Sample records for tissue integral dose

  1. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    NASA Astrophysics Data System (ADS)

    Barón-Aznar, C.; Moreno-Jiménez, S.; Celis, M. A.; Lárraga-Gutiérrez, J. M.; Ballesteros-Zebadúa, P.

    2008-08-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScansoftware, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed.

  2. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed.

  3. Dependence of normal brain integral dose and normal tissue complication probability on the prescription isodose values for γ-knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Ma, Lijun

    2001-11-01

    A recent multi-institutional clinical study suggested possible benefits of lowering the prescription isodose lines for stereotactic radiosurgery procedures. In this study, we investigate the dependence of the normal brain integral dose and the normal tissue complication probability (NTCP) on the prescription isodose values for γ-knife radiosurgery. An analytical dose model was developed for γ-knife treatment planning. The dose model was commissioned by fitting the measured dose profiles for each helmet size. The dose model was validated by comparing its results with the Leksell gamma plan (LGP, version 5.30) calculations. The normal brain integral dose and the NTCP were computed and analysed for an ensemble of treatment cases. The functional dependence of the normal brain integral dose and the NCTP versus the prescribing isodose values was studied for these cases. We found that the normal brain integral dose and the NTCP increase significantly when lowering the prescription isodose lines from 50% to 35% of the maximum tumour dose. Alternatively, the normal brain integral dose and the NTCP decrease significantly when raising the prescribing isodose lines from 50% to 65% of the maximum tumour dose. The results may be used as a guideline for designing future dose escalation studies for γ-knife applications.

  4. SU-E-T-331: Dosimetric Impact of Multileaf Collimator Leaf Width On Stereotactic Radiosurgery (SRS) RapidArc Treatment Plans for Single and Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Keeling, V; Ahmad, S

    Purpose: To determine the effects of multileaf collimator (MLC) leaf width on normal-brain-tissue doses and dose conformity of SRS RapidArc treatment plans for brain tumors. Methods: Ten patients with 24 intracranial tumors (seven with 1–2 and three with 4–6 lesions) were planned using RapidArc for both Varian Millennium 120 MLC (5 mm leaf width) and high definition (HD) MLC (2.5 mm leaf width). Between 2 and 8 arcs were used with two full coplanar arcs and the rest non-coplanar half arcs. 6 MV beams were used and plans were optimized with a high priority to the Normal Tissue Objective (tomore » achieve dose conformity and sharp dose fall-off) and normal brain tissue. Calculation was done using AAA on a 1 mm grid size. The prescription dose ranged from 14–22 Gy. Plans were normalized such that 99% of the target received the prescription dose. Identical beam geometries, optimizations, calculations, and normalizations were used for both plans. Paddick Conformity Index (PCI), V4, V8 and V12 Gy for normal brain tissue and Integral Dose were used for analysis. Results: In all cases, HD MLC plans performed better in sparing normal brain tissue, achieving a higher PCI with a lower Integral Dose. The average PCI for all 24 targets was 0.75±0.23 and 0.70±0.23 (p ≤0.0015) for HD MLC and Millennium MLC plans, respectively. The average ratio of normal brain doses for Millennium MLC to HD MLC plans was 1.30±0.16, 1.27±0.15, and 1.31±0.18 for the V4, V8, and V12, respectively. The differences in normal brain dose for all criteria were statistically significant with p-value < 0.02. On average Millennium MLC plans had a 16% higher integral dose than HD MLC plans. Conclusion: Significantly better dose conformity with reduced volume of normal brain tissue and integral dose was achieved with HD MLC plans compared to Millennium MLC plans.« less

  5. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.

  6. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  7. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  8. [Effect of ginsenoside Rb1 on cerebral infarction volume and IL-1 beta in the brain tissue and sera of focal cerebral ischemia/reperfusion injury model rats].

    PubMed

    Liu, Jun-Wei; Ren, Ye-Long; Liu, Xu-Ling; Xia, Hong-Lian; Zhang, Hui-Ling; Jin, Shen-Hui; Dai, Qin-Xue; Wang, Jun-Lu

    2013-12-01

    To investigate the effect of ginsenoside Rb1 on cerebral infarction volume as well as IL-1 beta in the brain tissue and sera of focal cerebral ischemia/reperfusion (I/R) injury model rats. The I/R rat model was established by using thread according to Zea-Longa. SD rats were randomly divided into five groups, i.e., the sham-operation group, the model group, the low dose ginsenoside Rb1 (20 mg/kg) group, the medium dose ginsenoside Rb1 group (40 mg/kg), and the high dose ginsenoside Rb1 group (80 mg/kg), 12 in each group. Rats in the sham-operation group only received middle cerebral artery occlusion (MCAO) but without thread insertion. The MCAO model was prepared in the rest 4 groups, followed by MCAO2 h later. Ginsenoside Rb1 at each dose was peritoneally administrated to rats in corresponding groups immediately after cerebral ischemia. Equal volume of normal saline was administered to rats in the sham-operation group. Rats' cerebral infarction volume, integrals of neurologic defect degree, expression of IL-1 beta content in the brain tissue and sera were observed 24 h after 2-h cerebral I/R. In the model group, integrals of neurologic defect degree were improved (P < 0.01), IL-1 beta positive cells in the brain tissue increased and serum IL-1 beta content elevated (P < 0.05), when compared with the sham-operation group. In comparison of the model group, integrals of neurologic defect degree were lowered in the medium dose and high dose ginsenoside Rb1 groups (P < 0.05, P < 0.01). The cerebral infarction volume was all shrunken in each ginsenoside Rb1 group, IL-1 beta positive cells in the brain tissue decreased, and IL-1 beta content in serum reduced (P < 0.01, P < 0.05). Compared with the low dose ginsenoside Rb1 group, integrals of neurologic defect degree decreased, the cerebral infarction volume shrunken, and IL-1 beta content in serum reduced in the high dose ginsenoside Rb1 group (P < 0.01, P < 0.05). Ginsenoside Rb1 (20, 40, 80 mg/kg) might effectively release local cerebral ischemia by down-regulating the IL-1 beta expression.

  9. SU-D-BRB-04: Plan Quality Comparison of Intracranial Stereotactic Radiosurgery (SRS) for Gamma Knife and VMAT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, V; Algan, O; Ahmad, S

    2015-06-15

    Purpose: To compare treatment plan quality of intracranial stereotactic radiosurgery (SRS) for VMAT (RapidArc) and Gamma Knife (GK) systems. Methods: Ten patients with 24 tumors (seven with 1–2 and three with 4–6 lesions), previously treated with GK 4C (prescription doses ranging from 14–23 Gy) were re-planned for RapidArc. Identical contour sets were kept on MRI images for both plans with tissues assigned a CT number of zero. RapidArc plans were performed using 6 MV flattening-filter-free (FFF) beams with dose rate of 1400 MU/minute using two to eight arcs with the following combinations: 2 full coplanar arcs and the rest non-coplanarmore » half arcs. Beam selection was based on target depth. Areas that penetrated more than 10 cm of tissue were avoided by creating smaller arcs or using avoidance sectors in optimization. Plans were optimized with jaw tracking and a high weighting to the normal-brain-tissue and Normal-Tissue-Objective without compromising PTV coverage. Plans were calculated on a 1 mm grid size using AAA algorithm and then normalized so that 99% of each target volume received the prescription dose. Plan quality was assessed by target coverage using Paddick Conformity Index (PCI), sparing of normal-brain-tissue through analysis of V4, V8, and V12 Gy, and integral dose. Results: In all cases critical structure dose criteria were met. RapidArc had a higher PCI than GK plans for 23 out of 24 lesions. The average PCI was 0.76±0.21 for RapidArc and 0.46±0.20 for GK plans (p≤0.001), respectively. Integral dose and normal-brain-tissue doses for all criteria were lower for RapidArc in nearly all patients. The average ratio of GK to RapidArc plans was 1.28±0.27 (p=0.018), 1.31±0.25 (p=0.017), 1.81±0.43 (p=0.005), and 1.50±0.61 (p=0.006) for V4, V8, and V12 Gy, and integral dose, respectively. Conclusion: VMAT was capable of producing higher quality treatment plans than GK when using optimal beam geometries and proper optimization techniques.« less

  10. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    NASA Technical Reports Server (NTRS)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing radiation.

  11. Mobile C-arm cone-beam CT for guidance of spine surgery: Image quality, radiation dose, and integration with interventional guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, S.; Nithiananthan, S.; Mirota, D. J.

    Purpose: A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. Methods: Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic andmore » lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. Results: Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy) - each at (0.3 x 0.3 x 0.9 mm{sup 3}) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 x 0.3 x 1.5 mm{sup 3}) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution ({approx}2 x higher at the entrance side than at isocenter, and {approx}3-4 lower at the exit side). The in-room dose (microsievert) per unit scan dose (milligray) ranged from {approx}21 {mu}Sv/mGy on average at tableside to {approx}0.1 {mu}Sv/mGy at 2.0 m distance to isocenter. All protocols involve surgical staff stepping behind a shield wall for each CBCT scan, therefore imparting {approx}zero dose to staff. Protocol implementation in preclinical cadaveric studies demonstrate integration of the C-arm with a navigation system for spine surgery guidance-specifically, minimally invasive vertebroplasty in which the system provided accurate guidance and visualization of needle placement and bone cement distribution. Cumulative dose including multiple intraoperative scans was {approx}11.5 mGy for CBCT-guided thoracic vertebroplasty and {approx}23.2 mGy for lumbar vertebroplasty, with dose to staff at tableside reduced to {approx}1 min of fluoroscopy time ({approx}40-60 {mu}Sv), compared to 5-11 min for the conventional approach. Conclusions: Intraoperative CBCT using a high-performance mobile C-arm prototype demonstrates image quality suitable to guidance of spine surgery, with task-specific protocols providing an important basis for minimizing radiation dose, while maintaining image quality sufficient for surgical guidance. Images demonstrate a significant advance in spatial resolution and soft-tissue visibility, and CBCT guidance offers the potential to reduce fluoroscopy reliance, reducing cumulative dose to patient and staff. Integration with a surgical guidance system demonstrates precise tracking and visualization in up-to-date images (alleviating reliance on preoperative images only), including detection of errors or suboptimal surgical outcomes in the operating room.« less

  12. Evaluation of S-values and dose distributions for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re in seven lobes of the rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Tianwu; Liu Qian; Zaidi, Habib

    2012-03-15

    Purpose: Rats have been widely used in radionuclide therapy research for the treatment of hepatocellular carcinoma (HCC). This has created the need to assess rat liver absorbed radiation dose. In most dose estimation studies, the rat liver is considered as a homogeneous integrated target organ with a tissue composition assumed to be similar to that of human liver tissue. However, the rat liver is composed of several lobes having different anatomical and chemical characteristics. To assess the overall impact on rat liver dose calculation, the authors use a new voxel-based rat model with identified suborgan regions of the liver. Methods:more » The liver in the original cryosectional color images was manually segmented into seven individual lobes and subsequently integrated into a voxel-based computational rat model. Photon and electron particle transport was simulated using the MCNPX Monte Carlo code to calculate absorbed fractions and S-values for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re for the seven liver lobes. The effect of chemical composition on organ-specific absorbed dose was investigated by changing the chemical composition of the voxel filling liver material. Radionuclide-specific absorbed doses at the voxel level were further assessed for a small spherical hepatic tumor. Results: The self-absorbed dose for different liver lobes varied depending on their respective masses. A maximum difference of 3.5% was observed for the liver self-absorbed fraction between rat and human tissues for photon energies below 100 keV. {sup 166}Ho and {sup 188}Re produce a uniformly distributed high dose in the tumor and relatively low absorbed dose for surrounding tissues. Conclusions: The authors evaluated rat liver radiation doses from various radionuclides used in HCC treatments using a realistic computational rat model. This work contributes to a better understanding of all aspects influencing radiation transport in organ-specific radiation dose evaluation for preclinical therapy studies, from tissue composition to organ morphology and activity distribution.« less

  13. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.

    Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events atmore » the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.« less

  14. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model.

    PubMed

    Monti Hughes, A M; Pozzi, E C C; Thorp, S; Garabalino, M A; Farías, R O; González, S J; Heber, E M; Itoiz, M E; Aromando, R F; Molinari, A J; Miller, M; Nigg, D W; Curotto, P; Trivillin, V A; Schwint, A E

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model. Groups of cancerized hamsters were locally exposed to single or double (2 or 4 weeks apart) applications of BNCT at different dose levels, mediated by the boron compounds boronophenylalanine (BPA) or BPA and decahydrodecaborate (GB-10) administered jointly. Cancerized, sham-irradiated hamsters served as controls. Clinical status, tumour development from field-cancerized tissue and mucositis were followed for 8 months. A double application (4 weeks apart) of BNCT mediated by GB-10+ BPA at a total dose of 10 Gy in two 5-Gy doses rendered the best therapeutic advantage (63-100% inhibition of tumour development from field-cancerized tissue), minimizing dose-limiting mucositis. BNCT can be optimized for the integral treatment for head and neck cancer, considering the implications for field-cancerized tissue. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  16. SU-E-T-477: An Efficient Dose Correction Algorithm Accounting for Tissue Heterogeneities in LDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashouf, S; Lai, P; Karotki, A

    2014-06-01

    Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented usingmore » MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and Engineering Research Council of Canada.« less

  17. Integrative Radiation Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcellos-Hoff, Mary Helen

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive andmore » negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.« less

  18. Absorbed dose estimates from a single measurement one to three days after the administration of 177Lu-DOTATATE/-TOC.

    PubMed

    Hänscheid, Heribert; Lapa, Constantin; Buck, Andreas K; Lassmann, Michael; Werner, Rudolf A

    2017-01-01

    To retrospectively analyze the accuracy of absorbed dose estimates from a single measurement of the activity concentrations in tumors and relevant organs one to three days after the administration of 177 Lu-DOTA-TATE/TOC assuming tissue specific effective half-lives. Activity kinetics in 54 kidneys, 30 neuroendocrine tumor lesions, 25 livers, and 27 spleens were deduced from series of planar images in 29 patients. After adaptation of mono- or bi-exponential fit functions to the measured data, it was analyzed for each fit function how precise the time integral can be estimated from fixed tissue-specific half-lives and a single measurement at 24, 48, or 72 h after the administration. For the kidneys, assuming a fixed tissue-specific half-life of 50 h, the deviations of the estimate from the actual integral were median (5 % percentile, 95 % percentile): -3 °% (-15 %>; +16 °%) for measurements after 24 h, +2 %> (-9 %>; +12 %>) for measurements after 48 h, and 0 % (-2 %; +12 %) for measurements after 72 h. The corresponding values for the other tissues, assuming fixed tissue-specific half-lives of 67 h for liver and spleen and 77 h for tumors, were +2 % (-25 %; +20 %) for measurements after 24 h, +2 °% (-16 %>; +17 %>) for measurements after 48 h, and +2 %> (-11 %>; +10 %>) for measurements after 72 h. Especially for the kidneys, which often represent the dose limiting organ, but also for liver, spleen, and neuroendocrine tumors, a meaningful absorbed dose estimate is possible from a single measurement after 2, more preferably 3 days after the administration of 177 Lu-DOTA-TATE/-TOC assuming fixed tissue specific effective half-lives. Schattauer GmbH.

  19. Dose control for noncontact laser coagulation of tissue

    NASA Astrophysics Data System (ADS)

    Roggan, Andre; Albrecht, Hansjoerg; Bocher, Thomas; Rygiel, Reiner; Winter, Harald; Mueller, Gerhard J.

    1995-01-01

    Nd:YAG lasers emitting at 1064 nm are often used for coagulation of tissue in a non-contact mode, i.e. the treatment of verrucae, endometriosis, tumor coagulation and hemostasis. During this process an uncontrolled temperature rise of the irradiated area leads to vaporization and, finally, to a carbonization of the tissue surface. To prevent this, a dose controlled system was developed using an on-line regulation of the output laser power. The change of the backscattered intensity (remission) of the primary beam was used as a dose dependent feedback parameter. Its dependence on the temperature was determined with a double integrating sphere system and Monte-Carlo simulations. The remission of the tissue was calculated in slab geometry from diffusion theory and Monte-Carlo simulations. The laser control was realized with a PD-circuit and an A/D-converter, enabling the direct connection to the internal bus of the laser system. Preliminary studies with various tissues revealed the practicability of the system.

  20. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    PubMed

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  2. Effects of Phonation Time and Magnitude Dose on Vocal Fold Epithelial Genes, Barrier Integrity, and Function

    PubMed Central

    Kojima, Tsuyoshi; Valenzuela, Carla V.; Novaleski, Carolyn K.; Van Deusen, Mark; Mitchell, Joshua R.; Garrett, C. Gaelyn; Sivasankar, M. Preeti; Rousseau, Bernard

    2014-01-01

    Objective To investigate the effects of increasing time and magnitude doses of vibration exposure on transcription of the vocal fold's junctional proteins, structural alterations, and functional tissue outcomes. Study Design Animal study. Methods 100 New Zealand White breeder rabbits were studied. Dependent variables were measured in response to increasing time doses (30, 60, or 120 minutes) and magnitude doses (control, modal intensity, and raised intensity) of vibration exposure. Messenger RNA expression of occludin, zonula occluden-1 (ZO-1), E-cadherin, β-catenin, interleukin 1β (IL-1β), cyclooxygenase-2 (COX-2), transforming growth factor β-1 (TGFβ1), and fibronectin were measured. Tissue structural alterations were assessed using transmission electron microscopy (TEM). Transepithelial resistance was used to measure functional tissue outcomes. Results Occludin gene expression was downregulated in vocal folds exposed to 120 minute time doses of raised intensity phonation, relative to control, and modal intensity phonation. ZO-1 gene expression was upregulated following a 120 minute time dose of modal intensity phonation, compared to control, and downregulated after a 120 minute time dose of raised intensity phonation, compared to modal intensity phonation. E-cadherin gene expression was downregulated after a120 minute time dose of raised intensity phonation, compared to control and modal intensity phonation. TEM revealed extensive desquamation of the stratified squamous epithelial cells with increasing time and magnitude doses of vibration exposure. A general observation of lower transepithelial resistance measures was made in tissues exposed to raised intensity phonation, compared to all other groups. Conclusions This study provides evidence of vocal fold tissue responses to varying time and magnitude doses of vibration exposure. Level of Evidence N/A PMID:25073715

  3. Using 3D dosimetry to quantify the Electron Return Effect (ERE) for MR-image-guided radiation therapy (MR-IGRT) applications

    NASA Astrophysics Data System (ADS)

    Lee, Hannah J.; Choi, Gye Won; Alqathami, Mamdooh; Kadbi, Mo; Ibbott, Geoffrey

    2017-05-01

    Image-guided radiation therapy (IGRT) using computed tomography (CT), cone-beam CT, MV on-board imager (OBI), and kV OBI systems have allowed for more accurate patient positioning prior to each treatment fraction. While these imaging modalities provide excellent bony anatomy image quality, MRI surpasses them in soft tissue image contrast for better visualization and tracking of soft tissue tumors with no additional radiation dose to the patient. A pre-clinical integrated 1.5 T magnetic resonance imaging and 7 MV linear accelerator system (MR-linac) allows for real-time tracking of soft tissues and adaptive treatment planning prior to each treatment fraction. However, due to the presence of a strong magnetic field from the MR component, there is a three dimensional (3D) change in dose deposited by the secondary electrons. Especially at nonhomogeneous anatomical sites with tissues of very different densities, dose enhancements and reductions can occur due to the Lorentz force influencing the trajectories of secondary electrons. These dose changes at tissue interfaces are called the electron return effect or ERE. This study investigated the ERE using 3D dosimeters.

  4. Pharmacokinetics (PK), Pharmacodynamics (PD), and PK-PD Integration of Danofloxacin in Sheep Biological Fluids

    PubMed Central

    Aliabadi, F. Shojaee; Landoni, M. F.; Lees, P.

    2003-01-01

    The fluoroquinolone antimicrobial drug danofloxacin was administered to sheep intravenously (i.v.) and intramuscularly (i.m.) at a dose of 1.25 mg/kg of body weight in a two-period crossover study. The pharmacokinetic properties of danofloxacin in serum, inflamed tissue cage fluid (exudate), and noninflamed tissue cage fluid (transudate) were established by using a tissue cage model. The in vitro and ex vivo activities of danofloxacin in serum, exudate, and transudate against a pathogenic strain of Mannheimia haemolytica were established. Integration of in vivo pharmacokinetic data with the in vitro MIC provided mean values for the area under the curve (AUC)/MIC for serum, exudate, and transudate of 60.5, 85.6, and 45.7 h, respectively, after i.v. dosing and 55.9, 77.9, and 49.1 h, respectively, after i.m. dosing. After i.m. dosing, the maximum concentration/MIC ratios for serum, exudate, and transudate were 10.8, 3.0, and 1.6, respectively. The ex vivo growth inhibition data after i.m. dosing were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC required to produce bacteriostasis, bactericidal activity, and elimination of bacteria. The respective values for serum were 17.8, 20.2, and 28.7 h, and slightly higher values were obtained for transudate and exudate. It is proposed that use of these data might provide a novel approach to the rational design of dosage schedules. PMID:12543670

  5. Quantitative simulation of intracellular signaling cascades in a Virtual Liver: estimating dose dependent changes in hepatocellular proliferation and apoptosis

    EPA Science Inventory

    The US EPA Virtual Liver (v-Liver™) is developing an approach to predict dose-dependent hepatotoxicity as an in vivo tissue level response using in vitro data. The v-Liver accomplishes this using an in silico agent-based systems model that dynamically integrates environmental exp...

  6. SU-E-T-326: Dosimetric Impact of Beam Energies and Jaw Tracking On Intracranial Tumors Using RapidArc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Keeling, V; Ali, I

    2015-06-15

    Purpose: To determine the dosimetric impact of jaw tracking and beam energies on dose conformity and normal-brain-tissue doses for intracranial tumors using VMAT (RapidArc). Methods: Seven patients with 1–2 and three patients with 4–6 intracranial tumors were planned using RapidArc for Varian TrueBeam STx machine with beam energies 6MV-FFF (Flattening-Filter-Free), 8MV, 10MV, and 10MV-FFF. The prescription dose ranged from 14–23Gy. Between 2 and 8 arcs were used with the following geometries: 2 full coplanar arcs and the non-coplanar half arcs. Plans were optimized (jaw tracking ON) with a high priority to Normal-Tissue-Objective and normal-brain-tissue. Plans were calculated on 1mm gridmore » size using AAA algorithm and then normalized so that 99% of each target volume received the prescription dose. Plans for the 6MV-FFF were also optimized without jaw tracking (No-JT) for comparison. Plan quality was assessed by target coverage using Paddick Conformity Index (PCI), sparing of normal-brain-tissue through analysis of V4Gy, V8Gy and V12Gy, and integral dose. Results: The average PCI ± standard deviation was 0.76±0.21 and 0.76±0.22 for 6MV-FFF and 10 MV-FFF, respectively. The average ratio in normal brain tissue volume (reported as follows V4,V8,V12) were (1.12±0.07,1.12±0.07,1.14±0.04), (1.12±0.08,1.12±0.09,1.13±0.06), (1.19±0.10,1.18±0.10,1.20±0.04), and (1.04±0.03,1.03±0.03,1.03±0.04) for 8MV/6MV-FFF, 10MV-FFF/6MV-FFF, 10MV/6MV-FFF, 6MV-FFF No-JT/6MV-FFF, respectively. Statistically significant differences in normal-brain-tissue for V4, V8, and V12 were observed in all cases for the different energies (p-values <0.05). V4 data shows significant differences in JT vs. No-JT (p=0.04), however no difference was found for V8 and V12. Brain tissue sparing from best to worst occurred in this order 6MV-FFF, 6MV-FFF no-JT, 10MV-FFF, 8MV, and 10MV. The average ratio of integral brain dose was 1.05±0.04 (p=0.21), 1.04±0.05 (p=0.33), 1.09±0.06 (p=0.04), and 1.02±0.06 (p=0.61) for 8MV/6MV-FFF, 10MV-FFF/6MV-FFF, 10MV/6MV-FFF, and 6MV-FFF No-JT/6MV-FFF, respectively. Conclusion: Normal brain tissue and integral dose improved using the lower energy and FFF beams, though plan conformity showed energy independence.« less

  7. Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Wen, Ning; Glide-Hurst, Carri; Nurushev, Teamour; Xing, Lei; Kim, Jinkoo; Zhong, Hualiang; Liu, Dezhi; Liu, Manju; Burmeister, Jay; Movsas, Benjamin; Chetty, Indrin J.

    2012-09-01

    The cone-beam computed tomography (CBCT) imaging modality is an integral component of image-guided adaptive radiation therapy (IGART), which uses patient-specific dynamic/temporal information for potential treatment plan modification. In this study, an offline process for the integral component IGART framework has been implemented that consists of deformable image registration (DIR) and its validation, dose reconstruction, dose accumulation and dose verification. This study compares the differences between planned and estimated delivered doses under an IGART framework of five patients undergoing prostate cancer radiation therapy. The dose calculation accuracy on CBCT was verified by measurements made in a Rando pelvic phantom. The accuracy of DIR on patient image sets was evaluated in three ways: landmark matching with fiducial markers, visual image evaluation and unbalanced energy (UE); UE has been previously demonstrated to be a feasible method for the validation of DIR accuracy at a voxel level. The dose calculated on each CBCT image set was reconstructed and accumulated over all fractions to reflect the ‘actual dose’ delivered to the patient. The deformably accumulated (delivered) plans were then compared to the original (static) plans to evaluate tumor and normal tissue dose discrepancies. The results support the utility of adaptive planning, which can be used to fully elucidate the dosimetric impact based on the simulated delivered dose to achieve the desired tumor control and normal tissue sparing, which may be of particular importance in the context of hypofractionated radiotherapy regimens.

  8. A physical anthropomorphic phantom of a one year old child with real-time dosimetry

    NASA Astrophysics Data System (ADS)

    Bower, Mark William

    A physical heterogeneous phantom has been created with epoxy resin based tissue substitutes. The phantom is based on the Cristy and Eckerman mathematical phantom which in turn is a modification of the Medical Internal Radiation Dose (MIRD) model of a one-year-old child as presented by the Society of Nuclear Medicine. The Cristy and Eckerman mathematical phantom, and the physical phantom, are comprised of three different tissue types: bone, lung tissue and soft tissue. The bone tissue substitute is a homogenous mixture of bone tissues: active marrow, inactive marrow, trabecular bone, and cortical bone. Soft tissue organs are represented by a homogeneous soft tissue substitute at a particular location. Point doses were measured within the phantom with a Metal Oxide Semiconductor Field Effect Transistor (MOSFET)- based Patient Dose Verification System modified from the original radiotherapy application. The system features multiple dosimeters that are used to monitor entrance or exit skin doses and intracavity doses in the phantom in real-time. Two different MOSFET devices were evaluated: the typical therapy MOSFET and a developmental MOSFET device that has an oxide layer twice as thick as the therapy MOSFET thus making it of higher sensitivity. The average sensitivity (free-in-air, including backscatter) of the 'high-sensitivity' MOSFET dosimeters ranged from 1.15×105 mV per C kg-1 (29.7 mV/R) to 1.38×105 mV per C kg-1 (35.7 mV/R) depending on the energy of the x-ray field. The integrated physical phantom was utilized to obtain point measurements of the absorbed dose from diagnostic x-ray examinations. Organ doses were calculated based on these point dose measurements. The phantom dosimetry system functioned well providing real-time measurement of the dose to particular organs. The system was less reliable at low doses where the main contribution to the dose was from scattered radiation. The system also was of limited utility for determining the absorbed dose in larger systems such as the skeleton. The point dose method of estimating the organ dose to large disperse organs such as this are of questionable accuracy since only a limited number of points are measured in a field with potentially large exposure variations. The MOSFET system was simple to use and considerably faster than traditional thermoluminescent dosimetry. The one-year-old simulated phantom with the real-time MOSFET dosimeters provides a method to easily evaluate the risk to a previously understudied population from diagnostic radiographic procedures.

  9. SU-E-T-124: Dosimetric Comparison of HDR Brachytherapy and Intensity Modulated Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J; Wu, H; Das, I

    2014-06-01

    Purpose: Brachytherapy is known to be able to deliver more radiation dose to tumor while minimizing radiation dose to surrounding normal tissues. Proton therapy also provides superior dose distribution due to Bragg peak. Since both HDR and Intensity Modulated Proton Therapy (IMPT) are beneficial for their quick dose drop off, our goal in this study is to compare the pace of dose gradient drop-off between HDR and IMPT plans based on the same CT image data-set. In addition, normal tissues sparing were also compared among HDR, IMPT and SBRT. Methods: Five cervical cancer cases treated with EBRT + HDR boostmore » combination with Tandem and Ovoid applicator were used for comparison purpose. Original HDR plans with prescribed dose of 5.5 Gy x 5 fractions were generated and optimized. The 100% isodose line of HDR plans was converted to a dose volume, and treated as CTV for IMPT and SBRT planning. The same HDR CT scans were also used for IMPT plan and SBRT plan for direct comparison. The philosophy of the IMPT and SBRT planning was to create the same CTV coverage as HDR plans. All three modalities treatment plans were compared to each other with a set of predetermined criteria. Results: With similar target volume coverage in cervix cancer boost treatment, HDR provides a slightly sharper dose drop-off from 100% to 50% isodose line, averagely in all directions compared to IMPT. However, IMPT demonstrated more dose gradient drop-off at the junction of the target and normal tissues by providing more normal tissue sparing and superior capability to reduce integral dose. Conclusion: IMPT is capable of providing comparable dose drop-off as HDR. IMPT can be explored as replacement for HDR brachytherapy in various applications.« less

  10. Tissue distribution of a plasmid DNA encoding Hsp65 gene is dependent on the dose administered through intramuscular delivery

    PubMed Central

    Coelho-Castelo, AAM; Trombone, AP; Rosada, RS; Santos, RR; Bonato, VLD; Sartori, A; Silva, CL

    2006-01-01

    In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. PMID:16445866

  11. A Dosimetric Comparison of Proton and Intensity Modulated Radiation Therapy in Pediatric Rhabdomyosarcoma Patients Enrolled on a Prospective Phase II Proton Study

    PubMed Central

    Ladra, Matthew M.; Edgington, Samantha K.; Mahajan, Anita; Grosshans, David; Szymonifka, Jackie; Khan, Fazal; Moteabbed, Maryam; Friedmann, Alison M.; MacDonald, Shannon M.; Tarbell, Nancy J.; Yock, Torunn I.

    2015-01-01

    Background Pediatric rhabdomyosarcoma (RMS) is highly curable, however, cure may come with significant radiation related toxicity in developing tissues. Proton therapy (PT) can spare excess dose to normal structures, potentially reducing the incidence of adverse effects. Methods Between 2005 and 2012, 54 patients were enrolled on a prospective multi-institutional phase II trial using PT in pediatric RMS. As part of the protocol, intensity modulated radiation therapy (IMRT) plans were generated for comparison with clinical PT plans. Results Target coverage was comparable between PT and IMRT plans with a mean CTV V95 of 100% for both modalities (p=0.82). However, mean integral dose was 1.8 times higher for IMRT (range 1.0-4.9). By site, mean integral dose for IMRT was 1.8 times higher for H&N (p<0.01) and GU (p=0.02), 2.0 times higher for trunk/extremity (p<0.01), and 3.5 times higher for orbit (p<0.01) compared to PT. Significant sparing was seen with PT in 26 of 30 critical structures assessed for orbital, head and neck, pelvic, and trunk/extremity patients. Conclusions Proton radiation lowers integral dose and improves normal tissue sparing when compared to IMRT for pediatric RMS. Correlation with clinical outcomes is necessary once mature long-term toxicity data are available. PMID:25443861

  12. Evaluation of the persistence, integration, histopathology and environmental release of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2.

    PubMed

    Song, Xiaokai; Zhang, Zeyang; Liu, Chang; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui

    2016-10-15

    In a previous study, the construction of the Eimeria tenella DNA vaccine pVAX1.0-TA4-IL-2 which provides effective protection against coccidiosis was described and the immunization procedure was optimized. However, the persistence, integration, histopathology and environmental release of the DNA vaccine remain unknown. In this study, the persistence, integration and histopathology of the DNA vaccine pVAX1.0-TA4-IL-2 was evaluated in chickens in the following immunization studies: (1) single-dose immunization in one-day-old chickens; (2) repeat-dose immunization in chickens; and (3) single-high-dose immunization of three batches of plasmid in chickens. The persistence, integration, histopathology of the DNA vaccine was also evaluated in mice. At 1, 1.5, 2-4 months post immunization, blood, duodenum, heart, liver, spleen, kidneys and the immunized muscle tissue were collected from ten animals of each group. Persistence and integration were evaluated using PCR with a confirmed sensitivity of 30 plasmid copies. Hematoxylin and eosin stained sections were examined for the presence of inflammation or abnormalities that may result from vaccination. Water and fecal samples were also collected from the chicken enclosures to evaluate the potential for environmental release of the DNA vaccine. Testing various tissues by PCR confirmed that plasmid DNA persisted 1.5 months in blood, heart, liver and spleen, 2 months in kidneys and muscle of injected site. Furthermore, the vaccine did not integrate with the host genome. The histopathological examinations did not show obvious inflammation or pathological damage in any tissue of the immunized chickens. Similar results were observed in mice. Moreover, the DNA vaccine was not released into the surrounding environment. These results indicate that the DNA vaccine pVAX1.0-TA4-IL-2 has potential as safe vaccine against coccidiosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. SU-F-T-498: A Comparative Evaluation of 6MV Flatten Beam and Flattening Filter Free Photon Beam in Carcinoma Breast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamilarasu, Suresh; Saminathan, Madeswaran

    Purpose: Aim of the current study is to look plan quality, treatment beam ON time for IMRT using 6MV FB (Flatten Beam) and FFFB (Flattening Filter Free Beam) in left breast cancer cases. Methods: Ten left breast cancer patients treated with breast conserving surgical (BCS) procedure approach and adjuvant radiotherapy were selected from the department database. Simultaneous Integrated boost (SIB) technique was used to irradiate the total left breast (PTV) to a dose of 50.40Gy with concomitant enhance to the lumpectomy cavity known as gross tumour volume (GTV) to a dose of 59.40Gy in 28 fractions. Plans 6MV FB IMRTmore » and 6MV FFFB IMRT had been generated to achieve dose to 95% target volume (TV) and spare Organ at risks (OAR’s). Homogeneity index (HI), conformity index (CI), treatment monitor unit (MU),normal tissues integral dose (NTID) and low dose volume of normal tissue were compared. Results: There was no statistically huge difference among the plans with respect to target volume coverage, CI HI, Ipsilateral Lung and Breast. But statistically significant difference (p< 0.05) as observed in Heart, V5Gy of Contralateral Lung, MU’s NTID and low dose volume of normal tissue. Conclusion: 6MV FB and FFF beam produce almost equivalent plans in IMRT modality with admire to target volume coverage, HI, CI. Beam on time and NTID was determined to be much less in 6MV FFFB IMRT. FFF beam leads to a time saving treatment delivery and fewer NTID in cancer of left breast cases.« less

  14. Integral radiation dose to normal structures with conformal external beam radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyama, Hidefumi; Westerly, David Clark; Mackie, Thomas Rockwell

    2006-03-01

    Background: This study was designed to evaluate the integral dose (ID) received by normal tissue from intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Twenty-five radiation treatment plans including IMRT using a conventional linac with both 6 MV (6MV-IMRT) and 20 MV (20MV-IMRT), as well as three-dimensional conformal radiotherapy (3DCRT) using 6 MV (6MV-3DCRT) and 20 MV (20MV-3DCRT) and IMRT using tomotherapy (6MV) (Tomo-IMRT), were created for 5 patients with localized prostate cancer. The ID (mean dose x tissue volume) received by normal tissue (NTID) was calculated from dose-volume histograms. Results: The 6MV-IMRT resulted in 5.0% lower NTID thanmore » 6MV-3DCRT; 20 MV beam plans resulted in 7.7%-11.2% lower NTID than 6MV-3DCRT. Tomo-IMRT NTID was comparable to 6MV-IMRT. Compared with 6MV-3DCRT, 6MV-IMRT reduced IDs to the rectal wall and penile bulb by 6.1% and 2.7%, respectively. Tomo-IMRT further reduced these IDs by 11.9% and 16.5%, respectively. The 20 MV did not reduce IDs to those structures. Conclusions: The difference in NTID between 3DCRT and IMRT is small. The 20 MV plans somewhat reduced NTID compared with 6 MV plans. The advantage of tomotherapy over conventional IMRT and 3DCRT for localized prostate cancer was demonstrated in regard to dose sparing of rectal wall and penile bulb while slightly decreasing NTID as compared with 6MV-3DCRT.« less

  15. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams.

    PubMed

    Künzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar

    2009-12-21

    The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (gamma) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% +/- 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 x 10 cm(2) field at the first density interface from tissue to lung equivalent material. Small fields (2 x 2 cm(2)) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the heterogeneous phantom. For the clinical test cases, the average dose discrepancy was 0.5% +/- 1.1%. Relative dose investigations of the transverse plane for clinical beam arrangements were performed with a 2D gamma-evaluation procedure. For 3% dose difference and 3 mm DTA criteria, the average value for gamma(>1) was 4.7% +/- 3.7%, the average gamma(1%) value was 1.19 +/- 0.16 and the mean 2D gamma-value was 0.44 +/- 0.07 in the heterogeneous phantom. The iPlan MC algorithm leads to accurate dosimetric results under clinical test conditions.

  16. Esophageal cancer dose escalation using a simultaneous integrated boost technique.

    PubMed

    Welsh, James; Palmer, Matthew B; Ajani, Jaffer A; Liao, Zhongxing; Swisher, Steven G; Hofstetter, Wayne L; Allen, Pamela K; Settle, Steven H; Gomez, Daniel; Likhacheva, Anna; Cox, James D; Komaki, Ritsuko

    2012-01-01

    We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Treatment plans were generated using four different approaches (two-dimensional conformal radiotherapy [2D-CRT] to 50.4 Gy, 2D-CRT to 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. The 50.4 Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4 Gy 2D-CRT plan. The 64.8 Gy SIB-IMRT plan produced a 28% increase in GTV dose and comparable normal tissue doses as the 50.4 Gy IMRT plan; compared with the 50.4 Gy 2D-CRT plan, the 64.8 Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Esophageal Cancer Dose Escalation using a Simultaneous Integrated Boost Technique

    PubMed Central

    Welsh, James; Palmer, Matthew B.; Ajani, Jaffer A.; Liao, Zhongxing; Swisher, Steven G.; Hofstetter, Wayne L.; Allen, Pamela K.; Settle, Steven H.; Gomez, Daniel; Likhacheva, Anna; Cox, James D.; Komaki, Ritsuko

    2014-01-01

    Purpose We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Methods and Materials Treatment plans were generated using four different approaches (two-dimensional conformal RT [2D-CRT] to 50.4 Gy or 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. Results The 50.4-Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4-Gy 2D-CRT plan. The 64.8-Gy SIB-IMRT plan produced a 28% increase in GTV dose and the same normal tissue doses as the 50.4-Gy IMRT plan; compared with the 50.4-Gy 2D-CRT plan, the 64.8-Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). Conclusions The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation. PMID:21123005

  18. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaniwa, T., E-mail: taku@nirs.go.jp; Kanematsu, N.; Tsuji, H.

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 casesmore » each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.« less

  19. Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans.

    PubMed

    Gottlieb, Assaf; Daneshjou, Roxana; DeGorter, Marianne; Bourgeois, Stephane; Svensson, Peter J; Wadelius, Mia; Deloukas, Panos; Montgomery, Stephen B; Altman, Russ B

    2017-11-24

    Genome-wide association studies are useful for discovering genotype-phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into "gene level" effects. Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression-on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort.

  20. Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors.

    PubMed

    Sheybani, Roya; Cobo, Angelica; Meng, Ellis

    2015-08-01

    We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.

  1. Allograft tissue irradiation and failure rate after anterior cruciate ligament reconstruction: A systematic review.

    PubMed

    Dashe, Jesse; Parisien, Robert L; Cusano, Antonio; Curry, Emily J; Bedi, Asheesh; Li, Xinning

    2016-06-18

    To evaluate whether anterior cruciate ligament (ACL) allograft irradiation is effective for sterility without compromising graft integrity and increasing failure rate. A literature search was conducted using PubMed, Cochrane, and Google. The following search terms were used: "Gamma irradiation AND anterior cruciate ligament AND allograft" with a return of 30 items. Filters used included: English language, years 1990-2015. There were 6 hits that were not reviewed, as there were only abstracts available. Another 5 hits were discarded, as they did not pertain to the topic of interest. There were 9 more articles that were excluded: Three studies were performed on animals and 6 studies were meta-analyses. Therefore, a total of 10 articles were applicable to review. There is a delicate dosing crossover where gamma irradiation is both effective for sterility without catastrophically compromising the structural integrity of the graft. Of note, low dose irradiation is considered less than 2.0 Mrad, moderate dose is between 2.1-2.4 Mrad, and high dose is greater than or equal to 2.5 Mrad. Based upon the results of the literature search, the optimal threshold for sterilization was found to be sterilization at less than 2.2 Mrad of gamma irradiation with the important caveat of being performed at low temperatures. The graft selection process also must include thorough donor screening and testing as well as harvesting the tissue in a sterile fashion. Utilization of higher dose (≥ 2.5 Mrad) of irradiation causes greater allograft tissue laxity that results in greater graft failure rate clinically in patients after ACL reconstruction. Allograft ACL graft gamma irradiated with less than 2.2 Mrad appears to be a reasonable alternative to autograft for patients above 25 years of age.

  2. Allograft tissue irradiation and failure rate after anterior cruciate ligament reconstruction: A systematic review

    PubMed Central

    Dashe, Jesse; Parisien, Robert L; Cusano, Antonio; Curry, Emily J; Bedi, Asheesh; Li, Xinning

    2016-01-01

    AIM: To evaluate whether anterior cruciate ligament (ACL) allograft irradiation is effective for sterility without compromising graft integrity and increasing failure rate. METHODS: A literature search was conducted using PubMed, Cochrane, and Google. The following search terms were used: “Gamma irradiation AND anterior cruciate ligament AND allograft” with a return of 30 items. Filters used included: English language, years 1990-2015. There were 6 hits that were not reviewed, as there were only abstracts available. Another 5 hits were discarded, as they did not pertain to the topic of interest. There were 9 more articles that were excluded: Three studies were performed on animals and 6 studies were meta-analyses. Therefore, a total of 10 articles were applicable to review. RESULTS: There is a delicate dosing crossover where gamma irradiation is both effective for sterility without catastrophically compromising the structural integrity of the graft. Of note, low dose irradiation is considered less than 2.0 Mrad, moderate dose is between 2.1-2.4 Mrad, and high dose is greater than or equal to 2.5 Mrad. Based upon the results of the literature search, the optimal threshold for sterilization was found to be sterilization at less than 2.2 Mrad of gamma irradiation with the important caveat of being performed at low temperatures. The graft selection process also must include thorough donor screening and testing as well as harvesting the tissue in a sterile fashion. Utilization of higher dose (≥ 2.5 Mrad) of irradiation causes greater allograft tissue laxity that results in greater graft failure rate clinically in patients after ACL reconstruction. CONCLUSION: Allograft ACL graft gamma irradiated with less than 2.2 Mrad appears to be a reasonable alternative to autograft for patients above 25 years of age. PMID:27335815

  3. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimatemore » human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.« less

  4. Neurocognitive sparing of desktop microbeam irradiation.

    PubMed

    Bazyar, Soha; Inscoe, Christina R; Benefield, Thad; Zhang, Lei; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2017-08-11

    Normal tissue toxicity is the dose-limiting side effect of radiotherapy. Spatial fractionation irradiation techniques, like microbeam radiotherapy (MRT), have shown promising results in sparing the normal brain tissue. Most MRT studies have been conducted at synchrotron facilities. With the aim to make this promising treatment more available, we have built the first desktop image-guided MRT device based on carbon nanotube x-ray technology. In the current study, our purpose was to evaluate the effects of MRT on the rodent normal brain tissue using our device and compare it with the effect of the integrated equivalent homogenous dose. Twenty-four, 8-week-old male C57BL/6 J mice were randomly assigned to three groups: MRT, broad-beam (BB) and sham. The hippocampal region was irradiated with two parallel microbeams in the MRT group (beam width = 300 μm, center-to-center = 900 μm, 160 kVp). The BB group received the equivalent integral dose in the same area of their brain. Rotarod, marble burying and open-field activity tests were done pre- and every month post-irradiation up until 8 months to evaluate the cognitive changes and potential irradiation side effects on normal brain tissue. The open-field activity test was substituted by Barnes maze test at 8th month. A multilevel model, random coefficients approach was used to evaluate the longitudinal and temporal differences among treatment groups. We found significant differences between BB group as compared to the microbeam-treated and sham mice in the number of buried marble and duration of the locomotion around the open-field arena than shams. Barnes maze revealed that BB mice had a lower capacity for spatial learning than MRT and shams. Mice in the BB group tend to gain weight at the slower pace than shams. No meaningful differences were found between MRT and sham up until 8-month follow-up using our measurements. Applying MRT with our newly developed prototype compact CNT-based image-guided MRT system utilizing the current irradiation protocol can better preserve the integrity of normal brain tissue. Consequently, it enables applying higher irradiation dose that promises better tumor control. Further studies are required to evaluate the full extent effects of this novel modality.

  5. Bladder radiotherapy treatment: A retrospective comparison of 3-dimensional conformal radiotherapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it; Kuthpady, Shrinivas; Anderson, Anne

    To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results.more » Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.« less

  6. PHARMACOKINETIC MODELS IN THE DESIGN OF BIOMONITORING PROGRAMS

    EPA Science Inventory

    Measurements of chemicals in tissues, blood, or urine can be related to health effects because they are an integrated measure of absorbed dose following exposure. However, the direct relationship between biomonitoring data and pathway-specific exposures is more tenuous. In chem...

  7. The Virtual Liver: Modeling Chemical-Induced Liver Toxicity

    EPA Science Inventory

    The US EPA Virtual Liver (v-Liver) project is aimed at modeling chemical-induced processes in hepatotoxicity and simulating their dose-dependent perturbations. The v-Liver embodies an emerging field of research in computational tissue modeling that integrates molecular and cellul...

  8. Optimization of permanent breast seed implant dosimetry incorporating tissue heterogeneity

    NASA Astrophysics Data System (ADS)

    Mashouf, Shahram

    Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG43 formalism, which generates the dose in homogeneous water medium. Recently, AAPM task group no. 186 (TG186) emphasized the importance of accounting for heterogeneities. In this work we introduce an analytical dose calculation algorithm in heterogeneous media using CT images. The advantages over other methods are computational efficiency and the ease of integration into clinical use. An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of the source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. The dose distributions obtained through applying ICF to TG43 protocol agreed very well with those of Monte Carlo simulations and experiments in all phantoms. In all cases, the mean relative error was reduced by at least a factor of two when ICF correction factor was applied to the TG43 protocol. In conclusion we have developed a new analytical dose calculation method, which enables personalized dose calculations in heterogeneous media using CT images. The methodology offers several advantages including the use of standard TG43 formalism, fast calculation time and extraction of the ICF parameters directly from Hounsfield Units. The methodology was implemented into our clinical treatment planning system where a cohort of 140 patients were processed to study the clinical benefits of a heterogeneity corrected dose.

  9. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA).

    PubMed

    Delistraty, Damon; Van Verst, Scott; Rochette, Elizabeth A

    2010-02-01

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from the Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA), as well as below a dose limit of 100 mrem/yr proposed by the International Commission on Radiation Protection (ICRP). Similarly, lifetime cancer risk (1.7E-5), calculated with median inputs, was below risk levels corresponding to these dose limits. However, our dose and risk estimates apply to only one pathway within a multidimensional exposure scenario for Native Americans. On the other hand, radiation dose and risk corresponding to onsite tissue concentrations were not significantly different from those corresponding to offsite (background) concentrations. Recognizing uncertainties in exposure and toxicity assessments, our results may facilitate informed decision making and optimize resource allocation within a risk assessment framework at the Hanford Site. (c) 2009 Elsevier Inc. All rights reserved.

  10. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov; Verst, Scott Van; Rochette, Elizabeth A.

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from themore » Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA), as well as below a dose limit of 100 mrem/yr proposed by the International Commission on Radiation Protection (ICRP). Similarly, lifetime cancer risk (1.7E-5), calculated with median inputs, was below risk levels corresponding to these dose limits. However, our dose and risk estimates apply to only one pathway within a multidimensional exposure scenario for Native Americans. On the other hand, radiation dose and risk corresponding to onsite tissue concentrations were not significantly different from those corresponding to offsite (background) concentrations. Recognizing uncertainties in exposure and toxicity assessments, our results may facilitate informed decision making and optimize resource allocation within a risk assessment framework at the Hanford Site.« less

  11. Radiobiological and treatment planning study of a simultaneously integrated boost for canine nasal tumors using helical tomotherapy.

    PubMed

    Gutíerrez, Alonso N; Deveau, Michael; Forrest, Lisa J; Tomé, Wolfgang A; Mackie, Thomas R

    2007-01-01

    Feasibility of delivering a simultaneously integrated boost to canine nasal tumors using helical tomotherapy to improve tumor control probability (TCP) via an increase in total biological equivalent uniform dose (EUD) was evaluated. Eight dogs with varying size nasal tumors (5.8-110.9 cc) were replanned to 42 Gy to the nasal cavity and integrated dose boosts to gross disease of 45.2, 48.3, and 51.3 Gy in 10 fractions. EUD values were calculated for tumors and mean normalized total doses (NTD(mean)) for organs at risk (OAR). Normal Tissue Complication Probability (NTCP) values were obtained for OARs, and estimated TCP values were computed using a logistic dose-response model and based on deliverable EUD boost doses. Significant increases in estimated TCP to 54%, 74%, and 86% can be achieved with 10%, 23%, and 37% mean relative EUD boosts to the gross disease, respectively. NTCP values for blindness of either eye and for brain necrosis were < 0.01% for all boosts. Values for cataract development were 31%, 42%, and 46% for studied boost schemas, respectively. Average NTD(mean) to eyes and brain for mean EUD boosts were 10.2, 11.3, and 12.1 Gy3, and 7.5, 7.2, and 7.9 Gy2, respectively. Using helical tomotherapy, simultaneously integrated dose boosts can be delivered to increase the estimated TCP at 1-year without significantly increasing the NTD(mean) to eyes and brain. Delivery of these treatments in a prospective trial may allow quantification of a dose-response relationship in canine nasal tumors.

  12. Comparative Risks of Aldehyde Constituents in Cigarette Smoke Using Transient Computational Fluid Dynamics/Physiologically Based Pharmacokinetic Models of the Rat and Human Respiratory Tracts

    PubMed Central

    Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.; Carson, James P.; Jacob, Richard E.; Minard, Kevin R.; Teeguarden, Justin G.; Timchalk, Charles; Pipavath, Sudhakar; Glenny, Robb; Einstein, Daniel R.

    2015-01-01

    Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein. PMID:25858911

  13. SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaly, B; Gaede, S; Department of Medical Biophysics, Western University, London, ON

    2015-06-15

    Purpose: To investigate the clinical utility of on-line verification of respiratory gated VMAT dosimetry during treatment. Methods: Portal dose images were acquired during treatment in integrated mode on a Varian TrueBeam (v. 1.6) linear accelerator for gated lung and liver patients that used flattening filtered beams. The source to imager distance (SID) was set to 160 cm to ensure imager clearance in case the isocenter was off midline. Note that acquisition of integrated images resulted in no extra dose to the patient. Fraction 1 was taken as baseline and all portal dose images were compared to that of the baseline,more » where the gamma comparison and dose difference were used to measure day-to-day exit dose variation. All images were analyzed in the Portal Dosimetry module of Aria (v. 10). The portal imager on the TrueBeam was calibrated by following the instructions for dosimetry calibration in service mode, where we define 1 calibrated unit (CU) equal to 1 Gy for 10×10 cm field size at 100 cm SID. This reference condition was measured frequently to verify imager calibration. Results: The gamma value (3%, 3 mm, 5% threshold) ranged between 92% and 100% for the lung and liver cases studied. The exit dose can vary by as much as 10% of the maximum dose for an individual fraction. The integrated images combined with the information given by the corresponding on-line soft tissue matched cone-beam computed tomography (CBCT) images were useful in explaining dose variation. For gated lung treatment, dose variation was mainly due to the diaphragm position. For gated liver treatment, the dose variation was due to both diaphragm position and weight loss. Conclusion: Integrated images can be useful in verifying dose delivery consistency during respiratory gated VMAT, although the CBCT information is needed to explain dose differences due to anatomical changes.« less

  14. Assessing the potential for AAV vector genotoxicity in a murine model

    PubMed Central

    Li, Hojun; Malani, Nirav; Hamilton, Shari R.; Schlachterman, Alexander; Bussadori, Giulio; Edmonson, Shyrie E.; Shah, Rachel; Arruda, Valder R.; Mingozzi, Federico; Fraser Wright, J.; Bushman, Frederic D.

    2011-01-01

    Gene transfer using adeno-associated virus (AAV) vectors has great potential for treating human disease. Recently, questions have arisen about the safety of AAV vectors, specifically, whether integration of vector DNA in transduced cell genomes promotes tumor formation. This study addresses these questions with high-dose liver-directed AAV-mediated gene transfer in the adult mouse as a model (80 AAV-injected mice and 52 controls). After 18 months of follow-up, AAV-injected mice did not show a significantly higher rate of hepatocellular carcinoma compared with controls. Tumors in mice treated with AAV vectors did not have significantly different amounts of vector DNA compared with adjacent normal tissue. A novel high-throughput method for identifying AAV vector integration sites was developed and used to clone 1029 integrants. Integration patterns in tumor tissue and adjacent normal tissue were similar to each other, showing preferences for active genes, cytosine-phosphate-guanosine islands, and guanosine/cysteine-rich regions. Gene expression data showed that genes near integration sites did not show significant changes in expression patterns compared with genes more distal to integration sites. No integration events were identified as causing increased oncogene expression. Thus, we did not find evidence that AAV vectors cause insertional activation of oncogenes and subsequent tumor formation. PMID:21106988

  15. Spot scanning proton therapy plan assessment: design and development of a dose verification application for use in routine clinical practice

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Walsh, Timothy J.; Beltran, Chris J.; Stoker, Joshua B.; Mundy, Daniel W.; Parry, Mark D.; Bues, Martin; Fatyga, Mirek

    2016-04-01

    The use of radiation therapy for the treatment of cancer has been carried out clinically since the late 1800's. Early on however, it was discovered that a radiation dose sufficient to destroy cancer cells can also cause severe injury to surrounding healthy tissue. Radiation oncologists continually strive to find the perfect balance between a dose high enough to destroy the cancer and one that avoids damage to healthy organs. Spot scanning or "pencil beam" proton radiotherapy offers another option to improve on this. Unlike traditional photon therapy, proton beams stop in the target tissue, thus better sparing all organs beyond the targeted tumor. In addition, the beams are far narrower and thus can be more precisely "painted" onto the tumor, avoiding exposure to surrounding healthy tissue. To safely treat patients with proton beam radiotherapy, dose verification should be carried out for each plan prior to treatment. Proton dose verification systems are not currently commercially available so the Department of Radiation Oncology at the Mayo Clinic developed its own, called DOSeCHECK, which offers two distinct dose simulation methods: GPU-based Monte Carlo and CPU-based analytical. The three major components of the system include the web-based user interface, the Linux-based dose verification simulation engines, and the supporting services and components. The architecture integrates multiple applications, libraries, platforms, programming languages, and communication protocols and was successfully deployed in time for Mayo Clinic's first proton beam therapy patient. Having a simple, efficient application for dose verification greatly reduces staff workload and provides additional quality assurance, ultimately improving patient safety.

  16. Performance characteristics of the EPR dosimetry system with table sugar in radiotherapy applications.

    PubMed

    Mikou, M; Ghosne, N; El Baydaoui, R; Zirari, Z; Kuntz, F

    2015-05-01

    Performance characteristics of the megavoltage photon dose measurements with EPR and table sugar were analyzed. An advantage of sugar as a dosimetric material is its tissue equivalency. The minimal detectable dose was found to be 1.5Gy for both the 6 and 18MV photons. The dose response curves are linear up to at least 20Gy. The energy dependence of the dose response in the megavoltage energy range is very weak and probably statistically insignificant. Reproducibility of measurements of various doses in this range performed with the peak-to-peak and double-integral methods is reported. The method can be used in real-time dosimetry in radiation therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT)

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Kim, Michele M.; Finlay, Jarod C.; Dimofte, Andreea; Singhal, Sunil; Glatstein, Eli; Cengel, Keith A.; Zhu, Timothy C.

    2018-01-01

    Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.

  18. Advancing environmental toxicology through chemical dosimetry: External exposures versus tissue residues

    USGS Publications Warehouse

    McCarty, L.S.; Landrum, P.F.; Luoma, S.N.; Meador, J.P.; Merten, A.A.; Shephard, B.K.; van Wezelzz, A.P.

    2011-01-01

    The tissue residue dose concept has been used, although in a limited manner, in environmental toxicology for more than 100 y. This review outlines the history of this approach and the technical background for organic chemicals and metals. Although the toxicity of both can be explained in tissue residue terms, the relationship between external exposure concentration, body and/or tissues dose surrogates, and the effective internal dose at the sites of toxic action tends to be more complex for metals. Various issues and current limitations related to research and regulatory applications are also examined. It is clear that the tissue residue approach (TRA) should be an integral component in future efforts to enhance the generation, understanding, and utility of toxicity testing data, both in the laboratory and in the field. To accomplish these goals, several key areas need to be addressed: 1) development of a risk-based interpretive framework linking toxicology and ecology at multiple levels of biological organization and incorporating organism-based dose metrics; 2) a broadly applicable, generally accepted classification scheme for modes/mechanisms of toxic action with explicit consideration of residue information to improve both single chemical and mixture toxicity data interpretation and regulatory risk assessment; 3) toxicity testing protocols updated to ensure collection of adequate residue information, along with toxicokinetics and toxicodynamics information, based on explicitly defined toxicological models accompanied by toxicological model validation; 4) continued development of residueeffect databases is needed ensure their ongoing utility; and 5) regulatory guidance incorporating residue-based testing and interpretation approaches, essential in various jurisdictions. ??:2010 SETAC.

  19. Histological, molecular and biochemical detection of renal injury after Echis pyramidum snake envenomation in rats

    PubMed Central

    Al-Johany, Awadh M.; Al-Sadoon, Mohamed K.; Abdel Moneim, Ahmed E.; Bauomy, Amira A.; Diab, Marwa S.M.

    2014-01-01

    Nephrotoxicity is a common sign of snake envenomation. The present work aimed to clarify the effect of intraperitoneal injection of 1/8 LD50 and 1/4 LD50 doses of Echis pyramidum snake venom on the renal tissue of rats after 2, 4 and 6 h from envenomation. Histopathological examination showed intense dose and time dependent abnormalities, including swelling glomerulus and tubular necrosis and damage as well as signs of intertubular medullary hemorrhage at early stages of envenomation. However, at late stages of envenomation by any of the doses under investigation, no intact renal corpuscles were recorded and complete lysis in renal corpuscles with ruptured Bowman’s capsules was observed. Immunohistochemistry by immunohistochemical staining was used to test the protein expression of Bax in renal tissue of rats. The result showed that the expression of Bax in renal tissue sections of envenomated rats was increased according to dose and time-dependant manner. The isolation of DNA from the renal cells of envenomed rats pointed out to the occurrence of DNA fragmentation, which is another indicator for renal tissue injury especially after 6 h of 1/4 LD50 of E. pyramidum envenomation. Oxidative stress biomarkers malondialdehyde and nitrite/nitrate levels, antioxidant parameters; glutathione, total antioxidant capacity and catalase were assayed in renal tissue homogenates. The venom induced significant increase in the levels of malondialdehyde and nitrite/nitrate while the levels of glutathione, total antioxidant capacity and catalase were significantly decreased, especially after 6 h of envenomation. The results revealed that the E. pyramidum induced dose and time-dependant significant disturbances in the physiological parameters in the kidney. We conclude that the use of the immunohistochemical techniques, the detection of DNA integrity and oxidative stress marker estimations are more specific tools that can clarify cellular injury and could point out to the defense activity of the renal tissue at envenomation. PMID:25972751

  20. Histological, molecular and biochemical detection of renal injury after Echis pyramidum snake envenomation in rats.

    PubMed

    Al-Johany, Awadh M; Al-Sadoon, Mohamed K; Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa S M

    2015-05-01

    Nephrotoxicity is a common sign of snake envenomation. The present work aimed to clarify the effect of intraperitoneal injection of 1/8 LD50 and 1/4 LD50 doses of Echis pyramidum snake venom on the renal tissue of rats after 2, 4 and 6 h from envenomation. Histopathological examination showed intense dose and time dependent abnormalities, including swelling glomerulus and tubular necrosis and damage as well as signs of intertubular medullary hemorrhage at early stages of envenomation. However, at late stages of envenomation by any of the doses under investigation, no intact renal corpuscles were recorded and complete lysis in renal corpuscles with ruptured Bowman's capsules was observed. Immunohistochemistry by immunohistochemical staining was used to test the protein expression of Bax in renal tissue of rats. The result showed that the expression of Bax in renal tissue sections of envenomated rats was increased according to dose and time-dependant manner. The isolation of DNA from the renal cells of envenomed rats pointed out to the occurrence of DNA fragmentation, which is another indicator for renal tissue injury especially after 6 h of 1/4 LD50 of E. pyramidum envenomation. Oxidative stress biomarkers malondialdehyde and nitrite/nitrate levels, antioxidant parameters; glutathione, total antioxidant capacity and catalase were assayed in renal tissue homogenates. The venom induced significant increase in the levels of malondialdehyde and nitrite/nitrate while the levels of glutathione, total antioxidant capacity and catalase were significantly decreased, especially after 6 h of envenomation. The results revealed that the E. pyramidum induced dose and time-dependant significant disturbances in the physiological parameters in the kidney. We conclude that the use of the immunohistochemical techniques, the detection of DNA integrity and oxidative stress marker estimations are more specific tools that can clarify cellular injury and could point out to the defense activity of the renal tissue at envenomation.

