patient should assess all such involvement, including maternal-fetal risk, as well as consider the drug and anesthetic management to be applied. Among the clinical signs that can affect management of anesthesia are the following: aseptic meningitis, high blood pressure, pericarditis, pneumonitis and recurrent venous thrombosis. Anemia, thrombopenia and significantly altered coagulation events are common.
Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.
Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei
2016-02-02
Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis.
Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young
2016-08-01
While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future.
Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.
Eiraku, Mototsugu; Sasai, Yoshiki
2011-12-15
Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.
Method for creating ideal tissue fusion in soft-tissue structures using radio frequency (RF) energy.
Shields, Chelsea A; Schechter, David A; Tetzlaff, Phillip; Baily, Ali L; Dycus, Sean; Cosgriff, Ned
2004-01-01
Bipolar radiofrequency (RF) energy can successfully seal vascular structures up to 7 mm by fusing collagen and elastin in the lumen. Valleylab has created a system to expand this technology beyond vessel sealing with the development of a closed-loop, feedback-control RF generator that closely monitors tissue fusion. This generator, operating with a loop time of approximately 250 micros, continuously adjusts energy output, creating optimized soft-tissue fusion through structural protein amalgamation. In the first study, RF energy was applied to canine lung using the new-generation generator and lung-prototype device. A lobectomy was completed, sealing the lobar bronchus, parenchyma, and pulmonary vasculature. Chronic performance of the seals was evaluated at necropsy on postoperative days 7 and 14. In a second study, RF energy was applied to porcine small intestine using the same closed-loop generator and anastomosis prototype device. Acute tissue fusion was assessed qualitatively for hemostasis and seal quality. Terminal tissue evaluation was completed on postoperative day 7 and analyzed histopathologically. Histopathology confirmed acute and chronic tissue fusion in both the lung and intestine. Normal pathological healing was substantiated by angiogenesis, granulation, and proliferation of fibroblasts. Preliminary studies using canine lung and porcine small intestine demonstrate the potential of this closed-loop generator for soft-tissue amalgamation. Advanced monitoring capabilities make this fusion system applicable in many soft-tissue structures with adequate collagen and elastin. Further investigation of potential surgical applications needs to be completed.
Generation of shape complexity through tissue conflict resolution
Rebocho, Alexandra B; Southam, Paul; Kennaway, J Richard; Coen, Enrico
2017-01-01
Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals. DOI: http://dx.doi.org/10.7554/eLife.20156.001 PMID:28166865
Cherry, Elizabeth M.; Fenton, Flavio H.
2011-01-01
Increased dispersion of action potential duration across cardiac tissue has long been considered an important substrate for the development of most electrical arrhythmias. Although this dispersion has been studied previously by characterizing the static intrinsic gradients in cellular electrophysiology and dynamical gradients generated by fast pacing, few studies have concentrated on dispersions generated solely by structural effects. Here we show how boundaries and geometry can produce spatially dependent changes in action potential duration (APD) in homogeneous and isotropic tissue, where all the cells have the same APD in the absence of diffusion. Electrotonic currents due to coupling within the tissue and at the tissue boundaries can generate dispersion, and the profile of this dispersion can change dramatically depending on tissue size and shape, action potential morphology, tissue dimensionality, and stimulus frequency and location. The dispersion generated by pure geometrical effects can be on the order of tens of milliseconds, enough under certain conditions to produce conduction blocks and initiate reentrant waves. PMID:21762703
Tissue engineering strategies to study cartilage development, degeneration and regeneration.
Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh
2015-04-01
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm. Copyright © 2014 Elsevier B.V. All rights reserved.
Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan
2004-11-01
The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.
Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian
2015-02-01
Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p < 0.05). Highest temperature increase could be observed in the 1-mm thickness group for enamel. Evaluating the 1-mm group for dentine, a significantly lower temperature increase could be measured (p < 0.05) with lowest values in the 3-mm group (p < 0.05). A time delay for temperature increase during the ablation process depending on the material thickness was observed for both hard tissues (p < 0.05). Employing the USPL system to remove dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.
Tissue engineering and regenerative medicine: manufacturing challenges.
Williams, D J; Sebastine, I M
2005-12-01
Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.
A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.
Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A
2010-12-01
Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Force transmission in epithelial tissues.
Vasquez, Claudia G; Martin, Adam C
2016-03-01
In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.
van Vlimmeren, Marijke A A; Driessen-Mol, Anita; Oomens, Cees W J; Baaijens, Frank P T
2013-03-01
In tissue-engineered (TE) heart valves, cell-mediated processes cause tissue compaction during culture and leaflet retraction at time of implantation. We have quantified and correlated stress generation, compaction, retraction, and tissue quality during a prolonged culture period of 8 weeks. Polyglycolic acid/poly-4-hydroxybutyrate strips were seeded with vascular-derived cells and cultured for 4-8 weeks. Compaction in width, generated force, and stress was measured during culture. Retraction in length, generated force, and stress was measured after release of constraints at weeks 4, 6, and 8. Further, the amount of DNA, glycosaminoglycans (GAGs), collagen, and collagen cross-links was assessed. During culture, compaction and force generation increased to, respectively, 63.9% ± 0.8% and 43.7 ± 4.3 mN at week 4, after which they remained stable. Stress generation reached 27.7 ± 3.2 kPa at week 4, after which it decreased to ∼8.5 kPa. At release of constraints, tissue retraction was 44.0% ± 3.7% at week 4 and decreased to 29.2% ± 2.8% and 26.1% ± 2.2% at, respectively, 6 and 8 weeks. Generated force (8-16 mN) was lower at week 6 than at weeks 4 and 8. Generated stress decreased from 11.8 ± 0.9 kPa at week 4 to 1.4 ± 0.3 and 2.4 ± 0.4 kPa at, respectively, weeks 6 and 8. The amount of GAGs increased at weeks 6 and 8 compared to week 4 and correlated to the reduced stress and retraction. In summary, prolonged culture resulted in decreased stress generation and retraction, likely as a result of the increased amount of GAGs. These results demonstrate the potential of prolonged tissue culture in developing functional, nonretracting, TE heart valves.
Moore, Shannon R.; Heu, Céline; Yu, Nicole Y.C.; Whan, Renee M.; Knothe, Ulf R.; Milz, Stefan
2016-01-01
An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. Significance In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords “periosteum and tissue engineering” and “periosteum and regenerative medicine” has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering. PMID:27465072
Moore, Shannon R; Heu, Céline; Yu, Nicole Y C; Whan, Renee M; Knothe, Ulf R; Milz, Stefan; Knothe Tate, Melissa L
2016-12-01
: An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords "periosteum and tissue engineering" and "periosteum and regenerative medicine" has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering. ©AlphaMed Press.
Yasukawa, Tomoyuki; Kiba, Yuya; Mizutani, Fumio
2015-01-01
A dual-electrochemical sensor based on a test-strip assay with immunochemistry and enzyme reactions has been developed for the determination of albumin and creatinine. Each nitrocellulose membrane with an immobilization area of an anti-albumin antibody or three enzymes was prepared in the device with three working electrodes for measuring albumin, creatinine, and ascorbic acid, as well as an Ag/AgCl electrode used as a counter/pseudo-reference electrode. The reactions of three enzymes were initiated by flowing a solution containing creatinine to detect an oxidation current of hydrogen peroxide. A sandwich-type immunocomplex was formed by albumin and antibody labeled with glucose oxidase (GOx). Captured GOx catalyzed the reduction of Fe(CN)6(3-) to Fe(CN)6(4-), which was oxidized electrochemically to determine the captured albumin. The responses for creatinine and albumin increased with the concentrations in millimolar order and over the range 18.75 - 150 μg mL(-1), respectively. The present sensor would be a distinct demonstration for producing quantitative dual-assays for various biomolecules used for clinical diagnoses.
NASA Astrophysics Data System (ADS)
Tang, Meiling; Wen, Guiqing; Luo, Yanghe; Liang, Aihui; Jiang, Zhiliang
2015-01-01
AuRu nanoalloy (GR) with Au/Ru molar ratio of 32/1 was prepared by the sodium borohydride reduction method. It was used to label the CA125 antibody (Ab) to obtain an immunonanoprobe (GRAb) for cancer antigen 125 (CA125). In pH 7.0 citric acid-Na2HPO4 buffer solution and irradiation of ultrasound, the probes were aggregated nonspecifically to big clusters that showed a strong resonance Rayleigh scattering (RRS) peak at 278 nm. Upon addition of CA125, GRAb reacted specifically with CA125 to form dispersive immunocomplexes of CA125-GRAb in the solution and this process enhanced by the ultrasonic cavitation effect, which led to the RRS intensity decreased greatly. The decreased RRS intensity was linear to the concentration of CA125 in the range of 1.3-80 U/mL, with a detection limit of 0.6 U/mL. The proposed method was applied to detect CA125 in real sample, with satisfactory results.
Zhang, Zhiyang; Chen, Zhaopeng; Wang, Shasha; Cheng, Fangbin; Chen, Lingxin
2015-12-23
Here, we propose a plasmonic enzyme-linked immunosorbent assay (ELISA) based on highly sensitive colorimetric detection of alkaline phosphatase (ALP), which is achieved by iodine-mediated etching of gold nanorods (AuNRs). Once the sandwich-type immunocomplex is formed, the ALP bound on the polystyrene microwells will hydrolyze ascorbic acid 2-phosphate into ascorbic acid. Subsequently, iodate is reduced to iodine, a moderate oxidant, which etches AuNRs from rod to sphere in shape. The shape change of AuNRs leads to a blue-shift of longitudinal localized surface plasmon resonance. As a result, the solution of AuNRs changes from blue to red. Benefiting from the highly sensitive detection of ALP, the proposed plasmonic ELISA has achieved an ultralow detection limit (100 pg/mL) for human immunoglobulin G (IgG). Importantly, the visual detection limit (3.0 ng/mL) allows the rapid differential diagnosis with the naked eye. The further detection of human IgG in fetal bovine serum indicates its applicability to the determination of low abundance protein in complex biological samples.
NASA Astrophysics Data System (ADS)
McCoy, Michael J.; Habermann, Timothy J.; Hanke, Craig J.; Adar, Fran; Campbell, William B.; Nithipatikom, Kasem
1999-04-01
We developed a confocal Raman microspectroscopic technique to study ligand-receptor bindings in single cells using Raman-labeled ligands and surface-enhanced Raman scattering (SERS). The adrenal zona glomerulosa (ZG) cells were used as a model in this study. ZG cells have a high density of angiotensin II (AII) receptors on the cellular membrane. There are two identified subtypes of AII receptors,namely AT1 and AT2 receptors. AII is a peptidic hormone, which upon binding to its receptors, stimulates the release of aldosterone from ZG cells. The cellular localization of these receptors subtypes was detected in single ZG cells by using immunocomplexation of receptors with specific antibodies and confocal Raman microspectroscopy. In the binding study, we used biotin-labeled AII to bind to its receptors in ZG cells. Then, avidin and Raman-labeled AII. The binding was measure directly on the single ZG cells. The results showed that the binding was displaced with unlabeled AII and specific AII antagonists. This is a rapid and sensitive technique for detection of cellular ligand bindings as well as antagonists screening in drug discovery.
Array biosensor for detection of toxins
NASA Technical Reports Server (NTRS)
Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.
2003-01-01
The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).
HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression.
Diani, Erica; Avesani, Francesca; Bergamo, Elisa; Cremonese, Giorgia; Bertazzoni, Umberto; Romanelli, Maria Grazia
2015-02-01
The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.
Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Yu, Zhongqing; Tao, Yingying; Wu, Yanjie; Zeng, Min; Wang, Sui; Li, Xing; Zhou, Jun; Su, Xiurong
2016-10-01
A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2'-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become "effective," thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay. Graphical abstract Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP.
Extracorporeal human bone-like tissue generation
Rosenberg, N.; Rosenberg, O.
2012-01-01
Objectives The need for bone tissue supplementation exists in a wide range of clinical conditions involving surgical reconstruction in limbs, the spine and skull. The bone supplementation materials currently used include autografts, allografts and inorganic matrix components; but these pose potentially serious side-effects. In particular the availability of the autografts is usually limited and their harvesting causes surgical morbidity. Therefore for the purpose of supplementation of autologous bone graft, we have developed a method for autologous extracorporeal bone generation. Methods Human osteoblast-like cells were seeded on porous granules of tricalcium phosphate and incubated in osteogenic media while exposed to mechanical stimulation by vibration in the infrasonic range of frequencies. The generated tissue was examined microscopically following haematoxylin eosin, trichrome and immunohistochemical staining. Results Following 14 days of incubation the generated tissue showed histological characteristics of bone-like material due to the characteristic eosinophilic staining, a positive staining for collagen trichrome and a positive specific staining for osteocalcin and collagen 1. Macroscopically, this tissue appeared in aggregates of between 0.5 cm and 2 cm. Conclusions We present evidence that the interaction of the cellular, inorganic and mechanical components in vitro can rapidly generate three-dimensional bone-like tissue that might be used as an autologous bone graft. PMID:23610651
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime
2017-01-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.
Ishikawa, Tetsuya
2017-05-26
To investigate genotype variation among induced pluripotent stem cell (iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing. Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer ( OCT3/4 , SOX2 , and KLF4 ). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using next-generation sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants (SNVs) (missense, nonsense, and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbSNP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer. In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2 , TTN , ULK4 , TSSK1B , FLT4 , STK19 , STK31 , TRRAP , WNK1 , PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer (stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the non-cancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer (stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells. The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.
NASA Astrophysics Data System (ADS)
Neng, Jing; Wang, Xujun; Jia, Kan; Sun, Peilong
2018-03-01
Fe3O4 nanoparticles were first modified with tetraethoxylsilane to form Fe3O4/SiO2 nanoparticles, followed by the addition of 3-aminopropyltriethoxysilane and 3-thiolpropyltriethoxysilane to introduce -NH2 and -SH groups to the surface of Fe3O4/SiO2 nanoparticles. Gold nanoparticles were further assembled on the surface of Fe3O4/SiO2 via the electrostatic adsorption of -NH2 and the Au-S bond to produce stable core-shell Fe3O4/SiO2/Au gold/magnetic nanoparticles. These Fe3O4/SiO2/Au gold/magnetic nanoparticles were characterized by a variety of techniques such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), and afterwards conjugated with tetrodotoxin antibodies (Ab) and used as a Raman active substrate (Fe3O4/SiO2/Au-Ab) with Rhodamine B (RhB)-labeled tetrodotoxin antibody as a Raman reporter (Ab-RhB). Upon mixing these reagents with tetrodotoxin (TTX), a sandwich complex [Fe3O4/SiO2/Au-Ab···TTX···Ab-RhB] was generated due to the specific antibody-antigen interactions. The immunocomplex was subsequently separated by an externally applied magnetic source and concentrated into a pellet point, where the laser interrogation of the pellet produced a strong signal characteristic of RhB. The logarithmic intensity of the signal was found to be proportional to the concentration of TTX with a limit of detection of 0.01 μg/mL and a detection linearity range of 0.01-0.5 μg/mL. The established method eliminates the complicated procedures of traditional centrifuging, column separation, and incubation and achieves a rapid detection of tetrodotoxin with improved detection sensitivity.
2016-07-01
AWARD NUMBER: W81XWH- 14-1-0192 TITLE: Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer...DATES COVERED 4. TITLE AND SUBTITLE Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue
Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P
2002-01-01
Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.
NASA Astrophysics Data System (ADS)
Calhoun, William R.; Ilev, Ilko K.
2016-03-01
Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (e.g. cataract surgery), and keratoplasty (cornea transplant), now employ therapeutic infrared femtosecond lasers (FSLs) for their extreme precision, low energy delivered into tissue and advanced ablation characteristics. Although the widely exploited applications of FSLs in medical therapeutics offer significant benefits, FSLs must generate very high intensities in order to achieve optical breakdown, the predominant tissue ablative mechanism, which can also stimulate nonlinear optical effects such as harmonic generation, an effect that generates coherent visible and UV light in the case of second- (SHG) and third-harmonic generation (THG), respectively. In order to improve the understanding of HG in corneal tissue, the effect of FSL polarization and pulse energy were investigated. FSL stimulated SHG intensity in corneal tissue was measured as the laser polarization was rotated 360 degrees. Further, the pulse energy at the SHG wavelength were measured for single FSL pulses as the pulse energy at the fundamental wavelength was varied through a range of clinically relevant values. The results of this study revealed SHG intensity oscillated with laser polarization, having a variation greater than 20%. This relationship seems to due to the intrinsic anisotropy of collagen fibril hyperpolarizability, not related to tissue birefringence. SHG pulse energy measurements showed an increase in SHG pulse energy with increasing FSL pulse energy, however conversion efficiency decreased. This may be related to the dynamic relationship between optical breakdown leading to tissue destruction and HG evolution.
Investigating backward scattered second harmonic generation from various mouse collagen tissues
NASA Astrophysics Data System (ADS)
Shen, Mengzhe; Tian, Yunxian; Chong, Shau Poh; Zhao, Jianhua; Zeng, Haishan; Tang, Shuo
2014-02-01
A confocal multiphoton microscopy system with various detection pinholes was used to differentiate backward scattered second harmonic generation (BS-SHG) from backward generated SHG (BG-SHG) based on the fact that BS-SHG is more scattered and therefore has a much bigger spot size than BG-SHG. BS-SHG is quantified from two types of mouse tissues, such as Achilles tendon, and skin, and at various focal depths. It is found that the BS-SHG contributes less to the total backward SHG for the skin than Achilles tendon with thicknesses of around three hundred micrometers. For tissue with larger F/B intensity ratio such as Achilles tendon, increasing the tissue thickness reduces it tremendously. However, for tissue with smaller F/B intensity ratio, tissue thickness increment does not alter it significantly. In addition, larger F/B intensity ratio might be related with a greater scattering coefficient from our Achilles tendon and skin comparison. When the focal point is moved deeper into tissue, the contribution of BS-SHG is found to decrease due to a reduced pass length of the forward propagated photons. On the contrary, when the tissue thickness increases, the contribution of the BS-SHG is increased. These observations for thicker skin tissues are related with our F/B intensity ratio measurement for thin mouse skin sample in terms of that the magnitude of backward generated SHG are dominant among the total backward SHG in mouse skin tissue. Considering the phase mismatching condition in the forward and backward directions, these results may indicate that quasi-phase matching originating from the regular structure of collagen could help with reducing the phase mismatch especially in the backward direction.
Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Alonso, Sergio
2015-01-01
The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127
Estimation of viscoelastic parameters in Prony series from shear wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu; Lee, Hyoung-Ki
2016-06-21
When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.
Plasmin-dependent proteolysis of Tissue Factor Pathway Inhibitor in a mouse model of endotoxemia
Lupu, Cristina; Herlea, Oana; Tang, Haiwang; Lijnen, Roger H.; Lupu, Florea
2012-01-01
Summary Background Development of a procoagulant state in sepsis, due to aberrant expression of tissue factor (TF) and sharp decrease of its major inhibitor tissue factor pathway inhibitor (TFPI), could lead to microthrombotic organ failure. The mechanism for the decline of TFPI activity in the lung could involve plasmin-mediated cleavage of the inhibitor. Objective To investigate the effect of plasmin generation on lung-associated TFPI activity, in normal conditions and during infusion of endotoxin (LPS) in mice. Methods Plasmin generation and TFPI activity were assayed in the lungs of mice deficient of tissue-type plasminogen activator (t-PA) or plasminogen (Plg), at 2-hrs after LPS or saline injection. Results The sharp loss of lung-associated TFPI activity at 2-hrs post LPS paralleled the abrupt increase of plasmin generation. TFPI activity was significantly retained in both t-PA-/- and Plg-/- mice, which are unable to generate plasmin. Conclusion The increased plasmin generation during the early stages of sepsis could cleave/inactivate TFPI and thus lead to thrombotic complications. PMID:23106863
YAP is essential for tissue tension to ensure vertebrate 3D body shape.
Porazinski, Sean; Wang, Huijia; Asaoka, Yoichi; Behrndt, Martin; Miyamoto, Tatsuo; Morita, Hitoshi; Hata, Shoji; Sasaki, Takashi; Krens, S F Gabriel; Osada, Yumi; Asaka, Satoshi; Momoi, Akihiro; Linton, Sarah; Miesfeld, Joel B; Link, Brian A; Senga, Takeshi; Shimizu, Nobuyoshi; Nagase, Hideaki; Matsuura, Shinya; Bagby, Stefan; Kondoh, Hisato; Nishina, Hiroshi; Heisenberg, Carl-Philipp; Furutani-Seiki, Makoto
2015-05-14
Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.
Isolation of Precursor Cells from Waste Solid Fat Tissue
NASA Technical Reports Server (NTRS)
Byerly, Diane; Sognier, Marguerite A.
2009-01-01
A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.
Modeling human development in 3D culture.
Ader, Marius; Tanaka, Elly M
2014-12-01
Recently human embryonic stem cell research has taken on a new dimension - the third dimension. Capitalizing on increasing knowledge on directing pluripotent cells along different lineages, combined with ECM supported three-dimensional culture conditions, it has become possible to generate highly organized tissues of the central nervous system, gut, liver and kidney. Each system has been used to study different aspects of organogenesis and function including physical forces underlying optic cup morphogenesis, the function of disease related genes in progenitor cell control, as well as interaction of the generated tissues with host tissue upon transplantation. Pluripotent stem cell derived organoids represent powerful systems for the study of how cells self-organize to generate tissues with a given shape, pattern and form. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meinertz, Jeffery R.; Greseth, Shari L.; Schreier, Theresa M.; Bernardy, Jeffry A.; Gingerich, William H.
2006-01-01
At common water temperatures, the tissue concentration of isoeugenol in fillet tissue from fish exposed to 14-mg/L AQUI-S™ for 60 min was significantly greater than the isoeugenol concentration in fillet tissue from fish exposed to 34-mg/L AQUI-S™ for 10 min (P < 0.01). The isoeugenol concentration (78.8 μg/g) found in fillet tissue from fish exposed to 14-mg/L AQUI-S™ for 60 min at 17 °C was significantly greater than the isoeugenol tissue concentration (57.3 μg/g) generated at 7 °C (P < 0.01), but was not significantly greater than the isoeugenol tissue concentration (70.7 μg/g) generated at 12 °C (P = 0.22). AQUI-S™ exposure regimens and exposure temperatures can significantly impact drug residue concentrations in fillet tissue.
Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues.
Maghdouri-White, Yas; Bowlin, Gary L; Lemmon, Christopher A; Dréau, Didier
2016-02-01
In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.
Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective
Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.
2013-01-01
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505
Kim, Byung-Chul; Jun, Sung-Min; Kim, So Yeon; Kwon, Yong-Dae; Choe, Sung Chul; Kim, Eun-Chul; Lee, Jae-Hyung; Kim, Jinseok; Suh, Jun-Kyo Francis; Hwang, Yu-Shik
2017-04-01
The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential. Here, we established a culture strategy for the generation of in vitro cell-based 3D nerve tissue from postnatal stem cells from apical papilla (SCAPs) of teeth, which originate from neural crest-derived ectomesenchyme cells. A stem cell population capable of differentiating into neural cell lineages was generated during the ex vivo expansion of SCAPs in the presence of EGF and bFGF, and SCAPs differentiated into neural cells, showing neural cell lineage-related molecular and gene expression profiles, morphological changes and electrophysical property under neural-inductive culture conditions. Moreover, we showed the first evidence that 3D cell-based nerve-like tissue with axons and myelin structures could be generated from SCAPs via 3D organotypic culture using an integrated bioprocess composed of polyethylene glycol (PEG) microwell-mediated cell spheroid formation and subsequent dynamic culture in a high aspect ratio vessel (HARV) bioreactor. In conclusion, the culture strategy in our study provides a novel approach to develop in vitro engineered nerve tissue using SCAPs and a foundation to study biological events in the neural differentiation of postnatal stem cells. Biotechnol. Bioeng. 2017;114: 903-914. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wu, Binlin; Gayen, S. K.; Xu, M.
2014-03-01
Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.
Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models.
Blutke, Andreas; Wanke, Rüdiger
2018-03-06
In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical uniform random (VUR) sections.
NASA Astrophysics Data System (ADS)
Shi, Jing; Xu, Mingxia; Tang, Qinghui; Zhao, Kang; Deng, Anping; Li, Jianguo
2018-02-01
A novel flow injection chemiluminescence immunoassay for simple, sensitive and low-cost detection of diclofenac was established based on specific binding of antigen and antibody. Carboxylic resin beads used as solid phase carrier materials provided good biocompatibility and large surface-to-volume ratio for modifying more coating antigen. There was a competitive process between the diclofenac in solution and the immobilized coating antigen to react with the limited binding sites of the polyclonal antibody to form the immunocomplex. The second antibody labelled with horseradish peroxidase was introduced into the immunosensor and trapped by captured polyclonal antibody against diclofenac, which could effectively amplify chemiluminescence signals of luminol-PIP-H2O2. Under optimal conditions, the diclofenac could be detected quantitatively. The chemiluminescence intensity decreased linearly with the logarithm of the diclofenac concentration in the range of 0.1-100 ng mL- 1 with a detection limit of 0.05 ng mL- 1 at a signal-to-noise ratio of 3. The immunosensor exhibited high sensitivity, specificity and acceptable stability. This easy-operated and cost-effective analytical method could be valuable for the diclofenac determination in real water samples.
Competitive and noncompetitive phage immunoassays for the determination of benzothiostrobin.
Hua, Xiude; Zhou, Liangliang; Feng, Lu; Ding, Yuan; Shi, Haiyan; Wang, Limin; Gee, Shirley J; Hammock, Bruce D; Wang, Minghua
2015-08-26
Twenty-three phage-displayed peptides that specifically bind to an anti-benzothiostrobin monoclonal antibody (mAb) in the absence or presence of benzothiostrobin were isolated from a cyclic 8-residue peptide phage library. Competitive and noncompetitive phage enzyme linked immunosorbent assays (ELISAs) for benzothiostrobin were developed by using a clone C3-3 specific to the benzothiostrobin-free mAb and a clone N6-18 specific to the benzothiostrobin immunocomplex, respectively. Under the optimal conditions, the half maximal inhibition concentration (IC50) of the competitive phage ELISA and the concentration of analyte producing 50% saturation of the signal (SC50) of the noncompetitive phage ELISA for benzothiostrobin were 0.94 and 2.27 ng mL(-1), respectively. The noncompetitive phage ELISA showed higher selectivity compared to the competitive. Recoveries of the competitive and the noncompetitive phage ELISAs for benzothiostrobin in cucumber, tomato, pear and rice samples were 67.6-119.6% and 70.4-125.0%, respectively. The amounts of benzothiostrobin in the containing incurred residues samples detected by the two types of phage ELISAs were significantly correlated with that detected by high-performance liquid chromatography (HPLC). Copyright © 2015 Elsevier B.V. All rights reserved.
Lei, Jiuqian; Jing, Tao; Zhou, Tingting; Zhou, Yusun; Wu, Wei; Mei, Surong; Zhou, Yikai
2014-04-15
In this study, we report a strategy of chemiluminescence resonance energy transfer (CRET) using graphene as an efficient long-range energy acceptor. Magnetic nanoparticles were also used in CRET for simple magnetic separation and immobilization of horseradish peroxidase (HRP)-labeled anti-HCG antibody. In the design of CRET system, the sandwich-type immunocomplex was formed between human chorionic gonadotropin (HCG, antigen) and two different antibodies bridged the magnetic nanoparticles and graphene (acceptors), which led to the occurrence of CRET from chemiluminescence light source to graphene. After optimizing the experimental conditions, the quenching of chemiluminescence signal depended linearly on the concentration of HCG in the range of 0.1 mIU mL(-1)-10 mIU mL(-1) and the detection limit was 0.06 mIU mL(-1). The proposed method was successfully applied for the determination of HCG levels in saliva and serum samples, and the results were in good agreement with the plate ELISA with colorimetric detection. It could also be developed for detection of other antigen-antibody immune complexes by using the corresponding antigens and respective antibodies. © 2013 Published by Elsevier B.V.
Fast detection of atrazine in corn using thermometric biosensors.
Qie, Zhiwei; Ning, Baoan; Liu, Ming; Bai, Jialei; Peng, Yuan; Song, Nan; Lv, Zhiqiang; Wang, Ying; Sun, Siming; Su, Xuan; Zhang, Yihong; Gao, Zhixian
2013-09-07
Fast detection is important in screening large-scale samples. This study establishes a direct competitive ELISA method (dcTELISA) based on an enzyme thermistor for fast atrazine (ATZ) detection. ATZ competes with β-lactamase-labeled ATZ (ATZ-E) for the binding sites on anti-ATZ monoclonal antibody (mAb). The mAb are covalently bound to Controlled Pore Glass (CPG) in an immunoreactor to form immunocomplexes with ATZ and ATZ-E. Several parameters of biosensor performance were optimized, such as the ATZ-E concentration, concentration and nature of the substrate, flow rate, and effect of temperature on the sensor response. After optimization, the assay time for a single sample was 12 min. The work process and result were compared with those of high-performance liquid chromatography (HPLC). The detection results exhibited a recovery rate of 88% to 107% in ATZ-spiked fresh cut corn stalks and silage samples. The results obtained via dcTELISA had good correlation with that of HPLC, and the biosensor response was reproducible and stable even when used continuously for over 4 months. All these properties suggested that the fast detection method, dcTELISA, may be used to detect pesticide residue in large-scale samples.
Liu, Cuicui; Deng, Qiliang; Fang, Guozhen; Dang, Meng; Wang, Shuo
2017-08-01
Alpha-fetoprotein (AFP) is widely used as a tumor marker for the serum diagnosis of primary hepatoma. Sensitive detection of AFP level plays an important role in the early diagnosis of disease and highly reliable prediction. In this study, a novel non-competitive immunoassay (IA) based on poly(guanidinium ionic liquid) monolithic material was developed for detecting ultra trace levels of AFP in capillary electrochromatography (CEC) mode. The AFP was mixed with an excess amount of fluorescently labeled antibody. After incubation, the immunocomplex was separated from the free labeled antibody and detected by CEC coupled with laser-induced fluorescence detector. Under the optimized conditions, the developed CEC-IA performed a low detection limit of 0.05 μg L -1 (S/N = 3) and a wide linearity ranging from 0.1 to 1000 μg L -1 for AFP, which can be largely attributed to the high separation and enrichment efficiency of poly(guanidinium ionic liquid) monolithic material for the targets. The application of this method was demonstrated by determining AFP in human serum. Copyright © 2017. Published by Elsevier Inc.
Development of large engineered cartilage constructs from a small population of cells.
Brenner, Jillian M; Kunz, Manuela; Tse, Man Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Waldman, Stephen D
2013-01-01
Confronted with articular cartilage's limited capacity for self-repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large-sized engineered constructs (≥3 cm(2) ) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm(2) tissue construct). Using rabbit donor tissue, the bioreactor-cultivated constructs were hyaline-like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid-prototyped defect tissue culture molds. Similar hyaline-like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large-sized osteochondral constructs. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering
NASA Astrophysics Data System (ADS)
Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.
2016-12-01
There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.
Traction force microscopy of engineered cardiac tissues.
Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit
2018-01-01
Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.
Three-dimensional epithelial tissues generated from human embryonic stem cells.
Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A
2009-11-01
The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.
3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.
Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet
2015-07-03
Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.
Miller, Sean J; Rothstein, Jeffrey D
2017-01-01
Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.
Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2.
Fukuda, Tomokazu; Scott, Gregory; Komatsu, Yoshihiro; Araya, Runa; Kawano, Masako; Ray, Manas K; Yamada, Masahisa; Mishina, Yuji
2006-04-01
BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines. Published 2006 Wiley-Liss, Inc.
Generation of functional organs from stem cells.
Liu, Yunying; Yang, Ru; He, Zuping; Gao, Wei-Qiang
2013-01-01
We are now well entering the exciting era of stem cells. Potential stem cell therapy holds great promise for the treatment of many diseases such as stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral-sclerosis, myocardial infarction, muscular dystrophy, diabetes, and etc. It is generally believed that transplantation of specific stem cells into the injured tissue to replace the lost cells is an effective way to repair the tissue. In fact, organ transplantation has been successfully practiced in clinics for liver or kidney failure. However, the severe shortage of donor organs has been a major obstacle for the expansion of organ transplantation programs. Toward that direction, generation of transplantable organs using stem cells is a desirable approach for organ replacement and would be of great interest for both basic and clinical scientists. Here we review recent progress in the field of organ generation using various methods including single adult tissue stem cells, a blastocyst complementation system, tissue decellularization/recellularization and a combination of stem cells and tissue engineering.
NASA Astrophysics Data System (ADS)
Davidson, Lance
2005-03-01
Morphogenesis is the process of constucting form and shape. Morphogenesis during early development of the embryo involves orchestrated movements of cells and tissues. These morphogenetic movements establish the body plan and organs of the early embryo. The rates and trajectories of these movements depend on three physical features of the early embryo: 1) the forces generated by cells, 2) the mechanical properties of the tissues, and 3) the architecture of the tissues. These three mechanical features of the embryo are some of the earliest phenotypic features generated by the genome. We are taking an interdisciplinary approach combining biophysical, cell biological, and classical embryological techniques to understand the mechanics of morphogenesis. Using nanoNewton-sensitive force transducers we can apply forces and measure time dependent elastic modulii of tissue fragments 100 micrometers across. Using traction-force microscopy we can measure forces generated by cells on their environment. We use drugs and chimeric proteins to investigate the localization and function of molecular complexes responsible for force generation and the modulus. We use microsurgery to take-apart and construct novel tissues to investigate the role of geometry and architecture in the mechanics of morphogenesis. Together with simulation techniques these quantitative approaches will provide us with a practical nuts-and-bolts understanding of how the genome encodes the shapes and forms of life.
Light-patterning of synthetic tissues with single droplet resolution.
Booth, Michael J; Restrepo Schild, Vanessa; Box, Stuart J; Bayley, Hagan
2017-08-24
Synthetic tissues can be generated by forming networks of aqueous droplets in lipid-containing oil. Each droplet contains a cell-free expression system and is connected to its neighbor through a lipid bilayer. In the present work, we have demonstrated precise external control of such networks by activating protein expression within single droplets, by using light-activated DNA to encode either a fluorescent or a pore-forming protein. By controlling the extent of activation, synthetic tissues were generated with graded levels of protein expression in patterns of single droplets. Further, we have demonstrated reversible activation within individual compartments in synthetic tissues by turning a fluorescent protein on-and-off. This is the first example of the high-resolution patterning of droplet networks, following their formation. Single-droplet control will be essential to power subsets of compartments within synthetic tissues or to stimulate subsets of cells when synthetic tissues are interfaced with living tissues.
Schmidt, Dörthe; Asmis, Lars M; Odermatt, Bernhard; Kelm, Jens; Breymann, Christian; Gössi, Matthias; Genoni, Michele; Zund, Gregor; Hoerstrup, Simon P
2006-10-01
Tissue-engineered living blood vessels (TEBV) with growth capacity represent a promising new option for the repair of congenital malformations. We investigate the functionality of TEBV with endothelia generated from human umbilical cord blood-derived endothelial progenitor cells. Tissue-engineered living blood vessels were generated from human umbilical cord-derived myofibroblasts seeded on biodegradable vascular scaffolds, followed by endothelialization with differentiated cord blood-derived endothelial progenitor cells. During in vitro maturation the TEBV were exposed to physiologic conditioning in a flow bioreactor. For functional assessment, a subgroup of TEBV was stimulated with tumor necrosis factor-alpha. Control vessels endothelialized with standard vascular endothelial cells were treated in parallel. Analysis of the TEBV included histology, immunohistochemistry, biochemistry (extracellular matrix analysis, DNA), and biomechanical testing. Endothelia were analyzed by flow cytometry and immunohistochemistry (CD31, von Willebrand factor, thrombomodulin, tissue factor, endothelial nitric oxide synthase). Histologically, a three-layered tissue organization of the TEBV analogous to native vessels was observed, and biochemistry revealed the major matrix constituents (collagen, proteoglycans) of blood vessels. Biomechanical properties (Young's modulus, 2.03 +/- 0.65 MPa) showed profiles resembling those of native tissue. Endothelial progenitor cells expressed typical endothelial cell markers CD31, von Willebrand factor, and endothelial nitric oxide synthase comparable to standard vascular endothelial cells. Stimulation with tumor necrosis factor-alpha resulted in physiologic upregulation of tissue factor and downregulation of thrombomodulin expression. These results indicate that TEBV with tissue architecture and functional endothelia similar to native blood vessels can be successfully generated from human umbilical cord progenitor cells. Thus, blood-derived progenitor cells obtained before or at birth may enable the clinical realization of tissue engineering constructs for pediatric applications.
Treskes, Philipp; Cowan, Douglas B.; Stamm, Christof; Rubach, Martin; Adelmann, Roland; Wittwer, Thorsten; Wahlers, Thorsten
2015-01-01
Objective The effect of mechanical preconditioning on skeletal myoblasts in engineered tissue constructs was investigated to resolve issues associated with conduction block between skeletal myoblast cells and cardiomyocytes. Methods Murine skeletal myoblasts were used to generate engineered tissue constructs with or without application of mechanical strain. After in vitro myotube formation, engineered tissue constructs were co-cultured for 6 days with viable embryonic heart slices. With the use of sharp electrodes, electrical coupling between engineered tissue constructs and embryonic heart slices was assessed in the presence or absence of pharmacologic agents. Results The isolation and expansion procedure for skeletal myoblasts resulted in high yields of homogeneously desmin-positive (97.1% ± 0.1%) cells. Mechanical strain was exerted on myotubes within engineered tissue constructs during gelation of the matrix, generating preconditioned engineered tissue constructs. Electrical coupling between preconditioned engineered tissue constructs and embryonic heart slices was observed; however, no coupling was apparent when engineered tissue constructs were not subjected to mechanical strain. Coupling of cells from engineered tissue constructs to cells in embryonic heart slices showed slower conduction velocities than myocardial cells with the embryonic heart slices (preconditioned engineered tissue constructs vs embryonic heart slices: 0.04 ± 0.02 ms vs 0.10 ± 0.05 ms, P = .011), lower stimulation frequencies (preconditioned engineered tissue constructs vs maximum embryonic heart slices: 4.82 ± 1.42 Hz vs 10.58 ± 1.56 Hz; P = .0009), and higher sensitivities to the gap junction inhibitor (preconditioned engineered tissue constructs vs embryonic heart slices: 0.22 ± 0.07 mmol/L vs 0.93 ± 0.15 mmol/L; P = .0004). Conclusions We have generated skeletal myoblast–based transplantable grafts that electrically couple to myocardium. PMID:22980065
Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J Brian; Cain, Charles A
2007-10-01
Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (< 20 micros), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: (1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; (2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and (3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions.
High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy—Histotripsy
Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L.; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J. Brian; Cain, Charles A.
2009-01-01
Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (<20 μs), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: 1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; 2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and 3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions. PMID:18019247
Myosin II Dynamics during Embryo Morphogenesis
NASA Astrophysics Data System (ADS)
Kasza, Karen
2013-03-01
During embryonic morphogenesis, the myosin II motor protein generates forces that help to shape tissues, organs, and the overall body form. In one dramatic example in the Drosophila melanogaster embryo, the epithelial tissue that will give rise to the body of the adult animal elongates more than two-fold along the head-to-tail axis in less than an hour. This elongation is accomplished primarily through directional rearrangements of cells within the plane of the tissue. Just prior to elongation, polarized assemblies of myosin II accumulate perpendicular to the elongation axis. The contractile forces generated by myosin activity orient cell movements along a common axis, promoting local cell rearrangements that contribute to global tissue elongation. The molecular and mechanical mechanisms by which myosin drives this massive change in embryo shape are poorly understood. To investigate these mechanisms, we generated a collection of transgenic flies expressing variants of myosin II with altered motor function and regulation. We found that variants that are predicted to have increased myosin activity cause defects in tissue elongation. Using biophysical approaches, we found that these myosin variants also have decreased turnover dynamics within cells. To explore the mechanisms by which molecular-level myosin dynamics are translated into tissue-level elongation, we are using time-lapse confocal imaging to observe cell movements in embryos with altered myosin activity. We are utilizing computational approaches to quantify the dynamics and directionality of myosin localization and cell rearrangements. These studies will help elucidate how myosin-generated forces control cell movements within tissues. This work is in collaboration with J. Zallen at the Sloan-Kettering Institute.
Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy
Holman, Hoi-Ying N
2013-10-29
A method of characterizing conditions in a tissue, by (a) providing a catheter that has a light source that emits light in selected wavenumbers within the range of mid-IR spectrum; (b) directing the light from the catheter to an area of tissue at a location inside a blood vessel of a subject; (c) collecting light reflected from the location and generating a reflectance spectra; and (d) comparing the reflectance spectra to a reference spectra of normal tissue, whereby a location having an increased number of absorbance peaks at said selected wavenumbers indicates a tissue inside the blood vessel containing a physiological marker for atherosclerosis.
Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui
2014-03-24
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Biofabricated constructs as tissue models: a short review.
Costa, Pedro F
2015-04-01
Biofabrication is currently able to provide reliable models for studying the development of cells and tissues into multiple environments. As the complexity of biofabricated constructs is becoming increasingly higher their ability to closely mimic native tissues and organs is also increasing. Various biofabrication technologies currently allow to precisely build cell/tissue constructs at multiple dimension ranges with great accuracy. Such technologies are also able to assemble together multiple types of cells and/or materials and generate constructs closely mimicking various types of tissues. Furthermore, the high degree of automation involved in these technologies enables the study of large arrays of testing conditions within increasingly smaller and automated devices both in vitro and in vivo. Despite not yet being able to generate constructs similar to complex tissues and organs, biofabrication is rapidly evolving in that direction. One major hurdle to be overcome in order for such level of complex detail to be achieved is the ability to generate complex vascular structures within biofabricated constructs. This review describes several of the most relevant technologies and methodologies currently utilized within biofabrication and provides as well a brief overview of their current and future potential applications.
