Handling, storage, and preparation of human tissues.
Dressler, L G; Visscher, D
2001-05-01
Human tissue for flow cytometry must be prepared as an adequate single-cell suspension. The appropriate methods for tissue collection, transport, storage, and dissociation depend on the cell parameters being measured and the localization of the markers. This unit includes a general method for collecting and transporting human tissue and preparing a tissue imprint. Protocols are supplied for tissue disaggregation by either mechanical or enzymatic means and for preparation of single-cell suspensions of whole cells from fine-needle aspirates, pleural effusions, abdominal fluids, or other body fluids. Other protocols detail preparation of intact nuclei from fresh, frozen, or paraffin-embedded tissue. Support protocols cover fixation, cryospin preparation, cryopreservation, and removal of debris.
Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging
NASA Astrophysics Data System (ADS)
Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee
2017-08-01
Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed.
Shearer, Adrienne E H; LeStrange, Kyle; Castañeda Saldaña, Rafael; Kniel, Kalmia E
2016-05-01
Whole and cut cantaloupes have been implicated as vehicles in foodborne illness outbreaks of norovirus, salmonellosis, and listeriosis. Preparation methods that minimize pathogen transfer from external surfaces to the edible tissue are needed. Two preparation methods were compared for the transfer of Listeria monocytogenes, Salmonella enterica serovar Typhimurium LT2, murine norovirus, and Tulane virus from inoculated cantaloupe rinds to edible tissue and preparation surfaces. For the first method, cantaloupes were cut into eighths, and edible tissue was separated from the rind and cubed with the same knife used to open the cantaloupes. For the second method, cantaloupes were scored with a knife around the circumference sufficient to allow manual separation of the cantaloupes into halves. Edible tissue was scooped with a spoon and did not contact the preparation surface touched by the rind. Bacteria and virus were recovered from the rinds, preparation surfaces, and edible tissue and enumerated by culture methods and reverse transcription, quantitative PCR, respectively. Standard plate counts were determined throughout refrigerated storage of cantaloupe tissue. Cut method 2 yielded approximately 1 log lower recovery of L. monocytogenes and Salmonella Typhimurium from edible tissue, depending on the medium in which the bacteria were inoculated. A slight reduction was observed in murine norovirus recovered from edible tissue by cut method 2. The Tulane virus was detected in approximately half of the sampled cantaloupe tissue and only at very low levels. Aerobic mesophilic colony counts were lower through day 6 of storage for buffered peptone water-inoculated cantaloupes prepared by cut method 2. No differences were observed in environmental contamination as a function of cutting method. Although small reductions in contamination of edible tissue were observed for cut method 2, the extent of microbial transfer underscores the importance of preventing contamination of whole cantaloupes.
Zohdi, Vladislava; Whelan, Donna R; Wood, Bayden R; Pearson, James T; Bambery, Keith R; Black, M Jane
2015-01-01
Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy.
NASA Technical Reports Server (NTRS)
Khan, Mohammed Yusuf (Inventor); Laurencin, Cato T. (Inventor); Lu, Helen H. (Inventor); Botchwey, Edward (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor)
2012-01-01
Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.
Eye-bank preparation of endothelial tissue.
Boynton, Grace E; Woodward, Maria A
2014-07-01
Eye-bank preparation of endothelial tissue for keratoplasty continues to evolve. Although eye-bank personnel have become comfortable and competent at Descemet's stripping automated endothelial keratoplasty (DSAEK), tissue preparation and tissue transport, optimization of preparation methods continues. Surgeons and eye-bank personnel should be up to date on the research in the field. As surgeons transit to Descemet's membrane endothelial keratoplasty (DMEK), eye banks have risen to the challenge of preparing tissue. Eye banks are refining their DMEK preparation and transport techniques. This article covers refinements to DSAEK tissue preparation, innovations to prepare DMEK tissue, and nuances to improve donor cornea tissue quality. As eye bank-supplied corneal tissue is the main source of tissue for many corneal surgeons, it is critical to stay informed about tissue handling and preparation. Ultimately, the surgeon is responsible for the transplantation, so involvement of clinicians in eye-banking practices and advocacy for pursuing meaningful research in this area will benefit clinical patient outcomes.
The effects of tissue processing on markers for T and B cells from solid tissues.
Millard, P R; Rabin, B S; Whiteside, T L; Hubbard, J D
1977-03-01
Suspensions of lymphoid cells from tissues have been used for the determination of the quantitative relationship between the T and B cell populations. The distribution of the lymphocytes within a given tissue, however, cannot be demonstrated once such a suspension has been prepared. Various methods of characterizing lymphocytes within tissues were evaluated. The method of tissue preparation can alter the capability of detecting the lymphocyte markers. Fluorescein-labeled anti-immunoglobulin sera reacted equally well with lymphocytes in tissue regardless of the method of tissue preparation. Complement-coated sheep erythrocytes were less effective in detecting lymphocyte markers in tissue sections than in cell suspensions. Quantitative assays of lymphocytes could be done in suspensions only. Unaltered sheep erythrocytes did not bind to T lymphocytes in tissue. T lymphocytes could be identified in tissue sections, however, by the use of anti-human T cell serum.
Eye-bank Preparation of Endothelial Tissue
Boynton, Grace E.; Woodward, Maria A.
2014-01-01
Purpose of review Eyebank preparation of endothelial tissue for keratoplasty continues to evolve. While eye bank personnel have become comfortable and competent at Descemet Stripping Automated Endothelial Keratoplasty (DSAEK) tissue preparation and tissue transport, optimization of preparation methods continues. Surgeons and eye bank personnel should be up to date on the research in the field. As surgeons transition to Descemet Membrane Endothelial Keratoplasty (DMEK), eye banks have risen to the challenge of preparing tissue. Eye banks are refining their DMEK preparation and transport techniques Recent findings This article covers refinements to DSAEK tissue preparation, innovations to prepare DMEK tissue, and nuances to improve donor cornea tissue quality. Summary As eye bank supplied corneal tissue is the main source of tissue for many corneal surgeons, it is critical to stay informed about tissue handling and preparation. Ultimately the surgeon is responsible for the transplantation, so involvement of clinicians in eye banking practices and advocacy for pursuing meaningful research in this area will benefit clinical patient outcomes. PMID:24837574
Tabatabaei, Fahimeh Sadat; Tatari, Saeed; Samadi, Ramin; Moharamzadeh, Keyvan
2016-10-01
Dentin has become an interesting potential biomaterial for tissue engineering of oral hard tissues. It can be used as a scaffold or as a source of growth factors in bone tissue engineering. Different forms of dentin have been studied for their potential use as bone substitutes. Here, we systematically review different methods of dentin preparation and the efficacy of processed dentin in bone tissue engineering. An electronic search was carried out in PubMed and Scopus databases for articles published from 2000 to 2016. Studies on dentin preparation for application in bone tissue engineering were selected. The initial search yielded a total of 1045 articles, of which 37 were finally selected. Review of studies showed that demineralization was the most commonly used dentin preparation process for use in tissue engineering. Dentin extract, dentin particles (tooth ash), freeze-dried dentin, and denatured dentin are others method of dentin preparation. Based on our literature review, we can conclude that preparation procedure and the size and shape of dentin particles play an important role in its osteoinductive and osteoconductive properties. Standardization of these methods is important to draw a conclusion in this regard. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2616-2627, 2016. © 2016 Wiley Periodicals, Inc.
Yoakum, A M; Stewart, P L; Sterrett, J E
1975-01-01
An emission spectrochemical method is described for the determination of trace quantities of platinum, lead, and manganese in biological tissues. Total energy burns in an argon-oxygen atmosphere are employed. Sample preparation, conditions of analysis, and preparation of standards are discussed. The precision of the method is consistently better than +/- 15%, and comparative analyses indicate comparable accuracies. Data obtained for experimental rat tissues and for selected autopsy tissues are presented. PMID:1157798
Shao, Fangjie; Jiang, Wenhong; Gao, Qingqing; Li, Baizhou; Sun, Chongran; Wang, Qiyuan; Chen, Qin; Sun, Bing; Shen, Hong; Zhu, Keqing; Zhang, Jianmin; Liu, Chong
2017-10-01
The availability of a comprehensive tissue library is essential for elucidating the function and pathology of human brains. Considering the irreplaceable status of the formalin-fixation-paraffin-embedding (FFPE) preparation in routine pathology and the advantage of ultra-low temperature to preserve nucleic acids and proteins for multi-omics studies, these methods have become major modalities for the construction of brain tissue libraries. Nevertheless, the use of FFPE and snap-frozen samples is limited in high-resolution histological analyses because the preparation destroys tissue integrity and/or many important cellular markers. To overcome these limitations, we detailed a protocol to prepare and analyze frozen human brain samples that is particularly suitable for high-resolution multiplex immunohistological studies. As an alternative, we offered an optimized procedure to rescue snap-frozen tissues for the same purpose. Importantly, we provided a guideline to construct libraries of frozen tissue with minimal effort, cost and space. Taking advantage of this new tissue preparation modality to nicely preserve the cellular information that was otherwise damaged using conventional methods and to effectively remove tissue autofluorescence, we described the high-resolution landscape of the cellular composition in both lower-grade gliomas and glioblastoma multiforme samples. Our work showcases the great value of fixed frozen tissue in understanding the cellular mechanisms of CNS functions and abnormalities.
Design and preparation of polymeric scaffolds for tissue engineering.
Weigel, Thomas; Schinkel, Gregor; Lendlein, Andreas
2006-11-01
Polymeric scaffolds for tissue engineering can be prepared with a multitude of different techniques. Many diverse approaches have recently been under development. The adaptation of conventional preparation methods, such as electrospinning, induced phase separation of polymer solutions or porogen leaching, which were developed originally for other research areas, are described. In addition, the utilization of novel fabrication techniques, such as rapid prototyping or solid free-form procedures, with their many different methods to generate or to embody scaffold structures or the usage of self-assembly systems that mimic the properties of the extracellular matrix are also described. These methods are reviewed and evaluated with specific regard to their utility in the area of tissue engineering.
How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.
ERIC Educational Resources Information Center
Haldeman, Janice H.; Ellis, Jane P.
1988-01-01
Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)
[PREPARATION OF HUMAN TISSUE PROTEIN EXTRACTS ENRICHED WITH THE SPHINGOMYELIN SYNTHASE 1].
Sudarkina, O Yu; Dergunova, L V
2015-01-01
Sphingomyelin synthase 1 (SMS 1) catalyzes sphingomyelin biosynthesis in eukaryotic cells. We previously studied the structure of the human SGMS1 gene, which encodes the enzyme and its numerous transcripts. The tissue-specific expression of the transcripts was also described. Analysis of the SMS1 protein expression in human tissues using immunoblotting of tissue extracts prepared in the RIPA (Radio Immuno-Precipitation Assay) buffer revealed a weak signal in renal cortex, testis, lung, and no signal in placenta and lymphatic node. In this work, a new method of preparation of the tissue protein extracts enriched with SMS1 was suggested. The method based on the consecutive extraction with a buffer containing 0.05 and 1 mg/ml of the Quillaja saponaria saponin allowed SMS1 to be detected in all tissues tested. The SMS1 content in the saponin extract of kidney cortex is about 12-fold higher compared to the RIPA extraction procedure.
Thomson, R B; Smith, T F; Wilson, W R
1982-01-01
The laboratory diagnosis of Pneumocystis carinii pneumonia in humans includes the identification of cysts in stained lung tissue impression smears. By using a mouse model, we compared the number of cysts in lung tissue impression smears with those contained in a concentrate of homogenized lung tissue. Eleven C3H/HEN mice developed P. carinii infection after corticosteroid injections, a low protein (8%) diet, and tetracycline administered in drinking water. Impression smears were prepared with freshly bisected lung tissue. Smears of concentrates were prepared with sediment from centrifuged lung tissue homogenates. All smears were made in duplicate, stained with toluidine blue O or methenamine silver, coded, randomized, and examined. The concentrate preparations contained more cysts per microscopic field than the impression preparations (P less than 0.01). Concentrates prepared by grinding with a mortar and pestle contained more cysts than concentrates prepared by blending with a Stomacher (P less than 0.05). Cysts were detected equally well with either the toluidine blue O or silver stain (not significant). Lung tissue concentrates were superior to lung tissue impressions for detecting P. carinii cysts in mice. Use of lung tissue concentrates should be considered for the diagnosis of human P. carinii infection. PMID:6181088
Townsend, F I; Ralphs, S C; Coronado, G; Sweet, D C; Ward, J; Bloch, C P
2012-01-01
To compare the hydro-surgical technique to traditional techniques for removal of subcutaneous tissue in the preparation of full-thickness skin grafts. Ex vivo experimental study and a single clinical case report. Four canine cadavers and a single clinical case. Four sections of skin were harvested from the lateral flank of recently euthanatized dogs. Traditional preparation methods used included both a blade or scissors technique, each of which were compared to the hydro-surgical technique individually. Preparation methods were compared based on length of time for removal of the subcutaneous tissue from the graft, histologic grading, and measurable thickness as compared to an untreated sample. The hydro-surgical technique had the shortest skin graft preparation time as compared to traditional techniques (p = 0.002). There was no significant difference in the histological grading or measurable subcutaneous thickness between skin specimens. The hydro-surgical technique provides a rapid, effective debridement of subcutaneous tissue in the preparation of full-thickness skin grafts. There were not any significant changes in histological grade and subcutaneous tissue remaining among all treatment types. Additionally the hydro-surgical technique was successfully used to prepare a full-thickness meshed free skin graft in the reconstruction of a traumatic medial tarsal wound in a dog.
MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu
2012-01-01
Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359
Le, Minh Uyen Thi; Son, Jin Gyeong; Shon, Hyun Kyoung; Park, Jeong Hyang; Lee, Sung Bae; Lee, Tae Geol
2018-03-30
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging elucidates molecular distributions in tissue sections, providing useful information about the metabolic pathways linked to diseases. However, delocalization of the analytes and inadequate tissue adherence during sample preparation are among some of the unfortunate phenomena associated with this technique due to their role in the reduction of the quality, reliability, and spatial resolution of the ToF-SIMS images. For these reasons, ToF-SIMS imaging requires a more rigorous sample preparation method in order to preserve the natural state of the tissues. The traditional thaw-mounting method is particularly vulnerable to altered distributions of the analytes due to thermal effects, as well as to tissue shrinkage. In the present study, the authors made comparisons of different tissue mounting methods, including the thaw-mounting method. The authors used conductive tape as the tissue-mounting material on the substrate because it does not require heat from the finger for the tissue section to adhere to the substrate and can reduce charge accumulation during data acquisition. With the conductive-tape sampling method, they were able to acquire reproducible tissue sections and high-quality images without redistribution of the molecules. Also, the authors were successful in preserving the natural states and chemical distributions of the different components of fat metabolites such as diacylglycerol and fatty acids by using the tape-supported sampling in microRNA-14 (miR-14) deleted Drosophila models. The method highlighted here shows an improvement in the accuracy of mass spectrometric imaging of tissue samples.
Parekh, Mohit; Baruzzo, Mattia; Favaro, Elisa; Borroni, Davide; Ferrari, Stefano; Ponzin, Diego; Ruzza, Alessandro
2017-12-01
To share the experience and provide a standardized protocol for Descemet membrane endothelial keratoplasty (DMEK) graft preparation. A retrospective study based on 527 prestripped DMEK tissues that were prepared between 2014 and 2017. The experience of using different instruments and techniques has been described, and a standardized technique for preparing DMEK grafts has been identified. The tissues in general were prepared by superficially tapping the endothelial side with a Moria trephine (9.5 mm diameter). The plane of cleavage was identified using a cleavage hook, and the DMEK graft was deadhered from the trephined site throughout the circumference for ease of excising the graft. The DMEK graft was peeled using either one or multiple quadrant methods depending on the challenges faced during excision. The graft was finally marked with the letter "F" to identify the orientation during surgery. Data on endothelial cell loss (ECL) and challenging cases were observed, monitored, and recorded during this period. Less than 1 percent trypan blue-positive cells with tissue wastage of <6% was observed during the study period. Our standardized stripping technique has resulted in an overall ECL of 4.6%. Marking Descemet membrane showed 0.5% cell mortality. Standardizing DMEK technique using specific tools and simple techniques would help new surgeons to decide the instruments and improve their tissue preparation skills also in challenging cases such as previous cataract incisions or horseshoe-shaped tears, further reducing ECL or tissue wastage.
A comparison of embalming fluids for use in surgical workshops.
Jaung, Rebekah; Cook, Peter; Blyth, Phil
2011-03-01
There is a growing need to learn surgical skills without risk to patients. One of the major determining factors on the suitability of specimens for surgical workshops is the fluid used for embalming. This study sought to compare three different arterial embalming preparations to a single fresh cadaver. Eleven cadavers embalmed using Graz (single cadaver), Dodge (four cadavers) and Genelyn (five cadavers) preparations were compared using four criteria; joint flexibility measured with a goniometer, tissue pliability rated on standardized videos of instrument handling, tissue color analyzed on standardized photographs and resistance to fungal growth identified by inoculation and observation of tissue blocks. The cadaver embalmed according to the Graz method had joint flexibility comparable to fresh tissue while the Dodge and Genelyn cadavers were less flexible. Tissue pliability was significantly affected by the Dodge and Genelyn methods while the Graz method tissue remained most like fresh tissue. The Graz method cadaver had color that was most akin to fresh tissue and the Dodge method cadavers were relatively more like fresh than the Genelyn. The Dodge and Genelyn method had quite similar fungicidal properties (3/11 Dodge and 2/9 Genelyn embalmed cadavers susceptible) while the Graz method cadaver did not grow mould. Variation exists between cadavers; however, the Graz method produced a cadaver with more flexible joints, better tissue quality and muscle color closest to the fresh specimen. The Dodge and Genelyn methods are similar with the exception of tissue color where the Dodge method was more similar to fresh tissue. Copyright © 2011 Wiley-Liss, Inc.
Provo-Klimek, Judy A; Troyer, Deryl L
2002-01-01
The authors have previously reported the development of a novel technique for sampling and preparing tissue slides for routine microscopic examination, without the use of a microtome. Termed "RAMP" (Rapid Adhesive Mediated Procedure), this simple, albeit somewhat crude, technique holds promise as a method that can be used in the field by veterinary practitioners for rapid microscopic evaluations to obtain early preliminary estimates of the nature of a mass or lesion. We incorporated the use of this method into a gross anatomy course in an attempt to gauge its utility for novices in tissue sampling and histology slide preparation. By having each group of students take a tissue sample from their cadaver, the activity simulated an actual necropsy situation in which practitioners in the field might use the technique. Because students were able to follow their specimen from sampling to microscopic examination, the activity provided a valuable integration of their learning of gross and microscopic anatomy. We conducted an evaluation of the process and the resulting slides with two successive classes of students. We conclude that the RAMP method is reasonably successful in the hands of individuals not trained in tissue preparation; was well received by the students as a valuable learning tool; and could potentially yield useful histological information for practicing veterinarians. Limitations of the method are also discussed.
Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.
2015-03-01
A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.
Assessment of Sample Preparation Bias in Mass Spectrometry-Based Proteomics.
Klont, Frank; Bras, Linda; Wolters, Justina C; Ongay, Sara; Bischoff, Rainer; Halmos, Gyorgy B; Horvatovich, Péter
2018-04-17
For mass spectrometry-based proteomics, the selected sample preparation strategy is a key determinant for information that will be obtained. However, the corresponding selection is often not based on a fit-for-purpose evaluation. Here we report a comparison of in-gel (IGD), in-solution (ISD), on-filter (OFD), and on-pellet digestion (OPD) workflows on the basis of targeted (QconCAT-multiple reaction monitoring (MRM) method for mitochondrial proteins) and discovery proteomics (data-dependent acquisition, DDA) analyses using three different human head and neck tissues (i.e., nasal polyps, parotid gland, and palatine tonsils). Our study reveals differences between the sample preparation methods, for example, with respect to protein and peptide losses, quantification variability, protocol-induced methionine oxidation, and asparagine/glutamine deamidation as well as identification of cysteine-containing peptides. However, none of the methods performed best for all types of tissues, which argues against the existence of a universal sample preparation method for proteome analysis.
Yuan, Long; Ma, Li; Dillon, Lisa; Fancher, R Marcus; Sun, Huadong; Zhu, Mingshe; Lehman-McKeeman, Lois; Aubry, Anne-Françoise; Ji, Qin C
2016-11-16
LC-MS/MS has been widely applied to the quantitative analysis of tissue samples. However, one key remaining issue is that the extraction recovery of analyte from spiked tissue calibration standard and quality control samples (QCs) may not accurately represent the "true" recovery of analyte from incurred tissue samples. This may affect the accuracy of LC-MS/MS tissue bioanalysis. Here, we investigated whether the recovery determined using tissue QCs by LC-MS/MS can accurately represent the "true" recovery from incurred tissue samples using two model compounds: BMS-986104, a S1P 1 receptor modulator drug candidate, and its phosphate metabolite, BMS-986104-P. We first developed a novel acid and surfactant assisted protein precipitation method for the extraction of BMS-986104 and BMS-986104-P from rat tissues, and determined their recoveries using tissue QCs by LC-MS/MS. We then used radioactive incurred samples from rats dosed with 3 H-labeled BMS-986104 to determine the absolute total radioactivity recovery in six different tissues. The recoveries determined using tissue QCs and incurred samples matched with each other very well. The results demonstrated that, in this assay, tissue QCs accurately represented the incurred tissue samples to determine the "true" recovery, and LC-MS/MS assay was accurate for tissue bioanalysis. Another aspect we investigated is how the tissue QCs should be prepared to better represent the incurred tissue samples. We compared two different QC preparation methods (analyte spiked in tissue homogenates or in intact tissues) and demonstrated that the two methods had no significant difference when a good sample preparation was in place. The developed assay showed excellent accuracy and precision, and was successfully applied to the quantitative determination of BMS-986104 and BMS-986104-P in tissues in a rat toxicology study. Copyright © 2016 Elsevier B.V. All rights reserved.
Fumoto, Shintaro; Nishimura, Koyo; Nishida, Koyo; Kawakami, Shigeru
2016-01-01
Evaluation methods for determining the distribution of transgene expression in the body and the in vivo fate of viral and non-viral vectors are necessary for successful development of in vivo gene delivery systems. Here, we evaluated the spatial distribution of transgene expression using tissue clearing methods. After hydrodynamic injection of plasmid DNA into mice, whole tissues were subjected to tissue clearing. Tissue clearing followed by confocal laser scanning microscopy enabled evaluation of the three-dimensional distribution of transgene expression without preparation of tissue sections. Among the tested clearing methods (ClearT2, SeeDB, and CUBIC), CUBIC was the most suitable method for determining the spatial distribution of transgene expression in not only the liver but also other tissues such as the kidney and lung. In terms of the type of fluorescent protein, the observable depth for green fluorescent protein ZsGreen1 was slightly greater than that for red fluorescent protein tdTomato. We observed a depth of ~1.5 mm for the liver and 500 μm for other tissues without preparation of tissue sections. Furthermore, we succeeded in multicolor deep imaging of the intracellular fate of plasmid DNA in the murine liver. Thus, tissue clearing would be a powerful approach for determining the spatial distribution of plasmid DNA and transgene expression in various murine tissues.
Weber, Daniela; Davies, Michael J.; Grune, Tilman
2015-01-01
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. PMID:26141921
Weber, Daniela; Davies, Michael J; Grune, Tilman
2015-08-01
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. © 2015 Published by Elsevier Ltd.
Phospho-silicate and silicate layers modified by hydroxyapatite particles
NASA Astrophysics Data System (ADS)
Rokita, M.; Brożek, A.; Handke, M.
2005-06-01
Common used metal materials do not ensure good connection between an implant and biological neighbourhood. Covering implants by thin silicate or phosphate layers enable to improve biological properties of implants and create conditions for producing the non-concrete bonding between the implant and tissue. The project includes preparing silicate sols of different concentrations and proper (powder) fraction of synthetic as well as natural ox hydroxyapatite, depositing the sol mixed with hydroxyapatite onto the base material (metal, ceramic carbon) and heat treatment. Our work includes also preparation of phospho-silicate layers deposited onto different base materials using sol-gel method. Deposited sols were prepared regarding composition, concentration and layer heat treatment conditions. The prepared layers are examined to determine their phase composition (XRD, IR spectroscopy methods), density and continuity (scanning microscopy with EDX methods). Biological activity of layers was evaluated by means of estimation of their corrosive resistance in synthetic body fluids ('in vitro' method) and of bone cells growth on the layers surface. Introducing hydroxyapatite to the layer sol should improve connection between tissue and implant as well as limit the disadvantageous, corrosive influence of implant material (metal) on the tissue.
Cheah, Pike See; Mohidin, Norhani; Mohd Ali, Bariah; Maung, Myint; Latif, Azian Abdul
2008-01-01
This study illustrates and quantifies the changes on corneal tissue between the paraffin-embedded and resin-embedded blocks and thus, selects a better target in investigational ophthalmology and optometry via light microscopy. Corneas of two cynomolgus monkeys (Macaca fascicularis) were used in this study. The formalin-fixed cornea was prepared in paraffin block via the conventional tissue processing protocol (4-day protocol) and stained with haematoxylin and eosin. The glutaraldehyde-fixed cornea was prepared in resin block via the rapid and modified tissue processing procedure (1.2-day protocol) and stained with toluidine blue. The paraffin-embedded sample exhibits various undesired tissue damage and artifact such as thinner epithelium (due to the substantial volumic extraction from the tissue), thicker stroma layer (due to the separation of lamellae and the presence of voids) and the distorted endothelium. In contrast, the resin-embedded corneal tissue has demonstrated satisfactory corneal ultrastructural preservation. The rapid and modified tissue processing method for preparing the resin-embedded is particularly beneficial to accelerate the microscopic evaluation in ophthalmology and optometry. PMID:22570589
Bullen, A.; Taylor, R.R.; Kachar, B.; Moores, C.; Fleck, R.A.; Forge, A.
2014-01-01
In the preservation of tissues in as ‘close to life’ state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues. PMID:25016142
A high-throughput semi-automated preparation for filtered synaptoneurosomes.
Murphy, Kathryn M; Balsor, Justin; Beshara, Simon; Siu, Caitlin; Pinto, Joshua G A
2014-09-30
Synaptoneurosomes have become an important tool for studying synaptic proteins. The filtered synaptoneurosomes preparation originally developed by Hollingsworth et al. (1985) is widely used and is an easy method to prepare synaptoneurosomes. The hand processing steps in that preparation, however, are labor intensive and have become a bottleneck for current proteomic studies using synaptoneurosomes. For this reason, we developed new steps for tissue homogenization and filtration that transform the preparation of synaptoneurosomes to a high-throughput, semi-automated process. We implemented a standardized protocol with easy to follow steps for homogenizing multiple samples simultaneously using a FastPrep tissue homogenizer (MP Biomedicals, LLC) and then filtering all of the samples in centrifugal filter units (EMD Millipore, Corp). The new steps dramatically reduce the time to prepare synaptoneurosomes from hours to minutes, increase sample recovery, and nearly double enrichment for synaptic proteins. These steps are also compatible with biosafety requirements for working with pathogen infected brain tissue. The new high-throughput semi-automated steps to prepare synaptoneurosomes are timely technical advances for studies of low abundance synaptic proteins in valuable tissue samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Mok, Y C; Fearnhead, R W
1985-09-01
Inexpensive thin copper discs loaded with diamonds embedded in small slits around the periphery, may be used to cut sections from unembedded tooth samples without disrupting the cellular and extracellular components intimately associated with hard tissue interfaces. The tissue may be unfixed, fixed or cut using fixation or dye solutions as the lubricant. The use of these discs therefore opens up new avenues of histochemical investigation of hard tissue unrestricted by those artefacts associated with conventional or traditional methods of preparation.
Gutierre, R C; Vannucci Campos, D; Mortara, R A; Coppi, A A; Arida, R M
2017-04-01
Confocal laser-scanning microscopy is a useful tool for visualizing neurons and glia in transparent preparations of brain tissue from laboratory animals. Currently, imaging capillaries and venules in transparent brain tissues requires the use of fluorescent proteins. Here, we show that vessels can be imaged by confocal laser-scanning microscopy in transparent cortical, hippocampal and cerebellar preparations after clarification of China ink-injected specimens by the Spalteholz method. This method may be suitable for global, three-dimensional, quantitative analyses of vessels, including stereological estimations of total volume and length and of surface area of vessels, which constitute indirect approaches to investigate angiogenesis. © 2017 Anatomical Society.
Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha
2017-08-31
Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.
Tissue preparation for immunocytochemistry.
Williams, J H; Mepham, B L; Wright, D H
1997-01-01
AIMS: To investigate the effect of tissue preparation on immunostaining and to establish whether there is a standard tissue preparation schedule that allows optimal demonstration of all antigens. METHODS: Blocks of tonsil were subjected to variations to a standard fixation, processing, and section preparation schedule. The sections were stained with five antibodies-L26 (CD20), UCHL1 (CD45RO), CD3, vimentin, and anti-kappa light chain--using the streptavidinbiotin immunostaining technique. When further investigation was necessary, other tissues and antibodies were used and where weak immunostaining was obtained the use of microwave pretreatment to improve staining was tested. RESULTS: Several factors involved in fixation were found to affect immunoreactivity. These included the duration, pH, and type of fixative used. In tissue processing only temperature and the duration of the dehydration and wax infiltration steps affected immunoreactivity. Of all the factors investigated, the temperature and duration of the section drying had the greatest effect. In contrast, long term storage of cut sections before immunostaining had no effect on the reactivity of the antibodies tested. Antibodies were found to be affected by alterations to tissue preparation by varying degrees, UCHL1 and vimentin being the most susceptible to changes in fixation and L26 to changes in processing. Where weak staining occurred, microwave pretreatment was generally found to eliminate the problem. CONCLUSIONS: There is no standard tissue preparation schedule for the optimal demonstration of all antigens. Factors involved in all aspects of tissue preparation can affect immunoreactivity, so it is important that precise details of the preparation schedule are given when reporting immunocytochemical studies, rather than using the general term "routinely fixed and processed". Images PMID:9215127
NASA Astrophysics Data System (ADS)
Yao, Jie; Li, Qian; Zhou, Bo; Wang, Dan; Wu, Rie
2018-04-01
Fourier-Transform Infrared micro-spectroscopy is an excellent method for biological analyses. In this paper, series metal coating films on ITO glass were prepared by the electrochemical method and the different thicknesses of paraffin embedding rat's brain tissue on the substrates were studied by IR micro-spetroscopy in attenuated total reflection (ATR) mode and transflection mode respectively. The Co-Ni-Cu alloy coating film with low cost is good reflection substrates for the IR analysis. The infrared microscopic transflection mode needs not to touch the sample at all and can get the IR spectra with higher signal to noise ratios. The Paraffin-embedding method allows tissues to be stored for a long time for re-analysis to ensure the traceability of the sample. Also it isolates the sample from the metal and avoids the interaction of biological tissue with the metals. The best thickness of the tissues is 4 μm.
Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee
2017-07-06
Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.
Bullen, A; Taylor, R R; Kachar, B; Moores, C; Fleck, R A; Forge, A
2014-09-01
In the preservation of tissues in as 'close to life' state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Warth, Arne; Muley, Thomas; Meister, Michael; Weichert, Wilko
2015-01-01
Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.
Application of electrical stimulation for functional tissue engineering in vitro and in vivo
NASA Technical Reports Server (NTRS)
Park, Hyoungshin (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor); Langer, Robert (Inventor); Radisic, Milica (Inventor)
2013-01-01
The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.
Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review
Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro
2016-01-01
Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042
Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.
Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J
2016-12-15
To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.
[Microcytomorphometric video-image detection of nuclear chromatin in ovarian cancer].
Grzonka, Dariusz; Kamiński, Kazimierz; Kaźmierczak, Wojciech
2003-09-01
Technology of detection of tissue preparates precisious evaluates contents of nuclear chromatine, largeness and shape of cellular nucleus, indicators of mitosis, DNA index, ploidy, phase-S fraction and other parameters. Methods of detection of picture are: microcytomorphometry video-image (MCMM-VI), flow, double flow and activated by fluorescence. Diagnostic methods of malignant neoplasm of ovary are still nonspecific and not precise, that is a reason of unsatisfied results of treatment. Evaluation of microcytomorphometric measurements of nuclear chromatine histopathologic tissue preparates (HP) of ovarian cancer and comparison to normal ovarian tissue. Estimated 10 paraffin embedded tissue preparates of serous ovarian cancer, 4 preparates mucinous cancer and 2 cases of tumor Kruckenberg patients operated in Clinic of Perinatology and Gynaecology Silesian Medical Academy in Zabrze in period 2001-2002, MCMM-VI estimation based on computer aided analysis system: microscope Axioscop 20, camera tv JVCTK-C 1380, CarlZeiss KS Vision 400 rel.3.0 software. Following MCMM-VI parameters assessed: count of pathologic nucleus, diameter of nucleus, area, min/max diameter ratio, equivalent circle diameter (Dcircle), mean of brightness (mean D), integrated optical density (IOD = area x mean D), DNA index and 2.5 c exceeding rate percentage (2.5 c ER%). MCMM-VI performed on the 160 areas of 16 preparates of cancer and 100 areas of normal ovarian tissue. Statistical analysis was performed by used t-Student test. We obtained stastistically significant higher values parameters of nuclear chromatine, DI, 2.5 c ER of mucinous cancer and tumor Kruckenberg comparison to serous cancer. MCMM-VI parameters of chromatine malignant ovarian neoplasm were statistically significantly higher than normal ovarian tissue. Cytometric and karyometric parametres of nuclear chromatine estimated MCMM-VI are useful in the diagnostics and prognosis of ovarian cancer.
Tissue culture of surgically prepared temporalis fascia.
Walby, A P; Kerr, A G; Nevin, N C; Woods, G
1982-10-01
Temporalis fascia which is used to graft the tympanic membrane has been shown to be viable in tissue culture by a previous pilot study. This present study reports the effect on the viability of the fascia by scraping loose connective tissue from it and allowing it to dry. Pieces of fascia from 30 patients were each divided in 4 and prepared to give explants, fresh, fresh and scraped, dried, and dried and scraped. The fascia grew from 17 patients when cultured fresh, 5 when fresh and scraped, 1 when dried, and none when dried and scraped. These results are significantly different and show that the fascia is devitilized when prepared by the normal method for use in tympanoplasty.
Kanavi, Mozhgan Rezaei; Javadi, Mohammad Ali; Javadi, Fatemeh; Chamani, Tahereh
2014-09-01
To describe the technique and the results of the preparation of pre-cut corneas for Descemet's stripping automated endothelial keratoplasty (DSAEK) during a 3-year period at the Central Eye Bank of Iran (CEBI). The method of preparation of pre-cut corneas from donated whole globes at the CEBI is described and the frequency and percentage of pre-cut corneas prepared for DSAEK, between April 2009 and March 2012, are specified. Moreover, post-operative reports are reviewed for any complaints about using pre-cut tissues for DSAEK. Out of the 1,518 donated whole globes appropriate for DSAEK, 1,478 (97.4 %) pre-cut corneas were successfully prepared. The method of preparation failed in 40 (2.6 %) cases. Based on the eye bank post-operative reports, thickness of pre-cut tissues for DSAEK was deemed unacceptable in only 6 (0.4 %) cases prior to surgery; five of these were too thick and one was too thin. Preparation of pre-cut corneas, for DSAEK from donated whole globes, in the CEBI is a safe and easy method, with very good preservation of endothelial cells after the preparation of the pre-cut corneas and reduced risks from corneal manipulation.
Casimiro, Maria Helena; Lancastre, Joana J H; Rodrigues, Alexandra P; Gomes, Susana R; Rodrigues, Gabriela; Ferreira, Luís M
2017-02-01
In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices' properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.
NASA Astrophysics Data System (ADS)
Nakazawa, Haruna; Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori
2018-02-01
To avoid an instability of the optical coefficient measurement using sliced tissue preparation, we proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying field of view (FOV) and ray tracing calculation using Monte-Carlo method. The optical coefficients of myocardium such as absorption coefficient μa, scattering coefficient μs, and anisotropic parameter g are used in the myocardium optical propagation. Since optical coefficients obtained using thin sliced tissue could be instable because they are affected by dehydration and intracellular fluid effusion on the sample surface, variety of coefficients have been reported over individual optical differences of living samples. The proposed method which combined the experiment using the bulk tissue with ray tracing calculation were performed. In this method, a 200 μmΦ high-NA silica fiber installed in a 21G needle was punctured up to the bottom of the myocardial bulk tissue over 3 cm in thickness to measure light intensity changing the fiber-tip depth and FOV. We found that the measured attenuation coefficients decreased as the FOV increased. The ray trace calculation represented the same FOV dependence in above mentioned experimental result. We think our particular fiber punctured measurement using bulk tissue varying FOV with Inverse Monte-Carlo method might be useful to obtain the optical coefficients to avoid sample preparation instabilities.
Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas
2017-03-01
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.
Brain tissue stiffness is a sensitive marker for acidosis.
Holtzmann, Kathrin; Gautier, Hélène O B; Christ, Andreas F; Guck, Jochen; Káradóttir, Ragnhildur Thóra; Franze, Kristian
2016-09-15
Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Selective preparation of hard dental tissue: classical and laser treatments comparison
NASA Astrophysics Data System (ADS)
Dostálova, Tat'jana; Jelínkova, Helena; Němec, Michal; Koranda, Petr; Miyagi, Mitsunobu; Iwai, Katsumasa; Shi, Yi-Wei; Matsuura, Yuji
2006-02-01
For the purpose of micro-selective preparation which is part of the modern dentistry four various methods were examined: ablation by Er:YAG laser radiation (free-running or Q-switching regime), preparation of tissues by ultrasonic round ball tip, and by the classical dental drilling machine using diamond round bur. In the case of Er:YAG laser application the interaction energy 40 mJ in pulse of 200 us yielding to the interaction intensity 62 kW/cm2, and 20 mJ in pulse of 100 ns yielding to the interaction intensity 62 MW/cm2 was used for the case of free running, and Q-switch regime, respectively. For comparisson with the classical methods the ultrasound preparation tip (Sonixflex cariex TC, D - Sonicsys micro) and dental driller together with usual preparation burrs and standard handpiece were used. For the interaction experiment the samples of extracted human teeth and ebony cut into longitudinal sections and polished were used. The thickness of the prepared samples ranged from 5 to 7 mm. The methods were compared from the point of prepared cavity shape (SEM), inner surface, and possibility of selective removal of carries. The composite filling material was used to reconstruct the cavities. The dye penetrating analysis was performed.
Semiautomated Device for Batch Extraction of Metabolites from Tissue Samples
2012-01-01
Metabolomics has become a mainstream analytical strategy for investigating metabolism. The quality of data derived from these studies is proportional to the consistency of the sample preparation. Although considerable research has been devoted to finding optimal extraction protocols, most of the established methods require extensive sample handling. Manual sample preparation can be highly effective in the hands of skilled technicians, but an automated tool for purifying metabolites from complex biological tissues would be of obvious utility to the field. Here, we introduce the semiautomated metabolite batch extraction device (SAMBED), a new tool designed to simplify metabolomics sample preparation. We discuss SAMBED’s design and show that SAMBED-based extractions are of comparable quality to extracts produced through traditional methods (13% mean coefficient of variation from SAMBED versus 16% from manual extractions). Moreover, we show that aqueous SAMBED-based methods can be completed in less than a quarter of the time required for manual extractions. PMID:22292466
An evaluation of a reagentless method for the determination of total mercury in aquatic life
Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.
2006-01-01
Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.
A new technique for Gram staining paraffin-embedded tissue.
Engbaek, K; Johansen, K S; Jensen, M E
1979-01-01
Five techniques for Gram staining bacteria in paraffin sections were compared on serial sections of pulmonary tissues from eight bacteriological necropsies. Brown and Hopp's method was the most satisfactory for distinguishing Gram-positive and Gram-negative bacteria. However, this method cannot be recommended as the preparations were frequently overstained, and the Gram-negative bacteria were stained indistinctly. A modification of Brown and Hopps' method was developed which stains larger numbers of Gram-negative bacteria and differentiates well between different cell types and connective tissue, and there is no risk of overstaining. PMID:86548
Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil
2017-12-01
A number of orthopedic disorders and bone defect issues are solved by scaffold-based therapy in tissue engineering. The biocompatibility of chitosan (polysaccharide) and its similarity with glycosaminoglycan makes it a bone-grafting material. The current work focus on the synthesis of chitosan and chitosan-gelatin scaffold for hard tissue engineering. The chitosan and chitosan-gelatin scaffold have shown improved specific surface area, density, porosity, mechanical properties, biodegradability and absorption. These scaffolds can lead to the development or artificial fabrication of hard tissue alternates. The porous scaffold samples were prepared by freeze-drying method. The microstructure, mechanical and degradable properties of chitosan and chitosan-gelatin scaffolds were analyzed and results revealed that the scaffolds prepared from chitosan-gelatin can be utilized as a useful matrix for tissue engineering.
Preparation of sterile xenon-133 in saline for tissue perfusion studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiPiazza, H.J.; Harbert, J.C.
1983-11-01
A simple, inexpensive method of obtaining Xe-133 in sterile saline is presented. The method uses commercial xenon ampules supplied for pulmonary ventilation studies. As much as 10% of the gas activity can be recovered per aliquot by cooling the saline to 4/sup 0/C. The specific activities obtained are adequate for most tissue perfusion studies.
Franck, Julien; Arafah, Karim; Barnes, Alan; Wisztorski, Maxence; Salzet, Michel; Fournier, Isabelle
2009-10-01
Nowadays, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is a powerful technique to obtain the distribution of endogenous and exogenous molecules within tissue sections. It can, thus, be used to study the evolution of molecules across different physiological stages in order to find out markers or get knowledge on signaling pathways. In order to provide valuable information, we must carefully control the sample preparation to avoid any delocalization of molecules of interest inside the tissue during this step. Currently, two strategies can be used to deposit chemicals, such as the MALDI matrix, onto the tissue both involving generation of microdroplets that will be dropped off onto the surface. First strategy involves microspraying of solutions. Here, we have been interested in the development of a microspotting strategy, where nanodroplets of solvent are ejected by a piezoelectric device to generate microspots at the tissue level. Such systems allow one to precisely control sample preparation by creating an array of spots. In terms of matrix crystallization, a microspotting MALDI matrix is hardly compatible with the results by classical (pipetting) methods. We have thus synthesized and studied new solid ionic matrixes in order to obtain high analytical performance using such a deposition system. These developments have enabled optimization of the preparation time because of the high stability of the printing that is generated in these conditions. We have also studied microspotting for performing on-tissue digestion in order to go for identification of proteins or to work from formalin fixed and paraffin embedded (FFPE) tissue samples. We have shown that microspotting is an interesting approach for on tissue digestion. Peptides, proteins, and lipids were studied under this specific preparation strategy to improve imaging performances for this class of molecules.
De-Deus, Gustavo; Marins, Juliana; Neves, Aline de Almeida; Reis, Claudia; Fidel, Sandra; Versiani, Marco A; Alves, Haimon; Lopes, Ricardo Tadeu; Paciornik, Sidnei
2014-02-01
The accumulation of debris occurs after root canal preparation procedures specifically in fins, isthmus, irregularities, and ramifications. The aim of this study was to present a step-by-step description of a new method used to longitudinally identify, measure, and 3-dimensionally map the accumulation of hard-tissue debris inside the root canal after biomechanical preparation using free software for image processing and analysis. Three mandibular molars presenting the mesial root with a large isthmus width and a type II Vertucci's canal configuration were selected and scanned. The specimens were assigned to 1 of 3 experimental approaches: (1) 5.25% sodium hypochlorite + 17% EDTA, (2) bidistilled water, and (3) no irrigation. After root canal preparation, high-resolution scans of the teeth were accomplished, and free software packages were used to register and quantify the amount of accumulated hard-tissue debris in either canal space or isthmus areas. Canal preparation without irrigation resulted in 34.6% of its volume filled with hard-tissue debris, whereas the use of bidistilled water or NaOCl followed by EDTA showed a reduction in the percentage volume of debris to 16% and 11.3%, respectively. The closer the distance to the isthmus area was the larger the amount of accumulated debris regardless of the irrigating protocol used. Through the present method, it was possible to calculate the volume of hard-tissue debris in the isthmuses and in the root canal space. Free-software packages used for image reconstruction, registering, and analysis have shown to be promising for end-user application. Copyright © 2014. Published by Elsevier Inc.
Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A.
2015-01-01
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant–microbe interaction with their potential outreach into crop breeding. PMID:25870605
Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A
2015-01-01
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.
Reiser, Vladimír; Smith, Ryan C; Xue, Jiyan; Kurtz, Marc M; Liu, Rong; Legrand, Cheryl; He, Xuanmin; Yu, Xiang; Wong, Peggy; Hinchcliffe, John S; Tanen, Michael R; Lazar, Gloria; Zieba, Renata; Ichetovkin, Marina; Chen, Zhu; O'Neill, Edward A; Tanaka, Wesley K; Marton, Matthew J; Liao, Jason; Morris, Mark; Hailman, Eric; Tokiwa, George Y; Plump, Andrew S
2011-11-01
With expanding biomarker discovery efforts and increasing costs of drug development, it is critical to maximize the value of mass-limited clinical samples. The main limitation of available methods is the inability to isolate and analyze, from a single sample, molecules requiring incompatible extraction methods. Thus, we developed a novel semiautomated method for tissue processing and tissue milling and division (TMAD). We used a SilverHawk atherectomy catheter to collect atherosclerotic plaques from patients requiring peripheral atherectomy. Tissue preservation by flash freezing was compared with immersion in RNAlater®, and tissue grinding by traditional mortar and pestle was compared with TMAD. Comparators were protein, RNA, and lipid yield and quality. Reproducibility of analyte yield from aliquots of the same tissue sample processed by TMAD was also measured. The quantity and quality of biomarkers extracted from tissue prepared by TMAD was at least as good as that extracted from tissue stored and prepared by traditional means. TMAD enabled parallel analysis of gene expression (quantitative reverse-transcription PCR, microarray), protein composition (ELISA), and lipid content (biochemical assay) from as little as 20 mg of tissue. The mean correlation was r = 0.97 in molecular composition (RNA, protein, or lipid) between aliquots of individual samples generated by TMAD. We also demonstrated that it is feasible to use TMAD in a large-scale clinical study setting. The TMAD methodology described here enables semiautomated, high-throughput sampling of small amounts of heterogeneous tissue specimens by multiple analytical techniques with generally improved quality of recovered biomolecules.
NASA Astrophysics Data System (ADS)
Depciuch, J.; Kaznowska, E.; Szmuc, K.; Zawlik, I.; Cholewa, M.; Heraud, P.; Cebulski, J.
2016-05-01
Breast cancer makes up a quarter of all cancer in women, which is why research into new diagnostic methods and sample preparations need to be developed at an accelerated pace. Researchers are looking for diagnostic tools to detect when an individual has cancer cells and use that information to see what measurements and approaches can be used to take further diagnostic steps. The most common method of sample preparation is the imbibing of tumor tissue in paraffin, which can produce a background for spectroscopic measurements in the range of 500-3500 cm-1. In this study we demonstrated that proper preparation of paraffin-embedded specimens and the measurement methodology can eliminate paraffin vibration, as was done in the work Depciuch et al. 2015. Thanks to this spectroscopic technique there may become a reliable and accurate method of diagnosing breast cancer based on the evidence found from the prepared samples. The study compared the results obtained through Raman spectroscopy and FTIR (Fourier Transform Infrared) measurements of healthy and cancerous breast tissues that were either embedded in paraffin or deparaffinized. The resulting spectrum and accurate analysis led to the conclusion that the appropriate measurement of the background and the elimination of peaks from the paraffin had the greatest impact on the reliability of results. Furthermore, after the accurate, detailed studies FTIR and Raman spectroscopy on samples of breast tissue that were deparaffinized or embedded in paraffin, including a complete analysis of the peak after transformation Kramers-Kröning (KK), it was found that sample preparation did not affect the result obtained by measuring the reflectance in the mid-infrared range, and that this only had a minimal effect relating to the intensity obtained by the measurement of the Raman peak. Only in special cases, when Raman spectroscopic methods are used for research to find the peculiarities of the spectra, are deparaffinization recommended, in order to attain more detailed results that could be crucial in understanding the process of carcinogenesis.
Biomedical engineering for health research and development.
Zhang, X-Y
2015-01-01
Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.
2007-12-01
The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includesmore » an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.« less
Linsheng, Li; Guoxiang, Lin; Lihui, Li
2016-08-12
In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.
Eye Bank-Prepared Femtosecond Laser-Assisted Automated Descemet Membrane Endothelial Grafts.
Jardine, Griffin J; Holiman, Jeffrey D; Galloway, Joshua D; Stoeger, Christopher G; Chamberlain, Winston D
2015-07-01
The aim of this study was to investigate the use of a femtosecond laser (FL) in the eye bank preparation of corneas for Descemet membrane (DM) automated endothelial keratoplasty (fDMAEK) and to compare endothelial cell death in graft preparations between fDMAEK, Descemet stripping endothelial keratoplasty (DSEK), and DM endothelial keratoplasty (DMEK). Twenty cadaveric tissues were used to test the fDMAEK method. A 9.0-mm-diameter lamellar incision was made using the FL with a 6.0-mm perpendicular anterior ring cut that enabled a stromal rim by acting as a venting incision for bubble expansion. DM was pneumodissected off the central 6.0 mm of the tissue. The fDMAEK grafts were trephined and stained with a viability dye, calcein AM. The entire stained endothelial surface was digitally captured and the endothelial cell loss (ECL) was calculated using trainable segmentation software. For comparison, a series of 6 DSEK grafts and 8 DMEK grafts were created and analyzed. Six of 20 tissues (30%) were lost during fDMAEK preparation. In the 14 successful tissues, the average ECL was 30.4% [95% confidence interval (CI), 25.3-35.6] compared with 21.1% (95% CI, 13.2-28.9, P = 0.09) in the 6 DSEK grafts and 22.5% (95% CI, 18.0-27.0, P = 0.04) in the 8 DMEK grafts. FLs are useful in preparing DMAEK tissue at the eye bank and may promote predictable and precise big bubbles and stromal rims. The fDMAEK preparation success improved with experience and laser adjustments. In fDMAEK, the ECL is higher than was previously reported in DMEK and DSEK, likely due to greater tissue manipulation, although not significantly higher than DSEK controls.
Schmitt, Christopher J.; Finger, Susan E.