  1. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  2. Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xinfeng; Prior, Phil; Chen, Guang-Pei

    Purpose: The integration of MRI with a linear accelerator (MR-linac) offers great potential for high-precision delivery of radiation therapy (RT). However, the electron deflection resulting from the presence of a transverse magnetic field (TMF) can affect the dose distribution, particularly the electron return effect (ERE) at tissue interfaces. The purpose of the study is to investigate the dose effects of ERE at air-tissue and lung-tissue interfaces during intensity-modulated radiation therapy (IMRT) planning. Methods: IMRT and volumetric modulated arc therapy (VMAT) plans for representative pancreas, lung, breast, and head and neck (HN) cases were generated following commonly used clinical dose volumemore » (DV) criteria. In each case, three types of plans were generated: (1) the original plan generated without a TMF; (2) the reconstructed plan generated by recalculating the original plan with the presence of a TMF of 1.5 T (no optimization); and (3) the optimized plan generated by a full optimization with TMF = 1.5 T. These plans were compared using a variety of DV parameters, including V{sub 100%}, D{sub 95%}, DHI [dose heterogeneity index: (D{sub 20%}–D{sub 80%})/D{sub prescription}], D{sub max}, and D{sub 1cc} in OARs (organs at risk) and tissue interface. All the optimizations and calculations in this work were performed on static data. Results: The dose recalculation under TMF showed the presence of the 1.5 T TMF can slightly reduce V{sub 100%} and D{sub 95%} for PTV, with the differences being less than 4% for all but one lung case studied. The TMF results in considerable increases in D{sub max} and D{sub 1cc} on the skin in all cases, mostly between 10% and 35%. The changes in D{sub max} and D{sub 1cc} on air cavity walls are dependent upon site, geometry, and size, with changes ranging up to 15%. The VMAT plans lead to much smaller dose effects from ERE compared to fixed-beam IMRT in pancreas case. When the TMF is considered in the plan optimization, the dose effects of the TMF at tissue interfaces (e.g., air-cavity wall, lung-tissue interfaces, skin) are significantly reduced in most cases. Conclusions: The doses on tissue interfaces can be significantly changed by the presence of a TMF during MR-guided RT when the magnetic field is not included in plan optimization. These changes can be substantially reduced or even eliminated during VMAT/IMRT optimization that specifically considers the TMF, without deteriorating overall plan quality.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girigesh, Y; Kumar, L; Raman, K

    Purpose: Aim of this study is to determine the dosimetric influence of Filtered and Flatting Filter Free Photon Beam of 10 MV energy on RA planning for Ca. Cervix. Methods: CT data sets of eleven patients reported with carcinoma cervix were used for RA planning for 10MV -FFB and 10MV-FFFB. RA plans were generated using two full arcs.All RA plans were generated to deliver a dose of 50.4Gy in 28 fractions for PTV and ALARA for OAR’s. All plans were analysed for PTV Coverage, conformity Index, homogeneity index, dose to OAR’s, integral dose to normal tissue and total monitor unitsmore » were studied. Results: DVH was used to evaluate RA plans for both 10MV-FFB and 10MV-FFFB photon beam. Planning results show a comparable PTV coverage for both energies. Results shows volume of PTV receiving prescription dose were 95.10+ 0.09% and 95.09 +0.11%, and volume of PTV receiving a dose of 107% is 0.45+0.96% and 5.25+8.9%, homogeneity index (HI) were 1.051+0.007 and 1.066+0.008, Conformity Index(CI) were 1.003+0.019 and 1.012+0.013, Mean Integral dose were 2.65+0.34 and 2.60+0.33(*10−5Gy.cm3) for 10MV-FFB and 10MV-FFFB respectively. 10MV-FB shows statistically significant (p<0.05) improvement in mean doses to bladder, rectum, bowel and mean total number of MU’s and also shows remarkable decrease in mean total no. of MU’s by 43.7% in comparison to 10MV-FFFB. There is statistically significant (p<0.05) difference found in CI and HI for 10MV-FB in comparison to 10MV -FFF beam. 10MV-FFFB shows statistically significant (p<0.05) for mean NTID and delivers 1.65 % less NTID in comparison to 10 MV- FB. Conclusion: 10MV-FB is superior to 10MV-FFFB for rapid arc planning in case of Cervix carcinomas, it offers better target coverage and OAR’s sparing, comparable mean Integral dose to normal tissues and 10 MV- FB also produced highly conformal and homogeneous dose distribution in comparison to 10MV-FFFB.« less

  4. Comparison of respiratory-gated and respiratory-ungated planning in scattered carbon ion beam treatment of the pancreas using four-dimensional computed tomography.

    PubMed

    Mori, Shinichiro; Yanagi, Takeshi; Hara, Ryusuke; Sharp, Gregory C; Asakura, Hiroshi; Kumagai, Motoki; Kishimoto, Riwa; Yamada, Shigeru; Kato, Hirotoshi; Kandatsu, Susumu; Kamada, Tadashi

    2010-01-01

    We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function of respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.

  5. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Young, E-mail: eyhan@uams.edu; Kim, Dong-Wook; Zhang, Xin

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently,more » the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy.« less

  6. Biological Consequences and Health Risks Of Low-Level Exposure to Ionizing Radiation: Commentary on the Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinendegen, Ludwig E.; Brooks, Antone L.; Morgan, William F.

    2011-03-01

    This paper provides an integration and discussion of the information presented at the workshop held from May 2 to 5, 2010, in Richland, WA, adjacent to the Pacific Northwest National Laboratory (PNNL). Consequently, this is commentary and not necessarily a consensus document. This workshop was in honor of Dr. Victor P. Bond in celebration of his numerous contributions to the radiation sciences. Internationally recognized experts in biophysics, experimental radiation biology, epidemiology, and risk assessment were invited to discuss all issues of low-dose risk. This included the physics of track structure and its consequences to dosimetry, primary and secondary responses atmore » the molecular, cellular, and tissue biology levels, epidemiology, definitions of risk, and the practical and regulatory applications of these issues including their biomedical and social consequences. Of major concern was the present state of knowledge about cancer risk and other risks in humans following intentional or accidental exposures to low doses and low dose-rates of ionizing radiation (below about 100 mSv accumulated dose). This includes low dose exposures which occur during radiation therapy in tissues located outside of the irradiated volume. The interdisciplinary approach of this workshop featured discussions rather than formal presentations in ten separate consecutive sessions. Each session was led by chairpersons, listed in the opening of the workshop, which introduced topics, facts and posed relevant questions. The content of each session is given by a brief summary followed by the abstracts from the primary discussants in the session as has been presented in the previous section. This manuscript provides additional review and discussion of the sessions and tracks the topics and issues discussed as follows: • Energy deposition through particle tracks in tissues. • Energy deposition and primary effects in tissues. • Consequences of experimental advances in radiobiology • Non-targeted radiation effects. • System biological considerations. • Propagation of perturbations in the system. • Immediately operating protections. • Delayed stress response protections • Low-dose induced adaptive protections. • Integrated defenses against cancer. • Endogenous versus radiogenic cancer. • The epidemiological dilemma. • Dose-risk functions for different exposure modalities. • Implications for research. • Implications for regulation and protection. A brief summary of the discussions and results on each of these topics and issues is presented in this paper. Additional details of these discussions are provided in the workshop session summaries grouped into topics and followed by applicable abstracts/synopses submitted by the workshop participants.« less

  7. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    PubMed

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  8. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  9. Comparative Monte Carlo study on the performance of integration- and list-mode detector configurations for carbon ion computed tomography

    NASA Astrophysics Data System (ADS)

    Meyer, Sebastian; Gianoli, Chiara; Magallanes, Lorena; Kopp, Benedikt; Tessonnier, Thomas; Landry, Guillaume; Dedes, George; Voss, Bernd; Parodi, Katia

    2017-02-01

    Ion beam therapy offers the possibility of a highly conformal tumor-dose distribution; however, this technique is extremely sensitive to inaccuracies in the treatment procedures. Ambiguities in the conversion of Hounsfield units of the treatment planning x-ray CT to relative stopping power (RSP) can cause uncertainties in the estimated ion range of up to several millimeters. Ion CT (iCT) represents a favorable solution allowing to directly assess the RSP. In this simulation study we investigate the performance of the integration-mode configuration for carbon iCT, in comparison with a single-particle approach under the same set-up. The experimental detector consists of a stack of 61 air-filled parallel-plate ionization chambers, interleaved with 3 mm thick PMMA absorbers. By means of Monte Carlo simulations, this design was applied to acquire iCTs of phantoms of tissue-equivalent materials. An optimization of the acquisition parameters was performed to reduce the dose exposure, and the implications of a reduced absorber thickness were assessed. In order to overcome limitations of integration-mode detection in the presence of lateral tissue heterogeneities a dedicated post-processing method using a linear decomposition of the detector signal was developed and its performance was compared to the list-mode acquisition. For the current set-up, the phantom dose could be reduced to below 30 mGy with only minor image quality degradation. By using the decomposition method a correct identification of the components and a RSP accuracy improvement of around 2.0% was obtained. The comparison of integration- and list-mode indicated a slightly better image quality of the latter, with an average median RSP error below 1.8% and 1.0%, respectively. With a decreased absorber thickness a reduced RSP error was observed. Overall, these findings support the potential of iCT for low dose RSP estimation, showing that integration-mode detectors with dedicated post-processing strategies can provide a RSP accuracy comparable to list-mode configurations.

  10. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  11. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  12. Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans.

    PubMed

    Law, Francis C P; Yao, Meicun; Bi, Hui-Chang; Lam, Stephen

    2017-06-01

    Although green tea ( Camellia sinensis) (GT) contains a large number of polyphenolic compounds with anti-oxidative and anti-proliferative activities, little is known of the pharmacokinetics and tissue dose of tea catechins (TCs) as a chemical mixture in humans. The objectives of this study were to develop and validate a physiologically based pharmacokinetic (PBPK) model of tea catechin mixture (TCM) in rats and humans, and to predict an integrated or total concentration of TCM in the plasma of humans after consuming GT or Polyphenon E (PE). To this end, a PBPK model of epigallocatechin gallate (EGCg) consisting of 13 first-order, blood flow-limited tissue compartments was first developed in rats. The rat model was scaled up to humans by replacing its physiological parameters, pharmacokinetic parameters and tissue/blood partition coefficients (PCs) with human-specific values. Both rat and human EGCg models were then extrapolated to other TCs by substituting its physicochemical parameters, pharmacokinetic parameters, and PCs with catechin-specific values. Finally, a PBPK model of TCM was constructed by linking three rat (or human) tea catechin models together without including a description for pharmacokinetic interaction between the TCs. The mixture PBPK model accurately predicted the pharmacokinetic behaviors of three individual TCs in the plasma of rats and humans after GT or PE consumption. Model-predicted total TCM concentration in the plasma was linearly related to the dose consumed by humans. The mixture PBPK model is able to translate an external dose of TCM into internal target tissue doses for future safety assessment and dose-response analysis studies in humans. The modeling framework as described in this paper is also applicable to the bioactive chemical in other plant-based health products.

  13. Calculation of Nuclear Particles Production at High-Energy Photon Beams from a Linac Operating at 6, 10 and 15 MV.

    PubMed

    Marchesini, Renato; Bettega, Daniela; Calzolari, Paola; Pignoli, Emanuele

    2017-05-01

    Production of photonuclear particles in a tissue-equivalent medium has been calculated for linacs at 6, 10 and 15 MV from Varian TrueBeam. Based on the knowledge of bremsstrahlung fluence spectra and linac photon beam parameters, numerical integration was performed on the cross sections for photoparticle production of the constituent elements of tissue (2H,12C,13C,16O,17O,18O,14N,15N). At 15 MV, at the depth of photon maximum dose, the total absorbed dose due to neutrons, protons, alphas and residual nuclei from photon reactions in tissue (5.5E-05 Gy per Gy of photons) is comparable to that due to neutrons from accelerator head. Results reasonably agree with data reported in the literature using Monte Carlo models simulating linac head components. This work suggests a simple method to estimate the dose contributed by the photon-induced nuclear particles for high-energy photon beams produced by linacs in use, as it might be relevant for late stochastic effects. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Development of a 3D patient-specific planning platform for interstitial and transurethral ultrasound thermal therapy

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Diederich, Chris J.

    2010-03-01

    Interstitial and transurethral catheter-based ultrasound devices are under development for treatment of prostate cancer and BPH, uterine fibroids, liver tumors and other soft tissue disease. Accurate 3D thermal modeling is essential for designing site-specific applicators, exploring treatment delivery strategies, and integration of patient-specific treatment planning of thermal ablations. We are developing a comprehensive 3D modeling and treatment planning platform for ultrasound ablation of tissue using catheter-based applicators. We explored the applicability of assessing thermal effects in tissue using critical temperature, thermal dose and Arrhenius thermal damage thresholds and performed a comparative analysis of dynamic tissue properties critical to accurate modeling. We used the model to assess the feasibility of automatic feedback control with MR thermometry, and demonstrated the utility of the modeling platform for 3D patient-specific treatment planning. We have identified critical temperature, thermal dose and thermal damage thresholds for assessing treatment endpoint. Dynamic changes in tissue attenuation/absorption and perfusion must be included for accurate prediction of temperature profiles and extents of the ablation zone. Lastly, we demonstrated use of the modeling platform for patient-specific treatment planning.

  15. Can We Spare the Pancreas and Other Abdominal Organs at Risk? A Comparison of Conformal Radiotherapy, Helical Tomotherapy and Proton Beam Therapy in Pediatric Irradiation.

    PubMed

    Jouglar, Emmanuel; Wagner, Antoine; Delpon, Grégory; Campion, Loïc; Meingan, Philippe; Bernier, Valérie; Demoor-Goldschmidt, Charlotte; Mahé, Marc-André; Lacornerie, Thomas; Supiot, Stéphane

    2016-01-01

    Late abdominal irradiation toxicity during childhood included renal damage, hepatic toxicity and secondary diabetes mellitus. We compared the potential of conformal radiotherapy (CRT), helical tomotherapy (HT) and proton beam therapy (PBT) to spare the abdominal organs at risk (pancreas, kidneys and liver- OAR) in children undergoing abdominal irradiation. We selected children with abdominal tumors who received more than 10 Gy to the abdomen. Treatment plans were calculated in order to keep the dose to abdominal OAR as low as possible while maintaining the same planned target volume (PTV) coverage. Dosimetric values were compared using the Wilcoxon signed-rank test. The dose distribution of 20 clinical cases with a median age of 8 years (range 1-14) were calculated with different doses to the PTV: 5 medulloblastomas (36 Gy), 3 left-sided and 2 right-sided nephroblastomas (14.4 Gy to the tumor + 10.8 Gy boost to para-aortic lymphnodes), 1 left-sided and 4 right-sided or midline neuroblastomas (21 Gy) and 5 Hodgkin lymphomas (19.8 Gy to the para-aortic lymphnodes and spleen). HT significantly reduced the mean dose to the whole pancreas (WP), the pancreatic tail (PT) and to the ipsilateral kidney compared to CRT. PBT reduced the mean dose to the WP and PT compared to both CRT and HT especially in midline and right-sided tumors. PBT decreased the mean dose to the ispilateral kidney but also to the contralateral kidney and the liver compared to CRT. Low dose to normal tissue was similar or increased with HT whereas integral dose and the volume of normal tissue receiving at least 5 and 10 Gy were reduced with PBT compared to CRT and HT. In children undergoing abdominal irradiation therapy, proton beam therapy reduces the dose to abdominal OAR while sparing normal tissue by limiting low dose irradiation.

  16. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer☆

    PubMed Central

    Warren, Samantha; Partridge, Mike; Carrington, Rhys; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2014-01-01

    Purpose This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm3. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5 Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA62.5) was compared to a standard dose plan of 50 Gy/25 fractions (RA50). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA50) to 56.3% (RA62.5), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA50) versus 5.6% (RA62.5) P<.001 and median lung NTCP 6.5% (RA50) versus 7.5% (RA62.5) P<.001. Conclusions Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials. PMID:25304796

  17. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering.

    PubMed

    Font Tellado, Sònia; Chiera, Silvia; Bonani, Walter; Poh, Patrina S P; Migliaresi, Claudio; Motta, Antonella; Balmayor, Elizabeth R; van Griensven, Martijn

    2018-05-01

    The tendon/ligament-to-bone transition (enthesis) is a highly specialized interphase tissue with structural gradients of extracellular matrix composition, collagen molecule alignment and mineralization. These structural features are essential for enthesis function, but are often not regenerated after injury. Tissue engineering is a promising strategy for enthesis repair. Engineering of complex tissue interphases such as the enthesis is likely to require a combination of biophysical, biological and chemical cues to achieve functional tissue regeneration. In this study, we cultured human primary adipose-derived mesenchymal stem cells (AdMCs) on biphasic silk fibroin scaffolds with integrated anisotropic (tendon/ligament-like) and isotropic (bone/cartilage like) pore alignment. We functionalized those scaffolds with heparin and explored their ability to deliver transforming growth factor β2 (TGF-β2) and growth/differentiation factor 5 (GDF5). Heparin functionalization increased the amount of TGF-β2 and GDF5 remaining attached to the scaffold matrix and resulted in biological effects at low growth factor doses. We analyzed the combined impact of pore alignment and growth factors on AdMSCs. TGF-β2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. In addition, the combined delivery of TGF-β2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity. Altogether, the data obtained in this study improves current understanding on the combined effects of biological and structural cues on stem cell fate and presents a promising strategy for tendon/ligament-to-bone regeneration. Regeneration of the tendon/ligament-to-bone interphase (enthesis) is of significance in the repair of ruptured tendons/ligaments to bone to improve implant integration and clinical outcome. This study proposes a novel approach for enthesis regeneration based on a biomimetic and integrated tendon/ligament-to-bone construct, stem cells and heparin-based delivery of growth factors. We show that heparin can keep growth factors local and biologically active at low doses, which is critical to avoid supraphysiological doses and associated side effects. In addition, we identify synergistic effects of biological (growth factors) and structural (pore alignment) cues on stem cells. These results improve current understanding on the combined impact of biological and structural cues on the multi-lineage differentiation capacity of stem cells for regenerating complex tissue interphases. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. NASA Space Radiation Program Integrative Risk Model Toolkit

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  19. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William; Filion, Edith; Roberge, David

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less

  20. Delta-aminolevulinic acid dehydratase enzyme activity in blood, brain, and liver of lead-dosed ducks

    USGS Publications Warehouse

    Dieter, M.P.; Finley, M.T.

    1979-01-01

    Mallard ducks were dosed with a single shotgun pellet (ca. 200 mg lead). After 1 month there was about 1 ppm lead in blood, 2.5 in liver, and 0.5 in brain. Lead-induced inhibition of delta-aminolevulinic acid dehydratase enzyme in blood and cerebellum was much greater than in cerebral hemisphere or liver and was strongly correlated with the lead concentration in these tissues. The cerebellar portion of the brain was more sensitive to delta-aminolevulinic acid dehydratase enzyme inhibition by lead than were the other tissues examined. There was also a greater increase in the glial cell marker enzyme, butyrylcholinesterase, in cerebellum than in cerebral hemisphere, suggesting that nonregenerating neuronal cells were destroyed by lead and replaced by glial cells in that portion of the brain. Even partial loss of cerebellar tissue is severely debilitating in waterfowl, because functions critical to survival such as visual, auditory, motor, and reflex responses are integrated at this brain center.

  1. Case Study: Organotypic human in vitro models of embryonic ...

    EPA Pesticide Factsheets

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell-matrix interactions that drive proliferation, differentiation, and morphogenesis. Chemical low-dose exposures can disrupt morphogenesis across space and time by interfering with key embryonic fusion events. The Morphogenetic Fusion Task uses computer and in vitro models to elucidate consequences of developmental exposures. The Morphogenetic Fusion Task integrates multiple approaches to model responses to chemicals that leaad to birth defects, including integrative mining on ToxCast DB, ToxRefDB, and chemical structures, advanced computer agent-based models, and human cell-based cultures that model disruption of cellular and molecular behaviors including mechanisms predicted from integrative data mining and agent-based models. The purpose of the poster is to indicate progress on the CSS 17.02 Virtual Tissue Models Morphogenesis Task 1 products for the Board of Scientific Counselors meeting on Nov 16-17.

  2. SU-E-T-409: Evaluation of Tissue Composition Effect On Dose Distribution in Radiotherapy with 6 MV Photon Beam of a Medical Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani

    Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relativemore » to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.« less

  3. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA.

    PubMed

    Han, Eun Young; Kim, Dong-Wook; Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat

    2015-01-01

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. High-intensity corneal collagen crosslinking with riboflavin and UVA in rat cornea.

    PubMed

    Zhu, Yirui; Reinach, Peter S; Zhu, Hanlei; Tan, Qiufan; Zheng, Qinxiang; Qu, Jia; Chen, Wei

    2017-01-01

    Corneal collagen cross-linking (CXL) halts human corneal ectasias progression by increasing stromal mechanical stiffness. Although some reports describe that this procedure is effective in dealing with some infectious and immunologic corneal thinning diseases, there is a need for more animal models whose corneal thickness more closely resemble those occurring in these patients. To meet this need, we describe here high-intensity protocols that are safe and effective for obtaining CXL in rat corneas. Initially, a range of potentially effective UVA doses were evaluated based on their effectiveness in increasing tissue enzymatic resistance to dissolution. At UVA doses higher than a threshold level of 0.54 J/cm2, resistance to enzymatic digestion increased relative to that in non-irradiated corneas. Based on the theoretical threshold CXL dose, a CXL regimen was established in which the UVA tissue irradiance was 9 mW/cm2, which was delivered at doses of either 2.16, 2.7 or 3.24 J/cm2. Their dose dependent effects were evaluated on ocular surface morphological integrity, keratocyte apoptotic frequency, tissue thickness and endothelial cell layer density. Doses of 2.16 and 2.7 J/cm2 transiently decreased normal corneal transparency and increased thickness. These effects were fully reversed after 14 days. In contrast, 3.24 J/cm2 had more irreversible side effects. Three days after treatment, apoptotic frequency in the CXL-2.16 group was lower than that at higher doses. Endothelial cell losses remained evident only in the CXL-3.24 group at 42 days posttreatment. Stromal fiber thickening was evident in all the CXL-treated groups. We determined both the threshold UVA dose using the high-intensity CXL procedure and identified an effective dose range that provides optimal CXL with minimal transient side effects in the rat cornea. These results may help to provide insight into how to improve the CXL outcome in patients afflicted with a severe corneal thinning disease.

  5. Technical aspects of the integration of three-dimensional treatment planning dose parameters (GEC-ESTRO Working Group) into pre-implant planning for LDR gynecological interstitial brachytherapy.

    PubMed

    Chi, A; Gao, M; Nguyen, N P; Albuquerque, K

    2009-06-01

    This study investigates the technical feasibility of pre-implant image-based treatment planning for LDR GYN interstitial brachytherapy(IB) based on the GEC-ESTRO guidelines. Initially, a virtual plan is generated based on the prescription dose and GEC-ESTRO defined OAR dose constraints with a pre-implant CT. After the actual implant, a regular diagnostic CT was obtained and fused with our pre-implant scan/initial treatment plan in our planning software. The Flexi-needle position changes, and treatment plan modifications were made if needed. Dose values were normalized to equivalent doses in 2 Gy fractions (LQED 2 Gy) derived from the linear-quadratic model with alpha/beta of 3 for late responding tissues and alpha/beta of 10 for early responding tissues. D(90) to the CTV, which was gross tumor (GTV) at the time of brachytherapy with a margin to count for microscopic disease, was 84.7 +/- 4.9% of the prescribed dose. The OAR doses were evaluated by D(2cc) (EBRT+IB). Mean D(2cc) values (LQED(2Gy)) for the rectum, bladder, sigmoid, and small bowel were the following: 63.7 +/- 8.4 Gy, 61.2 +/- 6.9 Gy, 48.0 +/- 3.5 Gy, and 49.9 +/- 4.2 Gy. This study confirms the feasibility of applying the GEC-ESTRO recommended dose parameters in pre-implant CT-based treatment planning in GYN IB. In the process, this pre-implant technique also demonstrates a good approximation of the target volume dose coverage, and doses to the OARs.

  6. Use of mode of action data to inform a dose-response assessment for bladder cancer following exposure to inorganic arsenic.

    PubMed

    Gentry, P R; Yager, J W; Clewell, R A; Clewell, H J

    2014-10-01

    In the recent National Research Council report on conducting a dose-response assessment for inorganic arsenic, the committee remarked that mode of action data should be used, to the extent possible, to extrapolate below the observed range for epidemiological studies to inform the shape of the dose-response curve. Recent in vitro mode of action studies focused on understanding the development of bladder cancer following exposure to inorganic arsenic provide data to inform the dose-response curve. These in vitro data, combined with results of bladder cancer epidemiology studies, inform the dose-response curve in the low-dose region, and include values for both pharmacokinetic and pharmacodynamic variability. Integration of these data provides evidence of a range of concentrations of arsenic for which no effect on the bladder would be expected. Specifically, integration of these results suggest that arsenic exposures in the range of 7-43 ppb in drinking water are exceedingly unlikely to elicit changes leading to key events in the development of cancer or noncancer effects in bladder tissue. These findings are consistent with the lack of evidence for bladder cancer following chronic ingestion of arsenic water concentrations <100 ppb in epidemiological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Optimization of Treatment Geometry to Reduce Normal Brain Dose in Radiosurgery of Multiple Brain Metastases with Single-Isocenter Volumetric Modulated Arc Therapy.

    PubMed

    Wu, Qixue; Snyder, Karen Chin; Liu, Chang; Huang, Yimei; Zhao, Bo; Chetty, Indrin J; Wen, Ning

    2016-09-30

    Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly.

  8. Biomaterial-Mediated Delivery of Degradative Enzymes to Improve Meniscus Integration and Repair

    PubMed Central

    Qu, Feini; Lin, Jung-Ming G.; Esterhai, John L.; Fisher, Matthew B.; Mauck, Robert L.

    2013-01-01

    Endogenous repair of fibrous connective tissues is limited, and there exist few successful strategies to improve healing after injury. As such, new methods that advance repair by promoting cell growth, extracellular matrix (ECM) production, and tissue integration would represent a marked clinical advance. Using the meniscus as a test platform, we sought to develop an enzyme-releasing scaffold that enhances integrative repair. We hypothesized that the high ECM density and low cellularity present physical and biologic barriers to endogenous healing, and that localized collagenase treatment might expedite cell migration to the wound edge and tissue remodeling. To test this hypothesis, we fabricated a delivery system in which collagenase was stored inside electrospun poly(ethylene oxide) (PEO) nanofibers and released upon hydration. In vitro results showed that partial digestion of the wound interface improved repair by creating a microenvironment that facilitated cell migration, proliferation, and matrix deposition. Specifically, treatment with high-dose collagenase led to a 2-fold increase in cell density at the wound margin and a 2-fold increase in integrative tissue compared to untreated controls at 4 weeks (p≤0.05). Furthermore, when composite scaffolds containing both collagenase-releasing and structural fiber fractions were placed inside meniscal tears in vitro, enzyme release acted locally and resulted in a positive cellular response similar to that of global treatment with aqueous collagenase. This innovative approach of targeted enzyme delivery may aid the many patients that exhibit meniscal tears by promoting integration of the defect, thereby circumventing the pathologic consequences of partial meniscus removal, and may find widespread application in the treatment of injuries to a variety of dense connective tissues. PMID:23376132

  9. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics.

    PubMed

    Vedelago, J; Mattea, F; Valente, M

    2018-03-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. The present study presents preliminary results of properly synthesized and purified silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample's optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. Monte Carlo simulations were used to estimate the dose enhancement in the experiments and compare with the trend obtained in the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose volume outcome relationships

    NASA Astrophysics Data System (ADS)

    El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.

    2006-11-01

    Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.

  11. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid invivo screening method for nanotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei Ronghui; Department of Public Health, Xi'an Jiaotong University, Xi'an 710061; Wu Chunqi

    2008-10-15

    Despite an increasing application of copper nanoparticles, there is a serious lack of information concerning their impact on human health and the environment. In this study, the biochemical compositions of urine, serum, and extracts of liver and kidney tissues of rats treated with nano-copper at the different doses (50, 100, and 200 mg/kg/d for 5 d) were investigated using {sup 1}H NMR techniques with the pattern recognition methods. Serum biochemical analysis and histopathological examinations of the liver and kidney of all the rats were simultaneously performed. All the results indicated that the effects produced by nano-copper at a dose ofmore » 100 or 50 mg/kg/d were less than those induced at a higher dose of 200 mg/kg/d. Nano-copper induced overt hepatotoxicity and nephrotoxicity at 200 mg/kg/d for 5 d, which mainly involved scattered dot hepatocytic necrosis and widespread renal proximal tubule necrosis. Increased citrate, succinate, trimethylamine-N-oxide, glucose, and amino acids, accompanied by decreased creatinine levels were observed in the urine; furthermore, elevated levels of lactate, 3-hydroxybutyrate, acetate, creatine, triglycerides, and phosphatide and reduced glucose levels were observed in the serum. The predominant changes identified in the liver tissue aqueous extracts included increased lactate and creatine levels together with reduced glutamine and taurine levels, and the metabolic profile of the kidney tissue aqueous extracts showed an increase in lactate and a drop in glucose. In the chloroform/methanol extracts of the liver and kidney tissues, elevated triglyceride species were identified. These changes suggested that mitochondrial failure, enhanced ketogenesis, fatty acid {beta}-oxidation, and glycolysis contributed to the hepatotoxicity and nephrotoxicity induced by nano-copper at 200 mg/kg/d for 5 d. An increase in triglycerides in the serum, liver and kidney tissues could serve as a potential sensitive biomarker reflecting the lipidosis induced by nano-copper. The data generated from the current study completely supports the fact that an integrated metabolomic approach is promising for the development of a rapid invivo screening method for nanotoxicity.« less

  12. Comparison of Respiratory-Gated and Respiratory-Ungated Planning in Scattered Carbon Ion Beam Treatment of the Pancreas Using Four-Dimensional Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro, E-mail: shinshin@nirs.go.j; Yanagi, Takeshi; Hara, Ryusuke

    2010-01-15

    Purpose: We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Methods and Materials: Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function ofmore » respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Results: Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Conclusions: Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.« less

  13. Reconstruction of Absorbed Doses to Fibroglandular Tissue of the Breast of Women undergoing Mammography (1960 to the Present)

    PubMed Central

    Thierry-Chef, Isabelle; Simon, Steven L.; Weinstock, Robert M.; Kwon, Deukwoo; Linet, Martha S.

    2013-01-01

    The assessment of potential benefits versus harms from mammographic examinations as described in the controversial breast cancer screening recommendations of the U.S. Preventive Task Force included limited consideration of absorbed dose to the fibroglandular tissue of the breast (glandular tissue dose), the tissue at risk for breast cancer. Epidemiological studies on cancer risks associated with diagnostic radiological examinations often lack accurate information on glandular tissue dose, and there is a clear need for better estimates of these doses. Our objective was to develop a quantitative summary of glandular tissue doses from mammography by considering sources of variation over time in key parameters including imaging protocols, x-ray target materials, voltage, filtration, incident air kerma, compressed breast thickness, and breast composition. We estimated the minimum, maximum, and mean values for glandular tissue dose for populations of exposed women within 5-year periods from 1960 to the present, with the minimum to maximum range likely including 90% to 95% of the entirety of the dose range from mammography in North America and Europe. Glandular tissue dose from a single view in mammography is presently about 2 mGy, about one-sixth the dose in the 1960s. The ratio of our estimates of maximum to minimum glandular tissue doses for average-size breasts was about 100 in the 1960s compared to a ratio of about 5 in recent years. Findings from our analysis provide quantitative information on glandular tissue doses from mammographic examinations which can be used in epidemiologic studies of breast cancer. PMID:21988547

  14. A planning study investigating dual-gated volumetric arc stereotactic treatment of primary renal cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devereux, Thomas, E-mail: thomas.devereux@petermac.org; Pham, Daniel; Kron, Tomas

    2015-04-01

    This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dosemore » to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30 cm{sup 3} of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30 cm{sup 3} of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered.« less

  15. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts.

    PubMed

    Balsly, Colleen R; Cotter, Andrew T; Williams, Lisa A; Gaskins, Barton D; Moore, Mark A; Wolfinbarger, Lloyd

    2008-12-01

    The increased use of allograft tissue for musculoskeletal repair has brought more focus to the safety of allogenic tissue and the efficacy of various sterilization techniques. Gamma irradiation is an effective method for providing terminal sterilization to biological tissue, but it is also reported to have deleterious effects on tissue mechanics in a dose-dependent manner. At irradiation ranges up to 25 kGy, a clear relationship between mechanical strength and dose has yet to be established. The aim of this study was to investigate the mechanical properties of bone and soft tissue allografts, irradiated on dry ice at a low absorbed dose (18.3-21.8 kGy) and a moderate absorbed dose (24.0-28.5 kGy), using conventional compressive and tensile testing, respectively. Bone grafts consisted of Cloward dowels and iliac crest wedges, while soft tissue grafts consisted of patellar tendons, anterior tibialis tendons, semitendinosus tendons, and fascia lata. There were no statistical differences in mechanical strength or modulus of elasticity for any graft irradiated at a low absorbed dose, compared to control groups. Also, bone allografts and two soft tissue allografts (anterior tibialis and semitendinosus tendon) that were irradiated at a moderate dose demonstrated similar strength and modulus of elasticity values to control groups. The results of this study support the use of low dose and moderate dose gamma irradiation of bone grafts. For soft tissue grafts, the results support the use of low dose irradiation.

  16. Epsilon Aminocaproic Acid Pretreatment Provides Neuroprotection Following Surgically Induced Brain Injury in a Rat Model.

    PubMed

    Komanapalli, Esther S; Sherchan, Prativa; Rolland, William; Khatibi, Nikan; Martin, Robert D; Applegate, Richard L; Tang, Jiping; Zhang, John H

    2016-01-01

    Neurosurgical procedures can damage viable brain tissue unintentionally by a wide range of mechanisms. This surgically induced brain injury (SBI) can be a result of direct incision, electrocauterization, or tissue retraction. Plasmin, a serine protease that dissolves fibrin blood clots, has been shown to enhance cerebral edema and hemorrhage accumulation in the brain through disruption of the blood brain barrier. Epsilon aminocaproic acid (EAA), a recognized antifibrinolytic lysine analogue, can reduce the levels of active plasmin and, in doing so, potentially can preserve the neurovascular unit of the brain. We investigated the role of EAA as a pretreatment neuroprotective modality in a SBI rat model, hypothesizing that EAA therapy would protect brain tissue integrity, translating into preserved neurobehavioral function. Male Sprague-Dawley rats were randomly assigned to one of four groups: sham (n = 7), SBI (n = 7), SBI with low-dose EAA, 150 mg/kg (n = 7), and SBI with high-dose EAA, 450 mg/kg (n = 7). SBI was induced by partial right frontal lobe resection through a frontal craniotomy. Postoperative assessment at 24 h included neurobehavioral testing and measurement of brain water content. Results at 24 h showed both low- and high-dose EAA reduced brain water content and improved neurobehavioral function compared with the SBI groups. This suggests that EAA may be a useful pretherapeutic modality for SBI. Further studies are needed to clarify optimal therapeutic dosing and to identify mechanisms of neuroprotection in rat SBI models.

  17. Singlet oxygen explicit dosimetry to predict local tumor control for HPPH-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    This preclinical study examines four dosimetric quantities (light fluence, photosensitizer photobleaching ratio, PDT dose, and reacted singlet oxygen ([1O2]rx)) to predict local control rate (LCR) for 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated photodynamic therapy (PDT). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (135, 250 and 350 J/cm2) and in-air fluence rates (50, 75 and 150 mW/cm2) at 0.25 mg/kg HPPH and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 665 nm wavelength. A macroscopic model was used to calculate ([1O2]rx)) based on in vivo explicit dosimetry of the initial tissue oxygenation, photosensitizer concentration, and tissue optical properties. PDT dose was defined as a temporal integral of drug concentration and fluence rate (φ) at a 3 mm tumor depth. Light fluence rate was calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. The tumor volume of each mouse was tracked for 30 days after PDT and Kaplan-Meier analyses for LCR were performed based on a tumor volume <=100 mm3, for four dose metrics: fluence, HPPH photobleaching rate, PDT dose, and ([1O2]rx)). The results of this study showed that ([1O2]rx)) is the best dosimetric quantity that can predict tumor response and correlate with LCR.

  18. PREDICTING THE RISKS OF NEUROTOXIC VOLATILE ORGANIC COMPOUNDS BASED ON TARGET TISSUE DOSE.

    EPA Science Inventory

    Quantitative exposure-dose-response models relate the external exposure of a substance to the dose in the target tissue, and then relate the target tissue dose to production of adverse outcomes. We developed exposure-dose-response models to describe the affects of acute exposure...

  19. Inflammatory Response of Human Gestational Membranes to Ureaplasma parvum Using a Novel Dual-Chamber Tissue Explant System.

    PubMed

    Potts, Lauren C; Feng, Liping; Seed, Patrick C; Jayes, Friederike L; Kuchibhatla, Maragatha; Antczak, Brian; Nazzal, Matthew K; Murtha, Amy P

    2016-05-01

    Preterm premature rupture of membranes (PPROM) is often associated with intra-amniotic inflammation and infection. Current understanding of the pathogenesis of PPROM includes activation of pro-inflammatory cytokines and proteolytic enzymes leading to compromise of membrane integrity. The impact of exposure to bacterial pathogens, including Ureaplasma parvum, on gestational membranes is poorly understood. Our objective was to develop a dual-chamber system to characterize the inflammatory response of gestational membranes to U. parvum in a directional nature. Full-thickness human gestational membrane explants, with either choriodecidua or amnion oriented superiorly, were suspended between two washers in a cylindrical device, creating two distinct compartments. Brilliant green dye was introduced into the top chamber to assess the integrity of the system. Tissue viability was evaluated after 72 h using a colorimetric cell proliferation assay. Choriodecidua or amnion was exposed to three doses of U. parvum and incubated for 24 h. Following treatment, media from each compartment were used for quantification of U. parvum (quantitative PCR), interleukin (IL)-8 (enzyme-linked immunosorbent assay), and matrix metalloproteinase (MMP)-2 and MMP-9 activity (zymography). We observed that system integrity and explant viability were maintained over 72 h. Dose-dependent increases in recovered U. parvum, IL-8 concentration, and MMP-2 activity were detected in both compartments. Significant differences in IL-8 concentration and MMP-9 activity were found between the choriodecidua and amnion. This tissue explant system can be used to investigate the inflammatory consequences of directional bacterial exposure for gestational membranes and provides insight into the pathogenesis of PPROM and infectious complications of pregnancy. © 2016 by the Society for the Study of Reproduction, Inc.

  20. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Carrington, Rhys

    2014-10-01

    Purpose: This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials: Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm{sup 3}. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5more » Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA{sub 62.5}) was compared to a standard dose plan of 50 Gy/25 fractions (RA{sub 50}). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results: Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA{sub 50}) to 56.3% (RA{sub 62.5}), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA{sub 50}) versus 5.6% (RA{sub 62.5}) P<.001 and median lung NTCP 6.5% (RA{sub 50}) versus 7.5% (RA{sub 62.5}) P<.001. Conclusions: Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials.« less

  1. A geometric model for evaluating the effects of inter-fraction rectal motion during prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Pavel-Mititean, Luciana M.; Rowbottom, Carl G.; Hector, Charlotte L.; Partridge, Mike; Bortfeld, Thomas; Schlegel, Wolfgang

    2004-06-01

    A geometric model is presented which allows calculation of the dosimetric consequences of rectal motion in prostate radiotherapy. Variations in the position of the rectum are measured by repeat CT scanning during the courses of treatment of five patients. Dose distributions are calculated by applying the same conformal treatment plan to each imaged fraction and rectal dose-surface histograms produced. The 2D model allows isotropic expansion and contraction in the plane of each CT slice. By summing the dose to specific volume elements tracked by the model, composite dose distributions are produced that explicitly include measured inter-fraction motion for each patient. These are then used to estimate effective dose-surface histograms (DSHs) for the entire treatment. Results are presented showing the magnitudes of the measured target and rectal motion and showing the effects of this motion on the integral dose to the rectum. The possibility of using such information to calculate normal tissue complication probabilities (NTCP) is demonstrated and discussed.

  2. [Effects of radiation exposure on human body].

    PubMed

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of cells results in acute disorder, and then DNA mis-repair and mutation is speculated to cause cancer. The extent to which this kind of cellular response could reduce the low-dose radiation risk is a major challenge for future research.

  3. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  4. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, C; Borras, C; Carlson, D

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protectionmore » will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how they might be used to address clinically relevant problems. Underlying assumptions and limitations of existing models and their proper application will be discussed. This multidisciplinary educational session combines the fundamentals of radiobiology for radiation therapy and radiation protection with the practical application of biophysical models for treatment planning and evaluation. Learning Objectives: To understand fractionation in teletherapy and dose rate techniques in brachytherapy. To understand how the linear-quadratic models the effect of radiobiological parameters for radiotherapy. To understand the radiobiological basis of radiation protection standards applied to radiotherapy. To distinguish between stochastic effects and tissue reactions. To learn how to apply concepts of biological effective dose and RBE-weighted dose and to incorporate biological factors that alter radiation response. To discuss clinical strategies to increase therapeutic ratio, i.e., maximize local control while minimizing the risk of acute and late normal tissue effects.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Raef S.; Shen, Sui; Ove, Roger

    We wanted to describe a technique for the implementation of intensity-modulated radiotherapy (IMRT) with a real-time position monitor (RPM) respiratory gating system for the treatment of pleural space with intact lung. The technique is illustrated by a case of pediatric osteosarcoma, metastatic to the pleura of the right lung. The patient was simulated in the supine position where a breathing tracer and computed tomography (CT) scans synchronized at end expiration were acquired using the RPM system. The gated CT images were used to define target volumes and critical structures. Right pleural gated IMRT delivered at end expiration was prescribed tomore » a dose of 44 Gy, with 55 Gy delivered to areas of higher risk via simultaneous integrated boost (SIB) technique. IMRT was necessary to avoid exceeding the tolerance of intact lung. Although very good coverage of the target volume was achieved with a shell-shaped dose distribution, dose over the targets was relatively inhomogeneous. Portions of target volumes necessarily intruded into the right lung, the liver, and right kidney, limiting the degree of normal tissue sparing that could be achieved. The radiation doses to critical structures were acceptable and well tolerated. With intact lung, delivering a relatively high dose to the pleura with acceptable doses to surrounding normal tissues using respiratory gated pleural IMRT is feasible. Treatment delivery during a limited part of the respiratory cycle allows for reduced CT target volume motion errors, with reduction in the portion of the planning margin that accounts for respiratory motion, and subsequent increase in the therapeutic ratio.« less

  6. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  7. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    PubMed

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  8. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy

    NASA Astrophysics Data System (ADS)

    Giménez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  9. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy.

    PubMed

    Giménez-Alventosa, Vicent; Antunes, Paula C G; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-07

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  10. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  11. A method for converting dose-to-medium to dose-to-tissue in Monte Carlo studies of gold nanoparticle-enhanced radiotherapy

    NASA Astrophysics Data System (ADS)

    Koger, B.; Kirkby, C.

    2016-03-01

    Gold nanoparticles (GNPs) have shown potential in recent years as a means of therapeutic dose enhancement in radiation therapy. However, a major challenge in moving towards clinical implementation is the exact characterisation of the dose enhancement they provide. Monte Carlo studies attempt to explore this property, but they often face computational limitations when examining macroscopic scenarios. In this study, a method of converting dose from macroscopic simulations, where the medium is defined as a mixture containing both gold and tissue components, to a mean dose-to-tissue on a microscopic scale was established. Monte Carlo simulations were run for both explicitly-modeled GNPs in tissue and a homogeneous mixture of tissue and gold. A dose ratio was obtained for the conversion of dose scored in a mixture medium to dose-to-tissue in each case. Dose ratios varied from 0.69 to 1.04 for photon sources and 0.97 to 1.03 for electron sources. The dose ratio is highly dependent on the source energy as well as GNP diameter and concentration, though this effect is less pronounced for electron sources. By appropriately weighting the monoenergetic dose ratios obtained, the dose ratio for any arbitrary spectrum can be determined. This allows complex scenarios to be modeled accurately without explicitly simulating each individual GNP.

  12. Generalizable Class Solutions for Treatment Planning of Spinal Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weksberg, David C.; Palmer, Matthew B.; Vu, Khoi N.

    2012-11-01

    Purpose: Spinal stereotactic body radiation therapy (SBRT) continues to emerge as an effective therapeutic approach to spinal metastases; however, treatment planning and delivery remain resource intensive at many centers, which may hamper efficient implementation in clinical practice. We sought to develop a generalizable class solution approach for spinal SBRT treatment planning that would allow confidence that a given plan provides optimal target coverage, reduce integral dose, and maximize planning efficiency. Methods and Materials: We examined 91 patients treated with spinal SBRT at our institution. Treatment plans were categorized by lesion location, clinical target volume (CTV) configuration, and dose fractionation scheme,more » and then analyzed to determine the technically achievable dose gradient. A radial cord expansion was subtracted from the CTV to yield a planning CTV (pCTV) construct for plan evaluation. We reviewed the treatment plans with respect to target coverage, dose gradient, integral dose, conformality, and maximum cord dose to select the best plans and develop a set of class solutions. Results: The class solution technique generated plans that maintained target coverage and improved conformality (1.2-fold increase in the 95% van't Riet Conformation Number describing the conformality of a reference dose to the target) while reducing normal tissue integral dose (1.3-fold decrease in the volume receiving 4 Gy (V{sub 4Gy}) and machine output (19% monitor unit (MU) reduction). In trials of planning efficiency, the class solution technique reduced treatment planning time by 30% to 60% and MUs required by {approx}20%: an effect independent of prior planning experience. Conclusions: We have developed a set of class solutions for spinal SBRT that incorporate a pCTV metric for plan evaluation while yielding dosimetrically superior treatment plans with increased planning efficiency. Our technique thus allows for efficient, reproducible, and high-quality spinal SBRT treatment planning.« less

  13. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp; Yamaguchi, Hajime; Kizaki, Hisao

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV,more » spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.« less

  14. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions.

    PubMed

    Jones, Bleddyn

    2009-06-01

    Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of relative changes in carcinogenesis that incorporate fractionation and relative biological effects (RBE). This alternative modelling approach allows absolute and relative risk estimations per cell and can be extended to tissues. The classical turnover point in carcinogenesis occurring after a single exposure is a feature of the model; also, the dose-response relationship becomes pseudo-linear with extended fractionation and when heterogeneity of the radiosensitivity parameters is introduced; there is also an inverse relationship between dose per fraction and cancer induction. In principle, this new approach might influence the conduct of proton and ion beam therapy, particularly beam placements and fractionation policies. The theoretical implications for future radiotherapy are considerable, but these predictions should be subjected to cellular and tissue experiments that simulate these forms of treatment, including any secondary neutron production in some cases depending on the beam delivery technique, e.g. in tissue equivalent humanoid phantoms using cell transformation techniques. Since the UK has no working high energy particle beam facility over 100 MeV, British scientists would require use of particle beam facilities in Europe, USA or Japan to perform experiments.

  15. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    PubMed

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  16. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets.

    PubMed

    Jaffray, D A; Drake, D G; Moreau, M; Martinez, A A; Wong, J W

    1999-10-01

    Dose escalation in conformal radiation therapy requires accurate field placement. Electronic portal imaging devices are used to verify field placement but are limited by the low subject contrast of bony anatomy at megavoltage (MV) energies, the large imaging dose, and the small size of the radiation fields. In this article, we describe the in-house modification of a medical linear accelerator to provide radiographic and tomographic localization of bone and soft-tissue targets in the reference frame of the accelerator. This system separates the verification of beam delivery (machine settings, field shaping) from patient and target localization. A kilovoltage (kV) x-ray source is mounted on the drum assembly of an Elekta SL-20 medical linear accelerator, maintaining the same isocenter as the treatment beam with the central axis at 90 degrees to the treatment beam axis. The x-ray tube is powered by a high-frequency generator and can be retracted to the drum-face. Two CCD-based fluoroscopic imaging systems are mounted on the accelerator to collect MV and kV radiographic images. The system is also capable of cone-beam tomographic imaging at both MV and kV energies. The gain stages of the two imaging systems have been modeled to assess imaging performance. The contrast-resolution of the kV and MV systems was measured using a contrast-detail (C-D) phantom. The dosimetric advantage of using the kV imaging system over the MV system for the detection of bone-like objects is quantified for a specific imaging geometry using a C-D phantom. Accurate guidance of the treatment beam requires registration of the imaging and treatment coordinate systems. The mechanical characteristics of the treatment and imaging gantries are examined to determine a localizing precision assuming an unambiguous object. MV and kV radiographs of patients receiving radiation therapy are acquired to demonstrate the radiographic performance of the system. The tomographic performance is demonstrated on phantoms using both the MV and the kV imaging system, and the visibility of soft-tissue targets is assessed. Characterization of the gains in the two systems demonstrates that the MV system is x-ray quantum noise-limited at very low spatial frequencies; this is not the case for the kV system. The estimates of gain used in the model are validated by measurements of the total gain in each system. Contrast-detail measurements demonstrate that the MV system is capable of detecting subject contrasts of less than 0.1% (at 6 and 18 MV). A comparison of the kV and MV contrast-detail performance indicates that equivalent bony object detection can be achieved with the kV system at significantly lower doses (factors of 40 and 90 lower than for 6 and 18 MV, respectively). The tomographic performance of the system is promising; soft-tissue visibility is demonstrated at relatively low imaging doses (3 cGy) using four laboratory rats. We have integrated a kV radiographic and tomographic imaging system with a medical linear accelerator to allow localization of bone and soft-tissue structures in the reference frame of the accelerator. Modeling and experiments have demonstrated the feasibility of acquiring high-quality radiographic and tomographic images at acceptable imaging doses. Full integration of the kV and MV imaging systems with the treatment machine will allow on-line radiographic and tomographic guidance of field placement.

  17. Semi-empirical formulation of multiple scattering for the Gaussian beam model of heavy charged particles stopping in tissue-like matter.

    PubMed

    Kanematsu, Nobuyuki

    2009-03-07

    Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linearity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to the residual range was derived. The simplicity enabled the analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.

  18. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  19. Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device.

    PubMed

    Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A

    2016-12-01

    Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.

  20. CURRENT USE AND FUTURE NEEDS OF BIODOSIMETRY IN STUDIES OF LONG-TERM HEALTH RISK FOLLOWING RADIATION EXPOSURE

    PubMed Central

    Simon, Steven L.; Bouville, André; Kleinerman, Ruth

    2009-01-01

    Biodosimetry measurements can potentially be an important and integral part of the dosimetric methods used in long-term studies of health risk following radiation exposure. Such studies rely on accurate estimation of doses to the whole body or to specific organs of individuals in order to derive reliable estimates of cancer risk. However, dose estimates based on analytical dose reconstruction (i.e., models) or personnel monitoring measurements, e.g., film-badges, can have substantial uncertainty. Biodosimetry can potentially reduce uncertainty in health risk studies by corroboration of model-based dose estimates or by using them to assess bias in dose models. While biodosimetry has begun to play a more significant role in long-term health risk studies, its use is still generally limited in that context due to one or more factors including, inadequate limits of detection, large inter-individual variability of the signal measured, high per-sample cost, and invasiveness. Presently, the most suitable biodosimetry methods for epidemiologic studies are chromosome aberration frequencies from fluorescence in situ hybridization (FISH) of peripheral blood lymphocytes and electron paramagnetic resonance (EPR) measurements made on tooth enamel. Both types of measurements, however, are usually invasive and require difficult to obtain biological samples. Moreover, doses derived from these methods are not always directly relevant to the tissues of interest. To increase the value of biodosimetry to epidemiologic studies, a number of issues need to be considered including limits of detection, effects of inhomogenous exposure of the body, how to extrapolate from the tissue sampled to the tissues of interest, and how to adjust dosimetry models applied to large populations based on sparse biodosimetry measurements. The requirements of health risk studies suggest a set of characteristics that, if satisfied by new biodosimetry methods, would increase the overall usefulness of biodosimetry to determining radiation health risks. PMID:20065672

  1. An Integrated Approach to Segmentation and Nonrigid Registration for Application in Image-Guided Pelvic Radiotherapy

    PubMed Central

    Lu, Chao; Chelikani, Sudhakar; Papademetris, Xenophon; Knisely, Jonathan P.; Milosevic, Michael F.; Chen, Zhe; Jaffray, David A.; Staib, Lawrence H.; Duncan, James S.

    2011-01-01

    External beam radiotherapy (EBRT) has become the preferred options for non-surgical treatment of prostate cancer and cervix cancer. In order to deliver higher doses to cancerous regions within these pelvic structures (i.e. prostate or cervix) while maintaining or lowering the doses to surrounding non-cancerous regions, it is critical to account for setup variation, organ motion, anatomical changes due to treatment and intra-fraction motion. In previous work, manual segmentation of the soft tissues is performed and then images are registered based on the manual segmentation. In this paper, we present an integrated automatic approach to multiple organ segmentation and nonrigid constrained registration, which can achieve these two aims simultaneously. The segmentation and registration steps are both formulated using a Bayesian framework, and they constrain each other using an iterative conditional model strategy. We also propose a new strategy to assess cumulative actual dose for this novel integrated algorithm, in order to both determine whether the intended treatment is being delivered and, potentially, whether or not a plan should be adjusted for future treatment fractions. Quantitative results show that the automatic segmentation produced results that have an accuracy comparable to manual segmentation, while the registration part significantly outperforms both rigid and non-rigid registration. Clinical application and evaluation of dose delivery show the superiority of proposed method to the procedure currently used in clinical practice, i.e. manual segmentation followed by rigid registration. PMID:21646038

  2. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    PubMed

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to <10 cGy h(-1) and involve multiple patients to detect patient variability. Results may suggest a preference for high dose rate brachytherapy or LDR brachytherapy without permanent retention of the implant seeds (hence the dose rates in peripheral tissues and organs remain above IDRE thresholds).

  3. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  4. Treatment planning and dosimetric comparison study on two different volumetric modulated arc therapy delivery techniques

    PubMed Central

    Kumar, S.A. Syam; Holla, Raghavendra; Sukumar, Prabakar; Padmanaban, Sriram; Vivekanandan, Nagarajan

    2012-01-01

    Aim To compare and evaluate the performance of two different volumetric modulated arc therapy delivery techniques. Background Volumetric modulated arc therapy is a novel technique that has recently been made available for clinical use. Planning and dosimetric comparison study was done for Elekta VMAT and Varian RapidArc for different treatment sites. Materials and methods Ten patients were selected for the planning comparison study. This includes 2 head and neck, 2 oesophagus, 1 bladder, 3 cervix and 2 rectum cases. Total dose of 50 Gy was given for all the plans. All plans were done for RapidArc using Eclipse and for Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both RapidArc and Elekta VMAT. Plans were evaluated based on the ability to meet the dose volume histogram, dose homogeneity index, radiation conformity index, estimated radiation delivery time, integral dose and monitor units needed to deliver the prescribed dose. Results RapidArc plans achieved the best conformity (CI95% = 1.08 ± 0.07) while Elekta VMAT plans were slightly inferior (CI95% = 1.10 ± 0.05). The in-homogeneity in the PTV was highest with Elekta VMAT with HI equal to 0.12 ± 0.02 Gy when compared to RapidArc with 0.08 ± 0.03. Significant changes were observed between the RapidArc and Elekta VMAT plans in terms of the healthy tissue mean dose and integral dose. Elekta VMAT plans show a reduction in the healthy tissue mean dose (6.92 ± 2.90) Gy when compared to RapidArc (7.83 ± 3.31) Gy. The integral dose is found to be inferior with Elekta VMAT (11.50 ± 6.49) × 104 Gy cm3 when compared to RapidArc (13.11 ± 7.52) × 104 Gy cm3. Both Varian RapidArc and Elekta VMAT respected the planning objective for all organs at risk. Gamma analysis result for the pre-treatment quality assurance shows good agreement between the planned and delivered fluence for 3 mm DTA, 3% DD for all the evaluated points inside the PTV, for both VMAT and RapidArc techniques. Conclusion The study concludes that a variable gantry speed with variable dose rate is important for efficient arc therapy delivery. RapidArc presents a slight improvement in the OAR sparing with better target coverage when compared to Elekta VMAT. Trivial differences were noted in all the plans for organ at risk but the two techniques provided satisfactory conformal avoidance and conformation. PMID:24416535

  5. 4D dose calculation and delivery with interplay effects between respiratory motion and uniform scanning proton beam

    NASA Astrophysics Data System (ADS)

    Zhao, Qingya

    2011-12-01

    Proton radiotherapy has advantages to deliver accurate high conformal radiation dose to the tumor while sparing the surrounding healthy tissue and critical structures. However, the treatment effectiveness is degraded greatly due to patient free breathing during treatment delivery. Motion compensation for proton radiotherapy is especially challenging as proton beam is more sensitive to the density change along the beam path. Tumor respiratory motion during treatment delivery will affect the proton dose distribution and the selection of optimized parameters for treatment planning, which has not been fully addressed yet in the existing approaches for proton dose calculation. The purpose of this dissertation is to develop an approach for more accurate dose delivery to a moving tumor in proton radiotherapy, i.e., 4D proton dose calculation and delivery, for the uniform scanning proton beam. A three-step approach has been carried out to achieve this goal. First, a solution for the proton output factor calculation which will convert the prescribed dose to machine deliverable monitor unit for proton dose delivery has been proposed and implemented. The novel sector integration method is accurate and time saving, which considers the various beam scanning patterns and treatment field parameters, such as aperture shape, aperture size, measuring position, beam range, and beam modulation. Second, tumor respiratory motion behavior has been statistically characterized and the results have been applied to advanced image guided radiation treatment. Different statistical analysis and correlation discovery approaches have been investigated. The internal / external motion correlation patterns have been simulated, analyzed, and applied in a new hybrid gated treatment to improve the target coverage. Third, a dose calculation method has been developed for 4D proton treatment planning which integrates the interplay effects of tumor respiratory motion patterns and proton beam delivery mechanism. These three steps provide an innovative integrated framework for accurate 4D proton dose calculation and treatment planning for a moving tumor, which extends the functionalities of existing 3D planning systems. In short, this dissertation work addresses a few important problems for effective proton radiotherapy to a moving target. The outcomes of the dissertation are very useful for motion compensation with advanced image guided proton treatment.

  6. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes.

    PubMed

    Markstein, Michele; Pitsouli, Chrysoula; Villalta, Christians; Celniker, Susan E; Perrimon, Norbert

    2008-04-01

    A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.

  7. Dosimetric comparison between VMAT with different dose calculation algorithms and protons for soft-tissue sarcoma radiotherapy.

    PubMed

    Fogliata, Antonella; Scorsetti, Marta; Navarria, Piera; Catalano, Maddalena; Clivio, Alessandro; Cozzi, Luca; Lobefalo, Francesca; Nicolini, Giorgia; Palumbo, Valentina; Pellegrini, Chiara; Reggiori, Giacomo; Roggio, Antonella; Vanetti, Eugenio; Alongi, Filippo; Pentimalli, Sara; Mancosu, Pietro

    2013-04-01

    To appraise the potential of volumetric modulated arc therapy (VMAT, RapidArc) and proton beams to simultaneously achieve target coverage and enhanced sparing of bone tissue in the treatment of soft-tissue sarcoma with adequate target coverage. Ten patients presenting with soft-tissue sarcoma of the leg were collected for the study. Dose was prescribed to 66.5 Gy in 25 fractions to the planning target volume (PTV) while significant maximum dose to the bone was constrained to 50 Gy. Plans were optimised according to the RapidArc technique with 6 MV photon beams or for intensity modulated protons. RapidArc photon plans were computed with: 1) AAA; 2) Acuros XB as dose to medium; and 3) Acuros XB as dose to water. All plans acceptably met the criteria of target coverage (V95% >90-95%) and bone sparing (D(1 cm3) <50 Gy). Significantly higher PTV dose homogeneity was found for proton plans. Near-to-maximum dose to bone was similar for RapidArc and protons, while volume receiving medium/low dose levels was minimised with protons. Similar results were obtained for the remaining normal tissue. Dose distributions calculated with the dose to water option resulted ~5% higher than corresponding ones computed as dose to medium. High plan quality was demonstrated for both VMAT and proton techniques when applied to soft-tissue sarcoma.

  8. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E., E-mail: claudia.ruebe@uks.eu

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis ofmore » testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.« less

  9. Three-dimensional conformal versus non-graphic radiation treatment planning for apocrine gland adenocarcinoma of the anal sac in 18 dogs (2002-2007).

    PubMed

    Keyerleber, M A; Gieger, T L; Erb, H N; Thompson, M S; McEntee, M C

    2012-12-01

    Differences in dose homogeneity and irradiated volumes of target and surrounding normal tissues between 3D conformal radiation treatment planning and simulated non-graphic manual treatment planning were evaluated in 18 dogs with apocrine gland adenocarcinoma of the anal sac. Overall, 3D conformal treatment planning resulted in more homogenous dose distribution to target tissues with lower hot spots and dose ranges. Dose homogeneity and guarantee of not under-dosing target tissues with 3D conformal planning came at the cost, however, of delivering greater mean doses of radiation and of irradiating greater volumes of surrounding normal tissue structures. © 2011 Blackwell Publishing Ltd.