2011-01-01
Background The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations. Results This paper describes the sequencing, de novo assembly and analysis from the transcriptome of eight tissues of ten wild great tits. Approximately 4.6 million sequences and 1.4 billion bases of DNA were generated and assembled into 95,979 contigs, one third of which aligned with known Taeniopygia guttata (zebra finch) and Gallus gallus (chicken) transcripts. The majority (78%) of the remaining contigs aligned within or very close to regions of the zebra finch genome containing known genes, suggesting that they represented precursor mRNA rather than untranscribed genomic DNA. More than 35,000 single nucleotide polymorphisms and 10,000 microsatellite repeats were identified. Eleven percent of contigs were expressed in every tissue, while twenty one percent of contigs were expressed in only one tissue. The function of those contigs with strong evidence for tissue specific expression and contigs expressed in every tissue was inferred from the gene ontology (GO) terms associated with these contigs; heart and pancreas had the highest number of highly tissue specific GO terms (21.4% and 28.5% respectively). Conclusions In summary, the transcriptomic data generated in this study will contribute towards efforts to assemble and annotate the great tit genome, as well as providing the markers required to perform gene mapping studies in wild populations. PMID:21635727
3D Printing of Personalized Organs and Tissues
NASA Astrophysics Data System (ADS)
Ye, Kaiming
2015-03-01
Authors: Kaiming Ye and Sha Jin, Department of Biomedical Engineering, Watson School of Engineering and Applied Science, Binghamton University, State University of New York, Binghamton, NY 13902-6000 Abstract: Creation of highly organized multicellular constructs, including tissues and organs or organoids, will revolutionize tissue engineering and regenerative medicine. The development of these technologies will enable the production of individualized organs or tissues for patient-tailored organ transplantation or cell-based therapy. For instance, a patient with damaged myocardial tissues due to an ischemic event can receive a myocardial transplant generated using the patient's own induced pluripotent stem cells (iPSCs). Likewise, a type-1 diabetic patient can be treated with lab-generated islets to restore his or her physiological insulin secretion capability. These lab-produced, high order tissues or organs can also serve as disease models for pathophysiological study and drug screening. The remarkable advances in stem cell biology, tissue engineering, microfabrication, and materials science in the last decade suggest the feasibility of generating these tissues and organoids in the laboratory. Nevertheless, major challenges still exist. One of the critical challenges that we still face today is the difficulty in constructing or fabricating multicellular assemblies that recapitulate in vivo microenvironments essential for controlling cell proliferation, migration, differentiation, maturation and assembly into a biologically functional tissue or organoid structure. These challenges can be addressed through developing 3D organ and tissue printing which enables organizing and assembling cells into desired tissue and organ structures. We have shown that human pluripotent stem cells differentiated in 3D environments are mature and possess high degree of biological function necessary for them to function in vivo.
Challenges and opportunities for tissue-engineering polarized epithelium.
Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P
2014-02-01
The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.
Glassy dynamics in three-dimensional embryonic tissues
Schötz, Eva-Maria; Lanio, Marcos; Talbot, Jared A.; Manning, M. Lisa
2013-01-01
Many biological tissues are viscoelastic, behaving as elastic solids on short timescales and fluids on long timescales. This collective mechanical behaviour enables and helps to guide pattern formation and tissue layering. Here, we investigate the mechanical properties of three-dimensional tissue explants from zebrafish embryos by analysing individual cell tracks and macroscopic mechanical response. We find that the cell dynamics inside the tissue exhibit features of supercooled fluids, including subdiffusive trajectories and signatures of caging behaviour. We develop a minimal, three-parameter mechanical model for these dynamics, which we calibrate using only information about cell tracks. This model generates predictions about the macroscopic bulk response of the tissue (with no fit parameters) that are verified experimentally, providing a strong validation of the model. The best-fit model parameters indicate that although the tissue is fluid-like, it is close to a glass transition, suggesting that small changes to single-cell parameters could generate a significant change in the viscoelastic properties of the tissue. These results provide a robust framework for quantifying and modelling mechanically driven pattern formation in tissues. PMID:24068179
Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K.; Wong, Stephen T. C.
2016-01-01
In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938
Dzhimak, S S; Baryshev, M G; Basov, A A; Timakov, A A
2014-01-01
The influence of deuterium depleted water on the body of different rats generations was investigated in physiological conditions. As a result of this study it was established that the most significant and rapid reduction in D/H equilibrium was observed in plasma (by 36.2%), and lyophilized kidney tissues (by 15.8%). Less pronounced deuterium decrease was characteristic of liver tissue (9.3%) and heart (8.5%). Stabilization of the isotopic exchange reaction rate was fixed in the blood and tissues of rats, starting from the second generation. At the same time when deuterium depleted water (40 ppm) was used in dietary intake, the change in morphological and functional parameters in laboratory animals associated with the processes of adaptation to the effects of substress isotopic D/H gradient was also noted. The study shows that modification of:only drinking water intake regime can't significantly change the deuterium content in tissues of metabolically active organs, because of the concurrent deuterium receipt in food substances of plant and animal origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maspero, M.; Meijer, G.J.; Lagendijk, J.J.W.
2015-06-15
Purpose: To develop an image processing method for MRI-based generation of electron density maps, known as pseudo-CT (pCT), without usage of model- or atlas-based segmentation, and to evaluate the method in the pelvic and head-neck region against CT. Methods: CT and MRI scans were obtained from the pelvic region of four patients in supine position using a flat table top only for CT. Stratified CT maps were generated by classifying each voxel based on HU ranges into one of four classes: air, adipose tissue, soft tissue or bone.A hierarchical region-selective algorithm, based on automatic thresholding and clustering, was used tomore » classify tissues from MR Dixon reconstructed fat, In-Phase (IP) and Opposed-Phase (OP) images. First, a body mask was obtained by thresholding the IP image. Subsequently, an automatic threshold on the Dixon fat image differentiated soft and adipose tissue. K-means clustering on IP and OP images resulted in a mask that, via a connected neighborhood analysis, allowing the user to select the components corresponding to bone structures.The pCT was estimated through assignment of bulk HU to the tissue classes. Bone-only Digital Reconstructed Radiographs (DRR) were generated as well. The pCT images were rigidly registered to the stratified CT to allow a volumetric and voxelwise comparison. Moreover, pCTs were also calculated within the head-neck region in two volunteers using the same pipeline. Results: The volumetric comparison resulted in differences <1% for each tissue class. A voxelwise comparison showed a good classification, ranging from 64% to 98%. The primary misclassified classes were adipose/soft tissue and bone/soft tissue. As the patients have been imaged on different table tops, part of the misclassification error can be explained by misregistration. Conclusion: The proposed approach does not rely on an anatomy model providing the flexibility to successfully generate the pCT in two different body sites. This research is founded by ZonMw IMDI Programme, project name: “RASOR sharp: MRI based radiotherapy planning using a single MRI sequence”, project number: 10-104003010.« less
Zapata-Linares, Natalia; Rodriguez, Saray; Mazo, Manuel; Abizanda, Gloria; Andreu, Enrique J; Barajas, Miguel; Prosper, Felipe; Rodriguez-Madoz, Juan R
2016-01-01
In this work, mesenchymal stem cells derived from adipose tissue (ADSCs) were used for the generation of the human-induced pluripotent stem cell line G15.AO. Cell reprogramming was performed using retroviral vectors containing the Yamanaka factors, and the generated G15.AO hiPSC line showed normal karyotype, silencing of the exogenous reprogramming factors, induction of the typical pluripotency-associated markers, alkaline phosphatase enzymatic activity, and in vivo and in vitro differentiation ability to the three germ layers. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Methods for Incorporating Oxygen-Generating Biomaterials into Cell Culture and Microcapsule Systems.
McQuilling, John Patrick; Opara, Emmanuel C
2017-01-01
A major obstacle to long-term performance of tissue construct implants in regenerative medicine is the inherent hypoxia to which cells in the engineered construct are exposed prior to vascularization of the implant. Various approaches are currently being designed to address this problem. An emerging area of interest on this issue is the use of peroxide-based materials to generate oxygen during the critical period of extended hypoxia that occurs from the time cells are in culture waiting to be used in tissue engineering devices through the immediate post-implant period. In this chapter we provide protocols that we have developed for using these chemical oxygen generators in cell culture and tissue constructs as illustrated by pancreatic islet cell microencapsulation.
Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles
Lukianova-Hleb, Ekaterina Y.; Koneva, Irina I.; Oginsky, Alexander O.; La Francesca, Saverio; Lapotko, Dmitri O.
2010-01-01
Background The accuracy, selectivity and safety of surgical and laser methods for tissue elimination are often limited at microscale. Materials and methods We developed a novel agent, the plasmonic nanobubble (PNB), for optically guided selective elimination of the target tissue with micrometer precision. PNBs were tested in vitro in the two different models of superficial tumors and vascular plaques. Results PNBs were selectively generated around gold nanoparticles (delivered to the target tissues) with short laser pulses. Monolayers of cancerous cells and atherosclerotic plaque tissue were eliminated with PNBs with micrometer accuracy and without thermal and mechanical damage to collateral normal tissues. The effect of the PNB was dynamically controlled through the fluence of laser pulses (532 nm, duration 0.5 and 10 ns) and was guided through the optical scattering by PNB. Conclusions plasmonic nanobubbles were shown to provide precise, tunable, selective and guided ablation of tissue at a microcscopic level and could be employed as a new generation of surgical tools. PMID:21176913
Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles.
Lukianova-Hleb, Ekaterina Y; Koneva, Irina I; Oginsky, Alexander O; La Francesca, Saverio; Lapotko, Dmitri O
2011-03-01
The accuracy, selectivity, and safety of surgical and laser methods for tissue elimination are often limited at microscale. We developed a novel agent, the plasmonic nanobubble (PNB), for optically guided selective elimination of the target tissue with micrometer precision. PNBs were tested in vitro in the two different models of superficial tumors and vascular plaques. PNBs were selectively generated around gold nanoparticles (delivered to the target tissues) with short laser pulses. Monolayers of cancerous cells and atherosclerotic plaque tissue were eliminated with PNBs with micrometer accuracy and without thermal and mechanical damage to collateral normal tissues. The effect of the PNB was dynamically controlled through the fluence of laser pulses (532 nm, duration 0.5 and 10 ns) and was guided through the optical scattering by PNB. Plasmonic nanobubbles were shown to provide precise, tunable, selective, and guided ablation of tissue at a microscopic level and could be employed as a new generation of surgical tools. Copyright © 2011 Elsevier Inc. All rights reserved.
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation
Wilke, Marko; Altaye, Mekibib; Holland, Scott K.
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating “unusual” populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php. PMID:28275348
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation.
Wilke, Marko; Altaye, Mekibib; Holland, Scott K
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.
Delaine-Smith, Robin M; Green, Nicola H; Matcher, Stephen J; MacNeil, Sheila; Reilly, Gwendolen C
2014-01-01
The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.
Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration.
Leijten, Jeroen; Rouwkema, Jeroen; Zhang, Yu Shrike; Nasajpour, Amir; Dokmeci, Mehmet Remzi; Khademhosseini, Ali
2016-04-27
Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in the generation of such implants, by enabling spatiotemporal control of the cellular microenvironment. Here we review the role, function and progress of a wide range of nano- and microtechnologies that are driving the advancements in the field of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harnessing the Power of Light to See and Treat Breast Cancer
2011-10-01
generate sarcomas include LSL- KrasG12D/+;Trp53Flox/Flox, BrafCa/+;Trp53 Flox/Flox and BrafCa/Ca;Trp53Flox/Flox.7,8 Soft tissue sarcomas were generated...temporally restricted mouse model of soft tissue sarcoma , Nat Med, 2007. 13(8): p. 992-7. 8. Dankort, D., et al., A new mouse model to explore the...resolution anatomical images of heterogeneous tissue. To do so we are employing the use of two ex vivo test beds: 1) murine sarcoma margins and 2
Farkona, Sofia; Soosaipillai, Antoninus; Filippou, Panagiota; Korbakis, Dimitrios; Serra, Stefano; Rückert, Felix; Diamandis, Eleftherios P; Blasutig, Ivan M
2017-12-01
CUB and zona pellucida-like domain-containing protein 1 (CUZD1) was identified as a pancreas-specific protein and was proposed as a candidate biomarker for pancreatic related disorders. CUZD1 protein levels in tissues and biological fluids have not been extensively examined. The purpose of the present study was to generate specific antibodies targeting CUZD1 to assess CUZD1 expression within tissues and biological fluids. Mouse monoclonal antibodies against CUZD1 were generated and used to perform immunohistochemical analyses and to develop a sensitive and specific enzyme-linked immunosorbent assay (ELISA). CUZD1 protein expression was assessed in various human tissue extracts and biological fluids and in gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant protein. Immunohistochemical staining of CUZD1 in pancreatic tissue showed that the protein is localized to the acinar cells and the lumen of the acini. Western blot analysis detected the protein in pancreatic tissue extract and pancreatic juice. The newly developed ELISA measured CUZD1 in high levels in pancreas and in much lower but detectable levels in several other tissues. In the biological fluids tested, CUZD1 expression was detected exclusively in pancreatic juice. The analysis of gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant CUZD1 suggested that the protein exists in high molecular weight protein complexes. This study describes the development of tools targeting CUZD1 protein, its tissue expression pattern and levels in several biological fluids. These new tools will facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Dowling, Jason A.; Rai, Robba; Liney, Gary P.
2017-04-01
In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.
Controlled molecular self-assembly of complex three-dimensional structures in soft materials
Huang, Changjin; Quinn, David; Suresh, Subra
2018-01-01
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. PMID:29255037
Zhang, Zhiqing; Kuzmin, Nikolay V; Groot, Marie Louise; de Munck, Jan C
2017-06-01
The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering, segmentation and validation, to extract this information challenging. We developed a salient edge-enhancing model of anisotropic diffusion for image filtering, based on higher order statistics. We split the intrinsic 3-phase segmentation problem into two 2-phase segmentation problems, each of which we solved with a dedicated model, active contour weighted by prior extreme. We applied the novel proposed algorithms to THG images of structurally normal ex-vivo human brain tissue, revealing key tissue components-brain cells, microvessels and neuropil, enabling statistical characterization of these components. Comprehensive comparison to manually delineated ground truth validated the proposed algorithms. Quantitative comparison to second harmonic generation/auto-fluorescence images, acquired simultaneously from the same tissue area, confirmed the correctness of the main THG features detected. The software and test datasets are available from the authors. z.zhang@vu.nl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice
NASA Astrophysics Data System (ADS)
Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François
2001-02-01
Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.
NASA Astrophysics Data System (ADS)
Shan, Ning; Wang, Zhijing; Liu, Xia
2014-11-01
Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.
Methods and apparatus for microwave tissue welding for wound closure
NASA Technical Reports Server (NTRS)
Ngo, Phong H. (Inventor); Dusl, John R. (Inventor); Arndt, G. Dickey (Inventor); Phan, Chau T. (Inventor); Byerly, Diane L. (Inventor); Sognier, Marguerite A. (Inventor); Carl, James R. (Inventor)
2013-01-01
Methods and apparatus for joining biological tissue together are provided. In at least one specific embodiment, a method for joining biological tissue together can include applying a biological solder on a wound. A barrier layer can be disposed on the biological solder. An antenna can be located in proximate spatial relationship to the barrier layer. An impedance of the antenna can be matched to an impedance of the wound. Microwaves from a signal generator can be transmitted through the antenna to weld two or more biological tissue pieces of the wound together. A power of the microwaves can be adjusted by a control circuit disposed between the antenna and the signal generator. The heating profile within the tissue may be adjusted and controlled by the placement of metallic microspheres in or around the wound.
DeRose, Yoko S.; Gligorich, Keith M.; Wang, Guoying; Georgelas, Ann; Bowman, Paulette; Courdy, Samir J.; Welm, Alana L.; Welm, Bryan E.
2013-01-01
Research models that replicate the diverse genetic and molecular landscape of breast cancer are critical for developing the next generation therapeutic entities that can target specific cancer subtypes. Patient-derived tumorgrafts, generated by transplanting primary human tumor samples into immune-compromised mice, are a valuable method to model the clinical diversity of breast cancer in mice, and are a potential resource in personalized medicine. Primary tumorgrafts also enable in vivo testing of therapeutics and make possible the use of patient cancer tissue for in vitro screens. Described in this unit are a variety of protocols including tissue collection, biospecimen tracking, tissue processing, transplantation, and 3-dimensional culturing of xenografted tissue, that enable use of bona fide uncultured human tissue in designing and validating cancer therapies. PMID:23456611
Skin tissue generation by laser cell printing.
Koch, Lothar; Deiwick, Andrea; Schlie, Sabrina; Michael, Stefanie; Gruene, Martin; Coger, Vincent; Zychlinski, Daniela; Schambach, Axel; Reimers, Kerstin; Vogt, Peter M; Chichkov, Boris
2012-07-01
For the aim of ex vivo engineering of functional tissue substitutes, Laser-assisted BioPrinting (LaBP) is under investigation for the arrangement of living cells in predefined patterns. So far three-dimensional (3D) arrangements of single or two-dimensional (2D) patterning of different cell types have been presented. It has been shown that cells are not harmed by the printing procedure. We now demonstrate for the first time the 3D arrangement of vital cells by LaBP as multicellular grafts analogous to native archetype and the formation of tissue by these cells. For this purpose, fibroblasts and keratinocytes embedded in collagen were printed in 3D as a simple example for skin tissue. To study cell functions and tissue formation process in 3D, different characteristics, such as cell localisation and proliferation were investigated. We further analysed the formation of adhering and gap junctions, which are fundamental for tissue morphogenesis and cohesion. In this study, it was demonstrated that LaBP is an outstanding tool for the generation of multicellular 3D constructs mimicking tissue functions. These findings are promising for the realisation of 3D in vitro models and tissue substitutes for many applications in tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.
Optical probe for determining the fat/lean interface in cuts of meat
Weber, Thomas M.; Callow, Diane S.; Jones, James F.; Kuehl, Michael A.; Spletzer, Barry L.
2005-02-22
An apparatus and method for locating the boundary surface between a layer of fatty tissue and lean tissue in a cut of meat, such as beef, such as slabs of meat undergoing trimming and cutting in commercial meet processing facilitates. The invention exploits the fact that fatty tissue and lean tissue have significantly different responses to incident light energy. By gauging the degree to which a generated beam of light is scattered and reflected by the tissues under evaluation, the invention permits the character of the tissue to be ascertained. An incident beam of light, such as green light, is generated and transmitted to a probe tip, which tip is inserted into the cut of meat under investigation. The light beam is emitted into the meat tissues from the probe tip, and then is scattered and reflected by the tissues, whereupon some fraction of the emitted light returns to the probe tip. The returning light energy is transmitted to a detector; relative changes in the returning light transmitted to the detector permit the operator to determine when the probe tip is approaching or penetrating the fat/lean tissue interface.
Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.
Antonica, Francesco; Kasprzyk, Dominika Figini; Schiavo, Andrea Alex; Romitti, Mírian; Costagliola, Sabine
2017-01-01
During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.
Femtosecond lasers as novel tool in dental surgery
NASA Astrophysics Data System (ADS)
Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.
2002-09-01
There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.
Putnin, Thitirat; Jumpathong, Watthanachai; Laocharoensuk, Rawiwan; Jakmunee, Jaroon; Ounnunkad, Kontad
2018-08-01
This work focuses on fabricating poly(2-aminobenzylamine)-modified screen-printed carbon electrode as an electrochemical immunosensor for the label-free detection of human immunoglobulin G. To selectively detect immunoglobulin G, the anti-immunoglobulin G antibody with high affinity to immunoglobulin G was covalently linked with the amine group of poly(2-aminobenzylamine) film-deposited screen-printed carbon electrode. The selectivity for immunoglobulin G was subsequently assured by being challenged with redox-active interferences and adventitious adsorption did not significantly interfere the analyte signal. To obviate the use of costly secondary antibody, the [Fe(CN) 6 ] 4-/3- redox probe was instead applied to measure the number of human immunoglobulin G through the immunocomplex formation that is quantitatively related to the level of the differential pulse voltammetric current. The resulting immunosensor exhibited good sensitivity with the detection limit of 0.15 ng mL -1 , limit of quantitation of 0.50 ng mL -1 and the linear range from 1.0 to 50 ng mL -1 . Given those striking analytical performances and the affordability arising from using cheap screen-printed carbon electrode with label-free detection, the immunosensor serves as a promising model for the next-step development of a diagnostic tool.
Huang, Bo; Kim, Samuel; Wu, Hongkai; Zare, Richard N
2007-12-01
Dynamic modification of poly(dimethylsiloxane) channels using a mixture of n-dodecyl-beta-D-maltoside (DDM) and sodium dodecyl sulfate (SDS) is able to suppress analyte adsorption and control electroosmotic flow (EOF). In this mixed surfactant system, the nonionic surfactant DDM functions as a surface blocking reagent, whereas the anionic surfactant SDS introduces negative charges to the channel walls. Changing the DDM/SDS mixing ratio tunes the surface charge density and the strength of EOF. Using 0.1% (w/v) DDM and 0.03% (w/v) SDS, Alexa Fluor 647 labeled streptavidin can be analyzed according to the charges added by the fluorophores. Protein molecules with different numbers of fluorophores are well resolved. DDM and SDS also form negatively charged mixed micelles, which act as a separation medium. The low critical micellar concentration of DDM/SDS mixed micelles also allows the use of SDS at a nondenaturing concentration, which enables the analysis of proteins in their native state. The immunocomplex between a membrane protein, beta2 adrenergic receptor, and anti-FLAG antibody has been fully separated using 0.1% (w/v) DDM and 0.03% (w/v) SDS. We have also analyzed the composition of light-harvesting protein-chromophore complexes in cyanobacteria.
In situ monitoring of PTHLH secretion in neuroblastoma cells cultured onto nanoporous membranes.
de la Escosura-Muñiz, Alfredo; Espinoza-Castañeda, Marisol; Chamorro-García, Alejandro; Rodríguez-Hernández, Carlos J; de Torres, Carmen; Merkoçi, Arben
2018-06-01
In this work, we propose for the first time the use of anodic aluminum oxide (AAO) nanoporous membranes for in situ monitoring of parathyroid hormone-like hormone (PTHLH) secretion in cultured human cells. The biosensing system is based on the nanochannels blockage upon immunocomplex formation, which is electrically monitored through the voltammetric oxidation of Prussian blue nanoparticles (PBNPs). Models evaluated include a neuroblastoma cell line (SK-N-AS) and immortalized keratinocytes (HaCaT) as a control of high PTHLH production. The effect of total number of seeded cells and incubation time on the secreted PTHLH levels is assessed, finding that secreted PTHLH levels range from approximately 60 to 400 ng/mL. Moreover, our methodology is also applied to analyse PTHLH production following PTHLH gene knockdown upon transient cell transfection with a specific silencing RNA (siRNA). Given that inhibition of PTHLH secretion reduces cell proliferation, survival and invasiveness in a number of tumors, our system provides a powerful tool for the preclinical evaluation of therapies that regulate PTHLH production. This nanoporous membrane - based sensing technology might be useful to monitor the active secretion of other proteins as well, thus contributing to characterize their regulation and function. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Inda, Luis A.; Razquín, Pedro; Lampreave, Fermín; Alava, María A.; Calvo, Miguel
1998-12-01
Specificity, sensitivity, and experimental simplicity make the immunoenzymatic assay suitable for a variety of laboratories dedicated to diverse activities such as research, quality control in food analysis, or clinical biochemistry. In these assays, the antibody that specifically recognizes the antigen is covalently attached to an enzyme. Once the antigen-antibody immunocomplex is formed, the enzymatic reaction gives a colored product that allows the detection of the initial antigen. The aim of this work was the design of a new laboratory project appropriate for use in courses of biochemistry, immunochemistry, or analytical chemistry. The assay described here detects the presence of cow milk in milk of other species. The main application is the detection of cow milk in sheep milk and cheese. Specific proteins, immunoglobulins (IgG) of the fraudulent bovine milk, are specifically recognized and retained by antibodies immobilized on a membrane. The binding of a second antibody covalently attached to horseradish peroxidase (HRP) allows the development of a visible signal. Thus, students can rapidly detect milk adulterations using a specific, sensitive, and safe experimental approach. The experiment allows students to apply their theoretical knowledge, resulting in a stimulating experience of solving a real problem during a 4-hour laboratory period.
Enwerem, Isioma I.; Velma, Venkatramreddy; Broome, Hanna J.; Kuna, Marija; Begum, Rowshan A.; Hebert, Michael D.
2014-01-01
ABSTRACT Spliceosomal small nuclear ribonucleoproteins (snRNPs) are enriched in the Cajal body (CB). Guide RNAs, known as small Cajal body-specific RNAs (scaRNAs), direct modification of the small nuclear RNA (snRNA) component of the snRNP. The protein WRAP53 binds a sequence motif (the CAB box) found in many scaRNAs and the RNA component of telomerase (hTR) and targets these RNAs to the CB. We have previously reported that coilin, the CB marker protein, associates with certain non-coding RNAs. For a more comprehensive examination of the RNAs associated with coilin, we have sequenced the RNA isolated from coilin immunocomplexes. A striking preferential association of coilin with the box C/D scaRNAs 2 and 9, which lack a CAB box, was observed. This association varied by treatment condition and WRAP53 knockdown. In contrast, reduction of WRAP53 did not alter the level of coilin association with hTR. Additional studies showed that coilin degrades/processes scaRNA 2 and 9, associates with active telomerase and can influence telomerase activity. These findings suggest that coilin plays a novel role in the biogenesis of box C/D scaRNPs and telomerase. PMID:24659245
Tao, Xiaoqi; Jiang, Haiyang; Yu, Xuezhi; Zhu, Jinghui; Wang, Xia; Wang, Zhanhui; Niu, Lanlan; Wu, Xiaoping; Shen, Jianzhong
2013-05-01
A competitive, direct, chemiluminescent immunoassay based on a magnetic beads (MBs) separation and gold nanoparticles (AuNPs) labelling technique to detect chloramphenicol (CAP) has been developed. Horseradish peroxidase (HRP)-labelled anti-CAP monoclonal antibody conjugated with AuNPs and antigen-immobilized MBs were prepared. After optimization parameters of immunocomplex MBs, the IC50 values of chemiluminescence magnetic nanoparticles immunoassay (CL-MBs-nano-immunoassay) were 0.017 µg L(-1) for extract method I and 0.17 µg L(-1) for extract method II. The immunoassay with two extract methods was applied to detect CAP in milk. Comparison of these two extract methods showed that extract method I was advantageous in better sensitivity, in which the sensitivity was 10 times compared to that of extract method II, while extract method II was superior in simple operation, suitable for high throughout screen. The recoveries were 86.7-98.0% (extract method I) and 80.0-103.0% (extract method II), and the coefficients of variation (CVs) were all <15%. The satisfactory recovery with both extract methods and high correlation with traditional ELISA kit in milk system confirmed that the immunomagnetic assay based on AuNPs exhibited promising potential in rapid field screening for trace CAP analysis. Copyright © 2013 John Wiley & Sons, Ltd.
Zhou, Chuan-Hua; Shu, Yun; Hong, Zheng-Yuan; Pang, Dai-Wen; Zhang, Zhi-Ling
2013-09-01
A novel electrochemical magnetoimmunosensor for fast and ultrasensitive detection of H9N2 avian influenza virus particles (H9N2 AIV) was designed based on the combination of high-efficiency immunomagnetic separation, enzyme catalytic amplification, and the biotin-streptavidin system. The reusable, homemade magneto Au electrode (M-AuE) was designed and used for the direct sensing. Immunocomplex-coated magnetic beads (IMBs) were easily accumulated on the surface of the M-AuE to obtain the catalytically reduced electrochemical signal of H2 O2 after the immunoreaction. The transducer was regenerated through a simple washing procedure, which made it possible to detect all the samples on a single electrode with higher reproducibility. The magnetic-bead-based electrochemical immunosensor showed better analytical performance than the planar-electrode-based immunosensor with the same sandwich construction. Amounts as low as 10 pg mL(-1) H9N2 AIV could be detected even in samples of chicken dung. This electrochemical magnetoimmunosensor not only provides a simple platform for the detection of the virus with high sensitivity, selectivity, and reproducibility but also shows great potential in the early diagnosis of diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Receptors and routes of dengue virus entry into the host cells.
Cruz-Oliveira, Christine; Freire, João Miguel; Conceição, Thaís M; Higa, Luiza M; Castanho, Miguel A R B; Da Poian, Andrea T
2015-03-01
Dengue is the most prevalent arthropod-borne viral disease, caused by dengue virus, a member of the Flaviviridae family. Its worldwide incidence is now a major health problem, with 2.5 billion people living in risk areas. In this review, we integrate the structural rearrangements of each viral protein and their functions in all the steps of virus entry into the host cells. We describe in detail the putative receptors and attachment factors in mammalian and mosquito cells, and the recognition of viral immunocomplexes via Fcγ receptor in immune cells. We also discuss that virus internalization might occur through distinct entry pathways, including clathrin-mediated or non-classical clathrin-independent endocytosis, depending on the host cell and virus serotype or strain. The implications of viral maturation in virus entry are also explored. Finally, we discuss the mechanisms of viral genome access to the cytoplasm. This includes the role of low pH-induced conformational changes in the envelope protein that mediate membrane fusion, and original insights raised by our recent work that supports the hypothesis that capsid protein would also be an active player in this process, acting on viral genome translocation into the cytoplasm. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tang, Dianping; Tang, Juan; Su, Biling; Chen, Guonan
2010-10-27
A new sandwich-type electrochemical immunoassay for ultrasensitive detection of staphylococcal enterotoxin B (SEB) in food was developed using horseradish peroxidase-nanosilica-doped multiwalled carbon nanotubes (HRPSiCNTs) for signal amplification. Rabbit polyclonal anti-SEB antibodies immobilized on the screen-printed carbon electrode (SPCE) and covalently bound to the HRPSiCNTs were used as capture antibodies and detection antibodies, respectively. In the presence of SEB analyte, the sandwich-type immunocomplex could be formed between the immobilized anti-SEB on the SPCE and anti-SEB-labeled HRPSiCNTs, and the carried HRP could catalyze the electrochemical reduction of H2O2 with the help of thionine. The high content of HRP in the HRPSiCNTs could greatly amplify the electrochemical signal. Under optimal conditions, the reduction current increased with the increase of SEB in the sample, and exhibited a dynamic range of 0.05-15 ng/mL with a low detection limit (LOD) of 10 pg/mL SEB (at 3σ). Intra- and interassay coefficients of variation were below 10%. In addition, the assay was evaluated with SEB spiked samples including watermelon juice, soymilk, apple juice, and pork food, receiving excellent correlation with results from commercially available enzyme-linked immunosorbent assay (ELISA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudino, G.; Cirillo, D.; Naldini, L.
1988-04-01
It has been hypothesized that bombesin-like peptides produced by small cell lung carcinomas may sustain deregulated proliferation through an autocrine mechanism. The authors have shown that the neuropeptide bombesin leads to the activation of a protein-tyrosine kinase that phosphorylates a 115-kDa protein (p115) associated with the bombesin receptor complex in mouse Swiss 3T3 fibroblasts. They now report that phosphotyrosine antibodies recognize a 115-kDa protein, phosphorylated on tyrosine, in four human small cell lung carcinoma cell lines producing bombesin but not in a nonproducer variant line. p115 from detergent-treated small cell lung carcinoma cells binds to bombesin-Sepharose and can be phosphorylatedmore » on tyrosine in the presence of radiolabeled ATP and Mn{sup 2+}. As for the p115 immunoprecipitated from mouse fibroblast, the small cell lung carcinoma p115 can be phosphorylated in an immunocomplex kinase assay. However, the latter does not require the presence of exogenous bombesin for activity. Binding data, obtained by using radiolabeled ligand, suggest receptor occupancy in the cell lines producing bombesin. These observations are consistent with the hypothesis that proliferation in some human small cell lung carcinoma lines is under autocrine control, regulated through activation of bombesin receptors.« less
Plasmin-dependent proteolysis of tissue factor pathway inhibitor in a mouse model of endotoxemia.
Lupu, C; Herlea, O; Tang, H; Lijnen, R H; Lupu, F
2013-01-01
The development of a procoagulant state in sepsis, owing to aberrant expression of tissue factor (TF) and a sharp decrease in the level of its major inhibitor, TF pathway inhibitor (TFPI), could lead to microthrombotic organ failure. The mechanism for the decline in TFPI activity in the lung could involve plasmin-mediated cleavage of the inhibitor. To investigate the effect of plasmin generation on lung-associated TFPI activity, in normal conditions and during infusion of endotoxin (lipopolysaccharide [LPS]) in mice. Plasmin generation and TFPI activity were assayed in the lungs of mice deficient in tissue-type plasminogen (Plg) activator (t-PA) or Plg, at 2 h after LPS or saline injection. The sharp loss of lung-associated TFPI activity at 2 h after LPS challenge paralleled the abrupt increase in plasmin generation. TFPI activity was significantly retained in both t-PA(-/-) and Plg(-/-) mice, which are unable to generate plasmin. The increased plasmin generation during the early stages of sepsis could cleave/inactivate TFPI and thus lead to thrombotic complications. © 2012 International Society on Thrombosis and Haemostasis.
Hong, Mineui; Bang, Heejin; Van Vrancken, Michael; Kim, Seungtae; Lee, Jeeyun; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Sun, Jong-Mu; Lee, Se Hoon; Ahn, Myung-Ju; Park, Keunchil; Kim, Duk Hwan; Lee, Seunggwan; Park, Woongyang; Kim, Kyoung-Mee
2017-01-01
To generate accurate next-generation sequencing (NGS) data, the amount and quality of DNA extracted is critical. We analyzed 1564 tissue samples from patients with metastatic or recurrent solid tumor submitted for NGS according to their sample size, acquisition method, organ, and fixation to propose appropriate tissue requirements. Of the 1564 tissue samples, 481 (30.8%) consisted of fresh-frozen (FF) tissue, and 1,083 (69.2%) consisted of formalin-fixed paraffin-embedded (FFPE) tissue. We obtained successful NGS results in 95.9% of cases. Out of 481 FF biopsies, 262 tissue samples were from lung, and the mean fragment size was 2.4 mm. Compared to lung, GI tract tumor fragments showed a significantly lower DNA extraction failure rate (2.1 % versus 6.1%, p = 0.04). For FFPE biopsy samples, the size of biopsy tissue was similar regardless of tumor type with a mean of 0.8 × 0.3 cm, and the mean DNA yield per one unstained slide was 114 ng. We obtained highest amount of DNA from the colorectum (2353 ng) and the lowest amount from the hepatobiliary tract (760.3 ng) likely due to a relatively smaller biopsy size, extensive hemorrhage and necrosis, and lower tumor volume. On one unstained slide from FFPE operation specimens, the mean size of the specimen was 2.0 × 1.0 cm, and the mean DNA yield per one unstained slide was 1800 ng. In conclusions, we present our experiences on tissue requirements for appropriate NGS workflow: > 1 mm2 for FF biopsy, > 5 unstained slides for FFPE biopsy, and > 1 unstained slide for FFPE operation specimens for successful test results in 95.9% of cases. PMID:28477007
Cha, Yoonsun; Jeon, Mijeong; Lee, Hyo-Seol; Kim, Seunghye; Kim, Seong-Oh; Lee, Jae-Ho; Song, Je Seon
2015-09-01
The aim of this study was to determine the effects of in vitro odontogenic/cementogenic differentiation on the in vivo tissue regeneration of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). DPSCs and PDLSCs were predifferentiated for 0, 4, or 8 days with an odontogenic/cementogenic medium and then transplanted into subcutaneous pockets in immunocompromised mice. The transplants were harvested 9 weeks after transplantation, and the characteristics of the newly formed tissues in vivo were analyzed by histologic staining; examining alkaline phosphate activity; immunohistochemical staining for osteocalcin, dentin sialoprotein, and type XII collagen; and quantitative real-time polymerase chain reaction to analyze the expression patterns of the following genes: RUNX2, OC, DMP1, DSPP, POSTN, CP23, and Col XII. In DPSC transplants, the amount of new tissues was similar in all groups, whereas in predifferentiated transplants the OC and DSPP expression were higher than undifferentiated transplants. Predifferentiated PDLSC transplants generated more hard tissue and expressed higher alkaline phosphatase activity than undifferentiated transplants. In particular, 8-day predifferentiated PDLSC transplants formed tissue closer to the cementum/PDL complex in vivo as confirmed by the higher expression levels of POSTN, CP23, and Col XII. Although there was no significant increase in tissue-forming ability among DPSCs after predifferentiation, predifferentiated DPSCs generated hard tissue closer to dentin. Also, predifferentiated PDLSCs appeared to be able to generate higher-quality and greater amounts of tissue for dental regeneration than undifferentiated PDLSCs. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
Automatic tissue segmentation of breast biopsies imaged by QPI
NASA Astrophysics Data System (ADS)
Majeed, Hassaan; Nguyen, Tan; Kandel, Mikhail; Marcias, Virgilia; Do, Minh; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel
2016-03-01
The current tissue evaluation method for breast cancer would greatly benefit from higher throughput and less inter-observer variation. Since quantitative phase imaging (QPI) measures physical parameters of tissue, it can be used to find quantitative markers, eliminating observer subjectivity. Furthermore, since the pixel values in QPI remain the same regardless of the instrument used, classifiers can be built to segment various tissue components without need for color calibration. In this work we use a texton-based approach to segment QPI images of breast tissue into various tissue components (epithelium, stroma or lumen). A tissue microarray comprising of 900 unstained cores from 400 different patients was imaged using Spatial Light Interference Microscopy. The training data were generated by manually segmenting the images for 36 cores and labelling each pixel (epithelium, stroma or lumen.). For each pixel in the data, a response vector was generated by the Leung-Malik (LM) filter bank and these responses were clustered using the k-means algorithm to find the centers (called textons). A random forest classifier was then trained to find the relationship between a pixel's label and the histogram of these textons in that pixel's neighborhood. The segmentation was carried out on the validation set by calculating the texton histogram in a pixel's neighborhood and generating a label based on the model learnt during training. Segmentation of the tissue into various components is an important step toward efficiently computing parameters that are markers of disease. Automated segmentation, followed by diagnosis, can improve the accuracy and speed of analysis leading to better health outcomes.
Gerli, Mattia Francesco Maria; Guyette, Jacques Paul; Evangelista-Leite, Daniele; Ghoshhajra, Brian Burns; Ott, Harald Christian
2018-01-01
Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.
Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J
2008-07-01
This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.
Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications
Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle
2016-01-01
Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301
Optical probe with reference fiber
Da Silva, Luiz B [Danville, CA; Chase, Charles L [Dublin, CA
2006-03-14
A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.
Woon Tiong Ang; Scurtescu, C; Wing Hoy; El-Bialy, T; Ying Yin Tsui; Jie Chen
2010-02-01
Biological tissue healing has recently attracted a great deal of research interest in various medical fields. Trauma to teeth, deep and root caries, and orthodontic treatment can all lead to various degrees of root resorption. In our previous study, we showed that low-intensity pulsed ultrasound (LIPUS) enhances the growth of lower incisor apices and accelerates their rate of eruption in rabbits by inducing dental tissue growth. We also performed clinical studies and demonstrated that LIPUS facilitates the healing of orthodontically induced teeth-root resorption in humans. However, the available LIPUS devices are too large to be used comfortably inside the mouth. In this paper, the design and implementation of a low-power LIPUS generator is presented. The generator is the core of the final intraoral device for preventing tooth root loss and enhancing tooth root tissue healing. The generator consists of a power-supply subsystem, an ultrasonic transducer, an impedance-matching circuit, and an integrated circuit composed of a digital controller circuitry and the associated driver circuit. Most of our efforts focus on the design of the impedance-matching circuit and the integrated system-on-chip circuit. The chip was designed and fabricated using 0.8- ¿m high-voltage technology from Dalsa Semiconductor, Inc. The power supply subsystem and its impedance-matching network are implemented using discrete components. The LIPUS generator was tested and verified to function as designed and is capable of producing ultrasound power up to 100 mW in the vicinity of the transducer's resonance frequency at 1.5 MHz. The power efficiency of the circuitry, excluding the power supply subsystem, is estimated at 70%. The final products will be tailored to the exact size of teeth or biological tissue, which is needed to be used for stimulating dental tissue (dentine and cementum) healing.
Female pelvic synthetic CT generation based on joint intensity and shape analysis
NASA Astrophysics Data System (ADS)
Liu, Lianli; Jolly, Shruti; Cao, Yue; Vineberg, Karen; Fessler, Jeffrey A.; Balter, James M.
2017-04-01
Using MRI for radiotherapy treatment planning and image guidance is appealing as it provides superior soft tissue information over CT scans and avoids possible systematic errors introduced by aligning MR to CT images. This study presents a method that generates Synthetic CT (MRCT) volumes by performing probabilistic tissue classification of voxels from MRI data using a single imaging sequence (T1 Dixon). The intensity overlap between different tissues on MR images, a major challenge for voxel-based MRCT generation methods, is addressed by adding bone shape information to an intensity-based classification scheme. A simple pelvic bone shape model, built from principal component analysis of pelvis shape from 30 CT image volumes, is fitted to the MR volumes. The shape model generates a rough bone mask that excludes air and covers bone along with some surrounding soft tissues. Air regions are identified and masked out from the tissue classification process by intensity thresholding outside the bone mask. A regularization term is added to the fuzzy c-means classification scheme that constrains voxels outside the bone mask from being assigned memberships in the bone class. MRCT image volumes are generated by multiplying the probability of each voxel being represented in each class with assigned attenuation values of the corresponding class and summing the result across all classes. The MRCT images presented intensity distributions similar to CT images with a mean absolute error of 13.7 HU for muscle, 15.9 HU for fat, 49.1 HU for intra-pelvic soft tissues, 129.1 HU for marrow and 274.4 HU for bony tissues across 9 patients. Volumetric modulated arc therapy (VMAT) plans were optimized using MRCT-derived electron densities, and doses were recalculated using corresponding CT-derived density grids. Dose differences to planning target volumes were small with mean/standard deviation of 0.21/0.42 Gy for D0.5cc and 0.29/0.33 Gy for D99%. The results demonstrate the accuracy of the method and its potential in supporting MRI only radiotherapy treatment planning.
Designing natural and synthetic immune tissues
NASA Astrophysics Data System (ADS)
Gosselin, Emily A.; Eppler, Haleigh B.; Bromberg, Jonathan S.; Jewell, Christopher M.