1987-01-01
The influence of sample preparation on measured concentrations of eight elements in the edible tissues of two black basses (Centrarchidae), two catfishes (Ictaluridae), and the black redhorse,Moxostoma duquesnei (Catostomidae) from two rivers in southeastern Missouri contaminated by mining and related activities was investigated. Concentrations of Pb, Cd, Cu, Zn, Fe, Mn, Ba, and Ca were measured in two skinless, boneless samples of axial muscle from individual fish prepared in a clean room. One sample (normally-processed) was removed from each fish with a knife in a manner typically used by investigators to process fish for elemental analysis and presumedly representative of methods employed by anglers when preparing fish for home consumption. A second sample (clean-processed) was then prepared from each normally-processed sample by cutting away all surface material with acid-cleaned instruments under ultraclean conditions. The samples were analyzed as a single group by atomic absorption spectrophotometry. Of the elements studied, only Pb regularly exceeded current guidelines for elemental contaminants in foods. Concentrations were high in black redhorse from contaminated sites, regardless of preparation method; for the other fishes, whether or not Pb guidelines were exceeded depended on preparation technique. Except for Mn and Ca, concentrations of all elements measured were significantly lower in cleanthan in normally-processed tissue samples. Absolute differences in measured concentrations between clean- and normally-processed samples were most evident for Pb and Ba in bass and catfish and for Cd and Zn in redhorse. Regardless of preparation method, concentrations of Pb, Ca, Mn, and Ba in individual fish were closely correlated; samples that were high or low in one of these four elements were correspondingly high or low in the other three. In contrast, correlations between Zn, Fe, and Cd occurred only in normallyprocessed samples, suggesting that these correlations resulted from high concentrations on the surfaces of some samples. Concentrations of Pb and Ba in edible tissues of fish from contaminated sites were highly correlated with Ca content, which was probably determined largely by the amount of tissue other than muscle in the sample because fish muscle contains relatively little Ca. Accordingly, variation within a group of similar samples can be reduced by normalizing Pb and Ba concentrations to a standard Ca concentration. When sample size (N) is large, this can be accomplished statistically by analysis of covariance; whenN is small, molar ratios of [Pb]/[Ca] and [Ba]/[Ca] can be computed. Without such adjustments, unrealistically large Ns are required to yield statistically reliable estimates of Pb concentrations in edible tissues. Investigators should acknowledge that reported concentrations of certain elements are only estimates, and that regardless of the care exercised during the collection, preparation, and analysis of samples, results should be interpreted with the awareness that contamination from external sources may have occurred.
Chun, Hao-Jung; Poklis, Justin L.; Poklis, Alphonse; Wolf, Carl E.
2016-01-01
Ethanol is the most widely used and abused drug. While blood is the preferred specimen for analysis, tissue specimens such as brain serve as alternative specimens for alcohol analysis in post-mortem cases where blood is unavailable or contaminated. A method was developed using headspace gas chromatography with flame ionization detection (HS-GC-FID) for the detection and quantification of ethanol, acetone, isopropanol, methanol and n-propanol in brain tissue specimens. Unfixed volatile-free brain tissue specimens were obtained from the Department of Pathology at Virginia Commonwealth University. Calibrators and controls were prepared from 4-fold diluted homogenates of these brain tissue specimens, and were analyzed using t-butanol as the internal standard. The chromatographic separation was performed with a Restek BAC2 column. A linear calibration was generated for all analytes (mean r2 > 0.9992) with the limits of detection and quantification of 100–110 mg/kg. Matrix effect from the brain tissue was determined by comparing the slopes of matrix prepared calibration curves with those of aqueous calibration curves; no significant differences were observed for ethanol, acetone, isopropanol, methanol and n-propanol. The bias and the CVs for all volatile controls were ≤10%. The method was also evaluated for carryover, selectivity, interferences, bench-top stability and freeze-thaw stability. The HS-GC-FID method was determined to be reliable and robust for the analysis of ethanol, acetone, isopropanol, methanol and n-propanol concentrations in brain tissue, effectively expanding the specimen options for post-mortem alcohol analysis. PMID:27488829
Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry
NASA Astrophysics Data System (ADS)
Mounfield, William P.; Garrett, Timothy J.
2012-03-01
Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.
Automated MALDI matrix coating system for multiple tissue samples for imaging mass spectrometry.
Mounfield, William P; Garrett, Timothy J
2012-03-01
Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.
Loading and conjugating cavity biostructures
Hainfeld, J.F.
1997-11-25
Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.
Loading and conjugating cavity biostructures
Hainfeld, J.F.
1995-08-22
Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.
The Prevention of Surgical Site Infection in Elective Colon Surgery
Fry, Donald E.
2013-01-01
Infections at the surgical site continue to occur in as many as 20% of elective colon resection cases. Methods to reduce these infections are inconsistently applied. Surgical site infection (SSI) is the result of multiple interactive variables including the inoculum of bacteria that contaminate the site, the virulence of the contaminating microbes, and the local environment at the surgical site. These variables that promote infection are potentially offset by the effectiveness of the host defense. Reduction in the inoculum of bacteria is achieved by appropriate surgical site preparation, systemic preventive antibiotics, and use of mechanical bowel preparation in conjunction with the oral antibiotic bowel preparation. Intraoperative reduction of hematoma, necrotic tissue, foreign bodies, and tissue dead space will reduce infections. Enhancement of the host may be achieved by perioperative supplemental oxygenation, maintenance of normothermia, and glycemic control. These methods require additional research to identify optimum application. Uniform application of currently understood methods and continued research into new methods to reduce microbial contamination and enhancement of host responsiveness can lead to better outcomes. PMID:24455434
Time-lapse cinematography in living Drosophila tissues: preparation of material.
Davis, Ilan; Parton, Richard M
2006-11-01
The fruit fly, Drosophila melanogaster, has been an extraordinarily successful model organism for studying the genetic basis of development and evolution. It is arguably the best-understood complex multicellular model system, owing its success to many factors. Recent developments in imaging techniques, in particular sophisticated fluorescence microscopy methods and equipment, now allow cellular events to be studied at high resolution in living material. This ability has enabled the study of features that tend to be lost or damaged by fixation, such as transient or dynamic events. Although many of the techniques of live cell imaging in Drosophila are shared with the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties in keeping the cells alive, introducing fluorescent probes, and imaging through thick hazy cytoplasm. This protocol outlines the preparation of major tissue types amenable to study by time-lapse cinematography and different methods for keeping them alive.
Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents
Jones, Alun G.; Davison, Alan; Abrams, Michael J.
1987-01-01
A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.
Tissue simulating gel for medical research
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor)
1991-01-01
A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.
Tissue simulating gel for medical research
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor)
1989-01-01
A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene gylcol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances were injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.
Orthobiologics in the Foot and Ankle.
Temple, H Thomas; Malinin, Theodore I
2016-12-01
Many allogeneic biologic materials, by themselves or in combination with cells or cell products, may be transformative in healing or regeneration of musculoskeletal bone and soft tissues. By reconfiguring the size, shape, and methods of tissue preparation to improve deliverability and storage, unique iterations of traditional tissue scaffolds have emerged. These new iterations, combined with new cell technologies, have shaped an exciting platform of regenerative products that are effective and provide a bridge to newer and better methods of providing care for orthopedic foot and ankle patients. Copyright © 2016 Elsevier Inc. All rights reserved.
An efficient field and laboratory workflow for plant phylotranscriptomic projects1
Yang, Ya; Moore, Michael J.; Brockington, Samuel F.; Timoneda, Alfonso; Feng, Tao; Marx, Hannah E.; Walker, Joseph F.; Smith, Stephen A.
2017-01-01
Premise of the study: We describe a field and laboratory workflow developed for plant phylotranscriptomic projects that involves cryogenic tissue collection in the field, RNA extraction and quality control, and library preparation. We also make recommendations for sample curation. Methods and Results: A total of 216 frozen tissue samples of Caryophyllales and other angiosperm taxa were collected from the field or botanical gardens. RNA was extracted, stranded mRNA libraries were prepared, and libraries were sequenced on Illumina HiSeq platforms. These included difficult mucilaginous tissues such as those of Cactaceae and Droseraceae. Conclusions: Our workflow is not only cost effective (ca. $270 per sample, as of August 2016, from tissue to reads) and time efficient (less than 50 h for 10–12 samples including all laboratory work and sample curation), but also has proven robust for extraction of difficult samples such as tissues containing high levels of secondary compounds. PMID:28337391
NASA Astrophysics Data System (ADS)
Ruan, Shaobo; Qian, Jun; Shen, Shun; Zhu, Jianhua; Jiang, Xinguo; He, Qin; Gao, Huile
2014-08-01
Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging. Additionally, several experiments demonstrated that CD possessed good serum stability and low cytotoxicity. In vitro, CD could be taken up into C6 glioma cells in a time- and concentration-dependent manner, with both endosomes and mitochondria involved. In vivo, CD could be used for non-invasive glioma imaging because of its high accumulation in the glioma site of the brain, which was demonstrated by both in vivo imaging and ex vivo tissue imaging. Furthermore, the fluorescent distribution in tissue slices also showed CD distributed in glioma with high intensity, while with a low intensity in normal brain tissue. In conclusion, CD were prepared using a simple method with relatively long excitation and emission wavelengths and could be used for non-invasive glioma imaging.Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging. Additionally, several experiments demonstrated that CD possessed good serum stability and low cytotoxicity. In vitro, CD could be taken up into C6 glioma cells in a time- and concentration-dependent manner, with both endosomes and mitochondria involved. In vivo, CD could be used for non-invasive glioma imaging because of its high accumulation in the glioma site of the brain, which was demonstrated by both in vivo imaging and ex vivo tissue imaging. Furthermore, the fluorescent distribution in tissue slices also showed CD distributed in glioma with high intensity, while with a low intensity in normal brain tissue. In conclusion, CD were prepared using a simple method with relatively long excitation and emission wavelengths and could be used for non-invasive glioma imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02657h
Effects of an Er, Cr:YSGG laser on canine oral hard tissues
NASA Astrophysics Data System (ADS)
Rizoiu, Ioana-Mihaela; Kimmel, Andrew I.; Eversole, Lewis R.
1996-12-01
Beagle dogs were utilized to assess the biologic effects of an Er, Cr:YSGG hard tissue cutting laser and results were compared with conventional mechanical preparations of enamel and dentin. Intraoperative pulpal temperature fluctuations were recorded with thermocouples. The laser cuts failed to induce inflammation in the pulps except in teeth with intentional pulp exposures for both methods. No increase in temperature was detected with the laser. It is concluded that this laser system may be safely employed for tooth preparations without causing adverse pulpal effects.
Application of SEM and EDX in studying biomineralization in plant tissues.
He, Honghua; Kirilak, Yaowanuj
2014-01-01
This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.
[Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].
Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N
2015-07-01
Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.
Ruan, Yuhui; Lin, Hong; Yao, Jinrong; Chen, Zhengrong; Shao, Zhengzhong
2011-03-10
In this work, we developed a simple and flexible method to manufacture a 3D porous scaffold based on the blend of regenerated silk fibroin (RSF) and chitosan (CS). No crosslinker or other toxic reagents were used in this method. The pores of resulted 3D scaffolds were connected with each other, and their sizes could be easily controlled by the concentration of the mixed solution. Compared with pure RSF scaffolds, the water absorptivities of these RSF/CS blend scaffolds with significantly enhanced mechanical properties were greatly increased. The results of MTT and RT-PCR tests indicated that the chondrocytes grew very well in these blend RSF/CS porous scaffolds. This suggested that the RSF/CS blend scaffold prepared by this new method could be a promising candidate for applications in tissue engineering. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghanim, Murad; Brumin, Marina; Popovski, Smadar
2009-08-01
A simple, rapid, inexpensive method for the localization of virus transcripts in plant and insect vector tissues is reported here. The method based on fluorescent in situ hybridization using short DNA oligonucleotides complementary to an RNA segment representing a virus transcript in the infected plant or insect vector. The DNA probe harbors a fluorescent molecule at its 5' or 3' ends. The protocol: simple fixation, hybridization, minimal washing and confocal microscopy, provides a highly specific signal. The reliability of the protocol was tested by localizing two phloem-limited plant virus transcripts in infected plants and insect tissues: Tomato yellow leaf curl virus (TYLCV) (Begomovirus: Geminiviridae), exclusively transmitted by the whitefly Bemisia tabaci (Gennadius) in a circulative non-propagative manner, and Potato leafroll virus (Polerovirus: Luteoviridae), similarly transmitted by the aphid Myzus persicae (Sulzer). Transcripts for both viruses were localized specifically to the phloem sieve elements of infected plants, while negative controls showed no signal. TYLCV transcripts were also localized to the digestive tract of B. tabaci, confirming TYLCV route of transmission. Compared to previous methods for localizing virus transcripts in plant and insect tissues that include complex steps for in-vitro probe preparation or antibody raising, tissue fixation, block preparation, sectioning and hybridization, the method described below provides very reliable, convincing, background-free results with much less time, effort and cost.
Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo.
Gerson, Julia E; Sengupta, Urmi; Kayed, Rakez
2017-01-01
Tau oligomers have been shown to be the main toxic tau species in a number of neurodegenerative disorders. In order to study tau oligomers both in vitro and in vivo, we have established methods for the reliable preparation, isolation, and detection of tau oligomers. Methods for the seeding of tau oligomers, isolation of tau oligomers from tissue, and detection of tau oligomers using tau oligomer-specific antibodies by biochemical and immunohistochemical methods are detailed below.
Yamaguchi, K; Asakawa, H
1988-07-01
This paper describes a simple method of preparing colloidal gold for staining protein blots. Colloidal gold was prepared from 0.005 or 0.01% HAuCl4 by the addition of formalin as a reductant and potassium hydroxide. Staining of small cell carcinoma tissue extract blotted onto nitrocellulose membranes with this colloidal gold solution resulted in the appearance of a large number of clear wine-red bands. The sensitivity of gold staining was 60 times higher than that of Coomassie brilliant blue staining and almost comparable to that of silver staining of proteins in polyacrylamide gel. The sensitivity of this method was also satisfactory in comparison with that of enzyme immunoblotting. The colloidal gold prepared by this method is usable for routine work.
Preparation of Human Primary Colon Tissue-Derived Organoid Using Air Liquid Interface Culture.
Usui, Tatsuya; Sakurai, Masashi; Umata, Koji; Yamawaki, Hideyuki; Ohama, Takashi; Sato, Koichi
2018-02-21
In vitro analysis of intestinal epithelium has been hindered by a lack of suitable culture systems useful for gastrointestinal research. To overcome the problem, an air liquid interface (ALI) method using a collagen gel was established to culture three-dimensional primary cells containing both primary epithelial and mesenchymal components from mouse gastrointestinal tissues. ALI organoids accurately recapitulate organ structures, multilineage differentiation, and physiology. Since ALI organoids from human tissues have not been produced, we modified the previous protocol for mouse ALI organoid culture to establish the culture system of ALI organoids from normal and tumor colorectal tissues of human patients. The current unit presents a protocol for preparation of the ALI organoid culture from normal and tumor colorectal tissues of human patients. ALI organoid culture from human tissues might be useful for examining not only resistance to chemotherapy in a tumor microenvironment but also toxic effects on organoids. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Ng, Yit Han; Subramaniam, Vellayan; Lau, Yee Ling
2015-11-30
Sarcocystosis in meat-producing animals is a major cause of reduced productivity in many countries, especially those that rely on agriculture. Although several diagnostic methods are available to detect sarcocystosis, many are too time-consuming for routine use in abattoirs and meat inspection centers, where large numbers of samples need to be tested. This study aimed to compare the sensitivity of the methylene blue tissue preparation, unstained tissue preparation and nested PCR in the detection of sarcocysts in tissue samples. Approximately three-fold more sarcocysts were detected in methylene blue-stained tissue compared to unstained controls (McNemar's test: P<0.01). Test sensitivity was comparable to that of the gold standard for sarcocyst detection, nested polymerase chain reaction. These results suggest that methylene blue can be used in tissue compression as a rapid, safe, and inexpensive technique for the detection of ruminant sarcocystosis in abattoirs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Benninghoff, L.; von Czarnowski, D.; Denkhaus, E.; Lemke, K.
1997-07-01
For the determination of trace element distributions of more than 20 elements in malignant and normal tissues of the human colon, tissue samples (approx. 400 mg wet weight) were digested with 3 ml of nitric acid (sub-boiled quality) by use of an autoclave system. The accuracy of measurements has been investigated by using certified materials. The analytical results were evaluated by using a spreadsheet program to give an overview of the element distribution in cancerous samples and in normal colon tissues. A further application, cluster analysis of the analytical results, was introduced to demonstrate the possibility of classification for cancer diagnosis. To confirm the results of cluster analysis, multivariate three-way principal component analysis was performed. Additionally, microtome frozen sections (10 μm) were prepared from the same tissue samples to compare the analytical results, i.e. the mass fractions of elements, according to the preparation method and to exclude systematic errors depending on the inhomogeneity of the tissues.
Greiner, Mark A; Rixen, Jordan J; Wagoner, Michael D; Schmidt, Gregory A; Stoeger, Christopher G; Straiko, Michael D; Zimmerman, M Bridget; Kitzmann, Anna S; Goins, Kenneth M
2014-11-01
The aim of this study was to evaluate preparation outcomes of tissue prepared for Descemet membrane endothelial keratoplasty (DMEK) from diabetic and nondiabetic donors. In this nonrandomized, consecutive case series, DMEK grafts were prepared from diabetic and nondiabetic donors by experienced technicians in 2 eye banks using slightly different, modified submerged manual preparation techniques to achieve "prestripped" graft tissue. Graft preparation results were analyzed retrospectively. The main outcome measure was the rate of unsuccessful (failed) DMEK graft preparations, defined as tears through the graft area that prevent tissue use. A total of 359 corneas prepared from 290 donors (114 diabetic and 245 nondiabetic) were included in the statistical analysis of graft preparation failure. There were no significant differences between diabetic and nondiabetic donor tissue characteristics with respect to donor age, death to preservation time, death to preparation time, endothelial cell density, percent hexagonality, or coefficient of variation. DMEK tissue preparation was unsuccessful in 19 (5.3%) cases. There was a significant difference in the site-adjusted rate of DMEK preparation failure between diabetic [15.3%; 95% confidence interval (CI), 9.0-25.0] and nondiabetic donors (1.9%; 95% CI, 0.8-4.8), and the corresponding site-adjusted odds ratio of DMEK graft preparation failure in diabetic donor tissue versus nondiabetic donor tissue was 9.20 (95% CI, 2.89-29.32; P = 0.001). Diabetes may be a risk factor for unsuccessful preparation of donor tissue for DMEK. We recommend caution in the use of diabetic tissue for DMEK graft preparation. Further study is needed to identify what subset of diabetic donors is at risk for unsuccessful DMEK graft preparation.
An efficient and sensitive method for preparing cDNA libraries from scarce biological samples
Sterling, Catherine H.; Veksler-Lublinsky, Isana; Ambros, Victor
2015-01-01
The preparation and high-throughput sequencing of cDNA libraries from samples of small RNA is a powerful tool to quantify known small RNAs (such as microRNAs) and to discover novel RNA species. Interest in identifying the small RNA repertoire present in tissues and in biofluids has grown substantially with the findings that small RNAs can serve as indicators of biological conditions and disease states. Here we describe a novel and straightforward method to clone cDNA libraries from small quantities of input RNA. This method permits the generation of cDNA libraries from sub-picogram quantities of RNA robustly, efficiently and reproducibly. We demonstrate that the method provides a significant improvement in sensitivity compared to previous cloning methods while maintaining reproducible identification of diverse small RNA species. This method should have widespread applications in a variety of contexts, including biomarker discovery from scarce samples of human tissue or body fluids. PMID:25056322
2014-01-01
Objective To describe the preparation of nano emodin transfersome (NET) and investigate its effect on mRNA expression of adipose triglyceride lipase (ATGL) and G0/G1 switch gene 2 (G0S2) in adipose tissue of diet-induced obese rats. Methods NET was prepared by film-ultrasonic dispersion method. The effects of emodin components at different ratios on encapsulation efficiency were investigated.The NET envelopment rate was determined by ultraviolet spectrophotometry. The particle size and Zeta potential of NET were evaluated by Zetasizer analyzer. Sixty male SD rats were assigned to groups randomly. After 8-week treatment, body weight, wet weight of visceral fat and the percentage of body fat (PBF) were measured. Fasting blood glucose and serum lipid levels were determined. The adipose tissue section was HE stained, and the cellular diameter and quantity of adipocytes were evaluated by light microscopy. The mRNA expression of ATGL and G0S2 from the peri-renal fat tissue was assayed by RT-PCR. Results The appropriate formulation was deoxycholic acid sodium salt vs. phospholipids 1:8, cholesterol vs. phospholipids 1:3, vitamin Evs. phospholipids 1:20, and emodin vs. phospholipid 1:6. Zeta potential was −15.11 mV, and the particle size was 292.2 nm. The mean encapsulation efficiency was (69.35 ± 0.25)%. Compared with the obese model group, body weight, wet weight of visceral fat, PBF and mRNA expression of G0S2 from peri-renal fat tissue were decreased significantly after NET treatment (all P < 0.05), while high-density lipoprotein cholesterol (HDL-C), the diameter of adipocytes and mRNA expression of ATGL from peri-renal fat tissue were increased significantly (all P < 0.05). Conclusion The preparation method is simple and reasonable. NET with negative electricity was small and uniform in particle size, with high encapsulation efficiency and stability. NET could reduce body weight and adipocyte size, and this effect was associated with the up-regulation of ATGL, down-regulation of G0S2 expression in the adipose tissue, and improved insulin sensitivity. PMID:24641917
[Strategies to choose scaffold materials for tissue engineering].
Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui
2016-02-01
Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which mixed with sustained-release nano-microsphere containing growth factors. What's more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.
Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.
Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum
2016-04-01
Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.
Anderson, David M. G.; Floyd, Kyle A.; Barnes, Stephen; Clark, Judy M.; Clark, John I.; Mchaourab, Hassane; Schey, Kevin L.
2015-01-01
MALDI imaging requires careful sample preparation to obtain reliable, high quality images of small molecules, peptides, lipids, and proteins across tissue sections. Poor crystal formation, delocalization of analytes, and inadequate tissue adherence can affect the quality, reliability, and spatial resolution of MALDI images. We report a comparison of tissue mounting and washing methods that resulted in an optimized method using conductive carbon substrates that avoids thaw mounting or washing steps, minimizes protein delocalization, and prevents tissue detachment from the target surface. Application of this method to image ocular lens proteins of small vertebrate eyes demonstrates the improved methodology for imaging abundant crystallin protein products. This method was demonstrated for tissue sections from rat, mouse, and zebrafish lenses resulting in good quality MALDI images with little to no delocalization. The images indicate, for the first time in mouse and zebrafish, discrete localization of crystallin protein degradation products resulting in concentric rings of distinct protein contents that may be responsible for the refractive index gradient of vertebrate lenses. PMID:25665708
Study of melanin bleaching after immunohistochemistry of melanin-containing tissues.
Shen, Hongwu; Wu, Wenqiao
2015-04-01
Melanin may interfere with immunohistochemical staining. The goal of this study was to investigate the effects of trichloroisocyanuric acid (TCCA) bleaching, potassium permanganate bleaching, and potassium dichromate bleaching on melanin, tissue antigen, and 3,3'-diaminobenzidine (DAB) using melanin-containing and melanin-free tissue samples. Our results demonstrated that all 3 bleaching methods efficiently bleached melanin and partially destroyed tissue antigen. In addition, potassium permanganate bleaching and potassium dichromate bleaching clearly destroyed DAB, whereas TCCA bleaching had no significant effect on DAB. Therefore, neither potassium permanganate nor potassium dichromate is an ideal solution, whereas TCCA might be an ideal solution for melanin bleaching after the immunohistochemical staining of melanin-containing tissues. After immunostaining followed by TCCA bleaching, the melanin could be completely removed in all 120 malignant melanoma tissue sections. Compared with the control, the DAB intensity was clear, and the tissue structure and cellular nuclei were well maintained. It is worth noting that TCCA should be freshly prepared before each experiment, and used within 2 hours of its preparation. In addition, sections should not be incubated with TCCA for over 30 minutes.
Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian
2016-04-19
Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.
Mesenchymal-epithelial interaction techniques
Baskin, Lawrence
2016-01-01
This paper reviews the importance of mesenchymal-epithelial interactions in development and gives detailed technical protocols for investigating these interactions. Successful analysis of mesenchymal-epithelial interactions requires knowing the ages in which embryonic, neonatal and adult organs can be separated into mesenchymal and epithelial tissues. Methods for separation of mesenchymal and epithelial and preparation of tissue recombinants are described. PMID:26610327
Pant, Kamala; Springer, S; Bruce, S; Lawlor, T; Hewitt, N; Aardema, M J
2014-10-01
There is increased interest in the in vivo comet assay in rodents as a follow-up approach for determining the biological relevance of chemicals that are genotoxic in in vitro assays. This is partly because, unlike other assays, DNA damage can be assessed in this assay in virtually any tissue. Since background levels of DNA damage can vary with the species, tissue, and cell processing method, a robust historical control database covering multiple tissues is essential. We describe extensive vehicle and positive control data for multiple tissues from rats and mice. In addition, we report historical data from control and genotoxin-treated human blood. Technical issues impacting comet results are described, including the method of cell preparation and freezing. Cell preparation by scraping (stomach and other GI tract organs) resulted in higher % tail DNA than mincing (liver, spleen, kidney etc) or direct collection (blood or bone marrow). Treatment with the positive control genotoxicant, ethyl methanesulfonate (EMS) in rats and methyl methanesulfonate in mice, resulted in statistically significant increases in % tail DNA. Background DNA damage was not markedly increased when cell suspensions were stored frozen prior to preparing slides, and the outcome of the assay was unchanged (EMS was always positive). In conclusion, historical data from our laboratory for the in vivo comet assay for multiple tissues from rats and mice, as well as human blood show very good reproducibility. These data and recommendations provided are aimed at contributing to the design and proper interpretation of results from comet assays. © 2014 Wiley Periodicals, Inc.
Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging
Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...
A new technique to prepare hard fruits and seeds for anatomical studies1
Benedict, John C.
2015-01-01
Premise of the study: A novel preparation technique was developed to examine fruits and seeds of plants with exceptionally hard or brittle tissues that are very difficult to prepare using standard histological techniques. Methods and Results: The method introduced here was modified from a technique employed on fossil material and has been adapted for use on fruits and seeds of extant plants. A variety of fruits and seeds have been prepared with great success, and the technique will be useful for any excessively hard fruits or seeds that are not able to be prepared using traditional embedding or sectioning methods. Conclusions: When compared to existing techniques for obtaining anatomical features of fruits and seeds, the protocol described here has the potential to create high-quality thin sections of materials that are not able to be sectioned using traditional histological techniques, which can be produced quickly and without the need for harmful chemicals. PMID:26504684
Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding.
Weidong, Zhu; Qibin, Liu; Min, Zheng; Xudong, Wang
2008-11-01
The application of plasma spray is the most popular method by which a metal-bioceramic surface composite can be prepared for the repair of biological hard-tissue, but this method has disadvantages. These disadvantages include poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In the investigation described in this article, a gradient bioceramic coating was prepared on a Ti-6Al-4V titanium alloy surface using a gradient composite design and wide-band laser cladding techniques. Using a trilayer-structure composed of a substratum, an alloy and bioceramics, the coating was chemically and metallurgically bonded with the substratum. The coating, which contains beta-tricalcium phosphate and hydroxyapatite, showed favorable biocompatibility with the bone tissue and promoted in vivo osteogenesis.
Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry.
Baluya, Dodge L; Garrett, Timothy J; Yost, Richard A
2007-09-01
Careful matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is critical for producing reproducible analyte ion signals. Traditional methods for matrix deposition are often considered an art rather than a science, with significant sample-to-sample variability. Here we report an automated method for matrix deposition, employing a desktop inkjet printer (<$200) with 5760 x 1440 dpi resolution and a six-channel piezoelectric head that delivers 3 pL/drop. The inkjet printer tray, designed to hold CDs and DVDs, was modified to hold microscope slides. Empty ink cartridges were filled with MALDI matrix solutions, including DHB in methanol/water (70:30) at concentrations up to 40 mg/mL. Various samples (including rat brain tissue sections and standards of small drug molecules) were prepared using three deposition methods (electrospray, airbrush, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed that matrix crystals were formed evenly across the sample. There was minimal background signal after storing the matrix in the cartridges over a 6-month period. Overall, the mass spectral images gathered from inkjet-printed tissue specimens were of better quality and more reproducible than from specimens prepared by the electrospray and airbrush methods.
NASA Astrophysics Data System (ADS)
Sampson, David D.; Chin, Lixin; Gong, Peijun; Wijesinghe, Philip; Es'haghian, Shaghayegh; Allen, Wesley M.; Klyen, Blake R.; Kirk, Rodney W.; Kennedy, Brendan F.; McLaughlin, Robert A.
2016-03-01
INVITED TALK Advances in imaging tissue microstructure in living subjects, or in freshly excised tissue with minimum preparation and processing, are important for future diagnosis and surgical guidance in the clinical setting, particularly for application to cancer. Whilst microscopy methods continue to advance on the cellular scale and medical imaging is well established on the scale of the whole tumor or organ, it is attractive to consider imaging the tumor environment on the micro-scale, between that of cells and whole tissues. Such a scenario is ideally suited to optical coherence tomography (OCT), with the twin attractions of requiring little or no tissue preparation, and in vivo capability. OCT's intrinsic scattering contrast reveals many morphological features of tumors, but is frequently ineffective in revealing other important aspects, such as microvasculature, or in reliably distinguishing tumor from uninvolved stroma. To address these shortcomings, we are developing several advances on the basic OCT approach. We are exploring speckle fluctuations to image tissue microvasculature and we have been developing several parametric approaches to tissue micro-scale characterization. Our approaches extract, from a three-dimensional OCT data set, a two-dimensional image of an optical parameter, such as attenuation or birefringence, or a mechanical parameter, such as stiffness, that aids in characterizing the tissue. This latter method, termed optical coherence elastography, parallels developments in ultrasound and magnetic resonance imaging. Parametric imaging of birefringence and of stiffness both show promise in addressing the important issue of differentiating cancer from uninvolved stroma in breast tissue.
Mukherjee, Archana; Subramanian, Suresh; Ambade, Rajwardhan; Avhad, Bhaurao; Dash, Ashutosh; Korde, Aruna
2017-02-01
Intra-arterial injection of 131 I Lipiodol is an effective treatment option for primary hepatocellular carcinoma as it delivers high radiation dose to liver tumor tissue with minimal accumulation in adjacent normal tissue. The present article demonstrates design, fabrication, and utilization of a semiautomated radiosynthesis module for preparation of 131 I labeled Lipiodol. The radiolabeling method was standardized for preparation of patient dose of 131 I labeled Lipiodol radiochemical yield (RCY); radiochemical purity (RCP) and pharmaceutical purity of the product were determined using optimized procedures. Sterile and apyrogenic 131 I labeled Lipiodol in >60% RCY could be prepared with >95% RCP. Preclinical evaluation in animals indicated retention of more than 90% of activity at 24 hours postportal vein injection. This is the first report demonstrating potential application of simple user friendly and safe semiautomated system for routine production of 131 I labeled Lipiodol, which is adaptable at centralized hospital radiopharmacies. The described prototype module can be modified as per demand for preparation of other therapeutic radiopharmaceuticals.
Amemiya, Kenji; Hirotsu, Yosuke; Goto, Taichiro; Nakagomi, Hiroshi; Mochizuki, Hitoshi; Oyama, Toshio; Omata, Masao
2016-12-01
Identifying genetic alterations in tumors is critical for molecular targeting of therapy. In the clinical setting, formalin-fixed paraffin-embedded (FFPE) tissue is usually employed for genetic analysis. However, DNA extracted from FFPE tissue is often not suitable for analysis because of its low levels and poor quality. Additionally, FFPE sample preparation is time-consuming. To provide early treatment for cancer patients, a more rapid and robust method is required for precision medicine. We present a simple method for genetic analysis, called touch imprint cytology combined with massively paralleled sequencing (touch imprint cytology [TIC]-seq), to detect somatic mutations in tumors. We prepared FFPE tissues and TIC specimens from tumors in nine lung cancer patients and one patient with breast cancer. We found that the quality and quantity of TIC DNA was higher than that of FFPE DNA, which requires microdissection to enrich DNA from target tissues. Targeted sequencing using a next-generation sequencer obtained sufficient sequence data using TIC DNA. Most (92%) somatic mutations in lung primary tumors were found to be consistent between TIC and FFPE DNA. We also applied TIC DNA to primary and metastatic tumor tissues to analyze tumor heterogeneity in a breast cancer patient, and showed that common and distinct mutations among primary and metastatic sites could be classified into two distinct histological subtypes. TIC-seq is an alternative and feasible method to analyze genomic alterations in tumors by simply touching the cut surface of specimens to slides. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Optimization of Whole-body Zebrafish Sectioning Methods for Mass Spectrometry Imaging
Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature lacks information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in devel...
Chan, Ka Man Carmen; Li, Randolph H.; Chapman, Joseph W.; Trac, Eric M.; Kobler, James B.; Zeitels, Steven M.; Langer, Robert; Karajanagi, Sandeep S.
2014-01-01
Particle size, stiffness and surface functionality are important in determining the injection site, safety and efficacy of injectable soft-tissue fillers. Methods to produce soft injectable biomaterials with controlled particle characteristics are therefore desirable. Here we report a method based on suspension photopolymerization and semi-interpenetrating network (semi-IPN) to synthesize soft, functionalizable, spherical hydrogel microparticles (MP) of independently tunable size and stiffness. MP were prepared using acrylated forms of polyethylene glycol (PEG), gelatin and hyaluronic acid. Semi-IPN MP of PEG-diacrylate and PEG were used to study the effect of process parameters on particle characteristics. The process parameters were systematically varied to produce MP with size ranging from 115 to 515 μm and stiffness ranging from 190 to 1600 Pa. In vitro studies showed that the MP thus prepared were cytocompatible. The ratio and identity of the polymers used to make the semi-IPN MP were varied to control their stiffness and to introduce amine groups for potential functionalization. Slow-release polymeric particles loaded with Rhodamine or dexamethasone were incorporated in the MP as a proof-of-principle of drug incorporation and release from the MP. This work has implications in preparing injectable biomaterials of natural or synthetic polymers for applications as soft-tissue fillers. PMID:24561708
Rajesh, Rajendiran; Dominic Ravichandran, Y
2015-01-01
In recent times, tricomponent scaffolds prepared from naturally occurring polysaccharides, hydroxyapatite, and reinforcing materials have been gaining increased attention in the field of bone tissue engineering. In the current work, a tricomponent scaffold with an oxidized multiwalled carbon nanotube (fMWCNT)–alginate–hydroxyapatite with the required porosity was prepared for the first time by a freeze-drying method and characterized using analytical techniques. The hydroxyapatite for the scaffold was isolated from chicken bones by thermal calcination at 800°C. The Fourier transform infrared spectra and X-ray diffraction data confirmed ionic interactions and formation of the fMWCNT–alginate–hydroxyapatite scaffold. Interconnected porosity with a pore size of 130–170 µm was evident from field emission scanning electron microscopy. The total porosity calculated using the liquid displacement method was found to be 93.85%. In vitro biocompatibility and cell proliferation on the scaffold was checked using an MG-63 cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell attachment by Hoechst stain assay. In vitro studies showed better cell proliferation, cell differentiation, and cell attachment on the prepared scaffold. These results indicate that this scaffold could be a promising candidate for bone tissue engineering. PMID:26491303
Fixation methods for electron microscopy of human and other liver
Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter
2010-01-01
For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830
[Tissue-specific nucleoprotein complexes].
Riadnova, I Iu; Shataeva, L K; Khavinson, V Kh
2000-01-01
A method of isolation of native nucleorprotein complexes from cattle cerebral cortex, thymus, and liver was developed. Compositions of these complexes were studied by means of gel-chromatography and ion-exchange chromatography. These preparations were shown to consist of several fractions of proteins and their complexes differ by molecular mass and electro-chemical properties. Native nucleoprotein complexes revealed high tissue specific activity, which was not species-specific.
Matsumoto, Seiichi; Kawaguchi, Noriyoshi; Manabe, Jun; Matsushita, Yasushi
2002-02-01
When soft-tissue sarcomas occur near neurovascular structures, preoperative images cannot always reveal the accurate relationship between the tumor and these structures. Therefore, in some patients, neurovascular structures are sacrificed unnecessarily. In other patients, neurovascular structures are preserved with an inappropriate margin, followed by local recurrence. The objective of this study was to evaluate a new surgical method, "in situ preparation" (ISP), which enables the preparation of neurovascular bundles and the intraoperative evaluation of the surgical margin without contamination by tumor cells. With this method, additional procedures, including pasteurization, alcohol soaking, and distilled water soaking of the preserved neurovascular bundle can also be performed to preserve the continuity of vessels. Between April 1992 and December 1998, 18 patients with soft-tissue sarcoma were operated on using ISP. The tumor and neurovascular structure were lifted en bloc from the surgical bed and separated from the field by the use of a vinyl sheet. The consistency of the neurovascular structures was preserved. The tissue block could be freely turned around and the neurovascular structure was separated from the block through the nearest approach. The margin between the tumor and neurovascular structure was evaluated, and an additional procedure, such as pasteurization, alcohol soaking or distilled water soaking, was performed, according to the safety of the surgical margin. Only one patient showed recurrence after ISP. Complications after ISP were arterial occlusion in two patients and nerve palsy in three patients. The main cause of these complications was the long period of pasteurization; modified additional procedures could prevent such complications. ISP is a useful method with which to ensure a safe surgical margin and good functional results.
Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie
2015-11-04
Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.
Bhogal, Maninder; Lwin, Chan N.; Seah, Xin-Yi; Murugan, Elavazhagan; Adnan, Khadijah; Lin, Shu-Jun; Mehta, Jodhbir S.
2017-01-01
Purpose To establish a method for assessing graft viability, in-vivo, following corneal transplantation. Methods Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model. Global, macroscopic images of the entire graft and individual cell resolution could be attained by altering the magnification of a clinical confocal scanning laser microscope. Patterns of cell loss observed in situ were compared to those seen using standard ex-vivo techniques. Results Calcein AM showed a positive dose-fluorescence relationship. A dose of 2.67μmol was sufficient to allow clear discrimination between viable and non-viable areas (sensitivity of 96.6% with a specificity of 96.1%) and was not toxic to cultured endothelial cells or ex-vivo corneal tissue. Patterns of cell loss seen in-situ closely matched those seen on ex-vivo assessment with fluorescence viability imaging, trypan blue/alizarin red staining or scanning electron microscopy. Iatrogenic graft damage from preparation and insertion varied between 7–35% and incarceration of the graft tissue within surgical wounds was identified as a significant cause of endothelial damage. Conclusions In-situ graft viability assessment using clinical imaging devices provides comparable information to ex-vivo methods. This method shows high sensitivity and specificity, is non-toxic and can be used to evaluate immediate cell viability in new grafting techniques in-vivo. PMID:28977017
Stremel, Tatiana R De O; Domingues, Cinthia E; Zittel, Rosimara; Silva, Cleber P; Weinert, Patricia L; Monteiro, Franciele C; Campos, Sandro X
2018-04-03
This study aims to develop and validate a method to determine OCPs in fish tissues, minimizing the consumption of sample and reagents, by using a modified QuEChERS along with ultrasound, d-SPE and gas chromatography with an electron capture detector (GC-ECD), refraining the pooling. Different factorial designs were employed to optimize the sample preparation phase. The validation method presented a recovery of around 77.3% and 110.8%, with RSD lower than 13% and the detection limits were between 0.24 and 2.88 μgkg -1 , revealing good sensitiveness and accuracy. The method was satisfactorily applied to the analysis of tissues from different species of fish and OCPs residues were detected. The proposed method was shown effective to determine OCPs low concentrations in fish tissues, using small sample mass (0.5 g), making the sample analyses viable without the need for grouping (pool).
NASA Astrophysics Data System (ADS)
Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw
2014-01-01
We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.
Micro and nanotechnologies in heart valve tissue engineering.
Hasan, Anwarul; Saliba, John; Pezeshgi Modarres, Hassan; Bakhaty, Ahmed; Nasajpour, Amir; Mofrad, Mohammad R K; Sanati-Nezhad, Amir
2016-10-01
Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Injectable hydrogels for cartilage and bone tissue engineering
Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue
2017-01-01
Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674
High resolution SEM imaging of gold nanoparticles in cells and tissues.
Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R
2014-12-01
The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high conductivity without application of surface coating and requires less time and a reduced use of toxic chemicals. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Common stock solutions, buffers, and media.
2001-05-01
This section describes the preparation of buffers and reagents used in this manual for cell culture, manipulation of tissue, and cell biological methods. Also discussed are special considerations for PCR experiments and for working with RNA.
Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, L.H.; McCormick, J.B.; Johnson, K.M.
1982-10-01
Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose permore » rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.« less
Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, L.H.; McCormick, J.B.; Johnson, K.M.
1982-10-01
Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose permore » rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.« less
Karbasi, Saeed; Khorasani, Saied Nouri; Ebrahimi, Somayeh; Khalili, Shahla; Fekrat, Farnoosh; Sadeghi, Davoud
2016-01-01
Background: Poly (hydroxy butyrate) (PHB) is a biodegradable and biocompatible polymer with good mechanical properties. This polymer could be a promising material for scaffolds if some features improve. Materials and Methods: In the present work, new PHB/chitosan blend scaffolds were prepared as a three-dimensional substrate in cartilage tissue engineering. Chitosan in different weight percent was added to PHB and solved in trifluoroacetic acid. Statistical Taguchi method was employed in the design of experiments. Results: The Fourier-transform infrared spectroscopy test revealed that the crystallization of PHB in these blends is suppressed with increasing the amount of chitosan. Scanning electron microscopy images showed a thin and rough top layer with a nodular structure, supported with a porous sub-layer in the surface of the scaffolds. In vitro degradation rate of the scaffolds was higher than pure PHB scaffolds. Maximum degradation rate has been seen for the scaffold with 90% wt. NaCl and 40% wt. chitosan. Conclusions: The obtained results suggest that these newly developed PHB/chitosan blend scaffolds may serve as a three-dimensional substrate in cartilage tissue engineering. PMID:28028517
Christensen, A. Kent
1971-01-01
A simple method has been developed that allows frozen thin sections of fresh-frozen tissue to be cut on a virtually unmodified ultramicrotome kept at room temperature. A bowl-shaped Dewar flask with a knifeholder in its depths replaces the stage of the microtome; a bar extends down into the bowl from the microtome's cutting arm and bears the frozen tissue near its lower end. When the microtome is operated, the tissue passes a glass or diamond knife in the depths of the bowl as in normal cutting. The cutting temperature is maintained by flushing the bowl with cold nitrogen gas, and can be set anywhere from about -160°C up to about -30°C. The microtome is set for a cutting thickness of 540–1000 A. Sections are picked up from the dry knife edge, and are placed on membrane-coated grids, flattened with the polished end of a copper rod, and either dried in nitrogen gas or freeze-dried. Throughout the entire process the tissue is kept cold and does not come in contact with any solvent. The morphology seen in frozen thin sections of rat pancreas and liver generally resembles that in conventional preparations, although freezing damage and low contrast limit the detail that can be discerned. Among unusual findings is a frequent abundance of mitochondrial granules in material prepared by this method. PMID:4942776
Ambient Mass Spectrometry in Cancer Research.
Takats, Z; Strittmatter, N; McKenzie, J S
2017-01-01
Ambient ionization mass spectrometry was developed as a sample preparation-free alternative to traditional MS-based workflows. Desorption electrospray ionization (DESI)-MS methods were demonstrated to allow the direct analysis of a broad range of samples including unaltered biological tissue specimens. In contrast to this advantageous feature, nowadays DESI-MS is almost exclusively used for sample preparation intensive mass spectrometric imaging (MSI) in the area of cancer research. As an alternative to MALDI, DESI-MSI offers matrix deposition-free experiment with improved signal in the lower (<500m/z) range. DESI-MSI enables the spatial mapping of tumor metabolism and has been broadly demonstrated to offer an alternative to frozen section histology for intraoperative tissue identification and surgical margin assessment. Rapid evaporative ionization mass spectrometry (REIMS) was developed exclusively for the latter purpose by the direct combination of electrosurgical devices and mass spectrometry. In case of the REIMS technology, aerosol particles produced by electrosurgical dissection are subjected to MS analysis, providing spectral information on the structural lipid composition of tissues. REIMS technology was demonstrated to give real-time information on the histological nature of tissues being dissected, deeming it an ideal tool for intraoperative tissue identification including surgical margin control. More recently, the method has also been used for the rapid lipidomic phenotyping of cancer cell lines as it was demonstrated in case of the NCI-60 cell line collection. © 2017 Elsevier Inc. All rights reserved.
Desset, Sophie; Poulet, Axel; Tatout, Christophe
2018-01-01
Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen ® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.
Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun
O'Brien, John A; Lummis, Sarah CR
2009-01-01
Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h. PMID:17406443
Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne
2015-10-01
Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
Brown, Bryan N; Freund, John M; Han, Li; Rubin, J Peter; Reing, Janet E; Jeffries, Eric M; Wolf, Mathew T; Tottey, Stephen; Barnes, Christopher A; Ratner, Buddy D; Badylak, Stephen F
2011-04-01
Extracellular matrix (ECM)-based scaffold materials have been used successfully in both preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. Results of numerous studies have shown that ECM scaffolds are capable of supporting the growth and differentiation of multiple cell types in vitro and of acting as inductive templates for constructive tissue remodeling after implantation in vivo. Adipose tissue represents a potentially abundant source of ECM and may represent an ideal substrate for the growth and adipogenic differentiation of stem cells harvested from this tissue. Numerous studies have shown that the methods by which ECM scaffold materials are prepared have a dramatic effect upon both the biochemical and structural properties of the resultant ECM scaffold material as well as the ability of the material to support a positive tissue remodeling outcome after implantation. The objective of the present study was to characterize the adipose ECM material resulting from three methods of decellularization to determine the most effective method for the derivation of an adipose tissue ECM scaffold that was largely free of potentially immunogenic cellular content while retaining tissue-specific structural and functional components as well as the ability to support the growth and adipogenic differentiation of adipose-derived stem cells. The results show that each of the decellularization methods produced an adipose ECM scaffold that was distinct from both a structural and biochemical perspective, emphasizing the importance of the decellularization protocol used to produce adipose ECM scaffolds. Further, the results suggest that the adipose ECM scaffolds produced using the methods described herein are capable of supporting the maintenance and adipogenic differentiation of adipose-derived stem cells and may represent effective substrates for use in tissue engineering and regenerative medicine approaches to soft tissue reconstruction.
Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.
Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan
2014-12-01
Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.
[Recent advance in tendon tissue engineering using scaffolding biomaterials].
Lu, Jingtong; Xiang, Zhou
2013-04-01
An ideal biologically derived that tissue engineering material of tendon has biological activities and functions, so that it may lead to a perfect effect in histological reparation and reconstruction. In addition, the tissue engineering material can avoid disease transmission, be provided from variety of sources and be weak in immune responses. Generally, there are two kinds biologically derived material, i. e. natural biomaterials and purified biomaterials. In this review, researches about the effect, capability and relevant preparation methods, enhancing strategies and the development in the future are discussed.
Fabrication and Handling of 3D Scaffolds Based on Polymers and Decellularized Tissues.
Shpichka, Anastasia; Koroleva, Anastasia; Kuznetsova, Daria; Dmitriev, Ruslan I; Timashev, Peter
2017-01-01
Polymeric, ceramic and hybrid material-based three-dimensional (3D) scaffold or matrix structures are important for successful tissue engineering. While the number of approaches utilizing the use of cell-based scaffold and matrix structures is constantly growing, it is essential to provide a framework of their typical preparation and evaluation for tissue engineering. This chapter describes the fabrication of 3D scaffolds using two-photon polymerization, decellularization and cell encapsulation methods and easy-to-use protocols allowing assessing the cell morphology, cytotoxicity and viability in these scaffolds.
Patel, Bhavik Anil; Arundell, Martin; Parker, Kim H; Yeoman, Mark S; O'Hare, Danny
2005-04-25
Using the CNS of Lymnaea stagnalis a method is described for the rapid analysis of neurotransmitters and their metabolites using high performance liquid chromatography coupled with electrochemical detection. Tissue samples were homogenised in ice-cold 0.1 M perchloric acid and centrifuged. Using a C(18) microbore column the mobile phase was maintained at a flow rate of 100 microl/min and consisted of sodium citrate buffer (pH 3.2)-acetonitrile (82.5:17.5, v/v) with 2 mM decane-sulfonic acid sodium salt. The potential was set at +750 mV versus Ag|AgCl reference electrode at a sensitivity of 50 nA full scale deflection. The detection limit for serotonin was 11.86 ng ml(-1) for a 5 microl injection. Preparation of tissue samples in mobile phase reduced the response to dopamine and serotonin compared with perchloric acid. In addition it was found that the storage of tissue samples at -20 degrees C caused losses of dopamine and serotonin. As a result of optimising the sample preparation and mobile phase the total time of analysis was substantially reduced resulting in a sample preparation and assay time of 15-20 min.
Seniuk, A N; Mokhirev, M A
2010-01-01
Conditions for dental implantation are not always ideal that decrease the method possibilities and makes surgeons-implantologists to resort to additional interventions in order to increase the hard and soft tissues volume in the region of the planned implantation. Considerably rare an implantologist comes across with abutment tissues surplus when considerable dentoalveolar lengthening happens with expressed diminution of interalveolar distance. Orthognatic surgery as the method of surgical correction of expressed dentoalveolar lengthening of some teeth group is the most effective when there is no possibility to such deformation elimination by other methods - orthodontic or prosthetic.
Degradation prediction model and stem cell growth of gelatin-PEG composite hydrogel.
Zhou, Nan; Liu, Chang; Lv, Shijie; Sun, Dongsheng; Qiao, Qinglong; Zhang, Rui; Liu, Yang; Xiao, Jing; Sun, Guangwei
2016-12-01
Gelatin hydrogel has great potential in regenerative medicine. The degradation of gelatin hydrogel is important to control the release profile of encapsulated biomolecules and regulate in vivo tissue repair process. As a plasticizer, PEG can significantly improve the mechanical property of gelatin hydrogel. However, how preparation parameters affect the degradation rate of gelatin-PEG composite hydrogel is still not clear. In this study, the significant effect factor, glutaraldehyde (GA) concentration, was confirmed by means of Plackett-Burman method. Then a mathematical model was built to predict the degradation rate of composite hydrogels under different preparation conditions using the response surface method (RSM), which was helpful to prepare the certain composite hydrogel with desired degradation rate. In addition, it was found that gelatin-PEG composite hydrogel surface well supported the adhesion and growth of human mesenchymal stem cells (MSCs). Moreover, PEG concentration not only could adjust hydrogel degradation more subtly, but also might increase the cross-linking degree and affect the cell migration. Therefore, these results would be useful to optimize the preparation of gelatin-PEG composite hydrogel for drug delivery or tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3149-3156, 2016. © 2016 Wiley Periodicals, Inc.