  10. Improved normal tissue protection by proton and X-ray microchannels compared to homogeneous field irradiation.

    PubMed

    Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J

    2015-09-01

    The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Commissioning and initial acceptance tests for a commercial convolution dose calculation algorithm for radiotherapy treatment planning in comparison with Monte Carlo simulation and measurement

    PubMed Central

    Moradi, Farhad; Mahdavi, Seyed Rabi; Mostaar, Ahmad; Motamedi, Mohsen

    2012-01-01

    In this study the commissioning of a dose calculation algorithm in a currently used treatment planning system was performed and the calculation accuracy of two available methods in the treatment planning system i.e., collapsed cone convolution (CCC) and equivalent tissue air ratio (ETAR) was verified in tissue heterogeneities. For this purpose an inhomogeneous phantom (IMRT thorax phantom) was used and dose curves obtained by the TPS (treatment planning system) were compared with experimental measurements and Monte Carlo (MCNP code) simulation. Dose measurements were performed by using EDR2 radiographic films within the phantom. Dose difference (DD) between experimental results and two calculation methods was obtained. Results indicate maximum difference of 12% in the lung and 3% in the bone tissue of the phantom between two methods and the CCC algorithm shows more accurate depth dose curves in tissue heterogeneities. Simulation results show the accurate dose estimation by MCNP4C in soft tissue region of the phantom and also better results than ETAR method in bone and lung tissues. PMID:22973081

  12. Integrated pharmacokinetic, pharmacodynamic and immunogenicity profiling of an anti-CCL21 monoclonal antibody in cynomolgus monkeys.

    PubMed

    Dudal, S; Subramanian, K; Flandre, T; Law, W S; Lowe, P J; Skerjanec, A; Genin, J-C; Duval, M; Piequet, A; Cordier, A; Jarai, G; Van Heeke, G; Taplin, S; Krantz, C; Jones, S; Warren, A P; Brennan, F R; Sims, J; Lloyd, P

    2015-01-01

    QBP359 is an IgG1 human monoclonal antibody that binds with high affinity to human CCL21, a chemokine hypothesized to play a role in inflammatory disease conditions through activation of resident CCR7-expressing fibroblasts/myofibroblasts. The pharmacokinetics (PK) and pharmacodynamics (PD) of QBP359 in non-human primates were characterized through an integrated approach, combining PK, PD, immunogenicity, immunohistochemistry (IHC) and tissue profiling data from single- and multiple-dose experiments in cynomolgus monkeys. When compared with regular immunoglobulin typical kinetics, faster drug clearance was observed in serum following intravenous administration of 10 mg/kg and 50 mg/kg of QBP359. We have shown by means of PK/PD modeling that clearance of mAb-ligand complex is the most likely explanation for the rapid clearance of QBP359 in cynomolgus monkey. IHC and liquid chromatography mass spectrometry data suggested a high turnover and synthesis rate of CCL21 in tissues. Although lymphoid tissue was expected to accumulate drug due to the high levels of CCL21 present, bioavailability following subcutaneous administration in monkeys was 52%. In human disease states, where CCL21 expression is believed to be expressed at 10-fold higher concentrations compared with cynomolgus monkeys, the PK/PD model of QBP359 and its binding to CCL21 suggested that very large doses requiring frequent administration of mAb would be required to maintain suppression of CCL21 in the clinical setting. This highlights the difficulty in targeting soluble proteins with high synthesis rates.

  13. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  14. SU-E-T-756: Tissue Inhomogeneity Corrections in Intra-Operative Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, A; Chinsky, B; Gros, S

    Purpose: Investigate the impact of tissue inhomogeneities on dose distributions produced by low-energy X-rays in intra-operative radiotherapy (IORT). Methods: A 50-kV INTRABEAM X-ray device with superficial (Flat and Surface) applicators was commissioned at our institution. For each applicator, percent depth-dose (PDD), dose-profiles (DP) and output factors (OF) were obtained. Calibrated GaFchromic (EBT3) films were used to measure dose distributions in solid water phantom at various depths (2, 5, 10, and 15 mm). All recommended precautions for film-handling, film-exposure and scanning were observed. The effects of tissue inhomogeneities on dose distributions were examined by placing air-cavities and bone and tissue equivalentmore » materials of different density (ρ), atomic number (Z), and thickness (t = 0–4mm) between applicator and film detector. All inhomogeneities were modeled as a cylindrical cavity (diameter 25 mm). Treatment times were calculated to deliver 1Gy dose at 5mm depth. Film results were verified by repeat measurements with a thin-window parallel plate ion-chamber (PTW 34013A) in a water tank. Results: For a Flat-4cm applicator, the measured dose rate at 5mm depth in solid water was 0.35 Gy/min. Introduction of a cylindrical air-cavity resulted in an increased dose past the inhomogeneity. Compared to tissue equivalent medium, dose enhancement due to 1mm, 2mm, 3mm and 4mm air cavities was 10%, 16%, 24%, and 35% respectively. X-ray attenuation by 2mm thick cortical bone resulted in a significantly large (58%) dose decrease. Conclusion: IORT dose calculations assume homogeneous tissue equivalent medium. However, soft X-rays are easily affected by non-tissue equivalent materials. The results of this study may be used to estimate and correct IORT dose delivered in the presence of tissue inhomogeneities.« less

  15. Water and tissue equivalence of a new PRESAGE{sup Registered-Sign} formulation for 3D proton beam dosimetry: A Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorjiara, Tina; Kuncic, Zdenka; Doran, Simon

    2012-11-15

    Purpose: To evaluate the water and tissue equivalence of a new PRESAGE{sup Registered-Sign} 3D dosimeter for proton therapy. Methods: The GEANT4 software toolkit was used to calculate and compare total dose delivered by a proton beam with mean energy 62 MeV in a PRESAGE{sup Registered-Sign} dosimeter, water, and soft tissue. The dose delivered by primary protons and secondary particles was calculated. Depth-dose profiles and isodose contours of deposited energy were compared for the materials of interest. Results: The proton beam range was found to be Almost-Equal-To 27 mm for PRESAGE{sup Registered-Sign }, 29.9 mm for soft tissue, and 30.5 mmmore » for water. This can be attributed to the lower collisional stopping power of water compared to soft tissue and PRESAGE{sup Registered-Sign }. The difference between total dose delivered in PRESAGE{sup Registered-Sign} and total dose delivered in water or tissue is less than 2% across the entire water/tissue equivalent range of the proton beam. The largest difference between total dose in PRESAGE{sup Registered-Sign} and total dose in water is 1.4%, while for soft tissue it is 1.8%. In both cases, this occurs at the distal end of the beam. Nevertheless, the authors find that PRESAGE{sup Registered-Sign} dosimeter is overall more tissue-equivalent than water-equivalent before the Bragg peak. After the Bragg peak, the differences in the depth doses are found to be due to differences in primary proton energy deposition; PRESAGE{sup Registered-Sign} and soft tissue stop protons more rapidly than water. The dose delivered by secondary electrons in the PRESAGE{sup Registered-Sign} differs by less than 1% from that in soft tissue and water. The contribution of secondary particles to the total dose is less than 4% for electrons and Almost-Equal-To 1% for protons in all the materials of interest. Conclusions: These results demonstrate that the new PRESAGE{sup Registered-Sign} formula may be considered both a tissue- and water-equivalent 3D dosimeter for a 62 MeV proton beam. The results further suggest that tissue-equivalent thickness may provide better dosimetric and geometric accuracy than water-equivalent thickness for 3D dosimetry of this proton beam.« less

  16. Modeling Acute Health Effects of Astronauts from Exposure to Large Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2011-01-01

    In space exploration outside the Earth s geomagnetic field, radiation exposure from solar particle events (SPE) presents a health concern for astronauts, that could impair their performance and result in possible failure of the mission. Acute risks are of special concern during extra-vehicular activities because of the rapid onset of SPE. However, most SPEs will not lead to acute risks but can lead to mission disruption if accurate projection methods are not available. Acute Radiation Sickness (ARS) is a group of clinical syndromes developing acutely (within several seconds to 3 days) after high dose whole-body or significant partial-body ionizing radiation exposures. The manifestation of these syndromes reflects the disturbance of physiological processes of various cellular groups damaged by radiation. Hematopoietic cells, skin, epithelium, intestine, and vascular endothelium are among the most sensitive tissues of human body to ionizing radiation. Most ARS symptoms are directly related to these tissues and other systems (nervous, endocrine, and cardiovascular, etc.) with coupled regulations. Here we report the progress in bio-mathematical models to describe the dose and time-dependent early human responses to ionizing radiation. The responses include lymphocyte depression, granulocyte modulation, fatigue and weakness syndrome, and upper gastrointestinal distress. The modest dose and dose-rates of SPEs are predicted to lead to large sparing of ARS, however detailed experimental data on a range of proton dose-rates for organ doses from 0.5 to 2 Gy is needed to validate the models. We also report on the ARRBOD code that integrates the BRYNTRN and SUMDOSE codes, which are used to estimate the SPE organ doses for astronauts under various space travel scenarios, with our models of ARS. The more recent effort is to provide easy web access to space radiation risk assessment using the ARRBOD code.

  17. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects

    PubMed Central

    Hamada, Nobuyuki; Fujimichi, Yuki

    2014-01-01

    Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798

  18. Preliminary estimates of radiation exposures for manned interplanetary missions from anomalously large solar flare events

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.

    1988-01-01

    Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events.

  19. Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging.

    PubMed

    Combs, Stephanie E; Nüsslin, Fridtjof; Wilkens, Jan J

    2016-04-01

    Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.

  20. Volumetric modulated arc radiotherapy for esophageal cancer.

    PubMed

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-01-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.

    PubMed

    Andreo, Pedro

    2015-01-07

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of 'water-like' tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the 'water-like' and 'tissue' approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  2. Development of a Spect-Based Three-Dimensional Treatment Planner for Radionuclide Therapy with Iodine -131.

    NASA Astrophysics Data System (ADS)

    Giap, Huan Bosco

    Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an ^{131}I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of -16.3% to 4.4%. Volume quantitation errors ranged from -4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3 -D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues.

  3. The estimation of galactic cosmic ray penetration and dose rates

    NASA Technical Reports Server (NTRS)

    Burrell, M. O.; Wright, J. J.

    1972-01-01

    This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.

  4. SU-E-J-203: Investigation of 1.5T Magnetic Field Dose Effects On Organs of Different Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Rubinstein, A; Ibbott, G

    2015-06-15

    Purpose: For the combined 1.5T/6MV MRI-linac system, the perpendicular magnetic field to the radiation beam results in altered radiation dose distributions. This Monte Carlo study investigates the change in dose at interfaces for common organs neighboring soft tissue. Methods: MCNP6 was used to simulate the effects of a 1.5T magnetic field when irradiating tissues with a 6 MV beam. The geometries used in this study were not necessarily anatomically representative in size in order to directly compare quantitative dose effects for each tissue at the same depths. For this purpose, a 512 cm{sup 3} cubic material was positioned at themore » center of a 2744 cm{sup 3} cubic soft tissue material phantom. The following tissue materials and their densities were used in this study: lung (0.296 g/cm{sup 3}), fat (0.95), spinal cord (1.038), soft tissue (1.04), muscle (1.05), eye (1.076), trabecular bone (1.40), and cortical bone (1.85). Results: The addition of a 1.5T magnetic field caused dose changes of +46.5%, +2.4%, −0.9%, −0.8%, −1.5%, −6.5%, and −8.8% at the entrance interface between soft tissue and lung, fat, spinal cord, muscle, eye, trabecular bone, and cortical bone tissues respectively. Dose changes of −39.4%, −4.1%, −0.8%, −0.8%, +0.5%, +6.7%, and +10.9% were observed at the second interface between the same tissues respectively and soft tissue. On average, the build-up distance was reduced by 0.6 cm, and a dose increase of 62.7% was observed at the exit interface between soft tissue and air of the entire phantom. Conclusion: The greatest changes in dose were observed at interfaces containing lung and bone tissues. Due to the prevalence and proximity of bony anatomy to soft tissues throughout the human body, these results encourage further examination of these tissues with anatomically representative geometries using multiple beam configurations for safe treatment using the MRI-linac system.« less

  5. Study of the effect of temperature on the optical properties of Latin skins

    NASA Astrophysics Data System (ADS)

    Quistián-Vázquez, Brenda; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G.

    2017-02-01

    Photodynamic therapy (PDT) is a very effective technique for treatment of certain types of cancer, among the most common, skin cancer. PDT requires the presence of three elements: the photosensitizer, light and oxygen. Penetration depth of light into the tumor depends on both the characteristics of the tissue to be treated and the wavelength. As the light dose to be delivered in each lesion depends on the optical properties of the tissue, all the effects that change these properties should be considered in order to choose suitable doses. There are some studies that have determined the maximum dose of radiation tolerated for certain types of skin, but the influence of the temperature on the optical properties, especially for darker skin types, remains unknown. In this study, we analyzed the optical properties of skin in vivo of different Latin volunteers in order to study the influence of the temperature on the optical properties and thereby to define more precisely the dose of light to be received by each patient in a personalized way. The optical properties of skin in vivo were investigated using an optical system that included an integrating sphere, a tungsten lamp and a spectrophotometer. Such experimental set up-allowed to obtain spectra reflectance of various volunteers and from this measurement, the absorption coefficient was recovered by Inverse Adding Doubling (IAD) program.

  6. Optimization of the temporal pattern of applied dose for a single fraction of radiation: Implications for radiation therapy

    NASA Astrophysics Data System (ADS)

    Altman, Michael B.

    The increasing prevalence of intensity modulated radiation therapy (IMRT) as a treatment modality has led to a renewed interest in the potential for interaction between prolonged treatment time, as frequently associated with IMRT, and the underlying radiobiology of the irradiated tissue. A particularly relevant aspect of radiobiology is cell repair capacity, which influences cell survival, and thus directly relates to the ability to control tumors and spare normal tissues. For a single fraction of radiation, the linear quadratic (LQ) model is commonly used to relate the radiation dose to the fraction of cells surviving. The LQ model implies a dependence on two time-related factors which correlate to radiobiological effects: the duration of radiation application, and the functional form of how the dose is applied over that time (the "temporal pattern of applied dose"). Although the former has been well studied, the latter has not. Thus, the goal of this research is to investigate the impact of the temporal pattern of applied dose on the survival of human cells and to explore how the manipulation of this temporal dose pattern may be incorporated into an IMRT-based radiation therapy treatment planning scheme. The hypothesis is that the temporal pattern of applied dose in a single fraction of radiation can be optimized to maximize or minimize cell kill. Furthermore, techniques which utilize this effect could have clinical ramifications. In situations where increased cell kill is desirable, such as tumor control, or limiting the degree of cell kill is important, such as the sparing of normal tissue, temporal sequences of dose which maximize or minimize cell kill (temporally "optimized" sequences) may provide greater benefit than current clinically used radiation patterns. In the first part of this work, an LQ-based modeling analysis of effects of the temporal pattern of dose on cell kill is performed. Through this, patterns are identified for maximizing cell kill for a given radiation pattern by concentrating the highest doses in the middle of a fraction (a "Triangle" pattern), or minimizing cell kill by placing the highest doses near the beginning and end (a "V-shaped" pattern). The conditions under which temporal optimization effects are most acute are also identified: irradiation of low alpha/beta tissues, long fraction durations, and high doses/fx. An in vitro study is then performed which verifies that the temporal effects and trends predicted by the modeling study are clearly manifested in human cells. Following this a phantom which could allow similar in vitro radiobiological experiments in a 3-dimensional clinically-based environment is designed, created, and dosimetrically assessed using TLDs, film, and biological assay-based techniques. The phantom is found to be a useful and versatile tool for such experiments. A scheme for utilizing the phantom in a clinical treatment environment is then developed. This includes a demonstration of prototype methods for optimizing the temporal pattern of applied dose in clinical IMRT plans to manipulate tissue-dependent effects. Looking toward future experimental validation of such plans using the phantom, an analysis of the suitability of biological assays for use in phantom-based in vitro experiments is performed. Finally, a discussion is provided about the steps necessary to integrate temporal optimization into in vivo experiments and ultimately into a clinical radiation therapy environment. If temporal optimization is ultimately shown to have impact in vivo, the successful implementation of the methods developed in this study could enhance the efficacy and care of thousands of patients receiving radiotherapy.

  7. SU-F-T-448: Use of Mixed Photon Energy Beam in Volumetric Modulated Arc Therapy (VMAT) Treatment Plan for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manigandan, D; Kumar, M; Mohandas, P

    Purpose: To study the impact of different photon beam combination during VMAT planning and treatment delivery. Methods: Five prostate patients with no nodal involvement were chosen for the study and only prostate was considered as target (7920cGy/44fractions). In each case, three different VMAT plans were generated with two arcs (200°–160°&160°–200°). First plan used only 6MV in both arcs (6X-6X) and second utilized 6MV&15MV (6X-15X), whereas third one used 15MV&15MV (15X-15X). For consistency, all the plans were generated by the same planner using Monaco− treatment planning system (V5.1) for Elekta Synergy− linear accelerator with 1cm leaf-width. For plan comparison, target meanmore » dose, conformity index (CI)=Planning target volume (PTV) covered by 95% of prescription dose/PTV were analyzed. Mean doses of bladder, rectum, left femur and right femur were analyzed. Integral dose (liter-Gray) to normal tissue (patient volume minus PTV), total monitor unit (MU) required to deliver a plan and gamma pass rate for each plan was analyzed. Results: The CI for PTV was 0.9937±0.0037, 0.9917±0.0033, and 0.9897±0.0048 for 6X-6X, 6X-15X and 15X-15X, respectively. Mean dose to target slightly increases with the decrease of energy. Mean doses to bladder were 3546.23±692.13cGy, 3487.43±715.53cGy and 3504.40±683.1cGy for 6X-6X, 6X-15X and 15X-15X, respectively. Mean doses to rectum were 4294.60±309.5cGy, 4277.07±279.93cGy and 4290.77±379.07cGy. Mean doses to left femur were 2737.13±545.93cGy, 2668.67±407.12cGy and 2416.77±300.73cGy and mean doses to the right femur were 2682.70±460.81cGy, 2722.58±541.92cGy and 2598.57±481.83cGy. Higher Integral doses to normal tissue observed for 6X-6X (163.06±24.6 Litre-Gray) followed by 6X-15X (154.35±24.74 Litre-Gray) and 15X-15X (145.84±26.03 Litre-Gray). Average MU required to deliver one fraction was 680.75±72.09, 634.81±95.07 and 605.06±114.65. Gamma pass rates were 99.83±0.21, 99.53±0.27 and 99.2±0.20. Conclusion: 6X-15X VMAT plan offer dosimetric advantage compared to 6X-6X in terms of lesser MU and integral dose without significant compromise in plan quality, where as in 15X-15X, neutron contamination risk is relatively higher.« less

  8. WE-EF-BRA-02: A Monte Carlo Study of Macroscopic and Microscopic Dose Descriptors for Kilovoltage Cellular Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, P; Thomson, R

    2015-06-15

    Purpose: To investigate how doses to cellular (microscopic) targets depend on cell morphology, and how cellular doses relate to doses to bulk tissues and water for 20 to 370 keV photon sources using Monte Carlo (MC) simulations. Methods: Simulation geometries involve cell clusters, single cells, and single nuclear cavities embedded in various healthy and cancerous bulk tissue phantoms. A variety of nucleus and cytoplasm elemental compositions are investigated. Cell and nucleus radii range from 5 to 10 microns and 2 to 9 microns, respectively. Doses to water and bulk tissue cavities are compared to nucleus and cytoplasm doses. Results: Variationsmore » in cell dose with simulation geometry are most pronounced for lower energy sources. Nuclear doses are sensitive to the surrounding geometry: the nuclear dose in a multicell model differs from the dose to a cavity of nuclear medium in an otherwise homogeneous bulk tissue phantom by more than 7% at 20 keV. Nuclear doses vary with cell size by up to 20% at 20 keV, with 10% differences persisting up to 90 keV. Bulk tissue and water cavity doses differ from cellular doses by up to 16%. MC results are compared to cavity theory predictions; large and small cavity theories qualitatively predict nuclear doses for energies below and above 50 keV, respectively. Burlin’s (1969) intermediate cavity theory best predicts MC results with an average discrepancy of 4%. Conclusion: Cellular doses vary as a function of source energy, subcellular compartment size, elemental composition, and tissue morphology. Neither water nor bulk tissue is an appropriate surrogate for subcellular targets in radiation dosimetry. The influence of microscopic inhomogeneities in the surrounding environment on the nuclear dose and the importance of the nucleus as a target for radiation-induced cell death emphasizes the potential importance of cellular dosimetry for understanding radiation effects. Funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs Program (CRC), and the Ontario Ministry of Training, Colleges and Universities.« less

  9. Vocal Dose Measures: Quantifying Accumulated Vibration Exposure in Vocal Fold Tissues

    PubMed Central

    Titze, Ingo R.; Švec, Jan G.; Popolo, Peter S.

    2011-01-01

    To measure the exposure to self-induced tissue vibration in speech, three vocal doses were defined and described: distance dose, which accumulates the distance that tissue particles of the vocal folds travel in an oscillatory trajectory; energy dissipation dose, which accumulates the total amount of heat dissipated over a unit volume of vocal fold tissues; and time dose, which accumulates the total phonation time. These doses were compared to a previously used vocal dose measure, the vocal loading index, which accumulates the number of vibration cycles of the vocal folds. Empirical rules for viscosity and vocal fold deformation were used to calculate all the doses from the fundamental frequency (F0) and sound pressure level (SPL) values of speech. Six participants were asked to read in normal, monotone, and exaggerated speech and the doses associated with these vocalizations were calculated. The results showed that large F0 and SPL variations in speech affected the dose measures, suggesting that accumulation of phonation time alone is insufficient. The vibration exposure of the vocal folds in normal speech was related to the industrial limits for hand-transmitted vibration, in which the safe distance dose was derived to be about 500 m. This limit was found rather low for vocalization; it was related to a comparable time dose of about 17 min of continuous vocalization, or about 35 min of continuous reading with normal breathing and unvoiced segments. The voicing pauses in normal speech and dialogue effectively prolong the safe time dose. The derived safety limits for vocalization will likely require refinement based on a more detailed knowledge of the differences in hand and vocal fold tissue morphology and their response to vibrational stress, and on the effect of recovery of the vocal fold tissue during voicing pauses. PMID:12959470

  10. Vocal dose measures: quantifying accumulated vibration exposure in vocal fold tissues.

    PubMed

    Titze, Ingo R; Svec, Jan G; Popolo, Peter S

    2003-08-01

    To measure the exposure to self-induced tissue vibration in speech, three vocal doses were defined and described: distance dose, which accumulates the distance that tissue particles of the vocal folds travel in an oscillatory trajectory; energy dissipation dose, which accumulates the total amount of heat dissipated over a unit volume of vocal fold tissues; and time dose, which accumulates the total phonation time. These doses were compared to a previously used vocal dose measure, the vocal loading index, which accumulates the number of vibration cycles of the vocal folds. Empirical rules for viscosity and vocal fold deformation were used to calculate all the doses from the fundamental frequency (F0) and sound pressure level (SPL) values of speech. Six participants were asked to read in normal, monotone, and exaggerated speech and the doses associated with these vocalizations were calculated. The results showed that large F0 and SPL variations in speech affected the dose measures, suggesting that accumulation of phonation time alone is insufficient. The vibration exposure of the vocal folds in normal speech was related to the industrial limits for hand-transmitted vibration, in which the safe distance dose was derived to be about 500 m. This limit was found rather low for vocalization; it was related to a comparable time dose of about 17 min of continuous vocalization, or about 35 min of continuous reading with normal breathing and unvoiced segments. The voicing pauses in normal speech and dialogue effectively prolong the safe time dose. The derived safety limits for vocalization will likely require refinement based on a more detailed knowledge of the differences in hand and vocal fold tissue morphology and their response to vibrational stress, and on the effect of recovery of the vocal fold tissue during voicing pauses.

  11. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume <=100 mm3, for the four dose metrics light fluence, photosensitizer photobleaching rate, PDT dose and [1O2]rx. PDT dose is defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  12. Evaluating the Toxicity of Cigarette Whole Smoke Solutions in an Air-Liquid-Interface Human In Vitro Airway Tissue Model.

    PubMed

    Cao, Xuefei; Muskhelishvili, Levan; Latendresse, John; Richter, Patricia; Heflich, Robert H

    2017-03-01

    Exposure to cigarette smoke causes a multitude of pathological changes leading to tissue damage and disease. Quantifying such changes in highly differentiated in vitro human tissue models may assist in evaluating the toxicity of tobacco products. In this methods development study, well-differentiated human air-liquid-interface (ALI) in vitro airway tissue models were used to assess toxicological endpoints relevant to tobacco smoke exposure. Whole mainstream smoke solutions (WSSs) were prepared from 2 commercial cigarettes (R60 and S60) that differ in smoke constituents when machine-smoked under International Organization for Standardization conditions. The airway tissue models were exposed apically to WSSs 4-h per day for 1-5 days. Cytotoxicity, tissue barrier integrity, oxidative stress, mucin secretion, and matrix metalloproteinase (MMP) excretion were measured. The treatments were not cytotoxic and had marginal effects on tissue barrier properties; however, other endpoints responded in time- and dose-dependent manners, with the R60 resulting in higher levels of response than the S60 for many endpoints. Based on the lowest effect dose, differences in response to the WSSs were observed for mucin induction and MMP secretion. Mitigation of mucin induction by cotreatment of cultures with N-acetylcysteine suggests that oxidative stress contributes to mucus hypersecretion. Overall, these preliminary results suggest that quantifying disease-relevant endpoints using ALI airway models is a potential tool for tobacco product toxicity evaluation. Additional research using tobacco samples generated under smoking machine conditions that more closely approximate human smoking patterns will inform further methods development. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by US Government employees and is in the public domain in the US.

  13. Prostate tissue ablation with MRI guided transurethral therapeutic ultrasound and intraoperative assessment of the integrity of the neurovascular bundle

    NASA Astrophysics Data System (ADS)

    Sammet, Steffen; Partanen, Ari; Yousuf, Ambereen; Wardrip, Craig; Niekrasz, Marek; Antic, Tatjana; Razmaria, Aria; Sokka, Sham; Karczmar, Gregory; Oto, Aytekin

    2017-03-01

    OBJECTIVES: Evaluation of the precision of prostate tissue ablation with MRI guided therapeuticultrasound by intraoperative objective assessment of the neurovascular bundle in canines in-vivo. METHODS: In this ongoing IACUC approved study, eight male canines were scanned in a clinical 3T Achieva MRI scanner (Philips) before, during, and after ultrasound therapy with a prototype MR-guided ultrasound therapy system (Philips). The system includes a therapy console to plan treatment, to calculate real-time temperature maps, and to control ultrasound exposures with temperature feedback. Atransurethral ultrasound applicator with eight transducer elements was used to ablate canine prostate tissue in-vivo. Ablated prostate tissue volumes were compared to the prescribed target volumes to evaluate technical effectiveness. The ablated volumes determined by MRI (T1, T2, diffusion, dynamic contrast enhanced and 240 CEM43 thermal dose maps) were compared to H&E stained histological slides afterprostatectomy. Potential nerve damage of the neurovascular bundle was objectively assessed intraoperativelyduring prostatectomy with a CaverMap Surgical Aid nerve stimulator (Blue Torch Medical Technologies). RESULTS: Transurethral MRI -guided ultrasound therapy can effectively ablate canine prostate tissue invivo. Coronal MR-imaging confirmed the correct placement of the HIFU transducer. MRI temperature maps were acquired during HIFU treatment, and subsequently used for calculating thermal dose. Prescribed target volumes corresponded to the 240 CEM43 thermal dose maps during HIFU treatment in all canines. Ablated volumes on high resolution anatomical, diffusion weighted, and contrast enhanced MR images matched corresponding histological slides after prostatectomy. MRI guidance with realtime temperature monitoring showed no damage to surrounding tissues, especially to the neurovascular bundle (assessed intra-operatively with a nerve stimulator) or to the rectum wall. CONCLUSIONS: Our study demonstrates the effectiveness and precision of transurethral ultrasound ablation of prostatic tissue in canines with MRI monitoring and guidance. The canine prostate is an excellent model for the human prostate with similar anatomical characteristics and diseases. MRI guidance with real-time, intraoperative temperature monitoring reduces the risk of damaging critical surrounding anatomical structures in ultrasound therapy of the prostate.

  14. Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro

    2015-01-01

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of ‘water-like’ tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the ‘water-like’ and ‘tissue’ approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  15. Photothermal damage is correlated to the delivery rate of time-integrated temperature

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Noojin, Gary D.; Gamboa, B. Giovanna; Ahmed, Elharith M.; Rockwell, Benjamin A.

    2016-03-01

    Photothermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. However, kinetic methods require determination of kinetic rate constants and knowledge of substrate or product concentrations during the reaction. To better understand photothermal damage processes we have identified temperature histories of cultured retinal cells receiving minimum lethal thermal doses for a variety of laser and culture parameters. These "threshold" temperature histories are of interest because they inherently contain information regarding the fundamental thermal dose requirements for damage in individual cells. We introduce the notion of time-integrated temperature (Tint) as an accumulated thermal dose (ATD) with units of °C s. Damaging photothermal exposure raises the rate of ATD accumulation from that of the ambient (e.g. 37 °C) to one that correlates with cell death (e.g. 52 °C). The degree of rapid increase in ATD (ΔATD) during photothermal exposure depends strongly on the laser exposure duration and the ambient temperature.

  16. SU-F-T-507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrock, Z; Oldham, M; Adamson, J

    2016-06-15

    Purpose: Cerenkov emissions are a natural byproduct of MV radiotherapy but are typically ignored as inconsequential. However, Cerenkov photons may be useful for activation of drugs such as psoralen. Here, we investigate Cerenkov radiation from common radiotherapy beams using Monte Carlo simulations. Methods: GAMOS, a GEANT4-based framework for Monte Carlo simulations, was used to model 6 and 18MV photon beams from a Varian medical linac. Simulations were run to track Cerenkov production from these beams when irradiating a 50cm radius sphere of water. Electron contamination was neglected. 2 million primary photon histories were run for each energy, and values scoredmore » included integral dose and total track length of Cerenkov photons between 100 and 400 nm wavelength. By lowering process energy thresholds, simulations included low energy Bremsstrahlung photons to ensure comprehensive evaluation of UV production in the medium. Results: For the same number of primary photons, UV Cerenkov production for 18MV was greater than 6MV by a factor of 3.72 as determined by total track length. The total integral dose was a factor of 2.31 greater for the 18MV beam. Bremsstrahlung photons were a negligibly small component of photons in the wavelength range of interest, comprising 0.02% of such photons. Conclusion: Cerenkov emissions in water are 1.6x greater for 18MV than 6MV for the same integral dose. Future work will expand the analysis to include optical properties of tissues, and to investigate strategies to maximize Cerenkov emission per unit dose for MV radiotherapy.« less

  17. Botulinum toxin A improves adipose tissue engraftment by promoting cell proliferation, adipogenesis and angiogenesis

    PubMed Central

    Tang, Qi; Chen, Chang; Wang, Xiaqi; Li, Wei; Zhang, Yan; Wang, Muyao; Jing, Wei; Wang, Hang; Guo, Weihua; Tian, Weidong

    2017-01-01

    Adipose tissue engraftment has become a well-established therapy in plastic and reconstructive surgery used to restore age-related or injury-related soft tissue loss. However, the unpredictable absorption rates limit its further application. Some clinicians have noted that more optimal aesthetic results are achieved when botulinum toxin A (BoNTA) is applied prior to adipose tissue grafting. In the present study, we transplanted allogeneic adipose tissue treated with or without BoNTA in SD rats in vivo. We subsequently evaluated the survival rate (weight, volume, apoptosis and cellular integrity) and revascularization of the adipose tissue. The results revealed that BoNTA improved the long-term weight and volume retention of the graft, and preserved cellular integrity. BoNTA significantly increased the expression levels of CD31 and vascular endothelial growth factor (VEGF), suggesting enhanced vasodilation and endothelial cell proliferation. In vitro, adipose-derived stem cells (ASCs) were isolated, identified and induced to proliferate and differentiate with or without BoNTA. Furthermore, to evaluate the proliferative, adipogenic and angiogenic ability of the ASCs, CCK-8 assay and Oil Red O staining were conducted. Gene and protein expression levels were analyzed by RT-qPCR and western blot analysis. The results revealed that 8×10−2 U/ml BoNTA as the optimal dose increased ASC proliferation and adipogenic differentiation capacity, as well as the expression level of the key cytokine of angiogenesis. On the whole, our findings indicate that BoNTA improves adipose tissue engraftment and promotes ASC regeneration, which could benefit future clinical applications. PMID:28731141

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balik, S; Weiss, E; Sleeman, W

    Purpose: To evaluate the potential impact of several setup error correction strategies on a proposed image-guided adaptive radiotherapy strategy for locally advanced lung cancer. Methods: Daily 4D cone-beam CT and weekly 4D fan-beam CT images were acquired from 9 lung cancer patients undergoing concurrent chemoradiation therapy. Initial planning CT was deformably registered to daily CBCT images to generate synthetic treatment courses. An adaptive radiation therapy course was simulated using the weekly CT images with replanning twice and a hypofractionated, simultaneous integrated boost to a total dose of 66 Gy to the original PTV and either a 66 Gy (no boost)more » or 82 Gy (boost) dose to the boost PTV (ITV + 3mm) in 33 fractions with IMRT or VMAT. Lymph nodes (LN) were not boosted (prescribed to 66 Gy in both plans). Synthetic images were rigidly, bony (BN) or tumor and carina (TC), registered to the corresponding plan CT, dose was computed on these from adaptive replans (PLAN) and deformably accumulated back to the original planning CT. Cumulative D98% of CTV of PT (ITV for 82Gy) and LN, and normal tissue dose changes were analyzed. Results: Two patients were removed from the study due to large registration errors. For the remaining 7 patients, D98% for CTV-PT (ITV-PT for 82 Gy) and CTV-LN was within 1 Gy of PLAN for both 66 Gy and 82 Gy plans with both setup techniques. Overall, TC based setup provided better results, especially for LN coverage (p = 0.1 for 66Gy plan and p = 0.2 for 82 Gy plan, comparison of BN and TC), though not significant. Normal tissue dose constraints violated for some patients if constraint was barely achieved in PLAN. Conclusion: The hypofractionated adaptive strategy appears to be deliverable with soft tissue alignment for the evaluated margins and planning parameters. Research was supported by NIH P01CA116602.« less

  19. Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy.

    PubMed

    van der Laan, Hans Paul; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Hollander, Miranda; Langendijk, Johannes A

    2007-07-15

    To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving > or =107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving > or =95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.

  20. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Broussard, G; De, K

    Purpose: Recurrent chordomas are difficult to control locally. This dosimetric study investigates the feasibility of dose escalation to hypoxic regions, visualized on FMISO-PET, while respecting the dose constraints to the neighboring normal tissues/organs. We propose to deliver a higher dose to the areas of hypoxia (84.5Gy) using IMPT with the goal of improving local control. Methods: We currently have four patients with hypoxic subvolumes (HSV) greater than 10cc from the FMISO-PET image. The HSV was delineated based on the standardized uptake values of greater than 1.4 times of the muscle mean. Gross tumor volume (GTV) was delineated using planning CTmore » with the assistance of MRI fusion. The dose scheme is 50.4Gy RBE to CTV in 1.8Gy fractions, followed by an integrated boost of 27.0Gy RBE to GTV in 1.8Gy fractions and 34.5Gy RBE to HSV in 2.3Gy fractions. IMPT integrated boost plans were optimized with multi-criteria optimization (MCO). Posterior-anterior beam angles were used for these plans. We also propose using two posterior oblique fields to boost HSV to spare the skin folding. A medium spot size with 8mm to 15 mm (σ) in air at isocenter with energies from 220 MeV down to 90 MeV was used. Aperture was used for the medium spot size. A small spot size of 2.5 mm to 4.5 mm (σ) in air at isocenter with energies from 240 MeV down to 70 MeV was also proposed. Target coverage and dose to OARs were evaluated. Results: For the sacral chordoma patient that has been planned, the target homogeneity index is 3.2% for HSV, 55.9% for CTV and 11.9% for GTV. The max dose is 77GyRBE to rectum, 86.2GyRBE to sacral nerves and 73.9GyRBE to cauda equina. Conclusion: IMPT with integrated high dose boost to HSV determined from FMISO PET image is feasible. OAR dose constraints were met.« less

  2. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome

    PubMed Central

    Gorbunov, Nikolai V.; Sharma, Pushpa

    2015-01-01

    The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR)] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS). The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF) leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS). Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous, radioresistant mesenchymal stromal cells in the protracted responses to IR and IR-related septicemia is also discussed. PMID:26785342

  3. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome.

    PubMed

    Gorbunov, Nikolai V; Sharma, Pushpa

    2015-02-27

    The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR)] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS). The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF) leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS). Onset of MOF in hARS can be presented as "two-hit phenomenon" where the "first hit" is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the "second hit" derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous, radioresistant mesenchymal stromal cells in the protracted responses to IR and IR-related septicemia is also discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated networkmore » (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.« less

  5. SU-F-J-94: Development of a Plug-in Based Image Analysis Tool for Integration Into Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, D; Anderson, C; Mayo, C

    Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less

  6. Pencil beam proton radiography using a multilayer ionization chamber

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  7. Pencil beam proton radiography using a multilayer ionization chamber.

    PubMed

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-07

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  8. A new method for determining dose rate distribution from radioimmuno-therapy using radiochromic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, R.; Dillehay, L.E.; Shao, Y.

    The purpose of this study is to describe and evaluate a new, simple, inexpensive method for directly measuring the radiation dose and its spatial distribution generated from explanted tissues of animals previously injected with radiolabeled immunoconjugates or other agents. This technique uses the newly developed radiochromic dye medium (Gafchromic[trademark]) which responds reproducibly for therapeutic dose exposures, has high spatial resolution, does not require film processing, and is relatively insensitive to ambient light. The authors have evaluated the dose distribution from LS174T tumors and selected normal tissues in nude mice previously injected with [sup 90]Y labeled anti-carcinoembryonic antigen antibodies. Individual tissuesmore » from sacrificed animals are halved and the flat section of the tissue is placed onto the dosimetry media and then frozen. The dosimetry medium is exposed to beta and Bremsstrahlung radiation originating from the frozen tissues. The relative darkening of the dosimetry medium depends on the dose deposited in the film. The dosimetry medium is scanned with a commercial flatbed scanner and the image intensity is digitally stored and quantitatively analyzed. Isodose curves are generated and compared to the actual tissue outline. The absorbed dose distribution due to [sup 90]Y exposure show only slight gradients in the interior of the tissue, with a markedly decreasing dose near the edges of the tissue. In addition, the isodose curves follow the tissue outline except in regions having radii of curvature smaller than the range of the beta-particle (R90 = 5 mm). These results suggest that the shape of the tumor, and its curvature, are important in determining the minimum dose delivered to the tumor by radiation from [sup 90]Y monoclonal antibodies, and hence in evaluating the tumor response to the radiation. 28 refs., 8 figs.« less

  9. Comparative dosimetry of volumetric modulated arc therapy and limited-angle static intensity-modulated radiation therapy for early-stage larynx cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L., E-mail: dschwartz3@nshs.edu

    2013-04-01

    To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed asmore » low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.« less

  10. Neutron organ dose and the influence of adipose tissue

    NASA Astrophysics Data System (ADS)

    Simpkins, Robert Wayne

    Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.

  11. Proton therapy in the clinic.

    PubMed

    DeLaney, Thomas F

    2011-01-01

    The clinical advantage for proton radiotherapy over photon approaches is the marked reduction in integral dose to the patient, due to the absence of exit dose beyond the proton Bragg peak. The integral dose with protons is approximately 60% lower than that with any external beam photon technique. Pediatric patients, because of their developing normal tissues and anticipated length of remaining life, are likely to have the maximum clinical gain with the use of protons. Proton therapy may also allow treatment of some adult tumors to much more effective doses, because of normal tissue sparing distal to the tumor. Currently, the most commonly available proton treatment technology uses 3D conformal approaches based on (a) distal range modulation, (b) passive scattering of the proton beam in its x- and y-axes, and (c) lateral beam-shaping. It is anticipated that magnetic pencil beam scanning will become the dominant mode of proton delivery in the future, which will lower neutron scatter associated with passively scattered beam lines, reduce the need for expensive beam-shaping devices, and allow intensity-modulated proton radiotherapy. Proton treatment plans are more sensitive to variations in tumor size and normal tissue changes over the course of treatment than photon plans, and it is expected that adaptive radiation therapy will be increasingly important for proton therapy as well. While impressive treatment results have been reported with protons, their cost is higher than for photon IMRT. Hence, protons should ideally be employed for anatomic sites and tumors not well treated with photons. While protons appear cost-effective for pediatric tumors, their cost-effectiveness for treatment of some adult tumors, such as prostate cancer, is uncertain. Comparative studies have been proposed or are in progress to more rigorously assess their value for a variety of sites. The utility of proton therapy will be enhanced by technological developments that reduce its cost. Combinations of 3D protons with IMRT photons may offer improved treatment plans at lower cost than pure proton plans. Hypofractionation with proton therapy appears to be safe and cost-effective for many tumor sites, such as for selected liver, lung and pancreas cancers, and may yield significant reduction in the cost of a therapy course. Together, these offer practical strategies for expanding the clinical availability of proton therapy. Copyright © 2011 S. Karger AG, Basel.

  12. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q; Lei, Y; Zheng, D

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less

  13. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors

    PubMed Central

    Sasaki, Masao S.; Tachibana, Akira; Takeda, Shunichi

    2014-01-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the ‘integrate-and-fire’ algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to 239Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation–environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. PMID:24366315

  14. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    PubMed

    Sasaki, Masao S; Tachibana, Akira; Takeda, Shunichi

    2014-05-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.

  15. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Gu, J.; Bednarz, B.; Caracappa, P. F.; Xu, X. G.

    2009-05-01

    The latest multiple-detector technologies have further increased the popularity of x-ray CT as a diagnostic imaging modality. There is a continuing need to assess the potential radiation risk associated with such rapidly evolving multi-detector CT (MDCT) modalities and scanning protocols. This need can be met by the use of CT source models that are integrated with patient computational phantoms for organ dose calculations. Based on this purpose, this work developed and validated an MDCT scanner using the Monte Carlo method, and meanwhile the pregnant patient phantoms were integrated into the MDCT scanner model for assessment of the dose to the fetus as well as doses to the organs or tissues of the pregnant patient phantom. A Monte Carlo code, MCNPX, was used to simulate the x-ray source including the energy spectrum, filter and scan trajectory. Detailed CT scanner components were specified using an iterative trial-and-error procedure for a GE LightSpeed CT scanner. The scanner model was validated by comparing simulated results against measured CTDI values and dose profiles reported in the literature. The source movement along the helical trajectory was simulated using the pitch of 0.9375 and 1.375, respectively. The validated scanner model was then integrated with phantoms of a pregnant patient in three different gestational periods to calculate organ doses. It was found that the dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. The paper also discusses how these fetal dose values can be used to evaluate imaging procedures and to assess risk using recommendations of the report from AAPM Task Group 36. This work demonstrates the ability of modeling and validating an MDCT scanner by the Monte Carlo method, as well as assessing fetal and organ doses by combining the MDCT scanner model and the pregnant patient phantom.

  16. Military blast exposure, ageing and white matter integrity

    PubMed Central

    Trotter, Benjamin B.; Robinson, Meghan E.; Milberg, William P.; McGlinchey, Regina E.

    2015-01-01

    Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure—one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan—is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a ‘dose-response’ relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast-exposed group, suggesting a specific influence of time since exposure on tissue structure, and this effect was also independent of post-traumatic stress symptoms. Overall, these data suggest that blast exposure may negatively affect brain-ageing trajectories at the microstructural tissue level. Additional work examining longitudinal changes in brain tissue integrity in individuals exposed to military blast forces will be an important future direction to the initial findings presented here. PMID:26033970

  17. SU-E-T-481: Dosimetric Effects of Tissue Heterogeneity in Proton Therapy: Monte Carlo Simulation and Experimental Study Using Animal Tissue Phantoms.

    PubMed

    Liu, Y; Zheng, Y

    2012-06-01

    Accurate determination of proton dosimetric effect for tissue heterogeneity is critical in proton therapy. Proton beams have finite range and consequently tissue heterogeneity plays a more critical role in proton therapy. The purpose of this study is to investigate the tissue heterogeneity effect in proton dosimetry based on anatomical-based Monte Carlo simulation using animal tissues. Animal tissues including a pig head and beef bulk were used in this study. Both pig head and beef were scanned using a GE CT scanner with 1.25 mm slice thickness. A treatment plan was created, using the CMS XiO treatment planning system (TPS) with a single proton spread-out-Bragg-peak beam (SOBP). Radiochromic films were placed at the distal falloff region. Image guidance was used to align the phantom before proton beams were delivered according to the treatment plan. The same two CT sets were converted to Monte Carlo simulation model. The Monte Carlo simulated dose calculations with/without tissue omposition were compared to TPS calculations and measurements. Based on the preliminary comparison, at the center of SOBP plane, the Monte Carlo simulation dose without tissue composition agreed generally well with TPS calculation. In the distal falloff region, the dose difference was large, and about 2 mm isodose line shift was observed with the consideration of tissue composition. The detailed comparison of dose distributions between Monte Carlo simulation, TPS calculations and measurements is underway. Accurate proton dose calculations are challenging in proton treatment planning for heterogeneous tissues. Tissue heterogeneity and tissue composition may lead to isodose line shifts up to a few millimeters in the distal falloff region. By simulating detailed particle transport and energy deposition, Monte Carlo simulations provide a verification method in proton dose calculation where inhomogeneous tissues are present. © 2012 American Association of Physicists in Medicine.

  18. A comparison of intensity modulated x-ray therapy to intensity modulated proton therapy for the delivery of non-uniform dose distributions

    NASA Astrophysics Data System (ADS)

    Flynn, Ryan

    2007-12-01

    The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.

  19. Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts.

    PubMed

    Kondo, Hisataka; Searby, Nancy D; Mojarrab, Rose; Phillips, Jonathan; Alwood, Joshua; Yumoto, Kenji; Almeida, Eduardo A C; Limoli, Charles L; Globus, Ruth K

    2009-03-01

    Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls. Irradiation (2 Gy) caused a 20% decline in tibial cancellous bone volume fraction (BV/TV) within 3 days and a 43% decline within 10 days, while 1 Gy caused a 28% reduction 10 days later. The BV/TV decrement was due to increased spacing and decreased thickness of trabeculae. Radiation also increased ( approximately 150%) cancellous surfaces lined with tartrate-resistant, acid phosphatase-positive osteoclasts, an index of increased bone resorption. Radiation decreased lumbar vertebral BV/TV 1 month after irradiation, showing the persistence of cancellous bone loss, although mechanical properties in compression were unaffected. In sum, a single dose of gamma radiation rapidly increased osteoclast surface in cancellous tissue and compromised cancellous microarchitecture in the remodeling appendicular and axial skeleton of postpubertal mice.

  20. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source.

    PubMed

    White, Shane A; Landry, Guillaume; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank; Reniers, Brigitte

    2014-06-01

    The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak skin dose is also reduced by 10%-15% due to the absence of backscatter not accounted for in TG-43. The balloon applicator also contributed to the reduced dose. Other ROIs showed a difference depending on the method of dose reporting. TG-186-based calculations produce results that are different from TG-43 for the Axxent source. The differences depend strongly on the method of dose reporting. This study highlights the importance of backscatter to peak skin dose. Tissue heterogeneities, applicator, and patient geometries demonstrate the need for a more robust dose calculation method for low energy brachytherapy sources.

  1. Differential effects of selective estrogen receptor modulators on the vagina and its supportive tissues.

    PubMed

    Liang, Rui; Knight, Katrina; Nolfi, Alexis; Abramowitch, Steven; Moalli, Pamela A

    2016-02-01

    Some selective estrogen receptor modulators (SERMs) have been associated with increased incidence of urinary incontinence and pelvic organ prolapse. This study explored the effects of five SERMs on the function and matrix components of the vagina and its supportive tissues. Fifty-six rats were administered SERMs by oral gavage for 8 weeks (n = 8 for each SERM): raloxifene, tamoxifen, idoxifene, bazedoxifene at three different doses, and bazedoxifene with conjugated estrogens. Thirty-two rats were used as controls (n = 8 per group): sham operation (no ovariectomy), ovariectomy only, ovariectomy with vehicle gavage, and 17β-estradiol (subcutaneous). Vaginal supportive tissue complex was tested by uniaxial tensile testing. Total collagen content (hydroxyproline) and glycosaminoglycan content (Blyscan) were measured. Ovariectomy significantly decreased the mechanical integrity of the vagina and its supportive tissue complex, with a decrease in ultimate load and stiffness (all P < 0.05). Although 17β-estradiol supplementation maintained these properties similarly to sham operation, none of the SERMs was as effective--particularly idoxifene, bazedoxifene at higher doses, and bazedoxifene with conjugated estrogens (all P < 0.05). In addition, idoxifene and bazedoxifene induced increased total collagen content compared with sham or 17β-estradiol treatment (all P < 0.05). Glycosaminoglycan content did not change significantly. Unlike 17β-estradiol, SERM supplementation does not fully prevent ovariectomy-induced deterioration in the biomechanical properties of the vagina and its supportive tissues, with the effects of idoxifene and bazedoxifene being the least. The paradoxically increased collagen content in these two groups may be related to increased formation of nonfunctional collagen.

  2. Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation?

    PubMed

    Nguyen, Huynh; Morgan, David A F; Forwood, Mark R

    2007-01-01

    For several decades, a dose of 25 kGy of gamma irradiation has been recommended for terminal sterilization of medical products, including bone allografts. Practically, the application of a given gamma dose varies from tissue bank to tissue bank. While many banks use 25 kGy, some have adopted a higher dose, while some choose lower doses, and others do not use irradiation for terminal sterilization. A revolution in quality control in the tissue banking industry has occurred in line with development of quality assurance standards. These have resulted in significant reductions in the risk of contamination by microorganisms of final graft products. In light of these developments, there is sufficient rationale to re-establish a new standard dose, sufficient enough to sterilize allograft bone, while minimizing the adverse effects of gamma radiation on tissue properties. Using valid modifications, several authors have applied ISO standards to establish a radiation dose for bone allografts that is specific to systems employed in bone banking. These standards, and their verification, suggest that the actual dose could be significantly reduced from 25 kGy, while maintaining a valid sterility assurance level (SAL) of 10(-6). The current paper reviews the methods that have been used to develop radiation doses for terminal sterilization of medical products, and the current trend for selection of a specific dose for tissue banks.

  3. The effect of dose escalation on gastric toxicity when treating lower oesophageal tumours: a radiobiological investigation.

    PubMed

    Carrington, Rhys; Staffurth, John; Warren, Samantha; Partridge, Mike; Hurt, Chris; Spezi, Emiliano; Gwynne, Sarah; Hawkins, Maria A; Crosby, Thomas

    2015-11-19

    Using radiobiological modelling to estimate normal tissue toxicity, this study investigates the effects of dose escalation for concurrent chemoradiation therapy (CRT) in lower third oesophageal tumours on the stomach. 10 patients with lower third oesophageal cancer were selected from the SCOPE 1 database (ISCRT47718479) with a mean planning target volume (PTV) of 348 cm(3). The original 3D conformal plans (50 Gy3D) were compared to newly created RapidArc plans of 50 GyRA and 60 GyRA, the latter using a simultaneous integrated boost (SIB) technique using a boost volume, PTV2. Dose-volume metrics and estimates of normal tissue complication probability (NTCP) were compared. There was a significant increase in NTCP of the stomach wall when moving from the 50 GyRA to the 60 GyRA plans (11-17 %, Wilcoxon signed rank test, p = 0.01). There was a strong correlation between the NTCP values of the stomach wall and the volume of the stomach wall/PTV 1 and stomach wall/PTV2 overlap structures (R = 0.80 and R = 0.82 respectively) for the 60 GyRA plans. Radiobiological modelling suggests that increasing the prescribed dose to 60 Gy may be associated with a significantly increased risk of toxicity to the stomach. It is recommended that stomach toxicity be closely monitored when treating patients with lower third oesophageal tumours with 60 Gy.

  4. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, K; Araki, F; Ohno, T

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less

  5. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadhim, Munira A

    2012-08-22

    The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program. To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e. less than 0.1 Gy), including the lowest possible dose, that of a single electronmore » track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these "non-targeted responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate non-targeted effects of ionizing radiation with a focus on the induction of genomic instability (GI) in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/CaH and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition in these models on genomic instability. We will specifically focus on the effects of low doses of low LET radiation, down to the dose of 10mGy (0.01Gy) X-rays. Using conventional X-ray and we will be able to assess the role of genetic variation under various conditions at a range of doses down to the very low dose of 0.01Gy. Irradiations will be carried out using facilities in routine operation for such studies. Mechanistic studies of instability in different cell lineages will include the role of cytokines which have been shown to be in the initiation of instability. These studies also aim to uncover the possible mechanism of the initiation, perpetuation and delayed pathways of the instability response using relevant biological endpoints i.e. chromosomal instability, apoptosis induction, cytokine and gene array analysis. Integral to these studies will be an assessment of the role of genetic susceptibility in these responses, using CBA/CaH and C57BL/6J mice. The overall results suggest that low dose low LET X-irradiation induced delayed GI in both CBA/CaH and C57BL/6J haemopoeitic tissue. Using several biological approaches, some key strain and dose-specific differences have been identified in radiation-induced signalling in the initiation and perpetuation of the instability process. Furthermore, the induction of non-targeted radiation effects and genetic dependency may be linked to the use of alternative signalling pathways and mechanisms which have potential implications on evaluation of non-targeted effects in radiation risk assessment.« less

  6. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglan, R.J.; Marks, J.E.

    1981-04-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less

  7. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    PubMed

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  8. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes.

    PubMed

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.

  9. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes

    PubMed Central

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications. PMID:28078052

  10. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peakmore » tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of signal-to-noise ratio mainly to the peripheral region of the phantom. Conclusions: Despite typical peak doses to skin, eye lens, brain, and RBM from the standard low-dose brain perfusion 256-slice CT protocol are well below the corresponding thresholds for the induction of erythema, cataract, cerebrovascular disease, and depression of hematopoiesis, respectively, every effort should be made toward optimization of the procedure and minimization of dose received by these tissues. The current study provides evidence that the use of the narrower bowtie filter available may considerably reduce peak absorbed dose to all above radiosensitive tissues with minimal deterioration in image quality. Considerable reduction in peak eye-lens dose may also be achieved by positioning patient head center a few centimeters above isocenter during the exposure.« less

  11. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo.

    PubMed

    Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J

    2017-05-01

    Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.

  12. A mathematical model for calculation of 90Sr absorbed dose in dental tissues: elaboration and comparison to EPR measurements.

    PubMed

    Shishkina, E A; Lyubashevskii, N M; Tolstykh, E I; Ignatiev, E A; Betenekova, T A; Nikiforov, S V

    2001-09-01

    A mathematical model for calculation of the 90Sr absorbed doses in dental tissues is presented. The results of the Monte-Carlo calculations are compared to the data obtained by EPR measurements of dental tissues. Radiometric measurements of the 90Sr concentrations. TLD and EPR dosimetry investigations were performed in animal (dog) study. The importance of the irregular 90Sr distribution in the dentine for absorbed dose formation has been shown. The dominant dose formation factors (main source-tissues) were identified for the crown dentine and enamel. The model has shown agreement with experimental data which allows to determine further directions of the human tooth model development.

  13. Response of a tissue equivalent proportional counter to neutrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Robbins, D. E.; Gibbons, F.; Braby, L. A.

    2002-01-01

    The absorbed dose as a function of lineal energy was measured at the CERN-EC Reference-field Facility (CERF) using a 512-channel tissue equivalent proportional counter (TEPC), and neutron dose equivalent response evaluated. Although there are some differences, the measured dose equivalent is in agreement with that measured by the 16-channel HANDI tissue equivalent counter. Comparison of TEPC measurements with those made by a silicon solid-state detector for low linear energy transfer particles produced by the same beam, is presented. The measurements show that about 4% of dose equivalent is delivered by particles heavier than protons generated in the conducting tissue equivalent plastic. c2002 Elsevier Science Ltd. All rights reserved.

  14. Poster - Thurs Eve-43: Verification of dose calculation with tissue inhomogeneity using MapCHECK.

    PubMed

    Korol, R; Chen, J; Mosalaei, H; Karnas, S

    2008-07-01

    MapCHECK (Sun Nuclear, Melbourne, FL) with 445 diode detectors has been used widely for routine IMRT quality assurance (QA) 1 . However, routine IMRT QA has not included the verification of inhomogeneity effects. The objective of this study is to use MapCHECK and a phantom to verify dose calculation and IMRT delivery with tissue inhomogeneity. A phantom with tissue inhomogeneities was placed on top of MapCHECK to measure the planar dose for an anterior beam with photon energy 6 MV or 18 MV. The phantom was composed of a 3.5 cm thick block of lung equivalent material and solid water arranged side by side with a 0.5 cm slab of solid water on the top of the phantom. The phantom setup including MapCHECK was CT scanned and imported into Pinnacle 8.0d for dose calculation. Absolute dose distributions were compared with gamma criteria 3% for dose difference and 3 mm for distance-to-agreement. The results are in good agreement between the measured and calculated planar dose with 88% pass rate based on the gamma analysis. The major dose difference was at the lung-water interface. Further investigation will be performed on a custom designed inhomogeneity phantom with inserts of varying densities and effective depth to create various dose gradients at the interface for dose calculation and delivery verification. In conclusion, a phantom with tissue inhomogeneities can be used with MapCHECK for verification of dose calculation and delivery with tissue inhomogeneity. © 2008 American Association of Physicists in Medicine.

  15. Low-Dose Radioactive Iodine Destroys Thyroid Tissue Left after Surgery

    Cancer.gov

    A low dose of radioactive iodine given after surgery for thyroid cancer destroyed (ablated) residual thyroid tissue as effectively as a higher dose, with fewer side effects and less exposure to radiation, according to two randomized controlled trials.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jans, H-S; Dept. of Oncology, University of Alberta, Edmonton, AB; Stypinski, D

    Purpose: To compare the radiation dose to normal organs from the radio-iodinated, hypoxia-binding radiosensitizer iodoazomycin arabinoside (IAZA) for three different isotopes of iodine. Methods: Dosimety studies with normal volunteers had been carried out with [{sup 123}I]IAZA, a drug binding selectively to hypoxic sites. Two other isotopes of iodine, {sup 131}I and {sup 124}I, offer the opportunity to use IAZA as an agent for radioisotope therapy and as an imaging tracer for Positron Emission Tomography. Radioisotope dosimetry for {sup 131}I and {sup 124}I was performed by first deriving from the [{sup 123}I]IAZA studies biological uptake and excretion data. The cumulated activitiesmore » for {sup 131}I or {sup 124}I where obtained by including their half-lives when integrating the biological data and then extrapolating to infinite time points considering a) physical decay only or b) physical and biological excretion. Doses were calculated using the Medical Internal Radiation Dose (MIRD) schema (OLINDA1.1 code, Vanderbilt 2007). Results: Compared to {sup 123}I, organ doses were elevated on average by a factor 6 and 9 for {sup 131}I and {sup 124}I, respectively, if both physical decay and biological excretion were modeled. If only physical decay is considered, doses increase by a factor 18 ({sup 131}I) and 19 ({sup 124}I). Highest organ doses were observed in intestinal walls, urinary bladder and thyroid. Effective doses increased by a factor 11 and 14 for {sup 131}I and {sup 124}I, respectively, if biological and physical decay are present. Purely physical decay yields a 23-fold increase over {sup 123}I for both, {sup 131}I and {sup 124}I. Conclusion: Owing to the significant dose increase, caused by their longer half life and the approximately 10 times larger electronic dose deposited in tissue per nuclear decay, normal tissue doses of IAZA labeled with {sup 131}I and {sup 124}I need to be carefully considered when designing imaging and therapy protocols for clinical trials. Effective blocking of iodine uptake in the thyroid is essential. Alberta Innovates - Health Solutions (AIHS) and Canadian Institutes of Health Research (CIHR)« less

  17. Formation of proteoglycan and collagen-rich scaffold-free stiff cartilaginous tissue using two-step culture methods with combinations of growth factors.

    PubMed

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Matsuzaka, Satoshi; Yamagishi, Chie; Kobayashi, Kohei

    2010-05-01

    Tissue-engineered cartilage may be expected to serve as an alternative to autologous chondrocyte transplantation treatment. Several methods for producing cartilaginous tissue have been reported. In this study, we describe the production of scaffold-free stiff cartilaginous tissue of pig and human, using allogeneic serum and growth factors. The tissue was formed in a mold using chondrocytes recovered from alginate bead culture and maintained in a medium with transforming growth factor-beta and several other additives. In the case of porcine tissue, the tear strength of the tissue and the contents of proteoglycan (PG) and collagen per unit of DNA increased dose-dependently with transforming growth factor-beta. The length of culture was significantly and positively correlated with thickness, tear strength, and PG and collagen contents. Tear strength showed positive high correlations with both PG and collagen contents. A positive correlation was also seen between PG content and collagen content. Similar results were obtained with human cartilaginous tissue formed from chondrocytes expanded in monolayer culture. Further, an in vivo pilot study using pig articular cartilage defect model demonstrated that the cartilaginous tissue was well integrated with surrounding tissue at 13 weeks after the implantation. In conclusion, we successfully produced implantable scaffold-free stiff cartilaginous tissue, which characterized high PG and collagen contents.

  18. The pathology of americium 241.

    PubMed

    Nilsson, A; Broomé-Karlsson, A

    1976-02-01

    Male CBA-mice were injected intraperitoneally with different doses of 241Am-citrate (16, 8, 0.4, 0.2, 0.04 muCi/kg). The two highest doses were highly destructive of the haematopoietic tissues, testes and bone tissue. The highest frequency of induced tumours of the skeleton and haematopoietic tissue was found in the 8 muCi group. In the liver, adrenal glands, kidney and heart degenerative lesions were found mainly in the higher dose groups. In the lower dose groups degenerative lesions seemed to appear earlier and at a higher frequency than in the control group.