2018-06-01
Vaccines and immunotherapies have provided enormous improvements for public health, but there are fundamental disconnects between where most studies are performed—in cell culture and animal models—and the ultimate application in humans. Engineering immune tissues and organs, such as bone marrow, thymus, lymph nodes and spleen, could be instrumental in overcoming these hurdles. Fundamentally, designed immune tissues could serve as in vitro tools to more accurately study human immune function and disease, while immune tissues engineered for implantation as next-generation vaccines or immunotherapies could enable direct, on-demand control over generation and regulation of immune function. In this Review, we discuss recent interdisciplinary strategies that are merging materials science and immunology to create engineered immune tissues in vitro and in vivo. We also highlight the hurdles facing these approaches and the need for comparison to existing clinical options, relevant animal models, and other emerging technologies.
Gustafsson, Johan O. R.; Oehler, Martin K.; Ruszkiewicz, Andrew; McColl, Shaun R.; Hoffmann, Peter
2011-01-01
MALDI imaging mass spectrometry (MALDI-IMS) allows acquisition of mass data for metabolites, lipids, peptides and proteins directly from tissue sections. IMS is typically performed either as a multiple spot profiling experiment to generate tissue specific mass profiles, or a high resolution imaging experiment where relative spatial abundance for potentially hundreds of analytes across virtually any tissue section can be measured. Crucially, imaging can be achieved without prior knowledge of tissue composition and without the use of antibodies. In effect MALDI-IMS allows generation of molecular data which complement and expand upon the information provided by histology including immuno-histochemistry, making its application valuable to both cancer biomarker research and diagnostics. The current state of MALDI-IMS, key biological applications to ovarian cancer research and practical considerations for analysis of peptides and proteins on ovarian tissue are presented in this review. PMID:21340013
Gustafsson, Johan O R; Oehler, Martin K; Ruszkiewicz, Andrew; McColl, Shaun R; Hoffmann, Peter
2011-01-21
MALDI imaging mass spectrometry (MALDI-IMS) allows acquisition of mass data for metabolites, lipids, peptides and proteins directly from tissue sections. IMS is typically performed either as a multiple spot profiling experiment to generate tissue specific mass profiles, or a high resolution imaging experiment where relative spatial abundance for potentially hundreds of analytes across virtually any tissue section can be measured. Crucially, imaging can be achieved without prior knowledge of tissue composition and without the use of antibodies. In effect MALDI-IMS allows generation of molecular data which complement and expand upon the information provided by histology including immuno-histochemistry, making its application valuable to both cancer biomarker research and diagnostics. The current state of MALDI-IMS, key biological applications to ovarian cancer research and practical considerations for analysis of peptides and proteins on ovarian tissue are presented in this review.
NASA Astrophysics Data System (ADS)
Fleischer, Sharon; Shevach, Michal; Feiner, Ron; Dvir, Tal
2014-07-01
Coiled perimysial fibers within the heart muscle provide it with the ability to contract and relax efficiently. Here, we report on a new nanocomposite scaffold for cardiac tissue engineering, integrating coiled electrospun fibers with gold nanoparticles. Cultivation of cardiac cells within the hybrid scaffolds promoted cell organization into elongated and aligned tissues generating a strong contraction force, high contraction rate and low excitation threshold.Coiled perimysial fibers within the heart muscle provide it with the ability to contract and relax efficiently. Here, we report on a new nanocomposite scaffold for cardiac tissue engineering, integrating coiled electrospun fibers with gold nanoparticles. Cultivation of cardiac cells within the hybrid scaffolds promoted cell organization into elongated and aligned tissues generating a strong contraction force, high contraction rate and low excitation threshold. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00300d
Kouroupis, Dimitrios; Kyrkou, Athena; Triantafyllidi, Eleni; Katsimpoulas, Michalis; Chalepakis, George; Goussia, Anna; Georgoulis, Anastasios; Murphy, Carol; Fotsis, Theodore
2016-09-01
In the present study, we combined stem cell technology with a non-absorbable biomaterial for the reconstruction of the ruptured ACL. Towards this purpose, multipotential stromal cells derived either from subcutaneous human adipose tissue (hAT-MSCs) or from induced pluripotent stem cells (iPSCs) generated from human foreskin fibroblasts (hiPSC-MSCs) were cultured on the biomaterial for 21days in vitro to generate a 3D bioartifical ACL graft. Stem cell differentiation towards bone and ligament at the ends and central part of the biomaterial was selectively induced using either BMP-2/FGF-2 or TGF-β/FGF-2 combinations, respectively. The bioartificial ACL graft was subsequently implanted in a swine ACL rupture model in place of the surgically removed normal ACL. Four months post-implantation, the tissue engineered ACL graft generated an ACL-like tissue exhibiting morphological and biochemical characteristics resembling those of normal ACL. Copyright © 2016 Helmholtz Zentrum München. Published by Elsevier B.V. All rights reserved.
Use of bioreactors in maxillofacial tissue engineering.
Depprich, Rita; Handschel, Jörg; Wiesmann, Hans-Peter; Jäsche-Meyer, Janine; Meyer, Ulrich
2008-07-01
Engineering of various oral tissues is a challenging issue in contemporary maxillofacial reconstructive research. In contrast to the classic biomaterial approach, tissue engineering is based on the understanding of cell driven tissue formation, and aims to generate new functional tissues, rather than just to implant non-living space holders. Researchers hope to reach this goal by combining knowledge from biology, physics, materials science, engineering, and medicine in an integrated manner. Several major technical advances have been made in this field during the last decade, and clinical application is at the stage of first clinical trials. A recent limitation of extracorporally engineered cellular substitutes is the problem of growing enlarged tissues ex vivo. One of the main research topics is therefore to scale up artificial tissue constructs for use in extended defect situations. To overcome the monolayer inherent two-dimensional cell assembly, efforts have been made to grow cells in a three-dimensional space. Bioreactors have therefore been in focus for a considerable time to build up enlarged tissues. The shift from the ex vivo approach of cell multiplication to the generation of a real tissue growth is mirrored by the development of bioreactors, enabling scientists to grow more complex tissue constructs. This present review intends to provide an overview of the current state of art in maxillofacial tissue engineering by the use of bioreactors, its limitations and hopes, as well as the future research trends.
In vitro differentiation of neural cells from human adipose tissue derived stromal cells.
Dave, Shruti D; Patel, Chetan N; Vanikar, Aruna V; Trivedi, Hargovind L
2018-01-01
Stem cells, including neural stem cells (NSCs), are endowed with self-renewal capability and hence hold great opportunity for the institution of replacement/protective therapy. We propose a method for in vitro generation of stromal cells from human adipose tissue and their differentiation into neural cells. Ten grams of donor adipose tissue was surgically resected from the abdominal wall of the human donor after the participants' informed consents. The resected adipose tissue was minced and incubated for 1 hour in the presence of an enzyme (collagenase-type I) at 37 0 C followed by its centrifugation. After centrifugation, the supernatant and pellets were separated and cultured in a medium for proliferation at 37 0 C with 5% CO2 for 9-10 days in separate tissue culture dishes for generation of mesenchymal stromal cells (MSC). At the end of the culture, MSC were harvested and analyzed. The harvested MSC were subjected for further culture for their differentiation into neural cells for 5-7 days using differentiation medium mainly comprising of neurobasal medium. At the end of the procedure, culture cells were isolated and studied for expression of transcriptional factor proteins: orthodenticle homolog-2 (OTX-2), beta-III-tubulin (β3-Tubulin), glial-fibrillary acid protein (GFAP) and synaptophysin-β2. In total, 50 neural cells-lines were generated. In vitro generated MSC differentiated neural cells' mean quantum was 5.4 ± 6.9 ml with the mean cell count being, 5.27 ± 2.65 × 10 3/ μl. All of them showed the presence of OTX-2, β3-Tubulin, GFAP, synaptophysin-β2. Neural cells can be differentiated in vitro from MSC safely and effectively. In vitro generated neural cells represent a potential therapy for recovery from spinal cord injuries and neurodegenerative disease.
Inflammation, Oxidative Stress, and Obesity
Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Ángel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A.
2011-01-01
Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease. PMID:21686173
Ai, Jing-Wen; Li, Yang; Cheng, Qi; Cui, Peng; Wu, Hong-Long; Xu, Bin; Zhang, Wen-Hong
2018-06-01
A 45-year-old man who complained of continuous fever and multiple hepatic masses was admitted to our hospital. Repeated MRI manifestations were similar while each radiological report suggested contradictory diagnosis pointing to infections or malignances respectively. Pathologic examination of the liver tissue showed no direct evidence of either infections or tumor. We performed next-generation sequencing on the liver tissue and peripheral blood to further investigate the possible etiology. High throughput sequencing was performed on the liver lesion tissues using BGISEQ-100 platform, and data was mapped to the Microbial Genome Databases after filtering low quality data and human reads. We identified a total of 299 sequencing reads of Mycobacterium tuberculosis (M. tuberculosis) complex sequences from the liver tissue, including 8, 229 of 4,424,435 of the M. tuberculosis nucleotide sequences, and Mycobacterium africanum, Mycobacterium bovis, and Mycobacterium canettii were also detected due to the 99.9% identical rate among these strains. No specific Mycobacterial tuberculosis nucleotide sequence was detected in the sample of peripheral blood. Patient's symptom quickly recovered after anti-tuberculosis treatment and repeated Ziehl-Neelsen staining of the liver tissue finally identified small numbers of positive bacillus. The diagnosis of this patient was difficult to establish before the next-generation sequencing because of contradictive radiological results and negative pathological findings. More sensitive diagnostic methods are urgently needed. This is the first case reporting hepatic tuberculosis confirmed by the next-generation sequencing, and marks the promising potential of the application of the next-generation sequencing in the diagnosis of hepatic lesions with unknown etiology. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Challenges in engineering osteochondral tissue grafts with hierarchical structures.
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Wang, Liping; Guo, Tian-Zhi; Wei, Tzuping; Li, Wen-wu; Shi, Xiaoyou; Clark, J David; Kingery, Wade S
2016-01-01
BACKGROUND Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that anti-resorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, post-fracture cutaneous cytokine up-regulation, and adaptive immune responses in this CRPS model. METHODS Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by uCT and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed and skin cytokine (TNF, IL-1, IL-6) and nerve growth factor (NGF) levels were determined by EIA. Skin and sciatic nerve immunoglobulin levels were determined by EIA. RESULTS Tibia fracture rats developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression, trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by uCT, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression and elevated immunocomplex deposition in skin and nerve. Alendronate (60 μg/kg/day s.c.) or zoledronate (3 mg/kg/day p.o.) treatment for 28 days, started at the time of fracture, completely inhibited the development of hindpaw allodynia and reduced hindpaw unweighting by 44 ± 13% and 58 ± 5%, respectively. Orally administered zoledronate (3 mg/kg/day for 21 days) treatment also completely reversed established allodynia and unweighting when started at 4-weeks post-fracture. Histomorphometric and uCT analysis demonstrated that both the 3 and 60 μg/kg/day alendronate treatments reversed trabecular bone loss (a 88 ± 25% and 188 ± 39% increase in the ipsilateral distal femur BV/TV, respectively) and blocked the increase in osteoclast numbers and erosion surface observed in bilateral distal femurs and in L5 vertebra of the fracture rats. Alendronate treatment inhibited fracture-induced increases in hindpaw inflammatory mediators, reducing post-fracture levels of TNF by 43 ± 9%, IL-1 by 60 ± 9%, IL-6 by 56 ± 14%, and NGF by 37 ± 14%, but had no effect on increased spinal cord Fos expression, or skin and sciatic nerve immunocomplex deposition. CONCLUSIONS Collectively, these results indicate that bisphosphonate therapy inhibits pain, osteoclast activation, trabecular bone loss, and cutaneous inflammation in the rat fracture model of CRPS, data supporting the hypothesis that bisphosphonate therapy can provide effective multimodal treatment for CRPS. PMID:27636578
Archived human tissues are an essential resource for translational research. Formalin-fixed, paraffin embedded (FFPE) tissues from cancer patients are used in a wide range of assays, including RT-PCR, SNP profiling, multiplex biomarkers, imaging biomarkers, targeted exome, whole exome, and whole genome sequencing. Remainder FFPE tissues generated during patient care are ‘retrospective'; use of these tissues under specific conditions does not require consent.
Novel CAD/CAM rapid prototyping of next-generation biomedical devices
NASA Astrophysics Data System (ADS)
Doraiswamy, Anand
An aging population with growing healthcare needs demands multifaceted tools for diagnosis and treatment of health conditions. In the near-future, drug-administration devices, implantable devices/sensors, enhanced prosthesis, artificial and unique functional tissue constructs will become increasingly significant. Conventional technologies for mass-produced implants do not adequately take individual patient anatomy into consideration. Development of novel CAD/CAM rapid prototyping techniques may significantly accelerate progress of these devices for next-generation patient-care. In this dissertation, several novel rapid prototyping techniques have been introduced for next-generation biomedical applications. Two-photon polymerization was developed to microfabricate scaffolds for tissue engineering, microneedles for drug-delivery and ossicular replacement prostheses. Various photoplymers were evaluated for feasibility, mechanical properties, cytotoxicity, and surface properties. Laser direct write using MDW was utilized for developing microstructures of bioceramics such as hydroxyapatite, and viable mammalian osteosarcoma cells. CAD/CAM laser micromachining (CLM) was developed to engineer biointerfaces as surface recognition regions for differential adherence of cells and growth into tissue-like networks. CLM was also developed for engineering multi-cellular vascular networks. Cytotoxic evaluations and growth studies demonstrated VEGF-induced proliferation of HAAE-1 human aortic endothelial cells with inhibition of HA-VSMC human aortic smooth muscle cells. Finally, piiezoelectric inkjet printing was developed for controlled administration of natural and synthetic adhesives to overcome several problems associated with conventional tissue bonding materials, and greatly improve wound-repair in next generation eye repair, fracture fixation, organ fixation, wound closure, tissue engineering, and drug delivery devices.
Controlled molecular self-assembly of complex three-dimensional structures in soft materials.
Huang, Changjin; Quinn, David; Suresh, Subra; Hsia, K Jimmy
2018-01-02
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. Copyright © 2017 the Author(s). Published by PNAS.
Campagnola, Paul J; Millard, Andrew C; Terasaki, Mark; Hoppe, Pamela E; Malone, Christian J; Mohler, William A
2002-01-01
We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)-nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices. PMID:11751336
In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.
Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia
2017-01-01
Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.
Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko
2015-10-01
It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.
The role of glucose-6-phosphate dehydrogenase in adipose tissue inflammation in obesity.
Park, Yoon Jeong; Choe, Sung Sik; Sohn, Jee Hyung; Kim, Jae Bum
2017-04-03
Obesity is closely associated with metabolic diseases including type 2 diabetes. One hallmark characteristics of obesity is chronic inflammation that is coordinately controlled by complex signaling networks in adipose tissues. Compelling evidence indicates that reactive oxygen species (ROS) and its related signaling pathways play crucial roles in the progression of chronic inflammation in obesity. The pentose phosphate pathway (PPP) is an anabolic pathway that utilizes the glucoses to generate molecular building blocks and reducing equivalents in the form of NADPH. In particular, NADPH acts as one of the key modulators in the control of ROS through providing an electron for both ROS generation and scavenging. Recently, we have reported that glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the PPP, is implicated in adipose tissue inflammation and systemic insulin resistance in obesity. Mechanistically, G6PD potentiates generation of ROS that augments pro-inflammatory responses in adipose tissue macrophages, leading to systemic insulin resistance. Here, we provide an overview of cell type- specific roles of G6PD in the regulation of ROS balance as well as additional details on the significance of G6PD that contributes to pro-oxidant NADPH generation in obesity-related chronic inflammation and insulin resistance.
Evaluation of inertial cavitation activity in tissue through measurement of oxidative stress.
Prieur, Fabrice; Pialoux, Vincent; Mestas, Jean-Louis; Mury, Pauline; Skinner, Sarah; Lafon, Cyril
2015-09-01
Ultrasound cavitation is an essential mechanism involved in the therapeutic local enhancement of drug delivery by ultrasound for cancer treatment. Inertial cavitation also triggers chemical reactions that generate free radicals and subsequent oxidative stress in the tissue. The aim of this study was to measure the oxidative stress induced by inertial cavitation in ex vivo tissue and to test the association between the exposure conditions and the oxidative stress. A confocal ultrasound setup was used to sonicate and create inertial cavitation in freshly excised adipose pig tissue. The ex vivo tissue samples were then processed to measure the quantity of malondialdehyde (MDA), an end-product of polyunsaturated free fatty acid oxidation. The creation of hydroxyterephthalic acid (HTA) from the reaction of terephthalic acid (TA) with free radicals in water was also quantified in vitro. Samples were sonicated for different durations using various amplitudes for the applied pressure. The results showed a minimum 2-fold increase in the amount of detected MDA in the sonicated tissue samples compared to baseline clearly suggesting the generation of free radicals by inertial cavitation. The method exhibited a moderate dependence of MDA generated upon the duration of exposure (R(2)=057,p<0.0001). The average increase in MDA concentration was approximately 2-fold, 5-fold, 6-fold, and 9-fold for exposure durations per unit of volume of 0.13, 0.17, 0.25, and 0.50s/mm(3), respectively. The results showed no statistically significant dependence on the amplitude of the pressure within the used range. Both pressure amplitude and exposure duration, however, influenced the HTA concentration (R(2)>0.95,p<0.0001). This biochemical method can be used on ex vivo tissue to detect the generation of free radicals induced by inertial cavitation. In large enough sample populations, the cavitation activity is linked to the exposure conditions of the sonication. Copyright © 2015 Elsevier B.V. All rights reserved.
Tremblay, Kimberly D; Zaret, Kenneth S
2005-04-01
The location and movement of mammalian gut tissue progenitors, prior to the expression of tissue-specific genes, has been unknown, but this knowledge is essential to identify transitions that lead to cell type specification. To address this, we used vital dyes to label exposed anterior endoderm cells of early somite stage mouse embryos, cultured the embryos into the tissue bud phase of development, and determined the tissue fate of the dye labeled cells. This approach was performed at three embryonic stages that are prior to, or coincident with, foregut tissue patterning (1-3 somites, 4-6 somites, and 7-10 somites). Short-term labeling experiments tracked the movement of tissue progenitor cells during foregut closure. Surprisingly, we found that two distinct types of endoderm-progenitor cells, lateral and medial, arising from three spatially separated embryonic domains, converge to generate the epithelial cells of the liver bud. Whereas the lateral endoderm-progenitors give rise to descendants that are constrained in tissue fate and position along the anterior-posterior axis of the gut, the medial gut endoderm-progenitors give rise to descendants that stream along the anterior-posterior axis at the ventral midline and contribute to multiple gut tissues. The fate map reveals extensive morphogenetic movement of progenitors prior to tissue specification, it permits a detailed analysis of endoderm tissue patterning, and it illustrates that diverse progenitor domains can give rise to individual tissue cell types.
Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan
2015-01-01
Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.
Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging.
Clemis, Elizabeth J; Smith, Derek S; Camenzind, Alexander G; Danell, Ryan M; Parker, Carol E; Borchers, Christoph H
2012-04-17
MALDI imaging allows the creation of a "molecular image" of a tissue slice. This image is reconstructed from the ion abundances in spectra obtained while rastering the laser over the tissue. These images can then be correlated with tissue histology to detect potential biomarkers of, for example, aberrant cell types. MALDI, however, is known to have problems with ion suppression, making it difficult to correlate measured ion abundance with concentration. It would be advantageous to have a method which could provide more accurate protein concentration measurements, particularly for screening applications or for precise comparisons between samples. In this paper, we report the development of a novel MALDI imaging method for the localization and accurate quantitation of proteins in tissues. This method involves optimization of in situ tryptic digestion, followed by reproducible and uniform deposition of an isotopically labeled standard peptide from a target protein onto the tissue, using an aerosol-generating device. Data is acquired by MALDI multiple reaction monitoring (MRM) mass spectrometry (MS), and accurate peptide quantitation is determined from the ratio of MRM transitions for the endogenous unlabeled proteolytic peptides to the corresponding transitions from the applied isotopically labeled standard peptides. In a parallel experiment, the quantity of the labeled peptide applied to the tissue was determined using a standard curve generated from MALDI time-of-flight (TOF) MS data. This external calibration curve was then used to determine the quantity of endogenous peptide in a given area. All standard curves generate by this method had coefficients of determination greater than 0.97. These proof-of-concept experiments using MALDI MRM-based imaging show the feasibility for the precise and accurate quantitation of tissue protein concentrations over 2 orders of magnitude, while maintaining the spatial localization information for the proteins.
Streamlined bioreactor-based production of human cartilage tissues.
Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D
2016-05-27
Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.
Franck, Julien; Arafah, Karim; Barnes, Alan; Wisztorski, Maxence; Salzet, Michel; Fournier, Isabelle
2009-10-01
Nowadays, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is a powerful technique to obtain the distribution of endogenous and exogenous molecules within tissue sections. It can, thus, be used to study the evolution of molecules across different physiological stages in order to find out markers or get knowledge on signaling pathways. In order to provide valuable information, we must carefully control the sample preparation to avoid any delocalization of molecules of interest inside the tissue during this step. Currently, two strategies can be used to deposit chemicals, such as the MALDI matrix, onto the tissue both involving generation of microdroplets that will be dropped off onto the surface. First strategy involves microspraying of solutions. Here, we have been interested in the development of a microspotting strategy, where nanodroplets of solvent are ejected by a piezoelectric device to generate microspots at the tissue level. Such systems allow one to precisely control sample preparation by creating an array of spots. In terms of matrix crystallization, a microspotting MALDI matrix is hardly compatible with the results by classical (pipetting) methods. We have thus synthesized and studied new solid ionic matrixes in order to obtain high analytical performance using such a deposition system. These developments have enabled optimization of the preparation time because of the high stability of the printing that is generated in these conditions. We have also studied microspotting for performing on-tissue digestion in order to go for identification of proteins or to work from formalin fixed and paraffin embedded (FFPE) tissue samples. We have shown that microspotting is an interesting approach for on tissue digestion. Peptides, proteins, and lipids were studied under this specific preparation strategy to improve imaging performances for this class of molecules.
NASA Astrophysics Data System (ADS)
Hamaguchi, Satoshi
2013-07-01
Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.
van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M
2012-10-01
The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.
Optoacoustic induced vibrations within the inner ear.
Zhang, K Y; Wenzel, G I; Balster, S; Lim, H H; Lubatschowski, H; Lenarz, T; Ertmer, W; Reuter, G
2009-12-07
An acoustic transient can be generated inside an absorbing tissue as a result of laser-tissue interaction after pulsed laser irradiation. Herein we report a novel application of this physical process, the optoacoustic wave generation in the inner ear and subsequently the induction of basilar membrane vibrations. These laser induced vibrations show a direct correlation to the laser energy and an indirect correlation to the distance from the irradiation focus. Through these characteristics they may be used, in a new generation of cochlear implants, to improve the frequency specific cochlear activation and consequently improve speech perception in hearing impaired patients with residual hearing.
Vinardell, T; Buckley, C T; Thorpe, S D; Kelly, D J
2011-10-01
The objective of this study was to determine the functional properties of cartilaginous tissues generated by porcine MSCs isolated from different tissue sources, and to compare these properties to those derived from chondrocytes (CCs). MSCs were isolated from bone marrow (BM) and infrapatellar fat pad (FP), while CCs were harvested from the articular surface of the femoro-patellar joint. Culture-expanded CCs and MSCs were encapsulated in agarose hydrogels and cultured in the presence of TGFβ3. Samples were analysed biomechanically, biochemically and histologically at days 0, 21 and 42. After 42 days in free swelling culture, mean GAG content was 1.50% w/w in CC-seeded constructs, compared to 0.95% w/w in FP- and 0.43% w/w in BM-seeded constructs. Total collagen accumulation was highest in FP constructs. DNA content increased with time for all the groups. The mechanical functionality of cartilaginous tissues engineered using CCs was superior to that generated from either source of MSCs. Differences were also observed in the spatial distribution of matrix components in tissues engineered using CCs and MSCs, which appears to have a strong influence on the apparent mechanical properties of the constructs. Therefore, while functional cartilaginous tissues can be engineered using MSCs isolated from different sources, the spatial composition of these tissues is unlike that generated using chondrocytes, suggesting that MSCs and chondrocytes respond differently to the regulatory factors present within developing cartilaginous constructs. Copyright © 2010 John Wiley & Sons, Ltd.
Pahnke, Aric; Conant, Genna; Huyer, Locke Davenport; Zhao, Yimu; Feric, Nicole; Radisic, Milica
2016-05-06
Wingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states. Such protocols in combination with induced pluripotent stem cell technology have yielded patient-derived cardiomyocytes that exhibit some of the hallmarks of cardiovascular disease and are therefore being used to model disease states. While FDA approval of new treatments typically requires animal experiments, the burgeoning field of tissue engineering could act as a replacement. This would necessitate the generation of reproducible three-dimensional cardiac tissues in a well-controlled environment, which exhibit native heart properties, such as cellular density, composition, extracellular matrix composition, and structure-function. Such tissues could also enable the further study of Wnt signaling. Furthermore, as Wnt signaling has been found to have a mechanistic role in cardiac pathophysiology, e.g. heart attack, hypertrophy, atherosclerosis, and aortic stenosis, its strategic manipulation could provide a means of generating reproducible and specific, physiological and pathological cardiac models. Copyright © 2015 Elsevier Inc. All rights reserved.
MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA
2010-01-01
This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue regeneration, and discussed new biomaterials that can be used to develop new regenerative technologies. PMID:17518671
Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane
2015-08-01
The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.
Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue.
Seto, Takeshi; Yamamoto, Hiroaki; Takayama, Kazuyoshi; Nakagawa, Atsuhiro; Tominaga, Teiji
2011-05-01
This paper reports characteristics of an actuator-driven pulsed water jet generator applied, in particular, to dissect soft tissues. Results of experiments, by making use of high speed recording of optical visualization and varying nozzle diameter, actuator time interval, and their effects on dissection performance are presented. Jet penetration characteristics are compared with continuous water jet and hence potential assessment of pulsed water jets to clinical applications is performed.
Tamai, Miho; Adachi, Eijiro
2013-01-01
The adult liver is wrapped in a connective tissue sheet called the liver capsule, which consists of collagen fibrils and fibroblasts. In this study, we set out to construct a liver organoid tissue that would be comparable to the endogenous liver, using a bioreactor. In vitro liver organoid tissue was generated by combining collagen fibrils, fibroblasts, and primary murine hepatocytes or Hep G2 on a mesh of poly-lactic acid fabric using a bioreactor. Then, the suitability of this liver organoid tissue for transplantation was tested by implanting the constructs into partially hepatectomized BALB/cA-nu/nu mice. As determined by using scanning and transmission electron microscopes, the liver organoid tissues were composed of densely packed collagen fibrils with fibroblasts and aggregates of oval or spherical hepatocytes. Angiogenesis was induced after the transplantation, and blood vessels connected the liver organoid tissue with the surrounding tissue. Thus, a novel approach was applied to generate transplantable liver organoid tissue within a condensed collagen fibril matrix. These results suggested that a dense collagen network populated with fibroblasts can hold a layer of concentrated hepatocytes, providing a three-dimensional microenvrionment suitable for the reestablishment of cell–cell and cell–extracellular matrix (ECM) interactions, and resulting in the maintenance of their liver-specific functions. This liver organoid tissue may be useful for the study of intrahepatic functions of various cells, cytokines, and ECMs, and may fulfill the fundamental requirements of a donor tissue. PMID:23815236
Patterson, Joseph T; Gilliland, Thomas; Maxfield, Mark W; Church, Spencer; Naito, Yuji; Shinoka, Toshiharu; Breuer, Christopher K
2012-05-01
Since the first tissue-engineered vascular graft (TEVG) was implanted in a child over a decade ago, growth in the field of vascular tissue engineering has been driven by clinical demand for improved vascular prostheses with performance and durability similar to an autologous blood vessel. Great strides were made in pediatric congenital heart surgery using the classical tissue engineering paradigm, and cell seeding of scaffolds in vitro remained the cornerstone of neotissue formation. Our second-generation bone marrow cell-seeded TEVG diverged from tissue engineering dogma with a design that induces the recipient to regenerate vascular tissue in situ. New insights suggest that neovessel development is guided by cell signals derived from both seeded cells and host inflammatory cells that infiltrate the graft. The identification of these signals and the regulatory interactions that influence cell migration, phenotype and extracellular matrix deposition during TEVG remodeling are yielding a next-generation TEVG engineered to guide neotissue regeneration without the use of seeded cells. These developments represent steady progress towards our goal of an off-the-shelf tissue-engineered vascular conduit for pediatric congenital heart surgery.
Dikina, Anna D; Strobel, Hannah A; Lai, Bradley P; Rolle, Marsha W; Alsberg, Eben
2015-06-01
There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.
Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo
2018-02-01
Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Appleton, P L; Quyn, A J; Swift, S; Näthke, I
2009-05-01
Visualizing overall tissue architecture in three dimensions is fundamental for validating and integrating biochemical, cell biological and visual data from less complex systems such as cultured cells. Here, we describe a method to generate high-resolution three-dimensional image data of intact mouse gut tissue. Regions of highest interest lie between 50 and 200 mum within this tissue. The quality and usefulness of three-dimensional image data of tissue with such depth is limited owing to problems associated with scattered light, photobleaching and spherical aberration. Furthermore, the highest-quality oil-immersion lenses are designed to work at a maximum distance of =10-15 mum into the sample, further compounding the ability to image at high-resolution deep within tissue. We show that manipulating the refractive index of the mounting media and decreasing sample opacity greatly improves image quality such that the limiting factor for a standard, inverted multi-photon microscope is determined by the working distance of the objective as opposed to detectable fluorescence. This method negates the need for mechanical sectioning of tissue and enables the routine generation of high-quality, quantitative image data that can significantly advance our understanding of tissue architecture and physiology.
Degradable Adhesives for Surgery and Tissue Engineering.
Bhagat, Vrushali; Becker, Matthew L
2017-10-09
This review highlights the research on degradable polymeric tissue adhesives for surgery and tissue engineering. Included are a comprehensive listing of specific uses, advantages, and disadvantages of different adhesive groups. A critical evaluation of challenges affecting the development of next generation materials is also discussed, and insights into the outlook of the field are explored.
Evidence-based alternatives for autogenous grafts around teeth: outcomes, attachment, and stability.
McGuire, Michael K
2014-06-01
Although the use of autogenous harvested tissues has proven to be the gold standard for soft tissue augmentation procedures involving root coverage or generation of keratinized tissue, harvest site morbidity and limited supply have prompted clinicians to seek graft alternatives. Using a hierarchy of evidence, the author reviews both clinical and patient-reported results for harvest graft substitutes and, considering his own research experience, reviews autogenous graft substitute outcomes, attachment, and stability over time. Overall, when the goal is keratinized-tissue generation, living cellular constructs and xenogeneic collagen matrices have provided acceptable clinical results, but with better esthetics and patient preference than autogenous free gingival grafts. For root coverage therapy, enamel matrix derivatives, platelet-derived growth factors, and xenogeneic collagen matrices have provided acceptable results with equivalent esthetics to autogenous connective tissue grafts, while also being preferred by patients. Longterm results for enamel matrix derivatives, platelet-derived growth factors, and xenogeneic collagen matrices indicate root coverage can be maintained over time. In the author's hands, xenogeneic collagen matrices have been the only harvest graft alternatives that can be used either covered or uncovered by soft tissue.
Palpation simulator with stable haptic feedback.
Kim, Sang-Youn; Ryu, Jee-Hwan; Lee, WooJeong
2015-01-01
The main difficulty in constructing palpation simulators is to compute and to generate stable and realistic haptic feedback without vibration. When a user haptically interacts with highly non-homogeneous soft tissues through a palpation simulator, a sudden change of stiffness in target tissues causes unstable interaction with the object. We propose a model consisting of a virtual adjustable damper and an energy measuring element. The energy measuring element gauges energy which is stored in a palpation simulator and the virtual adjustable damper dissipates the energy to achieve stable haptic interaction. To investigate the haptic behavior of the proposed method, impulse and continuous inputs are provided to target tissues. If a haptic interface point meets with the hardest portion in the target tissues modeled with a conventional method, we observe unstable motion and feedback force. However, when the target tissues are modeled with the proposed method, a palpation simulator provides stable interaction without vibration. The proposed method overcomes a problem in conventional haptic palpation simulators where unstable force or vibration can be generated if there is a big discrepancy in material property between an element and its neighboring elements in target tissues.
Mechanical control of tissue and organ development
Mammoto, Tadanori; Ingber, Donald E.
2010-01-01
Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces generated by living cells are as crucial as genes and chemical signals for the control of embryological development, morphogenesis and tissue patterning. PMID:20388652
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
Introduction A major hurdle in treating osteochondral (OC) defects are the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct-engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. Areas covered This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. Expert opinion A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens, and harnessing of inflammatory responses of the host will likely drive the further progress. PMID:26195329
Pellegata, Alessandro F; Asnaghi, M Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara
2013-01-01
Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at -80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.
Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.
Ramade, Alexandre; Legant, Wesley R; Picart, Catherine; Chen, Christopher S; Boudou, Thomas
2014-01-01
Engineered tissues can be used to understand fundamental features of biology, develop organotypic in vitro model systems, and as engineered tissue constructs for replacing damaged tissue in vivo. However, a key limitation is an inability to test the wide range of parameters that might impact the engineered tissue in a high-throughput manner and in an environment that mimics the three-dimensional (3D) native architecture. We developed a microfabricated platform to generate arrays of microtissues embedded within 3D micropatterned matrices. Microcantilevers simultaneously constrain microtissue formation and report forces generated by the microtissues in real time, opening the possibility to use high-throughput, low-volume screening for studies on engineered tissues. Thanks to the micrometer scale of the microtissues, this platform is also suitable for high-throughput monitoring of drug-induced effect on architecture and contractility in engineered tissues. Moreover, independent variations of the mechanical stiffness of the cantilevers and collagen matrix allow the measurement and manipulation of the mechanics of the microtissues. Thus, our approach will likely provide valuable opportunities to elucidate how biomechanical, electrical, biochemical, and genetic/epigenetic cues modulate the formation and maturation of 3D engineered tissues. In this chapter, we describe the microfabrication, preparation, and experimental use of such microfabricated tissue gauges. Copyright © 2014 Elsevier Inc. All rights reserved.
De novo generation of HSCs from somatic and pluripotent stem cell sources
Vo, Linda T.
2015-01-01
Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy. PMID:25762177
NASA Astrophysics Data System (ADS)
Ikeda, Hayato; Nagaoka, Ryo; Lafond, Maxime; Yoshizawa, Shin; Iwasaki, Ryosuke; Maeda, Moe; Umemura, Shin-ichiro; Saijo, Yoshifumi
2018-07-01
High-intensity focused ultrasound is a noninvasive treatment applied by externally irradiating ultrasound to the body to coagulate the target tissue thermally. Recently, it has been proposed as a noninvasive treatment for vascular occlusion to replace conventional invasive treatments. Cavitation bubbles generated by the focused ultrasound can accelerate the effect of thermal coagulation. However, the tissues surrounding the target may be damaged by cavitation bubbles generated outside the treatment area. Conventional methods based on Doppler analysis only in the time domain are not suitable for monitoring blood flow in the presence of cavitation. In this study, we proposed a novel filtering method based on the differences in spatiotemporal characteristics, to separate tissue, blood flow, and cavitation by employing singular value decomposition. Signals from cavitation and blood flow were extracted automatically using spatial and temporal covariance matrices.
NASA Astrophysics Data System (ADS)
Suzuki, Kai; Iwasaki, Ryosuke; Takagi, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro
2017-07-01
Acoustic cavitation bubbles are useful for enhancing the heating effect in high-intensity focused ultrasound (HIFU) treatment. Many studies were conducted to investigate the behavior of such bubbles in tissue-mimicking materials, such as a transparent gel phantom; however, the detailed behavior in tissue was still unclear owing to the difficulty in optical observation. In this study, a new biological phantom was developed to observe cavitation bubbles generated in an optically shallow area of tissue. Two imaging methods, high-speed photography using light scattering and high-speed ultrasonic imaging, were used for detecting the behavior of the bubbles simultaneously. The results agreed well with each other for the area of bubble formation and the temporal change in the region of bubbles, suggesting that both methods are useful for visualizing the bubbles.
NASA Astrophysics Data System (ADS)
Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay
2017-03-01
Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (<100 um). However, the previous demonstration used cells and tissues cultured on glass substrates. The glass substrates were found to be critical to cavitation, because ultrasound amplitude doubles due to the reflection from the substrate, thus allowing for reaching pressure amplitude to cavitation threshold. In other words, without the sound reflecting substrate, pressure amplitude may not be strong enough to create cavitation, thus limiting its application to only cultured biomaterials on the rigid substrates. By using laser-generated focused ultrasound without relying on sound-reflecting substrates, we demonstrate free-field cavitation in water and its application to high-precision cutting of tissue-mimicking gels. In the absence of a rigid boundary, strong pressure for cavitation was enabled by recently optimized photoacoustic lens with increased focal gain (>30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).
TAMEE: data management and analysis for tissue microarrays.
Thallinger, Gerhard G; Baumgartner, Kerstin; Pirklbauer, Martin; Uray, Martina; Pauritsch, Elke; Mehes, Gabor; Buck, Charles R; Zatloukal, Kurt; Trajanoski, Zlatko
2007-03-07
With the introduction of tissue microarrays (TMAs) researchers can investigate gene and protein expression in tissues on a high-throughput scale. TMAs generate a wealth of data calling for extended, high level data management. Enhanced data analysis and systematic data management are required for traceability and reproducibility of experiments and provision of results in a timely and reliable fashion. Robust and scalable applications have to be utilized, which allow secure data access, manipulation and evaluation for researchers from different laboratories. TAMEE (Tissue Array Management and Evaluation Environment) is a web-based database application for the management and analysis of data resulting from the production and application of TMAs. It facilitates storage of production and experimental parameters, of images generated throughout the TMA workflow, and of results from core evaluation. Database content consistency is achieved using structured classifications of parameters. This allows the extraction of high quality results for subsequent biologically-relevant data analyses. Tissue cores in the images of stained tissue sections are automatically located and extracted and can be evaluated using a set of predefined analysis algorithms. Additional evaluation algorithms can be easily integrated into the application via a plug-in interface. Downstream analysis of results is facilitated via a flexible query generator. We have developed an integrated system tailored to the specific needs of research projects using high density TMAs. It covers the complete workflow of TMA production, experimental use and subsequent analysis. The system is freely available for academic and non-profit institutions from http://genome.tugraz.at/Software/TAMEE.
Raff, Elizabeth C; Andrews, Mary E; Turner, F Rudolf; Toh, Evelyn; Nelson, David E; Raff, Rudolf A
2013-01-01
Fossils of soft tissues provide important records of early animals and embryos, and there is substantial evidence for a role for microbes in soft tissue fossilization. We are investigating the initial events in interactions of bacteria with freshly dead tissue, using marine embryos as a model system. We previously found that microbial invasion can stabilize embryo tissue that would otherwise disintegrate in hours or days by generating a bacterial pseudomorph, a three dimensional biofilm that both replaces the tissue and replicates its morphology. In this study, we sampled seawater at different times and places near Sydney, Australia, and determined the range and frequency of different taphonomic outcomes. Although destruction was most common, bacteria in 35% of seawater samples yielded morphology‐preserving biofilms. We could replicate the taphonomic pathways seen with seawater bacterial communities using single cultured strains of marine gammaproteobacteria. Each given species reproducibly generated a consistent taphonomic outcome and we identified species that yielded each of the distinct pathways produced by seawater bacterial communities. Once formed,bacterial pseudomorphs are stable for over a year and resist attack by other bacteria and destruction by proteases and other lytic enzymes. Competition studies showed that the initial action of a pseudomorphing strain can be blocked by a strain that destroys tissues. Thus embryo preservation in nature may depend on contingent interactions among bacterial species that determine if pseudomorphing occurs.We used Artemia nauplius larvae to show that bacterial biofilm replacement of tissue is not restricted to embryos, but is relevant for preservation of small multicellular organisms. We present a model for bacterial self‐assembly of large‐scale three‐dimensional tissue pseudomorphs, based on smallscaleinteractions among individual bacterial cells to form local biofilms at structural boundaries within the tissue. Localbiofilms then conjoin to generate the pseudomorph.
Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir
2014-08-15
The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less
Polarization-resolved SHG microscopy in cardiac hypertrophy study (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Zhonghai; Yuan, Cai; Shao, Yonghong; Bradshaw, Amy D.; Borg, Thomas K.; Gao, Bruce Z.
2017-02-01
Cardiac hypertrophy, a process initiated by mechanical alterations, is hypothesized to cause long-term molecular-level alteration in the sarcomere lattice, which is the main force-generating component in the heart muscle. This molecular-level alteration is beyond the resolving capacity of common light microscopy. Second harmonic generation (SHG) microscopy has unique capability for visualizing ordered molecular structures in biological tissues without labeling. Combined with polarization imaging technique, SHG microscopy is able to extract structural details of myosin at the molecular level so as to reveal molecular-level alterations that occur during hypertrophy. The myosin filaments are believed to possess C6 symmetry; thus, the nonlinear polarization response relationship between generated second harmonic light I^2ωand incident fundamental light I^ω is determined by nonlinear coefficients, χ_15, χ_31 and χ_33. χ_31/χ_15 is believed to be an indicator of the molecular symmetry of myosin filament, whileχ_33/χ_15represents the intramyosin orientation angle of the double helix. By changing the polarization of the incident light and evaluating the corresponding SHG signals, the molecular structure of the myosin, reflected by the χ coefficients, can be revealed. With this method, we studied the structural properties of heart tissues in different conditions, including those in normal, physiologically hypertrophic (heart tissue from postpartum female rats), and pathologically hypertrophic (heart tissue from transverse-aorta constricted rats) conditions. We found that ratios of χ_31/χ_15 showed no significant difference between heart tissues from different conditions; their values were all close to 1, which demonstrated that Kleinman symmetry held for all conditions. Ratios of χ_33/χ_15 from physiologically or pathologically hypertrophic heart tissues were raised and showed significant difference from those from normal heart tissues, which indicated that the intramyosin orientation angle of the double helix was altered when heart tissues hypertrophied. Polarization-resolved SHG microscopy permitted us to study heart tissues at the molecular level and may serve as a diagnostic tool for cardiac hypertrophy.
A NEW METHOD FOR THE GENERATION AND USE OF FOCUSED ULTRASOUND IN EXPERIMENTAL BIOLOGY
Lynn, John G.; Zwemer, Raymund L.; Chick, Arthur J.; Miller, August E.