Buzzi, Marina; Guarino, Anna; Gatto, Claudio; Manara, Sabrina; Dainese, Luca; Polvani, Gianluca; Tóthová, Jana D'Amato
2014-01-01
We investigated the presence of antibiotics in cryopreserved cardiovascular tissues and cryopreservation media, after tissue decontamination with antibiotic cocktails, and the impact of antibiotic residues on standard tissue bank microbiological analyses. Sixteen cardiovascular tissues were decontaminated with bank-prepared cocktails and cryopreserved by two different tissue banks according to their standard operating procedures. Before and after decontamination, samples underwent microbiological analysis by standard tissue bank methods. Cryopreserved samples were tested again with and without the removal of antibiotic residues using a RESEP tube, after thawing. Presence of antibiotics in tissue homogenates and processing liquids was determined by a modified agar diffusion test. All cryopreserved tissue homogenates and cryopreservation media induced important inhibition zones on both Staphylococcus aureus- and Pseudomonas aeruginosa-seeded plates, immediately after thawing and at the end of the sterility test. The RESEP tube treatment markedly reduced or totally eliminated the antimicrobial activity of tested tissues and media. Based on standard tissue bank analysis, 50% of tissues were found positive for bacteria and/or fungi, before decontamination and 2 out of 16 tested samples (13%) still contained microorganisms after decontamination. After thawing, none of the 16 cryopreserved samples resulted positive with direct inoculum method. When the same samples were tested after removal of antibiotic residues, 8 out of 16 (50%) were contaminated. Antibiotic residues present in tissue allografts and processing liquids after decontamination may mask microbial contamination during microbiological analysis performed with standard tissue bank methods, thus resulting in false negatives.
Gatto, Claudio; Manara, Sabrina; Dainese, Luca; Polvani, Gianluca; Tóthová, Jana D'Amato
2014-01-01
We investigated the presence of antibiotics in cryopreserved cardiovascular tissues and cryopreservation media, after tissue decontamination with antibiotic cocktails, and the impact of antibiotic residues on standard tissue bank microbiological analyses. Sixteen cardiovascular tissues were decontaminated with bank-prepared cocktails and cryopreserved by two different tissue banks according to their standard operating procedures. Before and after decontamination, samples underwent microbiological analysis by standard tissue bank methods. Cryopreserved samples were tested again with and without the removal of antibiotic residues using a RESEP tube, after thawing. Presence of antibiotics in tissue homogenates and processing liquids was determined by a modified agar diffusion test. All cryopreserved tissue homogenates and cryopreservation media induced important inhibition zones on both Staphylococcus aureus- and Pseudomonas aeruginosa-seeded plates, immediately after thawing and at the end of the sterility test. The RESEP tube treatment markedly reduced or totally eliminated the antimicrobial activity of tested tissues and media. Based on standard tissue bank analysis, 50% of tissues were found positive for bacteria and/or fungi, before decontamination and 2 out of 16 tested samples (13%) still contained microorganisms after decontamination. After thawing, none of the 16 cryopreserved samples resulted positive with direct inoculum method. When the same samples were tested after removal of antibiotic residues, 8 out of 16 (50%) were contaminated. Antibiotic residues present in tissue allografts and processing liquids after decontamination may mask microbial contamination during microbiological analysis performed with standard tissue bank methods, thus resulting in false negatives. PMID:25397402
PREPARATION OF WHOLE SMALL FISH FOR HISTOLOGICAL EVALUATION
Toxicologic pathology, which is primarily concerned with chemically-induced structural changes in cells or tissues, depends on the proper histological processing of test specimens. In fishes, histopathological examination is widely recognized as a reliable method for disease diag...
Isolation and analysis of group 2 innate lymphoid cells in mice.
Moro, Kazuyo; Ealey, Kafi N; Kabata, Hiroki; Koyasu, Shigeo
2015-05-01
Recent studies have identified distinct subsets of innate lymphocytes, collectively called innate lymphoid cells (ILCs), which lack antigen receptor expression but produce various effector cytokines. Group 2 ILCs (ILC2s) respond to epithelial cell-derived cytokines such as interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), produce large amounts of type 2 cytokines, and have a key role in anti-helminth innate immunity and in the pathophysiology of allergic inflammation. The reported phenotypic characteristics of mouse ILC2s vary, depending on the tissue source and preparation method. This protocol describes improved methods for tissue-specific isolation and analysis of mouse ILC2s of high purity and yield from fat tissue, lung, bronchoalveolar lavage fluid (BALF) and small intestine. These improved methods are the result of our thorough investigation of enzymes used for tissue digestion, methods for the elimination of undesired cells, and a combination of antibodies for the detection and isolation of ILC2s. In addition, this new protocol now enables the isolation of ILC2s of high yield, even from inflamed tissues. Depending on the tissue being analyzed, it takes ∼2-4 h for isolation and flow cytometric analysis of ILC2s from the various tissues of a single mouse and ∼4-8 h to sort purified ILC2s from pooled tissues of multiple mice.
Comparison of six methods for isolating mycobacteria from swine lymph nodes.
Thoen, C O; Richards, W D; Jarnagin, J L
1974-03-01
Six laboratory methods were compared for isolating acid-fast bacteria. Tuberculous lymph nodes from each of 48 swine as identified by federal meat inspectors were processed by each of the methods. Treated tissue suspensions were inoculated onto each of eight media which were observed at 7-day intervals for 9 weeks. There were no statistically significant differences between the number of Mycobacterium avium complex bacteria isolated by each of the six methods. Rapid tissue preparation methods involving treatment with 2% sodium hydroxide or treatment with 0.2% zephiran required only one-third to one-fourth the processing time as a standard method. There were small differences in the amount of contamination among the six methods, but no detectable differences in the time of first appearance of M. avium complex colonies.
OCT aspects of dental hard tissue changes induced by excessive occlusal forces
NASA Astrophysics Data System (ADS)
Scrieciu, Monica; Mercuţ, Veronica; Popescu, Sanda Mihaela; Tǎrâţǎ, Daniela; Osiac, Eugen
2018-03-01
The study purpose is to highlight dental hard tissues changes of a tooth with dental wear as a consequence of excessive occlusal forces, using OCT. Methods: a central incisor extracted for periodontal reason was cleaned and it was embedded in a black acrylic resin block. The block was sectioned along the longitudinal axis of the tooth and prepared for OCT analysis. Results: The OCT signal showed differences between the labial and palatal dental hard tissue structures, even in areas without excessive occlusal solicitations. Conclusion: The OCT signal highlights changes of dental hard tissues structures according to excessive occlusal solicitations areas.
Multivariate classification of the infrared spectra of cell and tissue samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haaland, D.M.; Jones, H.D.; Thomas, E.V.
1997-03-01
Infrared microspectroscopy of biopsied canine lymph cells and tissue was performed to investigate the possibility of using IR spectra coupled with multivariate classification methods to classify the samples as normal, hyperplastic, or neoplastic (malignant). IR spectra were obtained in transmission mode through BaF{sub 2} windows and in reflection mode from samples prepared on gold-coated microscope slides. Cytology and histopathology samples were prepared by a variety of methods to identify the optimal methods of sample preparation. Cytospinning procedures that yielded a monolayer of cells on the BaF{sub 2} windows produced a limited set of IR transmission spectra. These transmission spectra weremore » converted to absorbance and formed the basis for a classification rule that yielded 100{percent} correct classification in a cross-validated context. Classifications of normal, hyperplastic, and neoplastic cell sample spectra were achieved by using both partial least-squares (PLS) and principal component regression (PCR) classification methods. Linear discriminant analysis applied to principal components obtained from the spectral data yielded a small number of misclassifications. PLS weight loading vectors yield valuable qualitative insight into the molecular changes that are responsible for the success of the infrared classification. These successful classification results show promise for assisting pathologists in the diagnosis of cell types and offer future potential for {ital in vivo} IR detection of some types of cancer. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}« less
Thiel embalming technique: a valuable method for teaching oral surgery and implantology.
Hölzle, Frank; Franz, Eric-Peter; Lehmbrock, Jutta; Weihe, Stephan; Teistra, Christian; Deppe, Herbert; Wolff, Klaus-Dietrich
2012-03-01
Because of its high requirements on surgical experience and the need of complete understanding of the anatomy, oral surgery and especially implantology belong to the most demanding procedures in dentistry. Therefore, hands-on courses for oral surgery and implantology are considered a prerequisite to prepare for clinical practice. To achieve teaching conditions as realistic as possible, we used a novel human cadaver embalming method enabling tissue dissection comparable with the living body. Thirty cadavers which were offered by the Institute of Anatomy for the purpose of running oral surgery and implantology courses were embalmed in the technique described by Thiel. On each cadaver, dissection of soft and hard tissue and implantological procedures were performed according to a structured protocol by each course participant. The conservation of fine anatomical structures and the suitability of the embalmed tissue for dissecting, drilling, and suturing were observed and photographically documented. By means of the Thiel embalming technique, oral surgery and implantological procedures could be performed under realistic conditions similar to the living body. Due to the conservation procedure, preparations could be carried out without any time limit, always maintaining the same high quality of the tissue. The maxillary sinus membrane, mucosa, bone, and nerves could be exposed and allowed dissecting, drilling, and suturing even after weeks like fresh specimens. The Thiel embalming method is a unique technique which is ideally suited to practice and teach oral surgery and implantology on human material. © 2009 Wiley Periodicals, Inc.
Rodriguez-Canul, R; Argaez-Rodriguez, F; de, la Gala D Pacheco; Villegas-Perez, S; Fraser, A; Craig, P S; Cob-Galera, L; Dominguez-Alpizar, J L
2002-04-01
The cestode parasite Taenia solium is an important cause of foodborne infection throughout tropical and subtropical regions. Ingestion of pork meat infected with T. solium larvae can lead to taeniasis infection in humans. With tourism and the consumption of native food increasing, it is important to investigate potential risks of transmission associated with food preparation methods. In this study, traditional Mexican salt pickling and two methods of pork preparation (as roast pork [cochinita pibil] and in pork and beans [frijol con puerco]) were evaluated in order to determine their effects on T. solium cyst viability in infected tissue. In the control groups, all metacestodes isolated were 100% viable, and only small changes in pH (from 6.0 to 5.9) and temperature (29 to 30 degrees C) were recorded. No viable cysts were detected after 12 and 24 h of salt pickling. The pH of the meat during salting dropped from 6.0 to 5.3. Osmotic changes and dehydration from the salting, rather than a change in pH, could be considered the main cause of cyst death. Temperatures of >65 degrees C damaged T. solium metacestodes in roast pork and in pork and beans. The results of this study indicate that if traditional pork dishes are prepared properly, T. solium cysts are destroyed. The criteria used in this study to evaluate the viability of tissue cysts are discussed.
Zhang, Shichang; Zhang, Bo; Chen, Xia; Chen, Li; Wang, Zhengguo; Wang, Yingjie
2014-12-01
Tissue-engineered liver using primary hepatocytes has been considered a valuable new therapeutic modality as an alternative to whole organ liver transplantation for different liver diseases. The development of clinically feasible liver tissue engineering approaches, however, has been hampered by the poor engraftment efficiency of hepatocytes. We developed a three-dimensional (3D) culture system using a microgravity bioreactor (MB), biodegradable scaffolds and growth-factor-reduced Matrigel to construct a tissue-engineered liver for transplantation into the peritoneal cavity of non-obese diabetic severe combined immunodeficient mice. The number of viable cells in the hepatic tissue constructs was stably maintained in the 3D MB culture system. Hematoxylin-eosin staining and zonula occludens-1 expression revealed that neonatal mouse liver cells were reorganized to form tissue-like structures during MB culture. Significantly upregulated hepatic functions (albumin secretion, urea production and cytochrome P450 activity) were observed in the MB culture group. Post-transplantation analysis indicated that the engraftment efficiency of the hepatic tissue constructs prepared in MB cultures was higher than that of those prepared in the static cultures. Higher level of hepatic function in the implants was confirmed by the expression of albumin. These findings suggest that 3D MB culture systems may offer an improved method for creating tissue-engineered liver because of the higher engraftment efficiency and the reduction of the initial cell function loss.
Wang, Bo; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun
2014-01-01
Cardiac tissue engineering/regeneration using decellularized myocardium has attracted great research attention due to its potential benefit for myocardial infarction (MI) treatment. Here we describe an optimal decellularization protocol to generate 3D porcine myocardial scaffolds with well-preserved cardiomyocyte lacunae and a multi-stimulation bioreactor that is able to provide coordinated mechanical and electrical stimulation for facilitating cardiac construct development.
Pontoni, Ludovico; Panico, Antonio; Matanò, Alessia; van Hullebusch, Eric D; Fabbricino, Massimiliano; Esposito, Giovanni; Pirozzi, Francesco
2017-12-06
A novel modification of the sample preparation procedure for the Folin-Ciocalteu colorimetric assay for the determination of total phenolic compounds in natural solid and semisolid organic materials (e.g., foods, organic solid waste, soils, plant tissues, agricultural residues, manure) is proposed. In this method, the sample is prepared by adding sodium sulfate as a solid diluting agent before homogenization. The method allows for the determination of total phenols (TP) in samples with high solids contents, and it provides good accuracy and reproducibility. Additionally, this method permits analyses of significant amounts of sample, which reduces problems related to heterogeneity. We applied this method to phenols-rich lignocellulosic and humic-like solids and semisolid samples, including rice straw (RS), peat-rich soil (PS), and food waste (FW). The TP concentrations measured with the solid dilution (SD) preparation were substantially higher (increases of 41.4%, 15.5%, and 59.4% in RS, PS and FW, respectively) than those obtained with the traditional method (solids suspended in water). These results showed that the traditional method underestimates the phenolic contents in the studied solids.
Study on fluorouracil-chitosan nanoparticle preparation and its antitumor effect.
Chen, Gaimin; Gong, Rudong
2016-05-01
To successfully prepare fluorouracil-chitosan nanoparticles, and further analyze its anti-tumor activity mechanism, this paper makes a comprehensive study of existing preparation prescription and makes a detailed analysis of fluorouracil-chitosan in vitro release and pharmacodynamic behavior of animals. Two-step synthesis method is adopted to prepare 5-FU-CS-mPEG prodrugs, and infrared, (1)H NMR and differential thermal analysis are adopted to analyze characterization synthetic products of prepared drugs. To ensure clinical efficacy of prepared drugs, UV spectrophotometry is adopted for determination of drug loading capacity of prepared drugs, transmission electron microscopy is adopted to observe the appearance, dynamic dialysis method is used to observe in vitro drug release of prepared drugs and fitting of various release models is done. Anti-tumor effect is studied via level of animal pharmacodynamics. After the end of the experiment, tumor inhibition rate, spleen index and thymus index of drugs are calculated. Experimental results show that the prepared drugs are qualified in terms of regular shape, dispersion, drug content, etc. Animal pharmacodynamics experiments have shown that concentration level of drug loading capacity of prepared drugs has a direct impact on anti-tumor rate. The higher the concentration, the higher the anti-tumor rate. Results of pathological tissue sections of mice show that the prepared drugs cause varying degrees of damage to receptor cells, resulting in cell necrosis or apoptosis problem. It can thus be concluded that ion gel method is an effective method to prepare drug-loading nanoparticles, with prepared nanoparticles evenly distributed in regular shape which demonstrate good slow-release characteristics in receptor vitro and vivo. At the same time, after completion of drug preparation, relatively strong anti-tumor activity can be generated for the receptor, so this mode of preparation enjoys broad prospects for development.
Nanofibers: New Insights for Drug Delivery and Tissue Engineering.
Haidar, Mohammad Karim; Eroglu, Hakan
2017-01-01
Nanofibers became one of the major research areas for drug delivery and tissue engineering applications in the last decade. Depending on the simplicity of the preparation method and high drug loading capacity, nanofibers provide many advantages for therapeutic perspectives. In addition, combined systems such as embedding nanoparticles into the nanofiber structures provide a second option for delivery of dual active ingredients in the same formulation. The release rate of the active ingredients can also be modified easily by the formulation parameters depending on the desired release time for treatment. Nanofibers systems are used for the delivery of antibiotics, anticancer drugs, analgesics, hemostatic agents and various proteins for tissue engineering purposes. In addition, various applications such as medical device coating also provide new insights for the clinical use of nanofibers. The most commonly used technique for preparation of nanofibers is the electrospinning, which provides feasibility background for scale up process from laboratory to the industrial applications. The main boundary for nanofibers is the limitations for systemic route. Nanofibers are mainly designed for the delivery of active ingredients for local purposes. Regardless of the therapeutic aim, nanofibers are also perfect 3 dimensional structures that are suitable for tissue regeneration. They provide matrix structure for cell regeneration especially in applications for wound healing. This review is mainly focused on the recent advances on the preparation of nanofibers, applications for drug delivery, tissue engineering and wound healing purposes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Single-cell transcriptome conservation in cryopreserved cells and tissues.
Guillaumet-Adkins, Amy; Rodríguez-Esteban, Gustavo; Mereu, Elisabetta; Mendez-Lago, Maria; Jaitin, Diego A; Villanueva, Alberto; Vidal, August; Martinez-Marti, Alex; Felip, Enriqueta; Vivancos, Ana; Keren-Shaul, Hadas; Heath, Simon; Gut, Marta; Amit, Ido; Gut, Ivo; Heyn, Holger
2017-03-01
A variety of single-cell RNA preparation procedures have been described. So far, protocols require fresh material, which hinders complex study designs. We describe a sample preservation method that maintains transcripts in viable single cells, allowing one to disconnect time and place of sampling from subsequent processing steps. We sequence single-cell transcriptomes from >1000 fresh and cryopreserved cells using 3'-end and full-length RNA preparation methods. Our results confirm that the conservation process did not alter transcriptional profiles. This substantially broadens the scope of applications in single-cell transcriptomics and could lead to a paradigm shift in future study designs.
Perić Kačarević, Zeljka; Kavehei, Faraz; Houshmand, Alireza; Franke, Jörg; Smeets, Ralf; Rimashevskiy, Denis; Wenisch, Sabine; Schnettler, Reinhard; Jung, Ole; Barbeck, Mike
2018-04-01
Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone ® ) and non-sintered (Bio-Oss ® ) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.
Establishment of the optimum two-dimensional electrophoresis system of ovine ovarian tissue.
Jia, J L; Zhang, L P; Wu, J P; Wang, J; Ding, Q
2014-08-26
Lambing performance of sheep is the most important economic trait and is regarded as a critic factoring affecting the productivity in sheep industry. Ovary plays the most roles in lambing trait. To establish the optimum two-dimensional electrophoresis system (2-DE) of ovine ovarian tissue, the common protein extraction methods of animal tissue (trichloroacetic acid/acetone precipitation and direct schizolysis methods) were used to extract ovine ovarian protein, and 17-cm nonlinear immobilized PH 3-10 gradient strips were used for 2-DE. The sample handling, loading quantity of the protein sample, and isoelectric focusing (IEF) steps were manipulated and optimized in this study. The results indicate that the direct schizolysis III method, a 200-μg loading quantity of the protein sample, and IEF steps II (20°C active hydration, 14 h→500 V, 1 h→1000 V 1 h→1000-9000 V, 6 h→80,000 VH→500 V 24 h) are optimal for 2-DE analysis of ovine ovarian tissue. Therefore, ovine ovarian tissue proteomics 2-DE was preliminarily established by the optimized conditions in this study; meanwhile, the conditions identified herein could provide a reference for ovarian sample preparation and 2-DE using tissues from other animals.
[Preparation and identification of the polyclonal antibody against ATRX-C2193-2492].
Tang, Shuangyang; Liu, Zhimin; Li, Ranhui; Chen, Yan; Zhao, Lanhua; Shen, Haiyan; Wan, Yanping
2017-04-01
Objective To prepare the polyclonal antibody against human alpha thalassemia/mental retardation syndrome X-linked (ATRX) C-terminal and study the distribution and expression of ATRX protein in human cervical cancer tissues. Methods The antiserum was obtained from the BALB/c mice immunized with 6 His-ATRX-C 2193-2492 protein and then purified by the saturated ammonium sulfate precipitation and affinity chromatography. The titer of anti-ATRX polyclonal antibody was determined by ELISA. Its specificity was identified by SDS-PAGE analysis and Western blotting. The expression and location of ATRX in human cervical tissues were analyzed by immunohistochemistry. Results The titer of the polyclonal antibody against 6 His-ATRX-C 2193-2492 protein was about 1:12 800. The antibody could recognize 6 His-ATRX-C 2193-2492 protein specifically. With the polyclonal antibody, the target protein was found mainly in the nucleus of para-carcinoma tissues, and it was also expressed in the nucleus of cervical cancer tissue cells, but the expression in the latter was obviously lower. Conclusion The polyclonal antibody against 6 His-ATRX-C 2193-2492 protein has been produced successfully and used to detect ATRX protein in human cervical cancer tissues.
A method for measuring total thiaminase activity in fish tissues
Zajicek, James L.; Tillitt, Donald E.; Honeyfield, Dale C.; Brown, Scott B.; Fitzsimons, John D.
2005-01-01
An accurate, quantitative, and rapid method for the measurement of thiaminase activity in fish samples is required to provide sufficient information to characterize the role of dietary thiaminase in the onset of thiamine deficiency in Great Lakes salmonines. A radiometric method that uses 14C-thiamine was optimized for substrate and co-substrate (nicotinic acid) concentrations, incubation time, and sample dilution. Total thiaminase activity was successfully determined in extracts of selected Great Lakes fishes and invertebrates. Samples included whole-body and selected tissues of forage fishes. Positive control material prepared from frozen alewives Alosa pseudoharengus collected in Lake Michigan enhanced the development and application of the method. The method allowed improved discrimination of thiaminolytic activity among forage fish species and their tissues. The temperature dependence of the thiaminase activity observed in crude extracts of Lake Michigan alewives followed a Q10 = 2 relationship for the 1-37??C temperature range, which is consistent with the bacterial-derived thiaminase I protein. ?? Copyright by the American Fisheries Society 2005.
Brzica, Hrvoje; Abdullahi, Wazir; Reilly, Bianca G; Ronaldson, Patrick T
2018-05-07
The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.
Hoffman, Gerald L.
1996-01-01
A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.
Fullwood, Leanne M; Griffiths, Dave; Ashton, Katherine; Dawson, Timothy; Lea, Robert W; Davis, Charles; Bonnier, Franck; Byrne, Hugh J; Baker, Matthew J
2014-01-21
Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.
Improved resolution by mounting of tissue sections for laser microdissection
van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R
2003-01-01
Background: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. Aims: To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Methods: Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10–2000 cells isolated by microdissection from mounted and unmounted tissue. Results: The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. Conclusions: The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted. PMID:12890747
Growing Three-Dimensional Corneal Tissue in a Bioreactor
NASA Technical Reports Server (NTRS)
Spaulding, Glen F.; Goodwin, Thomas J.; Aten, Laurie; Prewett, Tacey; Fitzgerald, Wendy S.; OConnor, Kim; Caldwell, Delmar; Francis, Karen M.
2003-01-01
Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient s own cells or from a well-defined culture from another human donor known to be healthy. As explained in several articles in prior issues of NASA Tech Briefs, generally cylindrical horizontal rotating bioreactors have been developed to provide nutrient-solution environments conducive to the 30 NASA Tech Briefs, October 2003 growth of delicate animal cells, with gentle, low-shear flow conditions that keep the cells in suspension without damaging them. The horizontal rotating bioreactor used in this method, denoted by the acronym "HARV," was described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), NASA Tech Briefs, Vol. 16, No. 5 (May, 1992), page 150.
Seroprevalence of human T lymphtropic virus (HTLV) among tissue donors in Iranian tissue bank.
Arjmand, Babak; Aghayan, Seyed Hamidreza; Goodarzi, Parisa; Farzanehkhah, Mohammad; Mortazavi, Seyed Mohamadjavad; Niknam, Mohamad Hossein; Jafarian, Ali; Arjmand, Farzin; Jebelly far, Soheyla
2009-08-01
Iranian Tissue Bank prepares a wide range of human tissue homografts such as; heart valve, bone, skin, amniotic membrane and other tissues for different clinical applications. The purpose of this study was to determine the seroprevalence of HTLV in tissue donors. About 1,548 tissue donors were studied during a 5-years period by ELISA assays. HTLV(1,2)-antibodies were tested for all of donors with other tests upon American Association of Tissue Banks (AATB) standards. About 25 (1.61%) out of 1,548 tissue donors were HTLV positive that 17 donors were male and 8 were female (female/male ratio was approximately 47%). Regarding to the prevalence of HTLV among tissue donors and importance of cell and tissue safety and quality assurance, we recommend that all blood, cell and tissue banks should be involved both routine serological methods and other complementary tests such as polymerase chain reaction (PCR) for diagnosis of HTLV.
Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.
2014-01-01
Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality. PMID:25350384
Risk factors for eye bank preparation failure of Descemet membrane endothelial keratoplasty tissue.
Vianna, Lucas M M; Stoeger, Christopher G; Galloway, Joshua D; Terry, Mark; Cope, Leslie; Belfort, Rubens; Jun, Albert S
2015-05-01
To assess the results of a single eye bank preparing a high volume of Descemet membrane endothelial keratoplasty (DMEK) tissues using multiple technicians to provide an overview of the experience and to identify possible risk factors for DMEK preparation failure. Cross-sectional study. setting: Lions VisionGift and Wilmer Eye Institute at Johns Hopkins Hospital. All 563 corneal tissues processed by technicians at Lions VisionGift for DMEK between October 2011 and May 2014 inclusive. Tissues were divided into 2 groups: DMEK preparation success and DMEK preparation failure. We compared donor characteristics, including past medical history. The overall tissue preparation failure rate was 5.2%. Univariate analysis showed diabetes mellitus (P = .000028) and its duration (P = .023), hypertension (P = .021), and hyperlipidemia or obesity (P = .0004) were more common in the failure group. Multivariate analysis showed diabetes mellitus (P = .0001) and hyperlipidemia or obesity (P = .0142) were more common in the failure group. Elimination of tissues from donors either with diabetes or with hyperlipidemia or obesity reduced the failure rate from 5.2% to 2.2%. Trends toward lower failure rates occurring with increased technician experience also were found. Our work showed that tissues from donors with diabetes mellitus (especially with longer disease duration) and hyperlipidemia or obesity were associated with higher failure rates in DMEK preparation. Elimination of tissues from donors either with diabetes mellitus or with hyperlipidemia or obesity reduced the failure rate. In addition, our data may provide useful initial guidelines and benchmark values for eye banks seeking to establish and maintain DMEK programs. Copyright © 2015 Elsevier Inc. All rights reserved.
Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging
Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali
2016-01-01
Aim: In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Materials and Methods: Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [68Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. Results: [68Ga] DOTA AMLO was prepared at pH 4–5 in 7–10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9–2.1 GBq/mmol) and was stable up to 4 h with a log P of −0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. Conclusions: The complex can be a candidate for further positron emission tomography imaging for L type calcium channels. PMID:27833311
Chang, Li-Wen; Hou, Mei-Ling; Tsai, Tung-Hu
2014-12-03
The aim of this study was to prepare silymarin formulations (silymarin entrapped in liposomes and ethosomes, formulations referred to as LSM and ESM, respectively) to improve oral bioavailability of silymarin and evaluate its tissue distribution by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in free-moving rats. Silibinin is the major active constituent of silymarin, which is the main component to be analyzed. A rapid, sensitive, and repeatable LC-MS/MS method was developed and validated in terms of precision, accuracy, and extraction recovery. Furthermore, the established method was applied to study the pharmacokinetics and tissue distribution of silymarin in rats. The size, ζ potential, and drug release of the formulations were characterized. These results showed that the LSM and ESM encapsulated formulations of silymarin may provide more efficient tissue distribution and increased oral bioavailability, thus improving its therapeutic bioactive properties in the body.
A new technique for the closure of the lens capsule by laser welding.
Pini, Roberto; Rossi, Francesca; Menabuoni, Luca; Lenzetti, Ivo; Yoo, Sonia; Parel, Jean-Marie
2008-01-01
A new method is presented for the closure of the lens capsule based on laser welding of suitably prepared patches of anterior capsular tissue. Experiments were performed in freshly enucleated porcine eyes. The patches were previously stained with a solution of indocyanine green in sterile water and then welded on the recipient capsule by means of diode laser radiation at 810 nm. The welded tissue revealed mechanical properties comparable to those of healthy tissue. This technique is proposed to repair capsular breaks and to provide the closure of the capsulorhexis in lens refilling procedures.
Optimization of Protein Extraction and Two-Dimensional Electrophoresis Protocols for Oil Palm Leaf.
Daim, Leona Daniela Jeffery; Ooi, Tony Eng Keong; Yusof, Hirzun Mohd; Majid, Nazia Abdul; Karsani, Saiful Anuar Bin
2015-08-01
Oil palm (Elaeis guineensis) is an important economic crop cultivated for its nutritional palm oil. A significant amount of effort has been undertaken to understand oil palm growth and physiology at the molecular level, particularly in genomics and transcriptomics. Recently, proteomics studies have begun to garner interest. However, this effort is impeded by technical challenges. Plant sample preparation for proteomics analysis is plagued with technical challenges due to the presence of polysaccharides, secondary metabolites and other interfering compounds. Although protein extraction methods for plant tissues exist, none work universally on all sample types. Therefore, this study aims to compare and optimize different protein extraction protocols for use with two-dimensional gel electrophoresis of young and mature leaves from the oil palm. Four protein extraction methods were evaluated: phenol-guanidine isothiocyanate, trichloroacetic acid-acetone precipitation, sucrose and trichloroacetic acid-acetone-phenol. Of these four protocols, the trichloroacetic acid-acetone-phenol method was found to give the highest resolution and most reproducible gel. The results from this study can be used in sample preparations of oil palm tissue for proteomics work.
Hoshi, K; Fujihara, Y; Mori, Y; Asawa, Y; Kanazawa, S; Nishizawa, S; Misawa, M; Numano, T; Inoue, H; Sakamoto, T; Watanabe, M; Komura, M; Takato, T
2016-09-01
In this study, the mutual fusion of chondrocyte pellets was promoted in order to produce large-sized tissue-engineered cartilage with a three-dimensional (3D) shape. Five pellets of human auricular chondrocytes were first prepared, which were then incubated in an agarose mold. After 3 weeks of culture in matrix production-promoting medium under 5.78g/cm(2) compression, the tissue-engineered cartilage showed a sufficient mechanical strength. To confirm the usefulness of these methods, a transplantation experiment was performed using beagles. Tissue-engineered cartilage prepared with 50 pellets of beagle chondrocytes was transplanted subcutaneously into the cell-donor dog for 2 months. The tissue-engineered cartilage of the beagles maintained a rod-like shape, even after harvest. Histology showed fair cartilage regeneration. Furthermore, 20 pellets were made and placed on a beta-tricalcium phosphate prism, and this was then incubated within the agarose mold for 3 weeks. The construct was transplanted into a bone/cartilage defect in the cell-donor beagle. After 2 months, bone and cartilage regeneration was identified on micro-computed tomography and magnetic resonance imaging. This approach involving the fusion of small pellets into a large structure enabled the production of 3D tissue-engineered cartilage that was close to physiological cartilage tissue in property, without conventional polyper scaffolds. Copyright © 2016. Published by Elsevier Ltd.
Matsusaki, Michiya; Yoshida, Hiroaki; Akashi, Mitsuru
2007-06-01
The three-dimensional (3D)-engineered tissues composed of only cells and extracellular matrices (ECM) were constructed by the hydrogel template approach. The disulfide-crosslinked poly(gamma-glutamic acid) hydrogels were prepared as a template hydrogel. These template hydrogels were easily decomposed under physiological conditions using reductants such as cysteine, glutathione and dithiothreitol by cleavage of disulfide crosslinkage to thiol groups. The decomposed polymers are soluble in cell culture medium. The cleaving of disulfide bond was determined by UV-vis and FT-IR spectroscopies. We successfully prepared the 3D-engineered tissues (thickness/diameter, 2mm/1cm) composed of mouse L929 fibroblast cells and ECM by the decomposition of only the template hydrogel with cysteine after 10 days 3D-cell culture on/in the template hydrogel. The size and thickness of the 3D-engineered tissues was completely transferred from the template hydrogel. The cultured L929 cells viability in the obtained engineered tissues was confirmed by a culture test, WST-1 method and LIVE/DEAD staining assay. The engineered tissue was self-standing and highly dense composite of the cultured cells and collagen produced by the cells. This hydrogel template approach may be useful as a new class of soft-tissue engineering technology to substitute a synthetic polymer scaffold to the ECM scaffold produced from the cultured cells.
Foda, Abd Al-Rahman Mohammad
2013-05-01
Manual tissue microarray (TMA) construction had been introduced to avoid the high cost of automated and semiautomated techniques. The cheapest and simplest technique for constructing manual TMA was that of using mechanical pencil tips. This study was carried out to modify this method, aiming to raise its quality to reach that of expensive ones. Some modifications were introduced to Shebl's technique. Two conventional mechanical pencil tips of different diameters were used to construct the recipient blocks. A source of mild heat was used, and blocks were incubated at 38°C overnight. With our modifications, 3 high-density TMA blocks were constructed. We successfully performed immunostaining without substantial tissue loss. Our modifications increased the number of cores per block and improved the stability of the cores within the paraffin block. This new, modified technique is a good alternative for expensive machines in many laboratories.
Monoclonal antibodies to cyclodiene insecticides and method for detecting the same
Stanker, Larry H.; Vanderlaan, Martin; Watkins, Bruce E.
1994-01-01
Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples.
Dedrick, D F; Sherer, Y D; Biebuyck, J F
1975-06-01
A new method of rapid sampling of brain tissue, "freeze-blowing," has been used to compare the neurochemistry of the brain during anesthesia with that in the awake state. The method avoids anoxia associated with the sampling process. Physiologic variables, including body temperature, blood-gas tensions and blood pressure, were carefully monitored and controlled in the experimental animals. None of the agents tested (halothane, morphine, and ketamine) reduced the brain tissue high-energy phosphate reserved. All three drugs doubled glucose levels. Morphine lowered both lactate and the lactate/pyruvate ratio. Uniformly, the three anesthetic agents led to twofold increases of brain cyclic 3'-5' adenosine monophosphate concentrations. These changes suggest a possible role for cyclic nucleotides in central neurotransmission.
Schelstraete, Wim; Devreese, Mathias; Croubels, Siska
2018-02-01
Microsomes are an ideal medium to investigate cytochrome P450 (CYP450) enzyme-mediated drug metabolism. However, before microsomes are prepared, tissues can be stored for a long time. Studies about the stability of these enzymes in porcine hepatic and intestinal tissues upon storage are lacking. To be able to investigate CYP450 stability in microsomes prepared from these tissues, a highly sensitive and rapid HPLC-MS/MS method for the simultaneous determination of six CYP450 metabolites in incubation medium was developed and validated. The metabolites, paracetamol (CYP1A), 7-hydroxy-coumarin (CYP2A), 1-hydroxy-midazolam (CYP3A), 4-hydroxy-tolbutamide (CYP2C), dextrorphan (CYP2D), and 6-hydroxy-chlorzoxazone (CYP2E) were extracted with ethyl acetate at pH 1.0, followed by evaporation and separation on an Agilent Zorbax Eclipse Plus C18 column. The method was fully validated in a GLP-compliant laboratory according to European guidelines and was highly sensitive (LOQ = 0.25-2.5 ng/mL), selective, had good precision (RSD-within, 1.0-9.1%; RSD-between, 1.0-18.4%) and accuracy (within-run, 83.3-102%; between-run, 78.5-102%), and showed no relative signal suppression and enhancement. Consequently, this method was applied to study the stability of porcine hepatic and intestinal CYP450 isoenzymes when tissues were stored at - 80 °C. The results indicate that porcine CYP450 isoenzymes are stable in tissues at least up to 4 months when snap frozen and stored at - 80 °C. Moreover, the results indicate differences in porcine CYP450 stability compared to rat, rabbit, and fish CYP450, as observed by other research groups, hence stressing the importance to investigate the CYP450 stability of a specific species.
A rapid approach to high-resolution fluorescence imaging in semi-thick brain slices.
Selever, Jennifer; Kong, Jian-Qiang; Arenkiel, Benjamin R
2011-07-26
A fundamental goal to both basic and clinical neuroscience is to better understand the identities, molecular makeup, and patterns of connectivity that are characteristic to neurons in both normal and diseased brain. Towards this, a great deal of effort has been placed on building high-resolution neuroanatomical maps(1-3). With the expansion of molecular genetics and advances in light microscopy has come the ability to query not only neuronal morphologies, but also the molecular and cellular makeup of individual neurons and their associated networks(4). Major advances in the ability to mark and manipulate neurons through transgenic and gene targeting technologies in the rodent now allow investigators to 'program' neuronal subsets at will(5-6). Arguably, one of the most influential contributions to contemporary neuroscience has been the discovery and cloning of genes encoding fluorescent proteins (FPs) in marine invertebrates(7-8), alongside their subsequent engineering to yield an ever-expanding toolbox of vital reporters(9). Exploiting cell type-specific promoter activity to drive targeted FP expression in discrete neuronal populations now affords neuroanatomical investigation with genetic precision. Engineering FP expression in neurons has vastly improved our understanding of brain structure and function. However, imaging individual neurons and their associated networks in deep brain tissues, or in three dimensions, has remained a challenge. Due to high lipid content, nervous tissue is rather opaque and exhibits auto fluorescence. These inherent biophysical properties make it difficult to visualize and image fluorescently labelled neurons at high resolution using standard epifluorescent or confocal microscopy beyond depths of tens of microns. To circumvent this challenge investigators often employ serial thin-section imaging and reconstruction methods(10), or 2-photon laser scanning microscopy(11). Current drawbacks to these approaches are the associated labor-intensive tissue preparation, or cost-prohibitive instrumentation respectively. Here, we present a relatively rapid and simple method to visualize fluorescently labelled cells in fixed semi-thick mouse brain slices by optical clearing and imaging. In the attached protocol we describe the methods of: 1) fixing brain tissue in situ via intracardial perfusion, 2) dissection and removal of whole brain, 3) stationary brain embedding in agarose, 4) precision semi-thick slice preparation using new vibratome instrumentation, 5) clearing brain tissue through a glycerol gradient, and 6) mounting on glass slides for light microscopy and z-stack reconstruction (Figure 1). For preparing brain slices we implemented a relatively new piece of instrumentation called the 'Compresstome' VF-200 (http://www.precisionary.com/products_vf200.html). This instrument is a semi-automated microtome equipped with a motorized advance and blade vibration system with features similar in function to other vibratomes. Unlike other vibratomes, the tissue to be sliced is mounted in an agarose plug within a stainless steel cylinder. The tissue is extruded at desired thicknesses from the cylinder, and cut by the forward advancing vibrating blade. The agarose plug/cylinder system allows for reproducible tissue mounting, alignment, and precision cutting. In our hands, the 'Compresstome' yields high quality tissue slices for electrophysiology, immunohistochemistry, and direct fixed-tissue mounting and imaging. Combined with optical clearing, here we demonstrate the preparation of semi-thick fixed brain slices for high-resolution fluorescent imaging.
Torabinejad, Bahman; Mohammadi-Rovshandeh, Jamshid; Davachi, Seyed Mohammad; Zamanian, Ali
2014-09-01
The employment of biodegradable polymer scaffolds is one of the main approaches for achieving a tissue engineered construct to reproduce bone tissues, which provide a three dimensional template to regenerate desirable tissues for different applications. The main goal of this study is to design a novel triblock scaffold reinforced with nano-hydroxyapatite (nHA) for hard tissue engineering using gas foaming/salt leaching method with minimum solvent usage. With this end in view, the biodegradable triblock copolymers of l-lactide and ε-caprolactone with different mol% were synthesized by ring-opening polymerization method in the presence of Sn(Oct)2 catalyst as initiator and ethylene glycol as co-initiator. The chemical compositions of biodegradable copolymers were characterized by means of FTIR and NMR. The thermal and crystallization behaviors of copolymers were characterized using TGA and DSC thermograms. Moreover, nano-hydroxyapatite was synthesized by the chemical precipitation process and was thoroughly characterized by FTIR, XRD and TEM. Additionally, the nanocomposites with different contents of nHA were prepared by mixing triblock copolymer with nHA. Mechanical properties of the prepared nanocomposites were evaluated by stress-strain measurements. It was found that the nanocomposite with 30% of nHA showed the optimum result. Therefore, nanocomposite scaffolds with 30% nHA were fabricated by gas foaming/salt leaching method and SEM images were used to observe the microstructure and morphology of nanocomposites and nanocomposite scaffolds before and after cell culture. The in-vitro and cell culture tests were also carried out to further evaluate the biological properties. The results revealed that the porous scaffolds were biocompatible to the osteoblast cells because the cells spread and grew well. The resultant nanocomposites could be considered as good candidates for use in bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Anumol, Tarun; Lehotay, Steven J; Stevens, Joan; Zweigenbaum, Jerry
2017-04-01
Veterinary drug residues in animal-derived foods must be monitored to ensure food safety, verify proper veterinary practices, enforce legal limits in domestic and imported foods, and for other purposes. A common goal in drug residue analysis in foods is to achieve acceptable monitoring results for as many analytes as possible, with higher priority given to the drugs of most concern, in an efficient and robust manner. The U.S. Department of Agriculture has implemented a multiclass, multi-residue method based on sample preparation using dispersive solid phase extraction (d-SPE) for cleanup and ultrahigh-performance liquid chromatography-tandem quadrupole mass spectrometry (UHPLC-QQQ) for analysis of >120 drugs at regulatory levels of concern in animal tissues. Recently, a new cleanup product called "enhanced matrix removal for lipids" (EMR-L) was commercially introduced that used a unique chemical mechanism to remove lipids from extracts. Furthermore, high-resolution quadrupole-time-of-flight (Q/TOF) for (U)HPLC detection often yields higher selectivity than targeted QQQ analyzers while allowing retroactive processing of samples for other contaminants. In this study, the use of both d-SPE and EMR-L sample preparation and UHPLC-QQQ and UHPLC-Q/TOF analysis methods for shared spiked samples of bovine muscle, kidney, and liver was compared. The results showed that the EMR-L method provided cleaner extracts overall and improved results for several anthelmintics and tranquilizers compared to the d-SPE method, but the EMR-L method gave lower recoveries for certain β-lactam antibiotics. QQQ vs. Q/TOF detection showed similar mixed performance advantages depending on analytes and matrix interferences, with an advantage to Q/TOF for greater possible analytical scope and non-targeted data collection. Either combination of approaches may be used to meet monitoring purposes, with an edge in efficiency to d-SPE, but greater instrument robustness and less matrix effects when analyzing EMR-L extracts. Graphical abstract Comparison of cleanup methods in the analysis of veterinary drug residues in bovine tissues.
Suh, Joon Hyuk; Han, Sang Beom; Wang, Yu
2018-02-02
Despite their importance in pivotal signaling pathways due to trace quantities and complex matrices, the analysis of plant hormones is a challenge. Here, to improve this issue, we present an electromembrane extraction technology combined with liquid chromatography-tandem mass spectrometry for determination of acidic plant hormones including jasmonic acid, abscisic acid, salicylic acid, benzoic acid, gibberellic acid and gibberellin A 4 in plant tissues. Factors influencing extraction efficiency, such as voltage, extraction time and stirring rate were optimized using a design of experiments. Analytical performance was evaluated in terms of specificity, linearity, limit of quantification, precision, accuracy, recovery and repeatability. The results showed good linearity (r 2 > 0.995), precision and acceptable accuracy. The limit of quantification ranged from 0.1 to 10 ng mL -1 , and the recoveries were 34.6-50.3%. The developed method was applied in citrus leaf samples, showing better clean-up efficiency, as well as higher sensitivity compared to a previous method using liquid-liquid extraction. Organic solvent consumption was minimized during the process, making it an appealing method. More noteworthy, electromembrane extraction has been scarcely applied to plant tissues, and this is the first time that major plant hormones were extracted using this technology, with high sensitivity and selectivity. Taken together, this work gives not only a novel sample preparation platform using an electric field for plant hormones, but also a good example of extracting complex plant tissues in a simple and effective way. Copyright © 2017 Elsevier B.V. All rights reserved.
Motoji, N; Hamai, Y; Niikura, Y; Shigematsu, A
1995-01-01
A novel preparation technique, so called "Paste Mold," was devised for organ and tissue distribution studies. This is the most powerful by joining with autoradioluminography (ARLG), which was established and validated recently in the working group of Forum '93 of Japanese Society for study of xenobiotics. A small piece (10-50 mg) of each organ or tissue was available for measuring its radioactive concentration and it was sampled from the remains of frozen carcass used for macroautoradiography (MARG). The solubilization of the frozen pieces was performed with mixing a suitable volume of gelatine and strong alkaline solution prior to mild heating kept at 40 degrees C for a few hours. After that, the tissue paste was molded in template pattern to form the small plates. The molded plates were contacted with Imaging plate (IP) for recording their radioactive concentration. The recorded IP was processed by BAS2000. The molded plate was formed in thickness of 200 microns, so called infinit thickness against soft beta rays, and therefore the resulting relative intensities, represented by (PSL-BG)/S values, indicated practically responsible ratio of the radioactive concentration in organs and tissues, without any calibulation for beta-self absorption coefficiency. On the other hand, the left half body of the frozen carcass was used for making whole body autoradiography (WBA) before the Paste-Mold preparation. Comparison was performed for difference in (PSL-BG)/S values of organs and tissues between frozen and dried sections. A good concordance in relative intensities, (PSL-BG)/S by the Paste-Mold preparation was given with those by the frozen sections rather than dried sections.(ABSTRACT TRUNCATED AT 250 WORDS)
Preparation of Formalin-fixed Paraffin-embedded Tissue Cores for both RNA and DNA Extraction.
Patel, Palak G; Selvarajah, Shamini; Boursalie, Suzanne; How, Nathan E; Ejdelman, Joshua; Guerard, Karl-Philippe; Bartlett, John M; Lapointe, Jacques; Park, Paul C; Okello, John B A; Berman, David M
2016-08-21
Formalin-fixed paraffin embedded tissue (FFPET) represents a valuable, well-annotated substrate for molecular investigations. The utility of FFPET in molecular analysis is complicated both by heterogeneous tissue composition and low yields when extracting nucleic acids. A literature search revealed a paucity of protocols addressing these issues, and none that showed a validated method for simultaneous extraction of RNA and DNA from regions of interest in FFPET. This method addresses both issues. Tissue specificity was achieved by mapping cancer areas of interest on microscope slides and transferring annotations onto FFPET blocks. Tissue cores were harvested from areas of interest using 0.6 mm microarray punches. Nucleic acid extraction was performed using a commercial FFPET extraction system, with modifications to homogenization, deparaffinization, and Proteinase K digestion steps to improve tissue digestion and increase nucleic acid yields. The modified protocol yields sufficient quantity and quality of nucleic acids for use in a number of downstream analyses, including a multi-analyte gene expression platform, as well as reverse transcriptase coupled real time PCR analysis of mRNA expression, and methylation-specific PCR (MSP) analysis of DNA methylation.
Zhao, Leilei; Li, Xian; Zhao, Jiaqi; Ma, Saijian; Ma, Xiaoxuan; Fan, Daidi; Zhu, Chenhui; Liu, Yannan
2016-11-01
Various tissue scaffold materials are increasingly used to repair skin defects by cross-linking because of the ability to fill and implant in any form via operation. However, crosslinker residues cannot be easily removed from scaffold materials prepared by chemical crosslinking methods, limiting their use for skin tissue engineering. Here, microbial transglutaminase (MTGase), a nontoxic crosslinker with high specific activity and reaction rate under mild conditions, was employed crosslinks in human-like collagen (HLC) to yield novel smart MTGase crosslinked with human-like collagen (MTGH) hydrogels, which are sensitive to temperature and/or enzymes. Various ratios of MTGase/HLC were performed, and their physicochemical properties were characterized, including the swelling ratio, the elastic modulus, the morphology and the porosity. The degradation behavior and mechanism of MTGase in concentration-dependent manner involved in formation hydrogels were identifying in vitro. The cell attachment in vitro and biocompatibility in vivo were also investigated. The results demonstrated that the use of different concentrations of MTGase to crosslink HLC produced products with different degradation times and biocompatibilities. The 50U/g MTGase-prepared MTGH hydrogels had a higher density of crosslinks, which made them more resistant to degradation by collagenase I and collagenase II. However, 40U/g MTGase-prepared MTGH hydrogels were more suitable for cell attachment. In addition, compared with the Collagen Implant I® (SUM) used in animal experiments, the 40U/g MTGase-prepared MTGH hydrogels had a lower toxicity and better biocompatibility. Therefore, 40U/g MTGase crosslinked with HLC should be used to prepare MTGH hydrogels for potential application as soft materials for skin tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimisation of DNA extraction from the crustacean Daphnia
Athanasio, Camila Gonçalves; Chipman, James K.; Viant, Mark R.
2016-01-01
Daphnia are key model organisms for mechanistic studies of phenotypic plasticity, adaptation and microevolution, which have led to an increasing demand for genomics resources. A key step in any genomics analysis, such as high-throughput sequencing, is the availability of sufficient and high quality DNA. Although commercial kits exist to extract genomic DNA from several species, preparation of high quality DNA from Daphnia spp. and other chitinous species can be challenging. Here, we optimise methods for tissue homogenisation, DNA extraction and quantification customised for different downstream analyses (e.g., LC-MS/MS, Hiseq, mate pair sequencing or Nanopore). We demonstrate that if Daphnia magna are homogenised as whole animals (including the carapace), absorbance-based DNA quantification methods significantly over-estimate the amount of DNA, resulting in using insufficient starting material for experiments, such as preparation of sequencing libraries. This is attributed to the high refractive index of chitin in Daphnia’s carapace at 260 nm. Therefore, unless the carapace is removed by overnight proteinase digestion, the extracted DNA should be quantified with fluorescence-based methods. However, overnight proteinase digestion will result in partial fragmentation of DNA therefore the prepared DNA is not suitable for downstream methods that require high molecular weight DNA, such as PacBio, mate pair sequencing and Nanopore. In conclusion, we found that the MasterPure DNA purification kit, coupled with grinding of frozen tissue, is the best method for extraction of high molecular weight DNA as long as the extracted DNA is quantified with fluorescence-based methods. This method generated high yield and high molecular weight DNA (3.10 ± 0.63 ng/µg dry mass, fragments >60 kb), free of organic contaminants (phenol, chloroform) and is suitable for large number of downstream analyses. PMID:27190714
Bertin, Jonathan; Dury, Alain Y; Ke, Yuyong; Ouellet, Johanne; Labrie, Fernand
2015-06-01
Following its secretion mainly by the adrenal glands, dehydroepiandrosterone (DHEA) acts primarily in the cells/tissues which express the enzymes catalyzing its intracellular conversion into sex steroids by the mechanisms of intracrinology. Although reliable assays of endogenous serum steroids are now available using mass spectrometry (MS)-based technology, sample preparation from tissue matrices remains a challenge. This is especially the case with high lipid-containing tissues such as the brain. With the combination of a UPLC system with a sensitive tandem MS, it is now possible to measure endogenous unconjugated steroids in monkey brain tissue. A Shimadzu UPLC LC-30AD system coupled to a tandem MS AB Sciex Qtrap 6500 system was used. The lower limits of quantifications are achieved at 250 pg/mL for DHEA, 200 pg/mL for 5-androstenediol (5-diol), 12 pg/mL for androstenedione (4-dione), 50 pg/mL for testosterone (Testo), 10 pg/mL for dihydrotestosterone (DHT), 4 pg/mL for estrone (E1) and 1 pg/mL for estradiol (E2). The linearity and accuracy of quality controls (QCs) and endogenous quality controls (EndoQCs) are according to the guidelines of the regulatory agencies for all seven compounds. We describe a highly sensitive, specific and robust LC-MS/MS method for the simultaneous measurement of seven unconjugated steroids in monkey brain tissue. The single and small amount of sample required using a relatively simple preparation method should be useful for steroid assays in various peripheral tissues and thus help analysis of the role of locally-made sex steroids in the regulation of specific physiological functions. Copyright © 2015 Elsevier Inc. All rights reserved.