  19. Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity

    PubMed Central

    Corre, Isabelle; Guillonneau, Maëva; Paris, François

    2013-01-01

    Tumor areas can now be very precisely delimited thanks to technical progress in imaging and ballistics. This has also led to the development of novel radiotherapy protocols, delivering higher doses of ionizing radiation directly to cancer cells. Despite this, radiation toxicity in healthy tissue remains a major issue, particularly with dose-escalation in these new protocols. Acute and late tissue damage following irradiation have both been linked to the endothelium irrigating normal tissues. The molecular mechanisms involved in the endothelial response to high doses of radiation are associated with signaling from the plasma membrane, mainly via the acid sphingomyelinase/ceramide pathway. This review describes this signaling pathway and discusses the relevance of targeting endothelial signaling to protect healthy tissues from the deleterious effects of high doses of radiation. PMID:24252908

  20. In situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks

    PubMed Central

    Rothkamm, Kai; Crosbie, Jeffrey C.; Daley, Frances; Bourne, Sarah; Barber, Paul R.; Vojnovic, Borivoj; Cann, Leonie; Rogers, Peter A. W.

    2012-01-01

    Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to ‘spared’ tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30–40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies. PMID:22238667

  1. Dosimetry of {sup 210}Po in humans, caribou, and wolves in northern Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.A.

    1994-06-01

    Effective doses from {sup 210}Po intake with caribou meat were determined for human residents in Baker Lake and Snowdrift in the Northwest Territories of Canada and compared to doses calculated from reported {sup 210}Po tissue activities in Alaskan and British residents. Effective doses were calculated to separate body tissues, using ICRP 60 human weighting factors and the ICRP 30 metabolic model for {sup 210}Po. Baker Lake and Alaskan effective doses were similar at 0.4 mSv y{sup {minus}1} and slightly higher than Snowdrift doses (0.3 mSv y{sup {minus}1}). Alaskan tissue activities indicated higher effective doses to liver, bone surfaces and redmore » marrow and lower doses to spleen than the {sup 210}Po metabolic model (ICRP 1979a) predicts. Effective doses to Baker Lake and Snowdrift caribou and wolves, calculated from tissue activities, ranged from 7-20 mSv y{sup {minus}1} using human weighting factors for comparison to human doses only. Effective doses to northern Canadians and wildlife were, respectively, 7-11% and 1.8-5 times an estimated human background of 4 mSv y{sup {minus}} from all sources. 51 refs., 2 figs., 9 tabs.« less

  2. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.

    2006-11-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be applicable provided that biological transport processes such as capillary blood flow containing mobile 15O and 11C in the activated tissue volume can be accounted for.

  3. Ultraviolet radiation exposure triggers neurokinin-1 receptor upregulation in ocular tissues in vivo.

    PubMed

    Gross, Janine; Wegener, Alfred R; Kronschlaeger, Martin; Holz, Frank G; Schönfeld, Carl-Ludwig; Meyer, Linda M

    2018-04-26

    The purpose of this study was to investigate the neurokinin receptor-1 (NKR-1) protein expression in ocular tissues before and after supra-cataract threshold ultraviolet radiation (UVR-B peak at 312 nm) exposure in vivo in a mouse model. Six-week-old C57Bl/6 mice were unilaterally exposed to a single (2.9 kJ/m 2 ) and an above 3-fold UVR-B cataract threshold dose (9.4 kJ/m 2 ) of UVR. UVR-exposure (λpeak = 312 nm) was performed in mydriasis using a Bio-Spectra exposure system. After latency periods of 3 and 7 days, eyes were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned and stained with fluorescence coupled antibody for NKR-1 and DAPI for cell nuclei staining. Control animals received only anesthesia but no UVR-exposure. Cataract development was documented with a Leica dark-field microscope and quantified as integrated optical density (IOD). NKR-1 is ubiquitously present in ocular tissues. An above 3-fold cataract threshold dose of UV-radiation induced NKR-1 upregulation after days 3 and 7 in the epithelium and endothelium of the cornea, the endothelial cells of the iris vessels, the pigmented epithelium/stroma of the ciliary body, the lens epithelium, pronounced in the nuclear bow region and the inner plexiform layer of the retina. A significant upregulation of NKR-1 could not be provoked with a single cataract threshold dose (2.9 kJ/m 2 UVR-B) ultraviolet irradiation. All exposed eyes developed anterior subcapsular cataracts. Neurokinin-1 receptor is present ubiquitously in ocular tissues including the lens epithelium and the nuclear bow region of the lens. UV-radiation exposure to an above 3-fold UVR-B cataract threshold dose triggers NKR-1 upregulation in the eye in vivo. The involvement of inflammation in ultraviolet radiation induced cataract and the role of neuroinflammatory peptides such as substance P and its receptor, NKR-1, might have been underestimated to date. Copyright © 2018. Published by Elsevier Ltd.

  4. SU-E-T-612: Photonuclear Activation of Prosthetic Hips in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keehan, S; Taylor, M; Franich, R

    2015-06-15

    Purpose: To measure the neutron induced activation of a prosthetic hip when exposed to an 18 MV radiotherapy linac beam to assess the potential dose to patients. Methods: A prosthetic hip (Thackray, UK) was placed in a water phantom and irradiated (both in-field and out-of-field) with an 18 MV linac beam. Gamma spectroscopy was used to identify the radioisotopes produced. Following the in-field irradiation where the induced activity is higher, high sensitivity lithium fluoride Thermoluminescence Dosimeters (TLD-100H) (Harshaw, USA) were placed on the surface to measure the dose which would be deposited to nearby tissue resulting from the induced radioactivity.more » Results: The radioisotopes produced in the hip prosthesis have been identified as {sup 5{sup 2}}V, {sup 5{sup 3}}Fe, and {sup 56}Mn which have half-lives of 3.74, 8.51 and minutes respectively. The 378 and 511 keV characteristic peaks of {sup 5{sup 3}}Fe do not appear in the spectra collected from hips irradiated in the out-of-field region. This isotope is produced by photonuclear interactions within the hip itself. {sup 52}V and {sup 56}Mn appear in spectra collected from hips irradiated either within the photon beam or in the nearby out-of-field region, implying that they are produced by incident neutron radiation produced in components of the linear accelerator.The integrated dose which would be deposited in the tissue immediately surrounding the hip after four hours (1.5 half-lives of the longest lived product) was measured as approximately 100 µGy, following a 10,000 MU irradiation of the prosthesis. A highly accurate measurement of the dose is challenging because of the irregular shape of the prosthesis. Conclusion: The cumulative dose measured at the surface of the hip is 0.0001% of the in-field dose, and is therefore negligible compared with the doses the patient receives as a consequence of their treatment.« less

  5. SU-F-BRB-14: Dosimetric Effects at Air- Tissue Boundary Due to Magnetic Field in MR-Guided IMRT/VMAT Delivery for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, P; Chen, X; Schultz, C

    Purpose: The advent of the MR-Linac enables real-time and high soft tissue contrast image guidance in radiation therapy (RT) delivery. Potential hot-spots at air-tissue interfaces, such as the sphenoid sinus, in RT for head and neck cancer (HNC), could potentially occur due to the electron return effect (ERE). In this study, we investigate the dosimetric effects of ERE on the dose distribution at air-tissues interfaces in HNC IMRT treatment planning. Methods: IMRT plans were generated based on planning CT’s acquired for HNC cases (nasopharynx, base of skull and paranasal sinus) using a research planning system (Monaco, v5.09.06, Elekta) employing Montemore » Carlo dose calculations with or without the presence of a transverse magnetic field (TMF). The dose in the air cavity was calculated in a 1 & 2 mm thick tissue layer, while the dose to the skin was calculated in a 1, 3 and 5 mm thick tissue layer. The maximum dose received in 1 cc volume, D1cc, were collected at different TMF strengths. Plan qualities generated with or without TMF or with increasing TMF were compared in terms of commonly-used dose-volume parameters (DVPs). Results: Variations in DVPs between plans with and without a TMF present were found to be within 5% of the planning CT. The presence of a TMF results in <5% changes in sinus air tissue interface. The largest skin dose differences with and without TMF were found within 1 mm of the skin surface Conclusion: The presence of a TMF results in practically insignificant changes in HNC IMRT plan quality, except for skin dose. Planning optimization with skin DV constraints could reduce the skin doses. This research was partially supported by Elekta Inc. (Crowley, U.K.)« less

  6. SU-E-T-470: Importance of HU-Mass Density Calibration Technique in Proton Pencil Beam Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, S; Miller, A

    2015-06-15

    Purpose: Stoichiometric calibration of Hounsfield Units (HUs) for conversion to proton relative stopping powers (RStPs) is vital for accurate dose calculation in proton therapy. However proton dose distributions are not only dependent on RStP, but also on relative scattering power (RScP) of patient tissues. RScP is approximated from material density but a stoichiometric calibration of HU-density tables is commonly neglected. The purpose of this work was to quantify the difference in calculated dose of a commercial TPS when using HU-density tables based on tissue substitute materials and stoichiometric calibrated ICRU tissues. Methods: Two HU-density calibration tables were generated based onmore » scans of the CIRS electron density phantom. The first table was based directly on measured HU and manufacturer quoted density of tissue substitute materials. The second was based on the same CT scan of the CIRS phantom followed by a stoichiometric calibration of ICRU44 tissue materials. The research version of Pinnacle{sup 3} proton therapy was used to compute dose in a patient CT data set utilizing both HU-density tables. Results: The two HU-density tables showed significant differences for bone tissues; the difference increasing with increasing HU. Differences in density calibration table translated to a difference in calculated RScP of −2.5% for ICRU skeletal muscle and 9.2% for ICRU femur. Dose-volume histogram analysis of a parallel opposed proton therapy prostate plan showed that the difference in calculated dose was negligible when using the two different HU-density calibration tables. Conclusion: The impact of HU-density calibration technique on proton therapy dose calculation was assessed. While differences were found in the calculated RScP of bony tissues, the difference in dose distribution for realistic treatment scenarios was found to be insignificant.« less

  7. Validation of Monte Carlo simulation of mammography with TLD measurement and depth dose calculation with a detailed breast model

    NASA Astrophysics Data System (ADS)

    Wang, Wenjing; Qiu, Rui; Ren, Li; Liu, Huan; Wu, Zhen; Li, Chunyan; Li, Junli

    2017-09-01

    Mean glandular dose (MGD) is not only determined by the compressed breast thickness (CBT) and the glandular content, but also by the distribution of glandular tissues in breast. Depth dose inside the breast in mammography has been widely concerned as glandular dose decreases rapidly with increasing depth. In this study, an experiment using thermo luminescent dosimeters (TLDs) was carried out to validate Monte Carlo simulations of mammography. Percent depth doses (PDDs) at different depth values were measured inside simple breast phantoms of different thicknesses. The experimental values were well consistent with the values calculated by Geant4. Then a detailed breast model with a CBT of 4 cm and a glandular content of 50%, which has been constructed in previous work, was used to study the effects of the distribution of glandular tissues in breast with Geant4. The breast model was reversed in direction of compression to get a reverse model with a different distribution of glandular tissues. Depth dose distributions and glandular tissue dose conversion coefficients were calculated. It revealed that the conversion coefficients were about 10% larger when the breast model was reversed, for glandular tissues in the reverse model are concentrated in the upper part of the model.

  8. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    PubMed

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  9. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP

    PubMed Central

    Krstic, D.; Nikezic, D.

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837

  10. A new tissue segmentation method to calculate 3D dose in small animal radiation therapy.

    PubMed

    Noblet, C; Delpon, G; Supiot, S; Potiron, V; Paris, F; Chiavassa, S

    2018-02-26

    In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Z eff ) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Z eff ) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Z eff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZ eff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZ eff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZ eff variation over the range of materials, from ρZ eff  = 2 g.cm - 3 (lung) to 27 g.cm - 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZ eff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose area with 4% and 0.3 mm criteria in dose and distance. Our new tissue segmentation method was developed for 40kVp CBCT images. Both density and elemental composition are assigned to each voxel by using a relationship between HU and the product ρZ eff . The method, validated by comparing measurements and calculations, enables more accurate small animal dose distribution calculated on low energy CBCT images.

  11. Nuclear emulsion measurements of the dose contribution from tissue disintegration stars on the apollo-soyuz mission. Technical report No. 2, Jul 76--Mar 77

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, H.J.

    1977-03-15

    Analysis of the prong number distribution of a population of disintegration stars in nuclear emulsion allows a quantitative estimate of the fraction of stars originating in the gelatin matrix and thereby an assessment of the tissue-equivalent dose from stars. 996 stars were prong-counted in two 100 micron llford K.2 emulsions from the dosimeter of the Docking Pilot on Apollo-Soyuz and furnished a tissue star dose of 7.8 millirad or 45 millirem. Since star-produced neutrons do not leave visible prongs in emulsion, their dose contribution is not included. Nuclear theory as well as earlier measurements of galactic radiation in the Earth'smore » atmosphere indicate that the dose equivalent from neutrons is about equal to the one from all ionizing secondaries from stars. This would set the total tissue star dose for Apollo-Soyuz at approximately 90 millirem. (Author)« less

  12. Tissue organ distribution and behavioral effects of platinum following acute and repeated exposure of the mouse to platinum sulfate.

    PubMed Central

    Lown, B A; Morganti, J B; Stineman, C H; D'Agostino, R B; Massaro, E J

    1980-01-01

    Platinum sulfate was administered intragastrically (IG) to adult male Swiss mice in a single dose at the 7 day LD5 or LD25 level. Control groups received 0.25M H2SO4 (pH 0.85) or 0.14M NaCl. Open field behavior (ambulations, rearings) was measured, and tissue/organ Pt levels determined at 4 hr, or 1, 3, or 7 days post administration. At all times, the LD25 depressed ambulations significantly and rearings marginally. It did not effect exploratory ("hole-in-board") behavior. The LD25 resulted in disproportionately high tissue Pt levels relateive to the LD5. There were significant inverse correlations between behavior and tissue Pt levels for most tissues, but not for brain. In related experiments, adult male mice were subjected to repeated IG administration of Pt(SO4)2 at the LD1 level (one dose every 72 hr for up to 10 doses). Three days after administration of the final dose of each series, open-field and exploratory performance were measured and tissue/organ Pt levels determined. Tissue/organ Pt levels were variable but generally increased with dose number. No Pt was detected in the brain. Activity and explorations were marginally depressed. Only rearings correlated significantly with tissue Pt levels. PMID:7389684

  13. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  14. Photon beam dose distributions for patients with implanted temporary tissue expanders

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2015-01-01

    This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.

  15. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model

    NASA Astrophysics Data System (ADS)

    Swartling, Johannes; Höglund, Odd V.; Hansson, Kerstin; Södersten, Fredrik; Axelsson, Johan; Lagerstedt, Anne-Sofie

    2016-02-01

    Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.

  16. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    PubMed

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  17. Assessment of normal tissue complications following prostate cancer irradiation: Comparison of radiation treatment modalities using NTCP models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.

    2010-09-15

    Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less

  18. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in themore » low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.« less

  19. Maximizing Tumor Immunity With Fractionated Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu; Ratikan, Josephine A.; Iwamoto, Keisuke S.

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma}more » enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.« less

  20. Dose-dependent effect of mitomycin C on human vocal fold fibroblasts

    PubMed Central

    Li, Nicole Y. K.; Chen, Fei; Dikkers, Frederik G.; Thibeault, Susan L.

    2014-01-01

    Background The purpose of this study was to evaluate in vitro cytotoxicity and antifibrotic effects of mitomycin C on normal and scarred human vocal fold fibroblasts. Methods Fibroblasts were subjected to mitomycin C treatment at 0.2, 0.5, or 1 mg/mL, or serum control. Cytotoxicity, immunocytochemistry, and Western blot for collagen I/III were performed at days 0, 1, 3, and 5. Results Significant decreases in live cells were measured for mitomycin C-treated cells on days 3 and 5 for all doses. Extracellular staining of collagen I/III was observed in mitomycin C-treated cells across all doses and times. Extracellular staining suggests apoptosis with necrosis, compromising the integrity of cell membranes and release of cytosolic proteins into the extracellular environment. Western blot indicates inhibition of collagen at all doses except 0.2 mg/mL at day 1. Conclusion A total of 0.2 mg/mL mitomycin C may provide initial and transient stimulation of collagen for necessary repair to damaged tissue without the long-term risk of fibrosis. PMID:23765508

  1. Dose-dependent effect of mitomycin C on human vocal fold fibroblasts.

    PubMed

    Li, Nicole Y K; Chen, Fei; Dikkers, Frederik G; Thibeault, Susan L

    2014-03-01

    The purpose of this study was to evaluate in vitro cytotoxicity and antifibrotic effects of mitomycin C on normal and scarred human vocal fold fibroblasts. Fibroblasts were subjected to mitomycin C treatment at 0.2, 0.5, or 1 mg/mL, or serum control. Cytotoxicity, immunocytochemistry, and Western blot for collagen I/III were performed at days 0, 1, 3, and 5. Significant decreases in live cells were measured for mitomycin C-treated cells on days 3 and 5 for all doses. Extracellular staining of collagen I/III was observed in mitomycin C-treated cells across all doses and times. Extracellular staining suggests apoptosis with necrosis, compromising the integrity of cell membranes and release of cytosolic proteins into the extracellular environment. Western blot indicates inhibition of collagen at all doses except 0.2 mg/mL at day 1. A total of 0.2 mg/mL mitomycin C may provide initial and transient stimulation of collagen for necessary repair to damaged tissue without the long-term risk of fibrosis. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  2. Human biodistribution and radiation dosimetry of 82Rb.

    PubMed

    Senthamizhchelvan, Srinivasan; Bravo, Paco E; Esaias, Caroline; Lodge, Martin A; Merrill, Jennifer; Hobbs, Robert F; Sgouros, George; Bengel, Frank M

    2010-10-01

    Prior estimates of radiation-absorbed doses from (82)Rb, a frequently used PET perfusion tracer, yielded discrepant results. We reevaluated (82)Rb dosimetry using human in vivo biokinetic measurements. Ten healthy volunteers underwent dynamic PET/CT (6 contiguous table positions, each with separate (82)Rb infusion). Source organ volumes of interest were delineated on the CT images and transferred to the PET images to obtain time-integrated activity coefficients. Radiation doses were estimated using OLINDA/EXM 1.0. The highest mean absorbed organ doses (μGy/MBq) were observed for the kidneys (5.81), heart wall (3.86), and lungs (2.96). Mean effective doses were 1.11 ± 0.22 and 1.26 ± 0.20 μSv/MBq using the tissue-weighting factors of the International Commission on Radiological Protection (ICRP), publications 60 and 103, respectively. Our current (82)Rb dosimetry suggests reasonably low radiation exposure. On the basis of this study, a clinical (82)Rb injection of 2 × 1,480 MBq (80 mCi) would result in a mean effective dose of 3.7 mSv using the weighting factors of the ICRP 103-only slightly above the average annual natural background exposure in the United States (3.1 mSv).

  3. Improved normal tissue sparing in head and neck radiotherapy using biological cost function based-IMRT.

    PubMed

    Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M

    2011-12-01

    Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.

  4. Improved Normal Tissue Sparing in Head and Neck Radiotherapy Using Biological Cost Function Based-IMRT

    PubMed Central

    Anderson, N.; Lawford, C.; Khoo, V.; Rolfo, M.; Joon, D. Lim; Wada, M.

    2011-01-01

    Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50 Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry. PMID:22066597

  5. Effect of 3-methylcholanthrene-induced increases in ascorbic acid levels on tissue. beta. -glucuronidase activity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.

    1988-01-01

    The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.

  6. Brain dose-sparing radiotherapy techniques for localized intracranial germinoma: Case report and literature review of modern irradiation.

    PubMed

    Leung, H W C; Chan, A L F; Chang, M B

    2016-05-01

    We examined the effects of intensity-modulated radiation therapy with dose-sparing and avoidance technique on a pediatric patient with localized intracranial germinoma. We also reviewed the literature regarding modern irradiation techniques in relation to late neurocognitive sequelae. A patient with a localized intracranial germinoma in the third ventricle anterior to the pineal gland received a dose-sparing intensity-modulated radiation therapy. The planning was compared to the radiation oncologist's guide of organs at risk and dose constraints for dosimetric analyses. The patient received radiation therapy alone. The total dose was 54Gy delivered in 2.0Gy fractions to the primary tumour and 37Gy in 1.4Gy fractions to whole ventricles using a dose-sculpting plan. Dosimetry analyses showed that dose-sparing intensity-modulated radiation therapy delivered reduced doses to the whole brain, temporal lobes, hippocampi, cochleae, and optic nerves. With a follow-up of 22 months, failure-free survival was 100% for the patient and no adverse events during radiation treatment process. Intensity-modulated radiation therapy with dose sparing and avoidance technique can spare the limbic circuit, central nervous system, and hippocampus for pineal germ cell tumours. This technique reduces the integral dose delivered to the uninvolved normal brain tissues and may reduce late neurocognitive sequelae caused by cranial radiotherapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  7. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    PubMed

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  < 0.01, P  < 0.05); high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value ( P  < 0.01, P  < 0.05); high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits' scalded skin crusting time ( P  < 0.01), significantly shortened the rabbit skin burns from the scab time ( P  < 0.01), and significantly improved the treatment of skin diseases in rabbits scald model change ( P  < 0.01, P  < 0.05). The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  8. Comparison of the pharmacokinetics between L-BPA and L-FBPA using the same administration dose and protocol: a validation study for the theranostic approach using [18F]-L-FBPA positron emission tomography in boron neutron capture therapy.

    PubMed

    Watanabe, Tsubasa; Hattori, Yoshihide; Ohta, Youichiro; Ishimura, Miki; Nakagawa, Yosuke; Sanada, Yu; Tanaka, Hiroki; Fukutani, Satoshi; Masunaga, Shin-Ichiro; Hiraoka, Masahiro; Ono, Koji; Suzuki, Minoru; Kirihata, Mitsunori

    2016-11-08

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. L-p-Boronophenylalanine (L-BPA) is a boron compound now widely used in clinical situations. Determination of the boron distribution is required for successful BNCT prior to neutron irradiation. Thus, positron emission tomography with [ 18 F]-L-FBPA, an 18 F-labelled radiopharmaceutical analogue of L-BPA, was developed. However, several differences between L-BPA and [ 18 F]-L-FBPA have been highlighted, including the different injection doses and administration protocols. The purpose of this study was to clarify the equivalence between L-BPA and [ 19 F]-L-FBPA as alternatives to [ 18 F]-L-FBPA. SCC-VII was subcutaneously inoculated into the legs of C3H/He mice. The same dose of L-BPA or [ 19 F]-L-FBPA was subcutaneously injected. The time courses of the boron concentrations in blood, tumour tissue, and normal tissue were compared between the groups. Next, we administered the therapeutic dose of L-BPA or the same dose of [ 19 F]-L-FBPA by continuous infusion and compared the effects of the administration protocol on boron accumulation in tissues. There were no differences between L-BPA and [ 19 F]-L-FBPA in the transition of boron concentrations in blood, tumour tissue, and normal tissue using the same administration protocol. However, the normal tissue to blood ratio of the boron concentrations in the continuous-infusion group was lower than that in the subcutaneous injection group. No difference was noted in the time course of the boron concentrations in tumour tissue and normal tissues between L-BPA and [ 19 F]-L-FBPA. However, the administration protocol had effects on the normal tissue to blood ratio of the boron concentration. In estimating the BNCT dose in normal tissue by positron emission tomography (PET), we should consider the possible overestimation of the normal tissue to blood ratio of the boron concentrations derived from the values measured by PET on dose calculation.

  9. [Sinusal penetration of amoxicillin-clavulanic acid. Formulation 1 g./125 mg., twice daily versus formulation 500 mg./125 mg., three times daily].

    PubMed

    Jehl, F; Klossek, J M; Peynegre, R; Serrano, E; Castillo, L; Bobin, S; Desprez, D; Renault, C; Neel, V; Rouffiac, E; Borie, C

    2002-10-19

    In order to meet the evolution of pneumococcus resistance to beta-lactam antibiotics, a new formulation of amoxicillin (AMX) and clavulanic acid (CA), with twice as much AMX (1 g/125 mg vs. 500 mg/125 mg) was developed for the treatment of acute pneumonia in patients at risk. This formulation can also be used in the treatment of acute maxillary sinusitis using a 1 g/125 mg regimen twice-daily. Compare the sinusal penetration of AMX and CA (1 g/125 mg twice-daily vs. 500 mg/125 mg three times a day) when administered at both regimens to demonstrate equivalent pharmacokinetic and pharmacodynamic behaviour of the former when compared to the latter. Concentrations of AMX and CA were measured in the anterior ethmoid, maxillary, posterior ethmoid sinus and in the middle nasa concha in 62 patients undergoing surgery for nasosinusal polyps. Patients randomised in two groups corresponding to 2 oral regimens, received either 1 g/125 mg twice a day or 500 mg/125 mg three times a day for 4 days. The last dose in both groups was administered 1 h 30, 3, 5 or 8 hrs prior to surgery. Serum samples were taken simultaneously to tissue samples. AMX and CA were measured by high performance liquid chromatography. Exogenous and above all endogenous blood contamination were taken into account with the hematocrit as well as blood and tissue haemoglobin concentrations. Comparisons of tissue concentrations were made for each sampling time, according to values obtained for a specific tissue with both doses on one hand, and on the other to values obtained with a specific dose in different tissues. The calculated pharmacodynamic parameters, which are considered to be predictive for bacteriological and clinical efficacy, result directly from tissue concentrations of AMX. tissue inhibitory quotients (IQtissue = Tissue concentration/MIC). time above MICs for serum and tissue concentrations (T > MIC). As regards AMX, whatever the dose, at 1 h 30 and at 3 hrs, tissue concentrations did not differ significantly whatever the tissue studied (from 1.1 to 2.5 micrograms/g). Conversely, at 5 and 8 hrs, they were greater than after the 1 g/125 mg regimen given twice-daily (0.06-0.7 vs. 0.7-1.8 micrograms/g). If we consider a given dose, the comparison between the various tissues showed identical concentrations in the four tissues studied at each sampling time, except in two cases with the dose of 500 mg/125 mg 3 times a day. T > MIC for serum and tissue showed higher values than those required for AMX/pneumococcus association (40-50%) with, nevertheless, greater tissue values for the 1 g/125 mg dose given twice-daily when MIC was of 1 microgram/ml (40-52% vs. 50-66%). The maximum tissue inhibitory quotients were also greater with the twice-daily 1 g/125 mg dose, when calculated with MIC 50 or 90 of S. Pneumoniae, H. influenzae, M. catarrhalis or S. pyogenes. As for CA, concentrations were equivalent for both doses at each sampling time and greater than those required in vitro during respectively 4 and 5 hours for beta-lactamases H. influenzae and M. catarrhalis. A least an equivalence between both dose regimens was observed, with occasionally a superiority of the twice-daily 1 g/125 mg dose, in terms of pharmacokinetics, tissue penetration and pharmacodynamics for both AMX and CA. This new regimen therefore appears more appropriate for the treatment of acute maxillary sinusitis in adults.

  10. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  11. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  12. Minibeam radiotherapy with small animal irradiators; in vitro and in vivo feasibility studies

    NASA Astrophysics Data System (ADS)

    Bazyar, Soha; Inscoe, Christina R.; O'Brian, E. Timothy; Zhou, Otto; Lee, Yueh Z.

    2017-12-01

    Minibeam radiation therapy (MBRT) delivers an ultrahigh dose of x-ray (⩾100 Gy) in 200-1000 µm beams (peaks), separated by wider non-irradiated regions (valleys) usually as a single temporal fraction. Preclinical studies performed at synchrotron facilities revealed that MBRT is able to ablate tumors while maintaining normal tissue integrity. The main purpose of the present study was to develop an efficient and accessible method to perform MBRT using a conventional x-ray irradiator. We then tested this new method both in vitro and in vivo. Using commercially available lead ribbon and polyethylene sheets, we constructed a collimator that converted the cone beam of an industrial irradiator to 44 identical beams (collimator size  ≈  4  ×  10 cm). The dosimetry characteristics of the generated beams were evaluated using two different radiochromic films (beam FWHM  =  246  ±  32 µm center-to-center  =  926  ±  23 µm peak-to-valley dose ratio  =  24.35  ±  2.10 collimator relative output factor  =  0.84  ±  0.04). Clonogenic assays demonstrated the ability of our method to induce radiobiological cell death in two radioresistant murine tumor cell lines (TRP  =  glioblastoma B16-F10  =  melanoma). A radiobiological equivalent dose (RBE) was calculated by evaluating the acute skin response to graded doses of MBRT and conventional radiotherapy (CRT). Normal mouse skin demonstrated resistance to doses up to 150 Gy on peak. MBRT significantly extended the survival of mice with flank melanoma tumors compared to CRT when RBE were applied (overall p  <  0.001). Loss of spatial resolution deep in the tissue has been a major concern. The beams generated using our collimator maintained their resolution in vivo (mouse brain tissue) and up to 10 cm deep in the radiochromic film. In conclusion, the initial dosimetric, in vitro and in vivo evaluations confirmed the utility of this affordable and easy-to-replicate minibeam collimator for future preclinical studies.

  13. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry andmore » risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim to uncover protein mediators of the bystander responses using advanced proteomic screening of factors released from irradiated, bystander and unstable cells. Integral to these studies will be an assessment of the role of genetic susceptibility in these responses, using CBA/H and C57BL/6J mice. The relevance of in vivo interactions between stem cells and the stem cell niche will be explored in the future by re-implantation techniques of previously irradiated cells. The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program.« less

  14. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, weremore » significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.« less

  15. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Liu, Feng; White, Julia

    2015-04-01

    This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volumemore » parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered.« less

  16. Austrian results from Matroshka poncho and organ dose determination

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Bergmann, R.; Fugger, M.; Vana, N.

    Cosmic rays in low-earth orbits LEO primarily consist of high-energy charged particles originating from galactic cosmic radiation GCR energetic solar particle events SPE and trapped radiation belts These radiations of high linear energy transfer LET generally inflict greater biological damage than that resulting from typical terrestrial radiation hazards Particle and energy spectra are attenuated in interaction processes within shielding structures and within the human body Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses in critical radiosensitive organs and tissues The European Space Agency ESA Matroshka experiment---conducted under the aegis of the German Aerospace Center DLR ---is aimed at simulating an astronaut s body during extravehicular activities EVA Matroshka basically consists of a human phantom torso attached to a base structure and covered with a protective carbon-fibre container acting as a spacesuit model The phantom is divided into 33 tissue-equivalent polyurethane slices of specific density for tissue and organs Natural bones are embedded Channels and cut-outs enable accommodation of active and passive radiation monitors The torso is dressed by a skin-equivalent poncho which is also designed for dosimeter integration The phantom houses in total 7 active and more than 6000 passive radiation sensors Thereof the Atomic Institute of the Austrian Universities ATI provided more than

  17. Does UV disinfection compromise sutures? An evaluation of tissue response and suture retention in salmon surgically implanted with transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Ricardo W.; Brown, Richard S.; Deters, Katherine A.

    Ultraviolet radiation (UVR) can be used as a tool to disinfect surgery tools used for implanting transmitters into fish. However, the use of UVR could possibly degrade monofilament suture material used to close surgical incisions. This research examined the effect of UVR on monofilament sutures to determine if they were compromised and negatively influenced tag and suture retention, incision openness, or tissue reaction. Eighty juvenile Chinook salmon Oncorhynchus tshawytscha were surgically implanted with an acoustic transmitter and a passive integrated transponder. The incision was closed with a single stitch of either a suture exposed to 20 doses of UV radiationmore » (5 minute duration per dose) or a new, sterile suture. Fish were then held for 28 d and examined under a microscope at day 7, 14, 21 and 28 for incision openness, ulceration, redness, and the presence of water mold. There was no significant difference between treatments for incision openness, redness, ulceration or the presence of water mold on any examination day. On day 28 post-surgery, there were no lost sutures; however, 2 fish lost their transmitters (one from each treatment). The results of this study do not show any differences in negative influences such as tissue response, suture retention or tag retention between a new sterile suture and a suture disinfected with UVR.« less

  18. Liver function and DNA integrity in hepatocytes of rats evaluated after treatments with strawberry tree (Arbutus unedo L.) water leaf extract and arbutin.

    PubMed

    Jurica, Karlo; Benković, Vesna; Sikirić, Sunčana; Kopjar, Nevenka; Brčić Karačonji, Irena

    2018-06-07

    Due to their beneficial health effects, strawberry tree (Arbutus unedo L.) leaves have for decades been used as herbal remedy in countries of the Mediterranean region. This pilot study is the first to investigate the liver function and DNA integrity in rat hepatocytes evaluated after 14 and 28 day treatments with strawberry tree water leaf extract and arbutin, administered per os to Lewis rats of both genders at a daily dose 200 mg/kg b.w. We focused on two types of biomarkers: enzyme serum markers of liver function (AST, ALT, and LDH), and primary DNA damage in the liver cells, which was estimated using the alkaline comet assay. At the tested dose, strawberry tree water leaf extract showed acceptable biocompatibility with liver tissue both in male and female rats, especially after shorter exposure. Our results also suggest that oral administration of single arbutin to rats was not associated with significant impairments either in the liver function or DNA integrity in hepatocytes. Considering that prolonged exposure to the tested compounds revealed minor changes in the studied biomarkers, future in vivo studies have to further clarify the biological and physiological relevance of these findings.

  19. Dosimetry around metallic ports in tissue expanders in patients receiving postmastectomy radiation therapy: an ex vivo evaluation.

    PubMed

    Moni, Janaki; Graves-Ditman, Maria; Cederna, Paul; Griffith, Kent; Krueger, Editha A; Fraass, Benedick A; Pierce, Lori J

    2004-01-01

    Postmastectomy breast reconstruction can be accomplished utilizing tissue expanders and implants. However, in patients who require postoperative radiotherapy, the complication rate with tissue expander/implant reconstruction can exceed 50%. One potential cause of this high complication rate may be the metallic port in the tissue expander producing altered dosimetry in the region of the metallic device. The purpose of this study was to quantify the radiation dose distribution in the vicinity of the metallic port and determine its potential contribution to this extremely high complication rate. The absolute dosimetric effect of the tissue expander's metallic port was quantified using film and thermoluminescent dosimetry (TLD) studies with a single beam incident on a metallic port extracted from an expander. TLD measurements were performed at 11 reproducible positions on an intact expander irradiated with tangential fields. A computed tomography (CT)-based treatment plan without inhomogeneity corrections was used to derive expected doses for all TLD positions. Multiple irradiation experiments were performed for all TLD data. Confidence intervals for the dose at TLD sites with the metallic port in place were compared to the expected dose at the site without the metallic port. Film studies did not reveal a significant component of scatter around the metallic port. TLD studies of the extracted metallic port revealed highest doses within the casing of the metallic port and no consistent increased dose at the surface of the expander. No excess dose due to the metallic port in the expander was noted with the phantom TLD data. Based upon these results, it does not appear that the metallic port in tissue expanders significantly contributes to the high complication rate experienced in patients undergoing tissue expander breast reconstruction and receiving radiation therapy. Strategies designed to reduce the breast reconstruction complication rate in this clinical setting will need to focus on factors other than adjusting the dosimetry around the tissue expander metallic port.

  20. Integrated oxide graphene based device for laser inactivation of pathogenic microorganisms

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexsandr; Ruzankina, Julia; Afanasyev, Mikhail; Paklinov, Nikita; Hafizov, Nail

    2018-02-01

    We develop device for virus disinfection of pathogenic microorganisms. Viral decontamination can be carried out due to hard ultraviolet irradiation and singlet oxygen destroying the genetic material of a virus capsid. UV rays can destroy DNA, leading to the formation of dimers of nucleic acids. This practically does not occur in tissues, tk. UV rays penetrate badly through them, however, the viral particles are small and UV can destroy their genetic material, RNA / DNA and the virus can not replicate. It is with the construction of the ultraviolet laser water disinfection system (UFLOV) based on the continuous and periodic pulsed ultraviolet laser sources (pump) binds to solve sterility and depyrogenation of water. It has been established that small doses of UV irradiation stimulate reproduction, and large doses cause the death of pathogenic microorganisms. The effect of a dose of ultraviolet is the result of photochemical action on the substance of a living bacterial cell or virion. Also complex photodynamic laser inactivation on graphene oxide is realized.

  1. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Biodistribution after Intravenous Dosing in Rats

    PubMed Central

    Beekman, Christopher R.; Matta, Murali K.; Thomas, Christopher D.; Mohammad, Adil; Stewart, Sharron; Xu, Lin; Chockalingam, Ashok; Shea, Katherine; Sun, Dajun; Jiang, Wenlei; Patel, Vikram; Rouse, Rodney

    2017-01-01

    Relative biodistribution of FDA-approved innovator and generic sodium ferric gluconate (SFG) drug products was investigated to identify differences in tissue distribution of iron after intravenous dosing to rats. Three equal cohorts of 42 male Sprague-Dawley rats were created with each cohort receiving one of three treatments: (1) the innovator SFG product dosed intravenously at a concentration of 40 mg/kg; (2) the generic SFG product dosed intravenously at a concentration of 40 mg/kg; (3) saline dosed intravenously at equivalent volume to SFG products. Sampling time points were 15 min, 1 h, 8 h, 1 week, two weeks, four weeks, and six weeks post-treatment. Six rats from each group were sacrificed at each time point. Serum, femoral bone marrow, lungs, brain, heart, kidneys, liver, and spleen were harvested and evaluated for total iron concentration by ICP-MS. The ICP-MS analytical method was validated with linearity, range, accuracy, and precision. Results were determined for mean iron concentrations (µg/g) and mean total iron (whole tissue) content (µg/tissue) for each tissue of all groups at each time point. A percent of total distribution to each tissue was calculated for both products. At any given time point, the overall percent iron concentration distribution did not vary between the two SFG drugs by more than 7% in any tissue. Overall, this study demonstrated similar tissue biodistribution for the two SFG products in the examined tissues. PMID:29283393

  2. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers.

    PubMed

    Abend, M; Pfeiffer, R M; Ruf, C; Hatch, M; Bogdanova, T I; Tronko, M D; Hartmann, J; Meineke, V; Mabuchi, K; Brenner, A V

    2013-10-15

    A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.

  3. A Monte Carlo study on the effect of the orbital bone to the radiation dose delivered to the eye lens

    NASA Astrophysics Data System (ADS)

    Stratis, Andreas; Zhang, Guozhi; Jacobs, Reinhilde; Bogaerts, Ria; Bosmans, Hilde

    2015-03-01

    The aim of this work was to investigate the influence of backscatter radiation from the orbital bone and the intraorbital fat on the eye lens dose in the dental CBCT energy range. To this end we conducted three different yet interrelated studies; A preliminary simulation study was conducted to examine the impact of a bony layer situated underneath a soft tissue layer on the amount of backscatter radiation. We compared the Percentage Depth Dose (PDD) curves in soft tissue with and without the bone layer and we estimated the depth in tissue where the decrease in backscatter caused by the presence of the bone is noticeable. In a supplementary study, an eye voxel phantom was designed with the DOSxyznrc code. Simulations were performed exposing the phantom at different x-ray energies sequentially in air, in fat tissue and in realistic anatomy with the incident beam perpendicular to the phantom. Finally, a virtual head phantom was implemented into a validated hybrid Monte Carlo (MC) framework to simulate a large Field of View protocol of a real CBCT scanner and examine the influence of scattered dose to the eye lens during the whole rotation of the paired tube-detector system. The results indicated an increase in the dose to the lens due to the fatty tissue in the surrounding anatomy. There is a noticeable dose reduction close to the bone-tissue interface which weakens with increasing distance from the interface, such that the impact of the orbital bone in the eye lens dose becomes small.

  4. Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy

    NASA Astrophysics Data System (ADS)

    Alexander, M. A. R.; Brooks, W. A.; Blake, S. W.

    2007-04-01

    Cosmetic late effects of radiotherapy such as tissue fibrosis are increasingly regarded as being of importance. It is generally considered that the complication probability of a radiotherapy plan is dependent on the dose uniformity, and can be reduced by using better compensation to remove dose hotspots. This work aimed to model the effects of improved dose homogeneity on complication probability. The Lyman and relative seriality NTCP models were fitted to clinical fibrosis data for the breast collated from the literature. Breast outlines were obtained from a commercially available Rando phantom using the Osiris system. Multislice breast treatment plans were produced using a variety of compensation methods. Dose-volume histograms (DVHs) obtained for each treatment plan were reduced to simple numerical parameters using the equivalent uniform dose and effective volume DVH reduction methods. These parameters were input into the models to obtain complication probability predictions. The fitted model parameters were consistent with a parallel tissue architecture. Conventional clinical plans generally showed reducing complication probabilities with increasing compensation sophistication. Extremely homogenous plans representing idealized IMRT treatments showed increased complication probabilities compared to conventional planning methods, as a result of increased dose to areas receiving sub-prescription doses using conventional techniques.

  5. SU-G-BRC-15: The Potential Clinical Significance of Dose Mapping Error for Intra- Fraction Dose Mapping for Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayah, N; Weiss, E; Watkins, W

    Purpose: To evaluate the dose-mapping error (DME) inherent to conventional dose-mapping algorithms as a function of dose-matrix resolution. Methods: As DME has been reported to be greatest where dose-gradients overlap tissue-density gradients, non-clinical 66 Gy IMRT plans were generated for 11 lung patients with the target edge defined as the maximum 3D density gradient on the 0% (end of inhale) breathing phase. Post-optimization, Beams were copied to 9 breathing phases. Monte Carlo dose computed (with 2*2*2 mm{sup 3} resolution) on all 10 breathing phases was deformably mapped to phase 0% using the Monte Carlo energy-transfer method with congruent mass-mapping (EMCM);more » an externally implemented tri-linear interpolation method with voxel sub-division; Pinnacle’s internal (tri-linear) method; and a post-processing energy-mass voxel-warping method (dTransform). All methods used the same base displacement-vector-field (or it’s pseudo-inverse as appropriate) for the dose mapping. Mapping was also performed at 4*4*4 mm{sup 3} by merging adjacent dose voxels. Results: Using EMCM as the reference standard, no clinically significant (>1 Gy) DMEs were found for the mean lung dose (MLD), lung V20Gy, or esophagus dose-volume indices, although MLD and V20Gy were statistically different (2*2*2 mm{sup 3}). Pinnacle-to-EMCM target D98% DMEs of 4.4 and 1.2 Gy were observed ( 2*2*2 mm{sup 3}). However dTransform, which like EMCM conserves integral dose, had DME >1 Gy for one case. The root mean square RMS of the DME for the tri-linear-to- EMCM methods was lower for the smaller voxel volume for the tumor 4D-D98%, lung V20Gy, and cord D1%. Conclusion: When tissue gradients overlap with dose gradients, organs-at-risk DME was statistically significant but not clinically significant. Target-D98%-DME was deemed clinically significant for 2/11 patients (2*2*2 mm{sup 3}). Since tri-linear RMS-DME between EMCM and tri-linear was reduced at 2*2*2 mm{sup 3}, use of this resolution is recommended for dose mapping. Interpolative dose methods are sufficiently accurate for the majority of cases. J.V. Siebers receives funding support from Varian Medical Systems.« less

  6. MICRO DOSE ASESSMENT OF INHALED PARTICLES IN HUMAN LUNGS: A STEP CLOSER TOWARDS THE TARGET TISSUE DOSE

    EPA Science Inventory

    Rationale: Inhaled particles deposit inhomogeneously in the lung and this may result in excessive deposition dose at local regions of the lung, particularly at the anatomic sites of bifurcations and junctions of the airways, which in turn leads to injuries to the tissues and adve...

  7. Study on the Dose Uncertainties in the Lung during Passive Proton Irradiation with a Proton Beam Range Compensator

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Hoon; Son, Jae Man; Yoon, Myonggeun; Park, Sung Yong; Shin, Dongho; Min, Byung Jun

    2018-06-01

    A moving phantom is manufactured for mimicking lung model to study the dose uncertainty from CT number-stopping power conversion and dose calculation in the soft tissue, light lung tissue and bone regions during passive proton irradiation with compensator smearing value. The phantom is scanned with a CT system, and a proton beam irradiation plan is carried out with the use of a treatment planning system (Eclipse). In the case of the moving phantom, a RPM system is used for respiratory gating. The uncertainties in the dose distribution between the measured data and the planned data are investigated by a gamma analysis with 3%-3 mm acceptance criteria. To investigate smearing effect, three smearing values (0.3 cm, 0.7 cm, 1.2 cm) are used to for fixed and moving phantom system. For both fixed and moving phantom, uncertainties in the light lung tissue are severe than those in soft tissue region in which the dose uncertainties are within clinically tolerable ranges. As the smearing value increases, the uncertainty in the proton dose distribution decreases.

  8. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    PubMed

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  9. Development of a center for light ion therapy and accurate tumor diagnostics at karolinska institutet and hospital

    NASA Astrophysics Data System (ADS)

    Brahme, Anders; Lind, Bengt K.

    2002-04-01

    Radiation therapy is today in a state of very rapid development with new intensity modulated treatment techniques continuously being developed. This has made intensity modulated electron and photon beams almost as powerful as conventional uniform beam proton therapy. To be able to cure also the most advanced hypoxic and radiation resistant tumors of complex local spread, intensity modulated light ion beams are really the ultimate tool and only slightly more expensive than proton therapy. The aim of the new center for ion therapy and tumor diagnostics in Stockholm is to develop radiobiologically optimized 3-dimensional pencil beam scanning techniques. Beside the "classical" approaches using low ionization density hydrogen ions (protons, but also deuterons and tritium nuclei) and high ionization density carbon ions, two new approaches will be developed. In the first one lithium or beryllium ions, that induce the least detrimental biological effect to normal tissues for a given biological effect in a small volume of the tumor, will be key particles. In the second approach, referred patients will be given a high-dose high-precision "boost" treatment with carbon or oxygen ions during one week preceding the final treatment with conventional radiations in the referring hospital. The rationale behind these approaches is to reduce the high ionization density dose to the normal tissue stroma inside the tumor and to ensure a microscopically uniform dose delivery. The principal idea of the center is to closely integrate ion therapy into the clinical routine and research of a large radiotherapy department. The light ion therapy center will therefore be combined with advanced tumor diagnostics including MR and PET-CT imaging to facilitate efficient high-precision high-dose boost treatment of remitted patients. The possibility to do 3D tumor diagnostics and 3D dose delivery verification with the same PET camera will be the ultimate step in high quality adaptive radiation therapy where alterations in the delivered dose can be corrected by subsequent treatments

  10. [Structural changes in the tissues of white rats after capsaicin administration].

    PubMed

    Vorob'eva, N F; Kniazev, G G; Lazarev, V A; Spiridonov, V K

    1997-01-01

    Tissue structure of albino rat lung, skin and cornea changing after administration of capsaicin (neurotoxin isolated from red pepper) was studied using light and electron microscope. 5 mg/kg dose causes tissue swelling and microcirculatory bed reaction. 200 mg/kg dose leads to more significant dystrophic tissue alterations. Fibrosclerosis signs were found in certain cases. Microcirculatory disorders are proposed as the main reason for tissue structure alterations observed, although the mechanism of their development is still unclear.

  11. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-11-01

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  12. Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic

    PubMed Central

    Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk

    2011-01-01

    This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786

  13. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  14. Investigation of real tissue water equivalent path lengths using an efficient dose extinction method

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao; Baer, Esther; Jee, Kyung-Wook; Sharp, Gregory C.; Flanz, Jay; Lu, Hsiao-Ming

    2017-07-01

    For proton therapy, an accurate conversion of CT HU to relative stopping power (RSP) is essential. Validation of the conversion based on real tissue samples is more direct than the current practice solely based on tissue substitutes and can potentially address variations over the population. Based on a novel dose extinction method, we measured water equivalent path lengths (WEPL) on animal tissue samples to evaluate the accuracy of CT HU to RSP conversion and potential variations over a population. A broad proton beam delivered a spread out Bragg peak to the samples sandwiched between a water tank and a 2D ion-chamber detector. WEPLs of the samples were determined from the transmission dose profiles measured as a function of the water level in the tank. Tissue substitute inserts and Lucite blocks with known WEPLs were used to validate the accuracy. A large number of real tissue samples were measured. Variations of WEPL over different batches of tissue samples were also investigated. The measured WEPLs were compared with those computed from CT scans with the Stoichiometric calibration method. WEPLs were determined within  ±0.5% percentage deviation (% std/mean) and  ±0.5% error for most of the tissue surrogate inserts and the calibration blocks. For biological tissue samples, percentage deviations were within  ±0.3%. No considerable difference (<1%) in WEPL was observed for the same type of tissue from different sources. The differences between measured WEPLs and those calculated from CT were within 1%, except for some bony tissues. Depending on the sample size, each dose extinction measurement took around 5 min to produce ~1000 WEPL values to be compared with calculations. This dose extinction system measures WEPL efficiently and accurately, which allows the validation of CT HU to RSP conversions based on the WEPL measured for a large number of samples and real tissues.

  15. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.« less

  16. Monte Carlo study of LDR seed dosimetry with an application in a clinical brachytherapy breast implant.

    PubMed

    Furstoss, C; Reniers, B; Bertrand, M J; Poon, E; Carrier, J-F; Keller, B M; Pignol, J P; Beaulieu, L; Verhaegen, F

    2009-05-01

    A Monte Carlo (MC) study was carried out to evaluate the effects of the interseed attenuation and the tissue composition for two models of 125I low dose rate (LDR) brachytherapy seeds (Medi-Physics 6711, IBt InterSource) in a permanent breast implant. The effect of the tissue composition was investigated because the breast localization presents heterogeneities such as glandular and adipose tissue surrounded by air, lungs, and ribs. The absolute MC dose calculations were benchmarked by comparison to the absolute dose obtained from experimental results. Before modeling a clinical case of an implant in heterogeneous breast, the effects of the tissue composition and the interseed attenuation were studied in homogeneous phantoms. To investigate the tissue composition effect, the dose along the transverse axis of the two seed models were calculated and compared in different materials. For each seed model, three seeds sharing the same transverse axis were simulated to evaluate the interseed effect in water as a function of the distance from the seed. A clinical study of a permanent breast 125I implant for a single patient was carried out using four dose calculation techniques: (1) A TG-43 based calculation, (2) a full MC simulation with realistic tissues and seed models, (3) a MC simulation in water and modeled seeds, and (4) a MC simulation without modeling the seed geometry but with realistic tissues. In the latter, a phase space file corresponding to the particles emitted from the external surface of the seed is used at each seed location. The results were compared by calculating the relevant clinical metrics V85, V100, and V200 for this kind of treatment in the target. D90 and D50 were also determined to evaluate the differences in dose and compare the results to the studies published for permanent prostate seed implants in literature. The experimental results are in agreement with the MC absolute doses (within 5% for EBT Gafchromic film and within 7% for TLD-100). Important differences between the dose along the transverse axis of the seed in water and in adipose tissue are obtained (10% at 3.5 cm). The comparisons between the full MC and the TG-43 calculations show that there are no significant differences for V85 and V100. For V200, 8.4% difference is found coming mainly from the tissue composition effect. Larger differences (about 10.5% for the model 6711 seed and about 13% for the InterSource125) are determined for D90 and D50. These differences depend on the composition of the breast tissue modeled in the simulation. A variation in percentage by mass of the mammary gland and adipose tissue can cause important differences in the clinical dose metrics V200, D90, and D50. Even if the authors can conclude that clinically, the differences in V85, V100, and V200 are acceptable in comparison to the large variation in dose in the treated volume, this work demonstrates that the development of a MC treatment planning system for LDR brachytherapy will improve the dose determination in the treated region and consequently the dose-outcome relationship, especially for the skin toxicity.

  17. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy.

    PubMed

    Sutherland, J G H; Miksys, N; Furutani, K M; Thomson, R M

    2014-01-01

    To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for (125)I, (103)Pd, and (131)Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for (103)Pd seeds and smallest but still considerable differences for (131)Cs seeds. Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.

  18. Prospective Study Delivering Simultaneous Integrated High-dose Tumor Boost (≤70 Gy) With Image Guided Adaptive Radiation Therapy for Radical Treatment of Localized Muscle-Invasive Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafeez, Shaista, E-mail: Shaista.Hafeez@icr.ac.uk; The Royal Marsden National Health Service Foundation Trust, London; Warren-Oseni, Karole

    Purpose: Image guided adaptive radiation therapy offers individualized solutions to improve target coverage and reduce normal tissue irradiation, allowing the opportunity to increase the radiation tumor dose and spare normal bladder tissue. Methods and Materials: A library of 3 intensity modulated radiation therapy plans were created (small, medium, and large) from planning computed tomography (CT) scans performed at 30 and 60 minutes; treating the whole bladder to 52 Gy and the tumor to 70 Gy in 32 fractions. A “plan of the day” approach was used for treatment delivery. A post-treatment cone beam CT (CBCT) scan was acquired weekly to assess intrafraction fillingmore » and coverage. Results: A total of 18 patients completed treatment to 70 Gy. The plan and treatment for 1 patient was to 68 Gy. Also, 1 patient's plan was to 70 Gy but the patient was treated to a total dose of 65.6 Gy because dose-limiting toxicity occurred before dose escalation. A total of 734 CBCT scans were evaluated. Small, medium, and large plans were used in 36%, 48%, and 16% of cases, respectively. The mean ± standard deviation rate of intrafraction filling at the start of treatment (ie, week 1) was 4.0 ± 4.8 mL/min (range 0.1-19.4) and at end of radiation therapy (ie, week 5 or 6) was 1.1 ± 1.6 mL/min (range 0.01-7.5; P=.002). The mean D{sub 98} (dose received by 98% volume) of the tumor boost and bladder as assessed on the post-treatment CBCT scan was 97.07% ± 2.10% (range 89.0%-104%) and 99.97% ± 2.62% (range 96.4%-112.0%). At a median follow-up period of 19 months (range 4-33), no muscle-invasive recurrences had developed. Two patients experienced late toxicity (both grade 3 cystitis) at 5.3 months (now resolved) and 18 months after radiation therapy. Conclusions: Image guided adaptive radiation therapy using intensity modulated radiation therapy to deliver a simultaneous integrated tumor boost to 70 Gy is feasible, with acceptable toxicity, and will be evaluated in a randomized trial.« less

  19. Liquid Microjunction Surface Sampling Probe Electrospray Mass Spectrometry for Detection of Drugs and Metabolites in Thin Tissue Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J; Kertesz, Vilmos; Koeplinger, Kenneth A.

    2008-01-01

    A self-aspirating, liquid micro-junction surface sampling probe/electrospray emitter mass spectrometry system was demonstrated for use in the direct analysis of spotted and dosed drugs and their metabolites in thin tissue sections. Proof-of-principle sampling and analysis directly from tissue without the need for sample preparation was demonstrated first by raster scanning a region on a section of rat liver onto which reserpine was spotted. The mass spectral signal from selected reaction monitoring was used to develop a chemical image of the spotted drug on the tissue. The probe was also used to selectively spot sample areas of sagittal whole mouse bodymore » tissue sections that had been dosed orally (90 mg/kg) with R,S-sulforaphane 3 hrs prior to sacrifice. Sulforaphane and its glutathione and N-acetyl cysteine conjugates were monitored with selected reaction monitoring and detected in the stomach and various other tissues from the dosed mouse. No signal for these species was observed in the tissue from a control mouse. The same dosed tissue section was used to illustrate the possibility of obtaining a line scan across the whole body section. In total these results illustrate the potential for rapid screening of the distribution of drugs and metabolites in tissue sections with the micro-liquid junction surface sampling probe/electrospray mass spectrometry approach.« less

  20. Absorption, Distribution, and Excretion of 14C-APX001 after Single-Dose Administration to Rats and Monkeys

    PubMed Central

    Mansbach, Robert; Shaw, Karen J; Hodges, Michael R; Coleman, Samantha; Fitzsimmons, Michael E

    2017-01-01

    Abstract Background APX001 is a small-molecule therapeutic agent in clinical development for the treatment of invasive fungal infections (IFI). Methods The absorption, distribution and excretion profiles of [14C]APX001-derived radioactivity were determined in rats (albino and pigmented) and monkeys. Rats (some implanted with bile duct cannulae) were administered a single 100 mg/kg oral dose or a 30 mg/kg intravenous (IV) dose. Monkeys were administered a single 6 mg/kg IV dose. Samples of blood, urine, feces and bile, as well as carcasses, were collected through 168 hours after dosing. Samples were analyzed for total radioactivity content by liquid scintillation counting, and carcasses were analyzed by quantitative whole-body autoradiography. Results [14C]APX001-derived radioactivity was rapidly and extensively absorbed and extensively distributed to most tissues for both routes of administration in both species. In rats, tissues with the highest radioactivity Cmax values included bile, abdominal fat, reproductive fat, subcutaneous fat, and liver, but radioactivity was also detected in tissues associated with IFI, including lung, brain and eye. In monkeys, the highest Cmax values were in bile, urine, uveal tract, bone marrow, abdominal fat, liver, and kidney cortex. Liver and kidney were the tissues with highest radioactivity, but as in the rat, radioactivity was also detected in lung, brain and eye tissues. In pigmented rats, radiocarbon was densely distributed into pigmented tissue and more slowly cleared than from other tissues. Mean recovery of radioactivity in rats was approximately 95–100%. In bile duct-intact rats, >90% of radioactivity was recovered in feces. In cannulated rats, biliary excretion of radioactivity was the major route of elimination and accounted for 88.8% of the dose, whereas urinary and fecal excretion of radioactivity was minor and accounted for 2.56% and 5.42% of the dose, respectively. In monkeys, the overall recovery of radioactivity was 87.6%, and was eliminated in feces (49.8% of dose) and to a lesser extent in urine (20.6% of dose). Conclusion Together, the results indicate that APX001-related radioactivity is extensively distributed to major tissues (including tissues relevant to IFI) in both rats and monkeys and cleared primarily by biliary/fecal excretion. Disclosures R. Mansbach, Amplyx Pharmaceuticals Inc.: Consultant, Consulting fee; K. J. Shaw, Amplyx Pharmaceuticals Inc.: Employee, Salary; M. R. Hodges, Amplyx Pharmaceuticals: Employee, Salary; S. Coleman, Covance Laboratories: Employee, Salary; M. E. Fitzsimmons, Covance Laboratories: Employee, Salary

  1. Polonium assimilation and retention in mule deer and pronghorn antelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejkora, K.J.

    Excretion kinetics and tissue distribution of polonium-210 in mule deer and pronghorn were studied. Each animal in a captive herd of 7 mule deer and 2 pronghorn received an intraruminal injection of 4.4 ..mu..Ci of polonium chloride. Feces and urine were collected periodically over a 43-day period and daily excretion rate for each pathway was regressed as a function of time. Assimilation fractions of 0.40 and 0.51 were calculated for mule deer (n=2) and 0.60 for a pronghorn. Body burden retention functions were calculated from integrated excretion rate functions. Polonium burdens in muscle, liver, and kidney were calculated as amore » fraction of body burden from serially-sacrificed animals. Background tissue burdens in mule deer were comparable to those of other ruminants reported in the literature. Hypothetical cases were assumed which combined feeding rate of mule deer, forage concentrations of polonium, retention function, tissue burden fraction, and human intake to estimate human radiation dose. 26 references.« less

  2. The Effects of Gymnema sylvestre in High-Fat Diet-Induced Metabolic Disorders.

    PubMed

    Kim, Hyeon-Jeong; Kim, Sanghwa; Lee, Ah Young; Jang, Yoonjeong; Davaadamdin, Orkhonselenge; Hong, Seong-Ho; Kim, Jun Sung; Cho, Myung-Haing

    2017-01-01

    This study used an integrated approach to investigate the effects of Gymnema sylvestre (GS) extract as a functional dietary supplement with a high-fat diet. This approach examined insulin resistance, the dysfunction of adipose tissue, and liver steatosis. Male C57BL/6J mice were fed a normal chow or high-fat diet (HFD) for the acute and chronic study, in addition to GS in different doses (100, 250 and 500[Formula: see text]mg/kg body weight). Their body composition changes, serum lipid and glucose parameters, adipose and liver tissue histology, and gene expression were measured. It was found that GS significantly suppressed the increase of body weight, serum levels of lipid, insulin and leptin, and adipose tissue, and liver inflammation. GS also demonstrated hypoglycemic effects due to the amylase inhibition activity. Our results support the existence of a relationship between the HFD induced insulin resistance, adipose dysfunction and liver steatosis. In conclusion, GS works as a functional dietary supplement with preventative effects against metabolic disorder.

  3. In vivo dose response relationship between physostigmine and cholinesterase activity in RBC and tissues of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somani, S.M.; Dube, S.N.

    1989-01-01

    Dose response of physostigmine (Phy) was studied in rat using various doses. Rats were sacrificed 15 min after Phy administration. Blood and tissues were analyzed for ChE activity by radiometric method and Phy concentration by HPLC method. A comparison of ChE values in different tissues of rats indicated that ChE activity was highest in brain and least in diaphragm. The enzyme activity was eleven times more in brain as compared to diaphragm. Phy produced a dose-dependent inhibition of ChE in RBC, brain and diaphragm from 50 to 200 {mu}g/kg, then ChE inhibition was plateaued from 200 to 500 {mu}g/kg inmore » these tissues. A dose related ChE inhibition was seen in heart and thigh muscle from 50 to 500 {mu}g/kg. Phy concentration increased linearly from 50 to 400 {mu}g/kg in plasma, brain, heart and thigh muscle. These results indicate that ChE inhibition is linear up to 200 {mu}g/kg in RBC, 150 {mu}g/kg in brain and 300 {mu}g/kg in heart. This linearity is not consistent in other tissues.« less

  4. Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer.