1942-01-01
1. An efficient generator of focused ultrasound has been designed, built, and successfully operated. 2. The generator has been used to produce focal heating in the centers of paraffin blocks, and in a similar manner, focal areas of destruction were obtained deep in fresh liver tissue with minimal effects at the surface and no effects on the intervening tissue. 3. In animals, focused ultrasound of high intensity produced local cerebral changes as inferred from behavior disabilities and as demonstrated at autopsy. This local brain effect was achieved through intervening scalp, skull, and meninges. The resulting behavior disabilities disappeared in from 2 to 16 hours. 4. To date, it has not been possible to produce such brain changes without incidental injury to the skin and subcutaneous tissue lying at the base of the cone of radiation. 5. Improvements in generation and application of the focused supersonic beam are suggested whereby it should be possible to increase still further the focal effects in the brain, with a corresponding decrease or elimination of complicating surface injury. PMID:19873337
Raman Monte Carlo simulation for light propagation for tissue with embedded objects
NASA Astrophysics Data System (ADS)
Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit
2018-02-01
Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.
Morrison, Wayne A; Marre, Diego; Grinsell, Damien; Batty, Andrew; Trost, Nicholas; O'Connor, Andrea J
2016-04-01
Tissue engineering is currently exploring new and exciting avenues for the repair of soft tissue and organ defects. Adipose tissue engineering using the tissue engineering chamber (TEC) model has yielded promising results in animals; however, to date, there have been no reports on the use of this device in humans. Five female post mastectomy patients ranging from 35 to 49years old were recruited and a pedicled thoracodorsal artery perforator fat flap ranging from 6 to 50ml was harvested, transposed onto the chest wall and covered by an acrylic perforated dome-shaped chamber ranging from 140 to 350cm(3). Magnetic resonance evaluation was performed at three and six months after chamber implantation. Chambers were removed at six months and samples were obtained for histological analysis. In one patient, newly formed tissue to a volume of 210ml was generated inside the chamber. One patient was unable to complete the trial and the other three failed to develop significant enlargement of the original fat flap, which, at the time of chamber explantation, was encased in a thick fibrous capsule. Our study provides evidence that generation of large well-vascularized tissue engineered constructs using the TEC is feasible in humans. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Liu, Y; Nie, L
2015-06-15
Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30more » ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.« less
Zhong, Weijie; Xu, Xin; Zhu, Zhigang; Du, Qinghua; Du, Hong; Yang, Li; Ling, Yanying; Xiong, Huabao; Li, Qingshan
2017-07-25
The immunological pathogenesis of diffuse large B cell lymphoma (DLBCL) remains elusive. Searching for new prognostic markers of DLBCL is a crucial focal point for clinical scientists. The aim of the present study was to examine the prognostic value of interferon regulatory factor 8 (IRF8) expression and its effect on the development of Th17 cells in the tumor microenvironment of DLBCL patients. Flow cytometry, immunohistochemistry, and quantitative real-time PCR were used to detect the distribution of Th17 cells and related cytokines and IRF8 in tumor tissues from DLBCL patients. Two DLBCL cell lines (OCI-LY10 and OCI-LY1) with IRF8 knockdown or overexpression and two human B lymphoblast cell lines were co-cultured with peripheral blood mononuclear cells (PBMCs) in vitro to determine the effect of IRF8 on the generation of Th17 cells. Quantitative real-time PCR and Western blotting were used to investigate the involvement of retinoic acid receptor-related orphan receptor gamma t (RORγt) in the effect of IRF8 on Th17 cell generation. The survival of 67 DLBCL patients was estimated using the Kaplan-Meier method and log-rank analysis. The percentage of Th17 cells was lower in DLBCL tumor tissues than in PBMCs and corresponding adjacent benign tissues. Relative expression of interleukin (IL)-17A was lower, whereas that of interferon (IFN)-γ was higher in tumor tissues than in benign tissues. Co-culture with DLBCL cell lines inhibited the generation of Th17 cells in vitro. IRF8 upregulation was detected in DLBCL tumor tissues, and it was associated with decreased DLBCL patient survival. Investigation of the underlying mechanism suggested that IRF8 upregulation in DLBCL, through an unknown mechanism, inhibited Th17 cell generation by suppressing RORγt in neighboring CD4+ T cells. Tumor cells may express soluble or membrane-bound factors that inhibit the expression of RORγt in T cells within the tumor microenvironment. Our findings suggest that IRF8 expression could be a prognostic factor for DLBCL.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei
2014-09-01
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.
Hahn, Soojung; Yoo, Jongman
2017-08-17
An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian; Zheng, Wei; Wang, Zi
2014-09-08
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Einaga, Naoki; Yoshida, Akio; Noda, Hiroko; Suemitsu, Masaaki; Nakayama, Yuki; Sakurada, Akihisa; Kawaji, Yoshiko; Yamaguchi, Hiromi; Sasaki, Yasushi; Tokino, Takashi; Esumi, Mariko
2017-01-01
Formalin-fixed, paraffin-embedded (FFPE) tissues used for pathological diagnosis are valuable for studying cancer genomics. In particular, laser-capture microdissection of target cells determined by histopathology combined with FFPE tissue section immunohistochemistry (IHC) enables precise analysis by next-generation sequencing (NGS) of the genetic events occurring in cancer. The result is a new strategy for a pathological tool for cancer diagnosis: ‘microgenomics’. To more conveniently and precisely perform microgenomics, we revealed by systematic analysis the following three details regarding FFPE DNA compared with paired frozen tissue DNA. 1) The best quality of FFPE DNA is obtained by tissue fixation with 10% neutral buffered formalin for 1 day and heat treatment of tissue lysates at 95°C for 30 minutes. 2) IHC staining of FFPE tissues decreases the quantity and quality of FFPE DNA to one-fourth, and antigen retrieval (at 120°C for 15 minutes, pH 6.0) is the major reason for this decrease. 3) FFPE DNA prepared as described herein is sufficient for NGS. For non-mutated tissue specimens, no artifactual mutation occurs during FFPE preparation, as shown by precise comparison of NGS of FFPE DNA and paired frozen tissue DNA followed by validation. These results demonstrate that even FFPE tissues used for routine clinical diagnosis can be utilized to obtain reliable NGS data if appropriate conditions of fixation and validation are applied. PMID:28498833
Generation of a Three-Dimensional Kidney Structure from Pluripotent Stem Cells.
Yoshimura, Yasuhiro; Taguchi, Atsuhiro; Nishinakamura, Ryuichi
2017-01-01
The kidney is a vital organ that has an important role in the maintenance of homeostasis by fluid volume regulation and waste product excretion. This role cannot be performed without the three-dimensional (3D) structure of the kidney. Therefore, it is important to generate the 3D structure of the kidney when inducing functional kidney tissue or the whole organ from pluripotent stem cells. In this chapter, we describe the detailed methods to induce kidney progenitor cells from pluripotent stem cells, which are based on embryological development. We also provide a method to generate 3D kidney tissue with vascularized glomeruli upon transplantation.
Tissue Engineering of the Corneal Endothelium: A Review of Carrier Materials
Teichmann, Juliane; Valtink, Monika; Nitschke, Mirko; Gramm, Stefan; Funk, Richard H.W.; Engelmann, Katrin; Werner, Carsten
2013-01-01
Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings. PMID:24956190
From static to animated: Measuring mechanical forces in tissues
2017-01-01
Cells are physical objects that exert mechanical forces on their surroundings as they migrate and take their places within tissues. New techniques are now poised to enable the measurement of cell-generated mechanical forces in intact tissues in vivo, which will illuminate the secret dynamic lives of cells and change our current perception of cell biology. PMID:28003332
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.
Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A
2017-09-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces
Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.
2017-01-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332
Saruwatari, Lei; Aita, Hideki; Butz, Frank; Nakamura, Hiromi K; Ouyang, Jianyong; Yang, Yang; Chiou, Wen-An; Ogawa, Takahiro
2005-11-01
This study revealed that osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on the tissue culture polystyrene, associated with modulated gene expression, uniform mineralization, well-crystallized interfacial calcium-phosphate layer, and intensive collagen deposition. Knowledge of this titanium-induced alteration of osteogenic potential leading to enhanced intrinsic biomechanical properties of mineralized tissue provides novel opportunities and implications for understanding and improving bone-titanium integration and engineering physiomechanically tolerant bone. Bone-titanium integration is a biological phenomenon characterized by continuous generation and preservation of peri-implant bone and serves as endosseous anchors against endogenous and exogenous loading, of which mechanisms are poorly understood. This study determines the intrinsic biomechanical properties and interfacial strength of cultured mineralized tissue on titanium and characterizes the tissue structure as possible contributing factors in biomechanical modulation. Rat bone marrow-derived osteoblastic cells were cultured either on a tissue culture-grade polystyrene dish or titanium-coated polystyrene dish having comparable surface topography. Nano-indentation and nano-scratch tests were undertaken on mineralized tissues cultured for 28 days to evaluate its hardness, elastic modulus, and critical load (force required to delaminate tissue). Gene expression was analyzed using RT-PCR. The tissue structural properties were examined by scanning electron microscopy (SEM), collagen colorimetry and localization with Sirius red stain, mineral quantification, and localization with von Kossa stain and transmission electron microscopy (TEM). Hardness and elastic modulus of mineralized tissue on titanium were three and two times greater, respectively, than those on the polystyrene. Three times greater force was required to delaminate the tissue on titanium than that on the polystyrene. SEM of the polystyrene culture displayed a porous structure consisting of fibrous and globular components, whereas the titanium tissue culture appeared to be uniformly solid. Cell proliferation was remarkably reduced on titanium. Microscopic observations revealed that the mineralized tissue on titanium was composed of uniform collagen-supported mineralization from the titanium interface to the outer surface, with intensive collagen deposition at tissue-titanium interface. In contrast, tissue on the polystyrene was characterized by collagen-deficient mineralization at the polystyrene interface and calcium-free collagenous matrix formation in the outer tissue area. Such characteristic microstructure of titanium-associated tissue was corresponded with upregulated gene expression of collagen I and III, osteopontin, and osteocalcin mRNA. Cross-sectional TEM revealed the apposition of a high-contrast and well-crystallized calcium phosphate layer at the titanium interface but not at the polystyrene interface. Culturing osteoblasts on titanium, compared with polystyrene, enhances the hardness, elastic modulus, and interfacial strength of mineralized tissue to a higher degree. Titanium per se possesses an ability to alter cellular phenotypes and tissue micro- and ultrastructure that result in enhanced intrinsic biomechanical properties of mineralized tissue.
Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.
Kant, Rajeev J; Coulombe, Kareen L K
2018-03-15
The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shahzadeh, Sara; Gholami, Somayeh; Aghamiri, Seyed Mahmood Reza; Mahani, Hojjat; Nabavi, Mansoure; Kalantari, Faraz
2018-06-01
The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Hongki; Fessler, Jeffrey A.; Wilderman, Scott J.; Brooks, Allen F.; Dewaraja, Yuni K.
2018-06-01
While the yield of positrons used in Y-90 PET is independent of tissue media, Y-90 SPECT imaging is complicated by the tissue dependence of bremsstrahlung photon generation. The probability of bremsstrahlung production is proportional to the square of the atomic number of the medium. Hence, the same amount of activity in different tissue regions of the body will produce different numbers of bremsstrahlung photons. Existing reconstruction methods disregard this tissue-dependency, potentially impacting both qualitative and quantitative imaging of heterogeneous regions of the body such as bone with marrow cavities. In this proof-of-concept study, we propose a new maximum-likelihood method that incorporates bremsstrahlung generation probabilities into the system matrix, enabling images of the desired Y-90 distribution to be reconstructed instead of the ‘bremsstrahlung distribution’ that is obtained with existing methods. The tissue-dependent probabilities are generated by Monte Carlo simulation while bone volume fractions for each SPECT voxel are obtained from co-registered CT. First, we demonstrate the tissue dependency in a SPECT/CT imaging experiment with Y-90 in bone equivalent solution and water. Visually, the proposed reconstruction approach better matched the true image and the Y-90 PET image than the standard bremsstrahlung reconstruction approach. An XCAT phantom simulation including bone and marrow regions also demonstrated better agreement with the true image using the proposed reconstruction method. Quantitatively, compared with the standard reconstruction, the new method improved estimation of the liquid bone:water activity concentration ratio by 40% in the SPECT measurement and the cortical bone:marrow activity concentration ratio by 58% in the XCAT simulation.
The self-assembling process and applications in tissue engineering
Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.
2018-01-01
Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174
Laser optoacoustic tomography for medical diagnostics: principles
NASA Astrophysics Data System (ADS)
Oraevsky, Alexander A.; Esenaliev, Rinat O.; Jacques, Steven L.; Tittel, Frank K.
1996-04-01
This paper is to describe principles of laser optoacoustic tomography for medical diagnostics. Two types of imaging modes are presented. The first is the tomography in transmission mode, which utilizes detection of stress transients transmitted from the laser-excited volume toward the depth through thick layers of tissue. The second is the tomography in reflection mode which utilizes detection of stress transients generated in superficial tissue layer and reflected back toward tissue surface. To distinguish the two modes, we have abbreviated them as (1) laser optoacoustic tomography in transmission mode, LOATT, and (2) time-resolved stress detection tomography of light absorption, TRSDTLA, in reflection mode where emphasis is made on high spatial resolution of images. The basis for laser optoacoustic tomography is the time-resolved detection of laser-induced transient stress waves, selectively generated in absorbing tissues of diagnostic interest. Such a technique allows one to visualize absorbed light distribution in turbid biological tissues irradiated by short laser pulses. Laser optoacoustic tomography can be used for detection of tissue pathological changes that result in either increased concentration of various tissue chromophores such as hemoglobin or in development of enhanced microcirculation in diseased tissue. Potential areas of applications are diagnosis of cancer, brain hemorrhages, arterial atherosclerotic plaques, and other diseased tissues. In addition, it can provide feedback information during medical treatments. Both LOATT and TRSDTLA utilize laser excitation of biological tissues and sensitive detection of laser-induced stress waves. Optical selectivity is based upon differences in optical properties of pathologically different tissues. Sensitivity comes from stress generation under irradiation conditions of temporal stress confinement. The use of sensitive wide-band lithium niobate acoustic transducers expands limits of laser optoacoustic tomography. The technology allows us to determine directly temperature distributions in tissues and locate tissues volumes with different absorption. To demonstrate principles of TRSDTLA, experiments were conducted in vivo with mice-model for breast cancer using specially designed front-surface transducers- reflectometers. To present advantages and limitation of LOATT, experiments were performed in phantoms made of gel with polystyrene spheres colored with copper sulfate. Our experimental results and theoretical calculations show that TRSDTLA can be applied for non- invasive histology of layered tissues with in-depth resolution of up to 2 microns. TRSDTLA in acoustic reflection mode is promising for diagnostics of skin and ocular diseases. LOATT in acoustic transmission mode can be applied for detection of small tissue volumes with enhanced absorption located inside organs at the depth of up to 10 cm.
Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul
2017-05-01
Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate extracellular matrix (ECM) generation and degradation processes, revealing important mechanisms underlying ECM turnover during vascular tissue regeneration/remodelling. A specific growth factor (IGF-1), as well as hydrolytic proteases (e.g. MMP2, MMP9, MMP13 and MMP14), were identified as playing important roles in these processes. ECM accumulation was found to be dependent on achieving a desired release profile of these ECM-promoting and ECM-degrading factors within the multi-cellular microenvironment. The findings enhance our understanding of ECM deposition and degradation during in vitro tissue engineering and would be applicable to the repair or regeneration of a variety of tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Design strategies and applications of tissue bioadhesives.
Mehdizadeh, Mohammadreza; Yang, Jian
2013-03-01
In the past two decades tissue adhesives and sealants have revolutionized bleeding control and wound healing. This paper focuses on existing tissue adhesive design, their structure, functioning mechanism, and their pros and cons in wound management. It also includes the latest advances in the development of new tissue adhesives as well as the emerging applications in regenerative medicine. We expect that this paper will provide insightful discussion on tissue bioadhesive design and lead to innovations for the development of the next generation of tissue bioadhesives and their related biomedical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Current state of cartilage tissue engineering
Tuli, Richard; Li, Wan-Ju; Tuan, Rocky S
2003-01-01
Damage to cartilage is of great clinical consequence given the tissue's limited intrinsic potential for healing. Current treatments for cartilage repair are less than satisfactory, and rarely restore full function or return the tissue to its native normal state. The rapidly emerging field of tissue engineering holds great promise for the generation of functional cartilage tissue substitutes. The general approach involves a biocompatible, structurally and mechanically sound scaffold, with an appropriate cell source, which is loaded with bioactive molecules that promote cellular differentiation and/or maturation. This review highlights aspects of current progress in cartilage tissue engineering. PMID:12932283
Negating Tissue Contracture Improves Volume Maintenance and Longevity of In Vivo Engineered Tissues.
Lytle, Ian F; Kozlow, Jeffrey H; Zhang, Wen X; Buffington, Deborah A; Humes, H David; Brown, David L
2015-10-01
Engineering large, complex tissues in vivo requires robust vascularization to optimize survival, growth, and function. Previously, the authors used a "chamber" model that promotes intense angiogenesis in vivo as a platform for functional three-dimensional muscle and renal engineering. A silicone membrane used to define the structure and to contain the constructs is successful in the short term. However, over time, generated tissues contract and decrease in size in a manner similar to capsular contracture seen around many commonly used surgical implants. The authors hypothesized that modification of the chamber structure or internal surface would promote tissue adherence and maintain construct volume. Three chamber configurations were tested against volume maintenance. Previously studied, smooth silicone surfaces were compared to chambers modified for improved tissue adherence, with multiple transmembrane perforations or lined with a commercially available textured surface. Tissues were allowed to mature long term in a rat model, before analysis. On explantation, average tissue masses were 49, 102, and 122 mg; average volumes were 74, 158 and 176 μl; and average cross-sectional areas were 1.6, 6.7, and 8.7 mm for the smooth, perforated, and textured groups, respectively. Both perforated and textured designs demonstrated significantly greater measures than the smooth-surfaced constructs in all respects. By modifying the design of chambers supporting vascularized, three-dimensional, in vivo tissue engineering constructs, generated tissue mass, volume, and area can be maintained over a long time course. Successful progress in the scale-up of construct size should follow, leading to improved potential for development of increasingly complex engineered tissues.
[Oral mucosa analog allografts in non-consanguineous rats].
González, Luis; Padrón, Karla; Salmen, Siham; Jerez, Elsy; Dávila, Lorena; Solórzano, Eduvigis
2017-01-24
Although there are therapeutic options for the treatment of oral mucosa defects, the need for functional, anatomical and aesthetically similar substitutes persists, as well as for solutions to reduce autologous grafts morbidity. To determine clinical and histological compatibility of equivalent oral mucosa allografts generated through tissue engineering in non-consanguineous rats. We used a sample of oral mucosa from Sprague Dawley rats to obtain a fibroblast culture and a keratinocytes and fibroblasts co-culture. In both cases, we used a commercial collagen membrane as "scaffold". After ten weeks of culture, we grafted the resulting membranes into four Wistar rats. The first phase of the study was the development of the oral mucosa equivalents generated by tissue engineering. Then, we implanted them in immunocompetent Wistar rats, and finallywe evaluated the clinical and histological features of the allografts. In vivo evaluation of mucosal substitutes showed a correct integration of artificial oral mucosa in immunocompetent hosts, with an increase in periodontal biotype and the creation of a zone with increased keratinization. Histologically, the tissue was similar to the control oral mucosa sample with no inflammatory reaction nor clinical or histological rejection signs. The equivalent oral mucosa allografts generated by tissue engineering showed clinical and histological compatibility.
ImageParser: a tool for finite element generation from three-dimensional medical images
Yin, HM; Sun, LZ; Wang, G; Yamada, T; Wang, J; Vannier, MW
2004-01-01
Background The finite element method (FEM) is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures) of interest (ROIs) may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information. PMID:15461787
On the temperature control in self-controlling hyperthermia therapy
NASA Astrophysics Data System (ADS)
Ebrahimi, Mahyar
2016-10-01
In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination.
NASA Astrophysics Data System (ADS)
Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.
2015-09-01
The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.
Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo.
Geelhoed, Wouter J; Moroni, Lorenzo; Rotmans, Joris I
2017-04-01
It is well known that the number of patients requiring a vascular grafts for use as vessel replacement in cardiovascular diseases, or as vascular access site for hemodialysis is ever increasing. The development of tissue engineered blood vessels (TEBV's) is a promising method to meet this increasing demand vascular grafts, without having to rely on poorly performing synthetic options such as polytetrafluoroethylene (PTFE) or Dacron. The generation of in vivo TEBV's involves utilizing the host reaction to an implanted biomaterial for the generation of completely autologous tissues. Essentially this approach to the development of TEBV's makes use of the foreign body response to biomaterials for the construction of the entire vascular replacement tissue within the patient's own body. In this review we will discuss the method of developing in vivo TEBV's, and debate the approaches of several research groups that have implemented this method.
Mathematical modeling of the malignancy of cancer using graph evolution.
Gunduz-Demir, Cigdem
2007-10-01
We report a novel computational method based on graph evolution process to model the malignancy of brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evolution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade cancerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract connectivity information including the properties of its connected components in order to analyze the phase of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase properties, which distinguish a tissue type from another.
Caie, Peter D; Harrison, David J
2016-01-01
The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient's tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.
Atac, M.; McKay, T.A.
1998-04-21
An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.
Atac, Muzaffer; McKay, Timothy A.
1998-01-01
An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.
Semeraro, Fabrizio; Ammollo, Concetta T.; Semeraro, Nicola; Colucci, Mario
2009-01-01
Background Thrombin is the main activator of the fibrinolysis inhibitor TAFI (thrombin activatable fibrinolysis inhibitor) and heightened clotting activation is believed to impair fibrinolysis through the increase of thrombin activatable fibrinolysis inhibitor activation. However, the enhancement of thrombin generation by soluble tissue factor was reported to have no effect on plasma fibrinolysis and it is not known whether the same is true for cell-associated tissue factor. The aim of this study was to evaluate the effect of tissue factor-expressing monocytes on plasma fibrinolysis in vitro. Design and Methods Tissue factor expression by human blood mononuclear cells (MNC) and monocytes was induced by LPS stimulation. Fibrinolysis was spectrophotometrically evaluated by measuring the lysis time of plasma clots containing LPS-stimulated or control cells and a low concentration of exogenous tissue plasminogen activator. Results LPS-stimulated MNC (LPS-MNC) prolonged fibrinolysis time as compared to unstimulated MNC (C-MNC) in contact-inhibited but not in normal citrated plasma. A significantly prolonged lysis time was observed using as few as 30 activated cells/μL. Fibrinolysis was also impaired when clots were generated on adherent LPS-stimulated monocytes. The antifibrinolytic effect of LPS-MNC or LPS-monocytes was abolished by an anti-tissue factor antibody, by an antibody preventing thrombin-mediated thrombin activatable fibrinolysis inhibitor activation, and by a TAFIa inhibitor (PTCI). Assays of thrombin and TAFIa in contact-inhibited plasma confirmed the greater generation of these enzymes in the presence of LPS-MNC. Finally, the profibrinolytic effect of unfractionated heparin and enoxaparin was markedly lower (~50%) in the presence of LPS-MNC than in the presence of a thromboplastin preparation displaying an identical tissue factor activity. Conclusions Our data indicate that LPS-stimulated monocytes inhibit fibrinolysis through a tissue factor-mediated enhancement of thrombin activatable fibrinolysis inhibitor activation and make clots resistant to the profibrinolytic activity of heparins, thus providing an additional mechanism whereby tissue factor-expressing monocytes/macrophages may favor fibrin accumulation and diminish the antithrombotic efficacy of heparins. PMID:19377079
Enhanced second-harmonic-generation detection of collagen by means of optical wavefront shaping
NASA Astrophysics Data System (ADS)
Thompson, Jonathan V.; Throckmorton, Graham A.; Hokr, Brett H.; Yakovlev, Vladislav V.
2016-03-01
Second-harmonic generation (SHG) has proven to be an effective method to both image and detect structural variations in fibrillar collagen. The ability to detect these differences is especially useful in studying diseases like cancer and fibrosis.1 SHG techniques have historically been limited by their ability to penetrate and image through strongly scattering tissues. Recently, optical wavefront shaping has enabled light to be focused through highly scattering media such as biological tissue.2-4 This technology also enables us to examine the dependence of second harmonic generation on the spatial phase of the pump laser. Here, we demonstrate that wavefront shaping can be used to enhance the generation of second harmonic light from collagen fibrils even when scattering is low or non-existent.
Comparison of texture synthesis methods for content generation in ultrasound simulation for training
NASA Astrophysics Data System (ADS)
Mattausch, Oliver; Ren, Elizabeth; Bajka, Michael; Vanhoey, Kenneth; Goksel, Orcun
2017-03-01
Navigation and interpretation of ultrasound (US) images require substantial expertise, the training of which can be aided by virtual-reality simulators. However, a major challenge in creating plausible simulated US images is the generation of realistic ultrasound speckle. Since typical ultrasound speckle exhibits many properties of Markov Random Fields, it is conceivable to use texture synthesis for generating plausible US appearance. In this work, we investigate popular classes of texture synthesis methods for generating realistic US content. In a user study, we evaluate their performance for reproducing homogeneous tissue regions in B-mode US images from small image samples of similar tissue and report the best-performing synthesis methods. We further show that regression trees can be used on speckle texture features to learn a predictor for US realism.
Hematopoietic stem cell origin of connective tissues.
Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K
2010-07-01
Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications. Copyright 2010 ISEH - Society for Hematology and Stem Cells. All rights reserved.
Pan, Min-Hsiung; Chen, Wei-Jen; Lin-Shiau, Shoei-Yn; Ho, Chi-Tang; Lin, Jen-Kun
2002-10-01
Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is concentrated in the peel of citrus fruits. DNA flow cytometric analysis indicated that tangeretin blocked cell cycle progression at G1 phase in colorectal carcinoma COLO 205 cells. Over a 24 h exposure to tangeretin, the degree of phosphorylation of Rb was decreased after 12 h and G1 arrest developed. The protein expression of cyclins A, D1, and E reduced slightly under the same conditions. Immunocomplex kinase experiments showed that tangeretin inhibited the activities of cyclin-dependent kinases 2 (Cdk2) and 4 (Cdk4) in a dose-dependent manner in the cell-free system. As the cells were exposed to tangeretin (50 microM) over 48 h a gradual loss of both Cdk2 and 4 kinase activities occurred. Tangeretin also increased the content of the Cdk inhibitor p21 protein and this effect correlated with the elevation in p53 levels. In addition, tangeretin also increased the level of the Cdk inhibitor p27 protein within 18 h. These results suggest that tangeretin either exerts its growth-inhibitory effects through modulation of the activities of several key G1 regulatory proteins, such as Cdk2 and Cdk4, or mediates the increase of Cdk inhibitors p21 and p27.
Akama, Kenji; Shirai, Kentaro; Suzuki, Seigo
2016-07-19
Digital enzyme-linked immunosorbent assay (ELISA) is a single molecule counting technology and is one of the most sensitive immunoassay methods. The key aspect of this technology is to concentrate enzyme reaction products from a single target molecule in femtoliter droplets. This study presents a novel Digital ELISA that does not require droplets; instead, enzyme reaction products are concentrated using a tyramide signal amplification system. In our method, tyramide substrate reacts with horseradish peroxidase (HRP) labeled with an immunocomplex on beads, and the substrate is converted into short-lived radical intermediates. By adjusting the bead concentration in the HRP-tyramide reaction and conducting the reaction using freely moving beads, tyramide radicals are deposited only on beads labeled with HRP and there is no diffusion to other beads. Consequently, the fluorescence signal is localized on a portion of the beads, making it possible to count the number of labeled beads digitally. The performance of our method was demonstrated by detecting hepatitis B surface antigen with a limit of detection of 0.09 mIU/mL (139 aM) and a dynamic range of over 4 orders of magnitude. The obtained limit of detection represents a >20-fold higher sensitivity than conventional ELISA. Our method has potential applications in simple in vitro diagnostic systems for detecting ultralow concentrations of protein biomarkers.
Gutiérrez-Zúñiga, Gabriela Guadalupe; Hernández-López, José Luis
2016-01-01
A gold millielectrode (GME) functionalized with a mixed (16-MHA + EG3SH) self-assembled monolayer (SAM) was used to fabricate an indirect enzyme-linked immunosorbent assay (ELISA) immunosensor for the sensitive detection of prostate-specific antigen (PSA), a prostate cancer (PCa) biomarker, in human serum samples. To address and minimize the issue of non-specific protein adsorption, an organic matrix (amine-PEG3-biotin/avidin) was assembled on the previously functionalized electrode surface to build up an ordered and hierarchically organized interfacial supramolecular architecture: Au/16-MHA/EG3SH/amine-PEG3-biotin/avidin. The electrode was then exposed to serum samples at different concentrations of a sandwich-type immunocomplex molecule ((Btn)Ab-AgPSA-(HRP)Ab), and its interfacial properties were characterized using electrochemical impedance spectroscopy (EIS). Calibration curves for polarization resistance (RP) and capacitance (1/C) vs. total and free PSA concentrations were obtained and their analytical quality parameters were determined. This approach was compared with results obtained from a commercially available ELISA immunosensor. The results obtained in this work showed that the proposed immunosensor can be successfully applied to analyze serum samples of patients representative of the Mexican population. Copyright © 2015 Elsevier B.V. All rights reserved.
What is the future of 'organ transplantation' in the head and neck?
Lott, David G
2014-10-01
To update readers on the current state and future of head and neck tissue transplantation. Many exciting advances have recently occurred in the field of head and neck transplantation and regenerative medicine. Larynx, face, and trachea transplants have all been successfully performed. Significant advancements in tissue engineering have occurred, including the ability to generate three-dimensional tissue structures. Transplantation of regenerated tissues has been successfully incorporated into airway reconstruction. These exciting advancements set the foundation to expand reconstructive options for dysfunctional tissues and to improve a patient's quality of life.
Printing and Prototyping of Tissues and Scaffolds
NASA Astrophysics Data System (ADS)
Derby, Brian
2012-11-01
New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.
2016-07-01
AWARD NUMBER: W81XWH-14-1-0180 TITLE: Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue...1212 REPORT DATE: July 2016 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012...SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER
De Los Angeles, Alejandro; Ferrari, Francesco; Xi, Ruibin; Fujiwara, Yuko; Benvenisty, Nissim; Deng, Hongkui; Hochedlinger, Konrad; Jaenisch, Rudolf; Lee, Soohyun; Leitch, Harry G; Lensch, M William; Lujan, Ernesto; Pei, Duanqing; Rossant, Janet; Wernig, Marius; Park, Peter J; Daley, George Q
2015-09-24
Stem cells self-renew and generate specialized progeny through differentiation, but vary in the range of cells and tissues they generate, a property called developmental potency. Pluripotent stem cells produce all cells of an organism, while multipotent or unipotent stem cells regenerate only specific lineages or tissues. Defining stem-cell potency relies upon functional assays and diagnostic transcriptional, epigenetic and metabolic states. Here we describe functional and molecular hallmarks of pluripotent stem cells, propose a checklist for their evaluation, and illustrate how forensic genomics can validate their provenance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xinfeng; Prior, Phillip; Chen, Guangpei
Purpose: The purpose of the study is to investigate the dose effects of electron-return-effect (ERE) at air-tissue and lung-tissue interfaces under a 1.5T transverse-magnetic-field (TMF). Methods: IMRT and VMAT plans for representative pancreas, lung, breast and head & neck (H&N) cases were generated following clinical dose volume (DV) criteria. The air-cavity walls, as well as the lung wall, were delineated to examine the ERE. In each case, the original plan generated without TMF is compared with the reconstructed plan (generated by recalculating the original plan with the presence of TMF) and the optimized plan (generated by a full optimization withmore » TMF), using a variety of DV parameters, including V100%, D95% and dose heterogeneity index for PTV, Dmax, and D1cc for OARs (organs at risk) and tissue interface. Results: The dose recalculation under TMF showed the presence of the 1.5 T TMF can slightly reduce V100% and D95% for PTV, with the differences being less than 4% for all but lung case studied. The TMF results in considerable increases in Dmax and D1cc on the skin in all cases, mostly between 10-35%. The changes in Dmax and D1cc on air cavity walls are dependent upon site, geometry, and size, with changes ranging up to 15%. In general, the VMAT plans lead to much smaller dose effects from ERE compared to fixed-beam IMRT. When the TMF is considered in the plan optimization, the dose effects of the TMF at tissue interfaces are significantly reduced in most cases. Conclusion: The doses on tissue interfaces can be significantly changed by the presence of a 1.5T TMF during MR-guided RT when the TMF is not included in plan optimization. These changes can be substantially reduced or even removed during VMAT/IMRT optimization that specifically considers the TMF, without deteriorating overall plan quality.« less
NASA Astrophysics Data System (ADS)
Calhoun, William R., III
One of the most recent advancements in laser technology is the development of ultrashort pulsed femtosecond lasers (FSLs). FSLs are improving many fields due to their unique extreme precision, low energy and ablation characteristics. In the area of laser medicine, ophthalmic surgeries have seen very promising developments. Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (cataract surgery), and keratoplasty (cornea transplant), now employ FSLs for their unique abilities that lead to improved clinical outcome and patient satisfaction. The application of FSLs in medical therapeutics is a recent development, and although they offer many benefits, FSLs also stimulate nonlinear optical effects (NOEs), many of which were insignificant with previously developed lasers. NOEs can change the laser characteristics during propagation through a medium, which can subsequently introduce unique safety concerns for the surrounding tissues. Traditional approaches for characterizing optical effects, laser performance, safety and efficacy do not properly account for NOEs, and there remains a lack of data that describe NOEs in clinically relevant procedures and tissues. As FSL technology continues to expand towards new applications, FSL induced NOEs need to be better understood in order to ensure safety as FSL medical devices and applications continue to evolve at a rapid pace. In order to improve the understanding of FSL-tissue interactions related to NOEs stimulated during laser beam propagation though corneal tissue, research investigations were conducted to evaluate corneal optical properties and determine how corneal tissue properties including corneal layer, collagen orientation and collagen crosslinking, and laser parameters including pulse energy, repetition rate and numerical aperture affect second and third-harmonic generation (HG) intensity, duration and efficiency. The results of these studies revealed that all laser parameters and tissue properties had a substantial influence on HG. The dynamic relationship between optical breakdown and HG was responsible for many observed changes in HG metrics. The results also demonstrated that the new generation of therapeutic FSLs has the potential to generate hazardous effects if not carefully controlled. Finally, recommendations are made to optimize current and guide future FSL applications.
Zaric, Marija; Becker, Pablo Daniel; Hervouet, Catherine; Kalcheva, Petya; Ibarzo Yus, Barbara; Cocita, Clement; O'Neill, Lauren Alexandra; Kwon, Sung-Yun; Klavinskis, Linda Sylvia
2017-12-28
The generation of tissue resident memory (T RM ) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag. We demonstrate rapid dissolution kinetics of the microneedles in skin. Moreover, a consequence of MA vaccine cargo release was the generation of long-lived antigen-specific CD8 + T cells that accumulate in mucosal tissues, including the female genital and respiratory tract. The memory CD8 + T cell population maintained in the peripheral mucosal tissues was attributable to a MA delivered AdHu5 vaccine instructing CD8 + T cell expression of CXCR3 + , CD103 +, CD49a + , CD69 + , CD127 + homing, retention and survival markers. Furthermore, memory CD8 + T cells generated by MA immunization significantly expanded upon locally administered antigenic challenge and showed a predominant poly-functional profile producing high levels of IFNγ and Granzyme B. These data demonstrate that skin vaccine delivery using microneedle technology induces mobilization of long lived, poly-functional CD8 + T cells to peripheral tissues, phenotypically displaying hallmarks of residency and yields new insights into how to design and deliver effective vaccine candidates with properties to exert local immunosurveillance at the mucosal surfaces. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Hazen, S L; Gaut, J P; Crowley, J R; Hsu, F F; Heinecke, J W
2000-01-01
Reactive aldehydes might have a pivotal role in the pathogenesis of atherosclerosis by covalently modifying low-density lipoprotein (LDL). However, the identities of the aldehyde adducts that form on LDL in vivo are not yet clearly established. We previously demonstrated that the haem protein myeloperoxidase oxidizes proteins in the human artery wall. We also have shown that p-hydroxyphenylacetaldehyde (pHA), the aldehyde that forms when myeloperoxidase oxidizes L-tyrosine, covalently modifies the N(epsilon)-lysine residues of proteins. The resulting Schiff base can be quantified as N(epsilon)-[2-(p-hydroxyphenyl)ethyl]lysine (pHA-lysine) after reduction with NaCNBH(3). Here we demonstrate that pHA-lysine is a marker for LDL that has been modified by myeloperoxidase, and that water-soluble, but not lipid-soluble, antioxidants inhibit the modification of LDL protein. To determine whether myeloperoxidase-generated aldehydes might modify LDL in vivo, we used a combination of isotope-dilution GC-MS to quantify pHA-lysine in aortic tissues at various stages of lesion evolution. We also analysed LDL isolated from atherosclerotic aortic tissue. Comparison of normal and atherosclerotic aortic tissue demonstrated a significant elevation (more than 10-fold) of the reduced Schiff base adduct in fatty streaks, intermediate lesions and advanced lesions compared with normal aortic tissue. Moreover, the level of pHA-lysine in LDL recovered from atherosclerotic aortic intima was 200-fold that in plasma LDL of healthy donors. These results indicate that pHA-lysine, a specific covalent modification of LDL, is generated in human atherosclerotic vascular tissue. They also raise the possibility that reactive aldehydes generated by myeloperoxidase have a role in converting LDL into an atherogenic lipoprotein. PMID:11104675
Simulation of brain tumors in MR images for evaluation of segmentation efficacy.
Prastawa, Marcel; Bullitt, Elizabeth; Gerig, Guido
2009-04-01
Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images presenting pathology, which can both alter tissue appearance through infiltration and cause geometric distortions. Systems for generating synthetic images with user-defined degradation by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation methods. Such systems do not yet offer simulation of sufficiently realistic looking pathology. This paper presents a system that combines physical and statistical modeling to generate synthetic multi-modal 3D brain MRI with tumor and edema, along with the underlying anatomical ground truth, Main emphasis is placed on simulation of the major effects known for tumor MRI, such as contrast enhancement, local distortion of healthy tissue, infiltrating edema adjacent to tumors, destruction and deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and pathology. The new method synthesizes pathology in multi-modal MRI and diffusion tensor imaging (DTI) by simulating mass effect, warping and destruction of white matter fibers, and infiltration of brain tissues by tumor cells. We generate synthetic contrast enhanced MR images by simulating the accumulation of contrast agent within the brain. The appearance of the the brain tissue and tumor in MRI is simulated by synthesizing texture images from real MR images. The proposed method is able to generate synthetic ground truth and synthesized MR images with tumor and edema that exhibit comparable segmentation challenges to real tumor MRI. Such image data sets will find use in segmentation reliability studies, comparison and validation of different segmentation methods, training and teaching, or even in evaluating standards for tumor size like the RECIST criteria (response evaluation criteria in solid tumors).
Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen
2011-01-01
Second and Third Harmonic Generation (SHG and THG) microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus) muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy. PMID:22140560
NASA Astrophysics Data System (ADS)
Macoskey, J. J.; Choi, S. W.; Hall, T. L.; Vlaisavljevich, E.; Lundt, J. E.; Lee, F. T., Jr.; Johnsen, E.; Cain, C. A.; Xu, Z.
2018-03-01
Histotripsy is an ultrasonic tissue ablation method based on acoustic cavitation. It has been shown that cavitation dynamics change depending on the mechanical properties of the host medium. During histotripsy treatment, the target-tissue is gradually fractionated and eventually liquefied to acellular homogenate. In this study, the change in the collapse time (t col) of the cavitation bubble cloud over the course of histotripsy treatment is investigated as an indicator for progression of the tissue fractionation process throughout treatment. A 500 kHz histotripsy transducer is used to generate single-location lesions within tissue-mimicking agar phantoms of varying stiffness levels as well as ex vivo bovine liver samples. Cavitation collapse signals are acquired with broadband hydrophones, and cavitation is imaged optically using a high-speed camera in transparent tissue-mimicking phantoms. The high-speed-camera-acquired measurements of t col validate the acoustic hydrophone measurements. Increases in t col are observed both with decreasing phantom stiffness and throughout histotripsy treatment with increasing number of pulses applied. The increasing trend of t col throughout the histotripsy treatment correlates well with the progression of lesion formation generated in tissue-mimicking phantoms (R 2 = 0.87). Finally, the increasing trend of t col over the histotripsy treatment is validated in ex vivo bovine liver.
The Tissue Analysis Core within the AIDS and Cancer Virus Program will process, embed and perform microtomy on fixed tissue samples presented in ethanol. HIV/SIVin situhybridization for detection of vRNA and vDNA will be performed using the next-gene
Saleh, J; Summers, L K; Cianflone, K; Fielding, B A; Sniderman, A D; Frayn, K N
1998-04-01
The objective of this study was to determine whether Acylation Stimulating Protein (ASP) is generated in vivo by human adipose tissue during the postprandial period. After a fat meal, samples from 12 subjects were obtained (up to 6 h) from an arterialized hand vein and an anterior abdominal wall vein that drains adipose tissue. Veno-arterial (V-A) gradients across the subcutaneous adipose tissue bed were calculated. The data demonstrate that ASP is produced in vivo (positive V-A gradient) With maximal production at 3-5 h postprandially. The plasma triacylglycerol (TAG) clearance was evidenced by a negative V-A gradient. It increased substantially after 3 h and remained prominent until the final time point. There was, therefore, a close temporal coordination between ASP generation and TAG clearance. In contrast, plasma insulin and non-esterified fatty acid (NEFA) had an early (1-2 h) postprandial change. Fatty acid incorporation into adipose tissue (FIAT) was calculated from V-A glycerol and non-esterified fatty acid (NEFA) differences postprandially. FIAT was negative during the first hour, implying net fat mobilization. FIAT then became increasingly positive, implying net fat deposition, and overall followed the same time course as ASP and TAG clearance. There was a direct positive correlation between total ASP production and total FIAT (r = 0.566, P < 0.05). These data demonstrate that ASP is generated in vivo by human adipocytes and that this process is accentuated postprandially, supporting the concept that ASP plays an important role in clearance of TAG from plasma and fatty acid storage in adipose tissue.