Danišovič, Ľ.; Majidi, A.; Varga, I.
2015-01-01
Transmission electron microscopy reveals ultrastructural details of cells, and it is a valuable method for studying cell organelles. That is why we used this method for detailed morphological description of different adult tissue-derived stem cells, focusing on the morphological signs of their functions (proteosynthetic activity, exchange with external environment, etc.) and their comparison. Preparing a specimen from the cell culture suitable for transmission electron microscopy is, however, much more challenging than routine tissue processing for normal histological examination. There are several issues that need to be solved while working with cell pellets instead of solid tissue. Here we describe a simple protocol for the isolation and culture of mesenchymal stem cells from different adult tissues, with applications to stem cell biology and regenerative medicine. Since we are working with population of cells that was obtained after many days of passaging, very efficient and gentle procedures are highly necessary. We demonstrated that our semi-conservative approach regarding to histological techniques and processing of cells for transmission electron microscopy is a well reproducible procedure which results in quality pictures and images of cell populations with minimum distortions and artifacts. We also commented about riskiest steps and histochemical issues (e.g., precise pH, temperature) while preparing the specimen. We bring full and detailed procedures of fixation, post-fixation, infiltration, embedding, polymerization and contrasting of cell obtained from in vitro cell and tissue cultures, with modifications according to our experience. All this steps are essential for us to know more about adult stem cells derived from different sources or about other random cell populations. The knowledge about detailed ultra-structure of adult stem cells cultured in vitro are also essential for their using in regenerative medicine and tissue engineering. PMID:26708176
Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
Pati, Falguni; Cho, Dong-Woo
2017-01-01
Bioprinting provides an exciting opportunity to print and pattern all the components that make up a tissue-cells and extracellular matrix (ECM) material-in three dimensions (3D) to generate tissue analogues. A large number of materials have been used for making bioinks; however, majority of them cannot represent the complexity of natural ECM and thus are unable to reconstitute the intrinsic cellular morphologies and functions. We present here a method for making of bioink from decellularized extracellular matrices (dECMs) and a protocol for bioprinting of cell-laden constructs with this novel bioink. The dECM bioink is capable of providing an optimized microenvironment that is conducive to the growth of 3D structured tissue. We have prepared bioinks from different tissues, including adipose, cartilage and heart tissues and achieved high cell viability and functionality of the bioprinted tissue structures using our novel bioink.
Nasri-Nasrabadi, Bijan; Mehrasa, Mohammad; Rafienia, Mohammad; Bonakdar, Shahin; Behzad, Tayebeh; Gavanji, Shahin
2014-08-08
Starch/cellulose nanofibers composites with proper porosity pore size, mechanical strength, and biodegradability for cartilage tissue engineering have been reported in this study. The porous thermoplastic starch-based composites were prepared by combining film casting, salt leaching, and freeze drying methods. The diameter of 70% nanofibers was in the range of 40-90 nm. All samples had interconnected porous morphology; however an increase in pore interconnectivity was observed when the sodium chloride ratio was increased in the salt leaching. Scaffolds with the total porogen content of 70 wt% exhibited adequate mechanical properties for cartilage tissue engineering applications. The water uptake ratio of nanocomposites was remarkably enhanced by adding 10% cellulose nanofibers. The scaffolds were partially destroyed due to low in vitro degradation rate after more than 20 weeks. Cultivation of isolated rabbit chondrocytes on the fabricated scaffold proved that the incorporation of nanofibers in starch structure improves cell attachment and proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tissue Preservation Assessment Preliminary Results
NASA Technical Reports Server (NTRS)
Globus, Ruth; Costes, Sylvain
2017-01-01
Pre-flight groundbased testing done to prepare for the first Rodent Research mission validation flight, RR1 (Choi et al, 2016 PlosOne). We purified RNA and measured RIN values to assess quality of the samples. For protein, we measured liver enzyme activities. We tested protocol and methods of preservation to date. Here we present an overview of results related to tissue preservation from the RR1 validation mission and a summary of findings to date from investigators who received RR1 teissues various Biospecimen Sharing Program.
Preparation of Nonhuman Primate Eyes for Histological Evaluation After Retinal Gene Transfer.
Bell, Peter; Yu, Hongwei; Kuntz, Leah; Ahonkhai, Omua; Tretiakova, Anna; Limberis, Maria P; Wilson, James M
2018-06-01
To evaluate gene therapy for retinal disorders, appropriate models of the human eye are needed. Nonhuman primate eyes offer significant advantages over rodent eyes. However, current preparation methods have limitations. Here, a protocol is described for histological processing of nonhuman primate eyes after gene transfer. The user dissects unfixed eyes, flattens the globe parts within filter paper, and performs formalin fixation and paraffin embedding. This method obviates the need for harsh fixatives, allowing subsequent immunostaining or in situ hybridization while preserving tissue integrity for histopathological evaluation. Moreover, the straight orientation of the retinal cell layers is ideal for image analysis.
Large scale preparation and crystallization of neuron-specific enolase.
Ishioka, N; Isobe, T; Kadoya, T; Okuyama, T; Nakajima, T
1984-03-01
A simple method has been developed for the large scale purification of neuron-specific enolase [EC 4.2.1.11]. The method consists of ammonium sulfate fractionation of brain extract, and two subsequent column chromatography steps on DEAE Sephadex A-50. The chromatography was performed on a short (25 cm height) and thick (8.5 cm inside diameter) column unit that was specially devised for the large scale preparation. The purified enolase was crystallized in 0.05 M imidazole-HCl buffer containing 1.6 M ammonium sulfate (pH 6.39), with a yield of 0.9 g/kg of bovine brain tissue.
Development of germ-free plants and tissue culture
NASA Technical Reports Server (NTRS)
Venketeswaran, S.
1973-01-01
The botanical program is reported for experiments performed at the Lunar Receiving Laboratory. Papers prepared during this program are listed. The studies reported include: tissues cultured on various mediums, nutritional studies, preparation of plant cultures for Apollo 15, and pine tissue cultures.
A simple method for multiday imaging of slice cultures.
Seidl, Armin H; Rubel, Edwin W
2010-01-01
The organotypic slice culture (Stoppini et al. A simple method for organotypic cultures of nervous tissue. 1991;37:173-182) has become the method of choice to answer a variety of questions in neuroscience. For many experiments, however, it would be beneficial to image or manipulate a slice culture repeatedly, for example, over the course of many days. We prepared organotypic slice cultures of the auditory brainstem of P3 and P4 mice and kept them in vitro for up to 4 weeks. Single cells in the auditory brainstem were transfected with plasmids expressing fluorescent proteins by way of electroporation (Haas et al. Single-cell electroporation for gene transfer in vivo. 2001;29:583-591). The culture was then placed in a chamber perfused with oxygenated ACSF and the labeled cell imaged with an inverted wide-field microscope repeatedly for multiple days, recording several time-points per day, before returning the slice to the incubator. We describe a simple method to image a slice culture preparation during the course of multiple days and over many continuous hours, without noticeable damage to the tissue or photobleaching. Our method uses a simple, inexpensive custom-built insulator constructed around the microscope to maintain controlled temperature and uses a perfusion chamber as used for in vitro slice recordings. (c) 2009 Wiley-Liss, Inc.
METHOD OF USING AND MANUFACTURING PLASTIC EQUIVALENT TO ORGANIC MATERIALS
Shonka, F.R.; Rose, J.E.; Failla, G.
1961-10-24
Compositions of matter that have the radiation response of animal muscle tissue, bone, or air were prepared. These compositions are composed of specific proportions of three or more of the following constituents: polyethylene plastic, polyamide plastic, oil furnace black, silica, and calcium fluoride. (AEC)
Background: Ovaries consist of numerous follicles, oocytes, and granulosa cells in different stages of development. Many of these follicles will undergo an apoptotic process during the lifetime of the animal. By using proper tissue preparation methods, the events within the whole...
Comparison of tissue processing methods for microvascular visualization in axolotls.
Montoro, Rodrigo; Dickie, Renee
2017-01-01
The vascular system, the pipeline for oxygen and nutrient delivery to tissues, is essential for vertebrate development, growth, injury repair, and regeneration. With their capacity to regenerate entire appendages throughout their lifespan, axolotls are an unparalleled model for vertebrate regeneration, but they lack many of the molecular tools that facilitate vascular imaging in other animal models. The determination of vascular metrics requires high quality image data for the discrimination of vessels from background tissue. Quantification of the vasculature using perfused, cleared specimens is well-established in mammalian systems, but has not been widely employed in amphibians. The objective of this study was to optimize tissue preparation methods for the visualization of the microvascular network in axolotls, providing a basis for the quantification of regenerative angiogenesis. To accomplish this aim, we performed intracardiac perfusion of pigment-based contrast agents and evaluated aqueous and non-aqueous clearing techniques. The methods were verified by comparing the quality of the vascular images and the observable vascular density across treatment groups. Simple and inexpensive, these tissue processing techniques will be of use in studies assessing vascular growth and remodeling within the context of regeneration. Advantages of this method include: •Higher contrast of the vasculature within the 3D context of the surrounding tissue •Enhanced detection of microvasculature facilitating vascular quantification •Compatibility with other labeling techniques.
Kokkat, Theresa J.; McGarvey, Diane; Patel, Miral S.; Tieniber, Andrew D.; LiVolsi, Virginia A.; Baloch, Zubair W.
2013-01-01
Background: Methanol fixed and paraffin embedded (MFPE) cellblocks are an essential cytology preparation. However, MFPE cellblocks often contain limited material and their relatively small size has caused them to be overlooked in biomarker discovery. Advances in the field of molecular biotechnology have made it possible to extract proteins from formalin fixed and paraffin embedded (FFPE) tissue blocks. In contrast, there are no established methods for extracting proteins from MFPE cellblocks. We investigated commonly available CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate) buffer, as well as two commercially available Qiagen® kits and compared their effectiveness on MFPE tissue for protein yields. Materials and Methods: MFPE blocks were made by Cellient™ automated system using human tissue specimens from normal and malignant specimens collected in ThinPrep™ Vials. Protein was extracted from Cellient-methanol fixed and paraffin embedded blocks with CHAPS buffer method as well as FFPE and Mammalian Qiagen® kits. Results: Comparison of protein yields demonstrated the effectiveness of various protein extraction methods on MFPE cellblocks. Conclusion: In the current era of minimally invasive techniques to obtain minimal amount of tissue for diagnostic and prognostic purposes, the use of commercial and lab made buffer on low weight MFPE scrapings obtained by Cellient® processor opens new possibilities for protein biomarker research. PMID:24403950
Lansdown, Drew A; Riff, Andrew J; Meadows, Molly; Yanke, Adam B; Bach, Bernard R
2017-10-01
Allograft tissue is used in 22% to 42% of anterior cruciate ligament (ACL) reconstructions. Clinical outcomes have been inconsistent with allograft tissue, with some series reporting no differences in outcomes and others reporting increased risk of failure. There are numerous variations in processing and preparation that may influence the eventual performance of allograft tissue in ACL reconstruction. We sought to perform a systematic review to summarize the factors that affect the biomechanical properties of allograft tissue for use in ACL reconstruction. Many factors might impact the biomechanical properties of allograft tissue, and these should be understood when considering using allograft tissue or when reporting outcomes from allograft reconstruction. What factors affect the biomechanical properties of allograft tissue used for ACL reconstruction? We performed a systematic review to identify studies on factors that influence the biomechanical properties of allograft tissue through PubMed and SCOPUS databases. We included cadaveric and animal studies that reported on results of biomechanical testing, whereas studies on fixation, histologic evaluation, and clinical outcomes were excluded. There were 319 unique publications identified through the search with 48 identified as relevant to answering the study question. For each study, we recorded the type of tissue tested, parameters investigated, and the effects on biomechanical behavior, including load to failure and stiffness. Primary factors identified to influence allograft tissue properties were graft tissue type, sterilization methods (irradiation and chemical processing), graft preparation, donor parameters, and biologic adjuncts. Load to failure and graft stiffness varied across different tissue types, with nonlooped tibialis grafts exhibiting the lowest values. Studies on low-dose irradiation showed variable effects, whereas high-dose irradiation consistently produced decreased load to failure and stiffness values. Various chemical sterilization measures were also associated with negative effects on biomechanical properties. Prolonged freezing decreased load to failure, ultimate stress, and ultimate strain. Up to eight freeze-thaw cycles did not lead to differences in biomechanical properties of cadaveric grafts. Regional differences were noted in patellar tendon grafts, with the central third showing the highest load to failure and stiffness. Graft diameter strongly contributed to load-to-failure measurements. Age older than 40 years, and especially older than 65 years, negatively impacted biomechanical properties, whereas gender had minimal effect on the properties of allograft tissue. Biologic adjuncts show potential for improving in vivo properties of allograft tissue. Future clinical studies on allograft ACL reconstruction should investigate in vivo graft performance with standardized allograft processing and preparation methods that limit the negative effects on the biomechanical properties of tissue. Additionally, biologic adjuncts may improve the biomechanical properties of allograft tissue, although future preclinical and clinical studies are necessary to clarify the role of these treatments. Based on the findings of this systematic review that emphasize biomechanical properties of ACL allografts, surgeons should favor the use of central third patellar tendon or looped soft tissue grafts, maximize graft cross-sectional area, and favor grafts from donors younger than 40 years of age while avoiding grafts subjected to radiation doses > 20 kGy, chemical processing, or greater than eight freeze-thaw cycles.
NASA Astrophysics Data System (ADS)
Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad
2016-03-01
Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.
Appleton, P L; Quyn, A J; Swift, S; Näthke, I
2009-05-01
Visualizing overall tissue architecture in three dimensions is fundamental for validating and integrating biochemical, cell biological and visual data from less complex systems such as cultured cells. Here, we describe a method to generate high-resolution three-dimensional image data of intact mouse gut tissue. Regions of highest interest lie between 50 and 200 mum within this tissue. The quality and usefulness of three-dimensional image data of tissue with such depth is limited owing to problems associated with scattered light, photobleaching and spherical aberration. Furthermore, the highest-quality oil-immersion lenses are designed to work at a maximum distance of =10-15 mum into the sample, further compounding the ability to image at high-resolution deep within tissue. We show that manipulating the refractive index of the mounting media and decreasing sample opacity greatly improves image quality such that the limiting factor for a standard, inverted multi-photon microscope is determined by the working distance of the objective as opposed to detectable fluorescence. This method negates the need for mechanical sectioning of tissue and enables the routine generation of high-quality, quantitative image data that can significantly advance our understanding of tissue architecture and physiology.
Ju, Ping; Liu, Zhenzhen; Jiang, Yu; Zhao, Simin; Zhang, Lunhui; Zhang, Yuanyuan; Gu, Liqiang; Tang, Xing; Bi, Kaishun; Chen, Xiaohui
2015-07-01
LS-177 is a novel small-molecule kinase inhibitor employed to interrupt the c-Met signaling pathway. A rapid and sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for determination of LS-177 in rat plasma and tissues. The biosamples were extracted by liquid-liquid extraction with methyl tert-butyl ether and separated on a C18 column (50 × 4.6 mm, 2.6 µm) using a gradient elution mobile phase consisting of acetonitrile-0.1% formic acid water. Under the optimal conditions, the selectivity of the method was satisfactory with no endogenous interference. The intraday and interday precisions (relative standard deviation) were <10.5% and the accuracy (relative error) was from -12.5 to 12.5% at all quality control levels. Excellent recovery and negligible matrix effects were observed. Stability studies showed that LS-177 was stable during the preparation and analytical processes. The UPLC-MS/MS method was successfully applied to pharmacokinetic and tissue distribution studies. The results indicated that there was no significant drug accumulation after multiple-dose oral administration of LS-177. The tissue distribution study exhibited significant higher uptakes of LS-177 in stomach, intestine, lung and liver among all of the tissues. The results in pharmacokinetics and tissue distribution may provide a meaningful basis for clinical application. Copyright © 2014 John Wiley & Sons, Ltd.
Monoclonal antibodies to cyclodiene insecticides and method for detecting the same
Stanker, L.H.; Vanderlaan, M.; Watkins, B.E.
1994-08-02
Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples. 13 figs.
In vivo Degradation of Three-Dimensional Silk Fibroin Scaffolds
Wang, Yongzhong; Rudym, Darya D.; Walsh, Ashley; Abrahamsen, Lauren; Kim, Hyeon-Joo; Kim, Hyun Suk; Kirker-Head, Carl; Kaplan, David L.
2011-01-01
Three-dimensional porous scaffolds prepared from regenerated silk fibroin using either an all aqueous process or a process involving an organic solvent, hexafluoroisopropanol (HFIP) have shown promise in cell culture and tissue engineering applications. However, their biocompatibility and in vivo degradation has not been fully established. The present study was conducted to systematically investigate how processing method (aqueous vs. organic solvent) and processing variables (silk fibroin concentration and pore size) affect the short-term (up to 2 months) and long-term (up to 1 year) in vivo behavior of the protein scaffolds in both nude and Lewis rats. The samples were analyzed by histology for scaffold morphological changes and tissue ingrowth, and by real-time RT-PCR and immunohistochemistry for immune responses. Throughout the period of implantation, all scaffolds were well-tolerated by the host animals and immune responses to the implants were mild. Most scaffolds prepared from the all aqueous process degraded to completion between two and six months, while those prepared from organic solvent (hexafluoroisopropanol (HFIP)) process persisted beyond one year. Due to widespread cellular invasion throughout the scaffold, the degradation of aqueous-derived scaffolds appears to be more homogeneous than that of HFIP-derived scaffolds. In general and especially for the HFIP-derived scaffolds, a higher original silk fibroin concentration (e.g. 17%) and smaller pore size (e.g. 100–200 µm) resulted in lower levels of tissue ingrowth and slower degradation. These results demonstrate that the in vivo behavior of the three-dimensional silk fibroin scaffolds is related to the morphological and structural features that resulted from different scaffold preparation processes. The insights gained in this study can serve as a guide for processing scenarios to match desired morphological and structural features and degradation time with tissue-specific applications. PMID:18502501
Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809
Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.
Takemoto, Y; Negita, T; Ohnishi, K; Suzuki, M; Ito, A
1995-04-01
A simple method was devised for collecting eggs of Taenia taeniaeformis and T. saginata. All gravid segments, either fresh or frozen or 70% ethanol-fixed, were gently scraped using a pestle on a 150 mesh stainless steel sieve. Eggs and tissue debris were washed out all together with mouse tonicity phosphate buffered saline (MTPBS) through the 150 mesh sieve into a glass beaker. Egg suspension with a huge amount of tissue debris in MTPBS was centrifuged 5 min at 3000 r.p.m. (x 1600 g) and the pellet of eggs and tissue debris was resuspended with 1 vol. of MTPBS and 2 vol. of Percoll (Pharmacia) and centrifuged 60 min at 3000 r.p.m. More than 90% of eggs sedimented in the pellet. The supernatant covered with tissue debris was decanted, and the egg pellet was resuspended and centrifuged several times with MTPBS to remove Percoll. It is suggested that this simple method may prove useful for preparation of eggs of biohazardous taeniid cestodes, such as Taenia solium and Echinococcus spp.
NASA Astrophysics Data System (ADS)
Kachenko, Anthony G.; Siegele, Rainer; Bhatia, Naveen P.; Singh, Balwant; Ionescu, Mihail
2008-04-01
Hybanthus floribundus subsp. floribundus, a rare Australian Ni-hyperaccumulating shrub and Pityrogramma calomelanos var. austroamericana, an Australian naturalized As-hyperaccumulating fern are promising species for use in phytoremediation of contaminated sites. Micro-proton-induced X-ray emission (μ-PIXE) spectroscopy was used to map the elemental distribution of the accumulated metal(loid)s, Ca and K in leaf or pinnule tissues of the two plant species. Samples were prepared by two contrasting specimen preparation techniques: freeze-substitution in tetrahydrofuran (THF) and freeze-drying. The specimens were analysed to compare the suitability of each technique in preserving (i) the spatial elemental distribution and (ii) the tissue structure of the specimens. Further, the μ-PIXE results were compared with concentration of elements in the bulk tissue obtained by ICP-AES analysis. In H. floribundus subsp. floribundus, μ-PIXE analysis revealed Ni, Ca and K concentrations in freeze-dried leaf tissues were at par with bulk tissue concentrations. Elemental distribution maps illustrated that Ni was preferentially localised in the adaxial epidermal tissues (1% DW) and least concentration was found in spongy mesophyll tissues (0.53% DW). Conversely, elemental distribution maps of THF freeze-substituted tissues indicated significantly lower Ni, Ca and K concentrations than freeze-dried specimens and bulk tissue concentrations. Moreover, Ni concentrations were uniform across the whole specimen and no localisation was observed. In P. calomelanos var. austroamericana freeze-dried pinnule tissues, μ-PIXE revealed statistically similar As, Ca and K concentrations as compared to bulk tissue concentrations. Elemental distribution maps showed that As localisation was relatively uniform across the whole specimen. Once again, THF freeze-substituted tissues revealed a significant loss of As compared to freeze-dried specimens and the concentrations obtained by bulk tissue analysis. The results demonstrate that freeze-drying is a suitable sample preparation technique to study elemental distribution of ions in H. floribundus and P. calomelanos plant tissues using μ-PIXE spectroscopy. Furthermore, cellular structure was preserved in samples prepared using this technique.
Moncrieff, J
1989-11-24
Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.
Preparation of Amyloid Fibrils Seeded from Brain and Meninges.
Scherpelz, Kathryn P; Lu, Jun-Xia; Tycko, Robert; Meredith, Stephen C
2016-01-01
Seeding of amyloid fibrils into fresh solutions of the same peptide or protein in disaggregated form leads to the formation of replicate fibrils, with close structural similarity or identity to the original fibrillar seeds. Here we describe procedures for isolating fibrils composed mainly of β-amyloid (Aβ) from human brain and from leptomeninges, a source of cerebral blood vessels, for investigating Alzheimer's disease and cerebral amyloid angiopathy. We also describe methods for seeding isotopically labeled, disaggregated Aβ peptide solutions for study using solid-state NMR and other techniques. These methods should be applicable to other types of amyloid fibrils, to Aβ fibrils from mice or other species, tissues other than brain, and to some non-fibrillar aggregates. These procedures allow for the examination of authentic amyloid fibrils and other protein aggregates from biological tissues without the need for labeling the tissue.
Zhang, Li-Feng; Lu, Tao-Tao; Zhang, Shu-Qiu; Lin, Wen-Han; Li, Qing-Shan
2013-12-01
A sensitive and specific HPLC-APCI-MS/MS method was developed and validated for the quantification of furanodiene, a natural antitumor compound in rat plasma and tissues. W/O/W multiple emulsions of furanodiene, identified through microscope-observation and eosin staining method, were prepared with a two-step-procedure. Pharmacokinetics and tissue distribution were studied in rats after oral, intraperitoneal and intravenous injection with the dose of 5, 10 and 50 mg/kg, respectively. The assay achieved a good sensitivity and specificity for the determination of furanodiene in biological samples. The results showed that the concentration-time curves of furanodiene in rats after intravenous injection were fitted to a two-compartment model and the linear pharmacokinetic characteristic. The highest concentration in rat tissue was observed in the spleen, followed by heart, liver, lung, kidney, small intestine and brain. Comparing with the low concentration in plasma, furanodiene could be detected in various tissue samples after oral or intraperitoneal injection which indicated furanodiene had good and rapid tissue uptake. The results suggested that the wide tissue distribution of furanodiene could conduce to the therapeutic effects, but the short biological half-life limited its further application as an antitumor agent. The results are helpful for the structure modification of furanodiene as an antitumor candidate.
Platelet-rich preparations to improve healing. Part I: workable options for every size practice.
Davis, Vicki L; Abukabda, Alaeddin B; Radio, Nicholas M; Witt-Enderby, Paula A; Clafshenkel, William P; Cairone, J Vito; Rutkowski, James L
2014-08-01
Numerous studies have demonstrated that platelet-rich preparations applied to surgical sites, injuries, or wounds are a safe and effective way to promote soft tissue healing and bone growth. Various protocols have been developed for preparing platelet-rich preparations, with subtle but important differences between them. Unfortunately, only a minority of clinicians use platelet-rich preparations, such as platelet-rich plasma and platelet-rich fibrin, in their practice, possibly due to confusion about the different methods and their advantages and disadvantages. Therefore, the different types of preparations are described to help guide the selection of the best method for any size practice. Classic methods generally require large volumes of blood and can be expensive, complicated, and time-intensive. Simpler protocols have been developed recently, which require relatively inexpensive equipment and small blood volumes and, thus, may be more applicable for small clinical practices. Platelet-rich preparations accelerate healing at earlier time points to reduce discomfort and the potential for adverse outcomes, including infection, poor wound closure, and delays in forming strong bone for subsequent procedures (such as implants). However, platelet-rich preparations may also improve long-term outcomes in patients expected to have impaired healing, such as with lifestyle choices (eg, smoking), medications (eg, steroids), diseases (eg, diabetes, osteoporosis, atherosclerosis), and aging, by supplementing the deficient wound environment to restore proper healing. Therefore, both large and small clinical practices would benefit from utilizing platelet-rich preparations to enhance healing in their patients.
Lu, Xianbo; Chen, Jiping; Wang, Shuqiu; Zou, Lili; Tian, Yuzeng; Ni, Yuwen; Su, Fan
2012-09-01
A method for the preparation and certification of the reference material of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in mussel tissue is described. The mussel tissue from Dalian Bay was frozen-dried, comminuted, sieved, homogenized, packaged, and sterilized by 60Co radiation sterilization in turn. The certified values for 18 OCPs and 16 PCBs were determined by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using isotope dilution and internal standard quantitation techniques. The certified values were validated and given based on seven accredited laboratories, and these values are traceable to the SI (international system of units) through gravimetrically prepared standards of established purity and measurement intercomparisons. The certified values of PCBs and OCPs in mussel span 4 orders of magnitude with a relative uncertainty of about 10%. This material is a natural biological material with confirmed good homogeneity and stability, and it was approved as the grade "primary reference material" (GBW10069) in June 2012 in China. This reference material provided necessary quality control products for our country to implement the Stockholm Treaty on the monitoring of persistent organic pollutants (POPs). The material is intended to be used for the method validation and quality control in the determination of OCPs and PCBs in biota samples.
Wang, Huiyong; Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Weiming
2016-01-15
This study aims to provide a rapid, sensitive and precise UPLC-MS/MS method for target steroid quantitation in biological matrices. We developed and validated an UPLC-MS/MS method to simultaneously determine 16 steroids in plasma and tissue samples. Ionization sources of Electrospray Ionization (ESI) and Atmospheric Pressure Chemical Ionization (APCI) were compared in this study by testing their spectrometry performances at the same chromatographic conditions, and the ESI source was found up to five times more sensitive than the APCI. Different sample preparation techniques were investigated for an optimal extraction of steroids from the biological matrices. The developed method exhibited excellent linearity for all analytes with regression coefficients higher than 0.99 in broad concentration ranges. The limit of detection (LOD) was from 0.003 to 0.1ng/mL. The method was validated according to FDA guidance and applied to determine steroids in sea lamprey plasma and tissues (fat and testes) by the developed method. Copyright © 2015. Published by Elsevier B.V.
Humbert, P; Faivre, B; Véran, Y; Debure, C; Truchetet, F; Bécherel, P-A; Plantin, P; Kerihuel, J-C; Eming, SA; Dissemond, J; Weyandt, G; Kaspar, D; Smola, H; Zöllner, P
2014-01-01
Background Stringent control of proteolytic activity represents a major therapeutic approach for wound-bed preparation. Objectives We tested whether a protease-modulating polyacrylate- (PA-) containing hydrogel resulted in a more efficient wound-bed preparation of venous leg ulcers when compared to an amorphous hydrogel without known protease-modulating properties. Methods Patients were randomized to the polyacrylate-based hydrogel (n = 34) or to an amorphous hydrogel (n = 41). Wound beds were evaluated by three blinded experts using photographs taken on days 0, 7 and 14. Results After 14 days of treatment there was an absolute decrease in fibrin and necrotic tissue of 37.6 ± 29.9 percentage points in the PA-based hydrogel group and by 16.8 ± 23.0 percentage points in the amorphous hydrogel group. The absolute increase in the proportion of ulcer area covered by granulation tissue was 36.0 ± 27.4 percentage points in the PA-based hydrogel group and 14.5 ± 22.0 percentage points in the control group. The differences between the groups were significant (decrease in fibrin and necrotic tissue P = 0.004 and increase in granulation tissue P = 0.0005, respectively). Conclusion In particular, long-standing wounds profited from the treatment with the PA-based hydrogel. These data suggest that PA-based hydrogel dressings can stimulate normalization of the wound environment, particularly in hard-to-heal ulcers. PMID:24612304
Comparison of hard tissues that are useful for DNA analysis in forensic autopsy.
Kaneko, Yu; Ohira, Hiroshi; Tsuda, Yukio; Yamada, Yoshihiro
2015-11-01
Forensic analysis of DNA from hard tissues can be important when investigating a variety of cases resulting from mass disaster or criminal cases. This study was conducted to evaluate the most suitable tissues, method and sample size for processing of hard tissues prior to DNA isolation. We also evaluated the elapsed time after death in relation to the quantity of DNA extracted. Samples of hard tissues (37 teeth, 42 skull, 42 rib, and 39 nails) from 42 individuals aged between 50 and 83 years were used. The samples were taken from remains following forensic autopsy (from 2 days to 2 years after death). To evaluate the integrity of the nuclear DNA isolated, the percentage of allele calls for short tandem repeat profiles were compared between the hard tissues. DNA typing results indicated that until 1 month after death, any of the four hard tissue samples could be used as an alternative to teeth, allowing analysis of all of the loci. However, in terms of the sampling site, collection method and sample size adjustment, the rib appeared to be the best choice in view of the ease of specimen preparation. Our data suggest that the rib could be an alternative hard tissue sample for DNA analysis of human remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pucetaite, Milda; Velicka, Martynas; Urboniene, Vidita; Ceponkus, Justinas; Bandzeviciute, Rimante; Jankevicius, Feliksas; Zelvys, Arunas; Sablinskas, Valdas; Steiner, Gerald
2018-05-01
Herein, a technique to analyze air-dried kidney tissue impression smears by means of attenuated total reflection infrared (ATR-IR) spectroscopy is presented. Spectral tumor markers-absorption bands of glycogen-are identified in the ATR-IR spectra of the kidney tissue smear samples. Thin kidney tissue cryo-sections currently used for IR spectroscopic analysis lack such spectral markers as the sample preparation causes irreversible molecular changes in the tissue. In particular, freeze-thaw cycle results in degradation of the glycogen and reduction or complete dissolution of its content. Supervised spectral classification was applied to the recorded spectra of the smears and the test spectra were classified with a high accuracy of 92% for normal tissue and 94% for tumor tissue, respectively. For further development, we propose that combination of the method with optical fiber ATR probes could potentially be used for rapid real-time intra-operative tissue analysis without interfering with either the established protocols of pathological examination or the ordinary workflow of operating surgeon. Such approach could ensure easier transition of the method to clinical applications where it may complement the results of gold standard histopathology examination and aid in more precise resection of kidney tumors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guzmán-Larralde, Adriana J; Suaste-Dzul, Alba P; Gallou, Adrien; Peña-Carrillo, Kenzy I
2017-01-01
Because of the tiny size of microhymenoptera, successful morphological identification typically requires specific mounting protocols that require time, skills, and experience. Molecular taxonomic identification is an alternative, but many DNA extraction protocols call for maceration of the whole specimen, which is not compatible with preserving museum vouchers. Thus, non-destructive DNA isolation methods are attractive alternatives for obtaining DNA without damaging sample individuals. However, their performance needs to be assessed in microhymenopterans. We evaluated six non-destructive methods: (A) DNeasy® Blood & Tissue Kit; (B) DNeasy® Blood & Tissue Kit, modified; (C) Protocol with CaCl 2 buffer; (D) Protocol with CaCl 2 buffer, modified; (E) HotSHOT; and (F) Direct PCR. The performance of each DNA extraction method was tested across several microhymenopteran species by attempting to amplify the mitochondrial gene COI from insect specimens of varying ages: 1 day, 4 months, 3 years, 12 years, and 23 years. Methods B and D allowed COI amplification in all insects, while methods A, C, and E were successful in DNA amplification from insects up to 12 years old. Method F, the fastest, was useful in insects up to 4 months old. Finally, we adapted permanent slide preparation in Canada balsam for every technique. The results reported allow for combining morphological and molecular methodologies for taxonomic studies.
Cotney, Justin L; Noonan, James P
2015-02-02
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) is a powerful method used to identify genome-wide binding patterns of transcription factors and distribution of various histone modifications associated with different chromatin states. In most published studies, ChIP-Seq has been performed on cultured cells grown under controlled conditions, allowing generation of large amounts of material in a homogeneous biological state. Although such studies have provided great insight into the dynamic landscapes of animal genomes, they do not allow the examination of transcription factor binding and chromatin states in adult tissues, developing embryonic structures, or tumors. Such knowledge is critical to understanding the information required to create and maintain a complex biological tissue and to identify noncoding regions of the genome directly involved in tissues affected by complex diseases such as autism. Studying these tissue types with ChIP-Seq can be challenging due to the limited availability of tissues and the lack of complex biological states able to be achieved in culture. These inherent differences require alterations of standard cross-linking and chromatin extraction typically used in cell culture. Here we describe a general approach for using small amounts of animal tissue to perform ChIP-Seq directed at histone modifications and transcription factors. Tissue is homogenized before treatment with formaldehyde to ensure proper cross-linking, and a two-step nuclear isolation is performed to increase extraction of soluble chromatin. Small amounts of soluble chromatin are then used for immunoprecipitation (IP) and prepared for multiplexed high-throughput sequencing. © 2015 Cold Spring Harbor Laboratory Press.
A guide to Ussing chamber studies of mouse intestine
Clarke, Lane L.
2009-01-01
The Ussing chamber provides a physiological system to measure the transport of ions, nutrients, and drugs across various epithelial tissues. One of the most studied epithelia is the intestine, which has provided several landmark discoveries regarding the mechanisms of ion transport processes. Adaptation of this method to mouse intestine adds the dimension of investigating genetic loss or gain of function as a means to identify proteins or processes affecting transepithelial transport. In this review, the principles underlying the use of Ussing chambers are outlined including limitations and advantages of the technique. With an emphasis on mouse intestinal preparations, the review covers chamber design, commercial equipment sources, tissue preparation, step-by-step instruction for operation, troubleshooting, and examples of interpretation difficulties. Specialized uses of the Ussing chamber such as the pH stat technique to measure transepithelial bicarbonate secretion and isotopic flux methods to measure net secretion or absorption of substrates are discussed in detail, and examples are given for the adaptation of Ussing chamber principles to other measurement systems. The purpose of the review is to provide a practical guide for investigators who are new to the Ussing chamber method. PMID:19342508
Comparison of different skin preservation methods with gamma irradiation.
Guerrero, Linda; Camacho, Bernardo
2017-06-01
Allografts are in constant demand, not only for burn victims, but also for all open wounds as "biological dressings". Tissue quality and security are two of the major concerns of Tissue Banks. There are limited studies published. There has been extensive discussion on the subject of preservation methods for cadaver skin. Most literature available comes from clinical reports. In this research, the authors compared 85% glycerolized non irradiated skin allografts with three glycerolized irradiated skin allografts (using different glycerol concentrations 50%, 70% and 85%). The evaluation of allograft quality was done by measuring physical and biological properties of such prepared human tissue grafts. In the histological structure evaluation changes were minimal and did not alter the skin structure. The clinical function of their behavior as temporal dressings was tested. They proved to have similar capabilities for improving granulating tissue and contributing to wound beds closure (Hickerson et al. (1994) [1]). Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
Intracerebral Injections and Ultrastructural Analysis of High-Pressure Frozen Brain Tissue.
Weil, Marie-Theres; Ruhwedel, Torben; Möbius, Wiebke; Simons, Mikael
2017-01-03
Intracerebral injections are an invasive method to bypass the blood brain barrier and are widely used to study molecular and cellular mechanisms of the central nervous system. The administered substances are injected directly at the site of interest, executing their effect locally. By combining injections in the rat brain with state-of-the-art electron microscopy, subtle changes in ultrastructure of the nervous tissue can be detected prior to overt damage or disease. The protocol presented here involves stereotactic injection into the corpus callosum of Lewis rats and the cryopreparation of freshly dissected tissue for electron microscopy. The localization of the injection site in tissue sections during the sample preparation for transmission electron microscopy is explained and possible artifacts of the method are indicated. With the help of this powerful combination of injections and electron microscopy, subtle effects of the applied substances on the biology of neural cells can be identified and monitored over time. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat
2013-01-01
Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155
Takikawa, Satoshi; Bauer, Thomas W; Kambic, Helen; Togawa, Daisuke
2003-04-01
In the United States, demineralized bone matrix (DBM) is considered a transplantable tissue and therefore is regulated primarily by the American Association of Tissue Banks. Even though DBM is not subjected to the same regulations relative to performance claims as medical devices are, one would expect different processing methods might yield DBM preparations of different osteoinductive potential. The purpose of this study was to use an established athymic rat model to compare the osteoinductive properties of two commercially available human DBMs prepared using different methods but having essentially identical product claims. Sixteen female athymic rats were used to test equivalent volumes of two lots each of Grafton Putty (Osteotech, Inc., Eatontown, NJ), Osteofil (Regeneration Technologies, Inc., Alachua, FL), and rat DBM. At 28 days after implantation, qualitative and semiquantitative microscopy showed no significant differences in bone formation between the two lots from each source, but rat DBM produced significantly more bone than Grafton, which produced significantly more bone than Osteofil. Our results suggest that methods of graft processing may represent a greater source of variability than do differences among individual donors. Whether these differences relate to methods of demineralization, carrier, dose of DBM per volume, or to some other factor remains to be determined. Copyright 2003 Wiley Periodicals, Inc.
Li, Yanyan; Zhang, Tao; Li, Xiaoqin; Zou, Peng; Schwartz, Steven J.; Sun, Duxin
2013-01-01
Scope Sulforaphane is a natural isothiocyanate in broccoli sprouts with cancer chemopreventive activity. This study is aimed to to use different methods to develop broccoli sprout preparations to compare their ability to deliver sulforaphane to the mice and to evaluate the kinetics and biodistribution of sulforaphane. Methods and Results The sulforaphane-enriched sprout preparation generated by two-step procedure (quick-steaming followed by myrosinase treatment) contained the highest level of sulforaphane, which was 11 and 5 times higher than the freeze-dried fresh broccoli sprouts and the quick-steamed, freeze-dried broccoli sprouts, respectively. After oral administration of 2.5 mg/g body weight of the broccoli sprout preparations, sulforaphane was quickly absorbed and distributed throughout the tissues. The sulforaphane-rich preparation resulted in the highest exposure, with peak plasma sulforaphane concentration of 337 ng/ml, which is 6.0 times and 2.6 times higher compared to the other two preparations. A whole body physiologically-based pharmacokinetic model (developed with ADAPT 5 software) suggests that distribution of sulforaphane is perfusion-limited in all organs. Conclusion This study provides a broccoli sprout preparation that can serve as a good source of sulforaphane, and the model can be utilized to guide the dose design for the use of broccoli sprout preparation in chemoprevention. PMID:23929742
Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering
NASA Astrophysics Data System (ADS)
Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep
2017-08-01
Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.
A method to screen and evaluate tissue adhesives for joint repair applications
2012-01-01
Background Tissue adhesives are useful means for various medical procedures. Since varying requirements cause that a single adhesive cannot meet all needs, bond strength testing remains one of the key applications used to screen for new products and study the influence of experimental variables. This study was conducted to develop an easy to use method to screen and evaluate tissue adhesives for tissue engineering applications. Method Tissue grips were designed to facilitate the reproducible production of substrate tissue and adhesive strength measurements in universal testing machines. Porcine femoral condyles were used to generate osteochondral test tissue cylinders (substrates) of different shapes. Viability of substrates was tested using PI/FDA staining. Self-bonding properties were determined to examine reusability of substrates (n = 3). Serial measurements (n = 5) in different operation modes (OM) were performed to analyze the bonding strength of tissue adhesives in bone (OM-1) and cartilage tissue either in isolation (OM-2) or under specific requirements in joint repair such as filling cartilage defects with clinical applied fibrin/PLGA-cell-transplants (OM-3) or tissues (OM-4). The efficiency of the method was determined on the basis of adhesive properties of fibrin glue for different assembly times (30 s, 60 s). Seven randomly generated collagen formulations were analyzed to examine the potential of method to identify new tissue adhesives. Results Viability analysis of test tissue cylinders revealed vital cells (>80%) in cartilage components even 48 h post preparation. Reuse (n = 10) of test substrate did not significantly change adhesive characteristics. Adhesive strength of fibrin varied in different test settings (OM-1: 7.1 kPa, OM-2: 2.6 kPa, OM-3: 32.7 kPa, OM-4: 30.1 kPa) and was increasing with assembly time on average (2.4-fold). The screening of the different collagen formulations revealed a substance with significant higher adhesive strength on cartilage (14.8 kPa) and bone tissue (11.8 kPa) compared to fibrin and also considerable adhesive properties when filling defects with cartilage tissue (23.2 kPa). Conclusion The method confirmed adhesive properties of fibrin and demonstrated the dependence of adhesive properties and applied settings. Furthermore the method was suitable to screen for potential adhesives and to identify a promising candidate for cartilage and bone applications. The method can offer simple, replicable and efficient evaluation of adhesive properties in ex vivo specimens and may be a useful supplement to existing methods in clinical relevant settings. PMID:22984926
Gingival Retraction Methods for Fabrication of Fixed Partial Denture: Literature Review
S, Safari; Ma, Vossoghi Sheshkalani; Mi, Vossoghi Sheshkalani; F, Hoseini Ghavam; M, Hamedi
2016-01-01
Fixed dental prosthesis success requires appropriate impression taking of the prepared finish line. This is critical in either tooth supported fixed prosthesis (crown and bridge) or implant supported fixed prosthesis (solid abutment). If the prepared finish line is adjacent to the gingival sulcus, gingival retraction techniques should be used to decrease the marginal discrepancy among the restoration and the prepared abutment. Accurate marginal positioning of the restoration in the prepared finish line of the abutment is required for therapeutic, preventive and aesthetic purposes. In this article, conventional and modern methods of gingival retraction in the fixed tooth supported prosthesis and fixed implant supported prosthesis are expressed. PubMed and Google Scholar databases were searched manually for studies on gingival tissue managements prior to impression making in fixed dental prosthesis since 1975. Conclusions were extracted and summarized. Keywords were impression making, gingival retraction, cordless retraction, and implant. Gingival retraction techniques can be classified as mechanical, chemical or surgical. In this article, different gingival management techniques are discussed. PMID:28959744
Gingival Retraction Methods for Fabrication of Fixed Partial Denture: Literature Review.
S, Safari; Ma, Vossoghi Sheshkalani; Mi, Vossoghi Sheshkalani; F, Hoseini Ghavam; M, Hamedi
2016-06-01
Fixed dental prosthesis success requires appropriate impression taking of the prepared finish line. This is critical in either tooth supported fixed prosthesis (crown and bridge) or implant supported fixed prosthesis (solid abutment). If the prepared finish line is adjacent to the gingival sulcus, gingival retraction techniques should be used to decrease the marginal discrepancy among the restoration and the prepared abutment. Accurate marginal positioning of the restoration in the prepared finish line of the abutment is required for therapeutic, preventive and aesthetic purposes. In this article, conventional and modern methods of gingival retraction in the fixed tooth supported prosthesis and fixed implant supported prosthesis are expressed. PubMed and Google Scholar databases were searched manually for studies on gingival tissue managements prior to impression making in fixed dental prosthesis since 1975. Conclusions were extracted and summarized. Keywords were impression making, gingival retraction, cordless retraction, and implant. Gingival retraction techniques can be classified as mechanical, chemical or surgical. In this article, different gingival management techniques are discussed.
Osteochondral Repair Using Porous Three-dimensional Nanocomposite Scaffolds in a Rabbit Model
ŻYLIŃSKA, BEATA; STODOLAK-ZYCH, EWA; SOBCZYŃSKA-RAK, ALEKSANDRA; SZPONDER, TOMASZ; SILMANOWICZ, PIOTR; ŁAŃCUT, MIROSŁAW; JAROSZ, ŁUKASZ; RÓŻAŃSKI, PAWEŁ; POLKOWSKA, IZABELA
2017-01-01
Aim: To evaluate the utility of a novel nanocomposite biomaterial consisting of poly-L/D-lactide, and hydroxyapatite bioceramics, enriched with sodium alginate in articular cartilage defect treatment. Materials and Methods: The biomaterial was prepared using the method of solvent casting and particle leaching. The study was conducted on 20 New Zealand White rabbits. Experimental osteochondral defects were created in the femoral trochlear grooves and filled with biomaterials. In control groups, the defects were left to spontaneously heal. The quality of newly-formed tissue was evaluated on the basis of macroscopic and histological assessment. Additionally the level of osteogenic and cartilage degradation markers were measured. Results: The majority of the defects from the treatment group were covered with tissue similar in structure and colour to healthy cartilage, whereas in the control group, tissue was uneven, and not integrated into the surrounding cartilage. Conclusion: The results obtained validate the choice of biomaterial used in this study as well as the method of its application. PMID:28882956
Kriegsmann, Jörg; Kriegsmann, Mark; Casadonte, Rita
2015-03-01
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.
Improved resolution by mounting of tissue sections for laser microdissection.
van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R
2003-08-01
Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.
Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D
2016-01-01
Purpose To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. Methods 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. Results 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Conclusion Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. PMID:27543290
Dental impression technique using optoelectronic devices
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Barua, Souman; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Gabor, Alin Gabriel; Zaharia, Cristian; Bradu, Adrian; Podoleanu, Adrian G.
2018-03-01
INTRODUCTION: The use of Optical Coherence Tomography (OCT) as a non-invasive and high precision quantitative information providing tool has been well established by researches within the last decade. The marginal discrepancy values can be scrutinized in optical biopsy made in three dimensional (3D) micro millimetre scale and reveal detailed qualitative and quantitative information of soft and hard tissues. OCT-based high resolution 3D images can provide a significant impact on finding recurrent caries, restorative failure, analysing the precision of crown preparation, and prosthetic elements marginal adaptation error with the gingiva and dental hard tissues. During the CAD/CAM process of prosthodontic restorations, the circumvent of any error is important for the practitioner and the technician to reduce waste of time and material. Additionally, OCT images help to achieve a new or semi-skilled practitioner to analyse their crown preparation works and help to develop their skills faster than in a conventional way. The aim of this study is to highlight the advantages of OCT in high precision prosthodontic restorations. MATERIALS AND METHODS: 25 preparations of frontal and lateral teeth were performed for 7 different patients. The impressions of the prosthetic fields were obtained both using a conventional optoelectronic system (Apolo Di, Syrona) and a Spectral Domain using OCT (Dental prototype, working at 860 nm). For the conventional impression technique the preparation margins were been prelevated by gingival impregnated cords. No specific treatments were performed by the OCT impression technique. RESULTS: The scanning performed by conventional optoelectronic system proved to be quick and accurate in terms of impression technology. The results were represented by 3D virtual models obtained after the scanning procedure was completed. In order to obtain a good optical impression a gingival retraction cord was inserted between the prepared tooth and the gingival tissue for a better elevation of the tooth cervical margin preparation. Spectral OCT was enforced in order to observe the quality but also the advantages coming from this technology. No special preparation was performed for this operation. CONCLUSION: Considering these aspects, OCT could be used as a valuable tool for dental impression technology, being non-invasive but also non-destructive on the marginal gingival tissue, in comparison with conventional optoelectronic technology where the gingival retraction cord is still mandatory.
Signs of antimetastatic activity of palladium complexes of methylenediphosphonic acid in IR spectra
NASA Astrophysics Data System (ADS)
Tolstorozhev, G. B.; Skornyakov, I. V.; Pekhnio, V. I.; Kozachkova, A. N.; Sharykina, N. I.
2012-07-01
We have used Fourier transform IR spectroscopy methods to study normal mouse lung tissue and also after subcutaneous transplantation of a B-16 melanoma tumor in the tissue. We also studied tissues with B-16 melanoma after they were treated with coordination compounds based on palladium complexes of methylenediphosphonic acid. The IR spectra of the lung tissues with metastases in the region of the C = O stretching vibrations are different from the IR spectra of normal tissue. We identified spectroscopic signs of the presence of metastases in the lung. We show that when a cancerous tumor is treated with a preparation of palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lung are missing. After treatment with the optimal dose of this drug, the IR spectrum of the lung tissue in which multiple metastases were present before treatment corresponds to the spectrum of normal tissue. We have determined the efficacy of the antitumor activity of coordination compounds based on palladium complexes of methylenediphosphonic acid.
A new semiquantitative method for evaluation of metastasis progression.
Volarevic, A; Ljujic, B; Volarevic, V; Milovanovic, M; Kanjevac, T; Lukic, A; Arsenijevic, N
2012-01-01
Although recent technical advancements are directed toward developing novel assays and methods for detection of micro and macro metastasis, there are still no reports of reliable, simple to use imaging software that could be used for the detection and quantification of metastasis in tissue sections. We herein report a new semiquantitative method for evaluation of metastasis progression in a well established 4T1 orthotopic mouse model of breast cancer metastasis. The new semiquantitative method presented here was implemented by using the Autodesk AutoCAD 2012 program, a computer-aided design program used primarily for preparing technical drawings in 2 dimensions. By using the Autodesk AutoCAD 2012 software- aided graphical evaluation we managed to detect each metastatic lesion and we precisely calculated the average percentage of lung and liver tissue parenchyma with metastasis in 4T1 tumor-bearing mice. The data were highly specific and relevant to descriptive histological analysis, confirming reliability and accuracy of the AutoCAD 2012 software as new method for quantification of metastatic lesions. The new semiquantitative method using AutoCAD 2012 software provides a novel approach for the estimation of metastatic progression in histological tissue sections.
Elloumi-Hannachi, I; Yamato, M; Okano, T
2010-01-01
Cell sheet technology (CST) is based on the use of thermoresponsive polymers, poly(N-isopropylacrylamide) (PIPAAm). The surface of PIPAAms is formulated in such a way as to make its typical thickness <100 nm. In this review, we first focus on how the methods of PIPAAm-grafted surface preparations and functionalization are important to be able to harvest a functional cell sheet, to be further transplanted. Then, we present aspects of tissue mimics and three-dimensional reconstruction of a tissue in vitro. Finally, we give an overview of clinical applications and clinically relevant animal experimentations of the technology, such as cardiomyopathy, visual acuity, periodonty, oesophageal ulcerations and type 1 diabetes.
A novel semi-quantitative method for measuring tissue bleeding.