    PubMed

    Roelofs, Erik; Engelsman, Martijn; Rasch, Coen; Persoon, Lucas; Qamhiyeh, Sima; de Ruysscher, Dirk; Verhaegen, Frank; Pijls-Johannesma, Madelon; Lambin, Philippe

    2012-01-01

    This multicentric in silico trial compares photon and proton radiotherapy for non-small cell lung cancer patients. The hypothesis is that proton radiotherapy decreases the dose and the volume of irradiated normal tissues even when escalating to the maximum tolerable dose of one or more of the organs at risk (OAR). Twenty-five patients, stage IA-IIIB, were prospectively included. On 4D F18-labeled fluorodeoxyglucose-positron emission tomography-computed tomography scans, the gross tumor, clinical and planning target volumes, and OAR were delineated. Three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) photon and passive scattered conformal proton therapy (PSPT) plans were created to give 70 Gy to the tumor in 35 fractions. Dose (de-)escalation was performed by rescaling to the maximum tolerable dose. Protons resulted in the lowest dose to the OAR, while keeping the dose to the target at 70 Gy. The integral dose (ID) was higher for 3DCRT (59%) and IMRT (43%) than for PSPT. The mean lung dose reduced from 18.9 Gy for 3DCRT and 16.4 Gy for IMRT to 13.5 Gy for PSPT. For 10 patients, escalation to 87 Gy was possible for all 3 modalities. The mean lung dose and ID were 40 and 65% higher for photons than for protons, respectively. The treatment planning results of the Radiation Oncology Collaborative Comparison trial show a reduction of ID and the dose to the OAR when treating with protons instead of photons, even with dose escalation. This shows that PSPT is able to give a high tumor dose, while keeping the OAR dose lower than with the photon modalities.

  5. Advanced Collapsed cone Engine dose calculations in tissue media for COMS eye plaques loaded with I-125 seeds.

    PubMed

    Morrison, Hali; Menon, Geetha; Larocque, Matthew P; van Veelen, Bob; Niatsetski, Yury; Weis, Ezekiel; Sloboda, Ron S

    2018-05-04

    To investigate the dose calculation accuracy of the Advanced Collapsed cone Engine (ACE) algorithm for ocular brachytherapy using a COMS plaque loaded with I-125 seeds for two heterogeneous patient tissue scenarios. The Oncura model 6711 I-125 seed and 16 mm COMS plaque were added to a research version (v4.6) of the Oncentra ® Brachy (OcB) treatment planning system (TPS) for dose calculations using ACE. Treatment plans were created for two heterogeneous cases: (a) a voxelized eye phantom comprising realistic eye materials and densities and (b) a patient CT dataset with variable densities throughout the dataset. ACE dose calculations were performed using a high accuracy mode, high-resolution calculation grid matching the imported CT datasets (0.5 × 0.5 × 0.5 mm 3 ), and a user-defined CT calibration curve. The accuracy of ACE was evaluated by replicating the plan geometries and comparing to Monte Carlo (MC) calculated doses obtained using MCNP6. The effects of the heterogeneous patient tissues on the dose distributions were also evaluated by performing the ACE and MCNP6 calculations for the same scenarios but setting all tissues and air to water. Average local percent dose differences between ACE and MC within contoured structures and at points of interest for both scenarios ranged from 1.2% to 20.9%, and along the plaque central axis (CAX) from 0.7% to 7.8%. The largest differences occurred in the plaque penumbra (up to 17%), and at contoured structure interfaces (up to 20%). Other regions in the eye agreed more closely, within the uncertainties of ACE dose calculations (~5%). Compared to that, dose differences between water-based and fully heterogeneous tissue simulations were up to 27%. Overall, ACE dosimetry agreed well with MC in the tumor volume and along the plaque CAX for the two heterogeneous tissue scenarios, indicating that ACE could potentially be used for clinical ocular brachytherapy dosimetry. In general, ACE data matched the fully heterogeneous MC data more closely than water-based data, even in regions where the ACE accuracy was relatively low. However, depending on the plaque position, doses to critical structures near the plaque penumbra or at tissue interfaces were less accurate, indicating that improvements may be necessary. More extensive knowledge of eye tissue compositions is still required. © 2018 American Association of Physicists in Medicine.

  6. Whole-body to tissue concentration ratios for use in biota dose assessments for animals.

    PubMed

    Yankovich, Tamara L; Beresford, Nicholas A; Wood, Michael D; Aono, Tasuo; Andersson, Pål; Barnett, Catherine L; Bennett, Pamela; Brown, Justin E; Fesenko, Sergey; Fesenko, J; Hosseini, Ali; Howard, Brenda J; Johansen, Mathew P; Phaneuf, Marcel M; Tagami, Keiko; Takata, Hyoe; Twining, John R; Uchida, Shigeo

    2010-11-01

    Environmental monitoring programs often measure contaminant concentrations in animal tissues consumed by humans (e.g., muscle). By comparison, demonstration of the protection of biota from the potential effects of radionuclides involves a comparison of whole-body doses to radiological dose benchmarks. Consequently, methods for deriving whole-body concentration ratios based on tissue-specific data are required to make best use of the available information. This paper provides a series of look-up tables with whole-body:tissue-specific concentration ratios for non-human biota. Focus was placed on relatively broad animal categories (including molluscs, crustaceans, freshwater fishes, marine fishes, amphibians, reptiles, birds and mammals) and commonly measured tissues (specifically, bone, muscle, liver and kidney). Depending upon organism, whole-body to tissue concentration ratios were derived for between 12 and 47 elements. The whole-body to tissue concentration ratios can be used to estimate whole-body concentrations from tissue-specific measurements. However, we recommend that any given whole-body to tissue concentration ratio should not be used if the value falls between 0.75 and 1.5. Instead, a value of one should be assumed.

  7. Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Salvio, A.; Bedwani, S.; Carrier, J-F.

    2014-08-15

    Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization frommore » single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.« less

  8. Barbiturate euthanasia solution-induced tissue artifact in nonhuman primates.

    PubMed

    Grieves, J L; Dick, E J; Schlabritz-Loutsevich, N E; Butler, S D; Leland, M M; Price, S E; Schmidt, C R; Nathanielsz, P W; Hubbard, G B

    2008-06-01

    Barbiturate euthanasia solutions are a humane and approved means of euthanasia. Overdosing causes significant tissue damage in a variety of laboratory animals. One hundred seventeen non-human primates (NHP) representing 7 species including 12 fetuses euthanized for humane and research reasons by various vascular routes with Euthasol, Sodium Pentobarbital, Fatal Plus, Beuthanasia D, or Euthanasia 5 were evaluated for euthanasia-induced tissue damage. Lungs and livers were histologically graded for hemolysis, vascular damage, edema, and necrosis. Severity of tissue damage was analyzed for differences on the basis of agent, age, sex, dose, and injection route. Severity of tissue damage was directly related to dose and the intracardiac injection route, but did not differ by species, sex, and agent used. When the recommended dose of agent was used, tissue damage was generally reduced, minimal, or undetectable. Barbiturate-induced artifacts in NHPs are essentially the same as in other laboratory species.

  9. Corneal protection by the ocular mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced corneal defect.

    PubMed

    Gamache, Daniel A; Wei, Zhong-You; Weimer, Lori K; Miller, Steven T; Spellman, Joan M; Yanni, John M

    2002-08-01

    The mucin secretagogue 15(S)-HETE was found to stimulate glycoprotein secretion in human ocular tissue at submicromolar concentrations in the present studies. Therefore, the ability of topically applied 15(S)-HETE to preserve corneal integrity was investigated in a rabbit model of desiccation-induced corneal defect. Desiccation-induced corneal injury was elicited in anesthetized rabbits by maintaining one eye open with a speculum. Corneal staining and corneal thickness changes were determined immediately following desiccation. 15(S)-HETE dose-dependently reduced corneal damage (ED50 = 120 nM) during a two-hour desiccation. Corneal staining was unchanged relative to control using a 1 microM dose of 15(S)-HETE. Through four hours of desiccation, 15(S)-HETE (500 nM) decreased corneal staining by 71% and completely prevented corneal thinning. 15(S)-HETE (1 microM) was significantly more efficacious than an artificial tear product over the 4-hour desiccation period. There was no evidence of tachyphylaxis following repeated topical ocular dosing of 15(S)-HETE. These studies demonstrate that 15(S)-HETE stimulates ocular mucin secretion in vitro and effectively protects the cornea in a rabbit model of desiccation-induced injury. The results suggest that the ocular mucin secretagogue 15(S)-HETE may have therapeutic utility in dry eye patients, alleviating corneal injury and restoring corneal integrity.

  10. Biodosimetric quantification of short-term synchrotron microbeam versus broad-beam radiation damage to mouse skin using a dermatopathological scoring system

    PubMed Central

    Priyadarshika, R C U; Crosbie, J C; Kumar, B; Rogers, P A W

    2011-01-01

    Objectives Microbeam radiotherapy (MRT) with wafers of microscopically narrow, synchrotron generated X-rays is being used for pre-clinical cancer trials in animal models. It has been shown that high dose MRT can be effective at destroying tumours in animal models, while causing unexpectedly little damage to normal tissue. The aim of this study was to use a dermatopathological scoring system to quantify and compare the acute biological response of normal mouse skin with microplanar and broad-beam (BB) radiation as a basis for biological dosimetry. Method The skin flaps of three groups of mice were irradiated with high entrance doses (200 Gy, 400 Gy and 800 Gy) of MRT and BB and low dose BB (11 Gy, 22 Gy and 44 Gy). The mice were culled at different time-points post-irradiation. Skin sections were evaluated histologically using the following parameters: epidermal cell death, nuclear enlargement, spongiosis, hair follicle damage and dermal inflammation. The fields of irradiation were identified by γH2AX-positive immunostaining. Results The acute radiation damage in skin from high dose MRT was significantly lower than from high dose BB and, importantly, similar to low dose BB. Conclusion The integrated MRT dose was more relevant than the peak or valley dose when comparing with BB fields. In MRT-treated skin, the apoptotic cells of epidermis and hair follicles were not confined to the microbeam paths. PMID:21849367

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter

    Purpose: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of {sup 211}At-MX35 F(ab'){sub 2}. Methods and Materials: Patients in clinical remission after salvage chemotherapymore » for peritoneal recurrence of ovarian cancer underwent i.p. infusion of {sup 211}At-MX35 F(ab'){sub 2}. Potassium perchlorate was given to block unwanted accumulation of {sup 211}At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. Results: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. Conclusion: Intraperitoneal {sup 211}At-MX35 F(ab'){sub 2} treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective dose potentially corresponds to a risk of treatment-induced carcinogenesis, optimization may still be valuable.« less

  12. SU-F-T-53: Treatment Planning with Inhomogeneity Correction for Intraoperative Radiotherapy Using KV X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Ghaly, M; Souri, S

    Purpose: The current standard in dose calculation for intraoperative radiotherapy (IORT) using the ZEISS Intrabeam 50 kV x-ray system is based on depth dose measurements in water and no heterogeneous tissue effect has been taken into account. We propose an algorithm for pre-treatment planning including inhomogeneity correction based on data of depth dose measurements in various tissue phantoms for kV x-rays. Methods: Direct depth dose measurements were made in air, water, inner bone and cortical bone phantoms for the Intrabeam 50 kV x-rays with a needle applicator. The data were modelled by a function of power law combining exponential withmore » different parameters. Those phantom slabs used in the measurements were scanned to obtain CT numbers. The x-ray beam initiated from the source isocenter is ray-traced through tissues. The corresponding doses will be deposited/assigned at different depths. On the boundary of tissue/organ changes, the x-ray beam will be re-traced in new tissue/organ starting at an equivalent depth with the same dose. In principle, a volumetric dose distribution can be generated if enough directional beams are traced. In practice, a several typical rays traced may be adequate in providing estimates of maximum dose to the organ at risk and minimum dose in the target volume. Results: Depth dose measurements and modeling are shown in Figure 1. The dose versus CT number is shown in Figure 2. A computer program has been written for Kypho-IORT planning using those data. A direct measurement through 2 mm solid water, 2 mm inner bone, and 1 mm solid water yields a dose rate of 7.7 Gy/min. Our calculation shows 8.1±0.4 Gy/min, consistent with the measurement within 5%. Conclusion: The proposed method can be used to more accurately calculate the dose by taking into account the heterogeneous effect. The further validation includes comparison with Monte Carlo simulation.« less

  13. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to illustrate the limitations of TG-43 dosimetry for intracavitary APBI. TG-43 dose calculations overestimate the dose for regions approaching the lung and breast surface and underestimate the dose for regions in and beyond less-attenuating media such as lung tissue, and for lower energies, breast tissue as well.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, H; Zhang, H

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less

  15. Tolerance doses of cutaneous and mucosal tissues in ring-necked parakeets (Psittacula krameri) for external beam megavoltage radiation.

    PubMed

    Barron, Heather W; Roberts, Royce E; Latimer, Kenneth S; Hernandez-Divers, Stephen; Northrup, Nicole C

    2009-03-01

    Currently used dosages for external-beam megavoltage radiation therapy in birds have been extrapolated from mammalian patients and often appear to provide inadequate doses of radiation for effective tumor control. To determine the tolerance doses of cutaneous and mucosal tissues of normal birds in order to provide more effective radiation treatment for tumors that have been shown to be radiation responsive in other species, ingluvial mucosa and the skin over the ingluvies of 9 ring-necked parakeets (Psittacula krameri) were irradiated in 4-Gy fractions to a total dose of either 48, 60, or 72 Gy using an isocentric cobalt-60 teletherapy unit. Minimal radiation-induced epidermal changes were present in the high-dose group histologically. Neither dose-related acute nor chronic radiation effects could be detected in any group grossly in cutaneous or mucosal tissue over a 9-month period. Radiation doses of 72 Gy in 4-Gy fractions were well tolerated in the small number of ring-necked parakeets in this initial tolerance dose study.

  16. Radiation measurements aboard the fourth Gemini flight.

    PubMed

    Janni, J F; Schneider, M F

    1967-01-01

    Two special tissue-equivalent ionization chambers and 5 highly sensitive passive dosimetry packages were flown aboard the recent Gemini 4 flight for the purpose of obtaining precise values of instantaneous dose rate, accumulated dose. and shielding effectiveness. This experiment marked the first time that well-defined tissue dose and radiation survey measurements have been carried out in manned spaceflight operations. Since all measurements were accomplished under normal spacecraft environmental conditions, the biological dose resulted primarily from trapped inner Van Allen Belt radiation encountered by the spacecraft in the South Atlantic Anomaly. The experiment determined the particle type, ionizing and penetrating power, and variation with time and position within the Gemini spacecraft. Measured dose rates ranged from 100 mrad/hr for passes penetrating deeply into the South Atlantic Anomaly to less than 0.1 mrad/hr from lower latitude cosmic radiation. The accumulated tissue dose measured by the active ionization chambers, shielded by 0.4 gm/cm2 for the 4-day mission, was 82 mrad. Since the 5 passive dosimetry packages were each located in different positions within the spacecraft, the total mission surface dose measured by these detectors varied from 73 to 27 mrad, depending upon location and shielding. The particles within the spacecraft were recorded in nuclear emulsion, which established that over 90% of the tissue dose was attributable to penetrating protons. This experiment indicates that the radiation environment under shielded conditions at Gemini altitudes was not hazardous.

  17. Distribution of chloramphenicol to tissues, plasma and urine in pigs after oral intake of low doses.

    PubMed

    Aspenström-Fagerlund, Bitte; Nordkvist, Erik; Törnkvist, Anna; Wallgren, Per; Hoogenboom, Ron; Berendsen, Bjorn; Granelli, Kristina

    2016-09-01

    Toxic effects of chloramphenicol in humans caused the ban for its use in food-producing animals in the EU. A minimum required performance level (MRPL) was specified for chloramphenicol at 0.3 μg kg(-1) for various matrices, including urine. In 2012, residues of chloramphenicol were found in pig urine and muscle without signs of illegal use. Regarding its natural occurrence in straw, it was hypothesised that this might be the source, straw being compulsory for use as bedding material for pigs in Sweden. Therefore, we investigated if low daily doses of chloramphenicol (4, 40 and 400 μg/pig) given orally during 14 days could result in residues in pig tissues and urine. A dose-related increase of residues was found in muscle, plasma, kidney and urine (showing the highest levels), but no chloramphenicol was found in the liver. At the lowest dose, residues were below the MRPL in all tissues except in the urine. However, in the middle dose, residues were above the MRPL in all tissues except muscle, and at the highest dose in all matrices. This study proves that exposure of pigs to chloramphenicol in doses occurring naturally in straw could result in residues above the MRPL in plasma, kidney and especially urine.

  18. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the proportion of the stochastic risk resulting from irradiation of the tissue or organ to the total... of HE. III. Annual Committed Tissue or Organ Equivalent Dose For internal irradiation from...

  19. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the proportion of the stochastic risk resulting from irradiation of the tissue or organ to the total... of HE. III. Annual Committed Tissue or Organ Equivalent Dose For internal irradiation from...

  20. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the proportion of the stochastic risk resulting from irradiation of the tissue or organ to the total... of HE. III. Annual Committed Tissue or Organ Equivalent Dose For internal irradiation from...

  1. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the proportion of the stochastic risk resulting from irradiation of the tissue or organ to the total... of HE. III. Annual Committed Tissue or Organ Equivalent Dose For internal irradiation from...

  2. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the proportion of the stochastic risk resulting from irradiation of the tissue or organ to the total... of HE. III. Annual Committed Tissue or Organ Equivalent Dose For internal irradiation from...

  3. Neutrons in active proton therapy: Parameterization of dose and dose equivalent.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Lomax, Tony

    2017-06-01

    One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160MeV or 177MeV instead of 138MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy. Copyright © 2016. Published by Elsevier GmbH.

  4. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR 192Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom1

    PubMed Central

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-01-01

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) 192Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, “A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,” Brachytherapy 6, 164–168 (2007)] showed that the target dose is similar for HDR 192Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR 192Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR 192Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of ∼1.4 smaller than for HDR 192Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were ∼28 and ∼11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with eBx. However, the maximum dose to the closest rib with the eBx source was 5.4 times greater than that of the HDR 192Ir source. The ratio of tissue-to-water maximum rib dose for the eBx source was ∼5. Conclusions: The results of this study indicate that eBx may offer lower toxicity to most healthy tissues, except nearby bone. TG-43 methods have a tendency to underestimate dose to bone, especially the ribs. Clinical studies evaluating the negative health effects caused by irradiating healthy organs are needed so that physicians can better understand when HDR 192Ir or eBx might best benefit a patient. PMID:20229875

  5. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer.

    PubMed

    Chen, Guang-Pei; Liu, Feng; White, Julia; Vicini, Frank A; Freedman, Gary M; Arthur, Douglas W; Li, X Allen

    2015-01-01

    This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volume parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. Detection and distribution of ostreid herpesvirus 1 in experimentally infected Pacific oyster spat.

    PubMed

    Segarra, Amélie; Baillon, Laury; Faury, Nicole; Tourbiez, Delphine; Renault, Tristan

    2016-01-01

    High mortality rates are reported in spat and larvae of Pacific oyster Crassostrea gigas and associated with ostreid herpesvirus 1 (OsHV-1) detection in France. Although the viral infection has been experimentally reproduced in oyster larvae and spat, little knowledge is currently available concerning the viral entry and its distribution in organs and tissues. This study compares OsHV-1 DNA and RNA detection and localization in experimentally infected oysters using two virus doses: a low dose that did not induce any mortality and a high dose inducing high mortality. Real time PCR demonstrated significant differences in terms of viral DNA amounts between the two virus doses. RNA transcripts were detected in oysters receiving the highest dose of viral suspension whereas no transcript was observed in oysters injected with the low dose. This study also allowed observing kinetics of viral DNA and RNA detection in different tissues of oyster spat. Finally, viral detection was significantly different in function of tissues (p<0.005), time (p<0.005) with an interaction between tissues and time (p<0.005) for each probe. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Low dose X -ray effects on catalase activity in animal tissue

    NASA Astrophysics Data System (ADS)

    Focea, R.; Nadejde, C.; Creanga, D.; Luchian, T.

    2012-12-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, p<0.05) suggested the stimulation of the antioxidant enzyme biosynthesis within several hours after exposure at doses of 0.5 Gy and 2 Gy; the putative enzyme inactivation could also occur (due to the injuries on the hydrogen bonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  8. Do changes in biomarkers from space radiation reflect dose or risk?

    NASA Astrophysics Data System (ADS)

    Brooks, A.

    The space environment is made up of many different kinds of radiation so that the proper use of biomarkers is essential to estimate radiation risk. This presentation will evaluate differences between biomarkers of dose and risk and demonstrate why they should not be confused following radiation exposures in deep space. Dose is a physical quantity, while risk is a biological quantity. Many examples exist w ereh dose or changes in biomarkers of dose are inappropriately used as predictors of risk. Without information on the biology of the system, the biomarkers of dose provide little help in predicting risk in tissues or radiation exposure types where no excess risk can be demonstrated. Many of these biomarkers of dose only reflect changes in radiation dose or exposure. However, these markers are often incorrectly used to predict risk. For example, exposure of the trachea or of the deep lung to high-LET alpha particles results in similar changes in the biomarker chromosome damage in these two tissues. Such an observation would predict that the risk for cancer induction would be similar in these two tissues. It has been noted , however, that there has never been a tracheal tumor observed in rats that inhaled radon, but with the same exposure, large numbers of tumors were produced in the deep lung. The biology of the different tissues is the major determinant of the risk rather than the radiation dose. Recognition of this fact has resulted in the generation of tissue weighting factors for use in radiation protection. When tissue weighting factors are used the values derived are still called "dose". It is important to recognize that tissue specific observations have been corrected to reflect risk, and therefore should no longer be viewed as dose. The relative biological effectiveness (RBE) is also used to estimate radiation risk. The use of biomarkers to derive RBE is a difficult since it involves the use of a biological response to a standard low-LET reference radiation. Following low-LET radiation exposure, the biological response often does not increase as a linear function of dose. Thus, the RBE and the subsequent risk predicted is dependent on the dose where the two radiation types are compared. To avoid this problem the standard procedure is to use the dose and dose-rate response and compare the linear components of the two r diation exposures. Important riska comparisons are often done at very low doses, where the reference radiation may either increase or decrease as a function of dose. Since the low-LET exposure often does not produce a significant change above the background level of damage, the derived RBE factors can become very large.Studies using micronuclei as biomarkers following exposure to mono-energetic neutrons, x-rays and gamma rays delivered at very low doses (up to 0.10 Gy) demonstrated the differences in the shape of each dose-response relationship and the problems associated with the RBE. These studies show that RBE may not accurately reflect the hazards or risk associated with space radiation exposure. As additional measures of biological change are developed, it may become possible to base risk on biological change and not on changes in radiation doses. Research funded through grants # DE-FG03-99ER62787 from DOE Office of Biological and Environmental Research and RO1 CA74053-01 from NIH/NASA to Washington State University Tri-Cities.

  9. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Jackie; Suttie, Clare; Bromley, Regina

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with themore » 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.« less

  10. Radon induced hyperplasia: effective adaptation reducing the local doses in the bronchial epithelium.

    PubMed

    Madas, Balázs G

    2016-09-01

    There is experimental and histological evidence that chronic irritation and cell death may cause hyperplasia in the exposed tissue. As the heterogeneous deposition of inhaled radon progeny results in high local doses at the peak of the bronchial bifurcations, it was proposed earlier that hyperplasia occurs in these deposition hot spots upon chronic radon exposure. The objective of the present study is to quantify how the induction of basal cell hyperplasia modulates the microdosimetric consequences of a given radon exposure. For this purpose, computational epithelium models were constructed with spherical cell nuclei of six different cell types based on histological data. Basal cell hyperplasia was modelled by epithelium models with additional basal cells and increased epithelium thickness. Microdosimetry for alpha-particles was performed by an own-developed Monte-Carlo code. Results show that the average tissue dose, and the average hit number and dose of basal cells decrease by the increase of the measure of hyperplasia. Hit and dose distribution reveal that the induction of hyperplasia may result in a basal cell pool which is shielded from alpha-radiation. It highlights that the exposure history affects the microdosimetric consequences of a present exposure, while the biological and health effects may also depend on previous exposures. The induction of hyperplasia can be considered as a radioadaptive response at the tissue level. Such an adaptation of the tissue challenges the validity of the application of the dose and dose rate effectiveness factor from a mechanistic point of view. As the location of radiosensitive target cells may change due to previous exposures, dosimetry models considering the tissue geometry characteristic of normal conditions may be inappropriate for dose estimation in case of protracted exposures. As internal exposures are frequently chronic, such changes in tissue geometry may be highly relevant for other incorporated radionuclides.

  11. SU-F-J-17: Patient Localization Using MRI-Guided Soft Tissue for Head-And-Neck Radiotherapy: Indication for Margin Reduction and Its Feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X; Yang, Y; Jack, N

    Purpose: On-board MRI provides superior soft-tissue contrast, allowing patient alignment using tumor or nearby critical structures. This study aims to study H&N MRI-guided IGRT to analyze inter-fraction patient setup variations using soft-tissue targets and design appropriate CTV-to-PTV margin and clinical implication. Methods: 282 MR images for 10 H&N IMRT patients treated on a ViewRay system were retrospectively analyzed. Patients were immobilized using a thermoplastic mask on a customized headrest fitted in a radiofrequency coil and positioned to soft-tissue targets. The inter-fraction patient displacements were recorded to compute the PTV margins using the recipe: 2.5∑+0.7σ. New IMRT plans optimized on themore » revised PTVs were generated to evaluate the delivered dose distributions. An in-house dose deformation registration tool was used to assess the resulting dosimetric consequences when margin adaption is performed based on weekly MR images. The cumulative doses were compared to the reduced margin plans for targets and critical structures. Results: The inter-fraction displacements (and standard deviations), ∑ and σ were tabulated for MRI and compared to kVCBCT. The computed CTV-to-PTV margin was 3.5mm for soft-tissue based registration. There were minimal differences between the planned and delivered doses when comparing clinical and the PTV reduced margin plans: the paired t-tests yielded p=0.38 and 0.66 between the planned and delivered doses for the adapted margin plans for the maximum cord and mean parotid dose, respectively. Target V95 received comparable doses as planned for the reduced margin plans. Conclusion: The 0.35T MRI offers acceptable soft-tissue contrast and good spatial resolution for patient alignment and target visualization. Better tumor conspicuity from MRI allows soft-tissue based alignments with potentially improved accuracy, suggesting a benefit of margin reduction for H&N radiotherapy. The reduced margin plans (i.e., 2 mm) resulted in improved normal structure sparing and accurate dose delivery to achieve intended treatment goal under MR guidance.« less

  12. SU-G-JeP2-05: Dose Effects of a 1.5T Magnetic Field On Air-Tissue and Lung-Tissue Interfaces in MRI-Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xinfeng; Prior, Phillip; Chen, Guangpei

    Purpose: The purpose of the study is to investigate the dose effects of electron-return-effect (ERE) at air-tissue and lung-tissue interfaces under a 1.5T transverse-magnetic-field (TMF). Methods: IMRT and VMAT plans for representative pancreas, lung, breast and head & neck (H&N) cases were generated following clinical dose volume (DV) criteria. The air-cavity walls, as well as the lung wall, were delineated to examine the ERE. In each case, the original plan generated without TMF is compared with the reconstructed plan (generated by recalculating the original plan with the presence of TMF) and the optimized plan (generated by a full optimization withmore » TMF), using a variety of DV parameters, including V100%, D95% and dose heterogeneity index for PTV, Dmax, and D1cc for OARs (organs at risk) and tissue interface. Results: The dose recalculation under TMF showed the presence of the 1.5 T TMF can slightly reduce V100% and D95% for PTV, with the differences being less than 4% for all but lung case studied. The TMF results in considerable increases in Dmax and D1cc on the skin in all cases, mostly between 10-35%. The changes in Dmax and D1cc on air cavity walls are dependent upon site, geometry, and size, with changes ranging up to 15%. In general, the VMAT plans lead to much smaller dose effects from ERE compared to fixed-beam IMRT. When the TMF is considered in the plan optimization, the dose effects of the TMF at tissue interfaces are significantly reduced in most cases. Conclusion: The doses on tissue interfaces can be significantly changed by the presence of a 1.5T TMF during MR-guided RT when the TMF is not included in plan optimization. These changes can be substantially reduced or even removed during VMAT/IMRT optimization that specifically considers the TMF, without deteriorating overall plan quality.« less

  13. Dosimetric impact of dual-energy CT tissue segmentation for low-energy prostate brachytherapy: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Remy, Charlotte; Lalonde, Arthur; Béliveau-Nadeau, Dominic; Carrier, Jean-François; Bouchard, Hugo

    2018-01-01

    The purpose of this study is to evaluate the impact of a novel tissue characterization method using dual-energy over single-energy computed tomography (DECT and SECT) on Monte Carlo (MC) dose calculations for low-dose rate (LDR) prostate brachytherapy performed in a patient like geometry. A virtual patient geometry is created using contours from a real patient pelvis CT scan, where known elemental compositions and varying densities are overwritten in each voxel. A second phantom is made with additional calcifications. Both phantoms are the ground truth with which all results are compared. Simulated CT images are generated from them using attenuation coefficients taken from the XCOM database with a 100 kVp spectrum for SECT and 80 and 140Sn kVp for DECT. Tissue segmentation for Monte Carlo dose calculation is made using a stoichiometric calibration method for the simulated SECT images. For the DECT images, Bayesian eigentissue decomposition is used. A LDR prostate brachytherapy plan is defined with 125I sources and then calculated using the EGSnrc user-code Brachydose for each case. Dose distributions and dose-volume histograms (DVH) are compared to ground truth to assess the accuracy of tissue segmentation. For noiseless images, DECT-based tissue segmentation outperforms the SECT procedure with a root mean square error (RMS) on relative errors on dose distributions respectively of 2.39% versus 7.77%, and provides DVHs closest to the reference DVHs for all tissues. For a medium level of CT noise, Bayesian eigentissue decomposition still performs better on the overall dose calculation as the RMS error is found to be of 7.83% compared to 9.15% for SECT. Both methods give a similar DVH for the prostate while the DECT segmentation remains more accurate for organs at risk and in presence of calcifications, with less than 5% of RMS errors within the calcifications versus up to 154% for SECT. In a patient-like geometry, DECT-based tissue segmentation provides dose distributions with the highest accuracy and the least bias compared to SECT. When imaging noise is considered, benefits of DECT are noticeable if important calcifications are found within the prostate.

  14. Low dose radiation interactions with the transformation growth factor (TFG)-beta pathway

    NASA Astrophysics Data System (ADS)

    Maslowski, Amy Jesse

    A major limiting factor for long-term, deep-space missions is the radiation dose to astronauts. Because the dose to the astronauts is a mixed field of low- and high-LET radiation, there is a need to understand the effects of both radiation types on whole tissue; however, there are limited published data on the effects of high-LET (linear-energy-transfer) radiation on tissue. Thus, we designed a perfusion chamber system for rat trachea in order to mimic in vivo respiratory tissue. We successfully maintained the perfused tracheal tissue ex vivo in a healthy and viable condition for up to three days. In addition, this project studied the effects of high-LET Fe particles on the overall transformation growth factor (TGF)-beta response after TGF-beta inactivation and compared the results to the TGF-beta response post x-ray irradiation. It was found that a TGF-beta response could be measured in the perfused tracheal tissue, for x-ray and Fe particle irradiations, despite the high autofluorescent background intrinsic to tissue. However, after comparing the TGF-beta response of x-ray irradiation to High-Z-High-energy (HZE) irradiation, there was not a significant difference in radiation types. The TGF-beta response in x-ray and HZE irradiated perfusion chambers was also measured over time post irradiation. It was found that for 6 hour and 8 hour post irradiation, the TGF-beta response was higher for lower doses of radiation than for higher doses. This is in contrast to the 0 hour fixation which found the TGF-beta response to increase with increased dose. The inverse relationship found for 6 hour and 8 hour fixation times may indicate a threshold response for TGF-beta response; i.e., for low doses, a threshold of dose must be reached for an immediate TGF-beta response, otherwise the tissue responds more slowly to the irradiation damage. This result was unexpected and will require further investigation to determine if the threshold can be determined for the 250 kVp x-rays and 1 Gev Fe particles.

  15. Increased epidermal laser fluence through simultaneous ultrasonic microporation

    NASA Astrophysics Data System (ADS)

    Whiteside, Paul J. D.; Chininis, Jeff A.; Schellenberg, Mason W.; Qian, Chenxi; Hunt, Heather K.

    2016-03-01

    Lasers have demonstrated widespread applicability in clinical dermatology as minimally invasive instruments that achieve photogenerated responses within tissue. However, before reaching its target, the incident light must first transmit through the surface layer of tissue, which is interspersed with chromophores (e.g. melanin) that preferentially absorb the light and may also generate negative tissue responses. These optical absorbers decrease the efficacy of the procedures. In order to ensure that the target receives a clinically relevant dose, most procedures simply increase the incident energy; however, this tends to exacerbate the negative complications of melanin absorption. Here, we present an alternative solution aimed at increasing epidermal energy uence while mitigating excess absorption by unintended targets. Our technique involves the combination of a waveguide-based contact transmission modality with simultaneous high-frequency ultrasonic pulsation, which alters the optical properties of the tissue through the agglomeration of dissolved gasses into micro-bubbles within the tissue. Doing so effectively creates optically transparent pathways for the light to transmit unobstructed through the tissue, resulting in an increase in forward scattering and a decrease in absorption. To demonstrate this, Q-switched nanosecond-pulsed laser light at 532nm was delivered into pig skin samples using custom glass waveguides clad in titanium and silver. Light transmission through the tissue was measured with a photodiode and integrating sphere for tissue with and without continuous ultrasonic pulsation at 510 kHz. The combination of these techniques has the potential to improve the efficiency of laser procedures while mitigating negative tissue effects caused by undesirable absorption.

  16. SU-E-T-549: A Combinatorial Optimization Approach to Treatment Planning with Non-Uniform Fractions in Intensity Modulated Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, D; Unkelbach, J

    2014-06-01

    Purpose: Non-uniform fractionation, i.e. delivering distinct dose distributions in two subsequent fractions, can potentially improve outcomes by increasing biological dose to the target without increasing dose to healthy tissues. This is possible if both fractions deliver a similar dose to normal tissues (exploit the fractionation effect) but high single fraction doses to subvolumes of the target (hypofractionation). Optimization of such treatment plans can be formulated using biological equivalent dose (BED), but leads to intractable nonconvex optimization problems. We introduce a novel optimization approach to address this challenge. Methods: We first optimize a reference IMPT plan using standard techniques that deliversmore » a homogeneous target dose in both fractions. The method then divides the pencil beams into two sets, which are assigned to either fraction one or fraction two. The total intensity of each pencil beam, and therefore the physical dose, remains unchanged compared to the reference plan. The objectives are to maximize the mean BED in the target and to minimize the mean BED in normal tissues, which is a quadratic function of the pencil beam weights. The optimal reassignment of pencil beams to one of the two fractions is formulated as a binary quadratic optimization problem. A near-optimal solution to this problem can be obtained by convex relaxation and randomized rounding. Results: The method is demonstrated for a large arteriovenous malformation (AVM) case treated in two fractions. The algorithm yields a treatment plan, which delivers a high dose to parts of the AVM in one of the fractions, but similar doses in both fractions to the normal brain tissue adjacent to the AVM. Using the approach, the mean BED in the target was increased by approximately 10% compared to what would have been possible with a uniform reference plan for the same normal tissue mean BED.« less

  17. A Comparative Evaluation of Normal Tissue Doses for Patients Receiving Radiation Therapy for Hodgkin Lymphoma on the Childhood Cancer Survivor Study and Recent Children's Oncology Group Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Rachel; Ng, Angela; Constine, Louis S.

    Purpose: Survivors of pediatric Hodgkin lymphoma (HL) are recognized to have an increased risk of delayed adverse health outcomes related to radiation therapy (RT). However, the necessary latency required to observe these late effects means that the estimated risks apply to outdated treatments. We sought to compare the normal tissue dose received by children treated for HL and enrolled in the Childhood Cancer Survivor Study (CCSS) (diagnosed 1970-1986) with that of patients treated in recent Children's Oncology Group (COG) trials (enrolled 2002-2012). Methods and Materials: RT planning data were obtained for 50 HL survivors randomly sampled from the CCSS cohortmore » and applied to computed tomography planning data sets to reconstruct the normal tissue dosimetry. For comparison, the normal tissue dosimetry data were obtained for all 191 patients with full computed tomography–based volumetric RT planning on COG protocols AHOD0031 and AHOD0831. Results: For early-stage patients, the mean female breast dose in the COG patients was on average 83.5% lower than that for CCSS patients, with an absolute reduction of 15.5 Gy. For advanced-stage patients, the mean breast dose was decreased on average by 70% (11.6 Gy average absolute dose reduction). The mean heart dose decreased on average by 22.9 Gy (68.6%) and 17.6 Gy (56.8%) for early- and advanced-stage patients, respectively. All dose comparisons for breast, heart, lung, and thyroid were significantly lower for patients in the COG trials than for the CCSS participants. Reductions in the prescribed dose were a major contributor to these dose reductions. Conclusions: These are the first data quantifying the significant reduction in the normal tissue dose using actual, rather than hypothetical, treatment plans for children with HL. These findings provide useful information when counseling families regarding the risks of contemporary RT.« less

  18. SU-E-T-283: Dose Perturbations Near Heterogeneity Junctions for Modulated-Scanning Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Y; Li, Y; Sheng, Y

    2015-06-15

    Purpose: To compare calculated and measured doses near heterogeneity junctions of tissue-substitute materials for modulated-scanning protons. Methods: Three heterogeneous phantoms were configured using slabs of various plastics to simulate lung, fat, soft-tissue (polystyrene), and bone with known relative linear stopping powers (RLSPs). Each phantom consisted of soft-tissue and a single heterogeneity of a 5 or 10 cm thickness of a non-soft-tissue material. CT images were loaded into a Syngo treatment planning system and each material contoured and assigned its RLSP. Planning target volumes (PTVs) were drawn such that a beam would partially traverse the heterogeneity and partially only soft-tissue. Lateralmore » profiles were measured using EDR2 films at a minimum of six depths between the phantom surface and the depth corresponding to the beam range. Absolute doses were measured inside and distal to the PTV in all phantoms using either a parallel plate or thimble chamber. Additional dose measurements were made between two lung slabs. Results: Profiles measured by film generally agreed with calculations except for depths distal to lung and fat junctions. Measured lateral penumbras for depths at the distal junction of lung were found to be wider than calculated ones. Compared with calculated doses, measured doses in the PTVs were 5.19% and 2.51% lower for lung and fat respectively but for bone were 0.2% higher. Measured doses for depths distal to the PTV were up to 29.65% and 10.58% higher for lung and fat, respectively but 6.30% lower for bone. Conclusion: The low measured doses in the PTVs for lung and fat might be due to underestimation of lateral scattering of protons. The higher measured doses distal to the PTV for the lung and fat are a Result of a shortened calculated beam range whereas the higher dose distal to the bone junction is within uncertainties.« less

  19. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Adam S.; Webster Stayman, J.; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L.; Khanna, A. Jay; Siewerdsen, Jeffrey H.

    2014-02-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (˜40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ˜1.7 mGy and benefits from 50% sparsity at dose below ˜1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose.

  20. Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study.

    PubMed

    Yuan, Hong; Zhang, Lei; Frank, Jonathan E; Inscoe, Christina R; Burk, Laurel M; Hadsell, Mike; Lee, Yueh Z; Lu, Jianping; Chang, Sha; Zhou, Otto

    2015-09-01

    Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.

  1. Translational safety biomarkers of colonic barrier integrity in the rat.

    PubMed

    Erkens, Tim; Bueters, Ruud; van Heerden, Marjolein; Cuyckens, Filip; Vreeken, Rob; Goeminne, Nick; Lammens, Lieve

    2018-05-20

    The intestinal barrier controls intestinal permeability, and its disruption has been associated with multiple diseases. Therefore, preclinical safety biomarkers monitoring barrier integrity are essential during the development of drugs targeting the intestines, particularly if starting treatment early after onset of disease. Classical toxicology endpoints are not sensitive enough and therefore our objective was to identify non-invasive markers enabling early in vivo detection of colonic barrier perturbation. Male Sprague-Dawley rats were dosed intracolonically via the rectum, using sodium caprate or ibuprofen as tool compounds to alter barrier integrity. Several potentially translational biomarkers and probe molecules related to permeability, inflammation or tissue damage were evaluated, using various analytical platforms, including immunoassays, targeted metabolomics and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry. Several markers were identified that allow early in vivo detection of colonic barrier integrity changes, before histopathological evidence of tissue damage. The most promising permeability markers identified were plasma fluorescein isothiocyanate-dextran 4000 and a lactulose/mannitol/sucralose mixture in urine. These markers showed maximum increases over 100-fold or approximately 10-50-fold, respectively. Intracolonic administration of the above probe molecules outperformed oral administration and inflammatory or other biomarkers, such as α 2 -macroglobulin, calprotectin, cytokines, prostaglandins and a panel of metabolic molecules to identify early and subtle changes in barrier integrity. However, optimal timing of probe administration and sample collection is important for all markers evaluated. Inclusion of these probe molecules in preclinical toxicity studies might aid in risk assessment and the design of a clinical biomarker plan, as several of these markers have translational potential. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Effective protection of monkeys against death from street virus by post-exposure administration of tissue-culture rabies vaccine

    PubMed Central

    Sikes, R. K.; Cleary, W. F.; Koprowski, H.; Wiktor, T. J.; Kaplan, M. M.

    1971-01-01

    Three series of experiments on rabies vaccines were carried out on rhesus monkeys using suckling-mouse-brain vaccine, rabbit-brain vaccine, duck-embryo vaccine, and purified, concentrated tissue-culture vaccine. The latter was prepared in a human diploid cell strain and inactivated with β-propiolactone, and consisted of tissue-culture fluid concentrated 200-fold with a final infectivity titre of 109.8 plaque-forming units per ml before inactivation. In the first two series of experiments, several vaccines were tested for relative immunogenicity on a pre-exposure basis. In the third series, a successful model was developed in which a single inoculation of the tissue-culture vaccine administered after exposure to rabies virus, with or without accompanying standard doses of antirabies serum, was evaluated as a method of prevention. A single dose of the tissue-culture vaccine protected 7 out of 8 monkeys from death by street virus. Homologous or heterologous antirabies serum alone gave poor results. The results indicate great promise for prophylaxis in man with one dose, or perhaps a few doses, of highly concentrated, purified tissue-culture vaccine. PMID:5004004

  3. Development of a GCR Event-based Risk Model

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ponomarev, Artem L.; Plante, Ianik; Carra, Claudio; Kim, Myung-Hee

    2009-01-01

    A goal at NASA is to develop event-based systems biology models of space radiation risks that will replace the current dose-based empirical models. Complex and varied biochemical signaling processes transmit the initial DNA and oxidative damage from space radiation into cellular and tissue responses. Mis-repaired damage or aberrant signals can lead to genomic instability, persistent oxidative stress or inflammation, which are causative of cancer and CNS risks. Protective signaling through adaptive responses or cell repopulation is also possible. We are developing a computational simulation approach to galactic cosmic ray (GCR) effects that is based on biological events rather than average quantities such as dose, fluence, or dose equivalent. The goal of the GCR Event-based Risk Model (GERMcode) is to provide a simulation tool to describe and integrate physical and biological events into stochastic models of space radiation risks. We used the quantum multiple scattering model of heavy ion fragmentation (QMSFRG) and well known energy loss processes to develop a stochastic Monte-Carlo based model of GCR transport in spacecraft shielding and tissue. We validated the accuracy of the model by comparing to physical data from the NASA Space Radiation Laboratory (NSRL). Our simulation approach allows us to time-tag each GCR proton or heavy ion interaction in tissue including correlated secondary ions often of high multiplicity. Conventional space radiation risk assessment employs average quantities, and assumes linearity and additivity of responses over the complete range of GCR charge and energies. To investigate possible deviations from these assumptions, we studied several biological response pathway models of varying induction and relaxation times including the ATM, TGF -Smad, and WNT signaling pathways. We then considered small volumes of interacting cells and the time-dependent biophysical events that the GCR would produce within these tissue volumes to estimate how GCR event rates mapped to biological signaling induction and relaxation times. We considered several hypotheses related to signaling and cancer risk, and then performed simulations for conditions where aberrant or adaptive signaling would occur on long-duration space mission. Our results do not support the conventional assumptions of dose, linearity and additivity. A discussion on how event-based systems biology models, which focus on biological signaling as the mechanism to propagate damage or adaptation, can be further developed for cancer and CNS space radiation risk projections is given.

  4. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended to model thermal ablation, including the addition of temperature dependent attenuation, perfusion, and tissue damage. Pilot point control at the target boundaries was implemented to control power delivery to each transducer section, simulating an approach feasible for MR guided procedures. The computer model of thermal ablation was evaluated on representative patient anatomies to demonstrate the feasibility of using catheter-based ultrasound thermal ablation for treatment of benign prostate hyperplasia (BPH) and prostate cancer, and to assist in designing applicators and treatment delivery strategies.

  5. The effects of small field dosimetry on the biological models used in evaluating IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Cardarelli, Gene A.

    The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.

  6. Effect of compound Maqin decoction on TGF-β1/Smad proteins and IL-10 and IL-17 content in lung tissue of asthmatic rats.

    PubMed

    Xie, Y H; Li, X P; Xu, Z X; Qian, P; Li, X L; Wang, Y Q

    2016-09-02

    In this research, compound Maqin decoction (CMD) has been shown to positively affect in airway inflammation of asthma models. We evaluated the effects of CMD on the expression of transforming growth factor (TGF)-β1/Smad proteins, interleukin (IL)-17, and IL-10 in lung tissue of asthmatic rats. Asthma was induced in a rat model using ovalbumin. After a 4-week treatment with CMD, rats were killed to evaluate the expression of TGF-β1 and Smad proteins in lung tissue. IL-10 and IL-17 levels in lung tissue homogenates were determined by ELISA. The expression of TGF-β1 and Smad3 protein increased, whereas expression of Smad7 protein decreased upon high-dose or low-dose treatment with CMD or by intervention with dexamethasone, compared to the control. There was a significant difference between treatment with a high dose CMD and the control treatment, but no significant difference was found between high-dose CMD treatment and dexamethasone intervention. The expression of TGF-β1 and Smad7 protein increased, whereas the expression of Smad3 protein decreased in the model group compared to other groups. In the CMD high-dose group, low-dose group, and dexamethasone intervention group, the IL-17 concentrations in lung tissue homogenates were decreased, while IL-10 levels were increased. Again, there was a significant difference between CMD high-dose and control treatment, but not between CMD high-dose treatment and dexamethasone intervention. Thus, positive effects of CMD against asthmatic airway remodeling may be due to its regulatory effect on TGF-β1, Smad3, and Smad7 protein levels and on cytokines such as IL-10 and IL-17.

  7. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model

    PubMed Central

    Bergin, Ingrid L.; Wilding, Laura A.; Morishita, Masako; Walacavage, Kim; Ault, Andrew P.; Axson, Jessica L.; Stark, Diana I.; Hashway, Sara A.; Capracotta, Sonja S.; Leroueil, Pascale R.; Maynard, Andrew D.; Philbert, Martin A.

    2015-01-01

    Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity. PMID:26305411

  8. Evaluation of the dose received in the tissues of the neck during quantification of iodine in the thyroid by X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Portararo, Antonio; Licour, Caroline; Gerardy, Isabelle; Pozuelo Navarro, Fausto

    2018-04-01

    The determination of the iodine content in the thyroid is of great interest for many investigations of this gland. The conventional scintigraphic method, using radionuclides, is efficient but delivers a significant dose to the patient. The X-ray fluorescence spectrometry could give information about the iodine content in the thyroid. The measured signal is obtained after stimulation of the stable iodine contained in the gland by X-rays. The advantage of this technique is the complete absence of radioactive isotope injected into the patient body. By applying this, a decrease in effective dose to the patient should be obtained. In this work, the study of the dose received by a thyroid phantom (surrounded by the different tissues of the neck) was performed. The phantom is made of PLA. The dose is measured in optimised conditions defined for the analytical technique. A total head-neck phantom was also used in order to consider the absorbed dose in each different tissues and organs as spinal cord or eyes. Thermo-luminescence dosimeters were chosen for their small size, their sensitivity and the easy positioning on the surface of the phantom but also inside of it to evaluate dose to internal organs. Those LiF 100 dosimeters have been calibrated within the X-ray beam also used for the analysis of iodine. The repeatability and reproducibility of the method has been evaluated. The influence of parameters as concentration of iodine in the thyroid, distance between the X-ray generator and the neck, thickness of the tissues surrounding the thyroid, has been investigated in terms of modifying parameters of the dose received by different tissues situated in the neck and the head.

  9. SRT and SBRT: Current practices for QA dosimetry and 3D

    NASA Astrophysics Data System (ADS)

    Benedict, S. H.; Cai, J.; Libby, B.; Lovelock, M.; Schlesinger, D.; Sheng, K.; Yang, W.

    2010-11-01

    The major feature that separates stereotactic radiation therapy (cranial SRT) and stereotactic body radiation therapy (SBRT) from conventional radiation treatment is the delivery of large doses in a few fractions which results in a high biological effective dose (BED). In order to minimize the normal tissue toxicity, quality assurance of the conformation of high doses to the target and rapid fall off doses away from the target is critical. The practice of SRT and SBRT therefore requires a high-level of confidence in the accuracy of the entire treatment delivery process. In SRT and SBRT confidence in this accuracy is accomplished by the integration of modern imaging, simulation, treatment planning and delivery technologies into all phases of the treatment process; from treatment simulation and planning and continuing throughout beam delivery. In this report some of the findings of Task group 101 of the AAPM will be presented which outlines the best-practice guidelines for SBRT. The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information in this task group is provided for establishing an SBRT program, including protocols, equipment, resources, and QA procedures.

  10. Development and characterization of a dual-energy subtraction imaging system for chest radiography based on CsI:Tl amorphous silicon flat-panel technology

    NASA Astrophysics Data System (ADS)

    Sabol, John M.; Avinash, Gopal B.; Nicolas, Francois; Claus, Bernhard E. H.; Zhao, Jianguo; Dobbins, James T., III

    2001-06-01

    Dual-energy subtraction imaging increases the sensitivity and specificity of pulmonary nodule detection in chest radiography by reducing the contrast of overlying bone structures. Recent development of a fast, high-efficiency detector enables dual-energy imaging to be integrated into the traditional workflow. We have modified a GE RevolutionTM XQ/i chest imaging system to construct a dual-energy imaging prototype system. Here we describe the operating characteristics of this prototype and evaluate image quality. Empirical results show that the dual-energy CNR is maximized if the dose is approximately equal for both high and low energy exposures. Given the high detector DQE, and allocation of dose between the two views, we can acquire dual-energy PA and conventional lateral images with total dose equivalent to a conventional two-view film chest exam. Calculations have shown that the dual-exposure technique has superior CNR and tissue cancellation than single-exposure CR systems. Clinical images obtained on a prototype dual-energy imaging system show excellent tissue contrast cancellation, low noise, and modest motion artefacts. In summary, a prototype dual-energy system has been constructed which enables rapid, dual-exposure imaging of the chest using a commercially available high-efficiency, flat-panel x-ray detector. The quality of the clinical images generated with this prototype exceeds that of CR techniques and demonstrates the potential for improved detection and characterization of lung disease through dual-energy imaging.

  11. A study of the radiation environment on board the space shuttle flight STS-57

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Benton, E. V.; Frank, A. L.; Keegan, R. P.; Dudkin, V. E.; Karpov, O. N.; Potapov, V.; Akopova, A. B.; Magradze, N. V.

    1995-01-01

    A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on space shuttle flight STS-57 was conducted. The shuttle flew in a nearly circular orbit of 28.5 deg inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTD's) and thermoluminescent detectors (TLD's), and Russian nuclear emulsions, PNTD's, and TLD's. All the detector systems were shielded by the same shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micron and 200 keV/micron. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than TLD's, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLD's to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.

  12. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy.

    PubMed

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-01

    Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an "effective overlap volume histogram" the authors derived an "interpolated balanced planning target" intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing resulting from the new approach was quantified. Analysis of the 4D dose distributions from all five patients showed that while achieving tumor coverage comparable to the ITV approach, the new planning target definition resulted in reductions of lung V(10), V(20), and V(30) of 6.3% ± 1.7%, 10.6% ± 3.9%, and 12.9% ± 5.5%, respectively, as well as reductions in mean lung dose, mean dose to the GTV-ring and mean heart dose of 8.8% ± 2.5%, 7.2% ± 2.5%, and 10.6% ± 3.6%, respectively. The authors have developed a simple and systematic approach to generate a 4D-interpolated balanced planning target volume that implicitly incorporates the dynamics of respiratory-organ motion without requiring 4D-dose computation or optimization. Preliminary results based on 4D-CT data of five previously treated lung patients showed that this new planning target approach may improve normal tissue sparing without sacrificing tumor coverage.

  13. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.

    2007-01-01

    The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion coefficients for newly identified radiosensitive organs—salivary glands, gall bladder, heart and prostate—were reported, as well as the brain, which was originally considered in ICRP Publication 60 as a member of the remainder category of the effective dose.

  14. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank

    2015-06-01

    Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.

  15. Real time chemical exposure and risk monitor

    DOEpatents

    Thrall, Karla D.; Kenny, Donald V.; Endres, George W. R.; Sisk, Daniel R.

    1997-01-01

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose.

  16. Real time chemical exposure and risk monitor

    DOEpatents

    Thrall, K.D.; Kenny, D.V.; Endres, G.W.R.; Sisk, D.R.

    1997-07-08

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose. 7 figs.

  17. Study Of Dose Distribution In A Human Body In Space Flight With The Spherical Tissue-Equivalent Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.

    In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective dose rate (about 0.49 mSv/day at radiation quality factor of 2.6) is from 12 to 15 per cent lower than the averaged dose on the phantom surface as dependent on the body attitude.

  18. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    PubMed Central

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably. PMID:27611841

  19. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides.

    PubMed

    Kletting, Peter; Schuchardt, Christiane; Kulkarni, Harshad R; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P; Beer, Ambros J

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25-29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1-3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably.

  20. Launching a Novel Preclinical Infrastructure: Comparative Oncology Trials Consortium Directed Therapeutic Targeting of TNFα to Cancer Vasculature

    PubMed Central

    Mazcko, Christina; Hanna, Engy; Kachala, Stefan; LeBlanc, Amy; Newman, Shelley; Vail, David; Henry, Carolyn; Thamm, Douglas; Sorenmo, Karin; Hajitou, Amin; Pasqualini, Renata; Arap, Wadih

    2009-01-01

    Background Under the direction and sponsorship of the National Cancer Institute, we report on the first pre-clinical trial of the Comparative Oncology Trials Consortium (COTC). The COTC is a novel infrastructure to integrate cancers that naturally develop in pet dogs into the development path of new human drugs. Trials are designed to address questions challenging in conventional preclinical models and early phase human trials. Large animal spontaneous cancer models can be a valuable addition to successful studies of cancer biology and novel therapeutic drug, imaging and device development. Methodology/Principal Findings Through this established infrastructure, the first trial of the COTC (COTC001) evaluated a targeted AAV-phage vector delivering tumor necrosis factor (RGD-A-TNF) to αV integrins on tumor endothelium. Trial progress and data was reviewed contemporaneously using a web-enabled electronic reporting system developed for the consortium. Dose-escalation in cohorts of 3 dogs (n = 24) determined an optimal safe dose (5×1012 transducing units intravenous) of RGD-A-TNF. This demonstrated selective targeting of tumor-associated vasculature and sparing of normal tissues assessed via serial biopsy of both tumor and normal tissue. Repetitive dosing in a cohort of 14 dogs, at the defined optimal dose, was well tolerated and led to objective tumor regression in two dogs (14%), stable disease in six (43%), and disease progression in six (43%) via Response Evaluation Criteria in Solid Tumors (RECIST). Conclusions/Significance The first study of the COTC has demonstrated the utility and efficiency of the established infrastructure to inform the development of new cancer drugs within large animal naturally occurring cancer models. The preclinical evaluation of RGD-A-TNF within this network provided valuable and necessary data to complete the design of first-in-man studies. PMID:19330034

  1. Genotoxicity testing of peptides: Folate deprivation as a marker of exaggerated pharmacology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guérard, Melanie, E-mail: melanie.guerard@roche.com; Zeller, Andreas; Festag, Matthias

    2014-09-15

    The incidence of micronucleated-cells is considered to be a marker of a genotoxic event and can be caused by direct- or indirect-DNA reactive mechanisms. In particular, small increases in the incidence of micronuclei, which are not associated with toxicity in the target tissue or any structurally altering properties of the compound, trigger the suspicion that an indirect mechanism could be at play. In a bone marrow micronucleus test of a synthetic peptide (a dual agonist of the GLP-1 and GIP receptors) that had been integrated into a regulatory 13-week repeat-dose toxicity study in the rat, small increases in the incidencemore » of micronuclei had been observed, together with pronounced reductions in food intake and body weight gain. Because it is well established that folate plays a crucial role in maintaining genomic integrity and pronounced reductions in food intake and body weight gain were observed, folate levels were determined from plasma samples initially collected for toxicokinetic analytics. A dose-dependent decrease in plasma folate levels was evident after 4 weeks of treatment at the mid and high dose levels, persisted until the end of the treatment duration of 13-weeks and returned to baseline levels during the recovery period of 4 weeks. Based on these properties, and the fact that the compound tested (peptide) per se is not expected to reach the nucleus and cause DNA damage, the rationale is supported that the elevated incidence of micronucleated polychromatic erythrocytes is directly linked to the exaggerated pharmacology of the compound resulting in a decreased folate level. - Highlights: • A synthetic peptide has been evaluated for potential genotoxicity • Small increases in an integrated (13-weeks) micronucleus test were observed • Further, animals had a pronounced reductions in food intake and body weight gain • A dose-dependent decrease in plasma folate levels was evident from week 4 onwards • Elevated micronuclei-incidence due to the exaggerated pharmacology.« less

  2. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yafei; Brott, David; Luo, Wenli

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtrationmore » rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development.« less

  3. Effect of chronic low-dose tadalafil on penile cavernous tissues in diabetic rats.

    PubMed

    Mostafa, Mohamed E; Senbel, Amira M; Mostafa, Taymour

    2013-06-01

    To assess the effect of chronic low-dose administration of tadalafil (Td) on penile cavernous tissue in induced diabetic rats. The study investigaged 48 adult male albino rats, comprising a control group, sham controls, streptozotocin-induced diabetic rats, and induced diabetic rats that received Td low-dose daily (0.09 mg/200 g weight) for 2 months. The rats were euthanized 1 day after the last dose. Cavernous tissues were subjected to histologic, immunohistochemical, morphometric studies, and measurement of intracavernosal pressure and mean arterial pressure in anesthetized rats. Diabetic rats demonstrated dilated cavernous spaces, smooth muscles with heterochromatic nuclei, degenerated mitochondria, vacuolated cytoplasm, and negative smooth muscle immunoreactivity. Nerve fibers demonstrated a thick myelin sheath and intra-axonal edema, where blood capillaries exhibited thick basement membrane. Diabetic rats on Td showed improved cavernous organization with significant morphometric increases in the area percentage of smooth muscles and elastic tissue and a significant decrease of fibrous tissue. The Td-treated group showed enhanced erectile function (intracavernosal pressure/mean arterial pressure) at 0.3, 0.5, 1, 3, and 5 Hz compared with diabetic group values at the respective frequencies (P <.05) that approached control values. Chronic low-dose administration of Td in diabetic rats is associated with substantial improvement of the structure of penile cavernous tissue, with increased smooth muscles and elastic tissue, decreased fibrous tissue, and functional enhancement of the erectile function. This raises the idea that the change in penile architecture with Td treatment improves erectile function beyond its half-life and its direct pharmacologic action on phosphodiesterase type 5. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    PubMed

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given the small variation with distance, using conversion factors based on the emitted photon spectrum (or its mean energy) of a given source introduces minimal error. The large differences observed between scoring schemes underline the need for guidelines on choice of media for dose reporting. Providing such guidelines is beyond the scope of this work.

  5. Risk of a Second Malignant Neoplasm After Cancer in Childhood Treated With Radiotherapy: Correlation With the Integral Dose Restricted to the Irradiated Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, France; Institut Gustave Roussy, Villejuif; Universite Paris XI, Villejuif

    2008-03-01

    Purpose: After successful treatment of cancers in childhood, the occurrence of second malignant neoplasm (SMN) came to the fore. Few studies have considered the relationship between the radiation dose received and the risk of developing an SMN. To take into account the heterogeneity of the dose distribution so as to evaluate the overall risk of an SMN after a childhood cancer, we therefore focused on the integral dose restricted to the irradiated fields. Methods and Materials: The study was performed in a cohort of 4,401 patients who were 3-year survivors of all types of childhood cancer treated between 1947 andmore » 1986 in France and Great Britain. For each patient, the integral dose was estimated for the volume inside the beam edges. Results: We found a significant dose-response relationship between the overall risk of an SMN and the estimated integral dose. The excess relative risk for each incremental unit of the integral dose was only 0.008 in a linear model and 0.017 when a negative exponential term was considered, when adjusted for chemotherapy. The risk of SMN occurrence was 2.6 times higher in the case of irradiation. However among patients who had received radiotherapy, only those who had received the highest integral dose actually had a higher risk. Conclusions: The integral dose in our study cannot be considered as a good predictor of later risks. However other studies with the same study design are obviously needed to evaluate the use of the integral dose as a tool for decision making concerning different radiotherapy techniques.« less

  6. Challenges in validating the sterilisation dose for processed human amniotic membranes

    NASA Astrophysics Data System (ADS)

    Yusof, Norimah; Hassan, Asnah; Firdaus Abd Rahman, M. N.; Hamid, Suzina A.