Nonlinear absorption in biological tissue for high intensity focused ultrasound.
Liu, Xiaozhou; Li, Junlun; Gong, Xiufen; Zhang, Dong
2006-12-22
In recent years the propagation of the high intensity focused ultrasound (HIFU) in biological tissue is an interesting area due to its potential applications in non-invasive treatment of disease. The base principle of these applications is the heat effect generated by ultrasound absorption. In order to control therapeutic efficiency, it is important to evaluate the heat generation in biological tissue irradiated by ultrasound. In his paper, based on the Khokhlov-Zabolotkaya-Kuznetsov (KZK) equation in frequency-domain, the numerical simulations of nonlinear absorption in biological tissues for high intensity focused ultrasound are performed. We find that ultrasound thermal transfer effect will be enhanced with the increasing of initial acoustic intensity due to the high harmonic generation. The concept of extra absorption factor is introduced to describe nonlinear absorption in biological tissue for HIFU. The theoretical results show that the heat deposition induced by the nonlinear theory can be nearly two times as large as that predicated by linear theory. Then, the influence of the diffraction effect on the position of the focus in HIFU is investigated. It is shown that the sound focus moves toward the transducer compared with the geometry focus because of the diffraction of the sound wave. The position of the maximum heat deposition is shifted to the geometry focus with the increase of initial acoustic intensity because the high harmonics are less diffraction. Finally, the temperature in the porcine fat tissue changing with the time is predicated by Pennes' equation and the experimental results verify the nonlinear theoretical prediction.
Transcriptome analysis of sika deer in China.
Jia, Bo-Yin; Ba, Heng-Xing; Wang, Gui-Wu; Yang, Ying; Cui, Xue-Zhe; Peng, Ying-Hua; Zheng, Jun-Jun; Xing, Xiu-Mei; Yang, Fu-He
2016-10-01
Sika deer is of great commercial value because their antlers are used in tonics and alternative medicine and their meat is healthy and delicious. The goal of this study was to generate transcript sequences from sika deer for functional genomic analyses and to identify the transcripts that demonstrate tissue-specific, age-dependent differential expression patterns. These sequences could enhance our understanding of the molecular mechanisms underlying sika deer growth and development. In the present study, we performed de novo transcriptome assembly and profiling analysis across ten tissue types and four developmental stages (juvenile, adolescent, adult, and aged) of sika deer, using Illumina paired-end tag (PET) sequencing technology. A total of 1,752,253 contigs with an average length of 799 bp were generated, from which 1,348,618 unigenes with an average length of 590 bp were defined. Approximately 33.2 % of these (447,931 unigenes) were then annotated in public protein databases. Many sika deer tissue-specific, age-dependent unigenes were identified. The testes have the largest number of tissue-enriched unigenes, and some of them were prone to develop new functions for other tissues. Additionally, our transcriptome revealed that the juvenile-adolescent transition was the most complex and important stage of the sika deer life cycle. The present work represents the first multiple tissue transcriptome analysis of sika deer across four developmental stages. The generated data not only provide a functional genomics resource for future biological research on sika deer but also guide the selection and manipulation of genes controlling growth and development.
Karahatay, Serdar; Thomas, Kesha; Koybasi, Serap; Senkal, Can E.; ElOjeimy, Saeed; Liu, Xiang; Bielawski, Jacek; Day, Terry A.; Boyd Gillespie, M; Sinha, Debajyoti; Norris, James S.; Hannun, Yusuf A.; Ogretmen, Besim
2007-01-01
It has been documented previously that defects in the generation of C18-ceramide, a product of ceramide synthase 1 (CerS1), also known as longevity assurance gene 1 (hLASS1), play important roles in the pathogenesis and/or progression of HNSCC. However, whether altered levels of ceramide generation in HNSCC tumors have any clinical relevance remains unknown. In this study, the levels of endogenous ceramides were measured in tumor tissues of 45 HNSCC patients as compared to their normal tissues using high-pressure liquid chromatography/mass spectrometry (LC/MS), and then possible link between ceramide levels and the clinical parameters of HNSCC were examined. The data showed that the levels of C16-, C24-, C24:1-ceramide were significantly elevated in the majority of tumor tissues compared to their normal tissues, while the levels of only C18-ceramide were significantly decreased in HNSCC tumors, especially in tumor tissues of male patients. Importantly, it was also shown here that decreased C18-ceramide levels in HNSCC tumor tissues were significantly associated with the higher incidences of lymphovascular invasion, and pathologic nodal metastasis. Importantly, attenuation of C18-ceramide was also positively linked to the higher overall stages of the primary HNSCC tumors. Therefore, these data suggest, for the first time, that the defects in the generation/accumulation of C18-ceramide might have important clinical roles in HNSCC, especially in lymphovascular invasion and nodal disease. PMID:17619081
Fabp4-Cre-mediated Sirt6 deletion impairs adipose tissue function and metabolic homeostasis in mice.
Xiong, Xiwen; Zhang, Cuicui; Zhang, Yang; Fan, Rui; Qian, Xinlai; Dong, X Charlie
2017-06-01
SIRT6 is a member of sirtuin family of deacetylases involved in diverse processes including genome stability, metabolic homeostasis and anti-inflammation. However, its function in the adipose tissue is not well understood. To examine the metabolic function of SIRT6 in the adipose tissue, we generated two mouse models that are deficient in Sirt6 using the Cre-lox approach. Two commonly used Cre lines that are driven by either the mouse Fabp4 or Adipoq gene promoter were chosen for this study. The Sirt6- knockout mice generated by the Fabp4-Cre line ( Sirt6 f/f : Fabp4-Cre) had a significant increase in both body weight and fat mass and exhibited glucose intolerance and insulin resistance as compared with the control wild-type mice. At the molecular levels, the Sirt6 f/f :Fabp4-Cre-knockout mice had increased expression of inflammatory genes including F4/80, TNFα, IL-6 and MCP-1 in both white and brown adipose tissues. Moreover, the knockout mice showed decreased expression of the adiponectin gene in the white adipose tissue and UCP1 in the brown adipose tissue, respectively. In contrast, the Sirt6 knockout mice generated by the Adipoq-Cre line ( Sirt6 f/f :Adipoq-Cre) only had modest insulin resistance. In conclusion, our data suggest that the function of SIRT6 in the Fabp4-Cre-expressing cells in addition to mature adipocytes plays a critical role in body weight maintenance and metabolic homeostasis. © 2017 Society for Endocrinology.
Ergün, A Sanlı
2011-10-01
Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.
Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo
2016-01-01
The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kapacee, Zoher; Yeung, Ching-Yan Chloé; Lu, Yinhui; Crabtree, David; Holmes, David F; Kadler, Karl E
2010-10-01
Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7days. Copyright © 2010 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.
Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf
2017-08-22
Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mostaço-Guidolin, Leila; Rosin, Nicole L.; Hackett, Tillie-Louise
2017-01-01
The ability to respond to injury with tissue repair is a fundamental property of all multicellular organisms. The extracellular matrix (ECM), composed of fibrillar collagens as well as a number of other components is dis-regulated during repair in many organs. In many tissues, scaring results when the balance is lost between ECM synthesis and degradation. Investigating what disrupts this balance and what effect this can have on tissue function remains an active area of research. Recent advances in the imaging of fibrillar collagen using second harmonic generation (SHG) imaging have proven useful in enhancing our understanding of the supramolecular changes that occur during scar formation and disease progression. Here, we review the physical properties of SHG, and the current nonlinear optical microscopy imaging (NLOM) systems that are used for SHG imaging. We provide an extensive review of studies that have used SHG in skin, lung, cardiovascular, tendon and ligaments, and eye tissue to understand alterations in fibrillar collagens in scar tissue. Lastly, we review the current methods of image analysis that are used to extract important information about the role of fibrillar collagens in scar formation. PMID:28809791
Tumor tissue characterization using polarization-sensitive second harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Tokarz, Danielle; Cisek, Richard; Golaraei, Ahmad; Krouglov, Serguei; Navab, Roya; Niu, Carolyn; Sakashita, Shingo; Yasufuku, Kazuhiro; Tsao, Ming-Sound; Asa, Sylvia L.; Barzda, Virginijus; Wilson, Brian C.
2015-06-01
Changes in the ultrastructure of collagen in various tumor and non-tumor human tissues including lung, pancreas and thyroid were investigated ex vivo by a polarization-sensitive second harmonic generation (SHG) microscopy technique referred to as polarization-in, polarization-out (PIPO) SHG. This involves measuring the orientation of the linear polarization of outgoing SHG as a function of the linear polarization orientation of incident laser radiation. From the PIPO SHG data, the second-order nonlinear optical susceptibility tensor component ratio, χ(2) ZZZ'/χ(2) ZXX', for each pixel of the SHG image was obtained and presented as color-coded maps. Further, the orientation of collagen fibers in the tissue was deduced. Since the χ(2) ZZZ'/χ(2) ZXX' values represent the organization of collagen in the tissue, theses maps revealed areas of altered collagen structure (not simply concentration) within tissue sections. Statistically-significant differences in χ(2) ZZZ'/χ(2) ZXX' were found between tumor and non-tumor tissues, which varied from organ to organ. Hence, PIPO SHG microscopy could potentially be used to aid pathologists in diagnosing cancer. Additionally, PIPO SHG microscopy could aid in characterizing the structure of collagen in other collagen-related biological processes such as wound repair.
Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees
2018-06-07
The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.
A thermogenic secondary sexual character in male sea lamprey
Chung-Davidson, Yu-Wen; Priess, M. Cody; Yeh, Chu-Yin; Brant, Cory O.; Johnson, Nicholas S.; Li, Ke; Nanlohy, Kaben G.; Bryan, Mara B.; Brown, C. Titus; Choi, Jongeun; Li, Weiming
2013-01-01
Secondary sexual characters in animals are exaggerated ornaments or weapons for intrasexual competition. Unexpectedly, we found that a male secondary sexual character in sea lamprey (Petromyzon marinus ) is a thermogenic adipose tissue that instantly increases its heat production during sexual encounters. This secondary sexual character, developed in front of the anterior dorsal fin of mature males, is a swollen dorsal ridge known as the ‘rope’ tissue. It contains nerve bundles, multivacuolar adipocytes and interstitial cells packed with small lipid droplets and mitochondria with dense and highly organized cristae. The fatty acid composition of the rope tissue is rich in unsaturated fatty acids. The cytochrome c oxidase activity is high but the ATP concentration is very low in the mitochondria of the rope tissue compared with those of the gill and muscle tissues. The rope tissue temperature immediately rose up to 0.3°C when the male encountered a conspecific. Mature males generated more heat in the rope and muscle tissues when presented with a mature female than when presented with a male (paired t-test, P-3 more heat than the muscle in 10 min. Transcriptome analyses revealed that genes involved in fat cell differentiation are upregulated whereas those involved in oxidative-phosphorylation-coupled ATP synthesis are downregulated in the rope tissue compared with the gill and muscle tissues. Sexually mature male sea lamprey possess the only known thermogenic secondary sexual character that shows differential heat generation toward individual conspecifics.
Image-guided tissue engineering
Ballyns, Jeffrey J; Bonassar, Lawrence J
2009-01-01
Replication of anatomic shape is a significant challenge in developing implants for regenerative medicine. This has lead to significant interest in using medical imaging techniques such as magnetic resonance imaging and computed tomography to design tissue engineered constructs. Implementation of medical imaging and computer aided design in combination with technologies for rapid prototyping of living implants enables the generation of highly reproducible constructs with spatial resolution up to 25 μm. In this paper, we review the medical imaging modalities available and a paradigm for choosing a particular imaging technique. We also present fabrication techniques and methodologies for producing cellular engineered constructs. Finally, we comment on future challenges involved with image guided tissue engineering and efforts to generate engineered constructs ready for implantation. PMID:19583811
Mechanical regulation of musculoskeletal system development.
Felsenthal, Neta; Zelzer, Elazar
2017-12-01
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit. © 2017. Published by The Company of Biologists Ltd.
Active dynamics of tissue shear flow
NASA Astrophysics Data System (ADS)
Popović, Marko; Nandi, Amitabha; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume
2017-03-01
We present a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a generic linear constitutive equation for the shear rate due to topological rearrangements and we investigate a novel rheological behaviour resulting from memory effects in the tissue. We identify two distinct active cellular processes: generation of active stress in the tissue, and actively driven topological rearrangements. We find that these two active processes can produce distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.
Giardini-Rosa, Renata; Joazeiro, Paulo P.; Thomas, Kathryn; Collavino, Kristina; Weber, Joanna
2014-01-01
External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm2) directly from a small population of donor cells (20,000–40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model. PMID:24124666
Giardini-Rosa, Renata; Joazeiro, Paulo P; Thomas, Kathryn; Collavino, Kristina; Weber, Joanna; Waldman, Stephen D
2014-03-01
External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm(2)) directly from a small population of donor cells (20,000-40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model.
Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering.
Li, Siwei; Glynne-Jones, Peter; Andriotis, Orestis G; Ching, Kuan Y; Jonnalagadda, Umesh S; Oreffo, Richard O C; Hill, Martyn; Tare, Rahul S
2014-12-07
Cartilage grafts generated using conventional static tissue engineering strategies are characterised by low cell viability, suboptimal hyaline cartilage formation and, critically, inferior mechanical competency, which limit their application for resurfacing articular cartilage defects. To address the limitations of conventional static cartilage bioengineering strategies and generate robust, scaffold-free neocartilage grafts of human articular chondrocytes, the present study utilised custom-built microfluidic perfusion bioreactors with integrated ultrasound standing wave traps. The system employed sweeping acoustic drive frequencies over the range of 890 to 910 kHz and continuous perfusion of the chondrogenic culture medium at a low-shear flow rate to promote the generation of three-dimensional agglomerates of human articular chondrocytes, and enhance cartilage formation by cells of the agglomerates via improved mechanical stimulation and mass transfer rates. Histological examination and assessment of micromechanical properties using indentation-type atomic force microscopy confirmed that the neocartilage grafts were analogous to native hyaline cartilage. Furthermore, in the ex vivo organ culture partial thickness cartilage defect model, implantation of the neocartilage grafts into defects for 16 weeks resulted in the formation of hyaline cartilage-like repair tissue that adhered to the host cartilage and contributed to significant improvements to the tissue architecture within the defects, compared to the empty defects. The study has demonstrated the first successful application of the acoustofluidic perfusion bioreactors to bioengineer scaffold-free neocartilage grafts of human articular chondrocytes that have the potential for subsequent use in second generation autologous chondrocyte implantation procedures for the repair of partial thickness cartilage defects.
Hinderer, Svenja; Brauchle, Eva
2015-01-01
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713
Demirel, Soner; Doganay, Selim; Turkoz, Yusuf; Dogan, Zümrüt; Turan, Bahadir; Firat, Penpe Gul Bozgul
2012-06-01
To investigate the effects of electromagnetic radiation (EMR) emitted by a third generation (3G) mobile phone on the antioxidant and oxidative stress parameters in eye tissue and blood of rats. Eighteen Wistar albino rats were randomly assigned into two groups: Group I (n = 9) received a standardized a daily dose of 3G mobile phone EMR for 20 days, and Group II served as the control group (n = 9), receiving no exposure to EMR. Glutathione peroxidase (GSH-Px) and catalase (CAT) levels were measured in eye tissues; in addition, malondialdehyde (MDA) and reduced GSH levels were measured in blood. There was no significant difference between groups in GSH-Px (p = 0.99) and CAT (p = 0.18) activity in eye tissue. There was no significant difference between groups in MDA (p = 0.69) and GSH levels (p = 0.83) in blood. The results of this study suggest that under a short period of exposure, 3G mobile phone radiation does not lead to harmful effects on eye tissue and blood in rats.
Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse.
Umezawa, Masakazu; Sekita, Keisuke; Suzuki, Ken-Ichiro; Kubo-Irie, Miyoko; Niki, Rikio; Ihara, Tomomi; Sugamata, Masao; Takeda, Ken
2013-12-21
Ultrasonic humidifiers silently generate water droplets as a cool fog and produce most of the dissolved minerals in the fog in the form of an aerosolized "white dust." However, the health effect of these airborne particles is largely unknown. This study aimed to characterize the aerosol particles generated by ultrasonic humidifiers and to investigate their effect on the lung tissue of mice. An ultrasonic humidifier was operated with tap water, high-silica water, ultrapure water, or other water types. In a chamber (0.765 m3, ventilation ratio 11.5 m3/hr), male ICR mice (10-week-old) were exposed by inhalation to an aerosol-containing vapor generated by the humidifier. After exposure for 7 or 14 days, lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each mouse and examined by microarray, quantitative reverse transcription-polymerase chain reaction, and light and electron microscopy. Particles generated from the humidifier operated with tap water had a mass concentration of 0.46 ± 0.03 mg/m3, number concentration of (5.0 ± 1.1) × 10(4)/cm3, and peak size distribution of 183 nm. The particles were phagocytosed by alveolar macrophages in the lung of mice. Inhalation of particles caused dysregulation of genes related to mitosis, cell adhesion molecules, MHC molecules and endocytosis, but did not induce any signs of inflammation or tissue injury in the lung. These results indicate that aerosol particles released from ultrasonic humidifiers operated with tap water initiated a cellular response but did not cause severe acute inflammation in pulmonary tissue. Additionally, high mineral content tap water is not recommended and de-mineralized water should be recommended in order to exclude any adverse effects.
Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P
2002-08-01
To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.
NASA Astrophysics Data System (ADS)
Baria, E.; Cicchi, R.; Nesi, G.; Massi, D.; Pavone, F. S.
2017-07-01
We combined Second Harmonic Generation, Two-Photon Fluorescence and Fluorescence Lifetime Imaging Microscopy for studying human carotid ex vivo tissue sections affected by atherosclerosis, resulting in the discrimination of different arterial regions within the plaques.
Confocal microscopy imaging of solid tissue
Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...
Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut
2014-01-01
A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306
OCT-based in vivo tissue injury mapping
NASA Astrophysics Data System (ADS)
Baran, Utku; Li, Yuandong; Wang, Ruikang K.
2016-03-01
Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.
2011-08-01
macrophages (MQs), on growth of breast tumor cells, and (2) to test the hypothesis that MSCs of non -breast adipose tissues, in contrast to MSCs of...macrophages in normal and malignant tissues. In contrast to all studies focused on the role of breast tissue microenvironment in growth of primary breast...the phenotype of macrophages, provide an immune environment suitable for growth of breast cancer cells, but MSCs present in non -breast adipose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xinfeng; Prior, Phil; Chen, Guang-Pei
Purpose: The integration of MRI with a linear accelerator (MR-linac) offers great potential for high-precision delivery of radiation therapy (RT). However, the electron deflection resulting from the presence of a transverse magnetic field (TMF) can affect the dose distribution, particularly the electron return effect (ERE) at tissue interfaces. The purpose of the study is to investigate the dose effects of ERE at air-tissue and lung-tissue interfaces during intensity-modulated radiation therapy (IMRT) planning. Methods: IMRT and volumetric modulated arc therapy (VMAT) plans for representative pancreas, lung, breast, and head and neck (HN) cases were generated following commonly used clinical dose volumemore » (DV) criteria. In each case, three types of plans were generated: (1) the original plan generated without a TMF; (2) the reconstructed plan generated by recalculating the original plan with the presence of a TMF of 1.5 T (no optimization); and (3) the optimized plan generated by a full optimization with TMF = 1.5 T. These plans were compared using a variety of DV parameters, including V{sub 100%}, D{sub 95%}, DHI [dose heterogeneity index: (D{sub 20%}–D{sub 80%})/D{sub prescription}], D{sub max}, and D{sub 1cc} in OARs (organs at risk) and tissue interface. All the optimizations and calculations in this work were performed on static data. Results: The dose recalculation under TMF showed the presence of the 1.5 T TMF can slightly reduce V{sub 100%} and D{sub 95%} for PTV, with the differences being less than 4% for all but one lung case studied. The TMF results in considerable increases in D{sub max} and D{sub 1cc} on the skin in all cases, mostly between 10% and 35%. The changes in D{sub max} and D{sub 1cc} on air cavity walls are dependent upon site, geometry, and size, with changes ranging up to 15%. The VMAT plans lead to much smaller dose effects from ERE compared to fixed-beam IMRT in pancreas case. When the TMF is considered in the plan optimization, the dose effects of the TMF at tissue interfaces (e.g., air-cavity wall, lung-tissue interfaces, skin) are significantly reduced in most cases. Conclusions: The doses on tissue interfaces can be significantly changed by the presence of a TMF during MR-guided RT when the magnetic field is not included in plan optimization. These changes can be substantially reduced or even eliminated during VMAT/IMRT optimization that specifically considers the TMF, without deteriorating overall plan quality.« less
NASA Astrophysics Data System (ADS)
Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2015-01-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Lee, Y; Ruschin, M
2015-06-15
Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution.more » Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of tissues and similarity of electron density assignment. This method can allow MR-only treatment planning.« less
Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication.
Jun, Indong; Han, Hyung-Seop; Edwards, James R; Jeon, Hojeong
2018-03-06
Electrospinning has been used for the fabrication of extracellular matrix (ECM)-mimicking fibrous scaffolds for several decades. Electrospun fibrous scaffolds provide nanoscale/microscale fibrous structures with interconnecting pores, resembling natural ECM in tissues, and showing a high potential to facilitate the formation of artificial functional tissues. In this review, we summarize the fundamental principles of electrospinning processes for generating complex fibrous scaffold geometries that are similar in structural complexity to the ECM of living tissues. Moreover, several approaches for the formation of three-dimensional fibrous scaffolds arranged in hierarchical structures for tissue engineering are also presented.
Dental optical coherence domain reflectometry explorer
Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.
2001-01-01
A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.
Generation of radicals in hard biological tissues under the action of laser radiation
NASA Astrophysics Data System (ADS)
Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.
2002-07-01
The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.
[Tissue engineering applied to the trachea as a graft].
Barrera-Ramírez, Elisa; Rico-Escobar, Edna; Garrido-Cardona, Rubén E
2016-01-01
Tissue engineering offers, through new technologies, an ex vivo generation of organs and functional tissues as grafts for transplants, for the improvement and substitution of biological functions, with an absence of immunological response. The treatment of extended tracheal lesions is a substitution of the affected segment; nevertheless, the allogeneic transplant has failed and the use of synthetic materials has not had good results. New tissue engineering technology is being developed to offer a tracheal graft for a posterior implantation. The purpose of this article is to review all the methods and components used by the engineering of tissue for tracheal grafts.
Development of Vibrational Culture Model Mimicking Vocal Fold Tissues.
Kim, Dongjoo; Lim, Jae-Yol; Kwon, Soonjo
2016-10-01
The vocal folds (VFs) are connective tissues with complex matrix structures that provide the required mechanical properties for voice generation. VF injury leads to changes in tissue structure and properties, resulting in reduced voice quality. However, injury-induced biochemical changes and repair in scarred VF tissues have not been well characterized to date. To treat scarred VFs, it is essential to understand how physiological characteristics of VFs tissue change in response to external perturbation. In this study, we designed a simple vibrational culture model to mimic vibratory microenvironments observed in vivo. This model consists of a flexible culture plate, three linear actuators, a stereo splitter, and a function generator. Human vocal fold fibroblast (hVFF) monolayers were established on the flexible membrane, to which normal phonatory vibrations were delivered from linear actuators and a function generator. The hVFF monolayers were exposed to the vibrational stresses at a frequency of 205 Hz for 2, 6, and 10 h with maximum displacement of 47.1 μm, followed by a 6 h rest. We then observed the changes in cell morphology, cell viability, and gene expression related to extracellular matrix components. In our dynamic culture device mimicking normal phonatory frequencies, cell proliferation increased and expression of hyaluronic acid synthase 2 was downregulated in response to vibrational stresses. The results presented herein will be useful for evaluating cellular responses following VF injuries in the presence or absence of vibrational stresses.
PERFORMANCE, RELIABILITY, AND IMPROVEMENT OF A TISSUE-SPECIFIC METABOLIC SIMULATOR
A methodology is described that has been used to build and enhance a simulator for rat liver metabolism providing reliable predictions within a large chemical domain. The tissue metabolism simulator (TIMES) utilizes a heuristic algorithm to generate plausible metabolic maps using...
Haslauer, Carla M; Avery, Matthew R; Pourdeyhimi, Behnam; Loboa, Elizabeth G
2015-07-01
Polymeric scaffolds have emerged as a means of generating three-dimensional tissues, such as for the treatment of bone injuries and nonunions. In this study, a fibrous scaffold was designed using the biocompatible, degradable polymer poly-lactic acid in combination with a water dispersible sacrificial polymer, EastONE. Fibers were generated via industry relevant, facile scale-up melt-spinning techniques with an islands-in-the-sea geometry. Following removal of EastONE, a highly porous fiber remained possessing 12 longitudinal channels and pores throughout all internal and external fiber walls. Weight loss and surface area characterization confirmed the generation of highly porous fibers as observed via focused ion beam/scanning electron microscopy. Porous fibers were then knit into a three-dimensional scaffold and seeded with human adipose-derived stem cells (hASC). Confocal microscopy images confirmed hASC attachment to the fiber walls and proliferation throughout the knit structure. Quantification of cell-mediated calcium accretion following culture in osteogenic differentiation medium confirmed hASC differentiation throughout the porous constructs. These results suggest incorporation of a sacrificial polymer within islands-in-the-sea fibers generates a highly porous scaffold capable of supporting stem cell viability and differentiation with the potential to generate large three-dimensional constructs for bone regeneration and/or other tissue engineering applications. © 2014 Wiley Periodicals, Inc.
Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K
2014-04-01
Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M
2015-12-01
Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.
A Monte Carlo study of fluorescence generation probability in a two-layered tissue model
NASA Astrophysics Data System (ADS)
Milej, Daniel; Gerega, Anna; Wabnitz, Heidrun; Liebert, Adam
2014-03-01
It was recently reported that the time-resolved measurement of diffuse reflectance and/or fluorescence during injection of an optical contrast agent may constitute a basis for a technique to assess cerebral perfusion. In this paper, we present results of Monte Carlo simulations of the propagation of excitation photons and tracking of fluorescence photons in a two-layered tissue model mimicking intra- and extracerebral tissue compartments. Spatial 3D distributions of the probability that the photons were converted from excitation to emission wavelength in a defined voxel of the medium (generation probability) during their travel between source and detector were obtained for different optical properties in intra- and extracerebral tissue compartments. It was noted that the spatial distribution of the generation probability depends on the distribution of the fluorophore in the medium and is influenced by the absorption of the medium and of the fluorophore at excitation and emission wavelengths. Simulations were also carried out for realistic time courses of the dye concentration in both layers. The results of the study show that the knowledge of the absorption properties of the medium at excitation and emission wavelengths is essential for the interpretation of the time-resolved fluorescence signals measured on the surface of the head.
Tissue injury and repair following cutaneous exposure of mice to sulfur mustard
Joseph, Laurie B.; Composto, Gabriella; Heck, Diane E.
2016-01-01
In mouse skin, sulfur mustard is a potent vesicant, damaging both the epidermis and the dermis. The extent of wounding is dependent on the dose of sulfur mustard and the duration of exposure. Initial responses include erythema, pruritus, edema, and xerosis; this is followed by an accumulation of inflammatory leukocytes in the tissue, activation of mast cells, and the release of mediators, including proinflammatory cytokines and bioactive lipids. These proinflammatory mediators contribute to damaging the epidermis, hair follicles, and sebaceous glands and to disruption of the epidermal basement membrane. This can lead to separation of the epidermis from the dermis, resulting in a blister, which ruptures, leading to the formation of an eschar. The eschar stimulates the formation of a neoepidermis and wound repair and may result in persistent epidermal hyperplasia. Epidermal damage and repair is associated with upregulation of enzymes generating proinflammatory and progrowth/pro–wound healing mediators, including cyclooxygenase-2 (COX-2), which generates prostanoids, inducible nitric oxide synthase (iNOS), which generates nitric oxide, fibroblast growth factor receptor 2 (FGFR2), and galectin-3. Characterization of the mediators regulating structural changes in the skin during sulfur mustard–induced tissue damage and wound healing will aid in the development of therapeutic modalities to mitigate toxicity and stimulate tissue repair processes. PMID:27371823
Tissue injury and repair following cutaneous exposure of mice to sulfur mustard.
Joseph, Laurie B; Composto, Gabriella M; Heck, Diane E
2016-08-01
In mouse skin, sulfur mustard (SM) is a potent vesicant, damaging both the epidermis and the dermis. The extent of wounding is dependent on the dose of SM and the duration of exposure. Initial responses include erythema, pruritus, edema, and xerosis; this is followed by an accumulation of inflammatory leukocytes in the tissue, activation of mast cells, and the release of mediators, including proinflammatory cytokines and bioactive lipids. These proinflammatory mediators contribute to damaging the epidermis, hair follicles, and sebaceous glands and to disruption of the epidermal basement membrane. This can lead to separation of the epidermis from the dermis, resulting in a blister, which ruptures, leading to the formation of an eschar. The eschar stimulates the formation of a neoepidermis and wound repair and may result in persistent epidermal hyperplasia. Epidermal damage and repair is associated with upregulation of enzymes generating proinflammatory and pro-growth/pro-wound healing mediators, including cyclooxygenase-2, which generates prostanoids, inducible nitric oxide synthase, which generates nitric oxide, fibroblast growth factor receptor 2, and galectin-3. Characterization of the mediators regulating structural changes in the skin during SM-induced tissue damage and wound healing will aid in the development of therapeutic modalities to mitigate toxicity and stimulate tissue repair processes. © 2016 New York Academy of Sciences.
Study of intracranial pressure in human brain during transcranial magnetic stimulation.
Honrath, Marc; Sabouni, Abas
2015-01-01
This paper presents the results of cranial force in human brain due to electromagnetic pulse during transcranial magnetic stimulation. To model the force in a realistic brain, we used three dimensional magnetic resonance image of the 26 years old female subject. Simulation results show that during TMS procedure, there is a small force generated within the cranial tissue layers along with a torque value in different layers of brain tissues. The force depends on the magnitude of the magnetic field generated by the TMS coil.
Contractile and mechanical properties of epithelia with perturbed actomyosin dynamics.
Fischer, Sabine C; Blanchard, Guy B; Duque, Julia; Adams, Richard J; Arias, Alfonso Martinez; Guest, Simon D; Gorfinkiel, Nicole
2014-01-01
Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue.
Use of perfusion bioreactors and large animal models for long bone tissue engineering.
Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E
2014-04-01
Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.
Contractile and Mechanical Properties of Epithelia with Perturbed Actomyosin Dynamics
Fischer, Sabine C.; Blanchard, Guy B.; Duque, Julia; Adams, Richard J.; Arias, Alfonso Martinez; Guest, Simon D.; Gorfinkiel, Nicole
2014-01-01
Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue. PMID:24759936
Wei, Guo; Tian, Peng; Zhang, Fengxia; Qin, Hao; Miao, Han; Chen, Qingwen; Hu, Zhongyi; Wang, Meijiao; Chen, Mingsheng
2016-01-01
Plant volatile organic compounds, which are generated in a tissue-specific manner, play important ecological roles in the interactions between plants and their environments, including the well-known functions of attracting pollinators and protecting plants from herbivores/fungi attacks. However, to date, there have not been reports of holistic volatile profiling of the various tissues of a single plant species, even for the model plant species. In this study, we qualitatively and quantitatively analyzed 85 volatile chemicals, including 36 volatile terpenes, in 23 different tissues of cucumber (Cucumis sativus) plants using solid-phase microextraction combined with gas chromatography-mass spectrometry. Most volatile chemicals were found to occur in a highly tissue-specific manner. The consensus transcriptomes for each of the 23 cucumber tissues were generated with RNA sequencing data and used in volatile organic compound-gene correlation analysis to screen for candidate genes likely to be involved in cucumber volatile biosynthetic pathways. In vitro biochemical characterization of the candidate enzymes demonstrated that TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15 were responsible for volatile terpenoid production in the roots, flowers, and fruit tissues of cucumber plants, respectively. A functional heteromeric geranyl(geranyl) pyrophosphate synthase, composed of an inactive small subunit (type I) and an active large subunit, was demonstrated to play a key role in monoterpene production in cucumber. In addition to establishing a standard workflow for the elucidation of plant volatile biosynthetic pathways, the knowledge generated from this study lays a solid foundation for future investigations of both the physiological functions of cucumber volatiles and aspects of cucumber flavor improvement. PMID:27457123
Ghezzi, Chiara E; Marelli, Benedetto; Omenetto, Fiorenzo G; Funderburgh, James L; Kaplan, David L
2017-01-01
The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison to previously developed 2D approaches. Silk film contact guidance was used to control the alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These systems were compared similar systems generated with human corneal fibroblasts (hCFs). Both cell types were viable and preferentially aligned along the biomaterial patterns for up to 9 weeks in culture. H&E histological sections showed that the systems seeded with the hCSSCs displayed ECM production throughout the entire thickness of the constructs. In addition, the ECM proteins tested positive for keratocyte-specific tissue markers, including keratan sulfate, lumican, and keratocan. The quantification of hCSSC gene expression of keratocyte-tissue markers, including keratocan, lumican, human aldehyde dehydrogenase 3A1 (ALDH3A1), prostaglandin D2 synthase (PTDGS), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4), within the 3D tissue systems demonstrated upregulation when compared to 2D single silk films and to the systems generated with the hCFs. Furthermore, the production of ECM from the hCSSC seeded systems and subsequent remodeling of the initial matrix significantly improved cohesiveness and mechanical performance of the constructs, while maintaining transparency after 9 weeks.
Robustness of Next Generation Sequencing on Older Formalin-Fixed Paraffin-Embedded Tissue
Carrick, Danielle Mercatante; Mehaffey, Michele G.; Sachs, Michael C.; Altekruse, Sean; Camalier, Corinne; Chuaqui, Rodrigo; Cozen, Wendy; Das, Biswajit; Hernandez, Brenda Y.; Lih, Chih-Jian; Lynch, Charles F.; Makhlouf, Hala; McGregor, Paul; McShane, Lisa M.; Phillips Rohan, JoyAnn; Walsh, William D.; Williams, Paul M.; Gillanders, Elizabeth M.; Mechanic, Leah E.; Schully, Sheri D.
2015-01-01
Next Generation Sequencing (NGS) technologies are used to detect somatic mutations in tumors and study germ line variation. Most NGS studies use DNA isolated from whole blood or fresh frozen tissue. However, formalin-fixed paraffin-embedded (FFPE) tissues are one of the most widely available clinical specimens. Their potential utility as a source of DNA for NGS would greatly enhance population-based cancer studies. While preliminary studies suggest FFPE tissue may be used for NGS, the feasibility of using archived FFPE specimens in population based studies and the effect of storage time on these specimens needs to be determined. We conducted a study to determine whether DNA in archived FFPE high-grade ovarian serous adenocarcinomas from Surveillance, Epidemiology and End Results (SEER) registries Residual Tissue Repositories (RTR) was present in sufficient quantity and quality for NGS assays. Fifty-nine FFPE tissues, stored from 3 to 32 years, were obtained from three SEER RTR sites. DNA was extracted, quantified, quality assessed, and subjected to whole exome sequencing (WES). Following DNA extraction, 58 of 59 specimens (98%) yielded DNA and moved on to the library generation step followed by WES. Specimens stored for longer periods of time had significantly lower coverage of the target region (6% lower per 10 years, 95% CI: 3-10%) and lower average read depth (40x lower per 10 years, 95% CI: 18-60), although sufficient quality and quantity of WES data was obtained for data mining. Overall, 90% (53/59) of specimens provided usable NGS data regardless of storage time. This feasibility study demonstrates FFPE specimens acquired from SEER registries after varying lengths of storage time and under varying storage conditions are a promising source of DNA for NGS. PMID:26222067
On the influence of surface patterning on tissue self-assembly and mechanics.
Coppola, Valerio; Ventre, Maurizio; Natale, Carlo F; Rescigno, Francesca; Netti, Paolo A
2018-04-28
Extracellular matrix assembly and composition influence the biological and mechanical functions of tissues. Developing strategies to control the spatial arrangement of cells and matrix is of central importance for tissue engineering-related approaches relying on self-assembling and scaffoldless processes. Literature reports demonstrated that signals patterned on material surfaces are able to control cell positioning and matrix orientation. However, the mechanisms underlying the interactions between material signals and the structure of the de novo synthesized matrix are far from being thoroughly understood. In this work, we investigated the ordering effect provided by nanoscale topographic patterns on the assembly of tissue sheets grown in vitro. We stimulated MC3T3-E1 preosteoblasts to produce and assemble a collagen-rich matrix on substrates displaying patterns with long- or short-range order. Then, we investigated microstructural features and mechanical properties of the tissue in uniaxial tension. Our results demonstrate that patterned material surfaces are able to control the initial organization of cells in close contact to the surface; then cell-generated contractile forces profoundly remodel tissue structure towards mechanically stable spatial patterns. Such a remodelling effect acts both locally, as it affects cell and nuclear shape and globally, by affecting the gross mechanical response of the tissue. Such an aspect of dynamic interplay between cells and the surrounding matrix must be taken into account when designing material platform for the in vitro generation of tissue with specific microstructural assemblies. Copyright © 2018 John Wiley & Sons, Ltd.
Histotripsy Methods in Mechanical Disintegration of Tissue: Toward Clinical Applications
Khokhlova, VA; Fowlkes, JB; Roberts, WW; Schade, GR; Xu, Z; Khokhlova, TD; Hall, TL; Maxwell, AD; Wang, YN; Cain, CA
2015-01-01
Purpose In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently, there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Material and Methods Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapor cavity causes tissue disintegration. Results Recent pre-clinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumors, kidney stone fragmentation, enhancing antitumor immune response, and tissue decellularization for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Conclusions Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilize different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of noninvasive surgery. PMID:25707817
Fraser, John K; Hicok, Kevin C; Shanahan, Rob; Zhu, Min; Miller, Scott; Arm, Douglas M
2014-01-01
Objective: To develop a closed, automated system that standardizes the processing of human adipose tissue to obtain and concentrate regenerative cells suitable for clinical treatment of thermal and radioactive burn wounds. Approach: A medical device was designed to automate processing of adipose tissue to obtain a clinical-grade cell output of stromal vascular cells that may be used immediately as a therapy for a number of conditions, including nonhealing wounds resulting from radiation damage. Results: The Celution ® System reliably and reproducibly generated adipose-derived regenerative cells (ADRCs) from tissue collected manually and from three commercial power-assisted liposuction devices. The entire process of introducing tissue into the system, tissue washing and proteolytic digestion, isolation and concentration of the nonadipocyte nucleated cell fraction, and return to the patient as a wound therapeutic, can be achieved in approximately 1.5 h. An alternative approach that applies ultrasound energy in place of enzymatic digestion demonstrates extremely poor efficiency cell extraction. Innovation: The Celution System is the first medical device validated and approved by multiple international regulatory authorities to generate autologous stromal vascular cells from adipose tissue that can be used in a real-time bedside manner. Conclusion: Initial preclinical and clinical studies using ADRCs obtained using the automated tissue processing Celution device described herein validate a safe and effective manner to obtain a promising novel cell-based treatment for wound healing.
Wimmer, Isabella; Tröscher, Anna R; Brunner, Florian; Rubino, Stephen J; Bien, Christian G; Weiner, Howard L; Lassmann, Hans; Bauer, Jan
2018-04-20
Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources commonly used in pathology. However, formalin fixation modifies nucleic acids challenging the isolation of high-quality RNA for genetic profiling. Here, we assessed feasibility and reliability of microarray studies analysing transcriptome data from fresh, fresh-frozen (FF) and FFPE tissues. We show that reproducible microarray data can be generated from only 2 ng FFPE-derived RNA. For RNA quality assessment, fragment size distribution (DV200) and qPCR proved most suitable. During RNA isolation, extending tissue lysis time to 10 hours reduced high-molecular-weight species, while additional incubation at 70 °C markedly increased RNA yields. Since FF- and FFPE-derived microarrays constitute different data entities, we used indirect measures to investigate gene signal variation and relative gene expression. Whole-genome analyses revealed high concordance rates, while reviewing on single-genes basis showed higher data variation in FFPE than FF arrays. Using an experimental model, gene set enrichment analysis (GSEA) of FFPE-derived microarrays and fresh tissue-derived RNA-Seq datasets yielded similarly affected pathways confirming the applicability of FFPE tissue in global gene expression analysis. Our study provides a workflow comprising RNA isolation, quality assessment and microarray profiling using minimal RNA input, thus enabling hypothesis-generating pathway analyses from limited amounts of precious, pathologically significant FFPE tissues.
Engineering Functional Epithelium for Regenerative Medicine and In Vitro Organ Models: A Review
Vrana, Nihal E.; Lavalle, Philippe; Dokmeci, Mehmet R.; Dehghani, Fariba; Ghaemmaghami, Amir M.
2013-01-01
Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems. PMID:23705900
Engineering functional epithelium for regenerative medicine and in vitro organ models: a review.
Vrana, Nihal E; Lavalle, Philippe; Dokmeci, Mehmet R; Dehghani, Fariba; Ghaemmaghami, Amir M; Khademhosseini, Ali
2013-12-01
Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.
Bader, Sabine; Zajac, Magdalena; Friess, Thomas; Ruge, Elisabeth; Rieder, Natascha; Gierke, Berthold; Heubach, Yvonne; Thomas, Marlene; Pawlak, Michael
2015-01-01
Reverse phase protein arrays (RPPA) are an established tool for measuring the expression and activation status of multiple proteins in parallel using only very small amounts of tissue. Several studies have demonstrated the value of this technique for signaling pathway analysis using proteins extracted from fresh frozen (FF) tissue in line with validated antibodies for this tissue type; however, formalin fixation and paraffin embedding (FFPE) is the standard method for tissue preservation in the clinical setting. Hence, we performed RPPA to measure profiles for a set of 300 protein markers using matched FF and FFPE tissue specimens to identify which markers performed similarly using the RPPA technique in fixed and unfixed tissues. Protein lysates were prepared from matched FF and FFPE tissue specimens of individual tumors taken from three different xenograft models of human cancer. Materials from both untreated mice and mice treated with either anti-HER3 or bispecific anti-IGF-1R/EGFR monoclonal antibodies were analyzed. Correlations between signals from FF and FFPE tissue samples were investigated. Overall, 60 markers were identified that produced comparable profiles between FF and FFPE tissues, demonstrating significant correlation between the two sample types. The top 25 markers also showed significance after correction for multiple testing. The panel of markers covered several clinically relevant tumor signaling pathways and both phosphorylated and nonphosphorylated proteins were represented. Biologically relevant changes in marker expression were noted when RPPA profiles from treated and untreated xenografts were compared. These data demonstrate that, using appropriately selected antibodies, RPPA analysis from FFPE tissue is well feasible and generates biologically meaningful information. The identified panel of markers that generate similar profiles in matched fixed and unfixed tissue samples may be clinically useful for pharmacodynamic studies of drug effect using FFPE tissues. PMID:26106084
Friction forces position the neural anlage
Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp
2017-01-01
During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. PMID:28346437
3D engineered cardiac tissue models of human heart disease: learning more from our mice.