Vukcevic, G; Volarevic, V; Raicevic, S; Tanaskovic, I; Milicic, B; Vulovic, T; Arsenijevic, S
2014-03-01
In this study, we describe a new semi-quantitative method for measuring the extent of bleeding in pathohistological tissue samples. To test our novel method, we recruited 120 female patients in their first trimester of pregnancy and divided them into three groups of 40. Group I was the control group, in which no dilation was applied. Group II was an experimental group, in which dilation was performed using classical mechanical dilators. Group III was also an experimental group, in which dilation was performed using a hydraulic dilator. Tissue samples were taken from the patients' cervical canals using a Novak's probe via energetic single-step curettage prior to any dilation in Group I and after dilation in Groups II and III. After the tissue samples were prepared, light microscopy was used to obtain microphotographs at 100x magnification. The surfaces affected by bleeding were measured in the microphotographs using the Autodesk AutoCAD 2009 program and its "polylines" function. The lines were used to mark the area around the entire sample (marked A) and to create "polyline" areas around each bleeding area on the sample (marked B). The percentage of the total area affected by bleeding was calculated using the formula: N = Bt x 100 / At where N is the percentage (%) of the tissue sample surface affected by bleeding, At (A total) is the sum of the surfaces of all of the tissue samples and Bt (B total) is the sum of all the surfaces affected by bleeding in all of the tissue samples. This novel semi-quantitative method utilizes the Autodesk AutoCAD 2009 program, which is simple to use and widely available, thereby offering a new, objective and precise approach to estimate the extent of bleeding in tissue samples.
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Loshchenov, Victor B.; Volkov, Vladimir V.; Linkov, Kirill G.; Goryainov, Sergey A.; Potapov, Alexander A.
2014-05-01
The method of intraoperative analysis of tumor markers such as structural changes, concentrations of 5- ALA induced protoporphyrin IX and hemoglobin in the area of tissue resection was developed. A device for performing this method is a neurosurgical aspiration cannulae coupled with the fiber optic probe. The configuration of fibers at the end of cannulae was developed according to the results of numerical modeling of light distribution in biological tissues. The optimal distance between the illuminating and receiving fiber was found for biologically relevant interval of optical properties. On this particular distance the detected diffuse reflectance depends on scattering coefficient almost linearly. Array of optical phantoms containing hemoglobin, protoporphyrin IX and fat emulsion (as scattering media) in various concentrations was prepared to verify the method. The recovery of hemoglobin and protoporphyrin IX concentrations in the scattering media with an error less than 10% has been demonstrated. The fat emulsion concentration estimation accuracy was less than 12%. The first clinical test was carried out during glioblastoma multiforme resection in Burdenko Neurosurgery Institute and confirmed that sensitivity of this method is enough to detect investigated tumor markers in vivo. This method will allow intraoperative analysis of the structural and metabolical tumor markers directly in the zone of destruction of tumor tissue, thereby increasing the degree of radical removal and preservation of healthy tissue.
Roszkowska, Anna; Tascon, Marcos; Bojko, Barbara; Goryński, Krzysztof; Dos Santos, Pedro Reck; Cypel, Marcelo; Pawliszyn, Janusz
2018-06-01
The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g -1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin. Copyright © 2018 Elsevier B.V. All rights reserved.
Karbasi, Saeed; Khorasani, Saied Nouri; Ebrahimi, Somayeh; Khalili, Shahla; Fekrat, Farnoosh; Sadeghi, Davoud
2016-01-01
Poly (hydroxy butyrate) (PHB) is a biodegradable and biocompatible polymer with good mechanical properties. This polymer could be a promising material for scaffolds if some features improve. In the present work, new PHB/chitosan blend scaffolds were prepared as a three-dimensional substrate in cartilage tissue engineering. Chitosan in different weight percent was added to PHB and solved in trifluoroacetic acid. Statistical Taguchi method was employed in the design of experiments. The Fourier-transform infrared spectroscopy test revealed that the crystallization of PHB in these blends is suppressed with increasing the amount of chitosan. Scanning electron microscopy images showed a thin and rough top layer with a nodular structure, supported with a porous sub-layer in the surface of the scaffolds. In vitro degradation rate of the scaffolds was higher than pure PHB scaffolds. Maximum degradation rate has been seen for the scaffold with 90% wt. NaCl and 40% wt. chitosan. The obtained results suggest that these newly developed PHB/chitosan blend scaffolds may serve as a three-dimensional substrate in cartilage tissue engineering.
308-nm excimer laser in endodontics
NASA Astrophysics Data System (ADS)
Liesenhoff, Tim
1992-06-01
Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.
Preparation of hydroxyapatite/poly(lactic acid) hybrid microparticles for local drug delivery
NASA Astrophysics Data System (ADS)
Loca, D.; Locs, J.; Berzina-Cimdina, L.
2013-12-01
Calcium phosphate (CaP) bioceramic is well known as bioactive and biocompatible material in bone tissue regeneration applications. Apatitic CaP, especially nano sized hydroxyapatite (NHAp), is more similar to the natural apatite presented in the bone tissue than CaP bioceramics. In the current research NHAp was modified using biodegradable polymer - poly(lactic acid) (PLA) to develop composites providing bone regeneration and local drug delivery. NHAp/PLA microcapsules were prepared using solid-in-water-in-oil-in-water (s/w1/o/w2) encapsulation technology. The impact of primary and secondary emulsion stability on the emulsion droplet and microparticle properties was evaluated. The stability of final emulsion can be increased by varying the process parameters. Stable s/w1/o/w2 emulsion using 3ml of NHAp suspension, not less than 100ml of 4% PVA water solution and 10ml of 10% PLA solution in dichloromethane can be obtained. S/w1/o/w2 microencapuslation method can be effectively used for the preparation of multi-domain microcapsules achieving high NHAp encapsulation efficacy (93%).
Preparation and characterization of bio-composite PEEK/nHA
NASA Astrophysics Data System (ADS)
Jin, Y. S.; Bian, C. C.; Zhang, Z. Q.; Zhao, Y.; Yang, L.
2017-01-01
PEEK/nHA composite material, with excellent mechanical property as polyetheretherketone (PEEK) and biological activity as hydroxyapatite (HA), has attracted wide attention of medical experts and materials science experts. The addition of hydroxyapatite was the decisive factor for biological activity in PEEK/nHA composite. In this paper, acicular nanohydroxyapatite was prepared by chemical precipitation method with Ca(NO3)2, (NH4)2HPO4 as raw material; PEEK/nHA composite was prepared by solution blending and vacuum sintering method. The composite was characterized with FT-IR, XRD, DSC, TG and mechanical property test. Results showed that the composite has good thermal stability and compressive property when the mass ratio of PEEK to nHA is 10:3; and high nHA content can improve the biological activity of the composite, which can meet the basic requirements for bone tissue engineering scaffold.
Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M
2008-01-01
A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780
Kesler, G; Koren, R; Kesler, A; Hay, N; Gal, R
1998-10-01
Until now, no suitable delivery fiber has existed for CO2 laser endodontic radiation in the apical region, where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we have designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal and thus favorably increasing the thermal effects. A CO2 laser microprobe coupled onto a special hand piece was attached to the delivery fiber of a Sharplan 15-F CO2 laser. The study was conducted on 30 vital maxillary or mandibulary, central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees C. Ten teeth represented the control group, in which only root canal preparation was performed in the conventional method. Histological examination of the laser-treated teeth showed coagulation necrosis and vacuolization of the remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal in all cases treated with 15-F CO2 laser. Gram stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, with no thermal damage to the surrounding tissue. The combination of classical root canal preparation with CO2 laser irradiation using this special microprobe before closing the canal can drastically change the quality of root canal fillings.
Radford, J E; White, R G
2001-01-01
Plasmodesmata are often characterised by their size exclusion limit (SEL), which is the molecular weight of the largest dye, introduced by microinjection, that will move from cell to cell. In this study, we investigated whether commonly used techniques for isolation and manipulation of tissues, and microinjection of fluorescent dyes, affected the SEL, and whether any such effects could be ameliorated by inhibiting callose deposition. We examined young root epidermal cells of Arabidopsis thaliana and staminal hair cells of Tradescantia virginiana, two tissues often used in experiments on symplastic transport. Transport in root tips dissected from the main plant body and in stamen hairs removed from the base of the stamen filament was compared with transport in undissected roots and stamen hairs attached to the base of the filament, respectively. Tissues were microinjected with fluorescent dyes (457 Da to > 3 kDa) with or without prior incubation in the callose deposition inhibitors 2-deoxy-D-glucose or aniline blue fluorochrome. In both tissues, dissection reduced the SEL, which was largely prevented by prior incubation in 2-deoxy-D-glucose but not by incubation in aniline blue fluorochrome. Thus, standard methods for tissue preparation can cause sufficient callose deposition to reduce cell-to-cell transport, and this needs to be considered in studies employing microinjection. Introduction of the dyes by pressure injection rather than iontophoresis decreased the SEL in A. thaliana but increased it in T. virginiana, showing that these two injection techniques do not necessarily give identical results and that plasmodesmata in different tissues may respond differently to similar experimental procedures.
Umoh, J. U.; Blenden, D. C.
1981-01-01
Formalin-fixed central nervous system tissue from clinically rabid animals was treated with 0.25% trypsin and tested for the presence of rabies virus antigen by direct immunofluorescent (IF) staining. The results were comparable with those obtained from direct IF staining of acetone-fixed standard smears or fresh frozen-cut sections. Experiments were conducted using coded brain specimens (classified as IF-negative, weakly positive, or strongly positive) and showed a specificity of 100% for sections and 92% for smears; the latter figure was subsequently improved by modifying the preparation technique. The specificity of the technique was checked by standard virus neutralization of the conjugate, and by known antibody neutralization of the virus antigen in the specimens. The optimal duration for the trypsin digestion was found to be a minimum of 60 minutes at 37 °C or 120 minutes at 4 °C. The tissues could be held in buffered formalin for between 3 days and 7 weeks with no apparent difference in the results. Satisfactory concentrations of formalin were 0.125% or 0.25%. Trypsin was found to have no effect on non-formalinized tissues, with the exception that softening occurred making tissues harder to cut and process. The results suggest that trypsinization of formalin-fixed tissue is a valid procedure for the preparation of tissues for IF examination, which would be useful in cases where the current standard techniques cannot be used. However, further evaluation of the method is still required. ImagesFig. 3Fig. 1Fig. 2 PMID:6172212
The model of drugs distribution dynamics in biological tissue
NASA Astrophysics Data System (ADS)
Ginevskij, D. A.; Izhevskij, P. V.; Sheino, I. N.
2017-09-01
The dose distribution by Neutron Capture Therapy follows the distribution of 10B in the tissue. The modern models of pharmacokinetics of drugs describe the processes occurring in conditioned "chambers" (blood-organ-tumor), but fail to describe the spatial distribution of the drug in the tumor and in normal tissue. The mathematical model of the spatial distribution dynamics of drugs in the tissue, depending on the concentration of the drug in the blood, was developed. The modeling method is the representation of the biological structure in the form of a randomly inhomogeneous medium in which the 10B distribution occurs. The parameters of the model, which cannot be determined rigorously in the experiment, are taken as the quantities subject to the laws of the unconnected random processes. The estimates of 10B distribution preparations in the tumor and healthy tissue, inside/outside the cells, are obtained.
NASA Astrophysics Data System (ADS)
Zaitsev, V. Y.; Matveyev, A. L.; Matveev, L. A.; Gelikonov, G. V.; Omelchenko, A. I.; Shabanov, D. V.; Sovetsky, A. A.; Baum, O. I.; Vitkin, A.; Sobol, E. N.
2018-02-01
Non-surgical thermo-mechanical reshaping of avascular collagenous tissues (cartilages and cornea) using moderate heating by IR-laser irradiation is an emerging technology that can find important applications in visioncorrection problems and preparation of cartilaginous implants in otolaryngology. To estimate both transient interframe strains and cumulative resultant strains produced by the laser irradiation of the tissue we use and improved version of strain mapping developed in our previous work related to compressional phase-sensitive optical coherence tomography. To reveal microstructural changes in the tissue regions where irradiation-produced strains do not disappear after temperature equilibration, we apply compressional optical coherence elastography in order to visualize the resultant variations in the tissue stiffness. The so-found regions of the stiffness reduction are attributed to formation of microscopic pores, existence of which agree with independent data obtained using methods of high-resolution microscopy.
Kelliher, Clare; Engler, Christoph; Speck, Caroline; Ward, Don; Farazdaghi, Sameera; Jun, Albert S
2009-10-01
The purpose of this study was to assess eye bank-prepared corneal tissue with regards to the accuracy of postcut tissue thickness, endothelial cell loss, and rate of successful processing. Details of all 913 corneal tissues processed with an automated microkeratome for use in posterior lamellar transplantation, over a 1-year period, were obtained from a large eye bank. The number and success rate of all attempted cutting procedures were analyzed. The thickness of the corneal button obtained after cutting was compared with the graft thickness requested by the operating surgeon. Changes in endothelial cell density (ECD) during tissue processing were evaluated. The rate of successful tissue preparation increased over the time period examined, from 95% in the first quarter to 99.5% in the fourth quarter. Graft material was frequently slightly thicker than requested by the operating surgeon with 28.3% of tissues cut thicker than requested. Postcut ECD over the entire period increased by an average of 4.7% and was closely related to the starting ECD. There was a very high rate of successful tissue preparation (98.5%), and early failed attempts at tissue cutting were likely the result of the initial learning curve of the involved technicians. Practical considerations resulted in tissue being cut marginally thicker than requested; this is an issue about which the operating surgeon should be aware, because it may possibly influence tissue handling. The quality of the obtained material, as measured by ECD, was excellent, although the calculated ECD may be prone to measurement artifact.
Bouschen, Werner; Schulz, Oliver; Eikel, Daniel; Spengler, Bernhard
2010-02-01
Matrix preparation techniques such as air spraying or vapor deposition were investigated with respect to lateral migration, integration of analyte into matrix crystals and achievable lateral resolution for the purpose of high-resolution biological imaging. The accessible mass range was found to be beyond 5000 u with sufficient analytical sensitivity. Gas-assisted spraying methods (using oxygen-free gases) provide a good compromise between crystal integration of analyte and analyte migration within the sample. Controlling preparational parameters with this method, however, is difficult. Separation of the preparation procedure into two steps, instead, leads to an improved control of migration and incorporation. The first step is a dry vapor deposition of matrix onto the investigated sample. In a second step, incorporation of analyte into the matrix crystal is enhanced by a controlled recrystallization of matrix in a saturated water atmosphere. With this latter method an effective analytical resolution of 2 microm in the x and y direction was achieved for scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS). Cultured A-498 cells of human renal carcinoma were successfully investigated by high-resolution MALDI imaging using the new preparation techniques. Copyright 2010 John Wiley & Sons, Ltd.
Overmyer, Katherine A.; Thonusin, Chanisa; Qi, Nathan R.; Burant, Charles F.; Evans, Charles R.
2015-01-01
A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia. PMID:25658945
Overmyer, Katherine A; Thonusin, Chanisa; Qi, Nathan R; Burant, Charles F; Evans, Charles R
2015-01-01
A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia.
Assessment of eye bank-prepared posterior lamellar corneal tissue for endothelial keratoplasty.
Rose, Linda; Briceño, César A; Stark, Walter J; Gloria, Dante G; Jun, Albert S
2008-02-01
To evaluate eye bank-prepared tissue for Descemet's stripping automated endothelial keratoplasty (DSAEK). Experimental study and retrospective case series. Seventeen human donor corneas and 4 recipient patients undergoing DSAEK surgery. Corneal-scleral discs were obtained. Specular microscopy and pachymetry were performed. A designated Tissue Banks International technician used a microkeratome to prepare a flap. Posterior bed thickness was measured. The sectioned tissue was stored, and at 24 and 48 hours, pachymetry was repeated. At 48 hours, specular microscopy was repeated, and endothelial cell viability was assessed with trypan blue. Descemet's stripping automated endothelial keratoplasty was performed in 4 patients using eye bank-prepared posterior lamellar tissue. Corneal tissue was assessed with the following parameters: corneal thickness measured with ultrasonic pachymetry, cell density counts measured with a keratoanalyzer, and cell viability as observed with trypan blue exclusion. Patient outcomes were measured by changes in visual acuity (VA) and the presence of a clear graft. Donor corneal pachymetry before sectioning averaged 599+/-52 microm. Immediately after sectioning with a microkeratome set at a depth of 300 microm, mean posterior bed thickness was 328+/-95 microm. Thus, the mean cutting depth achieved by the microkeratome when set at 300 micrometers averaged 271+/-83 microm. After storage for 24 hours, the posterior beds measured 352 microm, an average swelling of 24 (7%) microm (P = 0.14). After 48 hours, the posterior beds measured 382 microm, an average swelling of 54 (16%) microm (P = 0.02). Cell counts 48 hours after sectioning decreased by an average of 11% (P = 0.10). Endothelial cell staining confirmed improvement in postsectioning morphology and survival with increased technician experience. All 4 patients receiving eye bank-prepared DSAEK tissue showed uncomplicated postoperative results, with improvement in VA. The microkeratome cutting depth was moderately accurate. Pachymetry, cell density, and cell viability of sectioned tissue after 48 hours in storage were encouraging overall. Initial clinical results of eye bank-prepared DSAEK tissue showed uncomplicated postoperative courses and improved VA. Additional studies are needed to follow the long-term outcomes in the recipients of these tissues.
Teklić, Tihana; Spoljarević, Marija; Stanisavljević, Aleksandar; Lisjak, Miroslav; Vinković, Tomislav; Parađiković, Nada; Andrić, Luka; Hancock, John T
2010-01-01
A method which is widely accepted for the analysis of free proline content in plant tissues is based on the use of 3% sulfosalicylic acid as an extractant, followed by spectrophotometric quantification of a proline-ninhydrin complex in toluene. However, sample preparation and storage may influence the proline actually measured. This may give misleading or difficult to compare data. To evaluate free proline levels fresh and frozen strawberry (Fragaria × ananassa Duch.) leaves and soybean [Glycine max (L.) Merr.] hypocotyl tissues were used. These were ground with or without liquid nitrogen and proline extracted with sulfosalicylic acid. A particular focus was the influence of plant sample cold storage duration (1, 4 and 12 weeks at -20°C) on tissue proline levels measured. The free proline content analyses, carried out in leaves of Fragaria × ananassa Duch. as well as in hypocotyls of Glycine max (L.) Merr., showed a significant influence of the sample preparation method and cold storage period. Long-term storage of up to 12 weeks at -20°C led to a significant increase in the measured proline in all samples analysed. The observed changes in proline content in plant tissue samples stored at -20°C indicate the likelihood of the over-estimation of the proline content if the proline analyses are delayed. Plant sample processing and cold storage duration seem to have an important influence on results of proline analyses. Therefore it is recommended that samples should be ground fresh and analysed immediately. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Lenz, Philipp; Bettenworth, Dominik; Krausewitz, Philipp; Domagk, Dirk; Ketelhut, Steffi
2015-05-01
Digital holographic microscopy (DHM) has been demonstrated to be a versatile tool for high resolution non-destructive quantitative phase imaging of surfaces and multi-modal minimally-invasive monitoring of living cell cultures in-vitro. DHM provides quantitative monitoring of physiological processes through functional imaging and structural analysis which, for example, gives new insight into signalling of cellular water permeability and cell morphology changes due to toxins and infections. Also the analysis of dissected tissues quantitative DHM phase contrast prospects application fields by stain-free imaging and the quantification of tissue density changes. We show that DHM allows imaging of different tissue layers with high contrast in unstained tissue sections. As the investigation of fixed samples represents a very important application field in pathology, we also analyzed the influence of the sample preparation. The retrieved data demonstrate that the quality of quantitative DHM phase images of dissected tissues depends strongly on the fixing method and common staining agents. As in DHM the reconstruction is performed numerically, multi-focus imaging is achieved from a single digital hologram. Thus, we evaluated the automated refocussing feature of DHM for application on different types of dissected tissues and revealed that on moderately stained samples highly reproducible holographic autofocussing can be achieved. Finally, it is demonstrated that alterations of the spatial refractive index distribution in murine and human tissue samples represent a reliable absolute parameter that is related of different degrees of inflammation in experimental colitis and Crohn's disease. This paves the way towards the usage of DHM in digital pathology for automated histological examinations and further studies to elucidate the translational potential of quantitative phase microscopy for the clinical management of patients, e.g., with inflammatory bowel disease.
Inaga, Sumire; Hirashima, Sayuri; Tanaka, Keiichi; Katsumoto, Tetsuo; Kameie, Toshio; Nakane, Hironobu; Naguro, Tomonori
2009-07-01
The present study introduces a novel method for the direct observation of histological paraffin sections by low vacuum scanning electron microscopy (LVSEM) with platinum blue (Pt-blue) treatment. Pt-blue was applied not only as a backscattered electron (BSE) signal enhancer but also as a histologically specific stain. In this method, paraffin sections of the rat tongue prepared for conventional light microscopy (LM) were stained on glass slides with a Pt-blue staining solution (pH 9) and observed in a LVSEM using BSE detector. Under LVSEM, overviews of whole sections as well as three-dimensional detailed observations of individual cells and tissues could be easily made at magnifications from x40 to x10,000. Each kind of cell and tissue observed in the section could be clearly distinguished due to the different yields of BSE signals, which depended on the surface structures and different affinities to Pt-blue. Thus, we roughly classified cellular and tissue components into three groups according to the staining intensity of Pt-blue observed by LM and LVSEM: 1) a strongly stained (deep blue by LM and brightest by LVSEM) group which included epithelial tissue, endothelium and mast cells; 2) a moderately stained (light blue and bright) group which included muscular tissue and nervous tissue; 3) an unstained or weakly stained (colorless and dark) group which included elastic fibers and collagen fibers. We expect that this method will prove useful for the three-dimensional direct observation of histological paraffin sections of various tissues by LVSEM with higher resolutions than LM.
Rapid preparation of a noncultured skin cell suspension that promotes wound healing.
Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil
2017-06-01
Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p < 0.05). This study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.
Lu, Jin; Guo, Li-Wei; Fu, Ting-Ming; Zhu, Guo-Long; Dai, Zhen-Nan; Zhan, Guan-Jun; Chen, Li-Li
2017-06-01
PLA-α-asarone nanoparticles were prepared by using organic solvent evaporation method, and their in vivo distribution and brain targeting after intranasal administration were studied as compared with intravenous administration. The results showed that brain targeting coefficient of PLA-α-asarone nanoparticles after intranasal and intravenous administration was 1.65 and 1.16 respectively. The absolute bioavailability, brain-targeting efficiency and the percentage of nasal-brain delivery of PLA-α-asarone nanoparticles were 74.2%, 142.24 and 29.83%, respectively after intranasal administration. The results of fluorescence labeling showed that the fluorescent intensity of coumarin-6 in the brain tissue was the highest after intranasal administration of PLA-α-asarone fluorescent nanoparticles, achieving the purpose of brain-targeted drug delivery. The fluorescent intensity of coumarin-6 in liver tissue after intravenous administration of PLA-α-asarone nanoparticles was much higher than that after intranasal administration, indicating that intranasal administration of PLA-α-asarone nanoparticles could decrease drug-induced hepatotoxicity. In addition, the fluorescent intensity of coumarin-6 in lung tissue was weaker after intranasal administration, which solved the shortcomings of intranasal administration of α-asarone dry powder prepared by airflow pulverization method. In vivo studies indicated that PLA-α-asarone nanoparticles after intranasal administration had a stronger brain targeting as compared with intravenous administration. Copyright© by the Chinese Pharmaceutical Association.
Zhao, Jing-Chun; Xian, Chun-Jing; Yu, Jia-Ao; Shi, Kai; Hong, Lei
2015-06-01
Soft tissue losses from acute or chronic trauma are a challenge for surgeons. To explore a method to expedite granulation tissue formation in preparation for a split-thickness skin graft (STSG), the medical records of 3 patients - 2 adult men with wounds related to trauma injury and 1 infant with necrotizing fasciitis, all infected with Pseudomonas aeruginosa - were reviewed. All wounds were surgically debrided and managed by applying gauze soaked in 50% glucose followed by continuous negative pressure wound therapy (NPWT) before definitive skin grafting. NPWT pressure was applied at -80 mm Hg for the 2 adult males (ages 39 and 25 years) and -50 mm Hg for the 7-month-old male infant. The dressings were changed every 2 to 3 days. No adverse events occurred, and wounds were successfully closed with a STSG after an average of 7 days. In 1 case, NPWT was able to help affix dressings in a difficult-to-dress area (genital region). The combination of hypertonic glucose and hand-made, gauze-based NPWT was found to be safe, well-tolerated, and effective in preparing the wound bed for grafting. Prospective, randomized, controlled clinical studies are needed to compare the safety, effectiveness, and efficacy of this method to other treatment approaches for P. aeruginosa-infected wounds.
Maji, Kanchan; Dasgupta, Sudip; Pramanik, Krishna; Bissoyi, Akalabya
2016-01-01
The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S) in the size range of 20–30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading. Samples were cross-linked with glutaraldehyde to obtain interconnected porous 3D microstructure with improved mechanical strength. The prepared scaffolds exhibited >80% porosity with a mean pore size range between 100 and 300 microns. Scaffold containing 30 wt% bioglass (GCB 30) showed a maximum compressive strength of 2.2 ± 0.1 MPa. Swelling and degradation studies showed that the scaffold had excellent properties of hydrophilicity and biodegradability. GCB 30 scaffold was shown to be noncytotoxic and supported mesenchymal stem cell attachment, proliferation, and differentiation as indicated by MTT assay and RUNX-2 expression. Higher cellular activity was observed in GCB 30 scaffold as compared to GCB 0 scaffold suggesting the fact that 58S bioglass nanoparticles addition into the scaffold promoted better cell adhesion, proliferation, and differentiation. Thus, the study showed that the developed composite scaffolds are potential candidates for regenerating damaged bone tissue. PMID:26884764
Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping
2016-03-01
Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.
Soft tissue examination of the fetal rat and rabbit head by magnetic resonance imaging.
French, Julian M; Woodhouse, Neil
2013-01-01
The use of magnetic resonance imaging of the fetal rat and rabbit head, as an alternative to the traditional methods of fixation and preparation of serial sections, is described. Labeled magnetic resonance images of normal head anatomy have been provided as a reference for use when evaluating the internal structures of the head.
Debridement and wound bed preparation.
Falabella, Anna F
2006-01-01
Debridement can play a vital role in wound bed preparation and the removal of barriers that impair wound healing. In accordance with the TIME principles, debridement can help remove nonviable tissue, control inflammation or infection, decrease excess moisture, and stimulate a nonadvancing wound edge. There are many types of debridement, each with a set of advantages and disadvantages that must be clearly understood by the healthcare team. Failure to use the correct debridement method for a given type of wound may lead to further delays in healing, increase patient suffering, and unnecessarily increase the cost of care. This review article discusses the various methods of debridement, describes currently available debriding agents, evaluates the clinical data regarding their efficacy and safety, and describes strategies for the management of problematic nonhealing wounds.
Preparation and purification of organic samples for selenium isotope studies.
Banning, Helena; Stelling, Monika; König, Stephan; Schoenberg, Ronny; Neumann, Thomas
2018-01-01
Selenium (Se) is an important micronutrient but also a strong toxin with a narrow tolerance range for many organisms. As such, a globally heterogeneous Se distribution in soils is responsible for various disease patterns (i.e. Se excess and deficiency) and environmental problems, whereby plants play a key role for the Se entrance into the biosphere. Selenium isotope variations were proved to be a powerful tracer for redox processes and are therefore promising for the exploration of the species dependent Se metabolism in plants and the Se cycling within the Critical Zone. Plant cultivation setups enable systematic controlled investigations, but samples derived from them-plant tissue and phytoagar-are particularly challenging and require specific preparation and purification steps to ensure precise and valid Se isotope analytics performed with HG-MC-ICP-MS. In this study, different methods for the entire process from solid tissue preparation to Se isotope measurements were tested, optimized and validated. A particular microwave digestion procedure for plant tissue and a vacuum filtration method for phytoagar led to full Se recoveries, whereby unfavorable organic residues were reduced to a minimum. Three purification methods predominantly described in the literature were systematically tested with pure Se solution, high concentrated multi-element standard solution as well as plant and phytoagar as target matrices. All these methods efficiently remove critical matrix elements, but differ in Se recovery and organic residues. Validation tests doping Se-free plant material and phytoagar with a reference material of known Se isotope composition revealed the high impact of organic residues on the accuracy of MC-ICP-MS measurements. Only the purification method with no detectable organic residues, hydride generation and trapping, results in valid mass bias correction for plant samples with an average deviation to true δ82/76Se values of 0.2 ‰ and a reproducibility (2 SD) of ± 0.2 ‰. For phytoagar this test yields a higher deviation of 1.1 ‰ from the true value and a 2 SD of ± 0.1 ‰. The application of the developed methods to cultivated plants shows sufficient accuracy and precision and is a promising approach to resolve plant internal Se isotope fractionations, for which respective δ82/76Se values of +2.3 to +3.5 ‰ for selenate and +1.2 to +1.9 ‰ for selenite were obtained.
Preparation and purification of organic samples for selenium isotope studies
Stelling, Monika; König, Stephan; Schoenberg, Ronny; Neumann, Thomas
2018-01-01
Selenium (Se) is an important micronutrient but also a strong toxin with a narrow tolerance range for many organisms. As such, a globally heterogeneous Se distribution in soils is responsible for various disease patterns (i.e. Se excess and deficiency) and environmental problems, whereby plants play a key role for the Se entrance into the biosphere. Selenium isotope variations were proved to be a powerful tracer for redox processes and are therefore promising for the exploration of the species dependent Se metabolism in plants and the Se cycling within the Critical Zone. Plant cultivation setups enable systematic controlled investigations, but samples derived from them–plant tissue and phytoagar–are particularly challenging and require specific preparation and purification steps to ensure precise and valid Se isotope analytics performed with HG-MC-ICP-MS. In this study, different methods for the entire process from solid tissue preparation to Se isotope measurements were tested, optimized and validated. A particular microwave digestion procedure for plant tissue and a vacuum filtration method for phytoagar led to full Se recoveries, whereby unfavorable organic residues were reduced to a minimum. Three purification methods predominantly described in the literature were systematically tested with pure Se solution, high concentrated multi-element standard solution as well as plant and phytoagar as target matrices. All these methods efficiently remove critical matrix elements, but differ in Se recovery and organic residues. Validation tests doping Se-free plant material and phytoagar with a reference material of known Se isotope composition revealed the high impact of organic residues on the accuracy of MC-ICP-MS measurements. Only the purification method with no detectable organic residues, hydride generation and trapping, results in valid mass bias correction for plant samples with an average deviation to true δ82/76Se values of 0.2 ‰ and a reproducibility (2 SD) of ± 0.2 ‰. For phytoagar this test yields a higher deviation of 1.1 ‰ from the true value and a 2 SD of ± 0.1 ‰. The application of the developed methods to cultivated plants shows sufficient accuracy and precision and is a promising approach to resolve plant internal Se isotope fractionations, for which respective δ82/76Se values of +2.3 to +3.5 ‰ for selenate and +1.2 to +1.9 ‰ for selenite were obtained. PMID:29509798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin
2012-03-10
Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides.more » Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.« less
Kuipers, Jeroen; Kalicharan, Ruby D; Wolters, Anouk H G; van Ham, Tjakko J; Giepmans, Ben N G
2016-05-25
Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae(1-7). Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture(1-5). Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)(8) on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner.
Kuipers, Jeroen; Kalicharan, Ruby D.; Wolters, Anouk H. G.
2016-01-01
Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae1-7. Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture1-5. Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)8 on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162
Anderson, David M. G.; Mills, Daniel; Spraggins, Jeffrey; Lambert, Wendi S.; Calkins, David J.
2013-01-01
Purpose To develop a method for generating high spatial resolution (10 µm) matrix-assisted laser desorption ionization (MALDI) images of lipids in rodent optic nerve tissue. Methods Ice-embedded optic nerve tissue from rats and mice were cryosectioned across the coronal and sagittal axes of the nerve fiber. Sections were thaw mounted on gold-coated MALDI plates and were washed with ammonium acetate to remove biologic salts before being coated in 2,5-dihydroxybenzoic acid by sublimation. MALDI images were generated in positive and negative ion modes at 10 µm spatial resolution. Lipid identification was performed with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer. Results Several lipid species were observed with high signal intensity in MALDI images of optic nerve tissue. Several lipids were localized to specific structures including in the meninges surrounding the optic nerve and in the central neuronal tissue. Specifically, phosphatidylcholine species were observed throughout the nerve tissue in positive ion mode while sulfatide species were observed in high abundance in the meninges surrounding the optic nerve in negative ion mode. Accurate mass measurements and fragmentation using sustained off-resonance irradiation with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer instrument allowed for identification of lipid species present in the small structure of the optic nerve directly from tissue sections. Conclusions An optimized sample preparation method provides excellent sensitivity for lipid species present within optic nerve tissue. This allowed the laser spot size and fluence to be reduced to obtain a high spatial resolution of 10 µm. This new imaging modality can now be applied to determine spatial and molecular changes in optic nerve tissue with disease. PMID:23559852
Analysis and classification of normal and pathological skin tissue spectra using neural networks
NASA Astrophysics Data System (ADS)
Bruch, Reinhard F.; Afanasyeva, Natalia I.; Gummuluri, Satyashree
2000-07-01
An innovative spectroscopic diagnostic method has been developed for investigation of different regions of normal human skin tissue, as well as cancerous and precancerous conditions in vivo, ex vivo and in vitro. This new method is a combination of fiber-optical evanescent wave Fourier Transform infrared (FEW-FTIR) spectroscopy and fiber optic techniques using low-loss, highly flexible and nontoxic fiber optical sensors. The FEW-FTIR technique is nondestructive and very sensitive to changes of vibrational spectra in the IR region without heating and staining and thus altering the skin tissue. A special software package was developed for the treatment of the spectra. This package includes a database, programs for data preparation and presentation, and neural networks for classification of disease states. An unsupervised neural competitive learning neural network is implemented for skin cancer diagnosis. In this study, we have investigated and classified skin tissue in the range of 1400 to 1800 cm-1 using these programs. The results of our surface analysis of skin tissue are discussed in terms of molecular structural similarities and differences as well as in terms of different skin states represented by eleven different skin spectra classes.
Comparing different preparation methods to study human fibrin fibers and platelets using TEM.
Buys, Antoinette V; Pretorius, Etheresia
2012-06-01
For the study of cellular ultrastructure, the sample needs to be stabilized by fixation, with the ultimate aim to preserve the native tissue organization and to protect the tissue against later stages of preparation. Chemical and freezing fixation are most used, and chemical fixation employs agents that permeate tissues and cells by diffusion and covalently bind with their major biochemical constituents to fix them. Most widely used chemical fixatives are aldehydes, e.g., formaldehyde and glutaraldehyde, which are noncoagulating, crosslinking agents. Cryofixation methods for ultrastructural studies are also popular, and high-pressure freezing immobilizes all cell constituents and arrests biological activity by removing the thermal energy from the system. In the current research, we used platelet-rich plasma (PRP) to study expansive fibrin fibers and platelet ultrastructure to compare the two fixation techniques. We also used thrombin and calcium chloride as a clotting agent to determine the technique most suitable for the formation of extensive fibrin networks. Chemically fixated fibrin fibers were more compact and condensed and also showed a banding pattern on longitudinal sections. High-pressure frozen samples were more dispersed while platelets fixated showed better preserved cellular membranes and organelle structure. PRP coagulated by addition of CaCl(2) showed blood platelets that are noticeably more activated compared with PRP; however, with thrombin, a sharp ultrastructure was seen. We conclude that PRP mixed with thrombin, and freeze substituted, is the most suitable method for the study of extensive fibrin fibers as well as platelets. Copyright © 2011 Wiley Periodicals, Inc.
Zhang, Lijing; Cao, Hua; Zhang, Jiaxin; Yang, Chengli; Hu, Tingting; Li, Huili; Yang, Wu; He, Gu; Song, Xiangrong; Tong, Aiping; Guo, Gang; Li, Rui; Jiang, Yu; Liu, Jiyan; Cai, Lulu; Zheng, Yu
2017-02-01
Specific delivery of drugs to bone tissue is very challenging due to the architecture and structure of bone tissue. A seven-repeat sequence of aspartate, a representative bone-targeting oligopeptide, is preferentially used for targeted therapy for bone diseases. In this study, Asp7-cholesterol((Asp)7-CHOL) was synthesized and (Asp)7-CHOL-modified liposome loaded with doxorubicin (DOX) was successfully prepared using both pre-insertion (pre-L) and post-insertion (post-L) methods. The formulation was optimized according to particle size, zeta potential and the drug-loading efficiency of the liposome. In addition, the bone affinity of the (Asp)7-CHOL-modified liposome was evaluated using a hydroxyapatite (HA) absorption method. The results suggested that (Asp)7-CHOL-modified liposome show excellent HA absorption; pre-L showed slightly higher HA binding than post-L. However, post-L had a higher DOX entrapment efficiency than pre-L. In vivo imaging further demonstrated that pre-L showed a higher bone-targeting efficiency than post-L, which was consistent with in vitro results. In all, (Asp)7-CHOL-modified liposome showed excellent bone-targeting activity, suggesting their potential for use as a drug delivery system for bone disease-targeted therapies.
2016-01-01
Microwave irradiation of tissue during fixation and subsequent histochemical staining procedures significantly reduces the time required for incubation in fixation and staining solutions. Minimizing the incubation time in fixative reduces disruption of tissue morphology, and reducing the incubation time in staining solution or antibody solution decreases nonspecific labeling. Reduction of incubation time in staining solution also decreases the level of background noise. Microwave-assisted tissue preparation is applicable for tissue fixation, decalcification of bone tissues, treatment of adipose tissues, antigen retrieval, and other special staining of tissues. Microwave-assisted tissue fixation and staining are useful tools for histological analyses. This review describes the protocols using microwave irradiation for several essential procedures in histochemical studies, and these techniques are applicable to other protocols for tissue fixation and immunostaining in the field of cell biology. PMID:27840640
Fenton, A H
1976-07-01
The construction of an interim overdenture using existing removable partial dentures with natural tooth crowns and artificial teeth can be a simple and economical method of providing patients with dentures while tissues heal and teeth are prepared and restored. A more definite prognosis for both the patient and his remaining dentition can be established before the final overdenture is completed. The procedures necessary to provide three types of interim overdentures have been outlined. Patients tolerate this method of changing their dentitions extremely well.
Yang, Bin; Xu, Yanyan; Wu, Yuanyuan; Wu, Huanyu; Wang, Yuan; Yuan, Lei; Xie, Jiabin; Li, Yubo; Zhang, Yanjun
2016-10-15
A rapid, sensitive and selective ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous determination of ten Aconitum alkaloids in rat tissues. The tissue samples were prepared by a simple procedure protein precipitation with acetonitrile containing 0.1% acetic acid and separated on an Agilent XDB C18 column (4.6 mm×50mm, 1.8μm) using gradient elution with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) at a flow rate of 0.3mL/min. The quantitive determination was performed on an electrospray ionization (ESI) triple quadrupole tandem mass spectrometer using selective reaction monitoring (SRM) under positive ionization mode. The established method was fully validated according to the USA Food and Drug Administration (FDA) bioanalytical method validation guidance and the results demonstrated that the method was sensitive and selective with the lowest limits of quantification (LLOQ) at 0.025ng/mL in rat tissue homogenates. Meanwhile, the linearity, precision, accuracy, extraction recovery, matrix effect and stability were all within the required limits of biological sample analysis. After method validation, the validated method was successfully applied to the tissue distribution study on the compatibility of Heishunpian (HSP, the processed product of Aconitum carmichaelii Debx) and Fritillariae thunbergii Bulbus (Zhebeimu, ZBM). The results indicated that the distribution feature of monoester diterpenoid aconitines (MDAs), diester diterpenoid aconitines (DDAs) and non-ester alkaloids (NEAs) were inconsistency, and the compatibility of HSP and ZBM resulted in the distribution amount of DDAs increased in tissues. What's more, the results could provide the reliable basis for systematic research on the substance foundation of the compatibility of the herbal pair. Copyright © 2016 Elsevier B.V. All rights reserved.
CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...
Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge-and-trap vessel is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar and nonpolar solvents, concentrated, and directly analyzed by high resolution gas chromatography coupled to a mass spectrometer operating in the selected ion monitoring mode. In this paper, we analyzed two homogenized samples of whole fish tissues with spiked synthetic musk compounds using closed-loop stripping analysis (CLSA) and pressurized liquid extraction (PLE). The analytes were not recovered quantitatively but the extraction yield was sufficiently reproducible for at least semi-quantitative purposes (screening). The method was less expensive to implement and required significantly less sample preparation than the PLE technique. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water,
Rudd, David; Benkendorff, Kirsten; Voelcker, Nicolas H.
2015-01-01
Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of “on surface” solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples. PMID:25786067
Newer applications of the histological stain prepared from Pterocarpus santalinus.
Sen Gupta, P C; Mukherjee, A K
1981-03-01
A histological stain prepared from the heartwood of Pterocarpus santalinus Linn. has been found to be an excellent nuclear stain for various cells of animal and plant origin. As an elastic tissue stain, the results are comparable to standard elastic tissue stains. The striations of voluntary muscle fibers are well shown. The Nissl granules and fibers of cranial nerves in the pons are visualized. When counterstained with light green, it differentially stains muscle and fibrous tissue. The stain can be used as counterstain with certain histochemical procedures with satisfactory results. The preparation and use of this versatile stain are described.
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J; Kertesz, Vilmos; Gan, Jinping
2016-03-25
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites were studied. Major organs (brain, lung, liver, kidney and muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed the same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. In addition, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.; ...
2015-11-03
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed themore » same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed themore » same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.« less
Human albumin solders for clinical application during laser tissue welding.
Poppas, D P; Wright, E J; Guthrie, P D; Shlahet, L T; Retik, A B
1996-01-01
Fifty percent human albumin solder significantly improves weld strength when compared to lower concentrations [Wright et al., ASLMS meeting, April, 1995]. We developed a method for preparing 50% human albumin that may be considered compatible for clinical applications. Fifty percent human albumin solder was prepared from 25% commercially available human albumin using a lyophilization technique. Assessment of sterility, viscosity, pH, and peak absorption wavelength were performed. This report describes the methodology used to prepare a 50% human albumin solder that is compatible with clinical use. Maintenance of the structural integrity of the albumin was confirmed by polyacrylamide gel electrophoresis. This solder preparation can be used alone or with the addition of exogenous chromophores. The final product is sterile, incorporates viral free protocols, maintains high viscosity, and can be applied easily during open or laparoscopic procedures.
Schneider, Sandra; Unger, Marina; van Griensven, Martijn; Balmayor, Elizabeth R
2017-05-19
The use of mesenchymal stem cells (MSCs) in research and in regenerative medicine has progressed. Bone marrow as a source has drawbacks because of subsequent morbidities. An easily accessible and valuable source is adipose tissue. This type of tissue contains a high number of MSCs, and obtaining higher quantities of tissue is more feasible. Fat tissue can be harvested using different methods such as liposuction and resection. First, a detailed isolation protocol with complete characterization is described. This also includes highlighting problems and pitfalls. Furthermore, some comparisons of these different harvesting methods exist. However, the later characterization of the cells is conducted poorly in most cases. We performed an in-depth characterization over five passages including an investigation of the effect of freezing and thawing. Characterization was performed using flow cytometry with CD markers, metabolic activity with Alamar Blue, growth potential in between passages, and cytoskeleton staining. Our results show that the cells isolated with distinct isolation methods (solid versus liposuction "liquid") have the same MSC potential. However, the percentage of cells positive for the markers CD73, CD90, and CD105 is initially quite low. The cells isolated from the liquid fat tissue grow faster at higher passages, and significantly more cells display MSC markers. In summary, we show a simple and efficient method to isolate adipose-derived mesenchymal stem cells from different preparations. Liposuctions and resection can be used, whereas liposuction has more growth potential at higher passages.
Luo, Zhigang; He, Jingjing; He, Jiuming; Huang, Lan; Song, Xiaowei; Li, Xin; Abliz, Zeper
2018-03-01
Quantitative mass spectrometry imaging (MSI) is a robust approach that provides both quantitative and spatial information for drug candidates' research. However, because of complicated signal suppression and interference, acquiring accurate quantitative information from MSI data remains a challenge, especially for whole-body tissue sample. Ambient MSI techniques using spray-based ionization appear to be ideal for pharmaceutical quantitative MSI analysis. However, it is more challenging, as it involves almost no sample preparation and is more susceptible to ion suppression/enhancement. Herein, based on our developed air flow-assisted desorption electrospray ionization (AFADESI)-MSI technology, an ambient quantitative MSI method was introduced by integrating inkjet-printing technology with normalization of the signal extinction coefficient (SEC) using the target compound itself. The method utilized a single calibration curve to quantify multiple tissue types. Basic blue 7 and an antitumor drug candidate (S-(+)-deoxytylophorinidine, CAT) were chosen to initially validate the feasibility and reliability of the quantitative MSI method. Rat tissue sections (heart, kidney, and brain) administered with CAT was then analyzed. The quantitative MSI analysis results were cross-validated by LC-MS/MS analysis data of the same tissues. The consistency suggests that the approach is able to fast obtain the quantitative MSI data without introducing interference into the in-situ environment of the tissue sample, and is potential to provide a high-throughput, economical and reliable approach for drug discovery and development. Copyright © 2017 Elsevier B.V. All rights reserved.
Choulakian, Mazen Y; Li, Jennifer Y; Ramos, Samuel; Mannis, Mark J
2016-01-01
To evaluate the predictability and reproducibility of stromal bed thickness for single-pass donor Descemet stripping automated endothelial keratoplasty (DSAEK) tissue preparation, using the ML7 Microkeratome Donor Cornea System (Med-logics Inc, Athens, TX). In this retrospective chart review of 256 consecutive corneal tissue preparations for DSAEK surgery, from June 2013 to August 2014, tissue thicknesses were divided into 3 groups, depending on surgeon preference: <91 μm (group A), 90 to 120 μm (group B), and 120 to 160 μm (group C). Precut and postcut data were recorded. Average postcut donor corneal thickness was 114 ± 30 μm (range 60-183 μm), whereas the average in group A was 97 ± 23 μm (range 60-128), in group B was 113 ± 21 μm (range 77-179), and in group C was 134 ± 43 (range 89-183). Average postcut endothelial cell density was very adequate at 3013 ± 250 cells per square millimeter. There were a total of 7 failed procedures from 256 attempts, which represents a rate of 2.7%. This rate decreases to 1.5% when analyzing the last 200 cuts. The ML7 Microkeratome Donor Cornea System allows for reliable and reproducible DSAEK tissue preparation. Ultrathin DSAEK tissues can be prepared with a single-pass. Aiming for a graft thickness between 90 and 120 μm seems to be most reliable.
NASA Astrophysics Data System (ADS)
Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind
2013-03-01
Surgical oncology is guided by examining pathology that is prepared during or after surgery. The preparation time for Mohs surgery in skin is 20-45 minutes, for head-and-neck and breast cancer surgery is hours to days. Often this results in incomplete tumor removal such that positive margins remain. However, high resolution images of excised tissue taken within few minutes can provide a way to assess the margins for residual tumor. Current high resolution imaging methods such as confocal microscopy are limited to small fields of view and require assembling a mosaic of images in two dimensions (2D) to cover a large area, which requires long acquisition times and produces artifacts. To overcome this limitation we developed a confocal microscope that scans strips of images with high aspect ratios and stitches the acquired strip-images in one dimension (1D). Our "Strip Scanner" can image a 10 x 10 mm2 area of excised tissue with sub-cellular detail in about one minute. The strip scanner was tested on 17 Mohs excisions and the mosaics were read by a Mohs surgeon blinded to the pathology. After this initial trial, we built a mobile strip scanner that can be moved into different surgical settings. A tissue fixture capable of scanning up to 6 x 6 cm2 of tissue was also built. Freshly excised breast and head-and-neck tissues were imaged in the pathology lab. The strip-images were registered and displayed simultaneously with image acquisition resulting in large, high-resolution confocal mosaics of fresh surgical tissue in a clinical setting.
Digital pathology: elementary, rapid and reliable automated image analysis.
Bouzin, Caroline; Saini, Monika L; Khaing, Kyi-Kyi; Ambroise, Jérôme; Marbaix, Etienne; Grégoire, Vincent; Bol, Vanesa
2016-05-01
Slide digitalization has brought pathology to a new era, including powerful image analysis possibilities. However, while being a powerful prognostic tool, immunostaining automated analysis on digital images is still not implemented worldwide in routine clinical practice. Digitalized biopsy sections from two independent cohorts of patients, immunostained for membrane or nuclear markers, were quantified with two automated methods. The first was based on stained cell counting through tissue segmentation, while the second relied upon stained area proportion within tissue sections. Different steps of image preparation, such as automated tissue detection, folds exclusion and scanning magnification, were also assessed and validated. Quantification of either stained cells or the stained area was found to be correlated highly for all tested markers. Both methods were also correlated with visual scoring performed by a pathologist. For an equivalent reliability, quantification of the stained area is, however, faster and easier to fine-tune and is therefore more compatible with time constraints for prognosis. This work provides an incentive for the implementation of automated immunostaining analysis with a stained area method in routine laboratory practice. © 2015 John Wiley & Sons Ltd.