    2007-11-01

    Most of the tissue banks in the Asia Pacific region have been using ionising radiation at 25 kGy to sterilise human tissues for save clinical usage. Under tissue banking quality system, any dose employed for sterilisation has to be validated and the validation exercise has to be a part of quality document. Tissue grafts, unlike medical items, are not produced in large number per each processing batch and tissues relatively have a different microbial population. A Code of Practice established by the International Atomic Energy Agency (IAEA) in 2004 offers several validation methods using smaller number of samples compared to ISO 11137 (1995), which is meant for medical products. The methods emphasise on bioburden determination, followed by sterility test on samples after they were exposed to verification dose for attaining of sterility assurance level (SAL) of 10 -1. This paper describes our experience in using the IAEA Code of Practice in conducting the validation exercise for substantiating 25 kGy as sterilisation dose for both air-dried amnion and those preserved in 99% glycerol.

  7. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxelmore » and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for{sup 103}Pd seeds and smallest but still considerable differences for {sup 131}Cs seeds. Conclusions: Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stathakis, S; Defoor, D; Saenz, D

    Purpose: Stereotactic radiosurgery (SRS) outcomes are related to the delivered dose to the target and to surrounding tissue. We have commissioned a Monte Carlo based dose calculation algorithm to recalculated the delivered dose planned using pencil beam calculation dose engine. Methods: Twenty consecutive previously treated patients have been selected for this study. All plans were generated using the iPlan treatment planning system (TPS) and calculated using the pencil beam algorithm. Each patient plan consisted of 1 to 3 targets and treated using dynamically conformal arcs or intensity modulated beams. Multi-target treatments were delivered using multiple isocenters, one for each target.more » These plans were recalculated for the purpose of this study using a single isocenter. The CT image sets along with the plan, doses and structures were DICOM exported to Monaco TPS and the dose was recalculated using the same voxel resolution and monitor units. Benchmark data was also generated prior to patient calculations to assess the accuracy of the two TPS against measurements using a micro ionization chamber in solid water. Results: Good agreement, within −0.4% for Monaco and +2.2% for iPlan were observed for measurements in water phantom. Doses in patient geometry revealed up to 9.6% differences for single target plans and 9.3% for multiple-target-multiple-isocenter plans. The average dose differences for multi-target-single-isocenter plans were approximately 1.4%. Similar differences were observed for the OARs and integral dose. Conclusion: Accuracy of the beam is crucial for the dose calculation especially in the case of small fields such as those used in SRS treatments. A superior dose calculation algorithm such as Monte Carlo, with properly commissioned beam models, which is unaffected by the lack of electronic equilibrium should be preferred for the calculation of small fields to improve accuracy.« less

  9. WE-AB-202-10: Modelling Individual Tumor-Specific Control Probability for Hypoxia in Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, S; Warren, DR; Wilson, JM

    Purpose: To investigate hypoxia-guided dose-boosting for increased tumour control and improved normal tissue sparing using FMISO-PET images Methods: Individual tumor-specific control probability (iTSCP) was calculated using a modified linear-quadratic model with rectal-specific radiosensitivity parameters for three limiting-case assumptions of the hypoxia / FMISO uptake relationship. {sup 18}FMISO-PET images from 2 patients (T3N0M0) from the RHYTHM trial (Investigating Hypoxia in Rectal Tumours NCT02157246) were chosen to delineate a hypoxic region (GTV-MISO defined as tumor-to-muscle ratio > 1.3) within the anatomical GTV. Three VMAT treatment plans were created in Eclipse (Varian): STANDARD (45Gy / 25 fractions to PTV4500); BOOST-GTV (simultaneous integrated boostmore » of 60Gy / 25fr to GTV +0.5cm) and BOOST-MISO (60Gy / 25fr to GTV-MISO+0.5cm). GTV mean dose (in EQD2), iTSCP and normal tissue dose-volume metrics (small bowel, bladder, anus, and femoral heads) were recorded. Results: Patient A showed small hypoxic volume (15.8% of GTV) and Patient B moderate hypoxic volume (40.2% of GTV). Dose escalation to 60Gy was achievable, and doses to femoral heads and small bowel in BOOST plans were comparable to STANDARD plans. For patient A, a reduced maximum bladder dose was observed in BOOST-MISO compared to BOOST-GTV (D0.1cc 49.2Gy vs 54.0Gy). For patient B, a smaller high dose volume was observed for the anus region in BOOST-MISO compared to BOOST-GTV (V55Gy 19.9% vs 100%), which could potentially reduce symptoms of fecal incontinence. For BOOST-MISO, the largest iTSCPs (A: 95.5% / B: 90.0%) assumed local correlation between FMISO uptake and hypoxia, and approached iTSCP values seen for BOOST-GTV (A: 96.1% / B: 90.5%). Conclusion: Hypoxia-guided dose-boosting is predicted to improve local control in rectal tumors when FMISO is spatially correlated to hypoxia, and to reduce dose to organs-at-risk compared to boosting the whole GTV. This could lead to organ-preserving treatment strategies for locally-advanced rectal cancer, thereby improving quality of life. Oxford Cancer Imaging Centre (OCIC); Cancer Research UK (CRUK); Medical Research Council (MRC)« less

  10. Comparison of the relaxation effect in vitro of nitroglycerin vs. fenoterol on human myometrial strips.

    PubMed

    David, M; Hamann, C; Chen, F C; Bruch, L; Lichtenegger, W

    2000-01-01

    Substance dose-related comparison of relaxation effect of nitroglycerin (GTN) and the beta 2-mimetic substance fenoterol in human myometrial tissue. Test criterion is the isometric force development of isolated human myometrial strips. These muscle strips were removed from the lower uterine segment at cesarean section. Fenoterol in concentrations of 3 x 10(-8)-10(-5) mol/l or GTN in concentrations of 1.7 x 10(-8)-5.8 x 10(-4) mol/l were applied to the 2 x 2 x 10-mm strips, which were fixed and maintained in tissue baths. The curves were plotted on line. The integral or the "area under the curve" (AUC) served as the parameter for muscle strip activity. A total of 100 strips from 20 patients were used. GTN demonstrated a significant relaxation effect in the in vitro model on human myometrial strips from pregnant women already treated with oxytocin. The effect was able to be enhanced to a point where oxytocin-induced contractions were completely absent. A relatively clear connection was demonstrated between dose and effect whereby increased muscle relaxation resulted at increased concentrations. Compared to GTN application, muscle strip relaxation was less pronounced under fenoterol; a complete inhibition of myometrial activity was not achieved under fenoterol. With respect to relaxation of the myometrial tissue samples the NO donor GTN is at least as potent as the standard tocolytic agent fenoterol in the in vitro model.

  11. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.

  12. SU-E-T-21: A D-D Based Neutron Generator System for Boron Neutron Capture Therapy: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M; Liu, Y; Nie, L

    2015-06-15

    Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30more » ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.« less

  13. ORGAN-SPECIFIC EXTERNAL DOSE COEFFICIENTS AND PROTECTIVE APRON TRANSMISSION FACTORS FOR HISTORICAL DOSE RECONSTRUCTION FOR MEDICAL PERSONNEL

    PubMed Central

    Simon, Steven L.

    2014-01-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel, e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies, e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs), i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma, those factors have been primarily published for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factors values for (i) continuous distributions of energy typical of diagnostic medical x rays (bremsstrahlung radiation), and (ii) for energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probability of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the ICRP/ICRU mono-energetic DCCs and the functions integrated over the air-kerma weighted photon fluence of the 12 defined x-ray spectra. The air kerma-weighted DCCs in this work were developed specifically for an irradiation geometry of anterior to posterior (AP) and for the following tissues: thyroid, breast, ovary, lens of eye, lung, colon, testes, heart, skin (anterior side only), red bone marrow (RBM), heart, and brain. In addition, a series of functional relationships to predict DT per Ka values for RBM dependent on body mass index [BMI (kg m−2) ≡ weight per height2] and average photon energy were derived from a published analysis. Factors to account for attenuation of radiation by protective lead aprons were also developed. Because lead protective aprons often worn by radiology personnel not only reduce the intensity of x-ray exposure but also appreciably harden the transmitted fluence of bremsstrahlung x rays, DCCs were separately calculated for organs possibly protected by lead aprons by considering three cases: no apron, 0.25 mm Pb apron, and 0.5 mm Pb apron. For estimation of organ doses from conducting procedures with radioisotopes, continuous functions of the reported mono-energetic values were developed and DCCs were derived by estimation of the function at relevant energies. By considering the temporal changes in primary exposure-related parameters, e.g., energy distribution, the derived DCCs and transmission factors presented here allow for more realistic historical dose reconstructions for medical personnel when monitoring badge readings are the primary data on which estimation of an individual's organ doses are based. PMID:21617389

  14. Organ-specific external dose coefficients and protective apron transmission factors for historical dose reconstruction for medical personnel.

    PubMed

    Simon, Steven L

    2011-07-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel; e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies; e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs) (i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma), those factors have been published primarily for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factor values for (1) continuous distributions of energy typical of diagnostic medical x-rays (bremsstrahlung radiation), and (2) energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probabilities of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the ICRP/ICRU mono-energetic DCCs and the functions integrated over the air-kerma weighted photon fluence of the 12 defined x-ray spectra. The air kerma-weighted DCCs in this work were developed specifically for an irradiation geometry of anterior to posterior (AP) and for the following tissues: thyroid, breast, ovary, lens of eye, lung, colon, testes, heart, skin (anterior side only), red bone marrow (RBM), and brain. In addition, a series of functional relationships to predict DT Ka-1 values for RBM dependent on body mass index [BMI (kg m-2) ≡ weight per height] and average photon energy were derived from a published analysis. Factors to account for attenuation of radiation by protective lead aprons were also developed. Because lead protective aprons often worn by radiology personnel not only reduce the intensity of x-ray exposure but also appreciably harden the transmitted fluence of bremsstrahlung x-rays, DCCs were separately calculated for organs possibly protected by lead aprons by considering three cases: no apron, 0.25 mm Pb apron, and 0.5 mm Pb apron. For estimation of organ doses from conducting procedures with radioisotopes, continuous functions of the reported mono-energetic values were developed, and DCCs were derived by estimation of the function at relevant energies. By considering the temporal changes in primary exposure-related parameters (e.g., energy distribution), the derived DCCs and transmission factors presented here allow for more realistic historical dose reconstructions for medical personnel when monitoring badge readings are the primary data on which estimation of an individual's organ doses are based.

  15. Fetal radiation monitoring and dose minimization during intensity modulated radiation therapy for glioblastoma in pregnancy.

    PubMed

    Horowitz, David P; Wang, Tony J C; Wuu, Cheng-Shie; Feng, Wenzheng; Drassinower, Daphnie; Lasala, Anita; Pieniazek, Radoslaw; Cheng, Simon; Connolly, Eileen P; Lassman, Andrew B

    2014-11-01

    We examined the fetal dose from irradiation of glioblastoma during pregnancy using intensity modulated radiation therapy (IMRT), and describe fetal dose minimization using mobile shielding devices. A case report is described of a pregnant woman with glioblastoma who was treated during the third trimester of gestation with 60 Gy of radiation delivered via a 6 MV photon IMRT plan. Fetal dose without shielding was estimated using an anthropomorphic phantom with ion chamber and diode measurements. Clinical fetal dose with shielding was determined with optically stimulated luminescent dosimeters and ion chamber. Clinical target volume (CTV) and planning target volume (PTV) coverage was 100 and 98 % receiving 95 % of the prescription dose, respectively. Normal tissue tolerances were kept below quantitative analysis of normal tissue effects in the clinic (QUANTEC) recommendations. Without shielding, anthropomorphic phantom measurements showed a cumulative fetal dose of 0.024 Gy. In vivo measurements with shielding in place demonstrated a cumulative fetal dose of 0.016 Gy. The fetal dose estimated without shielding was 0.04 % and with shielding was 0.026 % of the target dose. In vivo estimation of dose equivalent received by the fetus was 24.21 mSv. Using modern techniques, brain irradiation can be delivered to pregnant patients in the third trimester with very low measured doses to the fetus, without compromising target coverage or normal tissue dose constraints. Fetal dose can further be reduced with the use of shielding devices, in keeping with the principle of as low as reasonably achievable.

  16. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less

  17. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  18. A multi-institutional study of independent calculation verification in inhomogeneous media using a simple and effective method of heterogeneity correction integrated with the Clarkson method.

    PubMed

    Jinno, Shunta; Tachibana, Hidenobu; Moriya, Shunsuke; Mizuno, Norifumi; Takahashi, Ryo; Kamima, Tatsuya; Ishibashi, Satoru; Sato, Masanori

    2018-05-21

    In inhomogeneous media, there is often a large systematic difference in the dose between the conventional Clarkson algorithm (C-Clarkson) for independent calculation verification and the superposition-based algorithms of treatment planning systems (TPSs). These treatment site-dependent differences increase the complexity of the radiotherapy planning secondary check. We developed a simple and effective method of heterogeneity correction integrated with the Clarkson algorithm (L-Clarkson) to account for the effects of heterogeneity in the lateral dimension, and performed a multi-institutional study to evaluate the effectiveness of the method. In the method, a 2D image reconstructed from computed tomography (CT) images is divided according to lines extending from the reference point to the edge of the multileaf collimator (MLC) or jaw collimator for each pie sector, and the radiological path length (RPL) of each line is calculated on the 2D image to obtain a tissue maximum ratio and phantom scatter factor, allowing the dose to be calculated. A total of 261 plans (1237 beams) for conventional breast and lung treatments and lung stereotactic body radiotherapy were collected from four institutions. Disagreements in dose between the on-site TPSs and a verification program using the C-Clarkson and L-Clarkson algorithms were compared. Systematic differences with the L-Clarkson method were within 1% for all sites, while the C-Clarkson method resulted in systematic differences of 1-5%. The L-Clarkson method showed smaller variations. This heterogeneity correction integrated with the Clarkson algorithm would provide a simple evaluation within the range of -5% to +5% for a radiotherapy plan secondary check.

  19. Sci-Thur PM - Colourful Interactions: Highlights 04: A Fast Quantitative MRI Acquisition and Processing Pipeline for Radiation Treatment Planning and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jutras, Jean-David

    MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome thanmore » standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.« less

  20. Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Background Depletion of stratospheric ozone has raised terrestrial levels of ultraviolet-B radiation (UV-B), an environmental change linked to an increased risk of skin cancer and with potentially deleterious consequences for plants. To better understand the processes of UV-B acclimation that result in altered plant morphology and physiology, we investigated gene expression in different organs of maize at several UV-B fluence rates and exposure times. Results Microarray hybridization was used to assess UV-B responses in directly exposed maize organs and organs shielded by a plastic that absorbs UV-B. After 8 hours of high UV-B, the abundance of 347 transcripts was altered: 285 were increased significantly in at least one organ and 80 were downregulated. More transcript changes occurred in directly exposed than in shielded organs, and the levels of more transcripts were changed in adult compared to seedling tissues. The time course of transcript abundance changes indicated that the response kinetics to UV-B is very rapid, as some transcript levels were altered within 1 hour of exposure. Conclusions Most of the UV-B regulated genes are organ-specific. Because shielded tissues, including roots, immature ears, and leaves, displayed altered transcriptome profiles after exposure of the plant to UV-B, some signal(s) must be transmitted from irradiated to shielded tissues. These results indicate that there are integrated responses to UV-B radiation above normal levels. As the same total UV-B irradiation dose applied at three intensities elicited different transcript profiles, the transcriptome changes exhibit threshold effects rather than a reciprocal dose-effect response. Transcriptome profiling highlights possible signaling pathways and molecules for future research. PMID:15003119

  1. An analysis of the equivalent dose calculation for the remainder tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zankl, M.; Drexler, G.

    1995-09-01

    In the 1990 Recommendations of the International Commission on Radiological Protection, the risk-weighted quantity {open_quotes}effective dose equivalent{close_quotes} was replaced by a similar quantity, {open_quotes}effective dose.{close_quotes} Among other alterations, the selection of the organs and tissues contributing to the risk-weighted quantity and their respective weighting factors were changed, including a modified definition of the so-called {open_quotes}remainder.{close_quotes} Close consideration of this latter definition shows that is causes certain ambiguities are unexpected effects which are dealt with in the following. For several geometries of external photon irradiation, the numerical differences of two possible methods of evaluating the remainder dose from the doses tomore » ten single organs, namely as arithmetic mean or as mass weighted average, are assessed. It is shown that deviation from these averaging procedures, as prescribed for these cases where a remainder organ receives a higher dose than an organ with a specified weighting factor, cause discontinuities in the energy dependence of the remainder dose and, consequently, also non-additivity of this quantity. These problems are discussed, and it is shown that, although the numerical consequences for the calculation of the effective dose are small, this unsatisfactory situation needs clarification. One approach might be to abolish some of the ICRP guidance relating to the appropriate tissue weighting factors for the remainder tissues and organs and to make other guidance more precise. 14 refs., 12 figs., 2 tabs.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, B; Kirkby, C; Dept. of Oncology, Dept. Of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta

    Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360° arc-therapy with monoenergetic photon energies 50 – 1000 keV and several clinical spectra used to treat a spherical tumourmore » containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.« less

  3. Final Report - Epigenetics of low dose radiation effects in an animal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalchuk, Olga

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis ofmore » induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low dose radiation effects and adaptive response • To correlate the levels of epigenetic changes with genetic rearrangement levels and gene expression patterns. In sum, we determined the precise global and locus-specific DNA methylation patterns in the LDR-exposed cells and tissues of mice, and to correlated DNA methylation changes with the gene expression patterns and manifestations of genome instability. We also determined the alterations of global histone modification pattern in the LDR exposed tissues. Additionally, we established the nature of microRNAome changes in the LDR exposed tissue. In this study we for the first time found that LDR exposure caused profound tissue-specific epigenetic changes in the exposed tissues. We established that LDR exposure affect methylation of repetitive elements in the murine genome, causes changes in histone methylation, acetylation and phosphorylation. Importantly, we found that LDR causes profound and persistent effects on small RNA profiles and gene expression, and that miRNAs are excellent biomarkers of LDR exposure. Furthermore, we extended our analysis and studied LDR effects in rat tissues and human tissues and cell lines. There we also analyzed LDR-induced gene expression, DNA methylation and miRNA changes. Our datasets laid foundation for several new research projects aimed to understand molecular underpinnings of low dose radiation responses, and biological repercussions of low dose radiation effects and radiation carcinogenesis.« less

  4. SU-E-T-556: Monte Carlo Generated Dose Distributions for Orbital Irradiation Using a Single Anterior-Posterior Electron Beam and a Hanging Lens Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duwel, D; Lamba, M; Elson, H

    Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations.more » Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens.« less

  5. Comparison of normal tissue pharmacokinetics with {sup 111}In/{sup 9}Y monoclonal antibody m170 for breast and prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Joerg; Department of Radiodiagnosis and Therapy, Division of Hematology/Oncology, University of California Davis School of Medicine, Sacramento, CA; DeNardo, Gerald L.

    Purpose: Radioactivity deposition in normal tissues limits the dose deliverable by radiopharmaceuticals (RP) in radioimmunotherapy (RIT). This study investigated the absorbed radiation dose in normal tissues for prostate cancer patients in comparison to breast cancer patients for 2 RPs using the monoclonal antibody (MAb) m170. Methods and Materials: {sup 111}In-DOTA-glycylglycylglycyl-L-p-isothiocyanatophenylalanine amide (GGGF)-m170 and {sup 111}In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) 2-iminothiolane (2IT)-m170, representing the same MAb and chelate with and without a cleavable linkage, were studied in 13 breast cancer and 26 prostate cancer patients. Dosimetry for {sup 9}Y was calculated using {sup 111}In MAb pharmacokinetics from the initial imaging study for eachmore » patient, using reference man- and patient-specific masses. Results: The reference man-specific radiation doses (cGy/MBq) were not significantly different for the breast and the prostate cancer patients for both RPs in all but one tissue-RP combination (liver, DOTA-2IT). The patient-specific doses had differences between the groups most of which can be related to weight differences. Conclusions: Similar normal tissue doses were calculated for two groups of patients having different cancers and genders. This similarity combined with continued careful analysis of the imaging data might allow the use of higher starting doses in early phase RIT studies.« less

  6. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  7. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    NASA Astrophysics Data System (ADS)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  8. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters.

    PubMed

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-12-07

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  9. Dose in bone and tissue near bone-tissue interface from electron beam.

    PubMed

    Shiu, A S; Hogstrom, K R

    1991-08-01

    This work has quantitatively studied the variation of dose both within bone and in unit density tissue near bone-tissue interfaces. Dose upstream of a bone-tissue interface is increased because of an increase in the backscattered electrons from the bone. The magnitude of this effect was measured using a thin parallel-plate ionization chamber upstream of a polymethyl methacrylate (PMMA)-hard bone interface. The electron backscatter factor (EBF) increased rapidly with bone thickness until a full EBF was achieved. This occurred at approximately 3.5 mm at 2 MeV and 6 mm at 13.1 MeV. The full EBF at the interface ranged from approximately 1.018 at 13.1 MeV to 1.05 at 2 MeV. It was also observed that the EBF had a dependence on the energy spectrum at the interface. The penetration of the backscattered electrons in the upstream direction of PMMA was also measured. The dose penetration fell off rapidly in the upstream direction of the interface. Dose enhancement to unit density tissue in bone was measured for an electron beam by placing thermoluminescent dosimeters (TLDs) in a PMMA-bone-PMMA phantom. The maximum dose enhancement in bone was approximately 7% of the maximum dose in water. However, the pencil-beam algorithm of Hogstrom et al. predicted an increase of only 1%, primarily owing to the inverse-square correction. Film was also used to measure the dose enhancement in bone. The film plane was aligned either perpendicular or parallel to the central axis of the beam. The film data indicated that the maximum dose enhancement in bone was approximately 8% for the former film alignment (which was similarly predicted by the TLD measurements) and 13% for the latter film alignment. These results confirm that the X ray film is not suitable to be irritated "edge on" in an inhomogeneous phantom without making perturbation corrections resulting from the film acting as a long narrow inhomogeneous cavity within the bone. In addition, the results give the radiotherapist a basis for clinical judgment when electron beams are used to treat lesions behind bone or near bony structures. We feel these data enhance the ability to recognize the shortcomings of the current dose calculation algorithm used clinically.

  10. HZE particle radiation induces tissue-specific and p53-dependent mutagenesis in transgenic animals

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R.

    2001-01-01

    Transgenic animals, with the integrated target gene, provide a unique approach for measuring and characterizing mutations in any tissue of the animal. We are using the plasmid-based lacZ transgenic mice with different p53 genetic background to examine radiation-induced genetic damage resulting from exposure to heavy particle radiation. We measured lacZ mutation frequencies (MF) in the brain and spleen tissues at various times after exposing animals to an acute dose of 1 Gy of 1GeV/amu iron particles. MF in the spleen of p53+/+ animals increased up to 2.6-fold above spontaneous levels at 8 weeks post irradiation. In contrast, brain MF from the same animals increased 1.7-fold above controls in the same period. In the p53-/- animals, brain MF increased to 2.2-fold above spontaneous levels at 1 week after treatment, but returned to control levels thereafter. Radiation also induced alterations in the spectrum of mutants in both tissues, accompanied by changes in the frequency of mutants with deletions extending past the transgene into mouse genomic DNA. Our results indicate that the accumulation of transgene MF after radiation exposure is dependant on the tissue examined as well as the p53 genetic background of the animals.

  11. SU-E-T-233: Cyberknife Versus Linac IMRT for Dose Comparision in Hypofractionated Hemi Larynx Irradiation of Early Stage True Vocal Cord Cancer: A Dosimetric Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Lee, P; Jiang, S

    2015-06-15

    Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknifemore » plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.« less

  12. SU-D-202-01: Functional Lung Avoidance and Response-Adaptive Escalation (FLARE) RT: Feasibility of a Precision Radiation Oncology Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, S; Lee, E; Miyaoka, R

    Purpose: NSCLC patient RT is planned without consideration of spatial heterogeneity in lung function or tumor response, which may have contributed to failed uniform dose escalation in a randomized trial. The feasibility of functional lung avoidance and response-adaptive escalation (FLARE) RT to reduce dose to [{sup 99m}Tc]MAA-SPECT/CT perfused lung while redistributing 74Gy within [{sup 18}F]FDG-PET/CT biological target volumes was assessed. Methods: Eight Stage IIB–IIIB NSCLC patients underwent FDG-PET/CT and MAA-SPECT/CT treatment planning scans. Perfused lung objectives were derived from scatter/collimator/attenuation-corrected MAA-SPECT uptake relative to ITV-subtracted lung to maintain <20Gy mean lung dose (MLD). Prescriptions included 60Gy to PTV and concomitantmore » boost of 74Gy mean to biological target volumes (BTV=GTV+PET margin) scaled to each BTV voxel by relative FDG-PET SUV. Dose-painting-by-numbers prescriptions were integrated into commercial TPS via previously reported ROI discretization. Dose constraints for lung, heart, cord, and esophagus were defined. FLARE RT plans were optimized with VMAT, proton pencil beam scanning (PBS) with 3%-3mm robust optimization, and combination PBS (avoidance) plus VMAT (escalation). Dosimetric differences were evaluated by Friedman non-parametric paired test with multiple sampling correction. Results: PTV and normal tissue objectives were not violated in 24 FLARE RT plans. Population median of mean BTV dose was 73.7Gy (68.5–75.5Gy), mean FDG-PET peak dose was 89.7Gy (73.5–103Gy), MLD was 12.3Gy (7.5–19.6Gy), and perfused MLD was 4.8Gy (0.9–12.1Gy). VMAT achieved higher dose to the FDG-PET peak subvolume (p=0.01), while PBS delivered lower dose to lung (p<0.001). Voxelwise linear correlation between BTV dose and FDG-PET uptake was higher for VMAT (R=0.93) and PBS+VMAT (R=0.94) compared to PBS alone (R=0.89). Conclusion: FLARE RT is feasible with VMAT and PBS. A combination of PBS for functional lung avoidance and VMAT for FDG-PET dose escalation balances target/normal tissue objective tradeoffs. These results support future testing of FLARE RT safety and efficacy within a precision radiation oncology trial. This work was supported by a Research Scholar grant from the Radiological Society of North American Research & Education Foundation.« less

  13. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.

  14. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications.

    PubMed

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-21

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.

  15. Intensive fibrosarcoma-binding capability of the reconstituted analog and its antitumor activity.

    PubMed

    Xu, Jian; Du, Yue; Liu, Wen-Juan; Li, Liang; Li, Yi; Wang, Xiao-Fei; Yi, Hong-Fei; Shan, Chuan-Kun; Xia, Gui-Min; Liu, Xiu-Jun; Zhen, Yong-Su

    2018-11-01

    Fibrosarcomas are highly aggressive malignant tumors. It is urgently needed to explore targeted drugs and modalities for more effective therapy. Matrix metalloproteinases (MMPs) play important roles in tumor progression and metastasis, while several MMPs are highly expressed in fibrosarcomas. In addition, tissue inhibitor of metalloproteinase 2 (TIMP2) displays specific interaction with MMPs. Therefore, TIMP2 may play an active role in the development of fibrosarcoma-targeting agents. In the current study, a TIMP2-based recombinant protein LT and its enediyne-integrated analog LTE were prepared; furthermore, the fibrosarcoma-binding intensity and antitumor activity were investigated. As shown, intense and selective binding capability of the protein LT to human fibrosarcoma specimens was confirmed by tissue microarray. Moreover, LTE, the enediyne-integrated analog of LT, exerted highly potent cytotoxicity to fibrosarcoma HT1080 cells, induced apoptosis, and caused G2/M arrest. LTE at 0.1 nM markedly suppressed the migration and invasion of HT1080 cells. LTE at tolerated dose of 0.6 mg/kg inhibited the tumor growth of fibrosarcoma xenograft in athymic mice. The study provides evidence that the TIMP2-based reconstituted analog LTE may be useful as a targeted drug for fibrosarcome therapy.

  16. Radiogenomics: a systems biology approach to understanding genetic risk factors for radiotherapy toxicity ?

    PubMed Central

    Herskind, Carsten; Talbot, Christopher J.; Kerns, Sarah L.; Veldwijk, Marlon R.; Rosenstein, Barry S.; West, Catharine M. L.

    2016-01-01

    Adverse reactions in normal tissue after radiotherapy (RT) limit the dose that can be given to tumour cells. Since 80% of individual variation in clinical response is estimated to be caused by patient-related factors, identifying these factors might allow prediction of patients with increased risk of developing severe reactions. While inactivation of cell renewal is considered a major cause of toxicity in early-reacting normal tissues, complex interactions involving multiple cell types, cytokines, and hypoxia seem important for late reactions. Here, we review ‘omics’ approaches such as screening of genetic polymorphisms or gene expression analysis, and assess the potential of epigenetic factors, posttranslational modification, signal transduction, and metabolism. Furthermore, functional assays have suggested possible associations with clinical risk of adverse reaction. Pathway analysis incorporating different ‘omics’ approaches may be more efficient in identifying critical pathways than pathway analysis based on single ‘omics’ data sets. Integrating these pathways with functional assays may be powerful in identifying multiple subgroups of RT patients characterized by different mechanisms. Thus ‘omics’ and functional approaches may synergize if they are integrated into radiogenomics ‘systems biology’ to facilitate the goal of individualised radiotherapy. PMID:26944314

  17. Systems toxicology identifies mechanistic impacts of 2-amino-4,6-dinitrotoluene (2A-DNT) exposure in Northern Bobwhite.

    PubMed

    Gust, Kurt A; Nanduri, Bindu; Rawat, Arun; Wilbanks, Mitchell S; Ang, Choo Yaw; Johnson, David R; Pendarvis, Ken; Chen, Xianfeng; Quinn, Michael J; Johnson, Mark S; Burgess, Shane C; Perkins, Edward J

    2015-08-07

    A systems toxicology investigation comparing and integrating transcriptomic and proteomic results was conducted to develop holistic effects characterizations for the wildlife bird model, Northern bobwhite (Colinus virginianus) dosed with the explosives degradation product 2-amino-4,6-dinitrotoluene (2A-DNT). A subchronic 60 d toxicology bioassay was leveraged where both sexes were dosed via daily gavage with 0, 3, 14, or 30 mg/kg-d 2A-DNT. Effects on global transcript expression were investigated in liver and kidney tissue using custom microarrays for C. virginianus in both sexes at all doses, while effects on proteome expression were investigated in liver for both sexes and kidney in males, at 30 mg/kg-d. As expected, transcript expression was not directly indicative of protein expression in response to 2A-DNT. However, a high degree of correspondence was observed among gene and protein expression when investigating higher-order functional responses including statistically enriched gene networks and canonical pathways, especially when connected to toxicological outcomes of 2A-DNT exposure. Analysis of networks statistically enriched for both transcripts and proteins demonstrated common responses including inhibition of programmed cell death and arrest of cell cycle in liver tissues at 2A-DNT doses that caused liver necrosis and death in females. Additionally, both transcript and protein expression in liver tissue was indicative of induced phase I and II xenobiotic metabolism potentially as a mechanism to detoxify and excrete 2A-DNT. Nuclear signaling assays, transcript expression and protein expression each implicated peroxisome proliferator-activated receptor (PPAR) nuclear signaling as a primary molecular target in the 2A-DNT exposure with significant downstream enrichment of PPAR-regulated pathways including lipid metabolic pathways and gluconeogenesis suggesting impaired bioenergetic potential. Although the differential expression of transcripts and proteins was largely unique, the consensus of functional pathways and gene networks enriched among transcriptomic and proteomic datasets provided the identification of many critical metabolic functions underlying 2A-DNT toxicity as well as impaired PPAR signaling, a key molecular initiating event known to be affected in di- and trinitrotoluene exposures.

  18. The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck

    NASA Astrophysics Data System (ADS)

    Al-Hallaq, H. A.; Reft, C. S.; Roeske, J. C.

    2006-03-01

    The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.

  19. Derivation of the expressions for γ50 and D50 for different individual TCP and NTCP models

    NASA Astrophysics Data System (ADS)

    Stavreva, N.; Stavrev, P.; Warkentin, B.; Fallone, B. G.

    2002-10-01

    This paper presents a complete set of formulae for the position (D50) and the normalized slope (γ50) of the dose-response relationship based on the most commonly used radiobiological models for tumours as well as for normal tissues. The functional subunit response models (critical element and critical volume) are used in the derivation of the formulae for the normal tissue. Binomial statistics are used to describe the tumour control probability, the functional subunit response as well as the normal tissue complication probability. The formulae are derived for the single hit and linear quadratic models of cell kill in terms of the number of fractions and dose per fraction. It is shown that the functional subunit models predict very steep, almost step-like, normal tissue individual dose-response relationships. Furthermore, the formulae for the normalized gradient depend on the cellular parameters α and β when written in terms of number of fractions, but not when written in terms of dose per fraction.

  20. SU-F-T-58: Dosimetric Evaluation of Breast Tissue Composition for Electronic Brachytherapy (BET) Source In High Dose Rate Accelerated Partial Breast (APBI) Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, W; Johnson, D; Ahmad, S

    Purpose: To quantitatively evaluate the dosimetric impact of differing breast tissue compositions for electronic brachytherapy source for high dose rate accelerated partial breast irradiation. Methods: A series of Monte Carlo Simulation were created using the GEANT4 toolkit (version 10.0). The breast phantom was modeled as a semi-circle with a radius of 5.0 cm. A water balloon with a radius of 1.5 cm was located in the phantom with the Xoft AxxentTM EBT source placed at center as a point source. A mixed of two tissue types (adipose and glandular tissue) was assigned as the materials for the breast phantom withmore » different weight ratios. The proportionality of glandular and adipose tissue was simulated in four different fashions, 80/20, 70/30, 50/50 and 30/70 respectively. The custom energy spectrum for the 50 kVp XOFT source was provided via the manufacturer and used to generate incident photons. The dose distributions were recorded using a parallel three dimensional mesh with a size of 30 × 30 × 30 cm3 with 1 × 1 × 1 mm3 voxels. The simulated doses absorbed along the transverse axis were normalized at the distance of 1 cm and then compared with the calculations using standard TG-43 formalism. Results: All simulations showed underestimation of dose beyond balloon surface compared to standard TG-43 calculations. The maximum percentage differences within 2 cm distance from balloon surface were found to be 18%, 11%, 10% and 8% for the fat breast (30/70), standard breast (50/50), dense breast (70/30 and 80/20), respectively. Conclusion: The accuracy of dose calculations for low energy EBT source was limited when considering tissue heterogeneous composition. The impact of atomic number on photo-electric effect for lower energy Brachytherapy source is not accounted for and resulting in significant errors in dose calculation.« less

  1. SU-G-TeP3-09: Proton Minibeam Radiation Therapy Increases Normal Tissue Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prezado, Y; Gonzalez-Infantes, W; Juchaux, M

    Purpose: The dose tolerances of normal tissues continue being the main limitation in radiotherapy. To overcome it, we recently proposed a novel concept: proton minibeam radiation therapy (pMBRT) [1]. It allies the physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams (minibeam radiation therapy) [2]. The dose distributions are such that the tumor receives a homogeneous dose distribution, while normal tissues benefit from the spatial fractionation of the dose. The objective of our work was to implement this promising technique at a clinical center (Proton therapy center in Orsay) in order tomore » evaluate the potential gain in tissue sparing. Methods: Dose distributions were measured by means of gafchromic films and a PTW microdiamond detector (60019). Once the dosimetry was established, the whole brain of 7 weeks old male Fischer 344 rats was irradiated. Half of the animals received conventional seamless proton irradiation (25 Gy in one fraction). The other rats were irradiated with pMBRT (58 Gy peak dose in one fraction). The average dose deposited in the same targeted volume was in both cases 25 Gy. Results: The first complete set of dosimetric data in such small proton field sizes was obtained [3]. Rats treated with conventional proton irradiation exhibited severe moist desquamation and permanent epilation afterwards. The minibeam group, on the other hand, exhibited no skin damage and no clinical symptoms. MRI imaging and histological analysis are planned at 6 months after irradiation. Conclusion: Our preliminary results indicate that pMBRT leads to an increase in tissue resistance. This can open the door to an efficient treatment of very radioresistant tumours. [1] Prezado et al. Med. Phys. 40, 031712, 1–8 (2013).[2] Prezado et al., Rad. Research. 184, 314-21 (2015). [3] Peucelle et al., Med. Phys. 42 7108-13 (2015).« less

  2. Dosimetric and radiobiological characterizations of prostate intensity-modulated radiotherapy and volumetric-modulated arc therapy: A single-institution review of ninety cases

    PubMed Central

    Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.

    2016-01-01

    This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562

  3. Applying an analytical method to study neutron behavior for dosimetry

    NASA Astrophysics Data System (ADS)

    Shirazi, S. A. Mousavi

    2016-12-01

    In this investigation, a new dosimetry process is studied by applying an analytical method. This novel process is associated with a human liver tissue. The human liver tissue has compositions including water, glycogen and etc. In this study, organic compound materials of liver are decomposed into their constituent elements based upon mass percentage and density of every element. The absorbed doses are computed by analytical method in all constituent elements of liver tissue. This analytical method is introduced applying mathematical equations based on neutron behavior and neutron collision rules. The results show that the absorbed doses are converged for neutron energy below 15MeV. This method can be applied to study the interaction of neutrons in other tissues and estimating the absorbed dose for a wide range of neutron energy.

  4. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the therapeutic ratio can be increased over that which can be achieved with conventional selective boosting IMRT using physical dose-volume objectives. In conclusion, a novel risk-adaptive radiotherapy strategy is proposed and promises increased expected local control for locoregionally advanced tumors with equivalent or better normal tissue sparing.

  5. Prediction of radiation-induced normal tissue complications in radiotherapy using functional image data

    NASA Astrophysics Data System (ADS)

    Nioutsikou, Elena; Partridge, Mike; Bedford, James L.; Webb, Steve

    2005-03-01

    The aim of this study has been to explicitly include the functional heterogeneity of an organ as a factor that contributes to the probability of complication of normal tissues following radiotherapy. Situations for which the inclusion of this information can be advantageous to the design of treatment plans are then investigated. A Java program has been implemented for this purpose. This makes use of a voxelated model of a patient, which is based on registered anatomical and functional data in order to enable functional voxel weighting. Using this model, the functional dose-volume histogram (fDVH) and the functional normal tissue complication probability (fNTCP) are then introduced as extensions to the conventional dose-volume histogram (DVH) and normal tissue complication probability (NTCP). In the presence of functional heterogeneity, these tools are physically more meaningful for plan evaluation than the traditional indices, as they incorporate additional information and are anticipated to show a better correlation with outcome. New parameters mf, nf and TD50f are required to replace the m, n and TD50 parameters. A range of plausible values was investigated, awaiting fitting of these new parameters to patient outcomes where functional data have been measured. As an example, the model is applied to two lung datasets utilizing accurately registered computed tomography (CT) and single photon emission computed tomography (SPECT) perfusion scans. Assuming a linear perfusion-function relationship, the biological index mean perfusion weighted lung dose (MPWLD) has been extracted from integration over outlined regions of interest. In agreement with the MPWLD ranking, the fNTCP predictions reveal that incorporation of functional imaging in radiotherapy treatment planning is most beneficial for organs with a large volume effect and large focal areas of dysfunction. There is, however, no additional advantage in cases presenting with homogeneous function. Although presented for lung radiotherapy, this model is general. It can also be applied to positron emission tomography (PET)-CT or functional magnetic resonance imaging (fMRI)-CT registered data and extended to the functional description of tumour control probability.

  6. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Vincent W.C., E-mail: htvinwu@polyu.edu.hk; Tse, Teddy K.H.; Ho, Cola L.M.

    2013-07-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each casemore » by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time.« less

  7. SU-E-T-800: Verification of Acurose XB Dose Calculation Algorithm at Air Cavity-Tissue Interface Using Film Measurement for Small Fields of 6-MV Flattening Filter-Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S; Suh, T; Chung, J

    2015-06-15

    Purpose: To verify the dose accuracy of Acuros XB (AXB) dose calculation algorithm at air-tissue interface using inhomogeneous phantom for 6-MV flattening filter-free (FFF) beams. Methods: An inhomogeneous phantom included air cavity was manufactured for verifying dose accuracy at the air-tissue interface. The phantom was composed with 1 and 3 cm thickness of air cavity. To evaluate the central axis doses (CAD) and dose profiles of the interface, the dose calculations were performed for 3 × 3 and 4 × 4 cm{sup 2} fields of 6 MV FFF beams with AAA and AXB in Eclipse treatment plainning system. Measurements inmore » this region were performed with Gafchromic film. The root mean square errors (RMSE) were analyzed with calculated and measured dose profile. Dose profiles were divided into inner-dose profile (>80%) and penumbra (20% to 80%) region for evaluating RMSE. To quantify the distribution difference, gamma evaluation was used and determined the agreement with 3%/3mm criteria. Results: The percentage differences (%Diffs) between measured and calculated CAD in the interface, AXB shows more agreement than AAA. The %Diffs were increased with increasing the thickness of air cavity size and it is similar for both algorithms. In RMSEs of inner-profile, AXB was more accurate than AAA. The difference was up to 6 times due to overestimation by AAA. RMSEs of penumbra appeared to high difference for increasing the measurement depth. Gamma agreement also presented that the passing rates decreased in penumbra. Conclusion: This study demonstrated that the dose calculation with AXB shows more accurate than with AAA for the air-tissue interface. The 2D dose distributions with AXB for both inner-profile and penumbra showed better agreement than with AAA relative to variation of the measurement depths and air cavity sizes.« less

  8. Exposure to Hexavalent Chromium Resulted in Significantly Higher Tissue Chromium Burden Compared With Trivalent Chromium Following Similar Oral Doses to Male F344/N Rats and Female B6C3F1 Mice

    PubMed Central

    Collins, Bradley J.; Stout, Matthew D.; Levine, Keith E.; Kissling, Grace E.; Fennell, Timothy R.; Walden, Ramsey; Abdo, Kamal; Pritchard, John B.; Fernando, Reshan A.; Burka, Leo T.; Hooth, Michelle J.

    2010-01-01

    In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight3/4 (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI). PMID:20843897

  9. Exposure to hexavalent chromium resulted in significantly higher tissue chromium burden compared with trivalent chromium following similar oral doses to male F344/N rats and female B6C3F1 mice.

    PubMed

    Collins, Bradley J; Stout, Matthew D; Levine, Keith E; Kissling, Grace E; Melnick, Ronald L; Fennell, Timothy R; Walden, Ramsey; Abdo, Kamal; Pritchard, John B; Fernando, Reshan A; Burka, Leo T; Hooth, Michelle J

    2010-12-01

    In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight(3/4) (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI).

  10. Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study.

    PubMed

    Polf, J C; Peterson, S; Ciangaru, G; Gillin, M; Beddar, S

    2009-02-07

    In this paper, we present the results of a preliminary study of secondary 'prompt' gamma-ray emission produced by proton-nuclear interactions within tissue during proton radiotherapy. Monte Carlo simulations were performed for mono-energetic proton beams, ranging from 2.5 MeV to 250 MeV, irradiating elemental and tissue targets. Calculations of the emission spectra from different biological tissues and their elemental components were made. Also, prompt gamma rays emitted during delivery of a clinical proton spread-out Bragg peak (SOBP) in a homogeneous water phantom and a water phantom containing heterogeneous tissue inserts were calculated to study the correlation between prompt gamma-ray production and proton dose delivery. The results show that the prompt gamma-ray spectra differ significantly for each type of tissue studied. The relative intensity of the characteristic gamma rays emitted from a given tissue was shown to be proportional to the concentration of each element in that tissue. A strong correlation was found between the delivered SOBP dose distribution and the characteristic prompt gamma-ray production. Based on these results, we discuss the potential use of prompt gamma-ray emission as a method to verify the accuracy and efficacy of doses delivered with proton radiotherapy.

  11. Preparation of positional renal slices for study of cell-specific toxicity.

    PubMed

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Krumdieck, C L; Brendel, K

    1987-04-01

    To reduce structural complexity, rabbit kidneys were sliced perpendicular to their cortical-papillary axis to isolate four distinct cell groupings. This positional orientation allows identification of each renal cell type based on its location within the slice. A mechanical slicer was used to make several precision-cut slices rapidly from an oriented cylindrical core of renal tissue, with minimal tissue trauma. Slices were then submerged under a gently circulating oxygenated media in a fritted glass support system that maintains viability (intracellular K+/DNA ratio) and structural integrity (histology) for at least 30 h. A high dose of mercuric chloride (10(-3) M) was used to demonstrate the structural and biochemical changes of intoxicated slices. This method provides a controlled subchronic in vitro system for the study of the individual cell types involved in cell-specific renal toxicities and may also be a useful tool for addressing other pharmacological and physiological research questions.

  12. Comparison of risk estimates using life-table methods.

    PubMed

    Sullivan, R E; Weng, P S

    1987-08-01

    Risk estimates promulgated by various radiation protection authorities in recent years have become increasingly more complex. Early "integral" estimates in the form of health effects per 0.01 person-Gy (per person-rad) or per 10(4) person-Gy (per 10(6) person-rad) have tended to be replaced by "differential" estimates which are age- and sex-dependent and specify both minimum induction (latency) and duration of risk expression (plateau) periods. These latter types of risk estimate must be used in conjunction with a life table in order to reduce them to integral form. In this paper, the life table has been used to effect a comparison of the organ and tissue risk estimates derived in several recent reports. In addition, a brief review of life-table methodology is presented and some features of the models used in deriving differential coefficients are discussed. While the great number of permutations possible with dose-response models, detailed risk estimates and proposed projection models precludes any unique result, the reduced integral coefficients are required to conform to the linear, absolute-risk model recommended for use with the integral risk estimates reviewed.

  13. Scavenging and antioxidant properties of different grape cultivars against ionizing radiation-induced liver damage ex vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2016-04-01

    Ionizing radiation (IR) has become an integral part of the modern medicine--both for diagnosis as well as therapy. However, normal tissues or even distant cells also suffer IR-induced free radical insult. It may be more damaging in longer term than direct radiation exposure. Antioxidants provide protection against IR-induced damage. Grapes are the richest source of antioxidants. Here, we assessed the scavenging properties of four grape (Vitis vinifera) cultivars, namely Flame seedless (Black), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Green), and also evaluated their protective action against γ-radiation-induced oxidative stress in liver tissue ex vivo. The scavenging abilities of grape seeds [2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC₅₀ = 0.008 ± 0.001 mg/mL), hydrogen peroxide (IC₅₀ = 0.49 to 0.8 mg/mL), hydroxyl radicals (IC₅₀ = 0.08 ± 0.008 mg/mL), and nitric oxide (IC₅₀ = 0.8 ± 0.08 mg/mL)] were higher than that of skin or pulp. Gamma (γ) radiation exposure to sliced liver tissues ex vivo from goat, @ 6 Gy significantly (P < 0.001) decreased reduced glutathione (GSH) content by 21.2% and also activities of catalase, glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST) by 49.5, 66.0, 70.3, 73.6%, respectively. However, it increased thiobarbituric acid reactive substances (TBARS) by 2.04-fold and nitric oxide level by 48.6% compared to untreated group. Further increase in doses (10 or 16 Gy) of γ-radiation correspondingly decreased GSH content and enzyme activities, and increased TBARS and nitric oxide levels. Grape extract treatment prior to ionizing radiation exposure ameliorated theses effects at varying extent. The seed extracts exhibited strong antioxidant potential compared to skin or pulp extracts of different grape cultivars against oxidative damage by ionizing radiation (6 Gy, 10 Gy and 16 Gy) in sliced liver tissues ex vivo. Grape extracts at higher concentration (10 mg extract/g liver tissue) showed stronger antioxidant potential against lower dose (6 Gy) of ionizing radiation. Our results suggest that grape extracts could serve as a potential source of natural antioxidant against lower doses of IR-induced oxidative stress in liver extracts ex vivo.

  14. Study of Dose Perturbation at Bone-Tissue Interfaces in Megavoltage Photon Beam Therapy.

    NASA Astrophysics Data System (ADS)

    Das, Indra Jeet

    Dose perturbations during photon beam irradiation occur at interfaces between two dissimilar media due to the loss of electronic equilibrium. The human body contains many different types of interfaces between soft tissue and other media such as, air cavities, lungs, bones, and high atomic number (Z) materials. The dose to critical organs in the vicinity of high Z interfaces, is what leads to this project. This work describes the dose perturbation at high Z (from bone to lead) interfaces with soft tissue for clinically used megavoltage photon beams in the range of CO-60 gamma rays to 24 MV X-rays. It is divided into three main sections: (1) the dose outside the inhomogeneity in the direction of backscatter, (2) the dose inside the inhomogeneity, and (3) the dose on the photon transmission side of the inhomogeneity. Using different types of parallel plate ion chambers, TLD (powder and chip), and film as dosimeters, the dose perturbation is studied as a function of photon energy, thickness, width, and depth of inhomogeneity, distance from the interface and radiation field size. The concept of Bragg-Gray cavity theory is applied and verified for dose determination inside the inhomogeneity. A significant dose enhancement has been observed on the backscatter side for all photon energies. It is strongly dependent on the atomic number of the inhomogeneity and less dependent on the photon energy, thickness, depth, width, and field size. In the forward direction, a dose reduction occurs at the interface at beam energies lower than 10 MV, whereas a dose enhancement occurs for higher photon energies. The interface effect persists up to a few millimeters on the backscatter side but a distance equivalent to the secondary electron range for the particular photon beams in the forward direction. The dose perturbation is explained on the basis of production and transport of secondary electrons. Empirical functions are derived from the experimental data to predict the dose distribution in the vicinity of an inhomogeneity. These equations could form the basis of a treatment planning system that would accurately represent the dose both at the interface and surrounding tissue.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Chell, Erik; Gertner, Michael

    Age-related macular degeneration (ARMD) is a major health problem worldwide. Advanced ARMD, which ultimately leads to profound vision loss, has dry and wet forms, which account for 20% and 80% of cases involving severe vision loss, respectively. A new device and approach for radiation treatment of ARMD has been recently developed by Oraya Therapeutics, Inc. (Newark, CA). The goal of the present study is to provide a initial dosimetry characterization of the proposed radiotherapy treatment via Monte Carlo radiation transport simulation. A 3D eye model including cornea, anterior chamber, lens, orbit, fat, sclera, choroid, retina, vitreous, macula, and optic nervemore » was carefully designed. The eye model was imported into the MCNPX2.5 Monte Carlo code and radiation transport simulations were undertaken to obtain absorbed doses and dose volume histograms (DVH) to targeted and nontargeted structures within the eye. Three different studies were undertaken to investigate (1) available beam angles that maximized the dose to the macula target tissue, simultaneously minimizing dose to normal tissues, (2) the energy dependency of the DVH for different x-ray energies (80, 100, and 120 kVp), and (3) the optimal focal spot size among options of 0.0, 0.4, 1.0, and 5.5 mm. All results were scaled to give 8 Gy to the macula volume, which is the current treatment requirement. Eight beam treatment angles are currently under investigation. In all eight beam angles, the source-to-target distance is 13 cm, and the polar angle of entry is 30 degree sign from the geometric axis of the eye. The azimuthal angle changes in eight increments of 45 degree sign in a clockwise fashion, such that an azimuthal angle of 0 degree sign corresponds to the 12 o'clock position when viewing the treated eye. Based on considerations of nontarget tissue avoidance, as well as facial-anatomical restrictions on beam delivery, treatment azimuthal angles between 135 degree sign and 225 degree sign would be available for this treatment system (i.e., directly upward and entering the eye from below). At beam directions approaching 225 degree sign and higher, some dose contribution to the optic nerve would result under the assumption that the optic nerve is tilted cranially above the geometric axis in a given patient, a feature not typically seen in past studies. A total treatment dose of 24 Gy would be delivered in three 8 Gy treatments at these selected azimuthal angles. Dose coefficients, defined as the macula radiation absorbed dose per unit air kerma in units of Gy/Gy, were 16% higher for 120 kVp x-ray beams in comparison to those at 80 kVp, thus requiring only 86% of the integrated tube current (mAs) for equivalent dose delivery. When 0.0, 0.4, and 1.0 mm focal spot sizes were used, the dose profiles in the macula are very similar and relatively uniform, whereas a 5.5 mm focal spot size produced a more nonuniform dose profile. The results of this study demonstrate the therapeutic promise of this device and provide important information for further design and clinical implementation for radiotherapy treatments for ARMD.« less

  16. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    PubMed

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  17. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time.

    PubMed

    Lee, Yong-Ung; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Sugiura, Tadahisa; Lee, Avione Y; Yi, Tai; Hibino, Narutoshi; Shinoka, Toshiharu; Breuer, Christopher

    2016-03-01

    We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft.

  18. Critical Review of Public Health Regulations of Titanium Dioxide, a Human Food Additive

    PubMed Central

    Jovanović, Boris

    2015-01-01

    From 1916 to 2011, an estimated total of 165 050 000 metric tons of titanium dioxide (TiO2) pigment were produced worldwide. Current safety regulations on the usage of the TiO2 pigment as an inactive ingredient additive in human food are based on legislation from 1969 and are arguably outdated. This article compiles new research results to provide fresh data for potential risk reassessment. However, even after 45 years, few scientific research reports have provided truly reliable data. For example, administration of very high doses of TiO2 is not relevant to daily human uptake. Nevertheless, because dose makes the poison, the literature provides a valuable source for understanding potential TiO2 toxicity after oral ingestion. Numerous scientific articles have observed that TiO2 can pass and be absorbed by the mammalian gastrointestinal tract; can bioconcentrate, bioaccumulate, and biomagnify in the tissues of mammals and other vertebrates; has a very limited elimination rate; and can cause histopathological and physiological changes in various organs of animals. Such action is contrary to the 1969 decision to approve the use of TiO2 as an inactive ingredient in human food without an established acceptable daily intake, stating that neither significant absorption nor tissue storage following ingestion of TiO2 was possible. Thus, relevant governmental agencies should reassess the safety of TiO2 as an additive in human food and consider establishing an acceptable maximum daily intake as a precautionary measure. Integr Environ Assess Manag 2015;11:10–20. © 2014 The Author. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:25091211

  19. Intra-operative feedback and dynamic compensation for image-guided robotic focal ultrasound surgery.

    PubMed

    Chauhan, S; Amir, H; Chen, G; Hacker, A; Michel, M S; Koehrmann, K U

    2008-11-01

    This paper describes a non-invasive remote temperature measurement technique integrated with a biomechatronic surgery system devised in our laboratory and named FUSBOT (Focal Ultrasound Surgery RoBOT). FUSBOTs use High-Intensity Focused Ultrasound (HIFU) for ablation of cancers/tumors and targets accessible through various soft-tissue acoustic windows in the human body. The focused ultrasound beam parameters are chosen so that biologically significant temperature rises are achieved only within the focal volume. In this paper, FUSBOT(BS), a customized system for breast surgery, is taken as a representative example to demonstrate the implementation and the results of non-invasive feedback during ablation. An 8-axis PC-based controller controls various sub-sections of the system within a safe constrained work envelope. Temperature is a prime target parameter in ablative procedures, and it is of paramount importance that means should be devised for its measurement and control in order to design optimal dose protocols and judge the efficacy of FUS systems. A customized sensory interface is devised and integrated with FUSBOT(BS), and dedicated software algorithms are embedded for surgical planning based on real-time guidance and feedback. Variations in the physical parameters of the tissue interacting with the incident modality are used as surgical feedback. The use of real-time ultrasound imaging and data processed from various sensors to deduce lesion position and thermal feedback during surgery, as integrated with the robotic system for online surgical planning, is described. Dynamic registration algorithms are developed for compensation and re-registration of the robotic end-effector with respect to the target, and representative empirical outcomes for lesion tracking and online temperature estimation in various biological tissues are presented.

  20. The role of pyridoxine as a countermeasure for in-flight loss of lean body mass

    NASA Technical Reports Server (NTRS)

    Gilbert, Joyce A.

    1992-01-01

    Ground based and in flight research has shown that humans, under conditions of microgravity, sustain a loss of lean body tissue (protein) and changes in several biological processes including, reductions in red blood cell mass, and neurotransmitters. The maintenance of muscle mass, the major component of lean body mass, is required to meet the needs of space station EVAs. Central to the biosynthesis of amino acids, the building blocks of protein, is pyridoxine (vitamin B-6). Muscle mass integrity requires the availability of vitamin B-6 for protein metabolism and neurotransmitter synthesis. Furthermore, the formation of red blood cells require pyridoxine as a cofactor in the biosynthesis of hemoglobin, a protein that carries oxygen to tissues. In its active form, pyridoxal-5'-phosphate (PLP), vitamin B-6 serves as a link between amino acid and carbohydrate metabolism through intermediates of glycolysis and the tricarboxylic acid cycle. In addition to its role in energy metabolism, PLP is involved in the biosynthesis of hemoglobin and neurotransmitter which are necessary for neurological functions. Alterations in pyridoxine metabolism may affect countermeasures designed to overcome some of these biochemical changes. The focus of this research is to determine the effects of microgravity on the metabolic utilization of vitamin B-6, integrating nutrition as an integral component of the countermeasure (exercise) to maintain lean body mass and muscle strength. The objectives are: 1) to determine whether microgravity effects the metabolic utilization of pyridoxine and 2) to quantitate changes in B-6 vitamer distribution in tissue and excreta relative to loss of lean body tissue. The rationale for this study encompasses the unique challenge to control biochemical mechanisms effected during space travel and the significance of pyridoxine to maintain and counter muscle integrity for EVA activities. This experiment will begin to elucidate the importance of biochemical interactions between micronutrients and the homeostasis condition of biological processes in the space environment. To address this research topic a simulated microgravity model has been developed. The experiment uses radioisotopically labelled pyridoxine administered as an oral dose to rats which are maintained by tail suspension to simulate a microgravity environment. At the termination of the study, liver, muscle, blood and urine are collected and analyzed by reverse phase high pressure liquid chromatography to determine the quantity and distribution of the B-6 vitamers in tissue and excreta relative to lean body tissue loss. Earlier studies, published by this investigator, have shown that differences in vitamer distribution among samples from experimental versus control subjects indicate changes in metabolic utilization and storage of vitamin B-6.

  1. Progress on thermobrachytherapy surface applicator for superficial tissue disease

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Craciunescu, Oana I.; Maccarini, Paolo F.; Schlorff, Jaime L.; Markowitz, Edward; Stauffer, Paul R.

    2009-02-01

    This work reports the ongoing development of a combination applicator for simultaneous heating of superficial tissue disease using a 915 MHz DCC (dual concentric conductor) array and High Dose Rate (HDR) brachytherapy delivered via an integrated conformal catheter array. The progress includes engineering design changes in the waterbolus, DCC configurations and fabrication techniques of the conformal multilayer applicator. The dosimetric impact of the thin copper DCC array is also assessed. Steady state fluid dynamics of the new waterbolus bag indicates nearly uniform flow with less than 1°C variation across a large (19×32cm) bolus. Thermometry data of the torso phantom acquired with computer controlled movement of fiberoptic temperature probes inside thermal mapping catheters indicate feasibility of real time feedback control for the DCC array. MR (magnetic resonance) scans of a torso phantom indicate that the waterbolus thickness across the treatment area is controlled by the pressure applied by the surrounding inflatable airbladder and applicator securing straps. The attenuation coefficient of the DCC array was measured as 3+/- 0.001% and 2.95+/-0.03 % using an ion chamber and OneDose dosimeters respectively. The performance of the combination applicator on patient phantoms provides valuable feedback to optimize the applicator prior use in the patient clinic.

  2. The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells

    NASA Astrophysics Data System (ADS)

    Manti, L.; Perozziello, F. M.; Borghesi, M.; Candiano, G.; Chaudhary, P.; Cirrone, G. A. P.; Doria, D.; Gwynne, D.; Leanza, R.; Prise, K. M.; Romagnani, L.; Romano, F.; Scuderi, V.; Tramontana, A.

    2017-03-01

    Accelerated proton beams have become increasingly common for treating cancer. The need for cost and size reduction of particle accelerating machines has led to the pioneering investigation of optical ion acceleration techniques based on laser-plasma interactions as a possible alternative. Laser-matter interaction can produce extremely pulsed particle bursts of ultra-high dose rates (>= 109 Gy/s), largely exceeding those currently used in conventional proton therapy. Since biological effects of ionizing radiation are strongly affected by the spatio-temporal distribution of DNA-damaging events, the unprecedented physical features of such beams may modify cellular and tissue radiosensitivity to unexplored extents. Hence, clinical applications of laser-generated particles need thorough assessment of their radiobiological effectiveness. To date, the majority of studies have either used rodent cell lines or have focussed on cancer cell killing being local tumour control the main objective of radiotherapy. Conversely, very little data exist on sub-lethal cellular effects, of relevance to normal tissue integrity and secondary cancers, such as premature cellular senescence. Here, we discuss ultra-high dose rate radiobiology and present preliminary data obtained in normal human cells following irradiation by laser-accelerated protons at the LULI PICO2000 facility at Laser Lab Europe, France.

  3. Dosimetric Anchoring of In Vivo and In Vitro Studies for Perfluorooctanoate and Perfluorooctanesulfonate

    EPA Science Inventory

    In order to compare between in vivo toxicity studies, dosimetry is needed to translate study-specific dose regimens into dose metrics such as tissue concentration. These tissue concentrations may then be compared with in vitro bioactivity assays to perhaps identify mechanisms rel...

  4. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  5. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    PubMed

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. An end-to-end assessment of range uncertainty in proton therapy using animal tissues.