Ralphe, J Carter; de Lange, Willem J
2013-02-01
Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model. Copyright © 2013. Published by Elsevier Inc.
Tissue morphodynamics shaping the early mouse embryo.
Sutherland, Ann E
2016-07-01
Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Friction forces position the neural anlage.
Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp
2017-04-01
During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.
Yamamoto, Shin; Oshima, Yusuke; Saitou, Takashi; Watanabe, Takao; Miyake, Teruki; Yoshida, Osamu; Tokumoto, Yoshio; Abe, Masanori; Matsuura, Bunzo; Hiasa, Yoichi; Imamura, Takeshi
2016-12-01
Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively.
An atlas of DNA methylation in diverse bovine tissues
USDA-ARS?s Scientific Manuscript database
We launched an effort to produce a reference cattle DNA methylation resource to improve animal production. We will employ experimental pipelines built around next generation sequencing technologies to map DNA methylation in cultured cells and primary tissues systems frequently involved in animal pro...
Liang, Liang; Liu, Minliang; Sun, Wei
2017-11-01
Biological collagenous tissues comprised of networks of collagen fibers are suitable for a broad spectrum of medical applications owing to their attractive mechanical properties. In this study, we developed a noninvasive approach to estimate collagenous tissue elastic properties directly from microscopy images using Machine Learning (ML) techniques. Glutaraldehyde-treated bovine pericardium (GLBP) tissue, widely used in the fabrication of bioprosthetic heart valves and vascular patches, was chosen to develop a representative application. A Deep Learning model was designed and trained to process second harmonic generation (SHG) images of collagen networks in GLBP tissue samples, and directly predict the tissue elastic mechanical properties. The trained model is capable of identifying the overall tissue stiffness with a classification accuracy of 84%, and predicting the nonlinear anisotropic stress-strain curves with average regression errors of 0.021 and 0.031. Thus, this study demonstrates the feasibility and great potential of using the Deep Learning approach for fast and noninvasive assessment of collagenous tissue elastic properties from microstructural images. In this study, we developed, to our best knowledge, the first Deep Learning-based approach to estimate the elastic properties of collagenous tissues directly from noninvasive second harmonic generation images. The success of this study holds promise for the use of Machine Learning techniques to noninvasively and efficiently estimate the mechanical properties of many structure-based biological materials, and it also enables many potential applications such as serving as a quality control tool to select tissue for the manufacturing of medical devices (e.g. bioprosthetic heart valves). Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
2012-01-01
Functional tissues generated under in vitro conditions are urgently needed in biomedical research. However, the engineering of tissues is rather difficult, since their development is influenced by numerous parameters. In consequence, a versatile culture system was developed to respond the unmet needs. Optimal adhesion for cells in this system is reached by the selection of individual biomaterials. To protect cells during handling and culture, the biomaterial is mounted onto a MINUSHEET® tissue carrier. While adherence of cells takes place in the static environment of a 24 well culture plate, generation of tissues is accomplished in one of several available perfusion culture containers. In the basic version a continuous flow of always fresh culture medium is provided to the developing tissue. In a gradient perfusion culture container epithelia are exposed to different fluids at the luminal and basal sides. Another special container with a transparent lid and base enables microscopic visualization of ongoing tissue development. A further container exhibits a flexible silicone lid to apply force onto the developing tissue thereby mimicking mechanical load that is required for developing connective and muscular tissue. Finally, stem/progenitor cells are kept at the interface of an artificial polyester interstitium within a perfusion culture container offering for example an optimal environment for the spatial development of renal tubules. The system presented here was evaluated by various research groups. As a result a variety of publications including most interesting applications were published. In the present paper these data were reviewed and analyzed. All of the results point out that the cell biological profile of engineered tissues can be strongly improved, when the introduced perfusion culture technique is applied in combination with specific biomaterials supporting primary adhesion of cells. PMID:23369669
Tissue-based standoff biosensors for detecting chemical warfare agents
Greenbaum, Elias; Sanders, Charlene A.
2003-11-18
A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.
Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering
Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo
2010-01-01
The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546
Forces Generated by Cell Intercalation Tow Epidermal Sheets in Mammalian Tissue Morphogenesis
Heller, Evan; Kumar, K. Vijay; Grill, Stephan W.; Fuchs, Elaine
2014-01-01
Summary While gastrulation movements offer mechanistic paradigms for how collective cellular movements shape developing embryos, far less is known about coordinated cellular movements that occur later in development. Studying eyelid closure, we explore a case where an epithelium locally reshapes, expands, and moves over another epithelium. Live imaging, gene targeting and cell cycle inhibitors reveal that closure does not require overlying periderm, proliferation or supracellular actin cable assembly. Laser ablation and quantitative analyses of tissue deformations further distinguish the mechanism from wound-repair and dorsal closure. Rather, cell intercalations parallel to the tissue front locally compress it perpendicularly, pulling the surrounding epidermis along the closure axis. Functional analyses in vivo show that the mechanism requires localized myosin-IIA and α5β1-fibronectin-mediated migration, and E-cadherin downregulation likely stimulated by Wnt signaling. These studies uncover a mode of epithelial closure in which forces generated by cell intercalation are leveraged to tow the surrounding tissue. PMID:24697897
Miller, V.; Lin, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Brettschneider, J.; Fridman, G.; Fridman, A.; Autieri, M.
2015-01-01
Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue. PMID:26543345
Generation of stomach tissue from mouse embryonic stem cells.
Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira
2015-08-01
Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.
Mechanical stimulation improves tissue-engineered human skeletal muscle
NASA Technical Reports Server (NTRS)
Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.
2002-01-01
Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.
Pulsipher, Abigail; Dutta, Debjit; Luo, Wei; Yousaf, Muhammad N
2014-09-01
We report a strategy to rewire cell surfaces for the dynamic control of ligand composition on cell membranes and the modulation of cell-cell interactions to generate three-dimensional (3D) tissue structures applied to stem-cell differentiation, cell-surface tailoring, and tissue engineering. We tailored cell surfaces with bioorthogonal chemical groups on the basis of a liposome-fusion and -delivery method to create dynamic, electroactive, and switchable cell-tissue assemblies through chemistry involving chemoselective conjugation and release. Each step to modify the cell surface: activation, conjugation, release, and regeneration, can be monitored and modulated by noninvasive, label-free analytical techniques. We demonstrate the utility of this methodology by the conjugation and release of small molecules to and from cell surfaces and by the generation of 3D coculture spheroids and multilayered cell tissues that can be programmed to undergo assembly and disassembly on demand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi
2014-01-01
Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy. PMID:25116435
NASA Astrophysics Data System (ADS)
Robinson, Mitchell; Butcher, Ryan; Coté, Gerard L.
2017-02-01
Monte Carlo modeling of photon propagation has been used in the examination of particular areas of the body to further enhance the understanding of light propagation through tissue. This work seeks to improve upon the established simulation methods through more accurate representations of the simulated tissues in the wrist as well as the characteristics of the light source. The Monte Carlo simulation program was developed using Matlab. Generation of different tissue domains, such as muscle, vasculature, and bone, was performed in Solidworks, where each domain was saved as a separate .stl file that was read into the program. The light source was altered to give considerations to both viewing angle of the simulated LED as well as the nominal diameter of the source. It is believed that the use of these more accurate models generates results that more closely match those seen in-vivo, and can be used to better guide the design of optical wrist-worn measurement devices.
Mapping cardiogenic oscillations using synchrotron-based phase contrast CT imaging
NASA Astrophysics Data System (ADS)
Thurgood, Jordan; Dubsky, Stephen; Siu, Karen K. W.; Wallace, Megan; Siew, Melissa; Hooper, Stuart; Fouras, Andreas
2012-10-01
In many animals, including humans, the lungs encase the majority of the heart thus the motion of each organ affects the other. The effects of the motion of the heart on the lungs potentially provides information with regards to both lung and heart health. We present a novel technique that is capable of measuring the effect of the heart on the surrounding lung tissue through the use of advanced synchrotron imaging techniques and recently developed X-ray velocimetry methods. This technique generates 2D frequency response maps of the lung tissue motion at multiple projection angles from projection X-ray images. These frequency response maps are subsequently used to generate 3D reconstructions of the lung tissue exhibiting motion at the frequency of ventilation and the lung tissue exhibiting motion at the frequency of the heart. This technique has a combined spatial and temporal resolution sufficient to observe the dynamic and complex 3D nature of lung-heart interactions.
Kuan, Emma L; Ivanov, Stoyan; Bridenbaugh, Eric A; Victora, Gabriel; Wang, Wei; Childs, Ed W; Platt, Andrew M; Jakubzick, Claudia V; Mason, Robert J; Gashev, Anatoliy A; Nussenzweig, Michel; Swartz, Melody A; Dustin, Michael L; Zawieja, David C; Randolph, Gwendalyn J
2015-06-01
Collecting lymphatic vessels (CLVs), surrounded by fat and endowed with contractile muscle and valves, transport lymph from tissues after it is absorbed into lymphatic capillaries. CLVs are not known to participate in immune responses. In this study, we observed that the inherent permeability of CLVs allowed broad distribution of lymph components within surrounding fat for uptake by adjacent macrophages and dendritic cells (DCs) that actively interacted with CLVs. Endocytosis of lymph-derived Ags by these cells supported recall T cell responses in the fat and also generated Ag-bearing DCs for emigration into adjacent lymph nodes (LNs). Enhanced recruitment of DCs to inflammation-reactive LNs significantly relied on adipose tissue DCs to maintain sufficient numbers of Ag-bearing DCs as the LN expanded. Thus, CLVs coordinate inflammation and immunity within adipose depots and foster the generation of an unexpected pool of APCs for Ag transport into the adjacent LN. Copyright © 2015 by The American Association of Immunologists, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, V., E-mail: vmiller@coe.drexel.edu; Lin, A.; Brettschneider, J.
Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of themore » tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.« less
Apparatus for enhancing tissue repair in mammals
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2007-01-01
An apparatus is disclosed for enhancing tissue repair in mammals, with the apparatus comprising: a sleeve for encircling a portion of a mammalian body part, said sleeve comprising an electrically conductive coil capable of generating an electromagnetic field when an electrical current is applied thereto, means for supporting the sleeve on the mammalian body part; and means for supplying the electrically conductive coil with a square wave time varying electrical current sufficient to create a time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss within the interior of the coil in order that when the sleeve is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss is generated on the mammalian body part for an extended period of time, tissue regeneration within the mammalian body part is increased to a rate in excess of the normal tissue regeneration rate that would occur without application of the time varying electromagnetic force.
Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar
2018-03-01
This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.
Diagnostic Analysis Of Ultrasound Data
Chambers, David H.; Mast, Jeffrey; Azevedo, Stephen G.; Wuebbeling, Frank; Natterer, Frank; Duric, Neb; Littrup, Peter J.; Holsapple, Earle
2006-01-10
A method and apparatus are provided for investigating tissue in which acoustic data are derived from scattering a plurality of pulsed spherical or cylindrical acoustic waves from a plurality of transmission elements through the tissue to a plurality of receiving elements. The acoustic data, which include a mix of reflected and transmitted acoustic waves, are received and digitized, and a representation of a portion of the tissue is generated from the digitized acoustic data.
Gjorevski, Nikolce; Nelson, Celeste M.
2012-01-01
Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes. PMID:22828342
Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress.
Saher, Shady; Piqueras, Abel; Hellin, Eladio; Olmos, Enrique
2004-01-01
The physiology of hyperhydricity in relation to oxidative stress, mineral nutrients, antioxidant enzymes and ethylene has been studied in three micropropagated carnation cultivars under experimentally induced hyperhydricity. A marked increase in Fe content in comparison with normal tissues was observed in the hyperhydric tissues from the three cultivars. The levels of ethylene, solute leakage and malondialdehyde content were also significantly higher in the hyperhydric tissues. In relation to the time course of H(2)O(2) production measured by fluorescence quenching, a similar trend could be observed for the three cultivars, with a clear increase in the generation of hydrogen peroxide in hyperhydric tissues. The activities of all the antioxidative enzymes studied, except lipoxygenase, were higher in the hyperhydric shoots. Phenylalanine ammonia-lyase (PAL) showed a significant decrease in activity in the hyperhydric tissues in comparison with the controls for the three cultivars. Soluble guaiacol peroxidase had a strong increase in activity in hyperhydric shoots of the three cultivars. These results provide, for the first time, direct evidence of H(2)O(2) generation in hyperhydric tissues, characterize the response of the antioxidant system to an oxidative stress during hyperhydricity in carnation leaves and point to the accumulation of toxic forms of oxygen as the inducer of some of the abnormalities observed.
Rapid ultrasonic stimulation of inflamed tissue with diagnostic intent
McClintic, Abbi M.; Dickey, Trevor C.; Gofeld, Michael; Ray Illian, P.; Kliot, Michel; Kucewicz, John C.; Loeser, John D.; Richebe, Philippe G.; Mourad, Pierre D.
2013-01-01
Previous studies have observed that individual pulses of intense focused ultrasound (iFU) applied to inflamed and normal tissue can generate sensations, where inflamed tissue responds at a lower intensity than normal tissue. It was hypothesized that successively applied iFU pulses will generate sensation in inflamed tissue at a lower intensity and dose than application of a single iFU pulse. This hypothesis was tested using an animal model of chronic inflammatory pain, created by injecting an irritant into the rat hind paw. Ultrasound pulses were applied in rapid succession or individually to rats' rear paws beginning at low peak intensities and progressing to higher peak intensities, until the rats withdrew their paws immediately after iFU application. Focused ultrasound protocols consisting of successively and rapidly applied pulses elicited inflamed paw withdrawal at lower intensity and estimated tissue displacement values than single pulse protocols. However, both successively applied pulses and single pulses produced comparable threshold acoustic dose values and estimates of temperature increases. This raises the possibility that temperature increase contributed to paw withdrawal after rapid iFU stimulation. While iFU-induction of temporal summation may also play a role, electrophysiological studies are necessary to tease out these potential contributors to iFU stimulation. PMID:23927192
A versatile modular bioreactor platform for Tissue Engineering.
Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike; Hansmann, Jan
2017-02-01
Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue-specific, non-disposable bioreactor systems. To ensure a high level of standardization, a suitable cost-effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Caicedo-Carvajal, Carlos E.; Shinbrot, Troy; Foty, Ramsey A.
2010-01-01
Background Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin α5β1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin α5β1 and sFN and its influence on tissue mechanical properties and cell sorting behavior. Methodology/Principal Findings We generated a series of cell lines varying in α5β1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin α5β1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as α5β1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high α5β1 levels. We also show that differential expression of α5β1 integrin can promote phase-separation between cells. Conclusions/Significance The interplay between α5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level of control between integrins and the ECM that can influence tissue cohesion and other mechanical properties, which may translate to the specification of tissue structure and function. These studies provide insights into important biological processes such as embryonic development, wound healing, and for tissue engineering applications. PMID:20686611
McCauley, Heather A; Wells, James M
2017-03-15
Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro , and how organoids are now being used as a primary research tool to investigate human developmental biology. © 2017. Published by The Company of Biologists Ltd.
Malapelle, Umberto; Pisapia, Pasquale; Rocco, Danilo; Smeraglio, Riccardo; di Spirito, Maria; Bellevicine, Claudio; Troncone, Giancarlo
2016-10-01
The advent of genomic based personalized medicine has led to multiple advances in the molecular characterization of many tumor types, such as non-small cell lung cancer (NSCLC). NSCLC is diagnosed in most cases on small tissue samples that may be not always sufficient for EGFR mutational assessment to select patients for first and second generations' tyrosine kinase inhibitors (TKIs) therapy. In patients without tissue availability at presentation, the analysis of cell free DNA (cfDNA) derived from liquid biopsy samples, in particular from plasma, represent an established alternative to provide EGFR mutational testing for treatment decision making. In addition, a new paradigm for TKIs resistance management was recently approved by Food and Drug Administration, supporting the liquid biopsy based genotyping prior to tissue based genotyping for the detection of T790M mutation to select patients for third generation TKIs. In these settings, real time PCR (RT-PCR) and digital PCR 'targeted' methods, which detect known mutations by specific probes, have extensively been adopted. Taking into account the restricted reference range and the limited multiplexing power of these targeted methods, the performance of liquid biopsy analyses may be further improved by next generation sequencing (NGS). While most tissue based NGS genotyping is well established, liquid biopsy NGS application is challenging, requiring a careful validation of the whole process, from blood collection to variant calling. Here we review this evolving field, highlighting those methodological points that are crucial to accurately select NSCLC patients for TKIs treatment administration by NGS on cfDNA.
Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.
Salerno, Marco; Giacomelli, Luca; Larosa, Claudio
2011-01-06
Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.
Analytical solutions to the problem of transient heat transfer in living tissue.
NASA Technical Reports Server (NTRS)
Shitzer, A.; Chato, J. C.
1971-01-01
An analytical model of transient heat transfer in living biological tissue is considered. The model includes storage, generation, conduction, and convective transport of heat in the tissue. Solutions for rectangular and cylindrical coordinates are presented and discussed. Transient times for reaching the ?locally fully developed' temperature profile were found to be of the order of 5 to 25 min. These transients are dominated by a geometrical parameters and, to a lesser extent, by a parameter representing the ratio of heat supplied by blood flow to heat conducted in the tissue.
Waters, E K; Sigh, J; Friedrich, U; Hilden, I; Sørensen, B B
2017-09-01
Concizumab, a humanized monoclonal antibody against tissue factor pathway inhibitor (TFPI), is being developed as a subcutaneously (s.c.) administered treatment for haemophilia. It demonstrated a concentration-dependent procoagulant effect in functional TFPI assays; however, global haemostatic assays, such as the thrombin generation assay (TGA), offer a more complete picture of coagulation. We investigated how concizumab affects thrombin generation following ex vivo spiking in plasma from haemophilia patients using the TGA, and if the assay can detect the effect of multiple s.c. concizumab doses in healthy subjects. For the ex vivo spiking study, platelet-poor plasma (PPP) from 18 patients with severe haemophilia was spiked with 0.001-500 nm concizumab. For the multiple-dosing study, four healthy males received concizumab 250 μg kg -1 s.c. every other day for eight doses; blood was collected before and after dosing and processed into PPP. In both studies, thrombin generation was measured using a Calibrated Automated Thrombogram ® system with 1 pm tissue factor. In spiked samples from haemophilia patients, peak thrombin and endogenous thrombin potential (ETP) increased concentration dependently, reaching near-normal levels at concizumab concentrations >10 nm. Repeated s.c. doses of concizumab in healthy subjects increased both peak thrombin and ETP; these effects were sustained throughout the dosing interval. Thrombin generation assay demonstrated increased thrombin generation with concizumab after ex vivo spiking of haemophilia plasma and multiple s.c. doses in healthy subjects, supporting both the utility of the TGA in evaluating concizumab treatment and the potential of s.c. concizumab as a novel haemophilia therapy. © 2017 The Authors. Haemophilia Published by John Wiley & Sons Ltd.
Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli
Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...
Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli
Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...
NASA Astrophysics Data System (ADS)
Ilina, Olga; Bakker, Gert-Jan; Vasaturo, Angela; Hoffman, Robert M.; Friedl, Peter
2011-02-01
Cancer invasion into an extracellular matrix (ECM) results from a biophysical reciprocal interplay between the expanding cancer lesion and tissue barriers imposed by the adjacent microenvironment. In vivo, connective tissue provides both densely packed ECM barriers adjacent to channel/track-like spaces and loosely organized zones, both of which may impact cancer invasion mode and efficiency; however little is known about how three-dimensional (3D) spaces and aligned tracks present in interstitial tissue guide cell invasion. We here describe a two-photon laser ablation procedure to generate 3D microtracks in dense 3D collagen matrices that support and guide collective cancer cell invasion. Whereas collective invasion of mammary tumor (MMT) breast cancer cells into randomly organized collagen networks required matrix metalloproteinase (MMP) activity for cell-derived collagen breakdown, re-alignment and track generation, preformed tracks supported MMP-independent collective invasion down to a track caliber of 3 µm. Besides contact guidance along the track of least resistance and initial cell deformation (squeezing), MMP-independent collective cell strands led to secondary track expansion by a pushing mechanism. Thus, two-photon laser ablation is useful to generate barrier-free microtracks in a 3D ECM which guide collective invasion independently of pericellular proteolysis.
Tension (re)builds: Biophysical mechanisms of embryonic wound repair.
Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo
2017-04-01
Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Improved selenium recovery from tissue with modified sample decomposition
Brumbaugh, W. G.; Walther, M.J.
1991-01-01
The present paper describes a simple modification of a recently reported decomposition method for determination of selenium in biological tissue by hydride generation atomic absorption. The modified method yielded slightly higher selenium recoveries (3-4%) for selected reference tissues and fish tissue spiked with selenomethionine. Radiotracer experiments indicated that the addition of a small volume of hydrochloric acid to the wet digestate mixture reduced slight losses of selenium as the sample initially went to dryness before ashing. With the modified method, selenium spiked as selenomethionine behaved more like the selenium in reference tissues than did the inorganic spike forms when this digestion modification was used.
3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement
NASA Astrophysics Data System (ADS)
Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald
2016-01-01
Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.
Macrophages: development and tissue specialization.
Varol, Chen; Mildner, Alexander; Jung, Steffen
2015-01-01
Macrophages are myeloid immune cells that are strategically positioned throughout the body tissues, where they ingest and degrade dead cells, debris, and foreign material and orchestrate inflammatory processes. Here we review two major recent paradigm shifts in our understanding of tissue macrophage biology. The first is the realization that most tissue-resident macrophages are established prenatally and maintained through adulthood by longevity and self-renewal. Their generation and maintenance are thus independent from ongoing hematopoiesis, although the cells can be complemented by adult monocyte-derived macrophages. Second, aside from being immune sentinels, tissue macrophages form integral components of their host tissue. This entails their specialization in response to local environmental cues to contribute to the development and specific function of their tissue of residence. Factors that govern tissue macrophage specialization are emerging. Moreover, tissue specialization is reflected in discrete gene expression profiles of macrophages, as well as epigenetic signatures reporting actual and potential enhancer usage.
NASA Technical Reports Server (NTRS)
Bailey, Michael R. (Inventor); Simon, Julianna C. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Vera A. (Inventor); Wang, Yak-Nam (Inventor); Sapozhnikov, Oleg A. (Inventor); Khokhlova, Tatiana D. (Inventor)
2016-01-01
The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.
2014-01-01
Background The aim of this research project was the realization of an incremental bipolar radiofrequency generator with inline 4-electrode probe for partial renal resection without clamping of the vessels. Methods The experimentation was carried out across two phases: the preliminary realization of a specific generator and an inline multielectrode probe for open surgery (Phase 1); system testing on 27 bench kidneys for a total of 47 partial resection (Phase 2). The parameters evaluated were: power level, generator automatisms, parenchymal coagulation times, needle caliber, thickness of the coagulated tissue “slice”, charring, ergonomy, feasibility of the application of “bolster” stitches. Results The analysis of the results referred to the homogeneity and thickness of coagulation, energy supply times with reference to the power level and caliber of the needles. The optimal results were obtained by using needles of 1.5 mm caliber at power level 5, and with coagulation times of 54 seconds for the first insertion and 30 seconds for the second. Conclusions The experimentation demonstrated that the apparatus, consisting of a generator named “LaparoNewPro” and fitted with a dedicated probe for open surgery, is able to carry out a coagulation of the line of resection of the renal parenchyma in a homogeneous manner, in short times, without tissue charring, and with the possibility of stitching both on coagulated tissue and the caliceal system. The generator automatism based on the flow of the current supplied by each electrode is reliable, and the cessation of energy supply coincides with optimal coagulation. PMID:24410789
Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita
2015-08-28
Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.
Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana
2017-04-11
The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Optoacoustic imaging of an animal model of prostate cancer
NASA Astrophysics Data System (ADS)
Patterson, Michelle P.; Arsenault, Michel; Riley, Chris; Kolios, Michael; Whelan, William M.
2010-02-01
Prostate cancer is currently the most common cancer among Canadian men. Due to an increase in public awareness and screening, prostate cancer is being detected at earlier stages and in much younger men. This is raising the need for better treatment monitoring approaches. Optoacoustic imaging is a new technique that involves exposing tissues to pulsed light and detecting the acoustic waves generated by the tissue. Optoacoustic images of a tumour bearing mouse and an agematched control were acquired for a 775 nm illumination using a reverse-mode imaging system. A murine model of prostate cancer, TRAMP (transgenetic adenocarcinoma of mouse prostate), was investigated. The results show an increase in optoacoustic signal generated by the tumour compared to that generated by the surrounding tissues with a contrast ratio of 3.5. The dimensions of the tumour in the optoacoustic image agreed with the true tumour dimensions to within 0.5 mm. In this study we show that there are detectable changes in optoacoustic signal strength that arise from the presence of a tumour in the prostate, which demonstrates the potential of optoacoustic imaging for the monitoring of prostate cancer therapy.
Roth, E. J.; Frazier, B. L.; Apuya, N. R.; Lark, K. G.
1989-01-01
Although soybean [Glycine max (L.) Merrill] grows as an inbreeding, generally homozygous, plant, the germplasm of the species contains large amounts of genetic variation. Analysis of soybean DNA has indicated that variation of RFLP (restriction fragment length polymorphism) markers within the species usually entails only two alleles at any one locus and that mixtures of such dimorphic loci account for virtually all of the restriction fragment variation seen in soybean (G. max), and in its ancestors, G. soja and G. gracilis. We report here that tissue cultures prepared from root tissue of individual soybean plants develop RFLP allelic differences at various loci. However, these newly generated alleles are almost always the same as ones previously found and characterized in other varieties of cultivated soybean (cultivars). This repeated generation of particular alleles suggests that much of the genetic variation seen in soybean could be the consequence of specific, relatively frequently employed, recombinational events. Such a mechanism would allow inbred cultivars to generate genetic variation (in the form of alternative alleles) in a controlled manner, perhaps in response to stress. PMID:2567263
Maffioletti, Sara Martina; Sarcar, Shilpita; Henderson, Alexander B H; Mannhardt, Ingra; Pinton, Luca; Moyle, Louise Anne; Steele-Stallard, Heather; Cappellari, Ornella; Wells, Kim E; Ferrari, Giulia; Mitchell, Jamie S; Tyzack, Giulia E; Kotiadis, Vassilios N; Khedr, Moustafa; Ragazzi, Martina; Wang, Weixin; Duchen, Michael R; Patani, Rickie; Zammit, Peter S; Wells, Dominic J; Eschenhagen, Thomas; Tedesco, Francesco Saverio
2018-04-17
Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Muguruma, Keiko
2017-01-01
Pluripotent stem cells (PSCs) possess self-organizing abilities in 3D culture. This property has been demonstrated in recent studies, including the generation of various neuroectodermal and endodermal tissues. For example, PSCs are able to differentiate into specific type of neural tissues, such as the neocortex and the optic cup, in response to local positional information brought about by signals during embryogenesis. In contrast, the generation of cerebellar tissue from PSCs requires a secondary induction by a signaling center, called the isthmic organizer, which first appears in the cell aggregate in 3D culture. Such developmental complexity of cerebellum has hampered establishment of effective differentiation culture system from PSCs, thus far.We recently reported that cerebellar neurons are generated from human PSCs (hPSCs). In this chapter, we describe an efficient protocol for differentiation of 3D cerebellar neuroepithelium from hPSCs. We also describe the protocols for further differentiation into specific neurons in the cerebellar cortex, such as Purkinje cells and the granule cells.
NASA Astrophysics Data System (ADS)
Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.
2016-02-01
Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.
Ultrasound modulation of bioluminescence generated inside a turbid medium
NASA Astrophysics Data System (ADS)
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2017-03-01
In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.
Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R
2017-05-01
Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New method for generating breast models featuring glandular tissue spatial distribution
NASA Astrophysics Data System (ADS)
Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.
2016-02-01
Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.
Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja
2015-11-18
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tissue vascularization through 3D printing: Will technology bring us flow?
Paulsen, S J; Miller, J S
2015-05-01
Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.
Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation
He, Bing; Doubrovinski, Konstantin; Polyakov, Oleg; Wieschaus, Eric
2014-01-01
Epithelial folding mediated by apical constriction converts flat epithelial sheets into multilayered, complex tissue structures and is employed throughout the development in most animals1. Little is known, however, how forces produced near the apical surface of the tissue are transmitted within individual cells to generate the global changes in cell shape that characterize tissue deformation. Here we apply particle tracking velocimetry in gastrulating Drosophila embryos to measure the movement of cytoplasm and plasma membrane during ventral furrow (VF) formation2, 3. We find that cytoplasmic redistribution during the lengthening phase of VF formation can be precisely described by viscous flows that quantitatively match the predictions of hydrodynamics. Cell membranes move with the ambient cytoplasm, with little resistance to or driving force on the flow. Strikingly, apical constriction produces similar flow patterns in mutant embryos that fail to form cells prior to gastrulation (“acellular” embryos), such that the global redistribution of cytoplasm mirrors the summed redistribution occurring in individual cells of wild type embryos. Our results suggest that during the lengthening phase of VF formation, hydrodynamic behavior of the cytoplasm provides the predominant mechanism transmitting apically generated forces deep into the tissue and that cell individualization is dispensable. PMID:24590071
Effects of tissue impedance on heat generation during RF delivery with the Thermage system
NASA Astrophysics Data System (ADS)
Tomkoria, Sara; Pope, Karl
2005-04-01
The Thermage ThermaCool TC system is a non-ablative RF device designed to promote tissue tightening and contouring. The system delivers RF energy to a target area under the skin, with volumetric tissue heating in that area. While the amount of energy delivered to a patient can be controlled by ThermaCool system settings, the distribution of energy to the treatment area and underlying layers is variable from individual to individual due to differences in body composition. The present study investigated how local tissue impedance affects the amount of discomfort experienced by patients during RF energy delivery. Discomfort results from heat generation in the treatment area. By using features of the ThermaCool TC System, local impedance (impedance of the treatment area), bulk impedance (impedance of the underlying tissue layers), and total impedance (the sum of local and bulk impedance) were measured for 35 patients. For each patient, impedance measurements were compared to discomfort levels expressed during treatment. Analysis of whole body, local, and bulk impedance values indicate that the percent of total body impedance in the local treatment area contributes to discomfort levels expressed by patients during treatment.
Viscoelastic Property Measurement in Thin Tissue Constructs Using Ultrasound
Liu, Dalong; Ebbini, Emad S.
2010-01-01
We present a dual-element concave ultrasound transducer system for generating and tracking of localized tissue displacements in thin tissue constructs on rigid substrates. The system is comprised of a highly focused PZT-4 5-MHz acoustic radiation force (ARF) transducer and a confocal 25-MHz polyvinylidene fluoride imaging transducer. This allows for the generation of measurable displacements in tissue samples on rigid substrates with thickness values down to 500 µm. Impulse-like and longer duration sine-modulated ARF pulses are possible with intermittent M-mode data acquisition for displacement tracking. The operations of the ARF and imaging transducers are strictly synchronized using an integrated system for arbitrary waveform generation and data capture with a shared timebase. This allows for virtually jitter-free pulse-echo data well suited for correlation-based speckle tracking. With this technique we could faithfully capture the entire dynamics of the tissue axial deformation at pulse-repetition frequency values up to 10 kHz. Spatio-temporal maps of tissue displacements in response to a variety of modulated ARF beams were produced in tissue-mimicking elastography phantoms on rigid substrates. The frequency response was measured for phantoms with different modulus and thickness values. The frequency response exhibited resonant behavior with the resonance frequency being inversely proportional to the sample thickness. This resonant behavior can be used in obtaining high-contrast imaging using magnitude and phase response to sinusoidally modulated ARF beams. Furthermore, a second order forced harmonic oscillator (FHO) model was shown to capture this resonant behavior. Based on the FHO model, we used the extended Kalman filter (EKF) for tracking the apparent modulus and viscosity of samples subjected to dc and sinusoidally modulated ARF. The results show that the stiffness (apparent modulus) term in the FHO is largely time-invariant and can be estimated robustly using the EKF. On the other hand, the damping (apparent viscosity) is time varying. These findings were confirmed by comparing the magnitude response of the FHO (with parameters obtained using the EKF) with the measured ones for different thin tissue constructs. PMID:18334343
Mechanics of the acoustic radiation force in tissue-like solids
NASA Astrophysics Data System (ADS)
Dontsov, Egor V.
The acoustic radiation force (ARF) is a phenomenon affiliated with the nonlinear effects of high-intensity wave propagation. It represents the mean momentum transfer from the sound wave to the medium, and allows for an effective computation of the mean motion (e.g. acoustic streaming in fluids) induced by a high-intensity sound wave. Nowadays, the high-intensity focused ultrasound is frequently used in medical diagnosis applications due to its ability to "push" inside the tissue with the radiation body force and facilitate the local quantification of tissue's viscoelastic properties. The main objectives of this study include: i) the theoretical investigation of the ARF in fluids and tissue-like solids generated respectively by the amplitude modulated plane wave and focused ultrasound; ii) computation of the nonlinear acoustic wave propagation when the amplitude of the focused ultrasound field is modulated by a low-frequency signal, and iii) modeling of the ARF-induced motion in tissue-like solids for the purpose of quantifying their nonlinear elasticity via the magnitude of the ARF. Regarding the first part, a comparison with the existing theory of the ARF reveals a number of key features that are brought to light by the new formulation, including the contributions to the ARF of ultrasound modulation and thermal expansion, as well as the precise role of constitutive nonlinearities in generating the sustained body force in tissue-like solids by a focused ultrasound beam. In the second part, the hybrid time-frequency domain algorithm for the numerical analysis of the nonlinear wave equation is proposed. The approach is validated by comparing the results to the finite-difference modeling in time domain. Regarding the third objective, the Fourier transform approach is used to compute the ARF-induced shear wave motion in tissue-mimicking phantoms. A comparison between the experiment (tests performed at the Mayo Clinic) and model permitted the estimation of a particular coefficient of nonlinear tissue elasticity from the amplitude of the ARF-generated shear waves. For completeness, the ARF estimates of this coefficient are verified via an established technique known as acoustoelasticity.
Akdag, Mehmet Zulkuf; Dasdag, Suleyman; Canturk, Fazile; Karabulut, Derya; Caner, Yusuf; Adalier, Nur
2016-09-01
Wireless internet (Wi-Fi) providers have become essential in our daily lives, as wireless technology is evolving at a dizzying pace. Although there are different frequency generators, one of the most commonly used Wi-Fi devices are 2.4GHz frequency generators. These devices are heavily used in all areas of life but the effect of radiofrequency (RF) radiation emission on users is generally ignored. Yet, an increasing share of the public expresses concern on this issue. Therefore, this study intends to respond to the growing public concern. The purpose of this study is to reveal whether long term exposure of 2.4GHz frequency RF radiation will cause DNA damage of different tissues such as brain, kidney, liver, and skin tissue and testicular tissues of rats. The study was conducted on 16 adult male Wistar-Albino rats. The rats in the experimental group (n=8) were exposed to 2.4GHz frequency radiation for over a year. The rats in the sham control group (n=8) were subjected to the same experimental conditions except the Wi-Fi generator was turned off. After the exposure period was complete the possible DNA damage on the rat's brain, liver, kidney, skin, and testicular tissues was detected through the single cell gel electrophoresis assay (comet) method. The amount of DNA damage was measured as percentage tail DNA value. Based on the DNA damage results determined by the single cell gel electrophoresis (Comet) method, it was found that the% tail DNA values of the brain, kidney, liver, and skin tissues of the rats in the experimental group increased more than those in the control group. The increase of the DNA damage in all tissues was not significant (p>0.05). However the increase of the DNA damage in rat testes tissue was significant (p<0.01). In conclusion, long-term exposure to 2.4GHz RF radiation (Wi-Fi) does not cause DNA damage of the organs investigated in this study except testes. The results of this study indicated that testes are more sensitive organ to RF radiation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yu; Liu, Jingfei; Fite, Brett Z.; Foiret, Josquin; Ilovitsh, Asaf; Leach, J. Kent; Dumont, Erik; Caskey, Charles F.; Ferrara, Katherine W.
2017-05-01
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.
Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W
2017-05-21
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.
Radiofrequency energy antenna coupling to common laparoscopic instruments: practical implications.
Jones, Edward L; Robinson, Thomas N; McHenry, Jennifer R; Dunn, Christina L; Montero, Paul N; Govekar, Henry R; Stiegmann, Greg V
2012-11-01
Electromagnetic coupling can occur between the monopolar "Bovie" instrument and other laparoscopic instruments without direct contact by a phenomenon termed antenna coupling. The purpose of this study was to determine if, and to what extent, radiofrequency energy couples to other common laparoscopic instruments and to describe practical steps that can minimize the magnitude of antenna coupling. In a laparoscopic simulator, monopolar radiofrequency energy was delivered to an L-hook. The tips of standard, nonelectrical laparoscopic instruments (either an unlit 10 mm telescope or a 5 mm grasper) were placed adjacent to bovine liver tissue and were never in contact with the active electrode. Thermal imaging quantified the change in tissue temperature nearest the tip of the telescope or grasper at the end of a 5 s activation of the active electrode. A 5 s activation (30 watts, coagulation mode, 4 cm separation between instruments) increased tissue temperature compared with baseline adjacent to the grasper tip (2.2 ± 2.2 °C; p = 0.013) and telescope tip (38.2 ± 8.0 °C; p < 0.001). The laparoscopic telescope tip increased tissue temperature more than the laparoscopic grasper tip (p < 0.001). Lowering the generator power from 30 to 15 Watts decreased the heat generated at the telescope tip (38.2 ± 8.0 vs. 13.5 ± 7.5 °C; p < 0.001). Complete separation of the camera/light cords and the active electrode cord decreased the heat generated near the telescope tip compared with parallel bundling of the cords (38.2 ± 8.0 vs. 15.7 ± 11.6 °C; p < 0.001). Commonly used laparoscopic instruments couple monopolar radiofrequency energy without direct contact with the active electrode, a phenomenon that results in heat transfer from a nonelectrically active instrument tip to adjacent tissue. Practical steps to minimize heat transfer resulting from antenna coupling include reducing the monopolar generator power setting and avoiding of parallel bundling of the telescope and active electrode cords.
Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W
2017-01-01
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasiplanar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions. PMID:28426437
Development of Novel Nonagonist PPAR-Gamma Ligands for Lung Cancer Treatment
2016-08-01
Affymetrix gene expression profiling. To get the purest representation of this gene set, we generated fibroblasts from the brown adipose tissue of mice... tissues . It has been shown that p53 plays an important role in metabolism and adipose tissue function, and this may be modulated by PPARγ expression as...presentations. Poster Presentation: Melin J. Khandekar, Alex S. Banks , Dina Laznik- Bogoslavski, James P. White, Jang H. Choi, Kwok-kin Wong, Ted
Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering
NASA Astrophysics Data System (ADS)
Kong, Lingjie; Tang, Jianyong; Cui, Meng
2016-03-01
To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.
Engineering Orthopedic Tissue Interfaces
Yang, Peter J.
2009-01-01
While a wide variety of approaches to engineering orthopedic tissues have been proposed, less attention has been paid to the interfaces, the specialized areas that connect two tissues of different biochemical and mechanical properties. The interface tissue plays an important role in transitioning mechanical load between disparate tissues. Thus, the relatively new field of interfacial tissue engineering presents new challenges—to not only consider the regeneration of individual orthopedic tissues, but also to design the biochemical and cellular composition of the linking tissue. Approaches to interfacial tissue engineering may be distinguished based on if the goal is to recreate the interface itself, or generate an entire integrated tissue unit (such as an osteochondral plug). As background for future efforts in engineering orthopedic interfaces, a brief review of the biology and mechanics of each interface (cartilage–bone, ligament–bone, meniscus–bone, and muscle–tendon) is presented, followed by an overview of the state-of-the-art in engineering each tissue, including advances and challenges specific to regenerating the interfaces. PMID:19231983
High resolution macroscopy (HRMac) of the eye using nonlinear optical imaging
NASA Astrophysics Data System (ADS)
Winkler, Moritz; Jester, Bryan E.; Nien-Shy, Chyong; Chai, Dongyul; Brown, Donald J.; Jester, James V.
2010-02-01
Non-linear optical (NLO) imaging using femtosecond lasers provides a non-invasive means of imaging the structural organization of the eye through the generation of second harmonic signals (SHG). While NLO imaging is able to detect collagen, the small field of view (FoV) limits the ability to study how collagen is structurally organized throughout the larger tissue. To address this issue we have used computed tomography on optical and mechanical sectioned tissue to greatly expand the FoV and provide high resolution macroscopic (HRMac) images that cover the entire tissue (cornea and optic nerve head). Whole, fixed cornea (13 mm diameter) or optic nerve (3 mm diameter) were excised and either 1) embedded in agar and sectioned using a vibratome (200-300 um), or 2) embedded in LR White plastic resin and serially sectioned (2 um). Vibratome and plastic sections were then imaged using a Zeiss LSM 510 Meta and Chameleon femtosecond laser to generate NLO signals and assemble large macroscopic 3-dimensional tomographs with high resolution that varied in size from 9 to 90 Meg pixels per plane having a resolution of 0.88 um lateral and 2.0 um axial. 3-D reconstructions allowed for regional measurements within the cornea and optic nerve to quantify collagen content, orientation and organization over the entire tissue. We conclude that NLO based tomography to generate HRMac images provides a powerful new tool to assess collagen structural organization. Biomechanical testing combined with NLO tomography may provide new insights into the relationship between the extracellular matrix and tissue mechanics.