Poster, Dianne L; Kucklick, John R; Schantz, Michele M; Porter, Barbara J; Leigh, Stefan D; Wise, Stephen A
2003-01-01
The concentrations of a wide range of polychlorinated biphenyl congeners (PCBs) and chlorinated pesticides in a fish tissue Standard Reference Material (SRM) have been determined using multiple methods of analysis. This material, SRM 1946, Lake Superior Fish Tissue, was recently issued by the National Institute of Standards and Technology (NIST) and complements a suite of marine environmental natural-matrix SRMs that are currently available from NIST for the determination of organic contaminants such as aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), PCBs, and chlorinated pesticides. SRM 1946 is a fresh tissue homogenate (frozen) prepared from filleted adult lake trout (Salvelinus namaycush namaycush) collected from the Apostle Islands region of Lake Superior. SRM 1946 has certified and reference concentrations for PCB congeners, including the three non- ortho PCB congeners, and chlorinated pesticides. Certified concentrations are available for 30 PCB congeners and 15 chlorinated pesticides. Reference concentrations are available for 12 PCB congeners and 2 chlorinated pesticides. In addition, SRM 1946 is characterized for additional chemical constituents and properties: fatty acids, extractable fat, methylmercury, total mercury, selected trace elements, proximates, and caloric content. The characterization of chlorinated compounds is described in this paper with an emphasis on the approach used for the certification of the concentrations of PCB congeners and chlorinated pesticides. The PCB congener and chlorinated pesticide data are also compared to concentrations in other marine natural-matrix reference materials available from NIST (fish oil, mussel tissue, whale blubber, and a second fresh frozen fish tissue homogenate prepared from filleted adult lake trout collected from Lake Michigan) and from other organizations such as the National Research Council Canada (ground whole carp), the International Atomic Energy Agency (fish homogenate), and the European Commission Joint Research Centre [fish oils (cod and mackerel) and mussel tissue].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgiades, Christos, E-mail: g_christos@hotmail.com; Rodriguez, Ronald, E-mail: rrodrig@jhmi.edu; Azene, Ezana, E-mail: eazene1@jhmi.edu
2013-06-15
Objective. The study was designed to determine the distance between the visible 'ice-ball' and the lethal temperature isotherm for normal renal tissue during cryoablation. Methods. The Animal Care Committee approved the study. Nine adult swine were used: three to determine the optimum tissue stain and six to test the hypotheses. They were anesthetized and the left renal artery was catheterized under fluoroscopy. Under MR guidance, the kidney was ablated and (at end of a complete ablation) the nonfrozen renal tissue (surrounding the 'ice-ball') was stained via renal artery catheter. Kidneys were explanted and sent for slide preparation and examination. Frommore » each slide, we measured the maximum, minimum, and an in-between distance from the stained to the lethal tissue boundaries (margin). We examined each slide for evidence of 'heat pump' effect. Results. A total of 126 measurements of the margin (visible 'ice-ball'-lethal margin) were made. These measurements were obtained from 29 slides prepared from the 6 test animals. Mean width was 0.75 {+-} 0.44 mm (maximum 1.15 {+-} 0.51 mm). It was found to increase adjacent to large blood vessels. No 'heat pump' effect was noted within the lethal zone. Data are limited to normal swine renal tissue. Conclusions. Considering the effects of the 'heat pump' phenomenon for normal renal tissue, the margin was measured to be 1.15 {+-} 0.51 mm. To approximate the efficacy of the 'gold standard' (partial nephrectomy, {approx}98 %), a minimum margin of 3 mm is recommended (3 Multiplication-Sign SD). Given these assumptions and extrapolating for renal cancer, which reportedly is more cryoresistant with a lethal temperature of -40 Degree-Sign C, the recommended margin is 6 mm.« less
Meng, Z X; Li, H F; Sun, Z Z; Zheng, W; Zheng, Y F
2013-03-01
Surface mineralization is an effective method to produce calcium phosphate apatite coating on the surface of bone tissue scaffold which could create an osteophilic environment similar to the natural extracellular matrix for bone cells. In this study, we prepared mineralized poly(D,L-lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun nanofibers via depositing calcium phosphate apatite coating on the surface of these nanofibers to fabricate bone tissue engineering scaffolds by concentrated simulated body fluid method, supersaturated calcification solution method and alternate soaking method. The apatite products were characterized by the scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD) methods. A large amount of calcium phosphate apatite composed of dicalcium phosphate dihydrate (DCPD), hydroxyapatite (HA) and octacalcium phosphate (OCP) was deposited on the surface of resulting nanofibers in short times via three mineralizing methods. A larger amount of calcium phosphate was deposited on the surface of PLGA/gelatin nanofibers rather than PLGA nanofibers because gelatin acted as nucleation center for the formation of calcium phosphate. The cell culture experiments revealed that the difference of morphology and components of calcium phosphate apatite did not show much influence on the cell adhesion, proliferation and activity. Copyright © 2012 Elsevier B.V. All rights reserved.
Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.
Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F
2017-01-01
Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Determination of iodine in bread and fish using the iodide ion-selective electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, J.B.
The purpose of this study was to assess the potential for use of the ion-selective electrode (ISE) as a method for measuring the iodine content in bread and fish. Ashing methods, sample preparation and electrode responses were evaluated. The iodine values obtained using the iodide electrode were compared to iodine values obtained by the arsenic-cerium method (As-Ce). Ashing methods were used in preparing bread and haddock for iodine analysis by the ISE. The values were compared to unashed samples measured by the ISE. Electrode response to iodide was examined by varying the sample pH, measuring electrode equilibrium times, and comparingmore » direct measurement in ppm to iodide values obtained by the method of known addition. Oyster reference tissue with a known iodine concentration was used to determine rates of recovery. For the As-Ce procedure, an alkaline dry ash for two hour followed by colorimetric analysis at 320 nm was recommended. The study showed that the pre-treatment of bread and fish was necessary for ISE measurement. The iodine values obtained by the ISE in the analysis of oyster reference tissue, haddock and bread were not in agreement with their corresponding As-Ce values. Further work needs to be done to determine an ashing procedure that has minimal iodide loss an/or develop sample treatments that will improve the reliability and precision of iodine values obtained using the ion-selective electrode.« less
Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim
2015-01-01
Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905
Végvári, Akos; Fehniger, Thomas E; Gustavsson, Lena; Nilsson, Anna; Andrén, Per E; Kenne, Kerstin; Nilsson, Johan; Laurell, Thomas; Marko-Varga, György
2010-04-18
The ultimate goal of MALDI-Imaging Mass Spectrometry (MALDI-IMS) is to achieve spatial localization of analytes in tissue sections down to individual tissue compartments or even at the level of a few cells. With compound tissue imaging, it is possible to track the transportation of an unlabelled, inhaled reference compound within lung tissue, through the application of MALDI-IMS. The procedure for isolation and preparation of lung tissues is found to be crucial in order to preserve the anatomy and structure of the pulmonary compartments. To avoid delocalization of analytes within lung tissue compartments we have applied an in-house designed nano-spotter, based on a microdispenser mounted on an XY table, of which movement and spotting functionality were fully computer controlled. We demonstrate the usefulness of this platform in lung tissue sections isolated from rodent in vivo model, applied to compound tissue imaging as exemplified with the determination of the spatial distribution of (1alpha,2beta,4beta,7beta)-7-[(hydroxidi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.0(2,4)]nonane, also known as tiotropium. We provide details on tissue preparation protocols and sample spotting technology for successful identification of drug in mouse lung tissue by using MALDI-Orbitrap instrumentation. Copyright 2010 Elsevier B.V. All rights reserved.
Subperiosteal preparation using a new piezoelectric device: a histological examination.
Stoetzer, Marcus; Magel, Anja; Kampmann, Andreas; Lemound, Juliana; Gellrich, Nils-Claudius; von See, Constantin
2014-01-01
Subperiosteal preparation using a periosteal elevator leads to disturbances of local immunohistochemistry and periosteal histology due to a microtrauma. Usually soft-tissue damage can be considerably reduced by using piezoelectric technology. For this reason, the effects of a novel piezoelectric device on immunohistochemistry and periosteal histology were examined and compared to conventional preparation of the periosteum using a periosteal elevator. Lewis rats were randomly assigned to one of five groups (n=50). Subperiosteal preparation was performed using either a piezoelectric device or a periosteal elevator. Immunohistochemical and histological analyses were performed immediately after preparation as well as three and eight days postoperatively. A statistical analysis of the histological colouring was performed offline using analysis of variance (ANOVA) on ranks (p<0.05). At all times, immunohistochemical and histological analysis demonstrated a significantly more homogenous tissue structure in the group of rats that underwent piezosurgery than in the group of rats that underwent treatment with a periosteal elevator. The use of a piezoelectric device for subperiosteal preparation is associated with more harmonious immunohistochemical and histological results for the periosteum than the use of a conventional periosteal elevator. As a result, piezoelectric devices can be expected to have a positive effect primarily on soft tissue, in particular of the periosteal as well as on surrounding tissues.
Pérez-González, Rocío; Gauthier, Sebastien A; Kumar, Asok; Saito, Mitsuo; Saito, Mariko; Levy, Efrat
2017-01-01
Extracellular vesicles (EV), including exosomes, secreted vesicles of endocytic origin, and microvesicles derived from the plasma membrane, have been widely isolated and characterized from conditioned culture media and bodily fluids. The difficulty in isolating EV from tissues, however, has hindered their study in vivo. Here, we describe a novel method designed to isolate EV and characterize exosomes from the extracellular space of brain tissues. The purification of EV is achieved by gentle dissociation of the tissue to free the brain extracellular space, followed by sequential low-speed centrifugations, filtration, and ultracentrifugations. To further purify EV from other extracellular components, they are separated on a sucrose step gradient. Characterization of the sucrose step gradient fractions by electron microscopy demonstrates that this method yields pure EV preparations free of large vesicles, subcellular organelles, or debris. The level of EV secretion and content are determined by assays for acetylcholinesterase activity and total protein estimation, and exosomal identification and protein content are analyzed by Western blot and immuno-electron microscopy. Additionally, we present here a method to delipidate EV in order to improve the resolution of downstream electrophoretic analysis of EV proteins.
Functional preservation of vascular smooth muscle tissue
NASA Technical Reports Server (NTRS)
Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.
1973-01-01
The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.
Ruzza, Alessandro; Parekh, Mohit; Salvalaio, Gianni; Ferrari, Stefano; Camposampiero, Davide; Amoureux, Marie-Claude; Busin, Massimo; Ponzin, Diego
2015-03-01
To compare the big-bubble method using air and liquid as medium of separation for Descemet membrane endothelial keratoplasty (DMEK) lenticule preparation in an eye bank. Donor corneas (n=20) were immersed in liquid [tissue culture medium (TCM)]. Air and liquid was injected using a 25-gauge needle in the posterior stroma or as near to the stroma-Descemet membrane (DM) phase as possible to create a complete bubble of larger diameter. The endothelial cell density and mortality were checked pre- and postbubble after deflating the tissue. Four pairs of tissues were used to analyse the intracellular tight junctions and three pairs for histological examination and DNA integrity studies, respectively. The yield obtained using air was 80%, whereas that with liquid was 100%. Single injection was required in six cases; twice in two cases; three and four times in one case each with air bubble, whereas seven cases required single injection; twice in two cases; and thrice in just one case with liquid bubble. The average diameter of the final lenticule was 9.12 (±1.71) mm for air bubble and 9.78 (±1.75) mm for liquid bubble with p=0.4362 (no statistical significance). Endothelial cell mortality postbubble preparation was 8.9 (±12.38)% for air and 6.25 (±9.57)% for liquid (p=0.6268). DM and endothelium could be separated exclusively using air or liquid bubble. However, liquid bubble seems to have certain advantages over air such as the generation of yield, larger diameter and higher maintenance of endothelial cell density and integrity. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Neonatal rat heart cells cultured in simulated microgravity
NASA Technical Reports Server (NTRS)
Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.
1994-01-01
In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.
Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications
Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua
2014-01-01
We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering. PMID:24955961
An Easy Method for Plant Polysome Profiling.
Lecampion, Cécile; Floris, Maïna; Fantino, Jean Raphaël; Robaglia, Christophe; Laloi, Christophe
2016-08-28
Translation of mRNA to protein is a fundamental and highly regulated biological process. Polysome profiling is considered as a gold standard for the analysis of translational regulation. The method described here is an easy and economical way for fractionating polysomes from various plant tissues. A sucrose gradient is made without the need for a gradient maker by sequentially freezing each layer. Cytosolic extracts are then prepared in a buffer containing cycloheximide and chloramphenicol to immobilize the cytosolic and chloroplastic ribosomes to mRNA and are loaded onto the sucrose gradient. After centrifugation, six fractions are directly collected from the bottom to the top of the gradient, without piercing the ultracentrifugation tube. During collection, the absorbance at 260 nm is read continuously to generate a polysome profile that gives a snapshot of global translational activity. Fractions are then pooled to prepare three different mRNA populations: the polysomes, mRNAs bound to several ribosomes; the monosomes, mRNAs bound to one ribosome; and mRNAs that are not bound to ribosomes. mRNAs are then extracted. This protocol has been validated for different plants and tissues including Arabidopsis thaliana seedlings and adult plants, Nicotiana benthamiana, Solanum lycopersicum, and Oryza sativa leaves.
Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh
2017-03-09
It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.
Gould, Peter V; Saikali, Stephan
2012-01-01
Intraoperative consultations in neuropathology are often assessed by smear preparations rather than by frozen sections. Both techniques are standard practice for light microscopic examination on site, but there is little data comparing these techniques in a telepathology setting. Thirty cases of brain tumours submitted for intraoperative consultation at our institution between July and December 2010 were identified in which both frozen section and tissue smear preparations were available for digitization at 20× magnification. Slides were digitized using a Hamamatsu Nanozoomer 2.0 HT whole slide scanner, and resulting digital images were visualized at 1680 × 1050 pixel resolution with NDP. view software. The original intraoperative diagnosis was concordant with the sign out diagnosis in 29/30 cases; one tumeur was initially interpreted as a high grade glioma but proved to be a lymphoma at sign out. Digitized frozen section slides were sufficient for diagnosis at 10× magnification in 27/30 cases. Digitized tissue smears were sufficient for diagnosis at 10× magnification in 28/30 cases. In two cases tumour was present on the tissue smear but not the frozen section (one case of recurrent astrocytoma, one case of meningeal carcinomatosis). In one case of lymphoma, tumour was present on frozen section only. These discrepancies were attributed to tissue sampling rather than image quality. Examination of digitized slides at higher magnfication (20×) permitted confirmation of mitoses and Rosenthal fibers on tissue smear preparations, but did not change the primary diagnosis. Intra-slide variations in tissue thickness on smear preparations led to variable loss of focus in digitized images, but did not affect image quality in thinner areas of the smear or impede diagnosis. Digitized tissue smears are suitable for intraoperative neurotelepathology and provide comparable information to digitized frozen sections at medium power magnification.
Euthanasia Method for Mice in Rapid Time-Course Pulmonary Pharmacokinetic Studies
Schoell, Adam R; Heyde, Bruce R; Weir, Dana E; Chiang, Po-Chang; Hu, Yiding; Tung, David K
2009-01-01
To develop a means of euthanasia to support rapid time-course pharmacokinetic studies in mice, we compared retroorbital and intravenous lateral tail vein injection of ketamine–xylazine with regard to preparation time, utility, tissue distribution, and time to onset of euthanasia. Tissue distribution and time to onset of euthanasia did not differ between administration methods. However, retroorbital injection could be performed more rapidly than intravenous injection and was considered to be a technically simple and superior alternative for mouse euthanasia. Retroorbital ketamine–xylazine, CO2 gas, and intraperitoneal pentobarbital then were compared as euthanasia agents in a rapid time-point pharmacokinetic study. Retroorbital ketamine–xylazine was the most efficient and consistent of the 3 methods, with an average time to death of approximately 5 s after injection. In addition, euthanasia by retroorbital ketamine–xylazine enabled accurate sample collection at closely spaced time points and satisfied established criteria for acceptable euthanasia technique. PMID:19807971
Euthanasia method for mice in rapid time-course pulmonary pharmacokinetic studies.
Schoell, Adam R; Heyde, Bruce R; Weir, Dana E; Chiang, Po-Chang; Hu, Yiding; Tung, David K
2009-09-01
To develop a means of euthanasia to support rapid time-course pharmacokinetic studies in mice, we compared retroorbital and intravenous lateral tail vein injection of ketamine-xylazine with regard to preparation time, utility, tissue distribution, and time to onset of euthanasia. Tissue distribution and time to onset of euthanasia did not differ between administration methods. However, retroorbital injection could be performed more rapidly than intravenous injection and was considered to be a technically simple and superior alternative for mouse euthanasia. Retroorbital ketamine-xylazine, CO(2) gas, and intraperitoneal pentobarbital then were compared as euthanasia agents in a rapid time-point pharmacokinetic study. Retroorbital ketamine-xylazine was the most efficient and consistent of the 3 methods, with an average time to death of approximately 5 s after injection. In addition, euthanasia by retroorbital ketamine-xylazine enabled accurate sample collection at closely spaced time points and satisfied established criteria for acceptable euthanasia technique.
Concentrated autologous plasma protein: a biochemically neutral solder for tissue welding.
Stewart, R B; Bleustein, C B; Petratos, P B; Chin, K C; Poppas, D P; Kung, R T
2001-01-01
Xenographic or allographic serum protein solders used for laser welding may have immunologic and/or pathogenic complications. The objective of these studies was to develop a safe, autologous solder. Five methods of preparing concentrated autologous plasma protein solder (CAPPS) were evaluated. Next, the CAPPS was evaluated via (1) thermal denaturation studies using differential scanning calorimetry, (2) tissue welding studies to characterize both acute and healing properties. The optimal concentration method to produce CAPPS rapidly was a dialysis method using chemical (osmotic) forces. The CAPPS showed similar denaturation profiles to serum albumin (SA) solders. Acutely, CAPPS provided comparable breaking strengths to SA solders. At 7 days, there was no significant difference in breaking strength or histology between 50% human SA solder and CAPPS (using a porcine skin model). These studies demonstrate that the CAPPS system provides acceptable acute and chronic properties for laser welding. Copyright 2001 Wiley-Liss, Inc.
Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M
1976-10-01
Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.
NASA Astrophysics Data System (ADS)
Kesler, Gavriel; Koren, Rumelia; Gal, Rivka
1998-04-01
Until now, no suitable delivery fiber existed for CO2 laser endodontic radiation in the apical region where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal, thus favorably increasing the thermal effects. The 15 F CO2 microprobe is a flexible, hollow, metal fiber, 300 micrometer in diameter and 20 mm in length, coupled onto a handpiece, with the following radiation parameters: wavelength -- 10.6 micrometer; pulse duration -- 50m/sec; energy per pulse 0.25 joule; energy density -- 353.7J/cm2 per pulse; power on tissue -- 5 W. The study was conducted on 30 vital maxillary or mandibulary; central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees Celsius. Ten teeth represented the control group in which only root canal preparation was performed in the conventional method. Histological examination of the laser treated teeth showed coagulation necrosis and vacuolization of remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal, in all cases treated with 15 F CO2 laser. Gramm stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, and no thermal damage to the surrounding tissue.
Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng
2015-07-01
Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. Copyright © 2015 Elsevier B.V. All rights reserved.
Termination of atrial fibrillation using pulsed low-energy far-field stimulation
Fenton, Flavio H.; Luther, Stefan; Cherry, Elizabeth M.; Otani, Niels F.; Krinsky, Valentin; Pumir, Alain; Bodenschatz, Eberhard; Gilmour, Robert F.
2010-01-01
Background Electrically-based therapies for terminating atrial fibrillation (AF) currently fall into two categories: anti-tachycardia pacing (ATP) and cardioversion. ATP utilizes low-intensity pacing stimuli delivered via a single electrode and is effective for terminating slower tachycardias, but is less effective for treating AF. In contrast, cardioversion uses a single high-voltage shock to terminate AF reliably, but the voltages required produce undesirable side effects, including tissue damage and pain. We propose a new method to terminate AF called far-field anti-fibrillation pacing (FF-AFP), which delivers a short train of low-intensity electrical pulses at the frequency of ATP, but from field electrodes. Prior theoretical work has suggested that this approach can create a large number of activation sites (“virtual” electrodes) that emit propagating waves within the tissue without implanting physical electrodes and thereby may be more effective than point-source stimulation. Methods and Results Using optical mapping in isolated perfused canine atrial preparations, we show that a series of pulses at low field strength (0.9-1.4 V/cm) is sufficient to entrain and subsequently extinguish AF with a success rate of 93 percent (69/74 trials in 8 preparations). We further demonstrate that the mechanism behind FFAFP success is the generation of wave emission sites within the tissue by the applied electric field, which entrains the tissue as the field is pulsed. Conclusions AF in our model can be terminated by FF-AFP using only 13% of the energy required for cardioversion. Further studies are needed to determine whether this marked reduction in energy can increase the effectiveness and safety of terminating atrial tachyarrhythmias clinically. PMID:19635972
[Algorithm of nursing procedure in debridement protocol].
Fumić, Nera; Marinović, Marin; Brajan, Dolores
2014-10-01
Debridement is an essential act in the treatment of various wounds, which removes devitalized and colonized necrotic tissue, also poorly healing tissue and all foreign bodies from the wound, in order to enhance the formation of healthy granulation tissue and accelerate the process of wound healing. Nowadays, debridement is the basic procedure in the management of acute and chronic wounds, where the question remains which way to do it, how extensively, how often and who should perform it. Many parameters affect the decision on what method to use on debridement. It is important to consider the patient's age, environment, choice, presence of pain, quality of life, skills and resources for wound and patient care providers, and also a variety of regulations and guidelines. Irrespective of the level and setting where the care is provided (hospital patients, ambulatory or stationary, home care), care for patients suffering from some form of acute or chronic wound and requiring different interventions and a large number of frequent bandaging and wound care is most frequently provided by nurses/technicians. With timely and systematic interventions in these patients, the current and potential problems in health functioning could be minimized or eliminated in accordance with the resources. Along with daily wound toilette and bandaging, it is important to timely recognize changes in the wound status and the need of tissue debridement. Nurse/technician interventions are focused on preparation of the patient (physical, psychological, education), preparation of materials, personnel and space, assisting or performing procedures of wound care, and documenting the procedures performed. The assumption that having an experienced and competent person for wound care and a variety of methods and approaches in wound treatment is in the patient's best interest poses the need of defining common terms and developing comprehensive guidelines that will lead to universal algorithms in the field.
Bharadwaj, Manish S.; Tyrrell, Daniel J.; Lyles, Mary F.; Demons, Jamehl L.; Rogers, George W.; Molina, Anthony J. A.
2015-01-01
Respirometric profiling of isolated mitochondria is commonly used to investigate electron transport chain function. We describe a method for obtaining samples of human Vastus lateralis, isolating mitochondria from minimal amounts of skeletal muscle tissue, and plate based respirometric profiling using an extracellular flux (XF) analyzer. Comparison of respirometric profiles obtained using 1.0, 2.5 and 5.0 μg of mitochondria indicate that 1.0 μg is sufficient to measure respiration and that 5.0 μg provides most consistent results based on comparison of standard errors. Western blot analysis of isolated mitochondria for mitochondrial marker COX IV and non-mitochondrial tissue marker GAPDH indicate that there is limited non-mitochondrial contamination using this protocol. The ability to study mitochondrial respirometry in as little as 20 mg of muscle tissue allows users to utilize individual biopsies for multiple study endpoints in clinical research projects. PMID:25741892
Advances in Porous Biomaterials for Dental and Orthopaedic Applications
Mour, Meenakshi; Das, Debarun; Winkler, Thomas; Hoenig, Elisa; Mielke, Gabriela; Morlock, Michael M.; Schilling, Arndt F.
2010-01-01
The connective hard tissues bone and teeth are highly porous on a micrometer scale, but show high values of compression strength at a relatively low weight. The fabrication of porous materials has been actively researched and different processes have been developed that vary in preparation complexity and also in the type of porous material that they produce. Methodologies are available for determination of pore properties. The purpose of the paper is to give an overview of these methods, the role of porosity in natural porous materials and the effect of pore properties on the living tissues. The minimum pore size required to allow the ingrowth of mineralized tissue seems to be in the order of 50 µm: larger pore sizes seem to improve speed and depth of penetration of mineralized tissues into the biomaterial, but on the other hand impair the mechanical properties. The optimal pore size is therefore dependent on the application and the used material.
Cellulose/poly-(m-phenylene isophthalamide) porous film as a tissue-engineered skin bioconstruct
NASA Astrophysics Data System (ADS)
Lee, Jae Woong; Han, Sung Soo; Zo, Sum Mi; Choi, Soon Mo
2018-06-01
Regarding the porous structure, coagulated cellulose may not provide sufficient voids for cell proliferation, resulting in tissue growth. For this reason, it was blended with poly(m-phenylene isophthalamide) (PMIA), which could produce a porous structure in the resulting construct. The aim of this study was to confirm the potential of a novel cellulose/PMIA porous film as a tissue-engineered bioconstruct for impaired skin. The films were fabricated by a coagulation process added with a peel-off method, and the structural, mechanical properties were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and capillary flow porometry. CRL-2310 human keratinocytes were used to determine the biocompatibility of the prepared films. The attachment and proliferation of cells were investigated by scanning electron microscopy, DAPI staining, and a cell viability assay. The results show that cellulose/PMIA porous films have potential use as wound matrices for skin tissue genesis.
Borchert, Rolf; Decedue, Charles J.
1978-01-01
Preparation and use of a newly developed pH 4.3 horizontal thin layer acrylamide gel which permits the simultaneous separation of acidic and basic isoperoxidases in up to 30 samples is described. Use of cytochrome c, horseradish peroxidase, and a purified potato isoperoxidase as internal standards for a range in isoelectric points of peroxidases from pH 3 to 11 is introduced to facilitate comparison of results obtained with different materials and different methods. Distribution of tissue-specific isoperoxidases in different cell layers of wounded potato (Solanum tuberosum L.) tissue is shown and their purification described. Evidence for the in vitro degradation of basic potato isoperoxidases resulting in more acidic forms similar to isoperoxidases occurring in wounded potato tissue is presented. The significance of this observation for the postulated differential function of different isoperoxidases is discussed. ImagesFig. 1-3 PMID:16660608
Raman spectroscopy and imaging: applications in human breast cancer diagnosis.
Brozek-Pluska, Beata; Musial, Jacek; Kordek, Radzislaw; Bailo, Elena; Dieing, Thomas; Abramczyk, Halina
2012-08-21
The applications of spectroscopic methods in cancer detection open new possibilities in early stage diagnostics. Raman spectroscopy and Raman imaging represent novel and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman spectroscopy has been employed to examine noncancerous and cancerous human breast tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions characteristic for the vibrations of carotenoids, lipids and proteins. Particular attention was paid to the role played by unsaturated fatty acids in the differentiation between the noncancerous and the cancerous tissues. Comparison of Raman spectra of the noncancerous and the cancerous tissues with the spectra of oleic, linoleic, α-linolenic, γ-linolenic, docosahexaenoic and eicosapentaenoic acids has been presented. The role of sample preparation in the determination of cancer markers is also discussed in this study.
Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons
Krishnaswami, Suguna Rani; Grindberg, Rashel V; Novotny, Mark; Venepally, Pratap; Lacar, Benjamin; Bhutani, Kunal; Linker, Sara B; Pham, Son; Erwin, Jennifer A; Miller, Jeremy A; Hodge, Rebecca; McCarthy, James K; Kelder, Martin; McCorrison, Jamison; Aevermann, Brian D; Fuertes, Francisco Diez; Scheuermann, Richard H; Lee, Jun; Lein, Ed S; Schork, Nicholas; McConnell, Michael J; Gage, Fred H; Lasken, Roger S
2016-01-01
A protocol is described for sequencing the transcriptome of a cell nucleus. Nuclei are isolated from specimens and sorted by FACS, cDNA libraries are constructed and RNA-seq is performed, followed by data analysis. Some steps follow published methods (Smart-seq2 for cDNA synthesis and Nextera XT barcoded library preparation) and are not described in detail here. Previous single-cell approaches for RNA-seq from tissues include cell dissociation using protease treatment at 30 °C, which is known to alter the transcriptome. We isolate nuclei at 4 °C from tissue homogenates, which cause minimal damage. Nuclear transcriptomes can be obtained from postmortem human brain tissue stored at −80 °C, making brain archives accessible for RNA-seq from individual neurons. The method also allows investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs. By following this procedure, it takes about 4 d to construct cDNA libraries that are ready for sequencing. PMID:26890679
Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology
Mustafi, Debarshi; Avishai, Amir; Avishai, Nanthawan; Engel, Andreas; Heuer, Arthur; Palczewski, Krzysztof
2011-01-01
Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl−/−) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field. PMID:21439323
Male fertility preservation before gonadotoxic therapies
Wyns, C.
2010-01-01
Background: Recent advances in cancer therapy have resulted in an increased number of long-term cancer survivors. Unfortunately, aggressive chemotherapy, radiotherapy and preparative regimens for bone marrow transplantation can severely affect male germ cells, including spermatogonial stem cells (SSCs), and lead to permanent loss of fertility. Different options for fertility preservation are dependent on the pubertal state of the patient. Methods: Relevant studies were identified by an extensive Medline search of English and French language articles. Results: Sperm cryopreservation prior to gonadotoxic treatment is a well established method after puberty. In case of ejaculation failure by masturbation, assisted ejaculation methods or testicular tissue sampling should be considered. Although no effective gonadoprotective drug is yet available for in vivo spermatogonial stem cell (SSC) protection in humans, current evidence supports the feasibility of immature testicular tissue (ITT) cryopreservation. The different cryopreservation protocols and available fertility restoration options from frozen tissue, i.e. cell suspension transplantation, tissue grafting and in vitro maturation, are presented. Results obtained in humans are discussed in the light of lessons learned from animal studies. Conclusion: Advances in reproductive technology have made fertility preservation a real possibility in young patients whose gonadal function is threatened by gonadotoxic therapies. The putative indications for such techniques, as well as their limitations according to disease, are outlined. PMID:25302103
Li, Xiyu; Chen, Haifeng
2016-10-07
The exploration of bone reconstruction with time requires the combination of a biological method and a chemical technique. Lanthanide Yb 3+ and Ho 3+ co-doped fluorapatite (FA:Yb 3+ /Ho 3+ ) and hydroxyapatite (HA:Yb 3+ /Ho 3+ ) particles with varying dopant concentrations were prepared by hydrothermal synthesis and thermal activation. Controllable green and red upconversion emissions were generated under 980 nm near-infrared excitation; the FA:Yb 3+ /Ho 3+ particles resulted in superior green luminescence, while HA:Yb 3+ /Ho 3+ dominated in red emission. The difference in the green and red emission behavior was dependent on the lattice structure and composition. Two possible lattice models were proposed for Yb 3+ /Ho 3+ co-doped HA and FA along the hydroxyl channel and fluorine channel of the apatite crystal structure. We first reported the use of the upconversion apatite particles to clearly distinguish implanted material from bone tissue on stained histological sections of harvested in vivo samples. The superposition of the tissue image and material image is a creative method to show the material-tissue distribution and interrelation. The upconversion apatite particles and image superposition method provide a novel strategy for long-term discriminable fluorescence tracking of implanted material or scaffold during bone regeneration.
Studying NK cell responses to ectromelia virus infections in mice.
Fang, Min; Sigal, Luis
2010-01-01
Here we describe methods for the in vivo study of antiviral NK cell responses using the mouse Orthopoxvirus ectromelia virus as a model, the agent of mousepox. The methods include those specific for the preparation and use of ectromelia virus such as the production of virus stocks in tissue culture and in live mice, the purification of virus stocks, the titration of virus stocks and virus loads in organs, and the infection of mice. The chapter also includes methods for the specific study of NK cell responses in infected mice such as the preparation of organs (lymph nodes, spleen, and liver) for analysis, the study of NK cell responses by flow cytometry, the adoptive transfer of NK cells, the measurement of NK cell cytolytic activity ex vivo and in vivo, and the determination of NK cell proliferation by bromodeoxyuridine loading or by dilution of carboxyfluorescein diacetate succinimidyl ester (CFSE).
Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria
2015-02-10
Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.
NASA Astrophysics Data System (ADS)
Wang, Can; Bao, Chenchen; Liang, Shujing; Zhang, Lingxia; Fu, Hualin; Wang, Yutian; Wang, Kan; Li, Chao; Deng, Min; Liao, Qiande; Ni, Jian; Cui, Daxiang
2014-05-01
The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.
In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate.
Tunalı, Mustafa; Özdemir, Hakan; Küçükodacı, Zafer; Akman, Serhan; Fıratlı, Erhan
2013-07-01
We have developed a new, titanium-prepared, platelet-rich fibrin (T-PRF) together with the protocol for forming it, which is based on the hypothesis that titanium tubes may be more effective at activating platelets than the glass tubes used by Chouckroun in his platelet-rich fibrin (PRF) method. The aim of this study was to find a suitable animal model in which to evaluate the method and to investigate the efficacy of T-PRF for wound healing. Blood samples from 6 rabbits were used to confirm the protocol for formation of T-PRF. We evaluated T-PRF or T-PRF-like clots morphologically using scanning electron microscopy (EM). Blood samples from 5 rabbits were used to develop an experiment in which to evaluate the effects of T-PRF on wound healing. The mucoperiosteal flaps were filled with autologous T-PRF membranes from the vestibule in the anterior mandibular regions. Samples collected from the surgical sites were stained with haematoxylin and eosin. We found a mature fibrin network in T-PRF clots that had been centrifuged for 15 min at 3500 rpm and, 15 days after placement of the membrane, we found newly-forming connective tissue and islets of bony tissue in the T-PRF membrane. These results show that T-PRF could induce the formation of new bone with new connective tissue in a rabbit model of wound healing within 30 days of treatment. Published by Elsevier Ltd.
Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses
NASA Astrophysics Data System (ADS)
Yuan, Liu; Fan, Wenshuai; Han, Linyingjun; Guo, Changan; Yan, Zuoqin; Zhu, Meifang; Mo, Xiumei
2018-03-01
In this study, natural materials (sodium alginate, dextran, gelatin and carboxymethyl chitosan) were modified to get aldehyde components and amino components. Upon mixing the two-component solutions together, four kinds of Schiff base hydrogels formed successfully within 5-300 s and could seal the wound tissue. The cytotoxicity tests of hydrogel extraction solution confirmed that the hydrogels are nontoxic materials. The adhesive ability was evaluated in vivo by measuring the adhesive strength after sealing the skin incisions on the back of rats. All the hydrogels showed higher adhesive strength than that of commercial fibrin glue and the blank control. The histological staining observation by hematoxylin and eosin staining (HE) and Masson's trichrome staining (MTC) methods suggested that the hydrogels had good biocompatibility and biodegradation in vivo. They have only normal initial inflammation to skin tissue and could improve the formation of new collagen in the incision section. So, the prepared hydrogels were both safe and effective tissue adhesive, which had the great potentials to be used as skin tissue adhesive.
Nelson, Brian A; Ritenour, Rusty J
2014-02-01
To evaluate endothelial cell density (ECD) of eye-bank-prepared tissue for use in Descemet's stripping automated endothelial keratoplasty (DSAEK). Prospective case series of consecutive corneal tissue prepared for DSAEK surgery. Sixty-seven sequential corneal-scleral tissue specimens representing 48 human donors processed for use in DSAEK surgery by the Regional Tissue Bank (Halifax, Nova Scotia). Corneal-scleral donor tissue was obtained by in situ recovery. ECD was recorded using the EB-3000 XYZ (HAI Laboratories Inc, Lexington, MA) specular microscope within 24 hours of preservation. Before the tissue was dissected, the corneal thickness was measured using the DGH-550 PACHETTE 2 (DGH Technology, Exton, PA) ultrasound pachymeter. The dissection was performed using a 300-μm Moria ALTK model microkeratome (Moria Inc). The posterior bed thickness was measured, and the anterior flap was replaced. Endothelial cell count density was obtained after re-preservation. Complete measurements were obtained for 42 of 67 corneas. In 25 corneas it was not possible to obtain a postdissection ECD measurement. The mean ECD before dissection was 2806 ± 317 cells/mm(2). The mean ECD after dissection was 2772 ± 318 cells/mm(2). There was an average loss of 34 cells/mm(2) (95% CI -110 to 40 cells/mm(2), p = 0.3). This case series confirms that ECD is preserved when DSAEK tissue is prepared in advance of surgery by trained eye-bank technicians in a low-volume Canadian eye bank. It was difficult to obtain clear images of the endothelial cell layer postdissection, possibly because of tissue swelling or distortion. Sixty-six of 67 corneas included in the study were used for surgery. © 2013 Canadian Ophthalmological Society Published by Canadian Ophthalmological Society All rights reserved.
Post-sampling release of free fatty acids - effects of heat stabilization and methods of euthanasia.
Jernerén, Fredrik; Söderquist, Marcus; Karlsson, Oskar
2015-01-01
The field of lipid research has made progress and it is now possible to study the lipidome of cells and organelles. A basic requirement of a successful lipid study is adequate pre-analytical sample handling, as some lipids can be unstable and postmortem changes can cause substantial accumulation of free fatty acids (FFAs). The aim of the present study was to investigate the effects of conductive heat stabilization and euthanasia methods on FFA levels in the rat brain and liver using liquid chromatography tandem mass spectrometry. The analysis of brain homogenates clearly demonstrated phospholipase activity and time-dependent post-sampling changes in the lipid pool of snap frozen non-stabilized tissue. There was a significant increase in FFAs already at 2min, which continued over time. Heat stabilization was shown to be an efficient method to reduce phospholipase activity and ex vivo lipolysis. Post-sampling effects due to tissue thawing and sample preparation induced a massive release of FFAs (up to 3700%) from non-stabilized liver and brain tissues compared to heat stabilized tissue. Furthermore, the choice of euthanasia method significantly influenced the levels of FFAs in the brain. The FFAs were decreased by 15-44% in the group of animals euthanized by pentobarbital injection compared with CO2 inhalation or decapitation. Our results highlight the importance of considering euthanasia methods and pre-analytical treatment in lipid analysis, factors which may otherwise interfere with the outcome of the experiments. Copyright © 2014 Elsevier Inc. All rights reserved.
Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam
2016-01-01
Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements.
Sapozhnikova, Yelena; Simons, Tawana; Lehotay, Steven J
2015-05-13
A simple, fast, and cost-effective sample preparation method, previously developed and validated for the analysis of organic contaminants in fish using low-pressure gas chromatography-tandem mass spectrometry (LPGC-MS/MS), was evaluated for the analysis of polybrominated diphenyl ethers (PBDEs) and dichlorodiphenyltrichloroethane (DDT) pesticides using enzyme-linked immunosorbent assay (ELISA). The sample preparation technique was based on the quick, easy, cheap, rugged, effective, and safe (QuEChERS) approach with filter-vial dispersive solid phase extraction (d-SPE). Incurred PBDEs and DDTs were analyzed in three types of fish with 3-10% lipid content: Pacific croaker, salmon, and National Institute of Standards and Technology (NIST) Standard Reference Material 1947 (Lake Michigan fish tissue). LPGC-MS/MS and ELISA results were in agreement: 108-111 and 65-82% accuracy ELISA versus LPGC-MS/MS results for PBDEs and DDTs, respectively. Similar detection limits were achieved for ELISA and LPGC-MS/MS. Matrix effects (MEs) were significant (e.g., -60%) for PBDE measurement in ELISA, but not a factor in the case of DDT pesticides. This study demonstrated that the sample preparation method can be adopted for semiquantitative screening analysis of fish samples by commercial kits for PBDEs and DDTs.
Trace element contamination in feather and tissue samples from Anna’s hummingbirds
Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.
2017-01-01
Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.
Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture
Amornvit, Pokpong; Srithavaj, Theerathavaj
2014-01-01
Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638
Anti-obesity effects of Rapha diet® preparation in mice fed a high-fat diet
Kim, Jihyun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Bang, Paul
2012-01-01
The anti-obesity activities of Rapha diet® preparation containing silkworm pupa peptide, Garcinia cambogia, white bean extract, mango extract, raspberry extract, cocoa extract, and green tea extract were investigated in mice with dietary obesity. Male C57BL/6 mice were fed a high-fat diet (HFD) containing 3% Rapha diet® preparation for 8 weeks, and blood and tissue parameters of obesity were analyzed. The HFD markedly enhanced body weight gain by increasing the weights of epididymal, perirenal, and mesenteric adipose tissues. The increased body weight gain induced by HFD was significantly reduced by feeding Rapha diet® preparation, in which decreases in the weight of abdominal adipose tissue and the size of abdominal adipocytes were confirmed by microscopic examination. Long-term feeding of HFD increased blood triglycerides and cholesterol levels, leading to hepatic lipid accumulation. However, Rapha diet® preparation not only reversed the blood lipid levels, but also attenuated hepatic steatosis. The results indicate that Rapha diet® preparation could improve HFD-induced obesity by reducing both lipid accumulation and the size of adipocytes. PMID:23326287
Torres, D P; Martins-Teixeira, M B; Silva, E F; Queiroz, H M
2012-01-01
A very simple and rapid method for the determination of total mercury in fish samples using the Direct Mercury Analyser DMA-80 was developed. In this system, a previously weighted portion of fresh fish is combusted and the released mercury is selectively trapped in a gold amalgamator. Upon heating, mercury is desorbed from the amalgamator, an atomic absorption measurement is performed and the mercury concentration is calculated. Some experimental parameters have been studied and optimised. In this study the sample mass was about 100.0 mg. The relative standard deviation was lower than 8.0% for all measurements of solid samples. Two calibration curves against aqueous standard solutions were prepared through the low linear range from 2.5 to 20.0 ng of Hg, and the high linear range from 25.0 to 200.0 ng of Hg, for which a correlation coefficient better than 0.997 was achieved, as well as a normal distribution of the residuals. Mercury reference solutions were prepared in 5.0% v/v nitric acid medium. Lyophilised fish tissues were also analysed; however, the additional procedure had no advantage over the direct analysis of the fresh fish, and additionally increased the total analytical process time. A fish tissue reference material, IAEA-407, was analysed and the mercury concentration was in agreement with the certified value, according to the t-test at a 95% confidence level. The limit of quantification (LOQ), based on a mercury-free sample, was 3.0 µg kg(-1). This LOQ is in accordance with performance criteria required by the Commission Regulation No. 333/2007. Simplicity and high efficiency, without the need for any sample preparation procedure, are some of the qualities of the proposed method.
Mao, Daoyong; Li, Qing; Bai, Ningning; Dong, Hongzhou; Li, Daikun
2018-01-15
A major challenge in bone tissue engineering is the development of biomimetic scaffolds which should simultaneously meet mechanical strength and pore structure requirements. Herein, we combined technologies of high concentration solvent casting, particulate leaching, and room temperature compression molding to prepare a novel poly(lactic acid)/ethyl cellulose/hydroxyapatite (PLA/EC/HA) scaffold. The functional, structural and mechanical properties of the obtained porous scaffolds were characterized. The results indicated that the PLA/EC/HA scaffolds at the 20wt% HA loading level showed optimal mechanical properties and desired porous structure. Its porosity, contact angle, compressive yield strength and weight loss after 56days were 84.28±7.04%, 45.13±2.40°, 1.57±0.09MPa and 4.77±0.32%, respectively, which could satisfy the physiological demands to guide bone regeneration. Thus, the developed scaffolds have potential to be used as a bone substitute material for bone tissue engineering application. Copyright © 2017. Published by Elsevier Ltd.
Costa, Renata G; Bah, Homegnon A F; Bandeira, Matheus J; Oliveira, Sérgio S P; Menezes-Filho, José A
2017-09-01
Lead (Pb) and cadmium (Cd) were determined in mangrove root crab (Goniopsis cruentata) tissues (in natura) and in two culinary preparations by graphite furnace atomic absorption spectrometry. Mangrove root crab samples from three sampling sites along the Jaguaripe River, Bahia, Brazil, where lead-glazed ceramics are produced, and from two commercial preparations were collected or purchased in March and April 2016. Cd levels in raw and processed samples were below the methods' limits of detection (0.016 mg kg -1 ), while Pb levels in the raw tissues were determined only in the gills (0.67 mg kg -1 ) and in the hepatopancreas (0.14 mg kg -1 ). However, Pb levels increased from 0.05 to 2.84 mg kg -1 in boiled/sorted muscle and in the traditional stew (with a 57-fold increase), respectively. Pb levels augmented significantly in the processed food due to migration of Pb used in the glazing of cooking ceramic utensils, surpassing the Brazilian and international safety limits.
A SIMPLE FREEZE-FRACTURE REPLICATION METHOD FOR ELECTRON MICROSCOPY
Bullivant, Stanley; Ames, Adelbert
1966-01-01
A simple method to achieve results similar to the freeze-etching technique of Moor et al. (1961) is described. The frozen tissue is cut under liquid nitrogen with a razor blade outside the evaporator rather than inside with a cooled microtome. The conditions of the experiment do not favor sublimation, and it is proposed that the structure of the replica be explained by local faults in the cleavage plane which leaves structures, such as membranes, standing above the ice. Micrographs of replicas of glycerol-protected frozen small intestine of mouse prepared by the method are presented and the structural details they show are discussed. The problem of vapor-deposited contamination is discussed. It is concluded that this is a practical method for obtaining electron micrographs that are relatively free of artifact, and that further improvements may be expected from the use of rapidly frozen fresh tissue and a clean vacuum system, possibly of the ion-pumped type. PMID:5962938
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr
1999-10-01
A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.
Sun, Yulong; Ip, Philbert; Chakrabartty, Avijit
2017-09-03
Immunofluorescence is a common method used to visualize subcellular compartments and to determine the localization of specific proteins within a tissue sample. A great hindrance to the acquisition of high quality immunofluorescence images is endogenous autofluorescence of the tissue caused by aging pigments such as lipofuscin or by common sample preparation processes such as aldehyde fixation. This protocol describes how background fluorescence can be greatly reduced through photobleaching using white phosphor light emitting diode (LED) arrays prior to treatment with fluorescent probes. The broad-spectrum emission of white phosphor LEDs allow for bleaching of fluorophores across a range of emission peaks. The photobleaching apparatus can be constructed from off-the-shelf components at very low cost and offers an accessible alternative to commercially available chemical quenchers. A photobleaching pre-treatment of the tissue followed by conventional immunofluorescence staining generates images free of background autofluorescence. Compared to established chemical quenchers which reduced probe as well as background signals, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. Although photobleaching requires more time for pre-treatment, higher intensity LED arrays may be used to reduce photobleaching time. This simple method can potentially be applied to a variety of tissues, particularly postmitotic tissues that accumulate lipofuscin such as the brain and cardiac or skeletal muscles.
Yi, Gihwan; Choi, Jun-Ho; Lee, Jong-Hee; Jeong, Unggi; Nam, Min-Hee; Yun, Doh-Won; Eun, Moo-Young
2005-01-01
We describe a rapid and simple procedure for homogenizing leaf samples suitable for mini/midi-scale DNA preparation in rice. The methods used tungsten carbide beads and general vortexer for homogenizing leaf samples. In general, two samples can be ground completely within 11.3+/-1.5 sec at one time. Up to 20 samples can be ground at a time using a vortexer attachment. The yields of the DNA ranged from 2.2 to 7.6 microg from 25-150 mg of young fresh leaf tissue. The quality and quantity of DNA was compatible for most of PCR work and RFLP analysis.
NASA Astrophysics Data System (ADS)
Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming
2008-02-01
Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.
Drsata, Jaroslav
2003-01-01
Transamination of tryptophan belongs to minor pathways of amino acid metabolism. The present paper describes conditions for application of dinitrophenylhydrazine method, originally prepared for alanine aminortansferase and aspartate aminotransferase assay, to the measurement of tryptophan transamination catalysed by any of the enzymes mentioned above. The method was tested using purified pig heart AST. While the free enzyme showed a characteristic absorption profile with the maxima at 360 and 430 nm, the course of transamination of tryptophan was confirmed by the measurement of UV-VIS spectral changes of the coenzyme in the active site of the enzyme in the presence of the amino acid substrate only, when tryptophan caused a shift of the peak from 360 nm to 330 nm due to a change of the pyridoxal form to the pyridoxamine form (= the first step of ping-pong transaminating reaction). A general limitation of dinitrophenylhydrazine method is the interference of hydrazones formed from the coenzyme pyridoxal-5'-phosphate and from the oxo- substrate 2-oxoglutarate, showing the absorption maxima at 492 nm and 388 nm, respectively with the hydrazones formed by the oxo- products (pyruvate and/or oxaloacetate in the case of ALT/AST, the absorption maxima at 443 nm in our measurements). In the case of tryptophan transamination, indolepyruvate as the oxo- product of a catalysed reaction forms dinitrophenylhydrazone, which has, besides a maximum at 435 nm, a distinct peak at 542 nm, convenient for the product concentration measurement. This is favourable for resolution from other (interfering) hydrazones. Suitable conditions for tryptophan transamination in tissue and enzyme preparations were found. Reaching optimal conditions for tryptophan transamination measurements in vitro is generally limited by low solubility of the amino acid in water solutions: With AST preparation, the velocity of catalysed reaction at 5-50 x 10(-3) M tryptophan concentration was of 1st order to the amino acid substrate. Km for tryptophan was found > or = 2 x 10(-1) M. Therefore the enzyme activity measurement at two different tryptophan concentrations is recommended for unknown samples. Tryptophan transamination by purified pig AST was compared with that catalysed by preparations obtained from mammalian tissues.
Mann, Beth; Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine
2017-01-01
Cell wall is a complex biopolymer on the surface of all Gram-positive bacteria. During infection, cell wall is recognized by the innate immune receptor Toll-like receptor 2 causing intense inflammation and tissue damage. In animal models, cell wall traffics from the blood stream to many organs in the body, including brain, heart, placenta and fetus. This protocol describes how to prepare purified cell wall from Streptococcus pneumoniae, detect its distribution in animal tissues, and study the tissue response using the placenta and fetal brain as examples. PMID:28573167
2013-01-01
Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233
Evaluation of telomere length in human cardiac tissues using cardiac quantitative FISH.
Sharifi-Sanjani, Maryam; Meeker, Alan K; Mourkioti, Foteini
2017-09-01
Telomere length has been correlated with various diseases, including cardiovascular disease and cancer. The use of currently available telomere-length measurement techniques is often restricted by the requirement of a large amount of cells (Southern-based techniques) or the lack of information on individual cells or telomeres (PCR-based methods). Although several methods have been used to measure telomere length in tissues as a whole, the assessment of cell-type-specific telomere length provides valuable information on individual cell types. The development of fluorescence in situ hybridization (FISH) technologies enables the quantification of telomeres in individual chromosomes, but the use of these methods is dependent on the availability of isolated cells, which prevents their use with fixed archival samples. Here we describe an optimized quantitative FISH (Q-FISH) protocol for measuring telomere length that bypasses the previous limitations by avoiding contributions from undesired cell types. We have used this protocol on small paraffin-embedded cardiac-tissue samples. This protocol describes step-by-step procedures for tissue preparation, permeabilization, cardiac-tissue pretreatment and hybridization with a Cy3-labeled telomeric repeat complementing (CCCTAA) 3 peptide nucleic acid (PNA) probe coupled with cardiac-specific antibody staining. We also describe how to quantify telomere length by means of the fluorescence intensity and area of each telomere within individual nuclei. This protocol provides comparative cell-type-specific telomere-length measurements in relatively small human cardiac samples and offers an attractive technique to test hypotheses implicating telomere length in various cardiac pathologies. The current protocol (from tissue collection to image procurement) takes ∼28 h along with three overnight incubations. We anticipate that the protocol could be easily adapted for use on different tissue types.
Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D
2016-11-01
To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A.; Chauhan, Sunanda
2018-01-01
Background: Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. Materials and Methods: We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. Results: We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Conclusions: Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material. PMID:29643653
Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.
2015-01-01
Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902
Elemental Analysis in Biological Matrices Using ICP-MS.
Hansen, Matthew N; Clogston, Jeffrey D
2018-01-01
The increasing exploration of metallic nanoparticles for use as cancer therapeutic agents necessitates a sensitive technique to track the clearance and distribution of the material once introduced into a living system. Inductively coupled plasma mass spectrometry (ICP-MS) provides a sensitive and selective tool for tracking the distribution of metal components from these nanotherapeutics. This chapter presents a standardized method for processing biological matrices, ensuring complete homogenization of tissues, and outlines the preparation of appropriate standards and controls. The method described herein utilized gold nanoparticle-treated samples; however, the method can easily be applied to the analysis of other metals.
Li, Yi; Zhang, Zhao-Yang; Zhang, Jin-Lan
2007-03-01
A simple and reproducible HPLC method for quantification of hydroxysafflor yellow A (HSYA) in rat plasma and tissues after oral administration of safflower extract or safflor yellow (SY) was developed. Sample preparation was achieved by protein precipitation of plasma and tissue homogenates with three volumes of methanol. p-Hydroxybenzaldehyde was used as the internal standard (IS). HSYA and IS were separated on a Hypersil BDS-C(18) column with a gradient elution system composed of acetonitrile and aqueous acetic acid. UV detection was used at 320 nm. The calibration curves were linear in all matrices (r(2) > 0.999) in the concentration ranges 0.51-101.36 microg/mL for plasma, 12.27-2454.46 microg/g for intestines and 0.96-192.20 microg/g for lung. The intra-day and inter-day precision were all less than 12.5%, and the extract recovery was in the range 64.1-103.7% with RSD less than 15.6% for HSYA in all matrices. The method was used successfully to quantify HSYA in rat plasma and tissue samples to support a pharmacokinectic study.