    PubMed

    Zheng, Yuanshui; Kang, Yixiu; Zeidan, Omar; Schreuder, Niek

    2016-11-21

    Accurate assessment of range uncertainty is critical in proton therapy. However, there is a lack of data and consensus on how to evaluate the appropriate amount of uncertainty. The purpose of this study is to quantify the range uncertainty in various treatment conditions in proton therapy, using transmission measurements through various animal tissues. Animal tissues, including a pig head, beef steak, and lamb leg, were used in this study. For each tissue, an end-to-end test closely imitating patient treatments was performed. This included CT scan simulation, treatment planning, image-guided alignment, and beam delivery. Radio-chromic films were placed at various depths in the distal dose falloff region to measure depth dose. Comparisons between measured and calculated doses were used to evaluate range differences. The dose difference at the distal falloff between measurement and calculation depends on tissue type and treatment conditions. The estimated range difference was up to 5, 6 and 4 mm for the pig head, beef steak, and lamb leg irradiation, respectively. Our study shows that the TPS was able to calculate proton range within about 1.5% plus 1.5 mm. Accurate assessment of range uncertainty in treatment planning would allow better optimization of proton beam treatment, thus fully achieving proton beams' superior dose advantage over conventional photon-based radiation therapy.

  7. Identifying Voxels at Risk for Progression in Glioblastoma Based on Dosimetry, Physiologic and Metabolic MRI.

    PubMed

    Anwar, Mekhail; Molinaro, Annette M; Morin, Olivier; Chang, Susan M; Haas-Kogan, Daphne A; Nelson, Sarah J; Lupo, Janine M

    2017-09-01

    Despite the longstanding role of radiation in cancer treatment and the presence of advanced, high-resolution imaging techniques, delineation of voxels at-risk for progression remains purely a geometric expansion of anatomic images, missing subclinical disease at risk for recurrence while treating potentially uninvolved tissue and increasing toxicity. This remains despite the modern ability to precisely shape radiation fields. A striking example of this is the treatment of glioblastoma, a highly infiltrative tumor that may benefit from accurate identification of subclinical disease. In this study, we hypothesize that parameters from physiologic and metabolic magnetic resonance imaging (MRI) at diagnosis could predict the likelihood of voxel progression at radiographic recurrence in glioblastoma by identifying voxel characteristics that indicate subclinical disease. Integrating dosimetry can reveal its effect on voxel outcome, enabling risk-adapted voxel dosing. As a system example, 24 patients with glioblastoma treated with radiotherapy, temozolomide and an anti-angiogenic agent were analyzed. Pretreatment median apparent diffusion coefficient (ADC), fractional anisotropy (FA), relative cerebral blood volume (rCBV), vessel leakage (percentage recovery), choline-to-NAA index (CNI) and dose of voxels in the T2 nonenhancing lesion (NEL), T1 post-contrast enhancing lesion (CEL) or normal-appearing volume (NAV) of brain, were calculated for voxels that progressed [NAV→NEL, CEL (N = 8,765)] and compared against those that remained stable [NAV→NAV (N = 98,665)]. Voxels that progressed (NAV→NEL) had significantly different (P < 0.01) ADC (860), FA (0.36) and CNI (0.67) versus stable voxels (804, 0.43 and 0.05, respectively), indicating increased cell turnover, edema and decreased directionality, consistent with subclinical disease. NAV→CEL voxels were more abnormal (1,014, 0.28, 2.67, respectively) and leakier (percentage recovery = 70). A predictive model identified areas of recurrence, demonstrating that elevated CNI potentiates abnormal diffusion, even far (>2 cm) from the tumor and dose escalation >45 Gy has diminishing benefits. Integrating advanced MRI with dosimetry can identify at voxels at risk for progression and may allow voxel-level risk-adapted dose escalation to subclinical disease while sparing normal tissue. When combined with modern planning software, this technique may enable risk-adapted radiotherapy in any disease site with multimodal imaging.

  8. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; hide

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.

  10. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.

    PubMed

    Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L

    2016-05-01

    Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as shown in (a). Furthermore, the alterations in local spinal blood flow could be significantly alleviated with low dose estrogen therapy. This therapy led to the preservation of the structural integrity of the spinal cord (b), which in turn led to the improved functional recovery as shown (c). © 2016 International Society for Neurochemistry.

  11. [Inhibitory effects of luteolin on human gastric carcinoma xenografts in nude mice and its mechanism].

    PubMed

    Lu, Xue-ying; Li, Yan-hong; Xiao, Xiang-wen; Li, Xiao-bo

    2013-01-08

    To explore the in vivo anticancer effects of luteolin with BGC-823 gastric carcinoma xenografts in nude mice and elucidate its mechanism. After modeling of gastric carcinoma xenografts in nude mice, 40 BALB/c (nu/nu) nude mice were randomly divided into 5 groups (n = 8 each). And an intraperitoneal injection of luteolin was administered at 10 mg/kg (low-dose), 20 mg/kg (middle-dose) and 40 mg/kg (high-dose) groups. And 5-fluorouracil (30 mg/kg) and control groups were also established. The growth curves of xenografts in nude mice were drawn and weight inhibition rates measured. The morphological features were detected by hematoxylin and eosin staining. And the protein expression levels of vascular endothelial growth factor A (VEGF-A) and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry. In vivo tumor formation test showed that tumor volume in nude mice treated with luteolin was smaller than that of control group. Tumor weights of high-dose luteolin group were lighter than those of the control ((0.29 ± 0.01) vs (0.38 ± 0.03) g). And the difference was statistically significant (P < 0.01). The rate of tumor inhibition in high-dose luteolin group was up to 24.87%. Lymphocytic invasion of tumor tissue was observed under light microscope in the treatment groups. Results of immunohistochemistry showed the positive cell integral of VEGF in middle and high-dose luteolin groups were 1.25 ± 0.17 and 1.00 ± 0.07 respectively. Both were significantly lower than that of control group (1.50 ± 0.15, both P < 0.05). The positive cell integral of MMP-9 in high-dose luteolin group was markedly lower than that of control group (3.75 ± 1.43 vs 9.00 ± 1.08, P < 0.01). Luteolin can effectively inhibit the in vivo growth of gastric tumor. The mechanism may be correlated with the stimulation of immune response and the down-regulated expressions of VEGF-A and MMP-9.

  12. New method for generating breast models featuring glandular tissue spatial distribution

    NASA Astrophysics Data System (ADS)

    Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.

    2016-02-01

    Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.

  13. The Radiobiology of Proton Therapy: Challenges and Opportunities Around Relative Biological Effectiveness.

    PubMed

    Jones, B; McMahon, S J; Prise, K M

    2018-05-01

    With the current UK expansion of proton therapy there is a great opportunity for clinical oncologists to develop a translational interest in the associated scientific base and clinical results. In particular, the underpinning controversy regarding the conversion of photon dose to proton dose by the relative biological effectiveness (RBE) must be understood, including its important implications. At the present time, the proton prescribed dose includes an RBE of 1.1 regardless of tissue, tumour and dose fractionation. A body of data has emerged against this pragmatic approach, including a critique of the existing evidence base, due to choice of dose, use of only acute-reacting in vivo assays, analysis methods and the reference radiations used to determine the RBE. Modelling systems, based on the best available scientific evidence, and which include the clinically useful biological effective dose (BED) concept, have also been developed to estimate proton RBEs for different dose and linear energy transfer (LET) values. The latter reflect ionisation density, which progressively increases along each proton track. Late-reacting tissues, such as the brain, where α/β = 2 Gy, show a higher RBE than 1.1 at a low dose per fraction (1.2-1.8 Gy) at LET values used to cover conventional target volumes and can be much higher. RBE changes with tissue depth seem to vary depending on the method of beam delivery used. To reduce unexpected toxicity, which does occasionally follow proton therapy, a more rational approach to RBE allocation, using a variable RBE that depends on dose per fraction and the tissue and tumour radiobiological characteristics such as α/β, is proposed. Copyright © 2018. Published by Elsevier Ltd.

  14. Precision IORT - Image guided intraoperative radiation therapy (igIORT) using online treatment planning including tissue heterogeneity correction.

    PubMed

    Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik

    2017-05-01

    To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Comparison of IMRT planning with two-step and one-step optimization: a strategy for improving therapeutic gain and reducing the integral dose

    NASA Astrophysics Data System (ADS)

    Abate, A.; Pressello, M. C.; Benassi, M.; Strigari, L.

    2009-12-01

    The aim of this study was to evaluate the effectiveness and efficiency in inverse IMRT planning of one-step optimization with the step-and-shoot (SS) technique as compared to traditional two-step optimization using the sliding windows (SW) technique. The Pinnacle IMRT TPS allows both one-step and two-step approaches. The same beam setup for five head-and-neck tumor patients and dose-volume constraints were applied for all optimization methods. Two-step plans were produced converting the ideal fluence with or without a smoothing filter into the SW sequence. One-step plans, based on direct machine parameter optimization (DMPO), had the maximum number of segments per beam set at 8, 10, 12, producing a directly deliverable sequence. Moreover, the plans were generated whether a split-beam was used or not. Total monitor units (MUs), overall treatment time, cost function and dose-volume histograms (DVHs) were estimated for each plan. PTV conformality and homogeneity indexes and normal tissue complication probability (NTCP) that are the basis for improving therapeutic gain, as well as non-tumor integral dose (NTID), were evaluated. A two-sided t-test was used to compare quantitative variables. All plans showed similar target coverage. Compared to two-step SW optimization, the DMPO-SS plans resulted in lower MUs (20%), NTID (4%) as well as NTCP values. Differences of about 15-20% in the treatment delivery time were registered. DMPO generates less complex plans with identical PTV coverage, providing lower NTCP and NTID, which is expected to reduce the risk of secondary cancer. It is an effective and efficient method and, if available, it should be favored over the two-step IMRT planning.

  16. [Comparison of anti-inflammatory activity between crude Atractylodes lancea and their processed products by stir-baking with bran in rat models of gastric ulcer].

    PubMed

    Yu, Yan; Jia, Tian-Zhu; Cai, Qian

    2016-02-01

    To compare the anti-inflammatory activity of the crude Atractylodes lancea (AL) and AL processed products by stir-baking with bran in rat models of gastric ulcer, and preliminarily explore the anti-ulcer mechanisms of AL, the model of gastric ulcer was imitated by local acetic acid injection into gastric mucosa in rats by surgery according to the modified Okabe method. All rats were randomly divided into the following 10 groups: sham-operation group, model group, omeprazole group, Sanjiu Weitai granule group, crude AL low dose group, crude AL middle dose group, crude AL high dose group, processed AL low dose group, processed AL middle dose group, and processed AL high dose group. Rats were administered via intragastric (ig) two times each day, for 10 consecutive days. Blood was collected from the abdominal aorta, serum was separated, and the ulcer tissues were taken. The levels of inflammatory factors interleukin 6, 8 (IL-6, 8), tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2) in serum and gastric tissues were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expressions of TNF-α and IL-8 in gastric tissues were detected by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). The protein expressions of TNF-α and IL-8 in gastric tissues were detected by immunohistochemistry. Compared with sham-operation group, the levels of TNF-α, IL-8, IL-6, PGE2 as well as the mRNA expressions and protein expressions of TNF-α, IL-8 in gastric tissues were significantly higher in model group. The above levels were reduced in different degrees in all treatment groups. Compared with the crude AL, same dose of processed AL was more effective in decreasing the levels of TNF-α, IL-8, IL-6, PGE2 in serum and gastric tissues and down-regulating the mRNA expressions of TNF-α and IL-8 in gastric tissues, with significant difference in middle dose groups and high dose groups. The results showed that AL had potent anti-inflammatory effects in rat models of gastric ulcer induced by acetic acid, and the processed AL had more obvious effect. The anti-ulcer action of AL could be attributed partly to down-regulating the levels of TNF-α, IL-8, IL-6 and PGE2. Copyright© by the Chinese Pharmaceutical Association.

  17. Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves.

    PubMed

    Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P

    2013-06-01

    The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of oxytetracycline were investigated, when administered both alone and in the presence of carprofen, in healthy calves. The study comprised a four treatment, four sequences, and four period cross-over design and used a tissue cage model, which permitted the collection of serum, inflamed tissue cage fluid (exudate) and non-inflamed tissue cage fluid (transudate). There were no clinically relevant differences in the PK profile of oxytetracycline when administered alone and when administered with carprofen. PK-PD integration was undertaken for a pathogenic strain of Mannheimia haemolytic (A1 76/1), by correlating in vitro minimum inhibitory concentration (MIC) and time-kill data with in vivo PK data obtained in the cross-over study. Based on in vitro susceptibility in cation adjusted Mueller Hinton Broth (CAMHB) and in vivo determined PK variables, ratios of maximum concentration (Cmax) and area under curve (AUC) to MIC and time for which concentration exceeded MIC (T>MIC) were determined. The CAMHB MIC data satisfied integrated PK/PD relationships predicted to achieve efficacy for approximately 48 h after dosing; mean values for serum were 5.13 (Cmax/MIC), 49.3 h (T>MIC) and 126.6 h (AUC(96h)/MIC). Similar findings were obtained when oxytetracycline was administered in the presence of carprofen, with PK-PD indices based on MIC determined in CAMHB. However, PK-PD integration of data, based on oxytetracycline MICs determined in the biological fluids, serum, exudate and transudate, suggest that it possesses, at most, limited direct killing activity against the M. haemolytica strain A1 76/1; mean values for serum were 0.277 (Cmax/MIC), 0 h (T>MIC) and 6.84 h (AUC(96h)/MIC). The data suggest that the beneficial therapeutic effects of oxytetracycline may depend, at least in part, on actions other than direct inhibition of bacterial growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of gamma radiation on hard dental tissues of albino rats using scanning electron microscope - Part 1

    NASA Astrophysics Data System (ADS)

    El-Faramawy, Nabil; Ameen, Reham; El-Haddad, Khaled; Maghraby, Ahmed; El-Zainy, Medhat

    2011-12-01

    In the present study, 40 adult male albino rats were used to study the effect of gamma radiation on the hard dental tissues (enamel surface, dentinal tubules and the cementum surface). The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy gamma doses. The effects of irradiated hard dental tissues samples were investigated using a scanning electron microscope. For doses up to 0.5 Gy, there was no evidence of the existence of cracks on the enamel surface. With 1 Gy irradiation dose, cracks were clearly observed with localized erosive areas. At 2 Gy irradiation dose, the enamel showed morphological alterations as disturbed prismatic and interprismatic areas. An increase in dentinal tubules diameter and a contemporary inter-tubular dentine volume decrease were observed with higher irradiation dose. Concerning cementum, low doses,<0.5 Gy, showed surface irregularities and with increase in the irradiation dose to≥1 Gy, noticeable surface irregularities and erosive areas with decrease in Sharpey's fiber sites were observed. These observations could shed light on the hazardous effects of irradiation fields to the functioning of the human teeth.

  19. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  20. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT

    NASA Astrophysics Data System (ADS)

    Angel, Erin; Yaghmai, Nazanin; Matilda Jude, Cecilia; DeMarco, John J.; Cagnon, Christopher H.; Goldin, Jonathan G.; Primak, Andrew N.; Stevens, Donna M.; Cody, Dianna D.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2009-02-01

    Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.

  1. Pilot Study: Unique Response of Bone Tissue During an Investigation of Radio-Adaptive Effects in Mice

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Iwaniec, U.; Wu, H.

    2011-01-01

    PURPOSE: We obtained bone tissue to evaluate the collateral effects of experiments designed to investigate molecular mechanisms of radio-adaptation in a mouse model. Radio-adaptation describes a process by which the prior exposure to low dose radiation can protect against the toxic effect of a subsequent high dose exposure. In the radio-adaptation experiments, C57Bl/6 mice were exposed to either a Sham or a priming Low Dose (5 cGy) of Cs-137 gamma rays before being exposed to either a Sham or High Dose (6 Gy) 24 hours later. ANALYSIS: Bone tissue were obtained from two experiments where mice were sacrificed at 3 days (n=3/group, 12 total) and at 14 days (n=6/group, 24 total) following high dose exposure. Tissues were analyzed to 1) evaluate a radio-adaptive response in bone tissue and 2) describe cellular and microstructural effects for two skeletal sites with different rates of bone turnover. One tibia and one lumbar vertebrae (LV2), collected at the 3-day time-point, were analyzed by bone histomorphometry and micro-CT to evaluate the cellular response and any evidence of microarchitectural impact. Likewise, tibia and LV2, collected at the 14-day time-point, were analyzed by micro-CT alone to evaluate resulting changes to bone structure and microarchitecture. The data were analyzed by 2-way ANOVA to evaluate the effects of the priming low dose radiation, of the high dose radiation, and of any interaction between the priming low and high doses of radiation. Bone histomorphometry was performed in the cancellous bone (aka trabecular bone) compartments of the proximal tibial metaphysis and of LV2. RESULTS: Cellular Response @ 3 Days The priming Low Dose radiation decreased osteoblast-covered bone perimeter in the proximal tibia and the total cell density in the bone marrow in the LV2. High Dose radiation, regardless of prior exposure to priming dose, dramatically reduced total cell density in bone marrow of both the long bone and vertebra. However, in the proximal tibia, High Dose radiation increased the osteoclast-covered bone perimeters, the density of adipocytes in bone marrow, and the area of bone marrow occupied by fat cells -- while in the LV2, adipocytes were rare and not stimulated by High Dose radiation. In an unexpected response, High Dose radiation dramatically increased (10-fold) osteoblast-covered bone perimeter in the LV2.

  2. Thin-film CdTe detector for microdosimetric study of radiation dose enhancement at gold-tissue interface.

    PubMed

    Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael

    2016-09-08

    Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5μm from the interface were 42.6 ± 10.8 , 137.0 ± 11.9, and 203.0 ± 15.4, respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1, and 249 ± 1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. © 2016 The Authors.

  3. Gold nanoparticle‐based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye

    PubMed Central

    Vaez‐zadeh, Mehdi; Masoudi, S. Farhad; Rahmani, Faezeh; Knaup, Courtney; Meigooni, Ali S.

    2015-01-01

    The effects of gold nanoparticles (GNPs) in 125I brachytherapy dose enhancement on choroidal melanoma are examined using the Monte Carlo simulation technique. Usually, Monte Carlo ophthalmic brachytherapy dosimetry is performed in a water phantom. However, here, the compositions of human eye have been considered instead of water. Both human eye and water phantoms have been simulated with MCNP5 code. These simulations were performed for a fully loaded 16 mm COMS eye plaque containing 13 125I seeds. The dose delivered to the tumor and normal tissues have been calculated in both phantoms with and without GNPs. Normally, the radiation therapy of cancer patients is designed to deliver a required dose to the tumor while sparing the surrounding normal tissues. However, as the normal and cancerous cells absorbed dose in an almost identical fashion, the normal tissue absorbed radiation dose during the treatment time. The use of GNPs in combination with radiotherapy in the treatment of tumor decreases the absorbed dose by normal tissues. The results indicate that the dose to the tumor in an eyeball implanted with COMS plaque increases with increasing GNPs concentration inside the target. Therefore, the required irradiation time for the tumors in the eye is decreased by adding the GNPs prior to treatment. As a result, the dose to normal tissues decreases when the irradiation time is reduced. Furthermore, a comparison between the simulated data in an eye phantom made of water and eye phantom made of human eye composition, in the presence of GNPs, shows the significance of utilizing the composition of eye in ophthalmic brachytherapy dosimetry Also, defining the eye composition instead of water leads to more accurate calculations of GNPs radiation effects in ophthalmic brachytherapy dosimetry. PACS number: 87.53.Jw, 87.85.Rs, 87.10.Rt PMID:26699318

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosarge, Christina L., E-mail: cbosarge@umail.iu.edu; Ewing, Marvene M.; DesRosiers, Colleen M.

    To demonstrate the dosimetric advantages and disadvantages of standard anteroposterior-posteroanterior (S-AP/PA{sub AAA}), inverse-planned AP/PA (IP-AP/PA) and volumetry-modulated arc (VMAT) radiotherapies in the treatment of children undergoing whole-lung irradiation. Each technique was evaluated by means of target coverage and normal tissue sparing, including data regarding low doses. A historical approach with and without tissue heterogeneity corrections is also demonstrated. Computed tomography (CT) scans of 10 children scanned from the neck to the reproductive organs were used. For each scan, 6 plans were created: (1) S-AP/PA{sub AAA} using the anisotropic analytical algorithm (AAA), (2) IP-AP/PA, (3) VMAT, (4) S-AP/PA{sub NONE} without heterogeneitymore » corrections, (5) S-AP/PA{sub PB} using the Pencil-Beam algorithm and enforcing monitor units from technique 4, and (6) S-AP/PA{sub AAA[FM]} using AAA and forcing fixed monitor units. The first 3 plans compare modern methods and were evaluated based on target coverage and normal tissue sparing. Body maximum and lower body doses (50% and 30%) were also analyzed. Plans 4 to 6 provide a historic view on the progression of heterogeneity algorithms and elucidate what was actually delivered in the past. Averages of each comparison parameter were calculated for all techniques. The S-AP/PA{sub AAA} technique resulted in superior target coverage but had the highest maximum dose to every normal tissue structure. The IP-AP/PA technique provided the lowest dose to the esophagus, stomach, and lower body doses. VMAT excelled at body maximum dose and maximum doses to the heart, spine, and spleen, but resulted in the highest dose in the 30% body range. It was, however, superior to the S-AP/PA{sub AAA} approach in the 50% range. Each approach has strengths and weaknesses thus associated. Techniques may be selected on a case-by-case basis and by physician preference of target coverage vs normal tissue sparing.« less

  5. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Hrycushko, B; Jiang, S

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less

  6. Dosimetric Comparison between Single and Dual Arc-Volumetric Modulated Arc Radiotherapy and Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma Using a Simultaneous Integrated Boost Technique

    PubMed Central

    Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan

    2017-01-01

    Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT), single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F-IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis I3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. PMID:28612593

  7. Dosimetric Comparison between Single and Dual Arc-Volumetric Modulated Arc Radiotherapy and Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma Using a Simultaneous Integrated Boost Technique

    PubMed

    Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan

    2017-05-01

    Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT) , single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F- IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis Ґ3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. Creative Commons Attribution License

  8. WE-E-18A-05: Bremsstrahlung of Laser-Plasma Interaction at KeV Temperature: Forward Dose and Attenuation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez-Beltran, M; Fernandez Gonzalez, F

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less

  9. A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry

    NASA Astrophysics Data System (ADS)

    Oliver, P. A. K.; Thomson, Rowan M.

    2017-02-01

    This work investigates how doses to cellular targets depend on cell morphology, as well as relations between cellular doses and doses to bulk tissues and water. Multicellular models of five healthy and cancerous soft tissues are developed based on typical values of cell compartment sizes, elemental compositions and number densities found in the literature. Cells are modelled as two concentric spheres with nucleus and cytoplasm compartments. Monte Carlo simulations are used to calculate the absorbed dose to the nucleus and cytoplasm for incident photon energies of 20-370 keV, relevant for brachytherapy, diagnostic radiology, and out-of-field radiation in higher-energy external beam radiotherapy. Simulations involving cell clusters, single cells and single nuclear cavities are carried out for cell radii between 5 and 10~μ m, and nuclear radii between 2 and 9~μ m. Seven nucleus and cytoplasm elemental compositions representative of animal cells are considered. The presence of a cytoplasm, extracellular matrix and surrounding cells can affect the nuclear dose by up to 13 % . Differences in cell and nucleus size can affect dose to the nucleus (cytoplasm) of the central cell in a cluster of 13 cells by up to 13 % (8 % ). Furthermore, the results of this study demonstrate that neither water nor bulk tissue are reliable substitutes for subcellular targets for incident photon energies  <50 keV: nuclear (cytoplasm) doses differ from dose-to-medium by up to 32 % (18 % ), and from dose-to-water by up to 21 % (8 % ). The largest differences between dose descriptors are seen for the lowest incident photon energies; differences are less than 3 % for energies ≥slant 90 keV. The sensitivity of results with regard to the parameters of the microscopic tissue structure model and cell model geometry, and the importance of the nucleus and cytoplasm as targets for radiation-induced cell death emphasize the importance of accurate models for cellular dosimetry studies.

  10. Pencil beam scanning proton therapy vs rotational arc radiation therapy: A treatment planning comparison for postoperative oropharyngeal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apinorasethkul, Ontida, E-mail: Ontida.a@gmail.com; Kirk, Maura; Teo, Kevin

    Patients diagnosed with head and neck cancer are traditionally treated with photon radiotherapy. Proton therapy is currently being used clinically and may potentially reduce treatment-related toxicities by minimizing the dose to normal organs in the treatment of postoperative oropharyngeal cancer. The finite range of protons has the potential to significantly reduce normal tissue toxicity compared to photon radiotherapy. Seven patients were planned with both proton and photon modalities. The planning goal for both modalities was achieving the prescribed dose to 95% of the planning target volume (PTV). Dose-volume histograms were compared in which all cases met the target coverage goals.more » Mean doses were significantly lower in the proton plans for the oral cavity (1771 cGy photon vs 293 cGy proton, p < 0.001), contralateral parotid (1796 cGy photon vs 1358 proton, p < 0.001), and the contralateral submandibular gland (3608 cGy photon vs 3251 cGy proton, p = 0.03). Average total integral dose was 9.1% lower in proton plans. The significant dosimetric sparing seen with proton therapy may lead to reduced side effects such as pain, weight loss, taste changes, and dry mouth. Prospective comparisons of protons vs photons for disease control, toxicity, and patient-reported outcomes are therefore warranted and currently being pursued.« less

  11. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats

    PubMed Central

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71) nor due to the delay after the last stimulation dose (p = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain. PMID:29065603

  12. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats.

    PubMed

    Mucio-Ramírez, Samuel; Makeyev, Oleksandr

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p  = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p  = 0.71) nor due to the delay after the last stimulation dose ( p  = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200  μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  13. Results on Dose Distributions in a Human Body from the Matroshka-R Experiment onboard the ISS Obtained with the Tissue-Equivalent Spherical Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir

    The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the ISS compartments are also estimated with the spherical phantom data. The estimated effective dose rate is found to be from 10 % to 15 % lower than the averaged dose on the phantom surface as dependent on the attitude of the critical organs. If compared with the anthropomorphic phantom Rando used inside and outside the ISS earlier, the Matroshka-R space experiment spherical phantom has lower mass, smaller size, and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. New sessions with the two tissue-equivalent phantoms are of great interest. Development of modified passive and active detector sets is in progress for the future ISS expeditions. Both the spherical and Rando-type phantoms proved their effectiveness to measure the critical organ doses and effective doses in-flight and if supplied with modernized dosimeters can be recommended for future exploratory manned missions to monitor continuously the crew exposure to space radiation.

  14. Correlation between levels of 2, 5-hexanedione and pyrrole adducts in tissues of rats exposure to n-hexane for 5-days.

    PubMed

    Yin, Hongyin; Guo, Ying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2013-01-01

    The formation of pyrrole adducts might be responsible for peripheral nerve injury caused by n-hexane. The internal dose of pyrrole adducts would supply more information for the neurotoxicity of n-hexane. The current study was designed to investigate the tissue distributions of 2, 5-hexanedione (2,5-HD) and pyrrole adducts in rats exposed to n-hexane, and analyze the correlation between pyrrole adducts and 2,5-HD in tissues. Male Wistar rats were given daily dose of 500,1000, 2000, 4000 mg/kg bw n-hexane by gavage for 5 days. The rats were sacrificed 24 hours after the last administration. The levels of 2, 5-hexanedione and pyrrole adducts in tissues were measured by gas chromatography and Ehrlich's reagent, respectively. The correlations between 2, 5-hexanedione and pyrrole adducts were analyzed by linear regression. Dose-dependent effects were observed between the dosage of n-hexane and 2, 5-hexanedione, and pyrrole adducts in tissues. The highest level of 2, 5-hexanedione was found in urine and the lowest in sciatic nerve, while the highest level of pyrrole adducts was seen in liver and the lowest in serum. There were significant correlations among the free 2, 5-hexanedione, total 2, 5-hexanedione and pyrrole adducts within the same tissues. Pyrrole adducts in serum showed the most significant correlation with free 2, 5-hexanedione or pyrrole adducts in tissues. The findings suggested that pyrrole adducts in serum might be a better indicator for the internal dose of free 2, 5-hexanedione and pyrrole adducts in tissues.

  15. Accurate tissue characterization in low-dose CT imaging with pure iterative reconstruction.

    PubMed

    Murphy, Kevin P; McLaughlin, Patrick D; Twomey, Maria; Chan, Vincent E; Moloney, Fiachra; Fung, Adrian J; Chan, Faimee E; Kao, Tafline; O'Neill, Siobhan B; Watson, Benjamin; O'Connor, Owen J; Maher, Michael M

    2017-04-01

    We assess the ability of low-dose hybrid iterative reconstruction (IR) and 'pure' model-based IR (MBIR) images to maintain accurate Hounsfield unit (HU)-determined tissue characterization. Standard-protocol (SP) and low-dose modified-protocol (MP) CTs were contemporaneously acquired in 34 Crohn's disease patients referred for CT. SP image reconstruction was via the manufacturer's recommendations (60% FBP, filtered back projection; 40% ASiR, Adaptive Statistical iterative Reconstruction; SP-ASiR40). MP data sets underwent four reconstructions (100% FBP; 40% ASiR; 70% ASiR; MBIR). Three observers measured tissue volumes using HU thresholds for fat, soft tissue and bone/contrast on each data set. Analysis was via SPSS. Inter-observer agreement was strong for 1530 datapoints (rs > 0.9). MP-MBIR tissue volume measurement was superior to other MP reconstructions and closely correlated with the reference SP-ASiR40 images for all tissue types. MP-MBIR superiority was most marked for fat volume calculation - close SP-ASiR40 and MP-MBIR Bland-Altman plot correlation was seen with the lowest average difference (336 cm 3 ) when compared with other MP reconstructions. Hounsfield unit-determined tissue volume calculations from MP-MBIR images resulted in values comparable to SP-ASiR40 calculations and values that are superior to MP-ASiR images. Accuracy of estimation of volume of tissues (e.g. fat) using segmentation software on low-dose CT images appears optimal when reconstructed with pure IR. © 2016 The Royal Australian and New Zealand College of Radiologists.

  16. Differential Penetration of Raltegravir throughout Gastrointestinal Tissue: Implications for Eradication and Cure

    PubMed Central

    Patterson, Kristine B.; Prince, Heather A.; Stevens, Trenton; Shaheen, Nicholas J.; Dellon, Evan S.; Madanick, Ryan D.; Jennings, Steven; Cohen, Myron S.; Kashuba, Angela D.M.

    2014-01-01

    Objective To investigate the concentration of the integrase strand inhibitor raltegravir (RAL) throughout gastrointestinal (GI) tissue, especially gutassociated lymphoid tissue (GALT), as an adjunct to current prevention and cure strategies. Design Open-label pharmacokinetic study Methods HIV-negative men received RAL 400 mg twice daily for 7 days. Seven blood plasma (BP) specimens were collected over 12-hr intervals; timed tissue specimens from terminal ileum, splenic flexure, and rectum were also obtained by colonoscopy following the first dose (FD) and on Day 7 [Multiple Dose (MD)]. RAL concentrations were measured by validated LC-MS assay with 1 ng/mL lower limit of detection. Data were analyzed by noncompartmental methods (WinNonlin 6). Tissue exposures are reported as composite medians and tissue density of 1.04 g/mL is assumed for comparisons. Results Fourteen men completed evaluations. Median (range) age was 24 (19–49) yrs and BMI 25 (19–31) kg/m2. After the FD, AUC-0-12h was highest in the terminal ileum (594 μg*h/mL). Exposures were 160, 68 and 39-fold greater than BP at the terminal ileum, splenic flexure and rectum, respectively. After multiple doses, exposure was highest at the splenic flexure (2240 μg*h/mL); exposure at the terminal ileum and rectum were equivalent (both 788 μg*h/mL). Following multiple doses, exposures were 160–650-fold greater than BP throughout the colon. Conclusions RAL rapidly disseminates into GI tissue and concentrations remain significantly higher than BP. RAL exposure in GI tissue remains higher than any ARV investigated to date. These data suggest that RAL should result in full suppression of viral replication in GI tissue and GALT. PMID:23945503

  17. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery.

    PubMed

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2010-12-01

    The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins, as would be enabled by real-time imaging, gross tumor volume coverage was identical while notable reductions of bladder and rectal volumes exposed to large doses were possible. The quality of U.S. images obtained during beam operation was not appreciably degraded by radiofrequency interference and 2D tracking of a phantom object in U.S. images obtained with the beam on/off yielded no significant differences. Remotely controlled robotic U.S. imaging is feasible in the radiotherapy environment and for the first time may offer real-time volumetric soft-tissue guidance concurrent with radiotherapy delivery.

  18. Prophylactic action of garlic on the histological and histochemical patterns of hepatic and gastric tissues in rats injected with a snake venom.

    PubMed

    Rahmy, T R; Hemmaid, K Z

    2001-05-01

    The present study aimed to examine the prophylactic action of oral administration of two doses of garlic on the histological and histochemical patterns of the gastric and hepatic tissues in rats envenomed with cobra snake. The study included the following groups: Group I contained control rats orally administered distilled water for ten days. Group II included rats orally administered daily for ten days with the equivalent therapeutic dose of garlic to rat (18 mg/kg body weight). Group III included rats orally administered daily for ten days with double the equivalent therapeutic dose of garlic to rat (36 mg/kg body weight). Group IV contained rats intramuscularly (i.m.) injected with 1/2 LD50 of cobra venom (0.0125 microg venom/gm body weight) and dissected after 6 hr from injection. Groups V and VI contained rats daily administered with the previous two doses of garlic for ten days, respectively, followed by a single i.m. injection of the above dose of cobra venom after 24 hr from the last garlic application. Rats of these two groups were dissected after 6 hr from venom injection. Administration of the therapeutic dose of garlic induced slight cytoplasmic granulation in some hepatic cells. However, administration of double the therapeutic dose caused swelling, necrosis, and damage of the gastric glandular epithelia together with signs of erosion, exfoliation, and necrosis of the surface mucosal cells. It also induced swelling and coalescence of the hepatic cells, loss of the normal arrangement of the hepatic cords, and hypertrophy of Kupffer cells. Injection with cobra venom caused loss of the normal characteristic appearance of the gastric glands and the epithelial lining cells of the gastric folds and the appearance of numerous inflammatory cells in the lamina properia. It also induced the occurrence of highly swollen hepatic cells, hepatic cellular necrosis and damage, as well as activated Kupffer cells. Nevertheless, pretreatment with the therapeutic dose of garlic for ten days induced a prophylactic activity against the pathogenic effects of the venom in both tissues, which appeared more or less normal except for very minor abnormalities. However, application of double the therapeutic dose of garlic for the same duration did not induce any prophylactic activity. Histochemically, slight alterations were noticed in the polysaccharide, protein, and nucleic acid contents of the gastric mucosa and the hepatic tissues due to administration of the therapeutic doses of garlic. However, severe depletions of these components were recorded in both tissues due to administration of double the therapeutic doses of garlic or injection of cobravenom or the application of both of them together. On the contrary, minor changes were noticed in the histochemical patterns of both tissues in rats pretreated with the therapeutic doses of garlic prior to venom application. It could be concluded that oral administration of the therapeutic dose of garlic for ten days has no serious side effects on gastric and hepatic tissues and could be used as a prophylactic tool against cobra snake envenomation.

  19. Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy.

    PubMed

    Kobashi, Keiji; Prayongrat, Anussara; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki

    2018-03-01

    Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance-covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold.

  20. Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy

    PubMed Central

    Kobashi, Keiji; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki

    2018-01-01

    Abstract Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance–covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold. PMID:29538699

  1. SU-F-T-314: Estimation of Dose Distributions with Different Types of Breast Implants in Various Radiation Treatment Techniques for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M; Lee, S; Suh, T

    Purpose: This study investigates the effects of different kinds and designs of commercialized breast implants on the dose distributions in breast cancer radiotherapy under a variety of conditions. Methods: The dose for the clinical conventional tangential irradiation, Intensity Modulated Radiation Therapy (IMRT), volumetric modulated arc therapy (VMAT) breast plans was measured using radiochromic films and stimulated luminescence dosimeter (OSLD). The radiochromic film was used as an integrating dosimeter, while the OSLDs were used for real-time dosimetry to isolate the contribution of dose from individual segment. The films were placed at various slices in the Rando phantom and between the bodymore » and breast surface OSLDs were used to measure skin dose at 18 positions spaced on the two (right/left) breast. The implant breast was placed on the left side and the phantom breast was remained on the right side. Each treatment technique was performed on different size of the breasts and different shape of the breast implant. The PTV dose was prescribed 50.4 Gy and V47.88≥95%. Results: In different shapes of the breast implant, because of the shadow formed extensive around the breast implant, dose variation was relatively higher that of prescribed dose. As the PTV was delineated on the whole breast, maximum 5% dose error and average 3% difference was observed averagely. VMAT techniques largely decrease the contiguous hot spot in the skin by an average of 25% compared with IMRT. The both IMRT and VMAT techniques resulted in lower doses to normal critical structures than tangential plans for nearly all dose analyzation. Conclusion: Compared to the other technique, IMRT reduced radiation dose exposure to normal tissues and maintained reasonable target homogeneity and for the same target coverage, VMAT can reduce the skin dose in all the regions of the body.« less

  2. WE-E-BRE-09: Investigation of the Association Between Radiation-Induced Pain and Radiation Dose in Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, H; Dyk, P; Mullen, D

    Purpose: Patients with head and neck cancer who undergo radiotherapy often experience several undesirable side-effects, including xerostomia, trismus, and pain in the head and neck area, but little is know about the dose-volume predictors of such pain. We investigated the association between radiation dose and both throat and esophagus pain during radiotherapy. Methods: We analyzed 124 head and neck patients who received radiotherapy at the Washington University School of Medicine in Saint Louis. For these patients, weekly PROs were recorded, including 16 pain and anatomical location questions. In addition, 17 observational symptoms were recorded. Patients were asked to describe theirmore » pain at each site according to a four-level scale: none (0), mild (1), moderate (2), and severe (3). We explored the association between throat pain and the mean dose received in oral cavity and between esophageal pain and the mean dose received in the esophagus. The severity of pain was determined by the difference between the baseline (week 1) pain score and the maximum pain score during treatment. The baseline pain score was defined as the first available pain score before receiving 10 Gy because radiotherapy pain originates later during treatment. Dose-volume metrics were extracted from treatment plans using CERR. To evaluate the correlation between pain and radiation dose, Spearman's correlation coefficient (Rs) was used. Results: The associations between throat pain and the mean dose to the oral cavity, and between esophagus pain and the mean dose to the esophagus, were both statistically significant, with Rs=0.320 (p=0.003) and Rs=0.424 (p<0.0001), respectively. Mean dose, for each structure, was a better predictor of pain than total integral dose. Conclusion: We demonstrated that pain during radiotherapy in head and neck patients highly correlates with the dose delivered. We will further investigate the association between other pain locations and relevant normal tissue dose characteristics.« less

  3. Randomized pharmacokinetic cross-over study comparing two curcumin preparations in plasma and rectal tissue of healthy human volunteers

    PubMed Central

    Asher, Gary N.; Xie, Ying; Moaddel, Ruin; Sanghvi, Mitesh; Dossou, Katina S.S.; Kashuba, Angela D. M.; Sandler, Robert S.; Hawke, Roy L.

    2016-01-01

    Curcumin is poorly absorbed driving interest in new preparations. However, little is known about pharmacokinetics and tissue bioavailability between formulations. In this randomized, crossover study we evaluated the relationship between steady-state plasma and rectal tissue curcuminoid concentrations using standard and phosphatidylcholine curcumin extracts. There was no difference in the geometric mean plasma AUCs when adjusted for the 10-fold difference in curcumin dose between the two formulations. Phosphatidylcholine curcumin extract yielded only 20–30% plasma demethoxycurcumin and bisdemethoxycurcumin conjugates compared to standard extract, yet yielded 20-fold greater hexahydrocurcumin. When adjusting for curcumin dose, tissue curcumin concentrations were 5-fold greater for the phosphatidylcholine extract. Improvements in curcuminoid absorption due to phosphatidylcholine are not uniform across the curcuminoids. Furthermore, curcuminoid exposures in the intestinal mucosa are most likely due to luminal exposure rather than plasma disposition. Finally, once-daily dosing is sufficient to maintain detectable curcuminoids at steady-state in both plasma and rectal tissues. PMID:27503249

  4. Pharmacokinetics of sulfamethoxazole and trimethoprim in Pacific white shrimp, Litopenaeus vannamei, after oral administration of single-dose and multiple-dose.

    PubMed

    Ma, Rongrong; Wang, Yuan; Zou, Xiong; Hu, Kun; Sun, Beibei; Fang, Wenhong; Fu, Guihong; Yang, Xianle

    2017-06-01

    The tissue distribution and depletion of sulfamethoxazole (SMZ) and trimethoprim (TMP) were studied in Pacific white shrimp, Litopenaeus vannamei, after single-dose and multiple-dose oral administration of SMZ-TMP (5:1) via medicated feed. In single-dose oral administration, shrimps were fed once at a dose of 100 mg/kg (drug weight/body weight). In multiple-dose oral administration, shrimps were fed three times a day for three consecutive days at a dose of 100mg/kg. The results showed the kinetic characteristic of SMZ was different from TMP in Pacific white shrimp. In the single-dose administration, the SMZ was widely distributed in the tissues, while TMP was highly concentrated in the hepatopancreas. The t 1/2z values of SMZ were larger and persist longer than TMP in Pacific white shrimp. In the multiple-dose administration, SMZ accumulated well in the tissues, and reached steady state level after successive administrations, while TMP did not. TMP concentration even appeared the downward trend with the increase of drug times. Compared with the single dose, the t 1/2z values of SMZ in hepatopancreas (8.22-11.33h) and muscle (6.53-10.92h) of Pacific white shrimps rose, but the haemolymph dropped (13.76-11.03) in the multiple-dose oral administration. Meanwhile, the corresponding values of TMP also rose in hepatopancreas (4.53-9.65h) and muscle (2.12-2.71h), and declined in haemolymph (7.38-5.25h) following single-dose and multiple-dose oral administration in Pacific white shrimps. In addition, it is worth mentioning that the ratios of SMZ and TMP were unusually larger than the general aim ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Accumulated Dose in Liver Stereotactic Body Radiotherapy: Positioning, Breathing, and Deformation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velec, Michael, E-mail: michael.velec@rmp.uhn.on.ca; Institute of Medical Science, University of Toronto, Toronto, ON; Moseley, Joanne L.

    2012-07-15

    Purpose: To investigate the accumulated dose deviations to tumors and normal tissues in liver stereotactic body radiotherapy (SBRT) and investigate their geometric causes. Methods and Materials: Thirty previously treated liver cancer patients were retrospectively evaluated. Stereotactic body radiotherapy was planned on the static exhale CT for 27-60 Gy in 6 fractions, and patients were treated in free-breathing with daily cone-beam CT guidance. Biomechanical model-based deformable image registration accumulated dose over both the planning four-dimensional (4D) CT (predicted breathing dose) and also over each fraction's respiratory-correlated cone-beam CT (accumulated treatment dose). The contribution of different geometric errors to changes between themore » accumulated and predicted breathing dose were quantified. Results: Twenty-one patients (70%) had accumulated dose deviations relative to the planned static prescription dose >5%, ranging from -15% to 5% in tumors and -42% to 8% in normal tissues. Sixteen patients (53%) still had deviations relative to the 4D CT-predicted dose, which were similar in magnitude. Thirty-two tissues in these 16 patients had deviations >5% relative to the 4D CT-predicted dose, and residual setup errors (n = 17) were most often the largest cause of the deviations, followed by deformations (n = 8) and breathing variations (n = 7). Conclusion: The majority of patients had accumulated dose deviations >5% relative to the static plan. Significant deviations relative to the predicted breathing dose still occurred in more than half the patients, commonly owing to residual setup errors. Accumulated SBRT dose may be warranted to pursue further dose escalation, adaptive SBRT, and aid in correlation with clinical outcomes.« less

  6. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation

    PubMed Central

    Brooks, Antone L.; Hoel, David G.; Preston, R. Julian

    2016-01-01

    Abstract Purpose: This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Conclusions: Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2–30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP (2007) and BEIR VII (NRC/NAS 2006). PMID:27266588

  7. Non-targeted effects of ionizing radiation–implications for low dose risk

    PubMed Central

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric; Hildebrandt, Guido; Belyakov, Oleg V.; Prise, Kevin M.; Little, Mark P.

    2014-01-01

    Non-DNA targeted effects of ionizing radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionizing radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the Non-targeted effects of ionizing radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. PMID:23262375

  8. The development of a decision support system with an interactive clinical user interface for estimating treatment parameters in radiation therapy in order to reduce radiation dose in head and neck patients

    NASA Astrophysics Data System (ADS)

    Verma, Sneha; Liu, Joseph; Deshpande, Ruchi; DeMarco, John; Liu, Brent J.

    2017-03-01

    The primary goal in radiation therapy is to target the tumor with the maximum possible radiation dose while limiting the radiation exposure of the surrounding healthy tissues. However, in order to achieve an optimized treatment plan, many constraints, such as gender, age, tumor type, location, etc. need to be considered. The location of the malignant tumor with respect to the vital organs is another possible important factor for treatment planning process which can be quantified as a feature making it easier to analyze its effects. Incorporation of such features into the patient's medical history could provide additional knowledge that could lead to better treatment outcomes. To show the value of features such as relative locations of tumors and surrounding organs, the data is first processed in order to calculate the features and formulate a feature matrix. Then these feature are matched with retrospective cases with similar features to provide the clinician with insight on delivered dose in similar cases from past. This process provides a range of doses that can be delivered to the patient while limiting the radiation exposure of surrounding organs based on similar retrospective cases. As the number of patients increase, there will be an increase in computations needed for feature extraction as well as an increase in the workload for the physician to find the perfect dose amount. In order to show how such algorithms can be integrated we designed and developed a system with a streamlined workflow and interface as prototype for the clinician to test and explore. Integration of the tumor location feature with the clinician's experience and training could play a vital role in designing new treatment algorithms and better outcomes. Last year, we presented how multi-institutional data into a decision support system is incorporated. This year the presentation is focused on the interface and demonstration of the working prototype of informatics system.

  9. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source.

    PubMed

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V(100) reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V(100) to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.

  10. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    NASA Astrophysics Data System (ADS)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V100 to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.

  11. 42 CFR 81.4 - Definition of terms used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...]. (e) Equivalent dose means the absorbed dose in a tissue or organ multiplied by a radiation weighting... dose means the portion of the equivalent dose that is received from radiation sources outside of the... pattern and level of radiation exposure. (h) Internal dose means the portion of the equivalent dose that...

  12. SU-E-T-297: Dosimetric Assessment of An Air-Filled Balloon Applicator in HDR Vaginal Cuff Brachytherapy Using the Monte Carlo Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H; Lee, Y; Pokhrel, D

    2015-06-15

    Purpose: As an alternative to cylindrical applicators, air inflated balloon applicators have been introduced into HDR vaginal cuff brachytherapy treatment to achieve sufficient dose to vagina mucosa as well as to spare rectum and bladder. In general, TG43 formulae based treatment planning systems do not take into account tissue inhomogeneity, and air in the balloon applicator can cause higher delivered dose to mucosa than treatment plan reported. We investigated dosimetric effect of air in balloon applicator using the Monte Carlo method. Methods: The thirteen-catheter Capri applicator with a Nucletron Ir-192 seed was modeled for various balloon diameters (2cm to 3.5cm)more » using the MCNP Monte Carlo code. Ir-192 seed was placed in both central and peripheral catheters to replicate real patient situations. Existence of charged particle equilibrium (CPE) with air balloon was evaluated by comparing kerma and dose at various distances (1mm to 70mm) from surface of air-filled applicator. Also mucosa dose by an air-filled applicator was compared with by a water-filled applicator to evaluate dosimetry accuracy of planning system without tissue inhomogeneity correction. Results: Beyond 1mm from air/tissue interface, the difference between kerma and dose was within 2%. CPE (or transient CPE) condition was deemed existent, and in this region no electron transport was necessary in Monte Carlo simulations. At 1mm or less, the deviation of dose from kerma became more apparent. Increase of dose to mucosa depended on diameter of air balloon. The increment of dose to mucosa was 2.5% and 4.3% on average for 2cm and 3.5cm applicators, respectively. Conclusion: After introduction of air balloon applicator, CPE fails only at the proximity of air/tissue interface. Although dose to mucosa is increased, there is no significant dosimetric difference (<5%) between air and water filled applicators. Tissue inhomogeneity correction is not necessary for air-filled applicators.« less

  13. Controlling Fluences of Reactive Species Produced by Multipulse DBDs onto Wet Tissue: Frequency and Liquid Thickness

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Kushner, Mark J.

    2015-09-01

    Tissue covered by a thin liquid layer treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluences of radicals and ions onto the tissue. These fluences are controlled in part by frequency and liquid thickness. In this paper, we report on results from a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 stationary or random streamers at different repetition rates and liquid thicknesses followed by 10 s to 2 min of afterglow. At 100 Hz, NOaq and OHaq are mixed by randomly striking streamers, although they have different rates of solvation. NOaq is nearly completely consumed by reactions with OHaq at the liquid surface. Only H2O2aq, produced through OHaq mutual reactions, survives to reach the tissue. After 100 pulses, the liquid becomes ozone-rich, in which the nitrous ion, NO2-aq, is converted to the nitric ion, NO3-aq. Reducing the pulse frequency to 10 Hz results in significant fluence of NOaq to the tissue as NOaq can escape during the interpulse period from the liquid surface where OHaq is formed. For the same reason, NO2-aq can also reach deeper into the liquid at lower frequency. Frequency and thickness of the liquid are methods to control the plasma produced aqueous species to the underlying tissue. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724).

  14. Cone beam computed tomography image guidance system for a dedicated intracranial radiosurgery treatment unit.

    PubMed

    Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David

    2013-01-01

    Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. SU-F-T-62: Three-Dimensional Dosimetric Gamma Analysis for Impacts of Tissue Inhomogeneity Using Monte Carlo Simulation in Intracavitary Brachytheray for Cervix Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke

    Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less

  16. Risk analysis: divergent models and convergent interpretations

    NASA Technical Reports Server (NTRS)

    Carnes, B. A.; Gavrilova, N.

    2001-01-01

    Material presented at a NASA-sponsored workshop on risk models for exposure conditions relevant to prolonged space flight are described in this paper. Analyses used mortality data from experiments conducted at Argonne National Laboratory on the long-term effects of external whole-body irradiation on B6CF1 mice by 60Co gamma rays and fission neutrons delivered as a single exposure or protracted over either 24 or 60 once-weekly exposures. The maximum dose considered was restricted to 1 Gy for neutrons and 10 Gy for gamma rays. Proportional hazard models were used to investigate the shape of the dose response at these lower doses for deaths caused by solid-tissue tumors and tumors of either connective or epithelial tissue origin. For protracted exposures, a significant mortality effect was detected at a neutron dose of 14 cGy and a gamma-ray dose of 3 Gy. For single exposures, radiation-induced mortality for neutrons also occurred within the range of 10-20 cGy, but dropped to 86 cGy for gamma rays. Plots of risk relative to control estimated for each observed dose gave a visual impression of nonlinearity for both neutrons and gamma rays. At least for solid-tissue tumors, male and female mortality was nearly identical for gamma-ray exposures, but mortality risks for females were higher than for males for neutron exposures. As expected, protracting the gamma-ray dose reduced mortality risks. Although curvature consistent with that observed visually could be detected by a model parameterized to detect curvature, a relative risk term containing only a simple term for total dose was usually sufficient to describe the dose response. Although detectable mortality for the three pathology end points considered typically occurred at the same level of dose, the highest risks were almost always associated with deaths caused by tumors of epithelial tissue origin.

  17. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.« less

  18. SU-E-T-275: Dose Verification in a Small Animal Image-Guided Radiation Therapy X-Ray Machine: A Dose Comparison between TG-61 Based Look-Up Table and MOSFET Method for Various Collimator Sizes.

    PubMed

    Rodrigues, A; Nguyen, G; Li, Y; Roy Choudhury, K; Kirsch, D; Das, S; Yoshizumi, T

    2012-06-01

    To verify the accuracy of TG-61 based dosimetry with MOSFET technology using a tissue-equivalent mouse phantom. Accuracy of mouse dose between a TG-61 based look-up table was verified with MOSFET technology. The look-up table followed a TG-61 based commissioning and used a solid water block and radiochromic film. A tissue-equivalent mouse phantom (2 cm diameter, 8 cm length) was used for the MOSFET method. Detectors were placed in the phantom at the head and center of the body. MOSFETs were calibrated in air with an ion chamber and f-factor was applied to derive the dose to tissue. In CBCT mode, the phantom was positioned such that the system isocenter coincided with the center of the MOSFET with the active volume perpendicular to the beam. The absorbed dose was measured three times for seven different collimators, respectively. The exposure parameters were 225 kVp, 13 mA, and an exposure time of 20 s. For a 10 mm, 15 mm, and 20 mm circular collimator, the dose measured by the phantom was 4.3%, 2.7%, and 6% lower than TG-61 based measurements, respectively. For a 10 × 10 mm, 20 × 20 mm, and 40 × 40 mm collimator, the dose difference was 4.7%, 7.7%, and 2.9%, respectively. The MOSFET data was systematically lower than the commissioning data. The dose difference is due to the increased scatter radiation in the solid water block versus the dimension of the mouse phantom leading to an overestimation of the actual dose in the solid water block. The MOSFET method with the use of a tissue- equivalent mouse phantom provides less labor intensive geometry-specific dosimetry and accuracy with better dose tolerances of up to ± 2.7%. © 2012 American Association of Physicists in Medicine.

  19. SU-F-T-669: Commissioning of An Electronic Brachytherapy System for Targeted Mouse Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culberson, W; Micka, J; Carchman, E

    Purpose: The aim of this study was to commission the Xoft Axxent™ electronic brachytherapy (eBT) source and 10 mm diameter surface applicator with NIST traceability for targeted irradiations of mouse anal carcinomas. Methods: The Xoft Axxent™ electronic brachytherapy (eBT) and 10 mm diameter surface applicator was chosen by the collaborating physician as a radiation delivery mechanism for mouse anal carcinomas. The target dose was 2 Gy at a depth of 3 mm in tissue to be delivered in a single fraction. To implement an accurate and reliable irradiation plan, the system was commissioned by first determining the eBT source outputmore » and corresponding dose rate at a depth of 3 mm in tissue. This was determined through parallel-plate ion chamber measurements and published conversion factors. Well-type ionization chamber measurements were used to determine a transfer coefficient, which correlates the measured dose rate at 3 mm to the NIST-traceable quantity, air-kerma rate at 50 cm in air, for eBT sources. By correlating these two quantities, daily monitoring in the well chamber becomes an accurate and efficient quality assurance technique. Once the dose-rate was determined, a treatment recipe was developed and confirmed with chamber measurements to deliver the requested dose. Radiochromic film was used to verify the dose distribution across the field. Results: Dose rates at 3 mm depth in tissue were determined for two different Xoft Axxent™ sources and correlated with NIST-traceable well-type ionization chamber measurements. Unique transfer coefficients were determined for each source and the treatment recipe was validated by measurements. Film profiles showed a uniform dose distribution across the field. Conclusion: A Xoft Axxent™ eBT system was successfully commissioned for use in the irradiation of mouse rectal tumors. Dose rates in tissue were determined as well as other pertinent parameters to ensure accurate delivery of dose to the target region.« less

  20. Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons

    NASA Astrophysics Data System (ADS)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; Hiller, M. M.

    2017-09-01

    With the introduction of new recommendations by ICRP Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors, and the introduction of reference sex-specific computational phantoms (ICRP Publication 110). Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT), and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue absorbed doses for caudal and cranial exposures to neutrons ranging in energy from 10-9 MeV to 10 GeV have been performed using the MCNP6 radiation transport code and the adult reference voxel phantoms of ICRP Publication 110. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above about 30 MeV the cranial and caudal values are greater.

  1. Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9.

    PubMed

    Takata, Nozomu; Sakakura, Eriko; Kasukawa, Takeya; Sakuma, Tetsushi; Yamamoto, Takashi; Sasai, Yoshiki

    2016-06-01

    The epiblast (foremost embryonic ectoderm) generates all three germ layers and therefore has crucial roles in the formation of all mammalian body cells. However, regulation of epiblast gene expression is poorly understood because of the difficulty of manipulating epiblast tissues in vivo. In the present study, using the self-organizing properties of mouse embryonic stem cell (ESC), we generated and characterized epiblast-like tissue in three-dimensional culture. We identified significant genome-wide gene expression changes in this epiblast-like tissue by transcriptomic analysis. In addition, we identified the particular significance of the Erk/Mapk and integrin-linked kinase pathways, and genes related to ectoderm/epithelial formation, using the bioinformatics resources IPA and DAVID. Here, we focused on Fgf5, which ranked in the top 10 among the discovered genes. To develop a functional analysis of Fgf5, we created an efficient method combining CRISPR/Cas9-mediated genome engineering and RNA interference (RNAi). Notably, we show one-step generation of various Fgf5 reporter lines including heterozygous and homozygous knockins (the GET method). For time- and dose-dependent depletion of fgf5 over the course of development, we generated an ESC line harboring Tol2 transposon-mediated integration of an inducible short hairpin RNA interference system (pdiRNAi). Our findings raised the possibility that Fgf/Erk signaling and apicobasal epithelial integrity are important factors in epiblast development. In addition, our methods provide a framework for a broad array of applications in the areas of mammalian genetics and molecular biology to understand development and to improve future therapeutics.

  2. Efficacy and Cost-Effectiveness Analysis of Evidence-Based Nursing Interventions to Maintain Tissue Integrity to Prevent Pressure Ulcers and Incontinence-Associated Dermatitis.

    PubMed

    Avşar, Pınar; Karadağ, Ayişe

    2018-02-01

    A reduction in tissue tolerance promotes the development of pressure ulcers (PUs) and incontinence-associated dermatitis (IAD). To determine the cost-effectiveness and efficacy of evidence-based (EB) nursing interventions on increasing tissue tolerance by maintaining tissue integrity. The study involved 154 patients in two intensive care units (77 patients, control group; 77 patients, intervention group). Data were collected using the following: patient characteristics form, Braden PU risk assessment scale, tissue integrity monitoring form, PU identification form, IAD and severity scale, and a cost table of the interventions. Patients in the intervention group were cared for by nurses trained in the use of the data collection tools and in EB practices to improve tissue tolerance. Routine nursing care was given to the patients in the control group. The researcher observed all patients in terms of tissue integrity and recorded the care-related costs. Deterioration of tissue integrity was observed in 18.2% patients in the intervention group compared to 54.5% in the control group (p < .05). The average cost to increase tissue tolerance prevention in the intervention and control groups was X¯ = $204.34 ± 41.07 and X¯ = $138.90 ± 1.70, respectively. It is recommended that EB policies and procedures are developed to improve tissue tolerance by maintaining tissue integrity. Although the cost of EB preventive initiatives is relatively high compared to those that are not EB, the former provide a significant reduction in the prevalence of tissue integrity deterioration. © 2017 Sigma Theta Tau International.

  3. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1982-01-01

    The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.

  4. Post-focus expansion of ion beams for low fluence and large area MeV ion irradiation: Application to human brain tissue and electronics devices

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc

    2017-08-01

    Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.

  5. [Suppression of VEGF protein expression by arctigenin in oral squamous cell carcinoma].

    PubMed

    Pu, Guang-rui; Liu, Fa-yu; Wang, Bo

    2015-08-01

    To observe arctigenin's inhibitory effect on oral squamous cell carcinoma, and explore the possible mechanism. The expression of VEGF in 32 cases of oral squamous cell cancer and 20 adjacent tissue specimen were detected with immunohistochemistry. Human nude mouse transplantation tumor model of oral squamous cell cancer was prepared with HSC-3 cells line. Transplanted tumor growth and VEGF expression in transplanted tumor tissues were assayed after treatment with arctigenin. One-way ANOVA was used for comparison between groups with SPSS 16.0 software package. Compared with the adjacent tissue, immunohistochemical staining score of VEGF was significantly higher (P<0.01) in oral squamous cell carcinoma tissues. After treatment with arctigenin, the growth of oral squamous cell transplanted tumors in nude mouse was inhibited (P<0.05), and decreased weight in end point of observation was noted (P<0.05). There were significant differences between high dose group and low dose group (P<0.05). Compared with the nude mouse model group, the optical density of VEGF staining was significantly lower in arctigenin group (P<0.05). There were significant differences between high dose group and low dose group (P<0.05). Arctigenin can dose-dependently inhibit the growth of oral squamous cell carcinomas, and this effect may be related to down regulation of VEGF expression.