Successful human long-term application of in situ bone tissue engineering
Horch, Raymund E; Beier, Justus P; Kneser, Ulrich; Arkudas, Andreas
2014-01-01
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularized large bone grafts. We present two cases of large bone defects after debridement of an osteomyelitis. One of the defects was localized in the radius and one in the tibia. For osseus reconstruction, arteriovenous loops were created as vascular axis, which were placed in the bony defects. In case 1, the bone generation was achieved using cancellous bone from the iliac crest and fibrin glue and in case 2 using a clinically approved β-tricalciumphosphate/hydroxyapatite (HA), fibrin glue and directly auto-transplanted bone marrow aspirate from the iliac crest. The following post-operative courses were uneventful. The final examinations took place after 36 and 72 months after the initial operations. Computer tomogrphy (CT), membrane resonance imaging (MRI) and doppler ultrasound revealed patent arterio-venous (AV) loops in the bone grafts as well as completely healed bone defects. The patients were pain-free with normal ranges of motion. This is the first study demonstrating successfully axially vascularized in situ tissue engineered bone generation in large bone defects in a clinical scenario using the arteriovenous loop model without creation of a significant donor-site defect utilizing TE and RM techniques in human patients with long-term stability. PMID:24801710
The Development of the Ciliary Epithelium in the Embryonic Chicken Eye
1989-08-04
aqueous humor, which nourishes the avascular tissues in the anterior segment and generates intraocular pressure (IOP). IOP is the pressure contained...lightly stained. At higher magnification, tissue necrosis is evident in the central region. (60x). j 168 Figure 44. Graph of the labelling index
Potato transformation and potato cyst nematode infection on potato plantlets in tissue culture
USDA-ARS?s Scientific Manuscript database
These two protocols describe the methods for generating transgenic potato plants and for evaluating potato cyst nematode (Globodera rostochiensis and G. pallida) infection on potato plantlets in tissue culture. These methods are useful tools that can be used in the study of the interactions between ...
Vascular tissue engineering: towards the next generation vascular grafts.
Naito, Yuji; Shinoka, Toshiharu; Duncan, Daniel; Hibino, Narutoshi; Solomon, Daniel; Cleary, Muriel; Rathore, Animesh; Fein, Corey; Church, Spencer; Breuer, Christopher
2011-04-30
The application of tissue engineering technology to cardiovascular surgery holds great promise for improving outcomes in patients with cardiovascular diseases. Currently used synthetic vascular grafts have several limitations including thrombogenicity, increased risk of infection, and lack of growth potential. We have completed the first clinical trial evaluating the feasibility of using tissue engineered vascular grafts (TEVG) created by seeding autologous bone marrow-derived mononuclear cells (BM-MNC) onto biodegradable tubular scaffolds. Despite an excellent safety profile, data from the clinical trial suggest that the primary graft related complication of the TEVG is stenosis, affecting approximately 16% of grafts within the first seven years after implantation. Continued investigation into the cellular and molecular mechanisms underlying vascular neotissue formation will improve our basic understanding and provide insights that will enable the rationale design of second generation TEVG. Published by Elsevier B.V.
Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.
Lu, Kai; Gordon, Richard; Cao, Tong
2015-03-01
The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.
Biomaterials for Bone Regenerative Engineering.
Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T
2015-06-24
Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of the dental pulp using optical coherence tomography
NASA Astrophysics Data System (ADS)
Kauffman, C. M. F.; Carvalho, M. T.; Araujo, R. E.; Freitas, A. Z.; Zezell, D. M.; Gomes, A. S. L.
2006-02-01
The inner structure of teeth, i.e. the root canal anatomy, is very complex. However a good knowledge of endodontic architecture is the first step towards successful endodontic treatment. Optical coherence tomography (OCT) is a powerful technique to generate images of hard and soft tissue. Its images show dependency on the optical properties of the tissue under analysis. Changes in the scattering and absorption of tissues can be observed through the OCT images. In this work, we used optical coherence tomography to perform in vitro studies of the inner structure of the first molar of albino rats (Rattus norvegicus). Focusing on the pulp chamber and in the root canal, we compare the images generated with the OCT technique to the histology. We are analyzing the feasibility of OCT to help on the diagnostic of endodontic diseases.
Ranjit, Suman; Dvornikov, Alexander; Stakic, Milka; Hong, Suk-Hyun; Levi, Moshe; Evans, Ronald M.; Gratton, Enrico
2015-01-01
In this paper we have used second harmonic generation (SHG) and phasor approach to auto fluorescence lifetime imaging (FLIM) to obtain fingerprints of different collagens and then used these fingerprints to observe bone marrow fibrosis in the mouse femur. This is a label free approach towards fast automatable detection of fibrosis in tissue samples. FLIM has previously been used as a method of contrast in different tissues and in this paper phasor approach to FLIM is used to separate collagen I from collagen III, the markers of fibrosis, the largest groups of disorders that are often without any effective therapy. Often characterized by an increase in collagen content of the corresponding tissue, the samples are usually visualized by histochemical staining, which is pathologist dependent and cannot be automated. PMID:26293987
NASA Astrophysics Data System (ADS)
Gan, Yu; Yao, Xinwen; Chang, Ernest W.; Bin Amir, Syed A.; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine P.
2017-02-01
Breast cancer is the third leading cause of death in women in the United States. In human breast tissue, adipose cells are infiltrated or replaced by cancer cells during the development of breast tumor. Therefore, an adipose map can be an indicator of identifying cancerous region. We developed an automated classification method to generate adipose map within human breast. To facilitate the automated classification, we first mask the B-scans from OCT volumes by comparing the signal noise ratio with a threshold. Then, the image was divided into multiple blocks with a size of 30 pixels by 30 pixels. In each block, we extracted texture features such as local standard deviation, entropy, homogeneity, and coarseness. The features of each block were input to a probabilistic model, relevance vector machine (RVM), which was trained prior to the experiment, to classify tissue types. For each block within the B-scan, RVM identified the region with adipose tissue. We calculated the adipose ratio as the number of blocks identified as adipose over the total number of blocks within the B-scan. We obtained OCT images from patients (n = 19) in Columbia medical center. We automatically generated the adipose maps from 24 B-scans including normal samples (n = 16) and cancerous samples (n = 8). We found the adipose regions show an isolated pattern that in cancerous tissue while a clustered pattern in normal tissue. Moreover, the adipose ratio (52.30 ± 29.42%) in normal tissue was higher than the that in cancerous tissue (12.41 ± 10.07%).
Murine tissue-engineered stomach demonstrates epithelial differentiation.
Speer, Allison L; Sala, Frederic G; Matthews, Jamil A; Grikscheit, Tracy C
2011-11-01
Gastric cancer remains the second largest cause of cancer-related mortality worldwide. Postgastrectomy morbidity is considerable and quality of life is poor. Tissue-engineered stomach is a potential replacement solution to restore adequate food reservoir and gastric physiology. In this study, we performed a detailed investigation of the development of tissue-engineered stomach in a mouse model, specifically evaluating epithelial differentiation, proliferation, and the presence of putative stem cell markers. Organoid units were isolated from <3 wk-old mouse glandular stomach and seeded onto biodegradable scaffolds. The constructs were implanted into the omentum of adult mice. Implants were harvested at designated time points and analyzed with histology and immunohistochemistry. Tissue-engineered stomach grows as an expanding sphere with a simple columnar epithelium organized into gastric glands and an adjacent muscularis. The regenerated gastric epithelium demonstrates differentiation of all four cell types: mucous, enteroendocrine, chief, and parietal cells. Tissue-engineered stomach epithelium proliferates at a rate comparable to native glandular stomach and expresses two putative stem cell markers: DCAMKL-1 and Lgr5. This study demonstrates the successful generation of tissue-engineered stomach in a mouse model for the first time. Regenerated gastric epithelium is able to appropriately proliferate and differentiate. The generation of murine tissue-engineered stomach is a necessary advance as it provides the transgenic tools required to investigate the molecular and cellular mechanisms of this regenerative process. Delineating the mechanism of how tissue-engineered stomach develops in vivo is an important precursor to its use as a human stomach replacement therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David
2013-01-01
Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.
A hybrid computational model to explore the topological characteristics of epithelial tissues.
González-Valverde, Ismael; García-Aznar, José Manuel
2017-11-01
Epithelial tissues show a particular topology where cells resemble a polygon-like shape, but some biological processes can alter this tissue topology. During cell proliferation, mitotic cell dilation deforms the tissue and modifies the tissue topology. Additionally, cells are reorganized in the epithelial layer and these rearrangements also alter the polygon distribution. We present here a computer-based hybrid framework focused on the simulation of epithelial layer dynamics that combines discrete and continuum numerical models. In this framework, we consider topological and mechanical aspects of the epithelial tissue. Individual cells in the tissue are simulated by an off-lattice agent-based model, which keeps the information of each cell. In addition, we model the cell-cell interaction forces and the cell cycle. Otherwise, we simulate the passive mechanical behaviour of the cell monolayer using a material that approximates the mechanical properties of the cell. This continuum approach is solved by the finite element method, which uses a dynamic mesh generated by the triangulation of cell polygons. Forces generated by cell-cell interaction in the agent-based model are also applied on the finite element mesh. Cell movement in the agent-based model is driven by the displacements obtained from the deformed finite element mesh of the continuum mechanical approach. We successfully compare the results of our simulations with some experiments about the topology of proliferating epithelial tissues in Drosophila. Our framework is able to model the emergent behaviour of the cell monolayer that is due to local cell-cell interactions, which have a direct influence on the dynamics of the epithelial tissue. Copyright © 2017 John Wiley & Sons, Ltd.
Technique development for photoacoustic imaging guided interventions
NASA Astrophysics Data System (ADS)
Cheng, Qian; Zhang, Haonan; Yuan, Jie; Feng, Ting; Xu, Guan; Wang, Xueding
2015-03-01
Laser-induced thermotherapy (LITT), i.e. tissue destruction induced by a local increase of temperature by means of laser light energy transmission, has been frequently used for minimally invasive treatments of various diseases such as benign thyroid nodules and liver cancer. The emerging photoacoustic (PA) imaging, when integrated with ultrasound (US), could contribute to LITT procedure. PA can enable a good visualization of percutaneous apparatus deep inside tissue and, therefore, can offer accurate guidance of the optical fibers to the target tissue. Our initial experiment demonstrated that, by picking the strong photoacoustic signals generated at the tips of optical fibers as a needle, the trajectory and position of the fibers could be visualized clearly using a commercial available US unit. When working the conventional US Bscan mode, the fibers disappeared when the angle between the fibers and the probe surface was larger than 60 degree; while working on the new PA mode, the fibers could be visualized without any problem even when the angle between the fibers and the probe surface was larger than 75 degree. Moreover, with PA imaging function integrated, the optical fibers positioned into the target tissue, besides delivering optical energy for thermotherapy, can also be used to generate PA signals for on-line evaluation of LITT. Powered by our recently developed PA physio-chemical analysis, PA measurements from the tissue can provide a direct and accurate feedback of the tissue responses to laser ablation, including the changes in not only chemical compositions but also histological microstructures. The initial experiment on the rat liver model has demonstrated the excellent sensitivity of PA imaging to the changes in tissue temperature rise and tissue status (from native to coagulated) when the tissue is treated in vivo with LITT.
Anderson, David M. G.; Mills, Daniel; Spraggins, Jeffrey; Lambert, Wendi S.; Calkins, David J.
2013-01-01
Purpose To develop a method for generating high spatial resolution (10 µm) matrix-assisted laser desorption ionization (MALDI) images of lipids in rodent optic nerve tissue. Methods Ice-embedded optic nerve tissue from rats and mice were cryosectioned across the coronal and sagittal axes of the nerve fiber. Sections were thaw mounted on gold-coated MALDI plates and were washed with ammonium acetate to remove biologic salts before being coated in 2,5-dihydroxybenzoic acid by sublimation. MALDI images were generated in positive and negative ion modes at 10 µm spatial resolution. Lipid identification was performed with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer. Results Several lipid species were observed with high signal intensity in MALDI images of optic nerve tissue. Several lipids were localized to specific structures including in the meninges surrounding the optic nerve and in the central neuronal tissue. Specifically, phosphatidylcholine species were observed throughout the nerve tissue in positive ion mode while sulfatide species were observed in high abundance in the meninges surrounding the optic nerve in negative ion mode. Accurate mass measurements and fragmentation using sustained off-resonance irradiation with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer instrument allowed for identification of lipid species present in the small structure of the optic nerve directly from tissue sections. Conclusions An optimized sample preparation method provides excellent sensitivity for lipid species present within optic nerve tissue. This allowed the laser spot size and fluence to be reduced to obtain a high spatial resolution of 10 µm. This new imaging modality can now be applied to determine spatial and molecular changes in optic nerve tissue with disease. PMID:23559852
Kennaway, Richard; Coen, Enrico; Green, Amelia; Bangham, Andrew
2011-01-01
A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this process involves preferential growth along particular orientations raising the question of how these orientations are specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based system). The axiality-based system has recently been explored through computational modelling. Here we develop and apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue, allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems, have been exploited during evolution to generate a range of observed biological shapes. PMID:21698124
Injectable PolyMIPE Scaffolds for Soft Tissue Regeneration
Moglia, Robert S.; Robinson, Jennifer L.; Muschenborn, Andrea D.; Touchet, Tyler J.; Maitland, Duncan J.; Cosgriff-Hernandez, Elizabeth
2013-01-01
Injury caused by trauma, burns, surgery, or disease often results in soft tissue loss leading to impaired function and permanent disfiguration. Tissue engineering aims to overcome the lack of viable donor tissue by fabricating synthetic scaffolds with the requisite properties and bioactive cues to regenerate these tissues. Biomaterial scaffolds designed to match soft tissue modulus and strength should also retain the elastomeric and fatigue-resistant properties of the tissue. Of particular design importance is the interconnected porous structure of the scaffold needed to support tissue growth by facilitating mass transport. Adequate mass transport is especially true for newly implanted scaffolds that lack vasculature to provide nutrient flux. Common scaffold fabrication strategies often utilize toxic solvents and high temperatures or pressures to achieve the desired porosity. In this study, a polymerized medium internal phase emulsion (polyMIPE) is used to generate an injectable graft that cures to a porous foam at body temperature without toxic solvents. These poly(ester urethane urea) scaffolds possess elastomeric properties with tunable compressive moduli (20–200 kPa) and strengths (4–60 kPa) as well as high recovery after the first conditioning cycle (97–99%). The resultant pore architecture was highly interconnected with large voids (0.5–2 mm) from carbon dioxide generation surrounded by water-templated pores (50–300 μm). The ability to modulate both scaffold pore architecture and mechanical properties by altering emulsion chemistry was demonstrated. Permeability and form factor were experimentally measured to determine the effects of polyMIPE composition on pore interconnectivity. Finally, initial human mesenchymal stem cell (hMSC) cytocompatibility testing supported the use of these candidate scaffolds in regenerative applications. Overall, these injectable polyMIPE foams show strong promise as a biomaterial scaffold for soft tissue repair. PMID:24563552
Using cell deformation and motion to predict forces and collective behavior in morphogenesis.
Merkel, Matthias; Manning, M Lisa
2017-07-01
In multi-cellular organisms, morphogenesis translates processes at the cellular scale into tissue deformation at the scale of organs and organisms. To understand how biochemical signaling regulates tissue form and function, we must understand the mechanical forces that shape cells and tissues. Recent progress in developing mechanical models for tissues has led to quantitative predictions for how cell shape changes and polarized cell motility generate forces and collective behavior on the tissue scale. In particular, much insight has been gained by thinking about biological tissues as physical materials composed of cells. Here we review these advances and discuss how they might help shape future experiments in developmental biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-thermal plasma jet without electrical shock for biomedical applications
NASA Astrophysics Data System (ADS)
Baik, Ku Youn; Kang, Han Lim; Kim, Junseong; Park, Shin Young; Bang, Ji Yun; Uhm, Han S.; Choi, Eun Ha; Cho, Guangsup
2013-10-01
A plasma jet without an electrical shock was generated through a Y-shaped tube in which voltages with opposite phases were applied to a pair of tubes. The plasma plume generated at the intersection had a plasma potential of a 60-90 V and high concentrations of reactive species sufficient to induce a high level of lethality on gram-negative bacteria on a tissue mimic. The selective lethality of bacteria on an epithelial-cell-containing tissue mimic could be modulated using oxidant and antioxidant chemicals, thereby leading to the possibility of a shock-reduced plasma jet for biomedical applications.
Hard X-Rays can BE Used to Visualize Cochlear Soft Tissue Displacements in a Closed Cochlea
NASA Astrophysics Data System (ADS)
Richter, C.-P.; Fishman, A.; Fan, L.; Shintani, S.; Rau, C.
2009-02-01
Experiments were made at the Advanced Photon Source (APS), Argonne National Laboratory. The APS is a synchrotron radiation source of the third generation, for which the particular characteristic is the highly coherent X-ray radiation. X-rays are generated with an undulator, inserted in a straight section of the storage ring. Images taken with hard X-rays at full field. A video flow algorithm by Lucas and Kanade was used to determine and quantify cochlear soft tissue displacements. The results show that displacements as low as 100 nm could be visualized.
Shimomura, Kazunori; Ando, Wataru; Moriguchi, Yu; Sugita, Norihiko; Yasui, Yukihiko; Koizumi, Kota; Fujie, Hiromichi; Hart, David A.; Yoshikawa, Hideki
2015-01-01
Because of its limited healing capacity, treatments for articular cartilage injuries are still challenging. Since the first report by Brittberg, autologous chondrocyte implantation has been extensively studied. Recently, as an alternative for chondrocyte-based therapy, mesenchymal stem cell–based therapy has received considerable research attention because of the relative ease in handling for tissue harvest, and subsequent cell expansion and differentiation. This review summarizes latest development of stem cell therapies in cartilage repair with special attention to scaffold-free approaches. PMID:27340513
Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm.
Lim, Hyungsik; Jiang, Yi; Wang, Yimin; Huang, Yu-Chih; Chen, Zhongping; Wise, Frank W
2005-05-15
We report a compact, high-power, fiber-based source for ultrahigh-resolution optical coherence tomography (OCT) near 1 microm. The practical source is based on a short-pulse, ytterbium-doped fiber laser and on generation of a continuum spectrum in a photonic crystal fiber. The broadband emission has an average power of 140 mW and offers an axial resolution of 2.1 microm in air (<1.6 microm in biological tissue). The generation of a broad bandwidth is robust and efficient. We demonstrate ultrahigh-resolution, time-domain OCT imaging of in vitro and in vivo biological tissues.
Pluripotent Stem Cells for Retinal Tissue Engineering: Current Status and Future Prospects.
Singh, Ratnesh; Cuzzani, Oscar; Binette, François; Sternberg, Hal; West, Michael D; Nasonkin, Igor O
2018-04-19
The retina is a very fine and layered neural tissue, which vitally depends on the preservation of cells, structure, connectivity and vasculature to maintain vision. There is an urgent need to find technical and biological solutions to major challenges associated with functional replacement of retinal cells. The major unmet challenges include generating sufficient numbers of specific cell types, achieving functional integration of transplanted cells, especially photoreceptors, and surgical delivery of retinal cells or tissue without triggering immune responses, inflammation and/or remodeling. The advances of regenerative medicine enabled generation of three-dimensional tissues (organoids), partially recreating the anatomical structure, biological complexity and physiology of several tissues, which are important targets for stem cell replacement therapies. Derivation of retinal tissue in a dish creates new opportunities for cell replacement therapies of blindness and addresses the need to preserve retinal architecture to restore vision. Retinal cell therapies aimed at preserving and improving vision have achieved many improvements in the past ten years. Retinal organoid technologies provide a number of solutions to technical and biological challenges associated with functional replacement of retinal cells to achieve long-term vision restoration. Our review summarizes the progress in cell therapies of retina, with focus on human pluripotent stem cell-derived retinal tissue, and critically evaluates the potential of retinal organoid approaches to solve a major unmet clinical need-retinal repair and vision restoration in conditions caused by retinal degeneration and traumatic ocular injuries. We also analyze obstacles in commercialization of retinal organoid technology for clinical application.
Fraser, John K.; Hicok, Kevin C.; Shanahan, Rob; Zhu, Min; Miller, Scott; Arm, Douglas M.
2014-01-01
Objective: To develop a closed, automated system that standardizes the processing of human adipose tissue to obtain and concentrate regenerative cells suitable for clinical treatment of thermal and radioactive burn wounds. Approach: A medical device was designed to automate processing of adipose tissue to obtain a clinical-grade cell output of stromal vascular cells that may be used immediately as a therapy for a number of conditions, including nonhealing wounds resulting from radiation damage. Results: The Celution® System reliably and reproducibly generated adipose-derived regenerative cells (ADRCs) from tissue collected manually and from three commercial power-assisted liposuction devices. The entire process of introducing tissue into the system, tissue washing and proteolytic digestion, isolation and concentration of the nonadipocyte nucleated cell fraction, and return to the patient as a wound therapeutic, can be achieved in approximately 1.5 h. An alternative approach that applies ultrasound energy in place of enzymatic digestion demonstrates extremely poor efficiency cell extraction. Innovation: The Celution System is the first medical device validated and approved by multiple international regulatory authorities to generate autologous stromal vascular cells from adipose tissue that can be used in a real-time bedside manner. Conclusion: Initial preclinical and clinical studies using ADRCs obtained using the automated tissue processing Celution device described herein validate a safe and effective manner to obtain a promising novel cell-based treatment for wound healing. PMID:24761343
Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis
Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise
2012-01-01
Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025
Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.
Bai, Meizhu; Liang, Dan; Wang, Yinghua; Li, Qing; Wu, Yuxuan; Li, Jinsong
2016-05-20
Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Material Separation Using Dual-Energy CT: Current and Emerging Applications.
Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V
2016-01-01
Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.
Romanos, Georgios E; Belikov, Andrey V; Skrypnik, Alexei V; Feldchtein, Felix I; Smirnov, Michael Z; Altshuler, Gregory B
2015-07-01
Uncovering implants with lasers, while bloodless, has been associated with a risk of implant and bone overheating. The present study evaluated the effect of using a new generation of high-power diode lasers on the temperature of a dental implant and the surrounding tissues using an in vitro model. The implant temperature was measured at three locations using micro thermocouples. Collateral thermal damage of uncovered soft tissues was evaluated using NTBC stain. Implant temperature rise during and collateral thermal soft-tissue damage following implant uncovering with and without tissue air-cooling was studied using both the classic operational mode and the new thermo-optically powered (TOP) technology. For the classic surgical mode using a cork-initiated tip and constant laser power set at 3.4 W, the maximum temperature rise in the coronal and apical parts of the implant was 23.2 ± 4.1°С and 9.5 ± 1.8°С, respectively, while 1.5 ± 0.5 mm of collateral thermal damage of the soft tissue surrounding the implant model occurred. Using the TOP surgical tip with constant laser power reduced implant overheating by 30%; collateral thermal soft-tissue damage was 0.8 ± 0.2 mm. Using the TOP surgical mode with a tip temperature setting of 800°C and air-cooling reduced the implant temperature rise by more than 300%, and only 0.2 ± 0.1 mm of collateral thermal soft-tissue damage occurred, typical for optimized CO2 laser surgery. Furthermore, use of the new generation diode technology (TOP surgical mode) appeared to reduce the time required for implant uncovering by a factor of two, compared to the standard surgical mode. Use of the new generation diode technology (TOP surgical mode) may significantly reduce overheating of dental implants during uncovering and seems to be safer for the adjacent soft and hard tissues. Use of such diode lasers with air-cooling can radically reduce the rise in implant temperatures (by more than three times), potentially making this technology safe and effective for implant uncovering. © 2015 Wiley Periodicals, Inc.
A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies
Zlobec, Inti; Suter, Guido; Perren, Aurel; Lugli, Alessandro
2014-01-01
Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a ‘donor’ block into a ‘recipient’ block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 ‘recipient’ blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research. PMID:25285857
The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.
Marti-Figueroa, Carlos R; Ashton, Randolph S
2017-05-01
Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis to generate organoids with biomimicry at all scales. Such advancements would enable the use of organoids as a basis for 'next-generation' tissue engineering of functional, anatomically mimetic human tissues and potentially novel organ transplants. Here, we discuss critical aspects of organoid morphogenesis where application of innovative tissue engineering methodologies would yield significant advancement towards this goal. Copyright © 2017. Published by Elsevier Ltd.
Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian
2017-01-01
The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe
2013-12-15
An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized bymore » quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.« less
Tang, Dianping; Zhang, Bing; Liu, Bingqian; Chen, Guonan; Lu, Minghua
2014-05-15
A new digital multimeter (DMM)-based immunosensing system was designed for quantitative monitoring of biomarker (prostate-specific antigen, PSA used in this case) by coupling with an external capacitor and an enzymatic catalytic reaction. The system consisted of a salt bridge-linked reaction cell and a capacitor/DMM-joined electronic circuit. A sandwich-type immunoreaction with target PSA between the immobilized primary antibody and glucose oxidase (GOx)-labeled detection antibody was initially carried out in one of the two half-cells. Accompanying the sandwiched immunocomplex, the conjugated GOx could catalyze the oxidation of glucose, simultaneously resulting in the conversion of [Fe(CN)6](3-) to [Fe(CN)6](4-). The difference in the concentrations of [Fe(CN)6](3-)/[Fe(CN)6](4-) in two half-cells automatically produced a voltage that was utilized to charge an external capacitor. With the closing circuit switch, the capacitor discharged through the DMM, which could provide a high instantaneous current. Under the optimal conditions, the resulting currents was indirectly proportional to the concentration of target PSA in the dynamic range of 0.05-7 ng mL(-1) with a detection limit (LOD) of 6 pg mL(-1). The reproducibility, precision, and selectivity were acceptable. In addition, the methodology was validated by analyzing 12 clinical serum specimens, receiving a good accordance with the referenced values for the detection of PSA. Copyright © 2013 Elsevier B.V. All rights reserved.
Martínez-Mancera, Flavio Dolores; García-López, Patricia; Hernández-López, José Luis
2015-04-15
The ELISA format for measuring carcinoembryonic antigen (CEA) serves as a reference standard against which other assays are compared. Because the World Health Organization (WHO) increasingly recommends the use of serum CEA as a diagnostic tool for cancer, it is relevant to explore the reliability of the new decentralized CEA point-of-care-testing (POCT) technologies that are available to physicians and patients, in compliance with mandates of the clinical laboratories' regulatory agencies. Electrochemical immunoassay (ECIA) based on trace lead (Pb) analysis by anodic stripping techniques using sandwich-type immunocomplex conjugates: (MB)Ab/AgCEA/Ab(PbS), and a commercial ELISA test system with optical transmission. The ECIA provides better analytical performance than does the ELISA. The within assay precision coefficient of variance (%CVw) of the ECIA is lower than the value recommended by the Hong Kong Association of Medical Laboratories (HKAML), and the recoveries of CEA at 1.0, 5.0, 10.0, 25.0 and 50.0 ng/ml are in the range of 99-110% for control serum samples. The ECIA showed a minimal positive bias of 0.0267 ± 0.3270 ng/ml (P=0.9389). The proposed CEA screening technology can be practically employed for decentralized clinical analysis of CEA in human serum. Therefore, it can be viewed as a control method for personalized therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
[CD4 lymphocytopenia in systemic lupus erythematosus].
Ferreira, Sofia; Vasconcelos, Júlia; Marinho, António; Farinha, Fátima; Almeida, Isabel; Correia, João; Barbosa, Paulo; Mendonça, Teresa; Vasconcelos, Carlos
2009-01-01
Systemic Lupus Erythematosus (SLE) is an inflammatory chronic disease characterized by the presence of autoantibodies, immunocomplex production and organ injury. Several alterations of the immune system have been described, namely of CD4 T cells, with particular focus on regulatory subgroup. Quantify peripheral CD4 T cells in a population of patients with SLE and correlate it with lupus activity, affected organs, therapeutics and infections. Retrospective study involving all SLE patients seen in the clinical immunology outpatient clinic of the Hospital Geral Santo António, Porto that has done some peripheral blood flow cytometry study. Twenty-nine patients have been evaluated, 16 were taking glucocorticoids and six immunossupressors. The mean SLEDAI at the study time was nine and the ECLAM was three. Thirty-one percent of the patients had leukopenia, 76% lymphocytopenia and the same number CD4 depletion. Fifty-five percent of the patients had CD4 levels lower than 500/mm3, 31% lower than 200/mm3. All patients with SLEDAI > or = 20 and ECLAM > or = 4 had CD4 counts inferior to 500/mm3 and all patients with inactive disease had CD4 superior to 500/mm3. There have been three opportunistic infections: cryptococcal meningitis, pulmonary aspergilosis, Pneumocystis jirovecii pneumonia, all in patients with CD4 counts lower than 500/mm3. Decreased CD4 T cells counts have been very common in this study population. There is an inverse relation between CD4 cells counts and disease activity. Opportunistic infections occurred in patients with severe CD4 depletion.
Teste, Bruno; Kanoufi, Frédéric; Descroix, Stéphanie; Poncet, Pascal; Georgelin, Thomas; Siaugue, Jean-Michel; Petr, Jan; Varenne, Anne; Hennion, Marie-Claire
2011-07-01
In this paper, we demonstrate the possibility to use magnetic nanoparticles as immunosupports for allergy diagnosis. Most immunoassays used for immunosupports and clinical diagnosis are based on a heterogeneous solid-phase system and suffer from mass-transfer limitation. The nanoparticles' colloidal behavior and magnetic properties bring the advantages of homogeneous immunoassay, i.e., species diffusion, and of heterogeneous immunoassay, i.e., easy separation of the immunocomplex and free forms, as well as analyte preconcentration. We thus developed a colloidal, non-competitive, indirect immunoassay using magnetic core-shell nanoparticles (MCSNP) as immunosupports. The feasibility of such an immunoassay was first demonstrated with a model antibody and described by comparing the immunocapture kinetics using macro (standard microtiter plate), micro (microparticles) and nanosupports (MCSNP). The influence of the nanosupport properties (surface chemistry, antigen density) and of the medium (ionic strength, counter ion nature) on the immunocapture efficiency and specificity was then investigated. The performances of this original MCSNP-based immunoassay were compared with a gold standard enzyme-linked immunosorbent assay (ELISA) using a microtiter plate. The capture rate of target IgG was accelerated 200-fold and a tenfold lower limit of detection was achieved. Finally, the MCSNP-based immunoassay was successfully applied to the detection of specific IgE from milk-allergic patient's sera with a lower LOD and a good agreement (CV < 6%) with the microtiter plate, confirming the great potential of this analytical platform in the field of immunodiagnosis.
Rezaei, Babak; Shoushtari, Ahmad Mousavi; Rabiee, Mohammad; Uzun, Lokman; Mak, Wing Cheung; Turner, Anthony P F
2018-05-15
A sandwich-type nanostructured immunosensor based on carboxylated multi-walled carbon nanotube (CMWCNT)-embedded whiskered nanofibres (WNFs) was developed for detection of cardiac Troponin I (cTnI). WNFs were directly fabricated on glassy carbon electrodes (GCE) by removing the sacrificial component (polyethylene glycol, PEG) after electrospinning of polystyrene/CMWCNT/PEG nanocomposite nanofibres, and utilised as a transducer layer for enzyme-labeled amperometric immunoassay of cTnI. The whiskered segments of CMWCNTs were activated and utilised to immobilise anti-cTnT antibodies. It was observed that the anchored CMWCNTs within the nanofibres were suitably stabilised with excellent electrochemical repeatability. A sandwich-type immuno-complex was formed between cTnI and horseradish peroxidase-conjugated anti-cTnI (HRP-anti-cTnI). The amperometric responses of the immunosensor were studied using cyclic voltammetry (CV) through an enzymatic reaction between hydrogen peroxide and HRP conjugated to the secondary antibody. The nanostructured immunosensor delivered a wide detection range for cTnI from the clinical borderline for a normal person (0.5-2ngmL -1 ) to the concentration present in myocardial infarction patients (> 20ngmL -1 ), with a detection limit of ~ 0.04ngmL -1 . It also showed good reproducibility and repeatability for three different cTnI concentration (1, 10 and 25ngmL -1 ) with satisfactory relative standard deviations (RSD). Hence, the proposed nanostructured immunosensor shows potential for point-of-care testing. Copyright © 2018 Elsevier B.V. All rights reserved.
Optical diamagnetic biosensor for immunocomplexes on beads
NASA Astrophysics Data System (ADS)
Norina, Svetlana B.
2000-12-01
In the present work, diamagnetic separation parameters for the porous beads are studied using optical video recording microscopy. The possible direct amount determination of single or double macromolecular layers immobilized in the meshes of the porous beads is demonstrated for the concentrations' range used in heterogenic immunotest and the affinity chromatography, where the direct rapid detection of ligands within sorbent particles is known to be the actual task. A gradient diamagnetic biosensor is described as suitable for rapid quantitative detection of single or double macromolecular layers in porous nonmagnetic beads. Measurements of capture traveling time or accumulation radius in gradient magnetic field have shown that it is possible to determine 0.20 mg/ml of macromolecular amount within several seconds. The portative devices were made on the base of the fabre optic technique to detect accumulation radius of collected beads in two gradient magnetic positions: diamagnetic and paramagnetic zones of magnetized wire with 55 μm in diameter and to registrate with a lot of fabre wires having 30 μm in diameters. The successive procedures of the present method can be described by: the obtaining of agarose immuno-beads, the incubation of beads with the ligand sample or the injection of sample through affinity mini-column, the submerging of the loaded beads into the glass cell containing Ni-wire or the narrow gap of magnetic poles; the computational obtaining of immuno- parameters; binding constants, accumulation radius. Several biotechnological applications of the biosensor are presented on sorbent beads, human lymphocytes.
Zhu, Min-xia; Lu, Chao; Xia, Chun-mei; Qiao, Zhong-wei; Zhu, Da-nian
2014-12-01
Excitotoxicity and cytotoxic edema are the two major factors resulting in neuronal injury during brain ischemia and reperfusion. Ca2+/calmodulin-dependent protein kinase II (CaMK II), the downstream signal molecular of N-methyl-D-aspartate receptors (NMDARs), is a mediator in the excitotoxicity. Aquaporin 4 (AQP4), expressed mainly in the brain, is an important aquaporin to control the flux of water. In a previous study, we had reported that pretreatment of simvastatin protected the cerebrum from ischemia and reperfusion injury by decreasing neurological deficit score and infarct area (Zhu et al. PLoS One 7:e51552, 2012). The present study used a middle cerebral artery occlusion (MCAO) model to further explore the pleiotropic effect of simvastatin via CaMK II and AQP4. The results showed that simvastatin reduced degenerated cells and brain edema while decreasing the protein expressions of phosphor-CaMK II and AQP4, and increasing the ratios of Bcl-2/Bax, which was independent of cholesterol-lowering effect. Immunocomplexes formed between the subunit of NMDARs-NR3A and AQP4 were detected for the first time. It was concluded that simvastatin could protect the cerebrum from neuronal excitotoxicity and cytotoxic edema by downregulating the expressions of phosphor-CaMK II and AQP4, and that the interaction between NR3A and AQP4 might provide the base for AQP4 involving in the signaling pathways mediated by NMDARs.
Self-Organization and the Self-Assembling Process in Tissue Engineering
Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.
2015-01-01
In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238
Tension stimulation drives tissue formation in scaffold-free systems
NASA Astrophysics Data System (ADS)
Lee, Jennifer K.; Huwe, Le W.; Paschos, Nikolaos; Aryaei, Ashkan; Gegg, Courtney A.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2017-08-01
Scaffold-free systems have emerged as viable approaches for engineering load-bearing tissues. However, the tensile properties of engineered tissues have remained far below the values for native tissue. Here, by using self-assembled articular cartilage as a model to examine the effects of intermittent and continuous tension stimulation on tissue formation, we show that the application of tension alone, or in combination with matrix remodelling and synthesis agents, leads to neocartilage with tensile properties approaching those of native tissue. Implantation of tension-stimulated tissues results in neotissues that are morphologically reminiscent of native cartilage. We also show that tension stimulation can be translated to a human cell source to generate anisotropic human neocartilage with enhanced tensile properties. Tension stimulation, which results in nearly sixfold improvements in tensile properties over unstimulated controls, may allow the engineering of mechanically robust biological replacements of native tissue.
Tissue engineering therapy for cardiovascular disease.
Nugent, Helen M; Edelman, Elazer R
2003-05-30
The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.
Image-based modeling and characterization of RF ablation lesions in cardiac arrhythmia therapy
NASA Astrophysics Data System (ADS)
Linte, Cristian A.; Camp, Jon J.; Rettmann, Maryam E.; Holmes, David R.; Robb, Richard A.
2013-03-01
In spite of significant efforts to enhance guidance for catheter navigation, limited research has been conducted to consider the changes that occur in the tissue during ablation as means to provide useful feedback on the progression of therapy delivery. We propose a technique to visualize lesion progression and monitor the effects of the RF energy delivery using a surrogate thermal ablation model. The model incorporates both physical and physiological tissue parameters, and uses heat transfer principles to estimate temperature distribution in the tissue and geometry of the generated lesion in near real time. The ablation model has been calibrated and evaluated using ex vivo beef muscle tissue in a clinically relevant ablation protocol. To validate the model, the predicted temperature distribution was assessed against that measured directly using fiberoptic temperature probes inserted in the tissue. Moreover, the model-predicted lesions were compared to the lesions observed in the post-ablation digital images. Results showed an agreement within 5°C between the model-predicted and experimentally measured tissue temperatures, as well as comparable predicted and observed lesion characteristics and geometry. These results suggest that the proposed technique is capable of providing reasonably accurate and sufficiently fast representations of the created RF ablation lesions, to generate lesion maps in near real time. These maps can be used to guide the placement of successive lesions to ensure continuous and enduring suppression of the arrhythmic pathway.
Graham, M Elise; Gratzer, Paul F; Bezuhly, Michael; Hong, Paul
2016-10-01
Reconstruction of cartilage defects in the head and neck can require harvesting of autologous cartilage grafts, which can be associated with donor site morbidity. To overcome this limitation, tissue-engineering approaches may be used to generate cartilage grafts. The objective of this study was to decellularize and characterize human nasoseptal cartilage with the aim of generating a biological scaffold for cartilage tissue engineering. Laboratory study using nasoseptal cartilage. Remnant human nasoseptal cartilage specimens were collected and subjected to a novel decellularization treatment. The decellularization process involved several cycles of enzymatic detergent treatments. For characterization, decellularized and fresh (control) specimens underwent histological, biochemical, and mechanical analyses. Scanning electron microscopy and biocompatibility assay were also performed. The decellularization process had minimal effect on glycosaminoglycan content of the cartilage extracellular matrix. Deoxyribonucleic acid (DNA) analysis revealed the near-complete removal of genomic DNA from decellularized tissues. The effectiveness of the decellularization process was also confirmed on histological and scanning electron microscopic analyses. Mechanical testing results showed that the structural integrity of the decellularized tissue was maintained, and biocompatibility was confirmed. Overall, the current decellularization treatment resulted in significant reduction of genetic/cellular material with preservation of the underlying extracellular matrix structure. This decellularized material may serve as a potential scaffold for cartilage tissue engineering. N/A. Laryngoscope, 126:2226-2231, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran
2011-11-01
Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optoacoustic detection of thermal lesions
NASA Astrophysics Data System (ADS)
Arsenault, Michel G.; Kolios, Michael C.; Whelan, William M.
2009-02-01
Minimally invasive thermal therapy is being investigated as an alternative cancer treatment. It involves heating tissues to greater than 55°C over a period of a few minutes, which results in tissue coagulation. Optoacoustic (OA) imaging is a new imaging technique that involves exposing tissues to pulsed light and detecting the acoustic waves that are generated. In this study, adult bovine liver tissue samples were heated using continuous wave laser energy for various times, then scanned using an optoacoustic imaging system. Large optoacoustic signal variability was observed in the native tissue prior to heating. OA signal amplitude increased with maximum tissue temperature achieved, characterized by a correlation coefficient of 0.63. In this study we show that there are detectable changes in optoacoustic signal strength that arise from tissue coagulation, which demonstrates the potential of optoacoustic technology for the monitoring of thermal therapy delivery.
Pizzolato, Claudio; Lloyd, David G.; Barrett, Rod S.; Cook, Jill L.; Zheng, Ming H.; Besier, Thor F.; Saxby, David J.
2017-01-01
Musculoskeletal tissues respond to optimal mechanical signals (e.g., strains) through anabolic adaptations, while mechanical signals above and below optimal levels cause tissue catabolism. If an individual's physical behavior could be altered to generate optimal mechanical signaling to musculoskeletal tissues, then targeted strengthening and/or repair would be possible. We propose new bioinspired technologies to provide real-time biofeedback of relevant mechanical signals to guide training and rehabilitation. In this review we provide a description of how wearable devices may be used in conjunction with computational rigid-body and continuum models of musculoskeletal tissues to produce real-time estimates of localized tissue stresses and strains. It is proposed that these bioinspired technologies will facilitate a new approach to physical training that promotes tissue strengthening and/or repair through optimal tissue loading. PMID:29093676
Resonance Raman of BCC and normal skin
NASA Astrophysics Data System (ADS)
Liu, Cheng-hui; Sriramoju, Vidyasagar; Boydston-White, Susie; Wu, Binlin; Zhang, Chunyuan; Pei, Zhe; Sordillo, Laura; Beckman, Hugh; Alfano, Robert R.
2017-02-01
The Resonance Raman (RR) spectra of basal cell carcinoma (BCC) and normal human skin tissues were analyzed using 532nm laser excitation. RR spectral differences in vibrational fingerprints revealed skin normal and cancerous states tissues. The standard diagnosis criterion for BCC tissues are created by native RR biomarkers and its changes at peak intensity. The diagnostic algorithms for the classification of BCC and normal were generated based on SVM classifier and PCA statistical method. These statistical methods were used to analyze the RR spectral data collected from skin tissues, yielding a diagnostic sensitivity of 98.7% and specificity of 79% compared with pathological reports.
Hypericin-mediated selective photomodification of connective tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovhannisyan, V., E-mail: hovv@phys.ntu.edu.tw; Guo, H. W.; Chen, Y. F., E-mail: yfchen@phys.ntu.edu.tw
2014-12-29
Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues.
Intracellular pH in Gastric and Rectal Tissue Post Cardiac Arrest
NASA Astrophysics Data System (ADS)
Fisher, Elaine M.; Steiner, Richard P.; LaManna, Joseph C.