Liu, Chi; Kurokawa, Ryosuke; Fujino, Masayuki; Hirano, Shinichi; Sato, Bunpei; Li, Xiao-Kang
2014-01-01
Hydrogen exerts beneficial effects in disease animal models of ischemia-reperfusion injury as well as inflammatory and neurological disease. Additionally, molecular hydrogen is useful for various novel medical and therapeutic applications in the clinical setting. In the present study, the hydrogen concentration in rat blood and tissue was estimated. Wistar rats were orally administered hydrogen super-rich water (HSRW), intraperitoneal and intravenous administration of hydrogen super-rich saline (HSRS), and inhalation of hydrogen gas. A new method for determining the hydrogen concentration was then applied using high-quality sensor gas chromatography, after which the specimen was prepared via tissue homogenization in airtight tubes. This method allowed for the sensitive and stable determination of the hydrogen concentration. The hydrogen concentration reached a peak at 5 minutes after oral and intraperitoneal administration, compared to 1 minute after intravenous administration. Following inhalation of hydrogen gas, the hydrogen concentration was found to be significantly increased at 30 minutes and maintained the same level thereafter. These results demonstrate that accurately determining the hydrogen concentration in rat blood and organ tissue is very useful and important for the application of various novel medical and therapeutic therapies using molecular hydrogen. PMID:24975958
Zijah, Vahid; Salehi, Roya; Aghazadeh, Marziyeh; Samiei, Mohammad; Alizadeh, Effat; Davaran, Soodabeh
2017-06-01
Tissue engineering has emerged as a potential therapeutic option for dental problems in recent years. One of the policies in tissue engineering is to use both scaffolds and additive factors for enhancing cell responses. This study aims to evaluate and compare the effect of three types of biofactors on poly-caprolactone-poly-ethylene glycol-poly caprolactone (PCL-PEG-PCL) nanofibrous scaffold on human dental pulp stem cell (hDPSCs) engineering. The PCL-PEG-PCL copolymer was synthesized with ring opening polymerization method, and its nanofiber scaffold was prepared by electrospinning method. Nanofibrous scaffold-seeded hDPSCs were treated with sodium fluoride (NaF), melanocyte-stimulating hormone (MSH), or simvastatin (SIM). Non-treated nanofiber seeded cells were utilized as control. The viability, biocompatibility, adhesion, proliferation rate, morphology, osteo/odontogenic potential, and the expression of tissue-specific genes were studied. The results showed that significant higher results demonstrated significant higher adhesive behavior, viability, alizarin red activity, and dentin specific gene expression in MSH- and SIM-treated cells (p < 0.05). This study is unique; in that, it compares the effects of different treatments for optimization of dental tissue engineering.
NASA Astrophysics Data System (ADS)
Chavez-Sanchez, Cristina M.; Alvarez-Borrego, Josue; Montoya-Rodriguez, L.; Garcia-Gasca, A.; Fajer Avila, Emma J.; Pacheco-Marges, R.
2004-10-01
White spot syndrome (WSSV) is a viral disease which affects many crustacean species including commercial shrimps. Adequate, precise and quick methods to diagnose on time the presence of the disease in order to apply different strategies to avoid the dispersion and to reduce mortalities is necessary. Histopathology is an important diagnostic method. However, histopathology has the problem that requires time to prepare the histological slides and time to arrive to some diagnosis because this depend on the nature of the tissues, the pathogen(s) to find, the number of organisms, number of slides to analyze and the skill of the technician. This paper try to demonstrate the sensibility of one digital system of processing and recognition of images using color correlation with phase filters, to identify inclusion bodies of WSSV. Infected tissues were processed to obtain histological slides and to verify that the inclusion bodies observed were of WSV, in situ hybridization were carried out. The sensibility results of the recognition of the inclusion bodies of WSSV with the color correlation program was 86.1%. The highest percentage of recognition was in nervous system and tegument glands with 100%. The values in the stomach epithelium and heart tissue was 78.45% of recognition. Tissues with the lowest recognition values were lymphoid organ and hematopoietic tissue. It is necessary further studies to increase the sensibility and to obtain the specificity.
Two-photon confocal microscopy in wound healing
NASA Astrophysics Data System (ADS)
Navarro, Fernando A.; So, Peter T. C.; Driessen, Antoine; Kropf, Nina; Park, Christine S.; Huertas, Juan C.; Lee, Hoon B.; Orgill, Dennis P.
2001-04-01
Advances in histopathology and immunohistochemistry have allowed for precise microanatomic detail of tissues. Two Photon Confocal Microscopy (TPCM) is a new technology useful in non-destructive analysis of tissue. Laser light excites the natural florophores, NAD(P)H and NADP+ and the scattering patterns of the emitted light are analyzed to reconstruct microanatomic features. Guinea pig skin was studied using TPCM and skin preparation methods including chemical depilation and tape striping. Results of TPCM were compared with conventional hematoxylin and eosin microscopy. Two-dimensional images were rendered from the three dimensional reconstructions. Images of deeper layers including basal cells and the dermo-epidermal junction improved after removing the stratum corneum with chemical depilation or tape stripping. TCPM allows good resolution of corneocytes, basal cells and collagen fibers and shows promise as a non-destructive method to study wound healing.
Amable, Paola Romina; Carias, Rosana Bizon Vieira; Teixeira, Marcus Vinicius Telles; da Cruz Pacheco, Italo; Corrêa do Amaral, Ronaldo José Farias; Granjeiro, José Mauro; Borojevic, Radovan
2013-06-07
Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 10(6) to 1.9 × 10(6) platelets/μl). Platelets were highly purified, because only <0.3% from the initial red blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of several growth factors, including platelet-derived growth factor and TGF. Our study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool from different donors with high reproducibility. These findings support the use of PRP in therapies aiming for tissue regeneration, and its content characterization will allow us to understand and improve the clinical outcomes.
Li, Xing; Zhao, Yayun; Bing, Yue; Li, Yaping; Gan, Ning; Guo, Zhiyong; Peng, Zhaoxiang; Zhu, Yabin
2013-06-26
The macroporous materials were prepared from the transformation of cuttlebone as biotemplates under hydrothermal reactions and characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric/differential thermal analyses (TG-DTA), and scanning electron microscopy (SEM). Cell experimental results showed that the prepared materials as bone tissue engineering scaffolds or fillers had fine biocompatibility suitable for adhesion and proliferation of the hMSCs (human marrow mesenchymal stem cells). Histological analyses were carried out by implanting the scaffolds into a rabbit femur, where the bioresorption, degradation, and biological activity of the scaffolds were observed in the animal body. The prepared scaffolds kept the original three-dimensional frameworks with the ordered porous structures, which made for blood circulation, nutrition supply, and the cells implantation. The biotemplated syntheses could provide a new effective approach to prepare the bone tissue engineering scaffold materials.
Rongen, Jan J; van Bochove, Bas; Hannink, Gerjon; Grijpma, Dirk W; Buma, Pieter
2016-11-01
Photo-crosslinked networks prepared from three-armed methacrylate functionalized PTMC oligomers (PTMC-tMA macromers) are attractive materials for developing an anatomically correct meniscus scaffold. In this study, we evaluated cell specific biocompatibility, in vitro and in vivo degradation behavior of, and tissue response to, such PTMC networks. By evaluating PTMC networks prepared from PTMC-tMA macromers of different molecular weights, we were able to assess the effect of macromer molecular weight on the degradation rate of the PTMC network obtained after photo-crosslinking. Three photo-crosslinked networks with different crosslinking densities were prepared using PTMC-tMA macromers with molecular weights 13.3, 17.8, and 26.7 kg/mol. Good cell biocompatibility was demonstrated in a proliferation assay with synovium derived cells. PTMC networks degraded slowly, but statistically significant, both in vitro as well as subcutaneously in rats. Networks prepared from macromers with higher molecular weights demonstrated increased degradation rates compared to networks prepared from initial macromers of lowest molecular weight. The degradation process took place via surface erosion. The PTMC networks showed good tissue tolerance during subcutaneous implantation, to which the tissue response was characterized by the presence of fibrous tissue and encapsulation of the implants. Concluding, we developed cell and tissue biocompatible, photo-crosslinked PTMC networks using PTMC-tMA macromers with relatively high molecular weights. These photo-crosslinked PTMC networks slowly degrade by a surface erosion process. Increasing the crosslinking density of these networks decreases the rate of surface degradation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2823-2832, 2016. © 2016 Wiley Periodicals, Inc.
Krabcova, Ivana; Studeny, Pavel; Jirsova, Katerina
2013-06-01
To assess the quantitative and qualitative parameters of pre-cut posterior corneal lamellae for Descemet membrane endothelial keratoplasty with a stromal rim (DMEK-S) prepared manually in the Ocular Tissue Bank Prague. All 65 successfully prepared pre-cut posterior corneal lamellae provided for grafting during a 2-year period were analyzed retrospectively. The lamellae, consisting of a central zone of endothelium-Descemet membrane surrounded by a supporting peripheral stromal rim, were prepared manually from corneoscleral buttons having an endothelial cell density higher than 2,500 cells/mm(2). The live endothelial cell density, the percentage of dead cells, the hexagonality and the coefficient of variation were assessed before and immediately after preparation as well as after 2 days of organ culture storage at 31 °C. Altogether, the endothelium of 57 lamellae was assessed. Immediately after preparation, the mean live endothelial cell density was 2,835 cells/mm(2) and, on average, 1.8 % of dead cells were found. After 2 days of storage, the cell density decreased significantly to 2,757 cells/mm(2) and the percentage of dead cells to 1.0 %. There was a significant change in the mean hexagonality and the coefficient of variation after lamellar preparation and subsequent storage. The amount of tissue wasted during the preparation was 23 %. The endothelial cell density of posterior corneal lamellae sent for DMEK-S was higher than 2,700 cells/mm(2) in average with a low percentage of dead cells; 65 pre-cut tissues were used for grafting during a 2-year period.
Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold
NASA Astrophysics Data System (ADS)
Kumar, Sachin; Chatterjee, Kaushik
2015-01-01
The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05060f
Fu, Qi-Wei; Zi, Yun-Peng; Xu, Wei; Zhou, Rong; Cai, Zhu-Yun; Zheng, Wei-Jie; Chen, Feng; Qian, Qi-Rong
2016-01-01
Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP) nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(d,l-lactic acid) (ACP-PLA) nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63) cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering. PMID:27785016
Schallhorn, Julie M; Holiman, Jeffrey D; Stoeger, Christopher G; Chamberlain, Winston
2016-03-01
To evaluate endothelial cell damage after eye bank preparation and passage through 1 of 2 different injectors for Descemet membrane endothelial keratoplasty grafts. Eighteen Descemet membrane endothelial keratoplasty grafts were prepared by Lions VisionGift with the standard partial prepeel technique and placement of an S-stamp for orientation. The grafts were randomly assigned to injection with either a glass-modified Jones tube injector (Gunther Weiss Scientific Glass) or a closed-system intraocular lens injector (Viscoject 2.2; Medicel). After injection, the grafts were stained with the vital fluorescent dye Calcein AM and digitally imaged. The percentage of cell loss was calculated by measuring the area of nonfluorescent pixels and dividing it by the total graft area pixels. Grafts injected using the modified Jones tube injector had an overall cell loss of 27% ± 5% [95% confidence interval, 21%-35%]. Grafts injected using the closed-system intraocular lens injector had a cell loss of 32% ± 8% (95% confidence interval, 21%-45%). This difference was not statistically significant (P = 0.3). Several damage patterns including damage due to S-stamp placement were observed, but they did not correlate with injector type. In this in vitro study, there was no difference in the cell loss associated with the injector method. Grafts in both groups sustained significant cell loss and displayed evidence of graft preparation and S-stamp placement. Improvement in graft preparation and injection methods may improve cell retention.
Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues
NASA Astrophysics Data System (ADS)
Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.
2016-04-01
The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00224b
Quantification of Carbohydrates in Grape Tissues Using Capillary Zone Electrophoresis
Zhao, Lu; Chanon, Ann M.; Chattopadhyay, Nabanita; Dami, Imed E.; Blakeslee, Joshua J.
2016-01-01
Soluble sugars play an important role in freezing tolerance in both herbaceous and woody plants, functioning in both the reduction of freezing-induced dehydration and the cryoprotection of cellular constituents. The quantification of soluble sugars in plant tissues is, therefore, essential in understanding freezing tolerance. While a number of analytical techniques and methods have been used to quantify sugars, most of these are expensive and time-consuming due to complex sample preparation procedures which require the derivatization of the carbohydrates being analyzed. Analysis of soluble sugars using capillary zone electrophoresis (CZE) under alkaline conditions with direct UV detection has previously been used to quantify simple sugars in fruit juices. However, it was unclear whether CZE-based methods could be successfully used to quantify the broader range of sugars present in complex plant extracts. Here, we present the development of an optimized CZE method capable of separating and quantifying mono-, di-, and tri-saccharides isolated from plant tissues. This optimized CZE method employs a column electrolyte buffer containing 130 mM NaOH, pH 13.0, creating a current of 185 μA when a separation voltage of 10 kV is employed. The optimized CZE method provides limits-of-detection (an average of 1.5 ng/μL) for individual carbohydrates comparable or superior to those obtained using gas chromatography–mass spectrometry, and allows resolution of non-structural sugars and cell wall components (structural sugars). The optimized CZE method was successfully used to quantify sugars from grape leaves and buds, and is a robust tool for the quantification of plant sugars found in vegetative and woody tissues. The increased analytical efficiency of this CZE method makes it ideal for use in high-throughput metabolomics studies designed to quantify plant sugars. PMID:27379118
Two New Nuclear Isolation Buffers for Plant DNA Flow Cytometry: A Test with 37 Species
Loureiro, João; Rodriguez, Eleazar; Doležel, Jaroslav; Santos, Conceição
2007-01-01
Background and Aims After the initial boom in the application of flow cytometry in plant sciences in the late 1980s and early 1990s, which was accompanied by development of many nuclear isolation buffers, only a few efforts were made to develop new buffer formulas. In this work, recent data on the performance of nuclear isolation buffers are utilized in order to develop new buffers, general purpose buffer (GPB) and woody plant buffer (WPB), for plant DNA flow cytometry. Methods GPB and WPB were used to prepare samples for flow cytometric analysis of nuclear DNA content in a set of 37 plant species that included herbaceous and woody taxa with leaf tissues differing in structure and chemical composition. The following parameters of isolated nuclei were assessed: forward and side light scatter, propidium iodide fluorescence, coefficient of variation of DNA peaks, quantity of debris background, and the number of particles released from sample tissue. The nuclear genome size of 30 selected species was also estimated using the buffer that performed better for a given species. Key Results In unproblematic species, the use of both buffers resulted in high quality samples. The analysis of samples obtained with GPB usually resulted in histograms of DNA content with higher or similar resolution than those prepared with the WPB. In more recalcitrant tissues, such as those from woody plants, WPB performed better and GPB failed to provide acceptable results in some cases. Improved resolution of DNA content histograms in comparison with previously published buffers was achieved in most of the species analysed. Conclusions WPB is a reliable buffer which is also suitable for the analysis of problematic tissues/species. Although GPB failed with some plant species, it provided high-quality DNA histograms in species from which nuclear suspensions are easy to prepare. The results indicate that even with a broad range of species, either GPB or WPB is suitable for preparation of high-quality suspensions of intact nuclei suitable for DNA flow cytometry. PMID:17684025
Biomimetic nanoclay scaffolds for bone tissue engineering
NASA Astrophysics Data System (ADS)
Ambre, Avinash Harishchandra
Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was used for preparing composites (films and scaffolds) containing in situ HAPclay. Composite films showed significantly improved nanomechanical properties. Human MSCs formed mineralized ECM on films in absence of osteogenic supplements and were able to infiltrate the scaffolds. Atomic force microscopy imaging of mineralized ECM formed on composite films showed similarities in dimensions, arrangement of collagen and apatite with their natural bone counterparts. This work indicates the potential of in situ HAPclay to impart polymeric scaffolds with osteoinductive, osteoconductive abilities and improve their mechanical properties besides emphasizing nanoclays as cell-instructive materials.
A model of a code of ethics for tissue banks operating in developing countries.
Morales Pedraza, Jorge
2012-12-01
Ethical practice in the field of tissue banking requires the setting of principles, the identification of possible deviations and the establishment of mechanisms that will detect and hinder abuses that may occur during the procurement, processing and distribution of tissues for transplantation. This model of a Code of Ethics has been prepared with the purpose of being used for the elaboration of a Code of Ethics for tissue banks operating in the Latin American and the Caribbean, Asia and the Pacific and the African regions in order to guide the day-to-day operation of these banks. The purpose of this model of Code of Ethics is to assist interested tissue banks in the preparation of their own Code of Ethics towards ensuring that the tissue bank staff support with their actions the mission and values associated with tissue banking.
A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology
NASA Astrophysics Data System (ADS)
Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi
2014-03-01
The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.
Artificial testing targets with controllable blur for adaptive optics microscopes
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Tamada, Yosuke; Murata, Takashi; Oya, Shin; Hasebe, Mitsuyasu; Hayano, Yutaka; Kamei, Yasuhiro
2017-08-01
This letter proposes a method of configuring a testing target to evaluate the performance of adaptive optics microscopes. In this method, a testing slide with fluorescent beads is used to simultaneously determine the point spread function and the field of view. The point spread function is reproduced to simulate actual biological samples by etching a microstructure on the cover glass. The fabrication process is simplified to facilitate an onsite preparation. The artificial tissue consists of solid materials and silicone oil and is stable for use in repetitive experiments.
[Laser microdissection for biology and medicine].
Podgornyĭ, O V; Lazarev, V N; Govorun, V M
2012-01-01
For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.
Sieira Gil, Ramón; Pagés, Carles Martí; Díez, Eloy García; Llames, Sara; Fuertes, Ada Ferrer; Vilagran, Jesús Lopez
2015-01-01
Many types of soft tissue grafts have been used for grafting or prelaminating bone flaps for intraoral lining reconstruction. The best results are achieved when prelaminating free flaps with mucosal grafts. We suggest a new approach to obtain keratinized mucosa over a fibula flap using full-thickness, engineered, autologous oral mucosa. We report on a pilot study for grafting fibula flaps for mandibular and maxilla reconstruction with full-thickness tissue-engineered autologous oral mucosa. We describe 2 different techniques: prelaminating the fibula flap and second-stage grafting of the fibula after mandibular reconstruction. Preparation of the full-thickness tissue-engineered oral mucosa is also described. The clinical outcome of the tissue-engineered intraoral lining reconstruction and response after implant placement are reported. A peri-implant granulation tissue response was not observed when prelaminating the fibula, and little response was observed when intraoral grafting was performed. Tissue engineering represents an alternative method by which to obtain sufficient autologous tissue for reconstructing mucosal oral defects. The full-thickness engineered autologous oral mucosa offers definite advantages in terms of reconstruction planning, donor site morbidity, and quality of the intraoral soft tissue reconstruction, thereby restoring native tissue and avoiding peri-implant tissue complications. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Upadhyaya, Laxmi; Singh, Jay; Agarwal, Vishnu; Tewari, Ravi Prakash
2014-07-28
Over the last decade carboxymethyl chitosan (CMCS) has emerged as a promising biopolymer for the development of new drug delivery systems and improved scaffolds along with other tissue engineering devices for regenerative medicine that is currently one of the most rapidly growing fields in the life sciences. CMCS is amphiprotic ether, derived from chitosan, exhibiting enhanced aqueous solubility, excellent biocompatibility, controllable biodegradability, osteogenesis ability and numerous other outstanding physicochemical and biological properties. More strikingly, it can load hydrophobic drugs and displays strong bioactivity which highlight its suitability and extensive usage for preparing different drug delivery and tissue engineering formulations respectively. This review provides a comprehensive introduction to various types of CMCS based formulations for delivery of therapeutic agents and tissue regeneration and further describes their preparation procedures and applications in different tissues/organs. Detailed information of CMCS based nano/micro systems for targeted delivery of drugs with emphasis on cancer specific and organ specific drug delivery have been described. Further, we have discussed various CMCS based tissue engineering biomaterials along with their preparation procedures and applications in different tissues/organs. The article then, gives a brief account of therapy combining drug delivery and tissue engineering. Finally, identification of major challenges and opportunities for current and ongoing application of CMCS based systems in the field are summarised. Copyright © 2014 Elsevier B.V. All rights reserved.
Skin cancer margin analysis within minutes with full-field OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dalimier, Eugénie; Ogrich, Lauren; Morales, Diego; Cusack, Carrie Ann; Abdelmalek, Mark; Boccara, Claude; Durkin, John
2017-02-01
Non-melanoma skin cancer (NMSC) is the most common cancer. Treatment consists of surgical removal of the skin cancer. Traditional excision involves the removal of the visible skin cancer with a significant margin of normal skin. On cosmetically sensitive areas, Mohs micrographic tissue is the standard of care. Mohs uses intraoperative microscopic margin assessment which minimizes the surgical defect and can help reduce the recurrence rate by a factor of 3. The current Mohs technique relies on frozen section tissue slide preparation which significantly lengthens operative time and requires on-site trained histotechnicians. Full-Field Optical Coherence Tomography (FFOCT) is a novel optical imaging technique which provides a quick and efficient method to visualize cancerous areas in minutes, without any preparation or destruction of the tissue. This study aimed to evaluate the potential of FFOCT for the analysis of skin cancer margins during Mohs surgery. Over 150 images of Mohs specimens were acquired intraoperatively with FFOCT before frozen section analysis. The imaging procedure took less than 5 minutes for each specimen. No artifacts on histological preparation were found arising from FFOCT manipulation; however frozen section artifact was readily seen on FFOCT. An atlas was established with FFOCT images and corresponding histological slides to reveal FFOCT reading criteria of normal and cancerous structures. Blind analysis showed high concordance between FFOCT and histology. FFOCT can potentially reduce recurrence rates while maintaining short surgery times, optimize clinical workflow, and decrease healthcare costs. For the patient, this translates into smaller infection risk, decreased stress, and better comfort.
Makeeva, I M; Moskalev, E E; Kuz'ko, E I
2010-01-01
A new method of color quality control based on spectrophotometry has been developed for dental restoration. A comparative analysis of quality of subjective color control by trained and non-trained observers has been made. Based on comparative analysis of the results of subjective color-control and spectrophotometry the maximum amount of allowed color difference has been set (dE=2.8).
Oxotremorine does not enhance acetylcholine release from rat diaphragm preparations.
Gundersen, C. B.; Jenden, D. J.
1980-01-01
We have reinvestigated the dramatic effect of oxotremorine on acetylcholine release from the rat diaphragm reported by Das, Ganguly & Vedasiromoni (1978), using a rigorous gas chromatographic mass spectrometric/isotope dilution method for identification and measurement of acetylcholine and choline. Oxotremorine (10 microM) causes no significant change in the spontaneous or evoked (1 or 10 Hz) release or in the tissue levels of acetylcholine or choline. PMID:7426831
Histological methods to determine blood flow distribution with fluorescent microspheres.
Luchtel, D L; Boykin, J C; Bernard, S L; Glenny, R W
1998-11-01
We evaluated several histological methods and determined their advantages and disadvantages for histological studies of tissues and organs perfused with fluorescent microspheres. Microspheres retained their fluorescence in 7-10 microm serial sections with a change in the antimedium from toluene when samples were fixed in formalin and embedded in paraffin. Several antimedia allowed both wax infiltration of tissue and preservation of microsphere fluorescence. Histoclear II was the best substitute for toluene. When samples were fixed in formalin and embedded in glycol methacrylate, thinner (3-5 microm) sections provided greater histological detail but had fewer microspheres per section. Air dried lung tissue followed by Vibratome sectioning provided thick sections (100 microm) that facilitated rapid survey of large volumes of tissue for microspheres but limited histological detail, and the air drying procedure was restricted to lung tissue. Samples fixed in formalin followed by Vibratome sectioning of unembedded tissue provided better histological detail of lung tissue and was also useful for other organs. These sections were more difficult to handle and to mount on slides compared to air dried tissue, whereas fixed tissue embedded in gelatin provided better tissue support for Vibratome sectioning. Rapid freezing followed by cryo-microtome sectioning resulted in frozen sections that were relatively difficult to handle compared to embedded or unembedded tissue; they also deteriorated relatively rapidly with time. Paraffin sections were stained with hematoxylin and eosin or with aqueous methyl green, although tissue autofluorescence by itself was usually sufficient to identify histological features. Methacrylate sections quenched tissue autofluorescence, and Lee's stain or Richardson's stain were used for staining sections. Toluene based mountants such as Cytoseal quenched fluorescence, particularly the red fluorescent microspheres. Aqueous based mountants such as Aquamount, Crystal/Mount, Fluoromount-G were substituted, although such preparations were not as permanent as Cytoseal mounted coverglasses and tended to cause fading of stained sections.
Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering.
Teixeira, Liliana S Moreira; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel
2012-02-01
State-of-the-art bioactive hydrogels can easily and efficiently be formed by enzyme-catalyzed mild-crosslinking reactions in situ. Yet this cell-friendly and substrate-specific method remains under explored. Hydrogels prepared by using enzyme systems like tyrosinases, transferases and lysyl oxidases show interesting characteristics as dynamic scaffolds and as systems for controlled release. Increased attention is currently paid to hydrogels obtained via crosslinking of precursors by transferases or peroxidases as catalysts. Enzyme-mediated crosslinking has proven its efficiency and attention has now shifted to the development of enzymatically crosslinked hydrogels with higher degrees of complexity, mimicking extracellular matrices. Moreover, bottom-up approaches combining biocatalysts and self-assembly are being explored for the development of complex nano-scale architectures. In this review, the use of enzymatic crosslinking for the preparation of hydrogels as an innovative alternative to other crosslinking methods, such as the commonly used UV-mediated photo-crosslinking or physical crosslinking, will be discussed. Photo-initiator-based crosslinking may induce cytotoxicity in the formed gels, whereas physical crosslinking may lead to gels which do not have sufficient mechanical strength and stability. These limitations can be overcome using enzymes to form covalently crosslinked hydrogels. Herewith, we report the mechanisms involved and current applications, focusing on emerging strategies for tissue engineering and regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tomaszewski, Wiesław; Paradowska, Anna
2017-01-26
Loss of collagen is a natural development accompanying aging of the body. It may be additionally accelerated by various conditions, including osteoarthritis (OA). Within the last two decades numerous and diverse studies have been conducted worldwide with the aim of identifying substances containing collagen, producing therapeutic preparations of expected effectiveness in the prevention and therapy of OA that would be safe to use and developing methods of delivering the final product into the body. The authors reviewed and analysed the latest available literature by selecting papers presenting the findings of studies conducted in line with the principles of Evidence-Based Medicine (EBM). The studies have been ordered from in vitro trials (studies on animals in the laboratory setting, use of tissue engineering methods to assess the effect of cartilage transplants, use of different collagen types for development of scaffolds etc.) to in vivo clinical trials. It appears that the findings of the latest multidimensional studies presented below, which confirm the therapeutic effectiveness of new-generation injectable medical collagen preparations, will help these medical products gain their well-deserved position in the comprehensive treatment of osteoarthritis both with respect to their analgesic properties as well as their ability to enable functional recovery and stimulate regeneration of tissues at the molecular level.
3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy
Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan
2017-01-01
High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings. PMID:28819645
Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.
Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio
2007-07-01
Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block.
Fabrication and Biocompatibility of Electrospun Silk Biocomposites
Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo
2011-01-01
Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869
Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications.
Agarwal, Tarun; Narayan, Rajan; Maji, Somnath; Behera, Shubhanath; Kulanthaivel, Senthilguru; Maiti, Tapas Kumar; Banerjee, Indranil; Pal, Kunal; Giri, Supratim
2016-12-01
The present study delineates the preparation, characterization and application of gelatin-carboxymethyl chitosan scaffolds for dermal tissue engineering. The effect of carboxymethyl chitosan and gelatin ratio was evaluated for variations in their physico-chemical-biological characteristics and drug release kinetics. The scaffolds were prepared by freeze drying method and characterized by SEM and FTIR. The study revealed that the scaffolds were highly porous with pore size ranging between 90 and 170μm, had high water uptake (400-1100%) and water retention capacity (>300%). The collagenase mediated degradation of the scaffolds was dependent on the amount of gelatin present in the formulation. A slight yet significant variation in their biological characteristics was also observed. All the formulations supported adhesion, spreading, growth and proliferation of 3T3 mouse fibroblasts. The cells seeded on the scaffolds also demonstrated expression of collagen type I, HIF1α and VEGF, providing a clue regarding their growth and proliferation along with potential to support angiogenesis during wound healing. In addition, the scaffolds showed sustained ampicillin and bovine serum albumin release, confirming their suitability as a therapeutic delivery vehicle during wound healing. All together, the results suggest that gelatin-carboxymethyl chitosan based scaffolds could be a suitable matrix for dermal tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Development and in vivo evaluation of self-microemulsion as delivery system for α-mangostin.
Xu, Wen-Ke; Jiang, Hui; Yang, Kui; Wang, Ya-Qin; Zhang, Qian; Zuo, Jian
2017-03-01
α-Mangostin (MG) is a versatile bioactive compound isolated from mangosteen and possesses significant pharmacokinetic shortages. To augment the potential clinical efficacy, MG-loaded self-microemulsion (MG-SME) was designed and prepared in this study, and its potential as a drug loading system was evaluated based on the pharmacokinetic performance and tissue distribution feature. The formula of MG-SME was optimized by an orthogonal test under the guidance of ternary phase diagram, and the prepared MG-SME was characterized by encapsulation efficiency, size distribution, and morphology. Optimized high performance liquid chromatography method was employed to determine concentrations of MG and characterize the pharmacokinetic and tissue distribution features of MG in rodents. It was found that diluted MG-SME was characterized as spherical particles with a mean diameter of 24.6 nm and an encapsulation efficiency of 87.26%. The delivery system enhanced the area under the curve of MG by 4.75 times and increased the distribution in lymphatic organs. These findings suggested that SME as a nano-sized delivery system efficiently promoted the digestive tract absorption of MG and modified its distribution in tissues. The targeting feature and high oral bioavailability of MG-SME promised a good clinical efficacy, especially for immune diseases. Copyright © 2017. Published by Elsevier Taiwan.
Zhao, Lingxiao; Pan, Ting; Guo, Dongwei; Wei, Cunxu
2018-01-01
Storage starch in starchy seed influences the seed weight and texture, and determines its applications in food and nonfood industries. Starch granules from different plant sources have significantly different shapes and sizes, and even more the difference exists in the different regions of the same tissue. Therefore, it is very important to in situ investigate the morphology and distribution of starch in the whole seed. However, a simple and rapid method is deficient to prepare the whole section of starchy seed for investigating the morphology and distribution of starch in the whole seeds for a large number of samples. A simple and rapid method was established to prepare the whole section of starchy seed, especially for floury seed, in this study. The whole seeds of translucent and chalky rice, vitreous and floury maize, and normal barley and wheat were sectioned successfully using the newly established method. The iodine-stained section clearly exhibited the shapes and size of starch granules in different regions of seed. The starch granules with different morphologies and iodine-staining colors existed regionally in the seeds of high-amylose rice and maize. The sections of lotus and kidney bean seeds also showed the feasibility of this method for starchy non-cereal seeds. The simple and rapid method was proven effective for preparing the whole sections of starchy seeds. The whole section of seed could be used to investigate the morphology and distribution of starch granules in different regions of the whole seed. The method was especially suitable for large sample numbers to investigate the starch morphology in short time.
[Techniques for rapid production of monoclonal antibodies for use with antibody technology].
Kamada, Haruhiko
2012-01-01
A monoclonal antibody (Mab), due to its specific binding ability to a target protein, can potentially be one of the most useful tools for the functional analysis of proteins in recent proteomics-based research. However, the production of Mab is a very time-consuming and laborious process (i.e., preparation of recombinant antigens, immunization of animals, preparation of hybridomas), making it the rate-limiting step in using Mabs in high-throughput proteomics research, which heavily relies on comprehensive and rapid methods. Therefore, there is a great demand for new methods to efficiently generate Mabs against a group of proteins identified by proteome analysis. Here, we describe a useful method called "Antibody proteomic technique" for the rapid generations of Mabs to pharmaceutical target, which were identified by proteomic analyses of disease samples (ex. tumor tissue, etc.). We also introduce another method to find profitable targets on vasculature, which is called "Vascular proteomic technique". Our results suggest that this method for the rapid generation of Mabs to proteins may be very useful in proteomics-based research as well as in clinical applications.
Arifvianto, B; Leeflang, M A; Zhou, J
2017-04-01
Scaffolds with open, interconnected pores and appropriate mechanical properties are required to provide mechanical support and to guide the formation and development of new tissue in bone tissue engineering. Since the mechanical properties of the scaffold tend to decrease with increasing porosity, a balance must be sought in order to meet these two conflicting requirements. In this research, open, interconnected pores and mechanical properties of biomedical titanium scaffolds prepared by using the space holder method were characterized. Micro-computed tomography (micro-CT) and permeability analysis were carried out to quantify the porous structures and ascertain the presence of open, interconnected pores in the scaffolds fabricated. Diametral compression (DC) tests were performed to generate stress-strain diagrams that could be used to determine the elastic moduli and yield strengths of the scaffolds. Deformation and failure mechanisms involved in the DC tests of the titanium scaffolds were examined. The results of micro-CT and permeability analyses confirmed the presence of open, interconnected pores in the titanium scaffolds with porosity over a range of 31-61%. Among these scaffolds, a maximum specific surface area could be achieved in the scaffold with a total porosity of 5-55%. DC tests showed that the titanium scaffolds with elastic moduli and yield strengths of 0.64-3.47GPa and 28.67-80MPa, respectively, could be achieved. By comprehensive consideration of specific surface area, permeability and mechanical properties, the titanium scaffolds with porosities in a range of 50-55% were recommended to be used in cancellous bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Amnion allografts prepared in the Central Tissue Bank in Warsaw.
Tyszkiewicz, J T; Uhrynowska-Tyszkiewicz, I A; Kaminski, A; Dziedzic-Goclawska, A
1999-01-01
Applications of allogenic amnion grafts range from wound dressing of severe burns, dermabrasions and lower extremity ulcer treatments to plastic surgery, laryngology and ophthalmology. The aim of the present study was to elaborate the method of processing, preservation and sterilization of human amnion allografts prepared as wound dressing used mainly for burned patients. During the amniotic sac processing (after separation of chorion) special attention was paid to ensure that the epithelial side of amnion is placed directly on polyester net used as a support. After application on the wound, the epithelial side with the basement membrane is facing outwards; this will promote migration, attachment and spreading of the host cells encouraging epithelialization. Human amnion allografts were preserved by lyophilization or deep-freezing and subsequently radiation-sterilized with a dose of 35 kGy. It has been observed, however, that lyophilized irradiated allografts are resorbed within a few days, while frozen irradiated ones better adhere to wound and persist even 3 weeks after grafting, therefore, it has been decided to preserve amnion by deep-freezing. Since the beginning of 1998 over 400 preserved radiation-sterilized amnion allografts (with a total surface area over 40,000 cm2) have been prepared at the Central Tissue Bank in Warsaw and distributed to clinics and hospitals throughout the country.
Sivashankari, P R; Moorthi, A; Abudhahir, K Mohamed; Prabaharan, M
2018-04-15
Hydroxypropyl chitosan (HPCH), a water soluble derivative of chitosan, is widely considered for tissue engineering and wound healing applications due to its biocompatibility and biodegradability. Graphene oxide (GO) is a carbon-based nanomaterial which is capable of imparting desired properties to the scaffolds. Hence, the integration of GO into HPCH could allow for the production of HPCH-based scaffolds with improved swelling character, mechanical strength, and stability aimed at being used in tissue engineering. In this study, hydroxypropyl chitosan-graft-graphene oxide (HPCH-g-GO) with varying GO content (0.5, 1, 3 and 4wt.%) was prepared using HPCH and GO as a tissue engineering scaffold material. The formation of HPCH-g-GO was confirmed by FTIR and XRD analysis. Using the HPCH-g-GO as a matrix material and glutaraldehyde as a crosslinking agent, the three dimensional (3D) porous scaffolds were fabricated by the freeze-drying method. The HPCH-g-GO scaffolds exhibited uniform porosity as observed in SEM analysis. The pore size and porosity reduced as the content of GO was increased. These scaffolds presented good swelling capacity, water retention ability, mechanical strength and in vitro degradation properties. The HPCH-g-GO scaffolds irrespective of their GO content demonstrated good cell viability when compared to control. Altogether, these results suggest that HPCH-g-GO scaffolds can be used as potential tissue engineering material. Copyright © 2017 Elsevier B.V. All rights reserved.
Kawamoto, Kohei; Miyaji, Hirofumi; Nishida, Erika; Miyata, Saori; Kato, Akihito; Tateyama, Akito; Furihata, Tomokazu; Shitomi, Kanako; Iwanaga, Toshihiko; Sugaya, Tsutomu
2018-01-01
Introduction The 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog. Materials and methods GO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery. Results GO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold. Conclusion The results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy. PMID:29713167
Combining platelet-rich plasma and tissue-engineered skin in the treatment of large skin wound.
Han, Tong; Wang, Hao; Zhang, Ya Qin
2012-03-01
The objective of the study was to observe the effects of tissue-engineered skin in combination with platelet-rich plasma (PRP) and other preparations on the repair of large skin wound on nude mice.We first prepared PRP from venous blood by density-gradient centrifugation. Large skin wounds were created surgically on the dorsal part of nude mice. The wounds were then treated with either artificial skin, tissue-engineered skin, tissue-engineered skin combined with basic fibroblast growth factor, tissue-engineered skin combined with epidermal growth factor, or tissue-engineered skin combined with PRP. Tissue specimens were collected at different time intervals after surgery. Hematoxylin-eosin and periodic acid-Schiff staining and immunohistochemistry were performed to assess the rate of wound healing.Macroscopic observations, hematoxylin-eosin/periodic acid-Schiff staining, and immunohistochemistry revealed that the wounds treated with tissue-engineered skin in combination with PRP showed the most satisfactory wound recovery, among the 5 groups.
Osteochondral Repair Using Porous Three-dimensional Nanocomposite Scaffolds in a Rabbit Model.
Żylińska, Beata; Stodolak-Zych, Ewa; Sobczyńska-Rak, Aleksandra; Szponder, Tomasz; Silmanowicz, Piotr; Łańcut, Mirosław; Jarosz, Łukasz; Różański, Paweł; Polkowska, Izabela
2017-01-01
To evaluate the utility of a novel nanocomposite biomaterial consisting of poly-L/D-lactide, and hydroxyapatite bioceramics, enriched with sodium alginate in articular cartilage defect treatment. The biomaterial was prepared using the method of solvent casting and particle leaching. The study was conducted on 20 New Zealand White rabbits. Experimental osteochondral defects were created in the femoral trochlear grooves and filled with biomaterials. In control groups, the defects were left to spontaneously heal. The quality of newly-formed tissue was evaluated on the basis of macroscopic and histological assessment. Additionally the level of osteogenic and cartilage degradation markers were measured. The majority of the defects from the treatment group were covered with tissue similar in structure and colour to healthy cartilage, whereas in the control group, tissue was uneven, and not integrated into the surrounding cartilage. The results obtained validate the choice of biomaterial used in this study as well as the method of its application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
[Improving Primary Culture of Pulmonary Microvascular Endothelial Cells of Rats].
Jiang, Ling; Hu, Yuan-Dong; Xu, Fei-Fei; Wang, Ting-Hua
2016-09-01
To improve the culturing method of pulmonary microvascular endothelial cells (PMEVCs) of SD rats. The culturing processes in regard to obtaining peripheral lung tissue, attaching tissue block,preparing medium and subculturing were modified.These included an injection of heparin sodium before anesthesia, abdominal bleeding, opening of chest when breathing stopped, improvement of operational details, reduction of pollution by adding penicillin and streptomycin, discard of tissues after 48 h of primary culturing, remove of fibroblasts by a second digestion, and identification of cells using a fluorescence microscope for binding with lectin from BSI (FITC-BSI).An inverted microscope was used to observe the morphological characteristics of PMEVCs. Purified PMEVCs were obtained,which displayed a polygon or short fusiform, exhibiting a typical cobblestone-like morphology. The morphology of PMVECs turned into swirling or long fusiform following subculture or changes in culture conditions. The results of FITC-BSI assay showed that more than 90% cells were stained with green fluorescence. Purified PMEVCs with a good growth state and subculture stability can be obtained using the modified method.
Gang, Yadong; Zhou, Hongfu; Jia, Yao; Liu, Ling; Liu, Xiuli; Rao, Gong; Li, Longhui; Wang, Xiaojun; Lv, Xiaohua; Xiong, Hanqing; Yang, Zhongqin; Luo, Qingming; Gong, Hui; Zeng, Shaoqun
2017-01-01
Resin embedding has been widely applied to fixing biological tissues for sectioning and imaging, but has long been regarded as incompatible with green fluorescent protein (GFP) labeled sample because it reduces fluorescence. Recently, it has been reported that resin-embedded GFP-labeled brain tissue can be imaged with high resolution. In this protocol, we describe an optimized protocol for resin embedding and chemical reactivation of fluorescent protein labeled mouse brain, we have used mice as experiment model, but the protocol should be applied to other species. This method involves whole brain embedding and chemical reactivation of the fluorescent signal in resin-embedded tissue. The whole brain embedding process takes a total of 7 days. The duration of chemical reactivation is ~2 min for penetrating 4 μm below the surface in the resin-embedded brain. This protocol provides an efficient way to prepare fluorescent protein labeled sample for high-resolution optical imaging. This kind of sample was demonstrated to be imaged by various optical micro-imaging methods. Fine structures labeled with GFP across a whole brain can be detected. PMID:28352214
Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak
2011-01-01
In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986
NASA Astrophysics Data System (ADS)
Romanishkin, Igor D.; Grachev, Pavel V.; Pominova, Daria V.; Burmistrov, Ivan A.; Sildos, Ilmo; Vanetsev, Alexander S.; Orlovskaya, Elena O.; Orlovskii, Yuri V.; Loschenov, Victor B.; Ryabova, Anastasia V.
2018-04-01
In this work we investigated the use of composite crystalline core/shell nanoparticles LaF3:Nd3+(1%)@DyPO4 for fluorescence-based contactless thermometry, as well as laser-induced hyperthermia effect in optical model of biological tissue with modeled neoplasm. In preparation for this, a thermal calibration of the nanoparticles luminescence spectra was carried out. The results of the spectroscopic temperature measurement were compared to infrared thermal camera measurements. It showed that there is a significant difference between temperature recorded with IR camera and the actual temperature of the nanoparticles in the depth of the tissue model. The temperature calculated using the spectral method was up to 10 °C higher.
NASA Astrophysics Data System (ADS)
Gel, M.; Kandasamy, S.; Cartledge, K.; Be, C. L.; Haylock, D.
2013-12-01
In recent years there has been growing interest in micro engineered in-vitro models of tissues and organs. These models are designed to mimic the in-vivo like physiological conditions with a goal to study human physiology in an organ-specific context or to develop in-vitro disease models. One of the challenges in the development of these models is the formation of barrier tissues in which the permeability is controlled locally by the tissues cultured at the interface. In-vitro models of barrier tissues are typically created by generating a monolayer of cells grown on thin porous membranes. This paper reports a robust preparation method for free standing porous cyclic olefin copolymer (COC) membranes. We also demonstrate that gelatin coated membranes facilitate formation of highly confluent monolayer of HUVECs. Membranes with thickness in the range of 2-3 um incorporating micro pores with diameter approximately 20 um were fabricated and integrated with microfluidic channels. The performance of the device was demonstrated with a model system mimicking the endothelial barrier in bone marrow sinusoids.
Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation.
Schwartz, Z; Mellonig, J T; Carnes, D L; de la Fontaine, J; Cochran, D L; Dean, D D; Boyan, B D
1996-09-01
Demineralized freeze-dried bone allograft (DFDBA) has been used extensively in periodontal therapy. The rationale for use of DFDBA includes the fact that proteins capable of inducing new bone; i.e., bone morphogenetic proteins, can be isolated from bone grafts. Commercial bone banks have provided DFDBA to the dental practitioner for many years; however, these organizations have not verified the osteoinductive capacity of their DFDBA preparations. The aim of this study was to determine the ability of commercial DFDBA preparations to induce new bone formation. DFDBA with particle sizes ranging from 200 to 500 microns was received from six bone banks using various bone production methods. Different lots of DFDBA from the same tissue bank were sometimes available. A total of 14 lots were examined. The surface area of bone particles in each sample was measured morphometrically and the pH of a solution containing the particles after suspension in distilled water determined. Samples from each DFDBA lot were implanted intramuscularly (10 mg) or subcutaneously (20 mg) into three different animals and tissue biopsies harvested after 4 weeks. One sample from each tissue bank was implanted and harvested after 8 weeks. At harvest, each area where DFDBA had been implanted was excised and examined by light microscopy. The ability of DFDBA to produce new bone was evaluated and the amount of residual bone particles measured. The results show that bone particles from all tissue banks had a variety of shapes and sizes, both before implantation and after 1 or 2 months of implantation. The pH of particle suspensions also varied between batches, as well as between tissue banks. None of the DFDBA induced new bone formation when implanted subcutaneously. Intramuscular implants from three banks induced new bone formation after 1 and 2 months. DFDBA from two banks caused new bone formation only after 2 months. However, DFDBA from one bank did not induce new bone at all. Particle size before implantation correlated with particle size after implantation. However, particle size did not correlate with ability to induce bone. The results show that commercial DFDBA differs in both size and ability to induce new bone formation, but that the two are not related. The study also indicates that wide variation in commercial bone bank preparations of DFDBA exist and that ability to induce new bone formation also varies widely. Furthermore, the results suggest that methods or assays for evaluating the ability of DFDBA to induce new bone should be developed and standardized.
The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.
Ren, Tianbin; Ren, Jie; Jia, Xiaozhen; Pan, Kefeng
2005-09-15
Highly porous scaffolds of poly(lactide-co-glycolide) (PLGA) were prepared by solution-casting/salt-leaching method. The in vitro degradation behavior of PLGA scaffold was investigated by measuring the change of normalized weight, water absorption, pH, and molecular weight during degradation period. Mesenchymal stem cells (MSCs) were seeded and cultured in three-dimensional PLGA scaffolds to fabricate in vitro tissue engineering bone, which was investigated by cell morphology, cell number and deposition of mineralized matrix. The proliferation of seeded MSCs and their differentiated function were demonstrated by experimental results. To compare the reconstructive functions of different groups, mandibular defect repair of rabbit was made with PLGA/MSCs tissue engineering bone, control PLGA scaffold, and blank group without scaffold. Histopathologic methods were used to estimate the reconstructive functions. The result suggests that it is feasible to regenerate bone tissue in vitro using PLGA foams with pore size ranging from 100-250 microm as scaffolding for the transplantation of MSCs, and the PLGA/MSCs tissue engineering bone can greatly promote cell growth and have better healing functions for mandibular defect repair. The defect can be completely recuperated after 3 months with PLGA/MSCs tissue engineering bone, and the contrastive experiments show that the defects could not be repaired with blank PLGA scaffold. PLGA/MSCs tissue engineering bone has great potential as appropriate replacement for successful repair of bone defect. (c) 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005.
Han, Wei; Pan, Yuanhu; Wang, Yulian; Chen, Dongmei; Liu, Zhenli; Zhou, Qi; Feng, Liang; Peng, Dapeng; Yuan, Zonghui
2016-02-20
The misuse of nitroimidazoles (NDZs) can lead to NDZs residues in edible animal tissues, which would be harmful to consumer health. To quickly monitor NDZs residues in edible animal tissues and feed, a monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) with a simple sample preparation method and clean-up was developed in the present study. At first, a broad-specificity monoclonal antibody, 1D5, against NDZs has been produced, which the IC50 values of the NDZs, dimetridazole, ipronidazole, ronidazole hydroxydimetridazole, and hydroxyipronidazole, were 4.79μgL(-1), 0.47μgL(-1), 5.97μgL(-1), 23.48μgL(-1), and 15.03μgL(-1), respectively. The limit of detection of the method for the NDZ matrix calibration ranged from 4.2μgkg(-1) to 50.3μgkg(-1) in the feed matrices and from 0.11μgkg(-1) to 4.11μgkg(-1) in the edible animal tissues matrices. The recoveries of the NDZs were in the range of 75.5-111.8%. The CVs were less than 14.4%. A good correlation (r=0.9905) between the ELISA and HPLC-MS results of the tissues demonstrated the reliability of the developed ic-ELISA, which makes it a useful tool for screening of NDZs in animal edible tissue and feed. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Chang
2017-01-01
The spatial organization of the genome in the nucleus is critical for many cellular processes. It has been broadly accepted that the packing of chromatin inside the nucleus is not random, but structured at several hierarchical levels. The Hi-C method combines Chromatin Conformation Capture and high-throughput sequencing, which allows interrogating genome-wide chromatin interactions. Depending on the sequencing depth, chromatin packing patterns derived from Hi-C experiments can be viewed on a chromosomal scale or at a local genic level. Here, I describe a protocol of plant in situ Hi-C library preparation, which covers procedures starting from tissue fixation to library amplification.
Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture
Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.
2016-01-01
The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082
Generation of strip-format fibrin-based engineered heart tissue (EHT).
Schaaf, Sebastian; Eder, Alexandra; Vollert, Ingra; Stöhr, Andrea; Hansen, Arne; Eschenhagen, Thomas
2014-01-01
This protocol describes a method for casting fibrin-based engineered heart tissue (EHT) in standard 24-well culture dishes. In principle, a hydrogel tissue engineering method requires cardiomyocytes, a liquid matrix that forms a gel, a casting mold, and a device that keeps the developing tissue in place. This protocol refers to neonatal rat heart cells as the cell source; the matrix of choice is fibrin, and the tissues are generated in rectangular agarose-casting molds (12 × 3 × 3 mm) prepared in standard 24-well cell culture dishes, in which a pair of flexible silicone posts is suspended from above. A master mix of freshly isolated cells, medium, fibrinogen, and thrombin is pipetted into the casting mold and, over a period of 2 h, polymerizes and forms a fibrin cell block around two silicone posts. Silicone racks holding four pairs of silicone posts each are used to transfer the fresh fibrin cell blocks into new 24-well dishes with culture medium. Without further handling, the cells start to remodel the fibrin gel, form contacts with each other, elongate, and condense the gel to approximately ¼ of the initial volume. Spontaneous and rhythmic contractions start after 1 week. EHTs are viable and relatively stable for several weeks in this format and can be subjected to repeated measurements of contractile function and final morphological and molecular analyses.
Moreno, Rosa L.; Josey, Megan; Ribera, Angeles B.