  6. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  7. SU-F-J-193: Efficient Dose Extinction Method for Water Equivalent Path Length (WEPL) of Real Tissue Samples for Validation of CT HU to Stopping Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Baer, E; Jee, K

    Purpose: For proton therapy, an accurate model of CT HU to relative stopping power (RSP) conversion is essential. In current practice, validation of these models relies solely on measurements of tissue substitutes with standard compositions. Validation based on real tissue samples would be much more direct and can address variations between patients. This study intends to develop an efficient and accurate system based on the concept of dose extinction to measure WEPL and retrieve RSP in biological tissue in large number of types. Methods: A broad AP proton beam delivering a spread out Bragg peak (SOBP) is used to irradiatemore » the samples with a Matrixx detector positioned immediately below. A water tank was placed on top of the samples, with the water level controllable in sub-millimeter by a remotely controlled dosing pump. While gradually lowering the water level with beam on, the transmission dose was recorded at 1 frame/sec. The WEPL were determined as the difference between the known beam range of the delivered SOBP (80%) and the water level corresponding to 80% of measured dose profiles in time. A Gammex 467 phantom was used to test the system and various types of biological tissue was measured. Results: RSP for all Gammex inserts, expect the one made with lung-450 material (<2% error), were determined within ±0.5% error. Depends on the WEPL of investigated phantom, a measurement takes around 10 min, which can be accelerated by a faster pump. Conclusion: Based on the concept of dose extinction, a system was explored to measure WEPL efficiently and accurately for a large number of samples. This allows the validation of CT HU to stopping power conversions based on large number of samples and real tissues. It also allows the assessment of beam uncertainties due to variations over patients, which issue has never been sufficiently studied before.« less

  8. Esophagus and Contralateral Lung-Sparing IMRT for Locally Advanced Lung Cancer in the Community Hospital Setting.

    PubMed

    Kao, Johnny; Pettit, Jeffrey; Zahid, Soombal; Gold, Kenneth D; Palatt, Terry

    2015-01-01

    The optimal technique for performing lung IMRT remains poorly defined. We hypothesize that improved dose distributions associated with normal tissue-sparing IMRT can allow safe dose escalation resulting in decreased acute and late toxicity. We performed a retrospective analysis of 82 consecutive lung cancer patients treated with curative intent from 1/10 to 9/14. From 1/10 to 4/12, 44 patients were treated with the community standard of three-dimensional conformal radiotherapy or IMRT without specific esophagus or contralateral lung constraints (standard RT). From 5/12 to 9/14, 38 patients were treated with normal tissue-sparing IMRT with selective sparing of contralateral lung and esophagus. The study endpoints were dosimetry, toxicity, and overall survival. Despite higher mean prescribed radiation doses in the normal tissue-sparing IMRT cohort (64.5 vs. 60.8 Gy, p = 0.04), patients treated with normal tissue-sparing IMRT had significantly lower lung V20, V10, V5, mean lung, esophageal V60, and mean esophagus doses compared to patients treated with standard RT (p ≤ 0.001). Patients in the normal tissue-sparing IMRT group had reduced acute grade ≥3 esophagitis (0 vs. 11%, p < 0.001), acute grade ≥2 weight loss (2 vs. 16%, p = 0.04), and late grade ≥2 pneumonitis (7 vs. 21%, p = 0.02). The 2-year overall survival was 52% with normal tissue-sparing IMRT arm compared to 28% for standard RT (p = 0.015). These data provide proof of principle that suboptimal radiation dose distributions are associated with significant acute and late lung and esophageal toxicity that may result in hospitalization or even premature mortality. Strict attention to contralateral lung and esophageal dose-volume constraints are feasible in the community hospital setting without sacrificing disease control.

  9. The flame-retardant BDE-99 dose-dependently affects viral replication in CVB3-infected mice.

    PubMed

    Lundgren, Magnus; Darnerud, Per Ola; Ilbäck, Nils-Gunnar

    2013-06-01

    The flame retardant component 2,2',4,4',5-penta-BDE (BDE-99) is found in the environment and in human tissues and fluids. In mice the common human coxsackievirus B3 (CVB3) infection has been shown to change the tissue distribution of BDE-99. We now investigate how CVB3 infection in mice affects liver uptake of (14)C at two doses of radiolabelled BDE-99, and whether increased tissue levels are related to changed virus replication and gene expression of the proinflammatory chemokine monocyte chemoattractant protein-1 (MCP-1). Mice were infected on day 0, orally treated either with 200μg or 20mg (14)C-BDE-99/kgbw on day 1, and euthanised on day 3. Serum and liver levels of (14)C-BDE-99, as well as virus levels and gene expressions of MCP-1 in the liver, were measured. In non-infected mice, there was a dose-dependent uptake of BDE-99 in both liver and serum, and in infected animals the liver BDE-99 levels was further increased. When comparing infected mice exposed to the two BDE-99 doses, the higher BDE dose resulted in increased virus amounts in the liver, and decreased infection-induced expression of MCP-1. Consequently, a high enough dose/tissue concentration of BDE-99 may result in a disturbed mobilisation of immune cells into infected tissues that could explain higher virus titres and a possibly altered clinical course of the disease. Moreover, the fact that CVB3 infection increased the BDE-99 levels in liver but not in serum may impair the risk assessment of polybrominated diphenyl ethers (PBDEs) in subclinical and clinically infected individuals, as serum levels is the common marker of exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Survival of mouse mammary gland transplants of normal, hyperplastic, and tumor tissues exposed to X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkin, L.J.; Mitchell, D.J.; Cardiff, R.D.

    1982-04-01

    Mouse mammary tissues, including ducts, prelactating lobules, hyperplastic outgrowth lines, and tumors, were exposed to varying doses of X-rays and then transplanted to fat pads of nonirradiated BALB/c mice for study. Estimates of the dose of radiation that would allow survival of 50% of the transplants (SD50) were made with the use of probit analysis. Nearly all duct and lobule transplants survived doses of X-rays from 0 to 800 rad. The survival rate declined rapidly following doses above 800 rad, and the calculated SD50 was 1,020 and 1,260 rad for mammary ducts and lobules, respectively. The three hyperplastic outgrowth linesmore » tested gave very different results. Hyperplastic line Z5C1 transplants had better than 90% survival at doses up to 1,200 rad and an SD50 between 1,200 and 1,600 rad. Hyperplastic line Z5D transplants had an SD50 of between 800 and 1,200 rad. Hyperplastic line D1 transplants had a better than 90% survival following doses of 0-600 rad and an SD50 between 600 and 800 rad. The survival of tumor transplants was 100% following doses of X-rays up to 1,200 rad; the SD50 was in excess of 1,600 rad. The mouse mammary transplantation system can be used to study the direct effect of X-rays on normal, premalignant, and malignant mammary tissues and provides a basis for the study of the radiobiology of mammary tissues.« less

  11. The preclinical set-up at the ID17 biomedical beamline to achieve high local dose deposition using interlaced microbeams

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Nemoz, C.; Brochard, Th; Berruyer, G.; Renier, M.; Pouyatos, B.; Serduc, R.

    2013-03-01

    Microbeam Radiation Therapy (MRT) uses spatially a fractionated "white beam" (energies 50-350 keV) irradiation from a Synchrotron Source. The typical microbeams used at ID17 are 25-100μm-thick, spaced by 200-400μm, and carry extremely high dose rates (up to about 16 kGy/s). These microbeams are well tolerated by biological tissue, i.e. up to several hundred of Gy in the peaks. When valley doses, caused by Compton scattering in between two microbeams, remain within a dose regime similar to conventional RT, a superior tumour control can be achieved with MRT than with conventional RT. The normal tissue tolerance of these microscopically small beams is outstanding and well documented in the literature. The hypothesis of a differential effect in particular on the vasculature of normal versus tumoral tissue might best be proven by using large animal models with spontaneous tumors instead of small laboratory animals with transplantable tumors, an ongoing project on ID17. An alternative approach to deposit a high dose, while preserving the feature of the spatial separation of these microbeams outside the target has opened up new applications in preclinical research. The instrumentation of this method to produce such interlaced beams is presented with an outlook on the challenges to build a treatment platform for human patients. Dose measurements using Gafchromic films exposed in interlaced geometries with their steep profiles highlight the potential to deposit radiotoxic doses in the vicinity of radiosensitive tissues.

  12. Irradiation at Different Fetal Stages Results in Different Translocation Frequencies in Adult Mouse Thyroid Cells

    DOE PAGES

    Hamasaki, K.; Landes, R. D.; Noda, A.; ...

    2016-10-01

    While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The implications of these results in interpreting cancer risks after fetal irradiation are also discussed.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamasaki, K.; Landes, R. D.; Noda, A.

    While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The implications of these results in interpreting cancer risks after fetal irradiation are also discussed.« less

  14. WE-E-18A-06: To Remove Or Not to Remove: Comfort Pads From Beneath Neonates for Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, X; Baad, M; Reiser, I

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less

  15. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda

    2010-10-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less

  16. Toxic effects of orally ingested oil from the Deepwater Horizon spill on laughing gulls.

    PubMed

    Horak, K E; Bursian, S J; Ellis, C K; Dean, K M; Link, J E; Hanson-Dorr, K C; Cunningham, F L; Harr, K E; Pritsos, C A; Pritsos, K L; Healy, K A; Cacela, D; Shriner, S A

    2017-12-01

    The explosion of the Deepwater Horizon oil rig released, millions of gallons of oil into the environment, subsequently exposing wildlife, including numerous bird species. To determine the effects of MC252 oil to species relevant to the Gulf of Mexico, studies were done examining multiple exposure scenarios and doses. In this study, laughing gulls (Leucophaeus atricilla, LAGU) were offered fish injected with MC252 oil at target doses of 5 or 10mL/kg bw per day. Dosing continued for 27 days. Of the adult, mixed-sex LAGUs used in the present study, ten of 20 oil exposed LAGUs survived to the end of the study; a total of 10 of the oil exposed LAGUs died or were euthanized within 20 days of initiation of the study. Endpoints associated with oxidative stress, hepatic total glutathione (tGSH), oxidized glutathione (GSSG) and reduced glutathione (rGSH) significantly increased as mean dose of oil increased, while the rGSH:GSSG ratio showed a non-significant negative trend with oil dose. A significant increase in 3-methyl histidine was found in oil exposed birds when compared to controls indicative of muscle wastage and may have been associated with the gross observation of diminished structural integrity in cardiac tissue. Consistent with previous oil dosing studies in birds, significant changes in liver, spleen, and kidney weight when normalized to body weight were observed. These studies indicate that mortality in response to oil dosing is relatively common and the mortality exhibited by the gulls is consistent with previous studies examining oil toxicity. Whether survival effects in the gull study were associated with weight loss, physiologic effects of oil toxicity, or a behavioral response that led the birds to reject the dosed fish is unknown. Published by Elsevier Inc.

  17. Postlumpectomy Focal Brachytherapy for Simultaneous Treatment of Surgical Cavity and Draining Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycushko, Brian A.; Li Shihong; Shi Chengyu

    2011-03-01

    Purpose: The primary objective was to investigate a novel focal brachytherapy technique using lipid nanoparticle (liposome)-carried {beta}-emitting radionuclides (rhenium-186 [{sup 186}Re]/rhenium-188 [{sup 188}Re]) to simultaneously treat the postlumpectomy surgical cavity and draining lymph nodes. Methods and Materials: Cumulative activity distributions in the lumpectomy cavity and lymph nodes were extrapolated from small animal imaging and human lymphoscintigraphy data. Absorbed dose calculations were performed for lumpectomy cavities with spherical and ellipsoidal shapes and lymph nodes within human subjects by use of the dose point kernel convolution method. Results: Dose calculations showed that therapeutic dose levels within the lumpectomy cavity wall can covermore » 2- and 5-mm depths for {sup 186}Re and {sup 188}Re liposomes, respectively. The absorbed doses at 1 cm sharply decreased to only 1.3% to 3.7% of the doses at 2 mm for {sup 186}Re liposomes and 5 mm for {sup 188}Re liposomes. Concurrently, the draining sentinel lymph nodes would receive a high focal therapeutic absorbed dose, whereas the average dose to 1 cm of surrounding tissue received less than 1% of that within the nodes. Conclusions: Focal brachytherapy by use of {sup 186}Re/{sup 188}Re liposomes was theoretically shown to be capable of simultaneously treating the lumpectomy cavity wall and draining sentinel lymph nodes with high absorbed doses while significantly lowering dose to surrounding healthy tissue. In turn, this allows for dose escalation to regions of higher probability of containing residual tumor cells after lumpectomy while reducing normal tissue complications.« less

  18. Enhanced Healing of Segmental Bone Defects by Modulation of the Mechanical Environment

    DTIC Science & Technology

    2012-10-01

    5.5 µg BMP-2, it was largely disorganized, woven bone with non-osseous soft tissue interspersed. The highest 4 dose (11 µg) of BMP-2, in contrast...various doses of BMP-2. Top row: 16x magnification Bottom row: 100x magnification N= new cortex M= marrow T=trabecular bone F= fibrous tissue ...areas of cartilagenous tissue (figure 5) it was clear that substantial areas of cartilage remained in the defects treated with 5.5 µg BMP-2. These may

  19. A dosimetry technique for measuring kilovoltage cone‐beam CT dose on a linear accelerator using radiotherapy equipment

    PubMed Central

    Lawford, Catherine E.

    2014-01-01

    This work develops a technique for kilovoltage cone‐beam CT (CBCT) dosimetry that incorporates both point dose and integral dose in the form of dose length product, and uses readily available radiotherapy equipment. The dose from imaging protocols for a range of imaging parameters and treatment sites was evaluated. Conventional CT dosimetry using 100 mm long pencil chambers has been shown to be inadequate for the large fields in CBCT and has been replaced in this work by a combination of point dose and integral dose. Absolute dose measurements were made with a small volume ion chamber at the central slice of a radiotherapy phantom. Beam profiles were measured using a linear diode array large enough to capture the entire imaging field. These profiles were normalized to absolute dose to form dose line integrals, which were then weighted with radial depth to form the DLPCBCT. This metric is analogous to the standard dose length product (DLP), but derived differently to suit the unique properties of CBCT. Imaging protocols for head and neck, chest, and prostate sites delivered absolute doses of 0.9, 2.2, and 2.9 cGy to the center of the phantom, and DLPCBCT of 28.2, 665.1, and 565.3 mGy.cm, respectively. Results are displayed as dose per 100 mAs and as a function of key imaging parameters such as kVp, mAs, and collimator selection in a summary table. DLPCBCT was found to correlate closely with the dimension of the imaging region and provided a good indication of integral dose. It is important to assess integral dose when determining radiation doses to patients using CBCT. By incorporating measured beam profiles and DLP, this technique provides a CBCT dosimetry in radiotherapy phantoms and allows the prediction of imaging dose for new CBCT protocols. PACS number: 87.57.uq PMID:25207398

  20. A dosimetry technique for measuring kilovoltage cone-beam CT dose on a linear accelerator using radiotherapy equipment.

    PubMed

    Scandurra, Daniel; Lawford, Catherine E

    2014-07-08

    This work develops a technique for kilovoltage cone-beam CT (CBCT) dosimetry that incorporates both point dose and integral dose in the form of dose length product, and uses readily available radiotherapy equipment. The dose from imaging protocols for a range of imaging parameters and treatment sites was evaluated. Conventional CT dosimetry using 100 mm long pencil chambers has been shown to be inadequate for the large fields in CBCT and has been replaced in this work by a combination of point dose and integral dose. Absolute dose measurements were made with a small volume ion chamber at the central slice of a radiotherapy phantom. Beam profiles were measured using a linear diode array large enough to capture the entire imaging field. These profiles were normalized to absolute dose to form dose line integrals, which were then weighted with radial depth to form the DLPCBCT. This metric is analogous to the standard dose length product (DLP), but derived differently to suit the unique properties of CBCT. Imaging protocols for head and neck, chest, and prostate sites delivered absolute doses of 0.9, 2.2, and 2.9 cGy to the center of the phantom, and DLPCBCT of 28.2, 665.1, and 565.3mGy.cm, respectively. Results are displayed as dose per 100 mAs and as a function of key imaging parameters such as kVp, mAs, and collimator selection in a summary table. DLPCBCT was found to correlate closely with the dimension of the imaging region and provided a good indication of integral dose. It is important to assess integral dose when determining radiation doses to patients using CBCT. By incorporating measured beam profiles and DLP, this technique provides a CBCT dosimetry in radiotherapy phantoms and allows the prediction of imaging dose for new CBCT protocols.

  1. Molecular and Histopathological Changes in Mouse Intestinal Tissue after Proton Exposure

    NASA Astrophysics Data System (ADS)

    Purgason, Ashley; Zhang, Ye; Hamilton, Stanley; Wu, Honglu

    Radiation in space, especially energetic protons emitted from solar particle events (SPEs), poses serious health risks to astronauts and is especially dangerous for long duration missions. Protons are the most abundant particles in space and to date there is little known about the details of the negative consequences crew members will face upon exposure to them. To elucidate some of the possible health effects induced by protons, BALB/C mice were subjected to 250 MeV of proton radiation at doses of 0 Gy, 0.1 Gy, 1 Gy, and 2 Gy. Three specimens per dose were studied. The gastrointestinal tract of each animal was dissected four hours post-irradiation and the isolated small intestinal tissue was fixed in formalin for histopathological examination or snap-frozen in liquid nitrogen for RNA isolation. Histopathologic observation of the tissue using standard HE staining methods to screen for morphologic changes showed a marked increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the dose response showed possible hyper sensitivities at low dose. Tissue of the gastrointestinal tract was also homogenized and RNA was isolated for cDNA synthesis and real-time PCR analysis for genes involved in apoptosis. Results of gene expression changes revealed consistent up or down regulation of a number of genes for all of the exposure doses that may play a role in proton-induced apoptosis (e.g. Hsp90ab1). In addition, several genes were found to have significant changes in the RNA level after only the low dose (0.1 Gy), but not the high dose (1 and 2 Gy), proton exposures (e.g. Bok and Casp1), whereas some genes had expression changes only after high dose proton exposures (e.g. Tsc22d3). These findings demonstrated that apoptosis may occur in gastrointestinal tracts after even low dose proton exposures, and the different gene expression patterns between low and high dose proton irradiated mice may offer insight into the molecular mechanisms of the possible hyper sensitivity at low proton doses.

  2. SU-E-T-310: Micro-Dosimetry Study of the Radiation Dose Enhancement at the Gold-Tissue Interface for Nanoparticle-Aided Radiation Therapy.

    PubMed

    Paudel, N; Shvydka, D; Parsai, E

    2012-06-01

    Gold nanoparticles (AuNP) have been proposed to be utilized for local dose enhancement in radiation therapy. Due to a very sharp spatial fall-off of the effect, the dosimetry associated with such an approach is difficult to implement in a direct measurement. This study is aimed at establishing a micro-dosimetry technique for experimental verification of dose enhancement in the vicinity of gold-tissue interface. The spatial distribution of the dose enhancement near the gold-tissue interface is modeled with Monte Carlo (MC) package MCNP5 in a 1-dimentional approach of a thin gold slab placed in an ICRU-4 component tissue phantom. The model is replicating the experiment, where the dose enhancement due to gold foils having thicknesses of 1, 10, and 100μm and areas of 12.5×25mm 2 are placed at a short distance from clinical HDR brachytherapy (Ir-192) source. The measurements are carried out with a thin-film CdTe-based photodetector, having thickness <10μm, allowing for high spatial resolution at progressively increasing distances from the foil. Our MC simulation results indicate that for Ir-192 energy spectrum the dose enhancement region extends over ∼1 mm distance from the foil, changing from several hundred at the interface to just a few percent. The trend in the measured dose enhancement closely follows the results obtained from MC simulations. AuNP's have been established as promising candidates for dose enhancement in nanoparticle-aided radiation therapy, particularly, in the energy range relevant to brachytherapy applications. Most researchers study the dose enhancement with MC simulations, or experimental approaches involving biological systems, where achievable dose enhancements are difficult to quantify. Successful development of micro-dosimetry approaches will pave a way for direct assessment of the dose in experiments on biological models, shedding some light on apparent discrepancy between physical dose enhancement and biological effect established in studies of AuNP-aided radiation therapy. No conflict of interest. © 2012 American Association of Physicists in Medicine.

  3. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800.

    PubMed

    Miller, Sarah E; Tummers, Willemieke S; Teraphongphom, Nutte; van den Berg, Nynke S; Hasan, Alifia; Ertsey, Robert D; Nagpal, Seema; Recht, Lawrence D; Plowey, Edward D; Vogel, Hannes; Harsh, Griffith R; Grant, Gerald A; Li, Gordon H; Rosenthal, Eben L

    2018-04-06

    Maximizing extent of surgical resection with the least morbidity remains critical for survival in glioblastoma patients, and we hypothesize that it can be improved by enhancements in intraoperative tumor detection. In a clinical study, we determined if therapeutic antibodies could be repurposed for intraoperative imaging during resection. Fluorescently labeled cetuximab-IRDye800 was systemically administered to three patients 2 days prior to surgery. Near-infrared fluorescence imaging of tumor and histologically negative peri-tumoral tissue was performed intraoperatively and ex vivo. Fluorescence was measured as mean fluorescence intensity (MFI), and tumor-to-background ratios (TBRs) were calculated by comparing MFIs of tumor and histologically uninvolved tissue. The mean TBR was significantly higher in tumor tissue of contrast-enhancing (CE) tumors on preoperative imaging (4.0 ± 0.5) compared to non-CE tumors (1.2 ± 0.3; p = 0.02). The TBR was higher at a 100 mg dose than at 50 mg (4.3 vs. 3.6). The smallest detectable tumor volume in a closed-field setting was 70 mg with 50 mg of dye and 10 mg with 100 mg. On sections of paraffin embedded tissues, fluorescence positively correlated with histological evidence of tumor. Sensitivity and specificity of tumor fluorescence for viable tumor detection was calculated and fluorescence was found to be highly sensitive (73.0% for 50 mg dose, 98.2% for 100 mg dose) and specific (66.3% for 50 mg dose, 69.8% for 100 mg dose) for viable tumor tissue in CE tumors while normal peri-tumoral tissue showed minimal fluorescence. This first-in-human study demonstrates the feasibility and safety of antibody based imaging for CE glioblastomas.

  4. High-dose-rate (HDR) brachytherapy for the treatment of benign obstructive endobronchial granulation tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madu, Chika N.; Machuzak, Michael S.; Sterman, Daniel H.

    Background: Severe airway obstruction can occur in the setting of benign granulation tissue forming at bronchial anastomotic sites after lung transplantation in up to 20% of patients. Many of these benign lesions respond to stent placement, laser ablation, or balloon bronchoplasty. However, in certain cases, proliferation of granulation tissue may persist despite all therapeutic attempts. This study describes a series of refractory patients treated with high-dose-rate (HDR) brachytherapy for benign proliferation of granulation tissue, causing airway compromise. Methods and Materials: Between April 2002 and June 2005, 5 patients with significant airway compromise from recurrent granulation tissue were treated with HDRmore » brachytherapy. All patients had previously failed to maintain a patent airway despite multiple bronchoscopic interventions. Treatment was delivered using an HDR brachytherapy afterloader with {sup 192}Ir. Dose prescription was to a depth of 1 cm. All patients were treated weekly, with total doses ranging from 10 Gy to 21 Gy in two to three fractions. Results: The median follow-up was 12 months. All patients experienced a reduction in therapeutic bronchoscopic procedures after HDR brachytherapy compared with the pretreatment period. With the exception of possible radiation-induced bronchitis in 1 patient, there were no other treatment related complications. At the time of this report, 2 patients have died and the other 3 are alive with marked symptomatic improvement and reduced bronchoscopic procedures. Conclusion: High-dose-rate brachytherapy is an effective treatment for benign proliferation of granulation tissue causing airway obstruction. The early response to therapy is encouraging and further follow-up is necessary to determine long-term durability and late effects.« less

  5. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  6. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.

    PubMed

    Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru

    2016-11-01

    Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathy Held; Kevin Prise; Barry Michael

    The management of the risks of exposure of people to ionizing radiation is important in relation to its uses in industry and medicine, also to natural and man-made radiation in the environment. The vase majority of exposures are at a very low level of radiation dose. The risks are of inducing cancer in the exposed individuals and a smaller risk of inducing genetic damage that can be indicate that they are low. As a result, the risks are impossible to detect in population studies with any accuracy above the normal levels of cancer and genetic defects unless the dose levelsmore » are high. In practice, this means that our knowledge depends very largely on the information gained from the follow-up of the survivors of the atomic bombs dropped on Japanese cities. The risks calculated from these high-dose short-duration exposures then have to be projected down to the low-dose long-term exposures that apply generally. Recent research using cells in culture has revealed that the relationship between high- and low-dose biological damage may be much more complex than had previously been thought. The aims of this and other projects in the DOE's Low-Dose Program are to gain an understanding of the biological actions of low-dose radiation, ultimately to provide information that will lead to more accurate quantification of low-dose risk. Our project is based on the concept that the processes by which radiation induces cancer start where the individual tracks of radiation impact on cells and tissues. At the dose levels of most low-dose exposures, these events are rare and any individual cells only ''sees'' radiation tracks at intervals averaging from weeks to years apart. This contrasts with the atomic bomb exposures where, on average, each cell was hit by hundreds of tracks instantaneously. We have therefore developed microbeam techniques that enable us to target cells in culture with any numbers of tracks, from one upwards. This approach enables us to study the biological ha sis of the relationship between high- and low-dose exposures. The targeting approach also allows us to study very clearly a newly recognized effect of radiation, the ''bystander effect'', which appears to dominate some low-dose responses and therefore may have a significant role in low-dose risk mechanisms. Our project also addresses the concept that the background of naturally occurring oxidative damage that takes place continually in cells due to byproducts of metabolism may play a role in low-dose radiation risk. This project therefore also examines how cells are damaged by treatments that modify the levels of oxidative damage, either alone or in combination with low-dose irradiation. In this project, we have used human and rodent cell lines and each set of experiments has been carried out on a single cell type. However, low-dose research has to extend into tissues because signaling between cells of different types is likely to influence the responses. Our studies have therefore also included microbeam experiments using a model tissue system that consists of an explant of a small piece of pig ureter grown in culture. The structure of this tissue is similar to that of epithelium and therefore it relates to the tissues in which carcinoma arises. Our studies have been able to measure bystander-induced changes in the cells growing out from the tissue fragment after it has been targeted with a few radiation tracks to mimic a low-dose exposure.« less

  8. Gill damage and neurotoxicity of ammonia nitrogen on the clam Ruditapes philippinarum.

    PubMed

    Cong, Ming; Wu, Huifeng; Yang, Haiping; Zhao, Jianmin; Lv, Jiasen

    2017-04-01

    Ammonia nitrogen has been a potential menace to aquatic animals along the coastline of China. Presently, the toxicological effects of ammonia nitrogen were mainly concentrated on fishes, while little attention has been paid to molluscs. In this study, the clam Ruditapes philippinarum was used as the target animal to investigate the toxic effects of ammonia nitrogen. Our results showed that ammonia exposure could significantly reduce the integrity of lysosomes in a dose-dependent manner. Metabolite analysis revealed that exposure doses and duration time of ammonia nitrogen could affect the variation profiles of gill metabolites. In detail, branched chain amino acids, glutamate, choline and phosphocholine were significantly decreased after a one-day exposure. Inosine and phenylalanine were found significantly increased and ATP was decreased after a three-day exposure. The changes of metabolites implied that metabolisms of muscle element, neurotransmission and cell apoptosis of gill tissues would be affected by ammonia exposure. Such inferences were supported by the diminished muscle element, decreased concentrations of catecholamines and increased apoptosis rates, respectively. Therefore, we take advantage of metabolomics integrated with conventional biological assays to find out that ammonia exposure could cause lysosome instability, metabolic disturbance, aberrant gill structures and changes to neurotransmitters, and would result in mollusk gill dysfunction in feeding, respiration and immunity.

  9. The AAHKS Clinical Research Award: Intraosseous Regional Prophylaxis Provides Higher Tissue Concentrations in High BMI Patients in Total Knee Arthroplasty: A Randomized Trial.

    PubMed

    Chin, Seung Joon; Moore, Grant A; Zhang, Mei; Clarke, Henry D; Spangehl, Mark J; Young, Simon W

    2018-07-01

    Obesity is an established risk factor for periprosthetic joint infections after total knee arthroplasty (TKA). In obese patients, a larger dose of prophylactic vancomycin based on actual body weight is required to reach therapeutic concentrations. It is unclear how tissue concentrations are affected when intraosseous regional administration (IORA) is used in this population. This study compared tissue concentrations of low-dose vancomycin via IORA vs actual body weight-adjusted systemic intravenous (IV) dose in primary TKA. Twenty-two patients with a body mass index (BMI) >35 undergoing TKA were randomized into 2 groups. The IV group received 15 mg/kg (maximum of 2 g) of systemic IV vancomycin and the IORA group received 500 mg vancomycin into the tibia. Subcutaneous fat and bone samples were taken at regular intervals. Tissue antibiotic concentrations were measured using liquid chromatography coupled with tandem mass spectrometry. A blood sample was taken 1 to 2 hours after tourniquet deflation to measure systemic concentration. The mean BMI was 41.1 in the IORA group and 40.1 in the IV systemic group. The overall mean tissue concentration in subcutaneous fat was 39.3 μg/g in the IORA group and 4.4 μg/g in the IV systemic group (P < .01). Mean tissue concentrations in bones were 34.4 μg/g in the IORA group and 6.1 μg/g in the IV systemic group (P < .01). Low-dose IORA was effective in the high-BMI population group, providing tissue concentrations of vancomycin 5-9 times higher than systemic administration. IORA optimizes timing of vancomycin administration and provides high tissue antibiotic concentrations during TKA in this high-risk patient group. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Correlation between Levels of 2, 5-Hexanedione and Pyrrole Adducts in Tissues of Rats Exposure to n-Hexane for 5-Days

    PubMed Central

    Yin, Hongyin; Guo, Ying; Zeng, Tao; Zhao, Xiulan; Xie, Keqin

    2013-01-01

    Background The formation of pyrrole adducts might be responsible for peripheral nerve injury caused by n-hexane. The internal dose of pyrrole adducts would supply more information for the neurotoxicity of n-hexane. The current study was designed to investigate the tissue distributions of 2, 5-hexanedione (2,5-HD) and pyrrole adducts in rats exposed to n-hexane, and analyze the correlation between pyrrole adducts and 2,5-HD in tissues. Methods Male Wistar rats were given daily dose of 500,1000, 2000, 4000 mg/kg bw n-hexane by gavage for 5 days. The rats were sacrificed 24 hours after the last administration. The levels of 2, 5-hexanedione and pyrrole adducts in tissues were measured by gas chromatography and Ehrlich’s reagent, respectively. The correlations between 2, 5-hexanedione and pyrrole adducts were analyzed by linear regression Results Dose-dependent effects were observed between the dosage of n-hexane and 2, 5-hexanedione, and pyrrole adducts in tissues. The highest level of 2, 5-hexanedione was found in urine and the lowest in sciatic nerve, while the highest level of pyrrole adducts was seen in liver and the lowest in serum. There were significant correlations among the free 2, 5-hexanedione, total 2, 5-hexanedione and pyrrole adducts within the same tissues. Pyrrole adducts in serum showed the most significant correlation with free 2, 5-hexanedione or pyrrole adducts in tissues. Conclusion The findings suggested that pyrrole adducts in serum might be a better indicator for the internal dose of free 2, 5-hexanedione and pyrrole adducts in tissues. PMID:24098756

  11. Gastrointestinal uptake and distribution of copper in rainbow trout.

    PubMed

    Clearwater, S J; Baskin, S J; Wood, C M; McDonald, D G

    2000-08-01

    A single dose of radioactive copper ((64)Cu or new Cu) was infused into the stomach of rainbow trout (Oncorhynchus mykiss) to model dietary copper (Cu) uptake under conditions of a normal nutritional dose and optimum environmental temperature (16 degrees C, 0.117 microg Cu g(-)(1 )body mass). The distribution of new Cu to the gut and internal organs occurred in two phases: rapid uptake by the gut tissues (almost complete by 24 h post-infusion) followed by slower uptake by the internal organs. By 72 h, 60 % of the dose had been excreted, 19 % was still retained in the gut tissue, 10 % remained in the lumen and 12 % had been absorbed across the gut and partitioned amongst the internal organs. A reduction in water temperature of 10 degrees C (to 6 degrees C) significantly retarded components of new Cu distribution (movement of the bolus along the gut and excretion); nonetheless, by 72 h, the fraction absorbed by all the internal organs was similar to that at 16 degrees C. An increase in water temperature of 3 degrees C (to 19 degrees C) caused a pronounced increase in internal organ uptake by 24 h to approximately double the uptake occurring at 16 degrees C. The uptake of new Cu by the gut tissue had a low temperature coefficient (Q(10)<1) consistent with simple diffusion, while the temperature coefficient for transfer of new Cu from gut tissue to the internal organs was high (Q(10)>2), consistent with facilitated transport. Internally, the liver and gall bladder (including bile) were the target organs for dietary Cu partitioning since they were the only organs that concentrated new Cu from the plasma. Individual tissues differed in terms of the exchange of their background Cu pools with new Cu. The background Cu in the walls of the gastrointestinal tract (excluding stomach) exchanged 45-94 % with new Cu from the gut lumen, while tissues such as the stomach, gills, kidney, carcass and fat had 5-7 % exchangeable background Cu. The liver, heart, spleen, ovary, bile and plasma had only 0.2-0.8 % exchangeable background Cu. The gastrointestinal tissues appear to act as a homeostatic organ, regulating the absorption of nutritional (non-toxic) doses of Cu (0. 117 microg g(-)(1 )body mass day(-)(1)) by the internal organs. Within the dose range we used and at optimal temperature (16 degrees C), the new Cu content of the gut tissues fluctuated, but absorption of new Cu by the internal organs remained relatively constant. For example, predosing the fish with non-radioactive Cu caused new Cu absorption by the gut tissues to double and decreased new Cu excretion from 38 to 1.5 %, but had no effect on new Cu uptake by the internal organs. Feeding fish after application of the normal liquid dose of new Cu also had no effect on new Cu uptake by the internal organs, even though the presence of food in the digestive tract reduced the binding of new Cu to the gut tissues and assisted with the excretion of new Cu. The gut was therefore able to regulate new Cu internalization at this dosage. Higher new Cu doses (10, 100 and 1000 times the normal dose), however, evoked regurgitation and increased new Cu excretion within 4 h of application but did not elevate new Cu levels in gut tissue beyond a threshold of approximately 40 microg of new Cu. Only at the highest dose (1000 times the normal dose, 192 microg g(-)(1 )body mass), equivalent to toxic concentrations in the daily diet (7000 microg Cu g(-)(1 )dry mass food), was the buffering capacity of the gut overwhelmed, resulting in an increase in internal new Cu uptake.

  12. Postimplant dosimetry using a Monte Carlo dose calculation engine: a new clinical standard.

    PubMed

    Carrier, Jean-François; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, André-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-07-15

    To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. For the clinical target volume (CTV) D(90) parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future.

  13. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  14. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response.

    PubMed

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    Osteoarthritis (OA) is a complex disease of the joint for which current treatments are unsatisfactory, thus motivating development of tissue engineering (TE)-based therapies. To date, TE strategies have had some success, developing replacement tissue constructs with biochemical properties approaching that of native cartilage. However, poor biomechanical properties and limited postimplantation integration with surrounding tissue are major shortcomings that need to be addressed. Functional tissue engineering strategies that apply physiologically relevant biophysical cues provide a platform to improve TE constructs before implantation. In the previous decade, new experimental and theoretical findings in cartilage biomechanics and electromechanics have emerged, resulting in an increased understanding of the complex interplay of multiple biophysical cues in the extracellular matrix of the tissue. The effect of biophysical stimulation on cartilage, and the resulting chondrocyte-mediated biosynthesis, remodeling, degradation, and repair, has, therefore, been extensively explored by the TE community. This article compares and contrasts the cellular response of chondrocytes to multiple biophysical stimuli, and may be read in conjunction with its companion paper that compares and contrasts the subsequent intracellular signal transduction cascades. Mechanical, magnetic, and electrical stimuli promote proliferation, differentiation, and maturation of chondrocytes within established dose parameters or "biological windows." This knowledge will provide a framework for ongoing studies incorporating multiple biophysical cues in TE functional neocartilage for treatment of OA.

  15. Design of optimal hyperthermia protocols for prostate cancer by controlling HSP expression through computer modeling (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Rylander, Marissa N.; Feng, Yusheng; Diller, Kenneth; Bass, J.

    2005-04-01

    Heat shock proteins (HSP) are critical components of a complex defense mechanism essential for preserving cell survival under adverse environmental conditions. It is inevitable that hyperthermia will enhance tumor tissue viability, due to HSP expression in regions where temperatures are insufficient to coagulate proteins, and would likely increase the probability of cancer recurrence. Although hyperthermia therapy is commonly used in conjunction with radiotherapy, chemotherapy, and gene therapy to increase therapeutic effectiveness, the efficacy of these therapies can be substantially hindered due to HSP expression when hyperthermia is applied prior to these procedures. Therefore, in planning hyperthermia protocols, prediction of the HSP response of the tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of overall tissue response. In this paper, we present a highly accurate, adaptive, finite element tumor model capable of predicting the HSP expression distribution and tissue damage region based on measured cellular data when hyperthermia protocols are specified. Cubic spline representations of HSP27 and HSP70, and Arrhenius damage models were integrated into the finite element model to enable prediction of the HSP expression and damage distribution in the tissue following laser heating. Application of the model can enable optimized treatment planning by controlling of the tissue response to therapy based on accurate prediction of the HSP expression and cell damage distribution.

  16. Placental transfer and pharmacokinetics of a single oral dose of [14C]p-nitrophenol in rats.

    PubMed

    Abu-Qare, A W; Brownie, C F; Abou-Donia, M B

    2000-09-01

    The pharmacokinetics and placental transfer of a single oral dose of 100 mg/kg (10 microCi/kg, 16% of acute oral LD50) of uniformly phenyl-labeled [14C]p-nitrophenol were investigated in pregnant Sprague-Dawley rats at 14-18 days of gestation. Three animals were killed on gestation day 18, at 0.5, 1, 2, 4, 12, 24, and 48 h after dosing. Radioactivity was rapidly absorbed and distributed throughout the maternal and fetal tissues. The gastrointestinal tract contents retained 20% and 2% of the dose at 0.5 h and 4 h after dosing. The peak maternal plasma concentration of radioactivity (microg p-nitrophenol equivalent/ml) was 7.17 compared with 0.37 for fetal plasma at 0.5 h. Maximum concentration of radioactivity (microg p-nitrophenol equivalent/g fresh tissue) was detected in most tissues 0.5 h after dosing and was in descending order: kidney 23.27, liver 12.37, placenta 3.56, fetus 2.17, and brain 1.99. Radioactivity was eliminated from plasma and all tissues beiexponentially. The half-lives of elimination of 14C were 34.65 h and 69.30 h for maternal and fetal plasma, respectively. p-Nitrophenol, detected by HPLC, was the major compound identified in plasma and tissues. While p-nitrophenol disappeared biphasically from maternal plasma and kidney, it was eliminated monophasically from brain, placenta, and liver. p-Nitrocatechol and p-aminophenol were detected in the liver with peak concentrations at 0.5 h of 1.13 and 1.00 microg/g fresh tissue, respectively. While the change in the concentration of p-nitrocatechol with time was monophasic, that of p-aminophenol showed a biphasic pattern with elimination half-lives of 1.93 h and 4.95 h, respectively. Radioactivity was rapidly excreted in the urine mostly as polar metabolites, while only 3% of the dose was recovered in the feces. Radioactive materials excreted in the urine comprised: glucuronides 4%, sulfates 8%, hot-acid hydrolysates 11%, nonconjugated compounds 16%, and water-soluble metabolites 61%. This study demonstrated that although orally administered p-nitrophenol is a rapidly absorbed and excreted compound, it is transported to the maternal brain and the fetus and may pose a health risk following exposure to toxic doses during pregnancy.

  17. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William, E-mail: william@medphys.mcgill.c; Brodeur, Marylene; Roberge, David

    2010-07-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as partmore » of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.« less

  18. [Determination of the integral dose in computer tomography of the neurocranium].

    PubMed

    Rahim, H; Hofmann, W; Grobovschek, M; Mandl, H

    1985-12-01

    The amount of exposure of the cranium is calculated on the basis of the measured dose distribution in craniocaudal direction and on the axial planes of the Alderson phantom. The integral dose of the cranium and the local dose at sensitive organs are used as a measure of radiation exposure.

  19. Differential effects of low and high dose folic acid on endothelial dysfunction in a murine model of mild hyperhomocysteinaemia.

    PubMed

    Clarke, Zoe L; Moat, Stuart J; Miller, Alastair L; Randall, Michael D; Lewis, Malcolm J; Lang, Derek

    2006-12-03

    The exact mechanism(s) by which hyperhomocysteinaemia promotes vascular disease remains unclear. Moreover, recent evidence suggests that the beneficial effect of folic acid on endothelial function is independent of homocysteine-lowering. In the present study the effect of a low (400 microg/70 kg/day) and high (5 mg/70 kg/day) dose folic acid supplement on endothelium-dependent relaxation in the isolated perfused mesenteric bed of heterozygous cystathionine beta-synthase deficient mice was investigated. Elevated total plasma homocysteine and impaired relaxation responses to methacholine were observed in heterozygous mice. In the presence of N(G)-nitro-L-arginine methyl ester relaxation responses in wild-type tissues were reduced, but in heterozygous tissues were abolished. Clotrimazole and 18alpha-glycyrrhetinic acid, both inhibitors of non-nitric oxide/non-prostanoid-induced endothelium-dependent relaxation, reduced responses to methacholine in wild-type but not heterozygous tissues. The combination of N(G)-nitro-L-arginine methyl ester and either clotrimazole or 18alpha-glycyrrhetinic acid completely inhibited relaxation responses in wild-type tissues. Both low and high dose folic acid increased plasma folate, reduced total plasma homocysteine and reversed endothelial dysfunction in heterozygous mice. A greater increase in plasma folate in the high dose group was accompanied by a more significant effect on endothelial function. In the presence of N(G)-nitro-L-arginine methyl ester, a significant residual relaxation response was evident in tissues from low and high dose folic acid treated heterozygous mice. These data suggest that the impaired mesenteric relaxation in heterozygous mice is largely due to loss of the non-nitric oxide/non-prostanoid component. While low dose folic acid may restore this response in a homocysteine-dependent manner, the higher dose has an additional effect on nitric oxide-mediated relaxation that would appear to be independent of homocysteine lowering.

  20. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    PubMed

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-07

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose calculation studies for various permanent implant brachytherapy treatments.

  1. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments

    PubMed Central

    Herradón, Esperanza; González, Cristina; Uranga, José A.; Abalo, Raquel; Martín, Ma I.; López-Miranda, Visitacion

    2017-01-01

    In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations. PMID:28533750

  2. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments.

    PubMed

    Herradón, Esperanza; González, Cristina; Uranga, José A; Abalo, Raquel; Martín, Ma I; López-Miranda, Visitacion

    2017-01-01

    In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations.

  3. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting.

    PubMed

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.

  4. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Q; Shanghai General Hospital, Shanghai, Shanghai; Zhuo, W

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominalmore » antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)« less

  5. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting

    PubMed Central

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764

  6. Deformable Dose Reconstruction to Optimize the Planning and Delivery of Liver Cancer Radiotherapy

    NASA Astrophysics Data System (ADS)

    Velec, Michael

    The precise delivery of radiation to liver cancer patients results in improved control with higher tumor doses and minimized normal tissues doses. A margin of normal tissue around the tumor requires irradiation however to account for treatment delivery uncertainties. Daily image-guidance allows targeting of the liver, a surrogate for the tumor, to reduce geometric errors. However poor direct tumor visualization, anatomical deformation and breathing motion introduce uncertainties between the planned dose, calculated on a single pre-treatment computed tomography image, and the dose that is delivered. A novel deformable image registration algorithm based on tissue biomechanics was applied to previous liver cancer patients to track targets and surrounding organs during radiotherapy. Modeling these daily anatomic variations permitted dose accumulation, thereby improving calculations of the delivered doses. The accuracy of the algorithm to track dose was validated using imaging from a deformable, 3-dimensional dosimeter able to optically track absorbed dose. Reconstructing the delivered dose revealed that 70% of patients had substantial deviations from the initial planned dose. An alternative image-guidance technique using respiratory-correlated imaging was simulated, which reduced both the residual tumor targeting errors and the magnitude of the delivered dose deviations. A planning and delivery strategy for liver radiotherapy was then developed that minimizes the impact of breathing motion, and applied a margin to account for the impact of liver deformation during treatment. This margin is 38% smaller on average than the margin used clinically, and permitted an average dose-escalation to liver tumors of 9% for the same risk of toxicity. Simulating the delivered dose with deformable dose reconstruction demonstrated the plans with smaller margins were robust as 90% of patients' tumors received the intended dose. This strategy can be readily implemented with widely available technologies and thus can potentially improve local control for liver cancer patients receiving radiotherapy.

  7. Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT.

    PubMed

    Al-Wassia, Rolina K; Ghassal, Noor M; Naga, Adly; Awad, Nesreen A; Bahadur, Yasir A; Constantinescu, Camelia

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) provide highly conformal target radiation doses, but also expose large volumes of healthy tissue to low-dose radiation. With improving survival, more children with medulloblastoma (MB) are at risk of late adverse effects of radiotherapy, including secondary cancers. We evaluated the characteristics of IMRT and VMAT craniospinal irradiation treatment plans in children with standard-risk MB to compare radiation dose delivery to target organs and organs at risk (OAR). Each of 10 children with standard-risk MB underwent both IMRT and VMAT treatment planning. Dose calculations used inverse planning optimization with a craniospinal dose of 23.4 Gy followed by a posterior fossa boost to 55.8 Gy. Clinical and planning target volumes were demarcated on axial computed tomography images. Dose distributions to target organs and OAR for each planning technique were measured and compared with published dose-volume toxicity data for pediatric patients. All patients completed treatment planning for both techniques. Analyses and comparisons of dose distributions and dose-volume histograms for the planned target volumes, and dose delivery to the OAR for each technique demonstrated the following: (1) VMAT had a modest, but significantly better, planning target volume-dose coverage and homogeneity compared with IMRT; (2) there were different OAR dose-sparing profiles for IMRT versus VMAT; and (3) neither IMRT nor VMAT demonstrated dose reductions to the published pediatric dose limits for the eyes, the lens, the cochlea, the pituitary, and the brain. The use of both IMRT and VMAT provides good target tissue coverage and sparing of the adjacent tissue for MB. Both techniques resulted in OAR dose delivery within published pediatric dose guidelines, except those mentioned above. Pediatric patients with standard-risk MB remain at risk for late endocrinologic, sensory (auditory and visual), and brain functional impairments.

  8. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost–IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate

    PubMed Central

    Bansal, A.; Kapoor, R.; Singh, S. K.; Kumar, N.; Oinam, A. S.; Sharma, S. C.

    2012-01-01

    Aims: Dosimeteric and radiobiological comparison of two radiation schedules in localized carcinoma prostate: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Material and Methods: Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose–volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. Results: The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. Conclusions: For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT. PMID:23204659

  9. Ocular Distribution and Pharmacokinetics of Lifitegrast in Pigmented Rabbits and Mass Balance in Beagle Dogs.

    PubMed

    Chung, Jou-Ku; Spencer, Elizabeth; Hunt, Matthew; McCauley, Thomas; Welty, Devin

    Lifitegrast is approved in the United States for the treatment of dry eye disease (DED). We assessed lifitegrast's ocular distribution/pharmacokinetic profile in rabbits, and 14 C-lifitegrast mass balance/excretion in dogs. Female pigmented rabbits received a single topical ocular dose of lifitegrast (Formulation No. 1, n = 25; No. 2, n = 25) per eye twice daily (target, 1.75 mg/eye/dose). Blood/ocular tissues were collected on day 5. Beagle dogs received single intravenous (n = 10; target, 3 mg, 262 μCi/animal) and ocular (n = 8, target, 3 mg, 30 μCi/eye) doses of 14 C-lifitegrast (∼8 weeks between doses). Blood, excreta, and cage rinse/wipes were collected. Concentrations were measured by mass spectrometry/liquid scintillation counting. Pharmacokinetic analyses (noncompartmental) included maximum concentration (C max ), time to C max (t max ), and area under the concentration-time curve from 0 to 8 h (AUC 0-8 ). In rabbits, lifitegrast C max and AUC 0-8 were similar between formulations. C max was highest in ocular anterior segment tissues: 5,190-14,200 ng/g [conjunctiva (palpebral/bulbar), cornea, anterior sclera]. Posterior segment tissues had lower concentrations (0-826 ng/g). AUC 0-8 followed a similar trend. Plasma concentrations were low (C max <18 ng/mL). Tissue/plasma t max was ∼0.25-1 h. In dogs, after intravenous/ocular doses, 14 C-lifitegrast was eliminated primarily through feces. Excreted radioactivity was mainly unchanged lifitegrast. High exposure of lifitegrast in rabbit ocular anterior segment tissues and low exposure in posterior segment tissues/plasma suggests that lifitegrast reaches target tissues for DED treatment, with low potential for off-target systemic/ocular effects. Excretion of unchanged 14 C-lifitegrast suggests minimal drug metabolism in vivo. This is consistent with lifitegrast clinical trial efficacy/safety data.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry D. Michael; Kathryn Held; Kevin Prise

    The management of the risks of exposure of people to ionizing radiation is important in relation to its uses in industry and medicine, also to natural and man-made radiation in the environment. The vase majority of exposures are at a very low level of radiation dose. The risks are of inducing cancer in the exposed individuals and a smaller risk of inducing genetic damage that can be transmitted to children conceived after exposure. Studies of these risks in exposed population studies with any accuracy above the normal levels of cancer and genetic defects unless the dose levels are high. Inmore » practice, this means that our knowledge depends very largely on the information gained from the follow-up of the survivors of the atomic bombs dropped on Japanese cities. The risks calculated from these high-dose short-duration exposures then have to be projected down to the low-dose long-term exposures that apply generally. Recent research using cells in culture has revealed that the relations hi between high- and low-dose biological damage may be much more complex than had previously been thought. The aims of this and other projects in the DOE's Low-Dose Program are to gain an understanding of the biological actions of low-dose radiation, ultimately to provide information that will lead to more accurate quantification of low-dose risk. Our project is based on the concept that the processes by which radiation induces cancer start where the individual tracks of radiation impact on cells and tissues. At the dose levels of most low-dose exposures, these events are rare and any individual cells only ''sees'' radiation tracks at intervals averaging from weeks to years apart. This contracts with the atomic bomb exposures where, on average, each cell was hit by hundreds of tracks instantaneously. We have therefore developed microbeam techniques that enable us to target cells in culture with any number of tracks, from one upwards. This approach enables us to study the biological basis of the relationship between high- and low-dose exposures. The targeting approach also allows us to study very clearly a newly recognized effect of radiation, the ''bystander effect'', which appears to dominate some low-dose responses and therefore may have a significant role in low-dose risk mechanisms. Our project also addresses the concept that the background of naturally occurring oxidative damage that takes place continually in cells due to byproducts of metabolism may play a role in treatments that modify the levels of oxidative damage, either alone or in combination with low-dose irradiation. In this project, we have used human and rodent cell lines and each set of experiments has been carried out on a single cell type. However, low-dose research has to extend into tissues because signaling between cells of different types is likely to influence the responses. Our studies have therefore also included microbeam experiments using a model tissue system that consists of an explant of a small piece of pig ureter grown in culture. The structure of this tissue is similar to that of epithelium and there it relates to the tissues in which carcinoma arises. Our studies have been able to measure bystander-induced changes in the cells growing out from the tissue fragment after it has been targeted with a few radiation tracks to mimic a low-dose exposure.« less

  11. Shielding from Solar Particle Event Exposures in Deep Space

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, F. A.; Shinn, J. L.; Simonsen, L. C.; Dubey, R. R.; Jordan, W. R.; Jones, T. D.; Chang, C. K.; Kim, M. Y.

    1999-01-01

    The physical composition and intensities of solar particle event exposures or sensitive astronaut tissues are examined under conditions approximating an astronaut in deep space. Response functions for conversion of particle fluence into dose and dose equivalent averaged over organ tissue, are used to establish significant fluence levels and the expected dose and dose rates of the most important events from past observations. The BRYNTRN transport code is used to evaluate the local environment experienced by sensitive tissues and used to evaluate bioresponse models developed for use in tactical nuclear warfare. The present results will help to the biophysical aspects of such exposure in the assessment of RBE and dose rate effects and their impact on design of protection systems for the astronauts. The use of polymers as shielding material in place of an equal mass of aluminum would prowide a large safety factor without increasing the vehicle mass. This safety factor is sufficient to provide adequate protection if a factor of two larger event than has ever been observed in fact occurs during the mission.

  12. Nuclear emulsion measurements of the dose contribution from tissue disintegration stars on the Apollo-Soyuz mission

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1977-01-01

    A total of 996 disintegration stars were prong-counted in two 100 micron llford K.2 emulsions from the dosimeter of the Docking Pilot on Apollo-Soyuz. The change of slope of the distribution at a prong number of about 6 or 7 indicates 219 stars as originating in gelatin. Applying the QF values set forth in official regulations to the energy spectra of the proton and a alpha prongs of the gelatin stars leads to a tissue star dose of 7.8 millirad or 45 millirem. The quoted values do not include the dose contribution from star-produced neutrons since neutrons do not leave visible prongs in emulsion. Nuclear theory, in good agreement with measurements of galactic radiation in the earth's atmosphere, indicates that the dose equivalent from neutrons is about equal to the one from all ionizing secondaries of stars. Application of this proposition to the star prong spectrum found on Apollo-Soyuz would set the total tissue star dose for the mission at approximately 90 millirem.

  13. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  14. Integrated Lung and Tracheal mRNA-Seq and miRNA-Seq Analysis of Dogs with an Avian-Like H5N1 Canine Influenza Virus Infection

    PubMed Central

    Fu, Cheng; Luo, Jie; Ye, Shaotang; Yuan, Ziguo; Li, Shoujun

    2018-01-01

    Avian-like H5N1 canine influenza virus (CIV) causes severe respiratory infections in dogs. However, the mechanism underlying H5N1 CIV infection in dogs is unknown. The present study aimed to identify differentially expressed miRNAs and mRNAs in the lungs and trachea in H5N1 CIV-infected dogs through a next-generation sequencing-based method. Eighteen 40-day-old beagles were inoculated intranasally with CIV, A/canine/01/Guangdong/2013 (H5N1) at a tissue culture infectious dose 50 (TCID50) of 106, and lung and tracheal tissues were harvested at 3 and 7 d post-inoculation. The tissues were processed for miRNA and mRNA analysis. By means of miRNA-gene expression integrative negative analysis, we found miRNA–mRNA pairs. Lung and trachea tissues showed 138 and 135 negative miRNA–mRNA pairs, respectively. One hundred and twenty negative miRNA–mRNA pairs were found between the different tissues. In particular, pathways including the influenza A pathway, chemokine signaling pathways, and the PI3K-Akt signaling pathway were significantly enriched in all groups in responses to virus infection. Furthermore, dysregulation of miRNA and mRNA expression was observed in the respiratory tract of H5N1 CIV-infected dogs and notably, TLR4 (miR-146), NF-κB (miR-34c) and CCL5 (miR-335), CCL10 (miR-8908-5p), and GNGT2 (miR-122) were found to play important roles in regulating pathways that resist virus infection. To our knowledge, the present study is the first to analyze miRNA and mRNA expression in H5N1 CIV-infected dogs; furthermore, the present findings provide insights into the molecular mechanisms underlying influenza virus infection. PMID:29556219

  15. Integrated Experimental and Computational Approach to Understand the Effects of Heavy Ion Radiation on Skin Homeostasis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Neubeck, Claere; Shankaran, Harish; Geniza, Matthew

    2013-08-08

    The effects of low dose high linear energy transfer (LET) radiation on human health are of concern for both space and clinical exposures. As epidemiological data for such radiation exposures are scarce for making relevant predictions, we need to understand the mechanism of response especially in normal tissues. Our objective here is to understand the effects of heavy ion radiation on tissue homeostasis in a realistic model system. Towards this end, we exposed an in vitro three dimensional skin equivalent to low fluences of Neon (Ne) ions (300 MeV/u), and determined the differentiation profile as a function of time followingmore » exposure using immunohistochemistry. We found that Ne ion exposures resulted in transient increases in the tissue regions expressing the differentiation markers keratin 10, and filaggrin, and more subtle time-dependent effects on the number of basal cells in the epidermis. We analyzed the data using a mathematical model of the skin equivalent, to quantify the effect of radiation on cell proliferation and differentiation. The agent-based mathematical model for the epidermal layer treats the epidermis as a collection of heterogeneous cell types with different proliferation/differentiation properties. We obtained model parameters from the literature where available, and calibrated the unknown parameters to match the observed properties in unirradiated skin. We then used the model to rigorously examine alternate hypotheses regarding the effects of high LET radiation on the tissue. Our analysis indicates that Ne ion exposures induce rapid, but transient, changes in cell division, differentiation and proliferation. We have validated the modeling results by histology and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The integrated approach presented here can be used as a general framework to understand the responses of multicellular systems, and can be adapted to other epithelial tissues.« less

  16. Monte Carlo and Phantom Study of the Radiation Dose to the Body from Dedicated Computed Tomography of the Breast

    PubMed Central

    Sechopoulos, Ioannis; Vedantham, Srinivasan; Suryanarayanan, Sankararaman; D’Orsi, Carl J.; Karellas, Andrew

    2008-01-01

    Purpose To prospectively determine the radiation dose absorbed by the organs and tissues of the body during a dedicated computed tomography of the breast (DBCT) study using Monte Carlo methods and a phantom. Materials and Methods Using the Geant4 Monte Carlo toolkit, the Cristy anthropomorphic phantom and the geometry of a prototype DBCT was simulated. The simulation was used to track x-rays emitted from the source until their complete absorption or exit from the simulation limits. The interactions of the x-rays with the 65 different volumes representing organs, bones and other tissues of the anthropomorphic phantom that resulted in energy deposition were recorded. These data were used to compute the radiation dose to the organs and tissues during a complete DBCT acquisition relative to the average glandular dose to the imaged breast (ROD, relative organ dose), using the x-ray spectra proposed for DBCT imaging. The effectiveness of a lead shield for reducing the dose to the organs was investigated. Results The maximum ROD among the organs was for the ipsilateral lung with a maximum of 3.25%, followed by the heart and the thymus. Of the skeletal tissues, the sternum received the highest dose with a maximum ROD to the bone marrow of 2.24%, and to the bone surface of 7.74%. The maximum ROD to the uterus, representative of that of an early-stage fetus, was 0.026%. These maxima occurred for the highest energy x-ray spectrum (80 kVp) analyzed. A lead shield does not protect substantially the organs that receive the highest dose from DBCT. Discussion Although the dose to the organs from DBCT is substantially higher than that from planar mammography, they are comparable or considerably lower than those reached by other radiographic procedures and much lower than other CT examinations. PMID:18292479

  17. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization.

    PubMed

    Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P

    2016-06-01

    Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.

  18. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    PubMed

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  19. A Multi-Compartment, Single and Multiple Dose Pharmacokinetic Study of the Vaginal Candidate Microbicide 1% Tenofovir Gel

    PubMed Central

    Schwartz, Jill L.; Rountree, Wes; Kashuba, Angela D. M.; Brache, Vivian; Creinin, Mitchell D.; Poindexter, Alfred; Kearney, Brian P.

    2011-01-01

    Background Tenofovir (TFV) gel is being evaluated as a microbicide with pericoital and daily regimens. To inhibit viral replication locally, an adequate concentration in the genital tract is critical. Methods and Findings Forty-nine participants entered a two-phase study: single-dose (SD) and multi-dose (MD), were randomized to collection of genital tract samples (endocervical cells [ECC], cervicovaginal aspirate and vaginal biopsies) at one of seven time points [0.5, 1, 2, 4, 6, 8, or 24 hr(s)] post-dose following SD exposure of 4 mL 1% TFV gel and received a single dose. Forty-seven were randomized to once (QD) or twice daily (BID) dosing for 2 weeks and to collection of genital tract samples at 4, 8 or 24 hrs after the final dose, but two discontinued prior to gel application. Blood was collected during both phases at the seven times post-dose. TFV exposure was low in blood plasma for SD and MD; median Cmax was 4.0 and 3.4 ng/mL, respectively (C≤29 ng/mL). TFV concentrations were high in aspirates and tissue after SD and MD, ranging from 1.2×104 to 9.9×106 ng/mL and 2.1×102 to 1.4×106 ng/mL, respectively, and did not noticeably differ between proximal and distal tissue. TFV diphosphate (TFV-DP), the intracellular active metabolite, was high in ECC, ranging from 7.1×103 to 8.8×106 ng/mL. TFV-DP was detectable in approximately 40% of the tissue samples, ranging from 1.8×102 to 3.5×104 ng/mL. AUC for tissue TFV-DP was two logs higher after MD compared to SD, with no noticeable differences when comparing QD and BID. Conclusions Single-dose and multiple-dose TFV gel exposure resulted in high genital tract concentrations for at least 24 hours post-dose with minimal systemic absorption. These results support further study of TFV gel for HIV prevention. Trial registration ClinicalTrials.gov NCT00561496 PMID:22039430

  20. Feasibility and optimal dosage of indocyanine green fluorescence for sentinel lymph node detection using robotic single-site instrumentation: preclinical study.

    PubMed

    Levinson, Kimberly L; Mahdi, Haider; Escobar, Pedro F

    2013-01-01

    The present study was performed to determine the optimal dosage of indocyanine green (ICG) to accurately differentiate the sentinel node from surrounding tissue and then to test this dosage using novel single-port robotic instrumentation. The study was performed in healthy female pigs. After induction of anesthesia, all pigs underwent exploratory laparotomy, dissection of the bladder, and colpotomy to reveal the cervical os. With use of a 21-gauge needle, 0.5 mL normal saline solution was injected at the 3- and 9-o'clock positions as control. Four concentrations of ICG were constituted for doses of 1000, 500, 250, and 175 μg per 0.5 mL. ICG was then injected at the 3- and 9-o'clock positions on the cervix. The SPY camera was used to track ICG into the sentinel nodes and to quantify the intensity of light emitted. SPY technology uses an intensity scale of 1 to 256; this scale was used to determine the difference in intensity between the sentinel node and surrounding tissues. The optimal dosage was tested using single-port robotic instrumentation with the same injection techniques. A sentinel node was identified at all doses except 175 μg, at which ICG stayed in the cervix and vasculature only. For both the 500- and 250-μg doses, the sentinel node was identified before reaching maximum intensity. At maximum intensity, the difference between the surrounding tissue and the node was 207 (251 vs 44) for the 500-μg dose and 159 (251 vs 92) for the 250-μg dose. Sentinel lymph node (SLN) biopsy was successfully performed using single-port robotic technology with both the 250- and 500-μg doses. For SLN detection, the dose of ICG is related to the ability to differentiate the sentinel node from the surrounding tissue. An ICG dose of 250 to 500 μg enables identification of a SLN with more distinction from the surrounding tissues, and this procedure is feasible using single-port robotics instrumentation. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.

Top