We directly measured pHi using the pH sensitive dye, neutral red. We defined pHi for rectal and gastric tissue in whole tissue and by layer under control and arrest conditions. Fifteen minutes of arrest was not sufficient time to alter the pHi at the rectal or gastric site. On initial inspection, the stomach may be more sensitive to ischemic changes than the rectum. Understanding the mechanism by which PCO2 generation is used to track clinical changes is vital to the early detection of tissue dysoxia in order to effectively treat and manage critically ill patients.
NASA Astrophysics Data System (ADS)
Hitzenberger, Christoph K.; Pircher, Michael
Polarization sensitive (PS) OCT is a functional extension of OCT that exploits the light's polarization state to generate intrinsic, tissue specific contrast and enables quantitative measurements of tissue parameters. This chapter explains the technique, discusses polarization-changing light-tissue interactions and demonstrates the application of PS-OCT to retinal imaging. Two polarization-changing light-tissue interactions are discussed and their use for retinal diagnostics are demonstrated: (i) birefringence, which is found in fibrous tissues like the retinal nerve fiber layer and can be used for glaucoma diagnostics; and (ii) depolarization, which is observed in the retinal pigment epithelium (RPE) and can be used to segment the RPE and associated lesions like drusen or geographic atrophies in age related macular degeneration.
NASA Astrophysics Data System (ADS)
Mochizuki, Takashi; Kitazumi, Gontaro; Katsuike, Yasumasa; Hotta, Sayo; Maruyama, Hirotaka; Chiba, Toshio
2010-03-01
It is well known that tissue perforation is performed by the shock waves generated by the collapse of micro bubbles due to HIFU irradiation. However, the angle-dependency between the HIFU irradiation beam and the tissue membrane has not been studied in detail so far. The objective of this study was to investigate the HIFU parameters which were the most effective in perforating the tissues with the heart beating, especially the angle dependency of the beam with the observation using high speed video camera. The result shows that the ultrasound beam should be at right angle to the membrane to perforate the tissue membrane effectively.
Liu, Chenxi; Wang, Liqin; Li, Wenrong; Zhang, Xuemei; Tian, Yongzhi; Zhang, Ning; He, Sangang; Chen, Tong; Huang, Juncheng; Liu, Mingjun
2013-01-01
Background Low efficiency of gene transfer and silence of transgene expression are the critical factors hampering the development of transgenic livestock. Recently, transfer of recombinant lentivirus has been demonstrated to be an efficient transgene delivery method in various animals. However, the lentiviral transgenesis and the methylation status of transgene in sheep have not been well addressed. Methodology/Principle Findings EGFP transgenic sheep were generated by injecting recombinant lentivirus into zygotes. Of the 13 lambs born, 8 carried the EGFP transgene, and its chromosomal integration was identified in all tested tissues. Western blotting showed that GFP was expressed in all transgenic founders and their various tissues. Analysis of CpG methylation status of CMV promoter by bisulfate sequencing unraveled remarkable variation of methylation levels in transgenic sheep. The average methylation levels ranged from 37.6% to 79.1% in the transgenic individuals and 34.7% to 83% in the tested tissues. Correlative analysis of methylation status with GFP expression revealed that the GFP expression level was inversely correlated with methylation density. The similar phenomenon was also observed in tested tissues. Transgene integration determined by Southern blotting presented multiple integrants ranging from 2 to 6 copies in the genome of transgenic sheep. Conclusions/Significance Injection of lentiviral transgene into zygotes could be a promising efficient gene delivery system to generate transgenic sheep and achieved widespread transgene expression. The promoter of integrants transferred by lentiviral vector was subjected to dramatic alteration of methylation status and the transgene expression level was inversely correlative with promoter methylation density. Our work illustrated for the first time that generation of transgenic sheep by injecting recombinant lentivirus into zygote could be an efficient tool to improve sheep performance by genetic modification. PMID:23382924
Takata, Nozomu; Sakakura, Eriko; Kasukawa, Takeya; Sakuma, Tetsushi; Yamamoto, Takashi; Sasai, Yoshiki
2016-06-01
The epiblast (foremost embryonic ectoderm) generates all three germ layers and therefore has crucial roles in the formation of all mammalian body cells. However, regulation of epiblast gene expression is poorly understood because of the difficulty of manipulating epiblast tissues in vivo. In the present study, using the self-organizing properties of mouse embryonic stem cell (ESC), we generated and characterized epiblast-like tissue in three-dimensional culture. We identified significant genome-wide gene expression changes in this epiblast-like tissue by transcriptomic analysis. In addition, we identified the particular significance of the Erk/Mapk and integrin-linked kinase pathways, and genes related to ectoderm/epithelial formation, using the bioinformatics resources IPA and DAVID. Here, we focused on Fgf5, which ranked in the top 10 among the discovered genes. To develop a functional analysis of Fgf5, we created an efficient method combining CRISPR/Cas9-mediated genome engineering and RNA interference (RNAi). Notably, we show one-step generation of various Fgf5 reporter lines including heterozygous and homozygous knockins (the GET method). For time- and dose-dependent depletion of fgf5 over the course of development, we generated an ESC line harboring Tol2 transposon-mediated integration of an inducible short hairpin RNA interference system (pdiRNAi). Our findings raised the possibility that Fgf/Erk signaling and apicobasal epithelial integrity are important factors in epiblast development. In addition, our methods provide a framework for a broad array of applications in the areas of mammalian genetics and molecular biology to understand development and to improve future therapeutics.
Wickström, Sara A; Niessen, Carien M
2018-06-01
Biological patterns emerge through specialization of genetically identical cells to take up distinct fates according to their position within the organism. How initial symmetry is broken to give rise to these patterns remains an intriguing open question. Several theories of patterning have been proposed, most prominently Turing's reaction-diffusion model of a slowly diffusing activator and a fast diffusing inhibitor generating periodic patterns. Although these reaction-diffusion systems can generate diverse patterns, it is becoming increasingly evident that cell shape and tension anisotropies, mediated via cell-cell and/or cell-matrix contacts, also facilitate symmetry breaking and subsequent self-organized tissue patterning. This review will highlight recent studies that implicate local changes in adhesion and/or tension as key drivers of cell rearrangements. We will also discuss recent studies on the role of cadherin and integrin adhesive receptors in mediating and responding to local tissue tension asymmetries to coordinate cell fate, position and behavior essential for tissue self-organization and maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation
Fujioka, Masato; Tokano, Hisashi; Fujioka, Keiko Shiina; Okano, Hideyuki; Edge, Albert S.B.
2011-01-01
Most degenerative diseases begin with a gradual loss of specific cell types before reaching a threshold for symptomatic onset. However, the endogenous regenerative capacities of different tissues are difficult to study, because of the limitations of models for early stages of cell loss. Therefore, we generated a transgenic mouse line (Mos-iCsp3) in which a lox-mismatched Cre/lox cassette can be activated to produce a drug-regulated dimerizable caspase-3. Tissue-restricted Cre expression yielded stochastic Casp3 expression, randomly ablating a subset of specific cell types in a defined domain. The limited and mosaic cell loss led to distinct responses in 3 different tissues targeted using respective Cre mice: reversible, impaired glucose tolerance with normoglycemia in pancreatic β cells; wound healing and irreversible hair loss in the skin; and permanent moderate deafness due to the loss of auditory hair cells in the inner ear. These mice will be important for assessing the repair capacities of tissues and the potential effectiveness of new regenerative therapies. PMID:21576819
Laser Generated Leaky Acoustic Waves for Needle Visualization.
Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi
2018-04-01
Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.
Biswas, D P; Tran, P A; Tallon, C; O'Connor, A J
2017-02-01
In this paper, a novel foaming methodology consisting of turbulent mixing and thermally induced phase separation (TIPS) was used to generate scaffolds for tissue engineering. Air bubbles were mechanically introduced into a chitosan solution which forms the continuous polymer/liquid phase in the foam created. The air bubbles entrained in the foam act as a template for the macroporous architecture of the final scaffolds. Wet foams were crosslinked via glutaraldehyde and frozen at -20 °C to induce TIPS in order to limit film drainage, bubble coalescence and Ostwald ripening. The effects of production parameters, including mixing speed, surfactant concentration and chitosan concentration, on foaming are explored. Using this method, hydrogel scaffolds were successfully produced with up to 80% porosity, average pore sizes of 120 μm and readily tuneable compressive modulus in the range of 2.6 to 25 kPa relevant to soft tissue engineering applications. These scaffolds supported 3T3 fibroblast cell proliferation and penetration and therefore show significant potential for application in soft tissue engineering.
Evaluation of force generation mechanisms in natural, passive hydraulic actuators
NASA Astrophysics Data System (ADS)
Le Duigou, A.; Castro, M.
2016-01-01
Pine cones are well known natural actuators that can move their scales upon humidity gradient. The mechanism manifests itself through a displacement easily observable by the naked eye, but coupled with stress generation. In ancient Egypt, wooden wedges were used to break soft blocks of stone by the generated swelling stress. The purpose of the present study is to evaluate the ability of pine cone scales to generate forces while being wetted. In our experiments, a blocking force of around 3N is measured depending on the position on the pine cone where the scales are extracted. A fairly good agreement is obtained when theoretical results based on bimetallic strip systems are compared with experimental data, even if overestimation is observed arising from the input data considered for dry tissues. Inspired by a simplified pine cone microstructure, a biocomposite analogue is manufactured and tested. Although an adequate blocking force can be generated, it has a lower value compared to natural pine cones which benefit from optimized swelling tissue content and interfacial bond strength between them. This study provides new insights to understand the generation of force by pine cones as well as to develop novel biocomposite functionalities.
NASA Astrophysics Data System (ADS)
Einstein, Gnanatheepam; Udayakumar, Kanniyappan; Aruna, Prakasarao; Ganesan, Singaravelu
2017-03-01
Fluorescence of Protein has been widely used in diagnostic oncology for characterizing cellular metabolism. However, the intensity of fluorescence emission is affected due to the absorbers and scatterers in tissue, which may lead to error in estimating exact protein content in tissue. Extraction of intrinsic fluorescence from measured fluorescence has been achieved by different methods. Among them, Monte Carlo based method yields the highest accuracy for extracting intrinsic fluorescence. In this work, we have attempted to generate a lookup table for Monte Carlo simulation of fluorescence emission by protein. Furthermore, we fitted the generated lookup table using an empirical relation. The empirical relation between measured and intrinsic fluorescence is validated using tissue phantom experiments. The proposed relation can be used for estimating intrinsic fluorescence of protein for real-time diagnostic applications and thereby improving the clinical interpretation of fluorescence spectroscopic data.
High Resolution Magnetic Images of Planar Wave Fronts Reveal Bidomain Properties of Cardiac Tissue
Holzer, Jenny R.; Fong, Luis E.; Sidorov, Veniamin Y.; Wikswo, John P.; Baudenbacher, Franz
2004-01-01
We magnetically imaged the magnetic action field and optically imaged the transmembrane potentials generated by planar wavefronts on the surface of the left ventricular wall of Langendorff-perfused isolated rabbit hearts. The magnetic action field images were used to produce a time series of two-dimensional action current maps. Overlaying epifluorescent images allowed us to identify a net current along the wavefront and perpendicular to gradients in the transmembrane potential. This is in contrast to a traditional uniform double-layer model where the net current flows along the gradient in the transmembrane potential. Our findings are supported by numerical simulations that treat cardiac tissue as a bidomain with unequal anisotropies in the intra- and extracellular spaces. Our measurements reveal the anisotropic bidomain nature of cardiac tissue during plane wave propagation. These bidomain effects play an important role in the generation of the whole-heart magnetocardiogram and cannot be ignored. PMID:15377521
Injectable Hydrogel Scaffold from Decellularized Human Lipoaspirate
Young, D. Adam; Ibrahim, Dina O.; Hu, Diane; Christman, Karen L.
2010-01-01
Soft tissue fillers are rapidly gaining popularity for aesthetic improvements or repair of adipose tissue deficits. Several injectable biopolymers have been investigated for this purpose but often face rapid resorption or limited adipogenesis, and do not mimic the native adipose extracellular matrix (ECM). We have generated an injectable adipose matrix scaffold by efficiently removing both the cellular and lipid contents of human lipoaspirate. The decellularized material retained a complex composition of peptides and glycosaminoglycans found in native adipose ECM. This matrix can be further processed by solubilizing the extracted ECM to generate a thermally-responsive hydrogel that self-assembles upon subcutaneous injection. This hydrogel also supports the growth and survival of patient matched adipose - derived stem cells in vitro. The development of an injectable hydrogel from human lipoaspirate represents a minimally-invasive option for adipose tissue engineering in terms of both the collection of source material and delivery of the scaffold. PMID:20932943
Regulation of the basement membrane by epithelia generated forces
NASA Astrophysics Data System (ADS)
Tanner, Kandice
2012-12-01
Tumor metastasis involves a progressive loss of tissue architecture and dissolution of structural boundaries between the epithelium and connective tissue. The basement membrane (BM), a specialized network of extracellular matrix proteins forms a barrier that physically restricts pre-invasive lesions such that they remain as local insults. The BM is not a static structure, but one that is constantly regenerated and remodeled in the adult organism. Matrix organization also regulates cell function. Thus alterations in the balance of synthesis, remodeling and proteolytic degradation of the extracellular matrix proteins may contribute to a loss of structural integrity. However, the de novo assembly and maintenance of the complex structural properties of in vivo basement membranes remain elusive. Here, this paper highlights the current understanding on the structural properties and the establishment of the BM, and discusses the potential role of self-generated forces in adult tissue remodeling and the maintenance of the BM as a malignancy suppressor.
Generation of branching ureteric bud tissues from human pluripotent stem cells.
Mae, Shin-Ichi; Ryosaka, Makoto; Toyoda, Taro; Matsuse, Kyoko; Oshima, Yoichi; Tsujimoto, Hiraku; Okumura, Shiori; Shibasaki, Aya; Osafune, Kenji
2018-01-01
Recent progress in kidney regeneration research is noteworthy. However, the selective and robust differentiation of the ureteric bud (UB), an embryonic renal progenitor, from human pluripotent stem cells (hPSCs) remains to be established. The present study aimed to establish a robust induction method for branching UB tissue from hPSCs towards the creation of renal disease models. Here, we found that anterior intermediate mesoderm (IM) differentiates from anterior primitive streak, which allowed us to successfully develop an efficient two-dimensional differentiation method of hPSCs into Wolffian duct (WD) cells. We also established a simplified procedure to generate three-dimensional WD epithelial structures that can form branching UB tissues. This system may contribute to hPSC-based regenerative therapies and disease models for intractable disorders arising in the kidney and lower urinary tract. Copyright © 2017 Elsevier Inc. All rights reserved.
Geometrically complex 3D-printed phantoms for diffuse optical imaging.
Dempsey, Laura A; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C
2017-03-01
Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.
A 3D printing method for droplet-based biomolecular materials
NASA Astrophysics Data System (ADS)
Challita, Elio J.; Najem, Joseph S.; Freeman, Eric C.; Leo, Donald J.
2017-04-01
The field of developing biomolecular droplet-based materials using a bottom-up approach remains underexplored. Producing tissue-like materials, from entirely synthetic components, presents an innovative method to reconstruct the functions of life within artificial materials. Aqueous droplets, encased with lipid monolayers, may be linked via bilayer interfaces to make up structures that resemble biological tissues. Here we present the design and development of an easy-to-build 3D printer for the fabrication of tissue-like biomolecular materials from cell-sized aqueous droplets. The droplets are generated using a snap off technique, capable of generating 30 droplets per minute. The printed network of droplets may also be functionalized with various types of membrane proteins to achieve desired engineering applications like sensing and actuation, or to mimic electrical communication in biological systems. Voltage sensitive channels are introduced into selected droplets to create a conductive path with the material in the presence of an external field.
Benny, Paula; Raghunath, Michael
2017-01-01
Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.
Ginter, S
2000-07-01
Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.
Induced pluripotent stem cells: advances to applications
Nelson, Timothy J; Martinez-Fernandez, Almudena; Yamada, Satsuki; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre
2010-01-01
Induced pluripotent stem cell (iPS) technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms. PMID:21165156
Geometrically complex 3D-printed phantoms for diffuse optical imaging
Dempsey, Laura A.; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C.
2017-01-01
Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution. PMID:28663863
Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung
2017-12-01
Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nguyen, Hung X; Kirkton, Robert D; Bursac, Nenad
2018-05-01
We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.
Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W
2014-03-01
Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is significantly different from second-harmonic generation for left-handed one, offering excellent second-harmonic generation circular dichroism contrast that approaches 100%. In addition, three-dimensional visualization of second-harmonic generation circular dichroism distribution with sub-micrometer spatial resolution is realized. We observed second-harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second-harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three-dimensional structures of starch granules. The second-harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
A simple hanging drop cell culture protocol for generation of 3D spheroids.
Foty, Ramsey
2011-05-06
Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels or in biomaterial scaffolds. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of biomechanical properties or for molecular and biochemical analysis in a physiologically relevant model. Copyright © 2011 Journal of Visualized Experiments
Díaz, Jairo A; Murillo, Mauricio F; Jaramillo, Natalia A
2009-01-01
In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC) in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated into nanomaterial, biomedical devices, and engineered tissues, new therapeutic strategies could be developed for cancer treatment.
Lesion Generation Through Ribs Using Histotripsy Therapy Without Aberration Correction
Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A.
2012-01-01
This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction. PMID:22083767
Lesion generation through ribs using histotripsy therapy without aberration correction.
Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A
2011-11-01
This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction.
Tissue matrix arrays for high throughput screening and systems analysis of cell function
Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.
2015-01-01
Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475
3D bioprinting for vascularized tissue fabrication
Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying
2016-01-01
3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253
Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben
2014-01-01
The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915
Successful human long-term application of in situ bone tissue engineering.
Horch, Raymund E; Beier, Justus P; Kneser, Ulrich; Arkudas, Andreas
2014-07-01
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularized large bone grafts. We present two cases of large bone defects after debridement of an osteomyelitis. One of the defects was localized in the radius and one in the tibia. For osseus reconstruction, arteriovenous loops were created as vascular axis, which were placed in the bony defects. In case 1, the bone generation was achieved using cancellous bone from the iliac crest and fibrin glue and in case 2 using a clinically approved β-tricalciumphosphate/hydroxyapatite (HA), fibrin glue and directly auto-transplanted bone marrow aspirate from the iliac crest. The following post-operative courses were uneventful. The final examinations took place after 36 and 72 months after the initial operations. Computer tomogrphy (CT), membrane resonance imaging (MRI) and doppler ultrasound revealed patent arterio-venous (AV) loops in the bone grafts as well as completely healed bone defects. The patients were pain-free with normal ranges of motion. This is the first study demonstrating successfully axially vascularized in situ tissue engineered bone generation in large bone defects in a clinical scenario using the arteriovenous loop model without creation of a significant donor-site defect utilizing TE and RM techniques in human patients with long-term stability. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Control of thermal therapies with moving power deposition field.
Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B
2006-03-07
A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with moving deposition fields, such as external and interstitial ultrasound phased arrays, multiple radiofrequency needle applicators and microwave antennae.
Development of excitation light source for photodynamic diagnosis
NASA Astrophysics Data System (ADS)
Lim, Hyun Soo
2008-02-01
Photodynamic diagnosis (PDD) is a method to diagnose the possibility of cancer, both by the principle that if a photosensitizer is injected into an organic tissue, it is accumulated in the tissue of a malignant tumor selectively after a specific period, and by a comparison of the intensity of the fluorescence of normal tissue with abnormal tissue after investigating the excitation light of a tissue with accumulated photosensitizer. Currently, there are two methods of PDD: The first is a way to acquire incitement fluorescence by using a photosensitizer, and the second is a way to use auto-fluorescence by green fluorescence protein (GFP) and red fluorescence protein (RFP) such as NADH+ active factors within the organic body. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosensitizer, it plays an important role in PDD. This study aims at designing and evaluating light source devices that can stably generate light with various kinds of wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.
Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio
2006-04-01
We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.
Kasprowicz, Eric M; Davidson, Lance A; Keller, Raymond
2018-01-01
Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 μN during gastrulation and over 4 μN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 μN of tensile force, showing that CT alone generates forces sufficient to close the blastopore. Uniaxial tensile stress relaxation assays show stiffening of mesodermal and ectodermal tissues around the onset of neurulation, potentially enhancing long-range transmission of convergence forces. These results illuminate the mechanobiology of early vertebrate morphogenic mechanisms, aid interpretation of phenotypes, and give insight into the evolution of blastopore closure mechanisms. PMID:29533180
Real-time needle guidance with photoacoustic and laser-generated ultrasound probes
NASA Astrophysics Data System (ADS)
Colchester, Richard J.; Mosse, Charles A.; Nikitichev, Daniil I.; Zhang, Edward Z.; West, Simeon; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.
2015-03-01
Detection of tissue structures such as nerves and blood vessels is of critical importance during many needle-based minimally invasive procedures. For instance, unintentional injections into arteries can lead to strokes or cardiotoxicity during interventional pain management procedures that involve injections in the vicinity of nerves. Reliable detection with current external imaging systems remains elusive. Optical generation and reception of ultrasound allow for depth-resolved sensing and they can be performed with optical fibers that are positioned within needles used in clinical practice. The needle probe developed in this study comprised separate optical fibers for generating and receiving ultrasound. Photoacoustic generation of ultrasound was performed on the distal end face of an optical fiber by coating it with an optically absorbing material. Ultrasound reception was performed using a high-finesse Fabry-Pérot cavity. The sensor data was displayed as an M-mode image with a real-time interface. Imaging was performed on a biological tissue phantom.
Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang
2013-09-01
Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.
An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues.
Corces, M Ryan; Trevino, Alexandro E; Hamilton, Emily G; Greenside, Peyton G; Sinnott-Armstrong, Nicholas A; Vesuna, Sam; Satpathy, Ansuman T; Rubin, Adam J; Montine, Kathleen S; Wu, Beijing; Kathiria, Arwa; Cho, Seung Woo; Mumbach, Maxwell R; Carter, Ava C; Kasowski, Maya; Orloff, Lisa A; Risca, Viviana I; Kundaje, Anshul; Khavari, Paul A; Montine, Thomas J; Greenleaf, William J; Chang, Howard Y
2017-10-01
We present Omni-ATAC, an improved ATAC-seq protocol for chromatin accessibility profiling that works across multiple applications with substantial improvement of signal-to-background ratio and information content. The Omni-ATAC protocol generates chromatin accessibility profiles from archival frozen tissue samples and 50-μm sections, revealing the activities of disease-associated DNA elements in distinct human brain structures. The Omni-ATAC protocol enables the interrogation of personal regulomes in tissue context and translational studies.
Localization of Mineralocorticoid Receptors at Mammalian Synapses
2010-12-15
consisted of aldosterone (1 mMol) applied to the antibody MA1-620 or applied to the antibody rMR1-18 1D5, and the peptide (METKGYHSLPEGLDMERR) used to...generate the antibody rMR1-18 1D5 applied to both MR antibodies. We qualitatively examined tissue preabsorbed with the peptide or aldosterone and compared...this with tissue incubated in the primary antibody alone (Fig. 3A and 3D). Tissue incubated with aldosterone and the antibody MA1-620 had the appearance
Gerlach, Jörg C; Lin, Yen-Chih; Brayfield, Candace A; Minteer, Danielle M; Li, Han; Rubin, J Peter; Marra, Kacey G
2012-01-01
To further differentiate adipose-derived stem cells (ASCs) into mature adipocytes and create three-dimensional (3D) adipose tissue in vitro, we applied multicompartment hollow fiber-based bioreactor technology with decentral mass exchange for more physiological substrate gradients and integral oxygenation. We hypothesize that a dynamic 3D perfusion in such a bioreactor will result in longer-term culture of human adipocytes in vitro, thus providing metabolically active tissue serving as a diagnostic model for screening drugs to treat diabetes. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue and then inoculated into dynamic 3D culture bioreactors to undergo adipogenic differentiation. Insulin-stimulated glucose uptake from the medium was assessed with and without TNF-alpha. 3D adipose tissue was generated in the 3D-bioreactors. Immunohistochemical staining indicated that 3D-bioreactor culture displayed multiple mature adipocyte markers with more unilocular morphologies as compared with two-dimensional (2D) cultures. Results of real-time polymerase chain reaction showed 3D-bioreactor treatment had more efficient differentiation in fatty acid-binding protein 4 expression. Repeated insulin stimulation resulted in increased glucose uptake, with a return to baseline between testing. Importantly, TNF-alpha inhibited glucose uptake, an indication of the metabolic activity of the tissue. 3D bioreactors allow more mature adipocyte differentiation of ASCs compared with traditional 2D culture and generate adipose tissue in vitro for up to 2 months. Reproducible metabolic activity of the adipose tissue in the bioreactor was demonstrated, which is potentially useful for drug discovery. We present here, to the best of our knowledge for the first time, the development of a coherent 3D high density fat-like tissue consisting of unilocular structure from primary adipose stem cells in vitro.
Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J
2015-09-01
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Divi, Uday K; Zhou, Xue-Rong; Wang, Penghao; Butlin, Jamie; Zhang, Dong-Mei; Liu, Qing; Vanhercke, Thomas; Petrie, James R; Talbot, Mark; White, Rosemary G; Taylor, Jennifer M; Larkin, Philip; Singh, Surinder P
2016-01-01
Chinese tallow (Triadica sebifera) is a valuable oilseed-producing tree that can grow in a variety of conditions without competing for food production, and is a promising biofuel feedstock candidate. The fruits are unique in that they contain both saturated and unsaturated fat present in the tallow and seed layer, respectively. The tallow layer is poorly studied and is considered only as an external fatty deposition secreted from the seed. In this study we show that tallow is in fact a non-seed cellular tissue capable of triglyceride synthesis. Knowledge of lipid synthesis and storage mechanisms in tissues other than seed is limited but essential to generate oil-rich biomass crops. Here, we describe the annotated transcriptome assembly generated from the fruit coat, tallow and seed tissues of Chinese tallow. The final assembly was functionally annotated, allowing for the identification of candidate genes and reconstruction of lipid pathways. A tallow tissue-specific paralog for the transcription factor gene WRINKLED1 (WRI1) and lipid droplet-associated protein genes, distinct from those expressed in seed tissue, were found to be active in tallow, underpinning the mode of oil synthesis and packaging in this tissue. Our data have established an excellent knowledge base that can provide genetic and biochemical insights for engineering non-seed tissues to accumulate large amounts of oil. In addition to the large data set of annotated transcripts, the study also provides gene-based simple sequence repeat and single nucleotide polymorphism markers. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Experiment study of bio-tissue's temperature irradiated by laser based on optical fiber F-P sensor
NASA Astrophysics Data System (ADS)
Shan, Ning; Liu, Xia
2014-08-01
Laser has several advantages, such as strong anti-interference ability, quick speed, high power, agility and precision. It is widely applied in military and medicine fields. When laser acts on human body, biological tissue of human body will appear the phenomenon of ablation and carbonization and solidification. In order to effectively defend excess damage by laser, the thermal effect research of skin tissue should be carried out. Temperature is a key parameter in the processing between laser and bio-tissue. It is the mostly foundation using analyze size of thermal damage area and forecast thermal damage degree. In this paper, the low fineness optical fiber F-P sensing system for temperature measurement is designed and established. The real-time measurement system of temperature generated by laser irradiating bio-tissue is build based on the sensing system. The temperature distributing generated by laser in the bio-tissue is studied through experiment when the spot diameter of emission laser is difference with the same energy density and the energy density is difference with the same spot diameter of emission laser. The experimental results show that the sensing system can be used to the real-time temperature measurement of bio-tissue efficiency. It has small bulk. Its outer diameter is 250μm. And the hurt for bio-tissue is small. It has high respond speed. The respond time of temperature is less than 1s. These can be satisfied with practice demand. When the energy density of laser is same, the temperature rising in the same location is low along the spot diameter of emission laser increasing. When the spot diameter of emission laser is same, the temperature rising in the same location is increasing along with the energy density of laser increasing.
Determination of friction coefficient in unconfined compression of brain tissue.
Rashid, Badar; Destrade, Michel; Gilchrist, Michael D
2012-10-01
Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, R.; Dillehay, L.E.; Shao, Y.
The purpose of this study is to describe and evaluate a new, simple, inexpensive method for directly measuring the radiation dose and its spatial distribution generated from explanted tissues of animals previously injected with radiolabeled immunoconjugates or other agents. This technique uses the newly developed radiochromic dye medium (Gafchromic[trademark]) which responds reproducibly for therapeutic dose exposures, has high spatial resolution, does not require film processing, and is relatively insensitive to ambient light. The authors have evaluated the dose distribution from LS174T tumors and selected normal tissues in nude mice previously injected with [sup 90]Y labeled anti-carcinoembryonic antigen antibodies. Individual tissuesmore » from sacrificed animals are halved and the flat section of the tissue is placed onto the dosimetry media and then frozen. The dosimetry medium is exposed to beta and Bremsstrahlung radiation originating from the frozen tissues. The relative darkening of the dosimetry medium depends on the dose deposited in the film. The dosimetry medium is scanned with a commercial flatbed scanner and the image intensity is digitally stored and quantitatively analyzed. Isodose curves are generated and compared to the actual tissue outline. The absorbed dose distribution due to [sup 90]Y exposure show only slight gradients in the interior of the tissue, with a markedly decreasing dose near the edges of the tissue. In addition, the isodose curves follow the tissue outline except in regions having radii of curvature smaller than the range of the beta-particle (R90 = 5 mm). These results suggest that the shape of the tumor, and its curvature, are important in determining the minimum dose delivered to the tumor by radiation from [sup 90]Y monoclonal antibodies, and hence in evaluating the tumor response to the radiation. 28 refs., 8 figs.« less
Gerlach, Jörg C.; Lin, Yen-Chih; Brayfield, Candace A.; Minteer, Danielle M.; Li, Han; Rubin, J. Peter
2012-01-01
To further differentiate adipose-derived stem cells (ASCs) into mature adipocytes and create three-dimensional (3D) adipose tissue in vitro, we applied multicompartment hollow fiber-based bioreactor technology with decentral mass exchange for more physiological substrate gradients and integral oxygenation. We hypothesize that a dynamic 3D perfusion in such a bioreactor will result in longer-term culture of human adipocytes in vitro, thus providing metabolically active tissue serving as a diagnostic model for screening drugs to treat diabetes. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue and then inoculated into dynamic 3D culture bioreactors to undergo adipogenic differentiation. Insulin-stimulated glucose uptake from the medium was assessed with and without TNF-alpha. 3D adipose tissue was generated in the 3D-bioreactors. Immunohistochemical staining indicated that 3D-bioreactor culture displayed multiple mature adipocyte markers with more unilocular morphologies as compared with two-dimensional (2D) cultures. Results of real-time polymerase chain reaction showed 3D-bioreactor treatment had more efficient differentiation in fatty acid-binding protein 4 expression. Repeated insulin stimulation resulted in increased glucose uptake, with a return to baseline between testing. Importantly, TNF-alpha inhibited glucose uptake, an indication of the metabolic activity of the tissue. 3D bioreactors allow more mature adipocyte differentiation of ASCs compared with traditional 2D culture and generate adipose tissue in vitro for up to 2 months. Reproducible metabolic activity of the adipose tissue in the bioreactor was demonstrated, which is potentially useful for drug discovery. We present here, to the best of our knowledge for the first time, the development of a coherent 3D high density fat-like tissue consisting of unilocular structure from primary adipose stem cells in vitro. PMID:21902468
Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures
Zavodszky, Maria I.
2017-01-01
Background Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. Results The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. Conclusions MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information). PMID:29190747
Fiber networks amplify active stress
Ronceray, Pierre; Broedersz, Chase P.
2016-01-01
Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325
GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.
Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G
2018-05-25
GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.
Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.
2014-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822
NASA Astrophysics Data System (ADS)
Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang
2016-08-01
The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling.
A versatile modular bioreactor platform for Tissue Engineering
Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike
2016-01-01
Abstract Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue‐specific, non‐disposable bioreactor systems. To ensure a high level of standardization, a suitable cost‐effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. PMID:27492568
Zou, Yaqun; Zwolanek, Daniela; Izu, Yayoi; Gandhy, Shreya; Schreiber, Gudrun; Brockmann, Knut; Devoto, Marcella; Tian, Zuozhen; Hu, Ying; Veit, Guido; Meier, Markus; Stetefeld, Jörg; Hicks, Debbie; Straub, Volker; Voermans, Nicol C.; Birk, David E.; Barton, Elisabeth R.; Koch, Manuel; Bönnemann, Carsten G.
2014-01-01
Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease. PMID:24334604
Production of monoclonal antibody, PR81, recognizing the tandem repeat region of MUC1 mucin.
Paknejad, M; Rasaee, M J; Tehrani, F Karami; Kashanian, S; Mohagheghi, M A; Omidfar, K; Bazl, M Rajabi
2003-06-01
A monoclonal antibody (MAb) was generated by immunizing BALB/c mice with homogenized breast cancerous tissues. This antibody (PR81) was found to be of IgG(1) class and subclass, containing kappa light chain. PR81 reacted with either the membrane extracts of several breast cancerous tissues or the cell surface of some MUC1 positive cell lines (MCF-7, BT-20 and T-47D) tested by enzyme immunoassay and for MCF-7 by immunofluorescence method. PR81 also reacted with two synthetic 27 and 16-amino acid peptides, TSA-P1-24 and A-P1-15, respectively, which included the core tandem repeat sequence of MUC1. However, this antibody did not react with a synthetic 14 amino acid peptide that has no similarity with tandem repeat found in MUC1. The generated antibody had good and similar affinities (2.19 x 10(8) M(-1)) toward TSA-P1-24 and A-P1-15, which are mainly shared in the hydrophilic sequence of PDTRPAP. Through Western blot analysis of homogenized breast tissues, PR81 recognized only a major band of 250 kDa. This band is stronger in malignant tissue than benign and normal tissues.
NASA Astrophysics Data System (ADS)
Liu, Dalong; Ballard, John R.; Haritonova, Alyona; Choi, Jeungwan; Bischof, John; Ebbini, Emad S.
2012-10-01
An integrated system employing real-time ultrasound thermography and strain imaging in monitoring tissue response to phased-array heating patterns has been developed. The imaging system is implemented on a commercially available scanner (SonixRP) at frame rates > 500 fps with limited frame sizes covering the vicinity of the HIFU focal spot. These frame rates are sufficient to capture tissue motion and deformation even in the vicinity of large arteries. With the high temporal and spatial resolution of our strain imaging system, we are able to capture and separate tissue strains due to natural motion (breathing and pulsation) from HIFU induced strains (thermal and mechanical). We have collected in vivo strain imaging during sub-therapeutic and therapeutic HIFU exposure in swine and rat model. A 3.5-MHz phased array was used to generate sinusoidally-modulated pHIFU beams at different intensity levels and durations near blood vessels of different sizes (e.g. femoral in the swine and rat models). The results show that our approach is capable of characterizing the thermal and mechanical tissue response to sub-therapeutic pHIFU beam. For therapeutic pHIFU beams, the approach is still capable of localizing the therapeutic beam, but the results at the focal spot are complicated by bubble generation.
Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha
2017-08-31
Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.
Chimeric autologous/allogeneic constructs for skin regeneration.
Rasmussen, Cathy Ann; Tam, Joshua; Steiglitz, Barry M; Bauer, Rebecca L; Peters, Noel R; Wang, Ying; Anderson, R Rox; Allen-Hoffmann, B Lynn
2014-08-01
The ideal treatment for severe cutaneous injuries would eliminate the need for autografts and promote fully functional, aesthetically pleasing autologous skin regeneration. NIKS progenitor cell-based skin tissues have been developed to promote healing by providing barrier function and delivering wound healing factors. Independently, a device has recently been created to "copy" skin by harvesting full-thickness microscopic tissue columns (MTCs) in lieu of autografts traditionally harvested as sheets. We evaluated the feasibility of combining these two technologies by embedding MTCs in NIKS-based skin tissues to generate chimeric autologous/allogeneic constructs. Chimeric constructs have the potential to provide immediate wound coverage, eliminate painful donor site wounds, and promote restoration of a pigmented skin tissue possessing hair follicles, sweat glands, and sebaceous glands. After MTC insertion, chimeric constructs and controls were reintroduced into air-interface culture and maintained in vitro for several weeks. Tissue viability, proliferative capacity, and morphology were evaluated after long-term culture. Our results confirmed successful MTC insertion and integration, and demonstrated the feasibility of generating chimeric autologous/allogeneic constructs that preserved the viability, proliferative capacity, and structure of autologous pigmented skin. These feasibility studies established the proof-of-principle necessary to further develop chimeric autologous/allogeneic constructs for the treatment of complex skin defects. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Heher, Philipp; Maleiner, Babette; Prüller, Johanna; Teuschl, Andreas Herbert; Kollmitzer, Josef; Monforte, Xavier; Wolbank, Susanne; Redl, Heinz; Rünzler, Dominik; Fuchs, Christiane
2015-09-01
The generation of functional biomimetic skeletal muscle constructs is still one of the fundamental challenges in skeletal muscle tissue engineering. With the notion that structure strongly dictates functional capabilities, a myriad of cell types, scaffold materials and stimulation strategies have been combined. To further optimize muscle engineered constructs, we have developed a novel bioreactor system (MagneTissue) for rapid engineering of skeletal muscle-like constructs with the aim to resemble native muscle in terms of structure, gene expression profile and maturity. Myoblasts embedded in fibrin, a natural hydrogel that serves as extracellular matrix, are subjected to mechanical stimulation via magnetic force transmission. We identify static mechanical strain as a trigger for cellular alignment concomitant with the orientation of the scaffold into highly organized fibrin fibrils. This ultimately yields myotubes with a more mature phenotype in terms of sarcomeric patterning, diameter and length. On the molecular level, a faster progression of the myogenic gene expression program is evident as myogenic determination markers MyoD and Myogenin as well as the Ca(2+) dependent contractile structural marker TnnT1 are significantly upregulated when strain is applied. The major advantage of the MagneTissue bioreactor system is that the generated tension is not exclusively relying on the strain generated by the cells themselves in response to scaffold anchoring but its ability to subject the constructs to individually adjustable strain protocols. In future work, this will allow applying mechanical stimulation with different strain regimes in the maturation process of tissue engineered constructs and elucidating the role of mechanotransduction in myogenesis. Mechanical stimulation of tissue engineered skeletal muscle constructs is a promising approach to increase tissue functionality. We have developed a novel bioreactor-based 3D culture system, giving the user the possibility to apply different strain regimes like static, cyclic or ramp strain to myogenic precursor cells embedded in a fibrin scaffold. Application of static mechanical strain leads to alignment of fibrin fibrils along the axis of strain and concomitantly to highly aligned myotube formation. Additionally, the pattern of myogenic gene expression follows the temporal progression observed in vivo with a more thorough induction of the myogenic program when static strain is applied. Ultimately, the strain protocol used in this study results in a higher degree of muscle maturity demonstrated by enhanced sarcomeric patterning and increased myotube diameter and length. The introduced bioreactor system enables new possibilities in muscle tissue engineering as longer cultivation periods and different strain applications will yield tissue engineered muscle-like constructs with improved characteristics in regard to functionality and biomimicry. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Sutherland, J G H; Miksys, N; Furutani, K M; Thomson, R M
2014-01-01
To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for (125)I, (103)Pd, and (131)Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for (103)Pd seeds and smallest but still considerable differences for (131)Cs seeds. Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.
3D second harmonic generation imaging tomography by multi-view excitation
Campbell, Kirby R.; Wen, Bruce; Shelton, Emily M.; Swader, Robert; Cox, Benjamin L.; Eliceiri, Kevin; Campagnola, Paul J.
2018-01-01
Biological tissues have complex 3D collagen fiber architecture that cannot be fully visualized by conventional second harmonic generation (SHG) microscopy due to electric dipole considerations. We have developed a multi-view SHG imaging platform that successfully visualizes all orientations of collagen fibers. This is achieved by rotating tissues relative to the excitation laser plane of incidence, where the complete fibrillar structure is then visualized following registration and reconstruction. We evaluated high frequency and Gaussian weighted fusion reconstruction algorithms, and found the former approach performs better in terms of the resulting resolution. The new approach is a first step toward SHG tomography. PMID:29541654
NASA Astrophysics Data System (ADS)
Emelyanov, O. A.; Petrova, N. O.; Smirnova, N. V.; Shemet, M. V.
2017-08-01
We describe a device for obtaining cold plasma in air at atmospheric pressure using a system of positive high-voltage pin electrodes, which is intended for the treatment of skin and soft-tissue injuries in animals. Plasma is generated due to the development of periodic pulsed discharge of nanosecond duration at current pulse amplitudes 10-20 mA, characteristic frequencies 10-20 kHz, and applied voltages within 8-10 kV. The high efficacy of the proposed device and method is confirmed by the good clinical results of treating large domestic animals with traumatic injuries.
Texture analysis applied to second harmonic generation image data for ovarian cancer classification
NASA Astrophysics Data System (ADS)
Wen, Bruce L.; Brewer, Molly A.; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R.; Campagnola, Paul J.
2014-09-01
Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"-frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations-is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features.
Fuentes-Pananá, Ezequiel M; Larios-Serrato, Violeta; Méndez-Tenorio, Alfonso; Morales-Sánchez, Abigail; Arias, Carlos F; Torres, Javier
2016-01-01
Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline. PMID:26910355
Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.
Xu, Zhen; Raghavan, M; Hall, T L; Mycek, M-A; Fowlkes, J B
2008-05-01
Mechanical tissue fractionation can be achieved using successive, high-intensity ultrasound pulses in a process termed histotripsy. Histotripsy has many potential clinical applications where noninvasive tissue removal is desired. The primary mechanism for histotripsy is believed to be cavitation. Using fast-gated imaging, this paper studies the evolution of a cavitating bubble cloud induced by a histotripsy pulse (10 and 14 cycles) at peak negative pressures exceeding 21MPa. Bubble clouds are generated inside a gelatin phantom and at a tissue-water interface, representing two situations encountered clinically. In both environments, the imaging results show that the bubble clouds share the same evolutionary trend. The bubble cloud and individual bubbles in the cloud were generated by the first cycle of the pulse, grew with each cycle during the pulse, and continued to grow and collapsed several hundred microseconds after the pulse. For example, the bubbles started under 10 microm, grew to 50 microm during the pulse, and continued to grow 100 microm after the pulse. The results also suggest that the bubble clouds generated in the two environments differ in growth and collapse duration, void fraction, shape, and size. This study furthers our understanding of the dynamics of bubble clouds induced by histotripsy.