2017-01-01
Zebrafish, first introduced as a developmental model, have gained popularity in many other fields. The ease of rearing large numbers of rapidly developing organisms, combined with the embryonic optical clarity, served as initial compelling attributes of this model. Over the past two decades, the success of this model has been further propelled by its amenability to large-scale mutagenesis screens and by the ease of transgenesis. More recently, gene-editing approaches have extended the power of the model. For neurodevelopmental studies, the zebrafish embryo and larva provide a model to which multiple methods can be applied. Here, we focus on methods that allow the study of an essential property of neurons, electrical excitability. Our preparation for the electrophysiological study of zebrafish spinal neurons involves the use of veterinarian suture glue to secure the preparation to a recording chamber. Alternative methods for recording from zebrafish embryos and larvae involve the attachment of the preparation to the chamber using a fine tungsten pin12345. A tungsten pin is most often used to mount the preparation in a lateral orientation, although it has been used to mount larvae dorsal-side up4. The suture glue has been used to mount embryos and larvae in both orientations. Using the glue, a minimal dissection can be performed, allowing access to spinal neurons without the use of an enzymatic treatment, thereby avoiding any resultant damage. However, for larvae, it is necessary to apply a brief enzyme treatment to remove the muscle tissue surrounding the spinal cord. The methods described here have been used to study the intrinsic electrical properties of motor neurons, interneurons, and sensory neurons at several developmental stages6789. PMID:28448016
Moreno, Rosa L; Josey, Megan; Ribera, Angeles B
2017-04-18
Zebrafish, first introduced as a developmental model, have gained popularity in many other fields. The ease of rearing large numbers of rapidly developing organisms, combined with the embryonic optical clarity, served as initial compelling attributes of this model. Over the past two decades, the success of this model has been further propelled by its amenability to large-scale mutagenesis screens and by the ease of transgenesis. More recently, gene-editing approaches have extended the power of the model. For neurodevelopmental studies, the zebrafish embryo and larva provide a model to which multiple methods can be applied. Here, we focus on methods that allow the study of an essential property of neurons, electrical excitability. Our preparation for the electrophysiological study of zebrafish spinal neurons involves the use of veterinarian suture glue to secure the preparation to a recording chamber. Alternative methods for recording from zebrafish embryos and larvae involve the attachment of the preparation to the chamber using a fine tungsten pin 1 , 2 , 3 , 4 , 5 . A tungsten pin is most often used to mount the preparation in a lateral orientation, although it has been used to mount larvae dorsal-side up 4 . The suture glue has been used to mount embryos and larvae in both orientations. Using the glue, a minimal dissection can be performed, allowing access to spinal neurons without the use of an enzymatic treatment, thereby avoiding any resultant damage. However, for larvae, it is necessary to apply a brief enzyme treatment to remove the muscle tissue surrounding the spinal cord. The methods described here have been used to study the intrinsic electrical properties of motor neurons, interneurons, and sensory neurons at several developmental stages 6 , 7 , 8 , 9 .
Govindaraj, Dharman; Rajan, Mariappan; Munusamy, Murugan A; Alarfaj, Abdullah A; Sadasivuni, Kishor Kumar; Kumar, S Suresh
2017-11-01
Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats. Copyright © 2017 Elsevier Inc. All rights reserved.
Breast cancer histopathology image analysis: a review.
Veta, Mitko; Pluim, Josien P W; van Diest, Paul J; Viergever, Max A
2014-05-01
This paper presents an overview of methods that have been proposed for the analysis of breast cancer histopathology images. This research area has become particularly relevant with the advent of whole slide imaging (WSI) scanners, which can perform cost-effective and high-throughput histopathology slide digitization, and which aim at replacing the optical microscope as the primary tool used by pathologist. Breast cancer is the most prevalent form of cancers among women, and image analysis methods that target this disease have a huge potential to reduce the workload in a typical pathology lab and to improve the quality of the interpretation. This paper is meant as an introduction for nonexperts. It starts with an overview of the tissue preparation, staining and slide digitization processes followed by a discussion of the different image processing techniques and applications, ranging from analysis of tissue staining to computer-aided diagnosis, and prognosis of breast cancer patients.
Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan
2015-04-24
The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology.
Overview of Brain Microdialysis
Chefer, Vladimir I.; Thompson, Alexis C.; Zapata, Agustin; Shippenberg, Toni S.
2010-01-01
The technique of microdialysis enables sampling and collecting of small-molecular-weight substances from the interstitial space. It is a widely used method in neuroscience and is one of the few techniques available that permits quantification of neurotransmitters, peptides, and hormones in the behaving animal. More recently, it has been used in tissue preparations for quantification of neurotransmitter release. This unit provides a brief review of the history of microdialysis and its general application in the neurosciences. The authors review the theoretical principles underlying the microdialysis process, methods available for estimating extracellular concentration from dialysis samples (i.e., relative recovery), the various factors that affect the estimate of in vivo relative recovery, and the importance of determining in vivo relative recovery to data interpretation. Several areas of special note, including impact of tissue trauma on the interpretation of microdialysis results, are discussed. Step-by-step instructions for the planning and execution of conventional and quantitative microdialysis experiments are provided. PMID:19340812
Meakin, James A; Jezzard, Peter
2013-03-01
Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and eddy currents during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that eddy currents cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce eddy current effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to eddy currents and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.
Sikes, R. K.; Cleary, W. F.; Koprowski, H.; Wiktor, T. J.; Kaplan, M. M.
1971-01-01
Three series of experiments on rabies vaccines were carried out on rhesus monkeys using suckling-mouse-brain vaccine, rabbit-brain vaccine, duck-embryo vaccine, and purified, concentrated tissue-culture vaccine. The latter was prepared in a human diploid cell strain and inactivated with β-propiolactone, and consisted of tissue-culture fluid concentrated 200-fold with a final infectivity titre of 109.8 plaque-forming units per ml before inactivation. In the first two series of experiments, several vaccines were tested for relative immunogenicity on a pre-exposure basis. In the third series, a successful model was developed in which a single inoculation of the tissue-culture vaccine administered after exposure to rabies virus, with or without accompanying standard doses of antirabies serum, was evaluated as a method of prevention. A single dose of the tissue-culture vaccine protected 7 out of 8 monkeys from death by street virus. Homologous or heterologous antirabies serum alone gave poor results. The results indicate great promise for prophylaxis in man with one dose, or perhaps a few doses, of highly concentrated, purified tissue-culture vaccine. PMID:5004004
NASA Astrophysics Data System (ADS)
Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.
2013-06-01
The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.
Mukhamadiyarov, Rinat A; Sevostyanova, Victoria V; Shishkova, Daria K; Nokhrin, Andrey V; Sidorova, Olga D; Kutikhin, Anton G
2016-06-01
A broad use of the graft replacement requires a detailed investigation of the host-graft interaction, including both histological examination and electron microscopy. A high quality sectioning of the host tissue with a graft seems to be complicated; in addition, it is difficult to examine the same tissue area by both of the mentioned microscopy techniques. To solve these problems, we developed a new technique of epoxy resin embedding with the further grinding, polishing, and staining. Graft-containing tissues prepared by grinding and polishing preserved their structure; however, sectioning frequently required the explantation of the graft and led to tissue disintegration. Moreover, stained samples prepared by grinding and polishing may then be assessed by both light microscopy and backscattered scanning electron microscopy. Therefore, grinding and polishing outperform sectioning when applied to the tissues with a graft. Copyright © 2016 Elsevier Ltd. All rights reserved.
Refractive index measurements of single, spherical cells using digital holographic microscopy.
Schürmann, Mirjam; Scholze, Jana; Müller, Paul; Chan, Chii J; Ekpenyong, Andrew E; Chalut, Kevin J; Guck, Jochen
2015-01-01
In this chapter, we introduce digital holographic microscopy (DHM) as a marker-free method to determine the refractive index of single, spherical cells in suspension. The refractive index is a conclusive measure in a biological context. Cell conditions, such as differentiation or infection, are known to yield significant changes in the refractive index. Furthermore, the refractive index of biological tissue determines the way it interacts with light. Besides the biological relevance of this interaction in the retina, a lot of methods used in biology, including microscopy, rely on light-tissue or light-cell interactions. Hence, determining the refractive index of cells using DHM is valuable in many biological applications. This chapter covers the main topics that are important for the implementation of DHM: setup, sample preparation, and analysis. First, the optical setup is described in detail including notes and suggestions for the implementation. Following that, a protocol for the sample and measurement preparation is explained. In the analysis section, an algorithm for the determination of quantitative phase maps is described. Subsequently, all intermediate steps for the calculation of the refractive index of suspended cells are presented, exploiting their spherical shape. In the last section, a discussion of possible extensions to the setup, further measurement configurations, and additional analysis methods are given. Throughout this chapter, we describe a simple, robust, and thus easily reproducible implementation of DHM. The different possibilities for extensions show the diverse fields of application for this technique. Copyright © 2015 Elsevier Inc. All rights reserved.
Imaging plasmodesmata with high-resolution scanning electron microscopy.
Barton, Deborah A; Overall, Robyn L
2015-01-01
High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Robert Y., E-mail: rx-tang@laurentian.ca; McDonald, Nancy, E-mail: mcdnancye@gmail.com; Laamanen, Curtis, E-mail: cx-laamanen@laurentian.ca
Purpose: To develop a method to estimate the mean fractional volume of fat (ν{sup ¯}{sub fat}) within a region of interest (ROI) of a tissue sample for wide-angle x-ray scatter (WAXS) applications. A scatter signal from the ROI was obtained and use of ν{sup ¯}{sub fat} in a WAXS fat subtraction model provided a way to estimate the differential linear scattering coefficient μ{sub s} of the remaining fatless tissue. Methods: The efficacy of the method was tested using animal tissue from a local butcher shop. Formalin fixed samples, 5 mm in diameter 4 mm thick, were prepared. The two mainmore » tissue types were fat and meat (fibrous). Pure as well as composite samples consisting of a mixture of the two tissue types were analyzed. For the latter samples, ν{sub fat} for the tissue columns of interest were extracted from corresponding pixels in CCD digital x-ray images using a calibration curve. The means ν{sup ¯}{sub fat} were then calculated for use in a WAXS fat subtraction model. For the WAXS measurements, the samples were interrogated with a 2.7 mm diameter 50 kV beam and the 6° scattered photons were detected with a CdTe detector subtending a solid angle of 7.75 × 10{sup −5} sr. Using the scatter spectrum, an estimate of the incident spectrum, and a scatter model, μ{sub s} was determined for the tissue in the ROI. For the composite samples, a WAXS fat subtraction model was used to estimate the μ{sub s} of the fibrous tissue in the ROI. This signal was compared to μ{sub s} of fibrous tissue obtained using a pure fibrous sample. Results: For chicken and beef composites, ν{sup ¯}{sub fat}=0.33±0.05 and 0.32 ± 0.05, respectively. The subtractions of these fat components from the WAXS composite signals provided estimates of μ{sub s} for chicken and beef fibrous tissue. The differences between the estimates and μ{sub s} of fibrous obtained with a pure sample were calculated as a function of the momentum transfer x. A t-test showed that the mean of the differences did not vary from zero in a statistically significant way thereby validating the methods. Conclusions: The methodology to estimate ν{sup ¯}{sub fat} in a ROI of a tissue sample via CCD x-ray imaging was quantitatively accurate. The WAXS fat subtraction model allowed μ{sub s} of fibrous tissue to be obtained from a ROI which had some fat. The fat estimation method coupled with the WAXS models can be used to compare μ{sub s} coefficients of fibroglandular and cancerous breast tissue.« less
Wang, Jianqi; Zhang, Fengjie; Tsang, Wing Pui; Wan, Chao; Wu, Chi
2017-03-01
Hydrogels prepared from poly(ethylene glycol) (PEG) are widely applied in tissue engineering, especially those derived from a combination of functional multi-arm star PEG and linear crosslinker, with an expectation to form a structurally ideal network. However, the poor mechanical strength still renders their further applications. Here we examined the relationship between the dynamics of the pre-gel solution and the mechanical property of the resultant hydrogel in a system consisting of 4-arm star PEG functionalized with vinyl sulfone and short dithiol crosslinker. A method to prepare mechanically strong hydrogel for cartilage tissue engineering is proposed. It is found that when gelation takes place at the overlap concentration, at which a slow relaxation mode just appears in dynamic light scattering (DLS), the resultant hydrogel has a local maximum compressive strength ∼20 MPa, while still keeps ultralow mass concentration and Young's modulus. Chondrocyte-laden hydrogel constructed under this condition was transplanted into the subcutaneous pocket and an osteochondral defect model in SCID mice. The in vivo results show that chondrocytes can proliferate and maintain their phenotypes in the hydrogel, with the production of abundant extracellular matrix (ECM) components, formation of typical chondrocyte lacunae structure and increase in Young's modulus over 12 weeks, as indicated by histological, immunohistochemistry, gene expression analyses and mechanical test. Moreover, newly formed hyaline cartilage was observed to be integrated with the host articular cartilage tissue in the defects injected with chondrocytes/hydrogel constructs. The results suggest that this hydrogel is a promising candidate scaffold for cartilage tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nitrogen fixation studies, lead detection in living plants, and solar wind analysis
NASA Technical Reports Server (NTRS)
Libby, W. F.
1971-01-01
Progress is reported for research on the following: (1) magnetically shielded test facility studies; (2) electrochemistry of B10C2H12, B9CH10(-), and preparation of tumor specific boron containing materials for use in cancer therapy; (3) histochemical method for determining lead in living plant tissue; (4) diamond cementing; (5) analysis of solar wind using the washings of lunar fines; and (6) environmental engineering.
Cardiac tissue engineering using perfusion bioreactor systems
Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana
2009-01-01
This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955
Postdoctoral Fellow | Center for Cancer Research
The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying the metabolic changes in brain tumors such as glioblastoma multiforme (GBMs). NOB’s Metabolomics program is interested in revealing the metabolic alterations of isocitrate dehydrogenase (IDH1)-mutated GBMs and in exploiting these deregulations for therapeutic applications. A combination of methods such as molecular biology, animal models, as well as in vitro and in vivo metabolomics using Raman Imaging Microscopy, Nuclear Magnetic Resonance spectroscopy (NMR), Mass Spectrometry (MS) and Magnetic Resonance Imaging (MRI) techniques are employed. The position will specifically focus on molecular biology and Raman Imaging Microscopy, which includes work in Western Blotting, mammalian cell culture and other common biomedical techniques used in cancer bio logy labs such as handling tissue samples, preparing tissue slides, staining, and extracting proteins from brain tissue.
D'Antò, Vincenzo; Raucci, Maria Grazia; Guarino, Vincenzo; Martina, Stefano; Valletta, Rosa; Ambrosio, Luigi
2016-02-01
Our goal was to characterize the response of human mesenchymal stem cells (hMSCs) to a novel composite scaffold for bone tissue engineering. The hydroxyapatite-polycaprolactone (HA-PCL) composite scaffolds were prepared by a sol-gel method at room temperature and the scaffold morphology was investigated by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) to validate the synthesis process. The response of two different lines of hMSCs, bone-marrow-derived human mesenchymal stem cells (BMSCs) and dental pulp stem cells (DPSCs) in terms of cell proliferation and differentiation into the osteoblastic phenotype, was evaluated using Alamar blue assay, SEM, histology and alkaline phosphatase activity. Our results indicate that tissue engineering by means of composite HA-PCL scaffolds may represent a new therapeutic strategy to repair craniofacial bone defects. Copyright © 2013 John Wiley & Sons, Ltd.
Rudkjøbing, Vibeke Børsholt; Thomsen, Trine Rolighed; Xu, Yijuan; Melton-Kreft, Rachael; Ahmed, Azad; Eickhardt, Steffen; Bjarnsholt, Thomas; Poulsen, Steen Seier; Nielsen, Per Halkjær; Earl, Joshua P; Ehrlich, Garth D; Moser, Claus
2016-11-08
Necrotizing soft tissue infections (NSTIs) are a group of infections affecting all soft tissues. NSTI involves necrosis of the afflicted tissue and is potentially life threatening due to major and rapid destruction of tissue, which often leads to septic shock and organ failure. The gold standard for identification of pathogens is culture; however molecular methods for identification of microorganisms may provide a more rapid result and may be able to identify additional microorganisms that are not detected by culture. In this study, tissue samples (n = 20) obtained after debridement of 10 patients with NSTI were analyzed by standard culture, fluorescence in situ hybridization (FISH) and multiple molecular methods. The molecular methods included analysis of microbial diversity by 1) direct 16S and D2LSU rRNA gene Microseq 2) construction of near full-length 16S rRNA gene clone libraries with subsequent Sanger sequencing for most samples, 3) the Ibis T5000 biosensor and 4) 454-based pyrosequencing. Furthermore, quantitative PCR (qPCR) was used to verify and determine the relative abundance of Streptococcus pyogenes in samples. For 70 % of the surgical samples it was possible to identify microorganisms by culture. Some samples did not result in growth (presumably due to administration of antimicrobial therapy prior to sampling). The molecular methods identified microorganisms in 90 % of the samples, and frequently detected additional microorganisms when compared to culture. Although the molecular methods generally gave concordant results, our results indicate that Microseq may misidentify or overlook microorganisms that can be detected by other molecular methods. Half of the patients were found to be infected with S. pyogenes, but several atypical findings were also made including infection by a) Acinetobacter baumannii, b) Streptococcus pneumoniae, and c) fungi, mycoplasma and Fusobacterium necrophorum. The study emphasizes that many pathogens can be involved in NSTIs, and that no specific "NSTI causing" combination of species exists. This means that clinicians should be prepared to diagnose and treat any combination of microbial pathogens. Some of the tested molecular methods offer a faster turnaround time combined with a high specificity, which makes supplemental use of such methods attractive for identification of microorganisms, especially for fulminant life-threatening infections such as NSTI.
Male fertility preservation before gonadotoxic therapies.
Wyns, C
2010-01-01
Recent advances in cancer therapy have resulted in an increased number of long-term cancer survivors. Unfortunately, aggressive chemotherapy, radiotherapy and preparative regimens for bone marrow transplantation can severely affect male germ cells, including spermatogonial stem cells (SSCs), and lead to permanent loss of fertility. Different options for fertility preservation are dependent on the pubertal state of the patient. Relevant studies were identified by an extensive Medline search of English and French language articles. Sperm cryopreservation prior to gonadotoxic treatment is a well established method after puberty. In case of ejaculation failure by masturbation, assisted ejaculation methods or testicular tissue sampling should be considered. Although no effective gonadoprotective drug is yet available for in vivo spermatogonial stem cell (SSC) protection in humans, current evidence supports the feasibility of immature testicular tissue (ITT) cryopreservation. The different cryopreservation protocols and available fertility restoration options from frozen tissue, i.e. cell suspension transplantation, tissue grafting and in vitro maturation, are presented. RESULTS obtained in humans are discussed in the light of lessons learned from animal studies. Advances in reproductive technology have made fertility preservation a real possibility in young patients whose gonadal function is threatened by gonadotoxic therapies. The putative indications for such techniques, as well as their limitations according to disease, are outlined.
Shahrousvand, Mohsen; Mir Mohamad Sadeghi, Gity; Salimi, Ali
2016-12-01
The cells as a tissue component need to viscoelastic, biocompatible, biodegradable, and wettable extracellular matrix for their biological activity. In this study, in order to prepare biomedical polyurethane elastomers with good mechanical behavior and biodegradability, a series of novel polyester-polyether- based polyurethanes (PUs) were synthesized using a two-step bulk reaction by melting pre-polymer method, taking 1,4-Butanediol (BDO) as chain extender, hexamethylene diisocyanate as the hard segment, and poly (tetramethylene ether) glycol (PTMEG) and poly (ε-caprolactone diol) (PCL-Diol) as the soft segment without a catalyst. The soft to the hard segment ratio was kept constant in all samples. Polyurethane characteristics such as thermal and mechanical properties, wettability and water adsorption, biodegradability, and cellular behavior were changed by changing the ratio of polyether diol to polyester diol composition in the soft segment. Our present work provides a new procedure for the preparation of engineered polyurethanes in surface properties and biodegradability, which could be a good candidate for bone, cartilage, and skin tissue engineering.
Zhou, Ding; Qi, Chao; Chen, Yi-Xuan; Zhu, Ying-Jie; Sun, Tuan-Wei; Chen, Feng; Zhang, Chang-Qing
2017-01-01
Hydroxyapatite (HAP; Ca10(PO4)6(OH)2) and whitlockite (WH; Ca18Mg2(HPO4)2(PO4)12) are widely utilized in bone repair because they are the main components of hard tissues such as bones and teeth. In this paper, we synthesized HAP and WH hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through microwave-assisted hydrothermal method. Then, we prepared HAP/chitosan and WH/chitosan composite membranes to evaluate their biocompatibility in vitro and prepared porous HAP/chitosan and WH/chitosan scaffolds by freeze drying to compare their effects on bone regeneration in calvarial defects in a rat model. The experimental results indicated that the WH/chitosan composite membrane had a better biocompatibility, enhancing proliferation and osteogenic differentiation ability of human mesenchymal stem cells than HAP/chitosan. Moreover, the porous WH/chitosan scaffold can significantly promote bone regeneration in calvarial defects, and thus it is more promising for applications in tissue engineering such as calvarial repair compared to porous HAP/chitosan scaffold. PMID:28435251
NASA Astrophysics Data System (ADS)
Zanin, Fatima; Brugnera, Aldo, Jr.; Pecora, Jesus D.; Pinheiro, Antonio; Spano, Julio; Barbin, Eduardo; Marchesan, Melissa A.
2004-05-01
The knowledge about and control of thermal energy produced by Er:YAG laser after irradiating hard dental tissues and compound resin is important because the pulp, like all vital biological tissue, has a certain capacity for supporting stimulus. The objective of this study was to analyze the thermal variation generated by Er:YAG laser (λ=2.94μm) during the preparation of a Class I cavity in the dental structure and in the removal of microhybrid Z100 (3M) compound resin. An evaluation was made of 30 maxillary human pre-molar teeth from the bank of the Endodontic Laboratory Center of Ribeirao Preto Dental School, Brasil. The sample was divided into 6 groups of 5 teeth each: Group 1, preparation of Class I cavity with Er:YAG laser (350mJ, 3Hz, 343 impulses, 120J, 113 seconds); Group 2, preparation of Class I cavity with Er:YAG laser (350mJ, 4Hz, 343 impulses, 120J, 81 seconds); Group 3, preparation of Class I cavity with Er:YAG laser (350mJ, 6Hz, 343 impulses, 120J, 58 seconds); Group 4, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 3Hz, 258 impulses, 90J, 85 seconds); Group 5, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 4Hz, 258 impulses, 90J, 67 seconds); Group 6, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 6Hz, 258 impulses, 42 seconds). The laser used was KaVo Key 2 (Biberach, Germany), λ=2,94μm, P=3 Watts, pulse duration of 250μs, with air-water cooling. The increase in temperature during dental preparation and the removal of the compound resin was evaluated by means of a Tektronix DMM916 Thermocouple (Consitec, Brasil). The results showed that the application of laser for the removal of the hard dental tissues and for the removal of compound resins with the pulse frequencies 3, 4 and 6 Hz did not generate heating greater than 3.1°C and remained within the histopathological limits permitted for pulp tissue (5.5°C) and there was a significant statistical difference between the heat generated by the application of laser in the removal of the hard dental tissues and in the removal of compound resins (p<0.01). The average increase in temperature of the compound resin component was greater than the tooth.
Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza
2016-01-01
Objective(s): Gallium-68 DOTA-DPhe1-Tyr3-Octreotide (68Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68Ga-DOTATOC preparation, using a novel germanium-68 (68Ge)/68Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. Methods: The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. Results: 68Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68Ga-DOTATOC. Conclusion: The obtained results showed that 68Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran. PMID:27904870
Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug.
Qiu, Yeyan; Zhu, Jun; Wang, Jianting; Gong, Renmin; Zheng, Mingming; Huang, Fenghong
2013-08-01
Self-assembled nanoparticles were synthesized from water-soluble fructose-chitosan, substituted by succinyl linkages with phytosterols as hydrophobic moieties for self-assembly. The physicochemical properties of the prepared self-assembled nanoparticles were characterized by Fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. Doxorubicin (DOX), as a model anticancer drug, was physically entrapped inside prepared self-assembled nanoparticles by the dialysis method. With increasing initial levels of the drug, the drug loading content increased, but the encapsulation efficiency decreased. The release profiles in vitro demonstrated that the DOX showed slow sustained released over 48 h, and the release rate in phosphate buffered saline (PBS) solution (pH 7.4) was much slower than in PBS solution (pH 5.5 and pH 6.5), indicating the prepared self-assembled nanoparticles had the potential to be used as a carrier for targeted delivery of hydrophobic anticancer drugs with declined cytotoxicity to normal tissues.
Lehotay, Steven J; Lightfield, Alan R
2018-01-01
The way to maximize scope of analysis, sample throughput, and laboratory efficiency in the monitoring of veterinary drug residues in food animals is to determine as many analytes as possible as fast as possible in as few methods as possible. Capital and overhead expenses are also reduced by using fewer instruments in the overall monitoring scheme. Traditionally, the highly polar aminoglycoside antibiotics require different chromatographic conditions from other classes of drugs, but in this work, we demonstrate that an ion-pairing reagent (sodium 1-heptanesulfonate) added to the combined final extracts from two sample preparation methods attains good separation of 174 targeted drugs, including 9 aminoglycosides, in the same 10.5-min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The full method was validated in bovine kidney, liver, and muscle tissues according to US regulatory protocols, and 137-146 (79-84%) of the drugs gave between 70 and 120% average recoveries with ≤ 25% RSDs in the different types of tissues spiked at 0.5, 1, and 2 times the regulatory levels of interest (10-1000 ng/g depending on the drug). This method increases sample throughput and the possible number of drugs monitored in the US National Residue Program, and requires only one UHPLC-MS/MS method and instrument for analysis rather than two by the previous scheme. Graphical abstract Outline of the streamlined approach to monitor 174 veterinary drugs, including aminoglycosides, in bovine tissues by combining two extracts of the same sample with an ion-pairing reagent for analysis by UHPLC-MS/MS.
The potential impact of the preparation rich in growth factors (PRGF) in different medical fields.
Anitua, Eduardo; Sánchez, Mikel; Orive, Gorka; Andía, Isabel
2007-11-01
Platelet-rich preparations constitute a relatively new biotechnology for the stimulation and acceleration of tissue healing and bone regeneration. The versatility and biocompatibility of this approach has stimulated its therapeutic use in numerous medical and scientific fields including dentistry, oral implantology, orthopaedics, ulcer treatment, tissue engineering among others. Here we discuss the important progress that has been accomplished in the field of platelet-rich preparations in the last few years. Some of the most interesting therapeutic applications of this technology are discussed as are some of the limitations, future challenges and directions in the field.
Huang, Yi-Hsun; Tseng, Fan-Wei; Chang, Wen-Hsin; Peng, I-Chen; Hsieh, Dar-Jen; Wu, Shu-Wei; Yeh, Ming-Long
2017-08-01
In this study, we developed a novel method using supercritical carbon dioxide (SCCO 2 ) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO 2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO 2 -treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. We decellularized the porcine cornea using SCCO 2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO 2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO 2 extraction technology. SCCO 2 -treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Neonatal rat heart cells cultured in simulated microgravity
NASA Technical Reports Server (NTRS)
Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.
1997-01-01
In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.
Munyeza, Chiedza F; Shobo, Adeola; Baijnath, Sooraj; Bratkowska, Dominika; Naiker, Suhashni; Bester, Linda A; Singh, Sanil D; Maguire, Glenn E M; Kruger, Hendrik G; Naicker, Tricia; Govender, Thavendran
2016-06-01
Tigecycline (TIG), a derivative of minocycline, is the first in the novel class of glycylcyclines and is currently indicated for the treatment of complicated skin structure and intra-abdominal infections. A selective, accurate and reversed-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of TIG in rat brain tissues. Sample preparation was based on protein precipitation and solid phase extraction using Supel-Select HLB (30 mg/1 mL) cartridges. The samples were separated on a YMC Triart C18 column (150 mm x 3.0 mm. 3.0 µm) using gradient elution. Positive electrospray ionization (ESI+) was used for the detection mechanism with the multiple reaction monitoring (MRM) mode. The method was validated over the concentration range of 150-1200 ng/mL for rat brain tissue. The precision and accuracy for all brain analyses were within the acceptable limit. The mean extraction recovery in rat brain was 83.6%. This validated method was successfully applied to a pharmacokinetic study in female Sprague Dawley rats, which were given a dose of 25 mg/kg TIG intraperitoneally at various time-points. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
The effect of fixatives and temperature on the quality of glycogen demonstration.
Zakout, Yosef Mohamed Azzam; Salih, Magdi M; Ahmed, H G
2010-04-01
Glycogen is demonstrated in a number of lesions and is diagnostically significant, particularly in certain tumors. To stain glycogen accurately, it is essential to choose a suitable fixative, temperature and staining method. We used rabbit liver to assess these variables. Specimens were fixed in three fixatives at two temperatures: 10% formalin, neutral buffered formalin (NBF) and Bouin's solution at 37 and 4 degrees C. Seventy-two paraffin sections were prepared and stained with periodic acid-Schiff (PAS), hexamine (methenamine) silver and Best's carmine methods. Negative control sections using diastase digestion were used for all methods to confirm the presence of glycogen. For the PAS reaction, Bouin's fixative gave better results at both temperatures compared to the other fixatives. For hexamine (methenamine) silver, the quality of staining was improved for tissues fixed in both 10% formalin and NBF at 37 degrees C compared to Bouin's solution. Both 10% formalin and NBF at 4 degrees C gave better results than Bouin's solution. For Best's carmine, Bouin's solution gave the best results for tissues fixed at 4 degrees C. Fixation of tissues with NBF at 37 degrees C gave the best quality staining. We concluded that the quality of glycogen staining in paraffin sections is greatly affected by both the fixative and the temperature of fixation.
Zhernov, O A; Osadcha, O I; Zhernov, A O; Nazarenko, V M; Staskevych, S V
2011-07-01
Peculiarities of the burn wound course and the cicatricial tissue formation are shown. Clinical efficacy of application of cream Karipaine and gel Karipaine Ultra was proved, witnessed by improvement of the cell to tissue interaction as well as the connective tissue metabolism and the cicatricial tissue reconstruction.
Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.
Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S
2013-10-01
Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.
Herbst, Eric A F; Holloway, Graham P
2015-02-15
Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia-reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
A Combination Tissue Engineering Strategy for Schwann Cell-Induced Spinal Cord Repair
2016-10-01
block copolymer consisting of polyethylene oxide (PEO) and polypropylene oxide (PPO). It has thermoreversible gelation properties when used at...high; Zeus Inc., Orangeburg, SC) were placed on top of the aligned and random fibrous PVDF-TrFE disks in 96-well polypropylene plates to prevent them...2011. Preparation of spinal cord injured tissue for light and electron microscopy including preparation for immunostaining. In: Lane LE , Dunnett BS
Soft shell clams Mya arenaria with disseminated neoplasia demonstrate reverse transcriptase activity
House, M.L.; Kim, C.H.; Reno, P.W.
1998-01-01
Disseminated neoplasia (DN), a proliferative cell disorder of the circulatory system of bivalves, was first reported in oysters in 1969. Since that time, the disease has been determined to be transmissible through water-borne exposure, but the etiological agent has not been unequivocally identified. In order to determine if a viral agent, possibly a retrovirus, could be the causative agent of DN, transmission experiments were performed, using both a cell-free filtrate and a sucrose gradient-purified preparation of a cell-free filtrate of DN positive materials. Additionally, a PCR-enhanced reverse transcriptase assay was used to determine if reverse transcriptase was present in tissues or hemolymph from DN positive soft shell clams Mya arenaria. DN was transmitted to healthy clams by injection with whole DN cells, but not with cell-free flitrates prepared from either tissues from DN positive clams, or DN cells. The cell-free preparations from DN-positive tissues and hemolymph having high levels of DN cells in circulation exhibited positive reactions in the PCR-enhanced reverse transcriptase assay. Cell-free preparations of hemolymph from clams having low levels of DN (<0.1% of cells abnormal), hemocytes from normal soft shell clams, and normal soft shell clam tissues did not produce a positive reaction in the PCR enhanced reverse transcriptase assay.
Weber, Erin L; Leland, Hyuma A; Azadgoli, Beina; Minneti, Michael; Carey, Joseph N
2017-08-01
Rehearsal is an essential part of mastering any technical skill. The efficacy of surgical rehearsal is currently limited by low fidelity simulation models. Fresh cadaver models, however, offer maximal surgical simulation. We hypothesize that preoperative surgical rehearsal using fresh tissue surgical simulation will improve resident confidence and serve as an important adjunct to current training methods. Preoperative rehearsal of surgical procedures was performed by plastic surgery residents using fresh cadavers in a simulated operative environment. Rehearsal was designed to mimic the clinical operation, complete with a surgical technician to assist. A retrospective, web-based survey was used to assess resident perception of pre- and post-procedure confidence, preparation, technique, speed, safety, and anatomical knowledge on a 5-point scale (1= not confident, 5= very confident). Twenty-six rehearsals were performed by 9 residents (PGY 1-7) an average of 4.7±2.1 days prior to performance of the scheduled operation. Surveys demonstrated a median pre-simulation confidence score of 2 and a post-rehearsal score of 4 (P<0.01). The perceived improvement in confidence and performance was greatest when simulation was performed within 3 days of the scheduled case. All residents felt that cadaveric simulation was better than standard preparation methods of self-directed reading or discussion with other surgeons. All residents believed that their technique, speed, safety, and anatomical knowledge improved as a result of simulation. Fresh tissue-based preoperative surgical rehearsal was effectively implemented in the residency program. Resident confidence and perception of technique improved. Survey results suggest that cadaveric simulation is beneficial for all levels of residents. We believe that implementation of preoperative surgical rehearsal is an effective adjunct to surgical training at all skill levels in the current environment of decreased work hours.
Yokoi, Masako; Hattori, Koji; Narikawa, Koichi; Ohgushi, Hajime; Tadokoro, Mika; Hoshi, Kazuto; Takato, Tsuyoshi; Myoui, Akira; Nanno, Katsuhiko; Kato, Yukio; Kanawa, Masami; Sugawara, Katsura; Kobo, Tomoko; Ushida, Takashi
2012-07-01
Tissue-engineered medical products (TEMPs) should be evaluated before implantation. Therefore, it is indispensable to establish evaluation protocols in regenerative medicine. Whether or not such evaluation protocols are reasonable is generally verified through a 'round robin' test. However, the round robin test for TEMPs intrinsically includes a deficiency, because 'identical' specimens can not be prepared for TEMPs. The aim of the study was to assess the feasibility and limitations of the round robin test for TEMPs by using a prepared evaluation protocol. We adopted tissue-engineered cartilage constructs as delivered specimens and a protocol of measuring sGAG content as an evaluation protocol proposed to ISO TC150/SC7, which is an invasive, but usually applied, method, although non-invasive methods are keenly required in evaluating TEMPs. The results showed that: (a) the coefficient of variation (CV) of the measured sGAG contents in intralaboratory tests was ~5% at most; (b) the CV of sGAG content in the scheme where each participating laboratory measured different constructs was comparable with that in the scheme where each participating laboratory measured one half of a construct along with the organizing laboratory; (c) the CV caused by factors other than the specimen was ~15%, comparable to that in reproducible experiments in biomedical fields. Based on these results, the study concludes that a round robin test for a TEMP could be valuable, under the condition that the delivered TEMPs are sufficiently reproducible so that the CV of the measured values is < 5% in the organizing laboratory. Copyright © 2011 John Wiley & Sons, Ltd.
Ting, Jonathan T; Lee, Brian R; Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed
2018-02-26
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation.
Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method
Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed
2018-01-01
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation. PMID:29553547
Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method.
Padilla, S; Sánchez-Salcedo, S; Vallet-Regí, M
2005-10-01
Hydroxyapatite (HA)/glass mixtures have shown a faster bioactive behaviour than HA itself. On the other hand, the gel-casting method is a simple and reproducible colloidal method to produce ceramic pieces with complex shapes. In this work, pieces of HA/glass mixtures were prepared by the gel-casting method. A study for obtaining concentrated slurries of these mixtures is reported; the bioactivity and biocompatibility of the obtained pieces have been studied also. The influence of pH, dispersant concentration, the content and milling of glass, and the way to prepare the suspensions were investigated. The lowest viscosity and better rheological properties were achieved with the lowest glass content, when the glass was added after the dispersion of the HA powder and when the glass was not milled after calcination. Fluid suspensions with a high solid content (50 vol.%) could be prepared and well-shaped pieces were obtained from these slurries. These pieces showed in vitro bioactive behavior in simulated body fluid; additionally, the proliferation and spreading assays with osteoblastic cells (HOS) showed that the pieces are biocompatible. The results obtained indicate that the gel-casting of HA/glass mixtures produces bioactive and biocompatible pieces with the required shapes. Therefore, these materials could be good candidates for clinical applications and scaffolds for tissue engineering. (c) 2005 Wiley Periodicals, Inc.
Monoclonal antibody-based serological methods for detecting Citrus tristeza virus in citrus groves.
Liu, Zhen; Chen, Zhe; Hong, Jian; Wang, Xuefeng; Zhou, Changyong; Zhou, Xueping; Wu, Jianxiang
2016-08-01
Citrus tristeza virus (CTV) is one of the most economically important citrus viruses and harms the citrus industry worldwide. To develop reliable and effective serological detection assays of CTV, the major capsid protein (CP) gene of CTV was expressed in Escherichia coli BL21 (DE3) using the expression vector pET-28a and purified through Ni+-NTA affinity chromatography. The recombinant protein was used to immunize BALB/c mice. Four hybridoma cell lines (14B10, 14H11, 20D5, and 20G12) secreting monoclonal antibodies (MAbs) against CTV were obtained through conventional hybridoma technology. The titers of MAb-containing ascitic fluids secreted by the four hybridoma lines ranged from 10(-6) to 10(-7) in indirect enzyme-linked immunosorbent assay (ELISA). Western blots showed that all four MAbs could specifically react with CTV CP. Using the prepared MAbs, dot-ELISA, Tissue print-ELISA, and triple antibody sandwich (TAS)-ELISA were developed to detect CTV in tree nurseries and epidemiological studies. The developed dot-ELISA and TAS-ELISA methods could detect CTV in crude extracts of infected citrus leaves with dilutions of 1:2560 and 1:10, 240 (w/v, g/mL), respectively. Tissue print-ELISA was particularly useful for large-scale field sample detection, mainly owing to its simplicity and lack of sample preparation requirements. The field survey revealed that CTV is prevalent on citrus trees in the Chongqing Municipality, Jiangxi Province, and Zhejiang Province of China. The coincidence rate of serological and RT-PCR test results reached more than 99.5%. The prepared MAbs against CTV and established sensitive and specific serological assays have a significant role in the detection and prevention and control of CTV in our country.
The role of lasers in dentistry: present and future.
Pearson, G J; Schuckert, K H
2003-03-01
Lasers have been used for hard tissue cutting in dentistry for a number of years. The quality of the cavity preparation and the surface finish achievable is variable and is dependent on operating wavelength. The collateral damage, which may be produced at differing wavelengths, is quite marked. Lasers in current form are now able to remove tissue in bulk at a similar rate to conventional methods such as bur and turbine handpiece. Some lasers may, however, provide precision cutting, which may be developed further in the future. Alternative uses of laser light are potentially more beneficial in the shorter term. The use of diode lasers as a means of activating a photosensitizer to carry out photo-activated disinfection appears to be beneficial.
Corneal donor tissue preparation for endothelial keratoplasty.
Woodward, Maria A; Titus, Michael; Mavin, Kyle; Shtein, Roni M
2012-06-12
Over the past ten years, corneal transplantation surgical techniques have undergone revolutionary changes. Since its inception, traditional full thickness corneal transplantation has been the treatment to restore sight in those limited by corneal disease. Some disadvantages to this approach include a high degree of post-operative astigmatism, lack of predictable refractive outcome, and disturbance to the ocular surface. The development of Descemet's stripping endothelial keratoplasty (DSEK), transplanting only the posterior corneal stroma, Descemet's membrane, and endothelium, has dramatically changed treatment of corneal endothelial disease. DSEK is performed through a smaller incision; this technique avoids 'open sky' surgery with its risk of hemorrhage or expulsion, decreases the incidence of postoperative wound dehiscence, reduces unpredictable refractive outcomes, and may decrease the rate of transplant rejection. Initially, cornea donor posterior lamellar dissection for DSEK was performed manually resulting in variable graft thickness and damage to the delicate corneal endothelial tissue during tissue processing. Automated lamellar dissection (Descemet's stripping automated endothelial keratoplasty, DSAEK) was developed to address these issues. Automated dissection utilizes the same technology as LASIK corneal flap creation with a mechanical microkeratome blade that helps to create uniform and thin tissue grafts for DSAEK surgery with minimal corneal endothelial cell loss in tissue processing. Eye banks have been providing full thickness corneas for surgical transplantation for many years. In 2006, eye banks began to develop methodologies for supplying precut corneal tissue for endothelial keratoplasty. With the input of corneal surgeons, eye banks have developed thorough protocols to safely and effectively prepare posterior lamellar tissue for DSAEK surgery. This can be performed preoperatively at the eye bank. Research shows no significant difference in terms of the quality of the tissue or patient outcomes using eye bank precut tissue versus surgeon-prepared tissue for DSAEK surgery. For most corneal surgeons, the availability of precut DSAEK corneal tissue saves time and money, and reduces the stress of performing the donor corneal dissection in the operating room. In part because of the ability of the eye banks to provide high quality posterior lamellar corneal in a timely manner, DSAEK has become the standard of care for surgical management of corneal endothelial disease. The procedure that we are describing is the preparation of the posterior lamellar cornea at the eye bank for transplantation in DSAEK surgery (Figure 1).
Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.
Dunphy, Siobhán E; Bratt, Jessica A J; Akram, Khondoker M; Forsyth, Nicholas R; El Haj, Alicia J
2014-10-01
In this study, collagen-elastin constructs were prepared with the aim of producing a material capable of mimicking the mechanical properties of a single alveolar wall. Collagen has been used in a wide range of tissue engineering applications; however, due to its low mechanical properties its use is limited to non load-bearing applications without further manipulation using methods such as cross-linking or mechanical compression. Here, it was hypothesised that the addition of soluble elastin to a collagen hydrogel could improve its mechanical properties. Hydrogels made from collagen only and collagen plus varying amounts elastin were prepared. Young׳s modulus of each membrane was measured using the combination of a non-destructive indentation and a theoretical model previously described. An increase in Young׳s modulus was observed with increasing concentration of elastin. The use of non-destructive indentation allowed for online monitoring of the elastic moduli of cell-seeded constructs over 8 days. The addition of lung fibroblasts into the membrane increased the stiffness of the hydrogels further and cell-seeded collagen hydrogels were found to have a stiffness equal to the theoretical value for a single alveolar wall (≈5kPa). Through provision of some of the native extracellular matrix components of the lung parenchyma these scaffolds may be able to provide an initial building block toward the regeneration of new functional lung tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Da-Wei; Lei, Xiaohua; He, Feng-Li; He, Jin; Liu, Ya-Li; Ye, Ya-Jing; Deng, Xudong; Duan, Enkui; Yin, Da-Chuan
2017-12-01
The physical and chemical properties of the scaffold are known to play important roles in three-dimensional (3D) cell culture, which always determine the cellular fate or the results of implantation. To control these properties becomes necessary for meeting the requirements of a variety of tissue engineering applications. In this study, a series of silk fibroin/chitosan (SF/CS) scaffolds with tunable properties were prepared using freeze-drying method, and the rat bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded in these scaffolds to evaluate their availability of use in tissue engineering. The 3D structure, mechanical properties and degradation ability of SF/CS scaffold can be tuned by changing the total concentration of the precursor solution and the blending ratio between SF and CS. BM-MSCs cultured in the SF/CS scaffold exhibited excellent proliferation and multiple morphologies. The induction of osteogenic and adipogenic differentiation of BM-MSCs were successful in this scaffold when cultured in vitro. Subcutaneous implantation of the SF/CS scaffolds did not cause any inflammatory response within four weeks, which revealed good compatibility. Moreover, the implanted scaffold allowed host cells to invade, adhere, grow and form new blood vessels. With these excellent performance, SF/CS scaffold has great potential in preparing implants for tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.
Hassan, Muhammad; Waheed, Muhammad Mohsin; Anjum, Muhammad Naeem
2016-01-01
To quantify the radiation dose enhancement in a human tissue-equivalent polymer gel impregnated with silver nanoparticles. The case-control study was conducted at the Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, Pakistan, in January 2014. Silver nanoparticles used in this study were prepared by wet chemical method. Polymer gel was prepared by known quantity of gelatine, methacrylic acid, ascorbic acid, copper sulphate pentahydrate, hydroquinone and water. Different concentrations of silver nanoparticles were added to the gel during its cooling process. The gel was cooled in six plastic vials of 50ml each. Two vials were used as a control sample while four vials were impregnated with silver nanoparticles. After 22 hours, the vials were irradiated with gamma rays by aCobalt-60 unit. Radiation enhancement was assessed by taking magnetic resonance images of the vials. The images were analysed using Image J software. The dose enhancement factor was 24.17% and 40.49% for 5Gy and 10Gy dose respectively. The dose enhancement factor for the gel impregnated with 0.10mM silver nanoparticles was 32.88% and 51.98% for 5Gy and 10Gy dose respectively. The impregnation of a tissue-equivalent gel with silver nanoparticles resulted in dose enhancement and this effect was magnified up to a certain level with the increase in concentration of silver nanoparticles.
Goodwin, Richard J A; Nilsson, Anna; Borg, Daniel; Langridge-Smith, Pat R R; Harrison, David J; Mackay, C Logan; Iverson, Suzanne L; Andrén, Per E
2012-08-30
Analysis of whole animal tissue sections by MALDI MS imaging (MSI) requires effective sample collection and transfer methods to allow the highest quality of in situ analysis of small or hard to dissect tissues. We report on the use of double-sided adhesive conductive carbon tape during whole adult rat tissue sectioning of carboxymethyl cellulose (CMC) embedded animals, with samples mounted onto large format conductive glass and conductive plastic MALDI targets, enabling MSI analysis to be performed on both TOF and FT-ICR MALDI mass spectrometers. We show that mounting does not unduly affect small molecule MSI detection by analyzing tiotropium abundance and distribution in rat lung tissues, with direct on-tissue quantitation achieved. Significantly, we use the adhesive tape to provide support to embedded delicate heat-stabilized tissues, enabling sectioning and mounting to be performed that maintained tissue integrity on samples that had previously been impossible to adequately prepare section for MSI analysis. The mapping of larger peptidomic molecules was not hindered by tape mounting samples and we demonstrate this by mapping the distribution of PEP-19 in both native and heat-stabilized rat brains. Furthermore, we show that without heat stabilization PEP-19 degradation fragments can detected and identified directly by MALDI MSI analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhu, Ying; Dou, Maowei; Piehowski, Paul D; Liang, Yiran; Wang, Fangjun; Chu, Rosalie K; Chrisler, Will; Smith, Jordan N; Schwarz, Kaitlynn C; Shen, Yufeng; Shukla, Anil K; Moore, Ronald J; Smith, Richard D; Qian, Wei-Jun; Kelly, Ryan T
2018-06-24
Current mass spectrometry (MS)-based proteomics approaches are ineffective for mapping protein expression in tissue sections with high spatial resolution due to the limited overall sensitivity of conventional workflows. Here we report an integrated and automated method to advance spatially resolved proteomics by seamlessly coupling laser capture microdissection (LCM) with a recently developed nanoliter-scale sample preparation system termed nanoPOTS (Nanodroplet Processing in One pot for Trace Samples). The workflow is enabled by prepopulating nanowells with DMSO, which serves as a sacrificial capture liquid for microdissected tissues. The DMSO droplets efficiently collect laser-pressure catapulted LCM tissues as small as 20 µm in diameter with success rates >87%. We also demonstrate that tissue treatment with DMSO can significantly improve proteome coverage, likely due to its ability to dissolve lipids from tissue and enhance protein extraction efficiency. The LCM-nanoPOTS platform was able to identify 180, 695, and 1827 protein groups on average from 12-µm-thick rat brain cortex tissue sections with diameters of 50, 100, and 200 µm, respectively. We also analyzed 100-µm-diameter sections corresponding to 10-18 cells from three different regions of rat brain and comparatively quantified ~1000 proteins, demonstrating the potential utility for high-resolution spatially resolved mapping of protein expression in tissues. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Biomedical applications of laser-induced breakdown spectroscopy (LIBS)
NASA Astrophysics Data System (ADS)
Unnikrishnan, V. K.; Nayak, Rajesh; Bhat, Sujatha; Mathew, Stanley; Kartha, V. B.; Santhosh, C.
2015-03-01
LIBS has been proven to be a robust elemental analysis tool attracting interest because of the wide applications. LIBS can be used for analysis of any type of samples i.e. environmental/physiological, regardless of its state of matter. Conventional spectroscopy techniques are good in analytical performance, but their sample preparation method is mostly destructive and time consuming. Also, almost all these methods are incapable of analysing multi elements simaltaneously. On the other hand, LIBS has many potential advantages such as simplicity in the experimental setup, less sample preparation, less destructive analysis of sample etc. In this paper, we report some of the biomedical applications of LIBS. From the experiments carried out on clinical samples (calcified tissues or teeth and gall stones) for trace elemental mapping and detection, it was found that LIBS is a robust tool for such applications. It is seen that the presence and relative concentrations of major elements (calcium, phosphorus and magnesium) in human calcified tissue (tooth) can be easily determined using LIBS technique. The importance of this study comes in anthropology where tooth and bone are main samples from which reliable data can be easily retrieved. Similarly, elemental composition of bile juice and gall stone collected from the same subject using LIBS was found to be similar. The results show interesting prospects for LIBS to study cholelithiasis (the presence of stones in the gall bladder, is a common disease of the gastrointestinal tract) better.
Lange, P; Greco, K; Partington, L; Carvalho, C; Oliani, S; Birchall, M A; Sibbons, P D; Lowdell, M W; Ansari, T
2017-03-01
Tissue engineered tracheae have been successfully implanted to treat a small number of patients on compassionate grounds. The treatment has not become mainstream due to the time taken to produce the scaffold and the resultant financial costs. We have developed a method for decellularization (DC) based on vacuum technology, which when combined with an enzyme/detergent protocol significantly reduces the time required to create clinically suitable scaffolds. We have applied this technology to prepare porcine tracheal scaffolds and compared the results to scaffolds produced under normal atmospheric pressures. The principal outcome measures were the reduction in time (9 days to prepare the scaffold) followed by a reduction in residual DNA levels (DC no-vac: 137.8±48.82 ng/mg vs. DC vac 36.83±18.45 ng/mg, p<0.05.). Our approach did not impact on the collagen or glycosaminoglycan content or on the biomechanical properties of the scaffolds. We applied the vacuum technology to human tracheae, which, when implanted in vivo showed no significant adverse immunological response. The addition of a vacuum to a conventional decellularization protocol significantly reduces production time, whilst providing a suitable scaffold. This increases clinical utility and lowers production costs. To our knowledge this is the first time that vacuum assisted decellularization has been explored. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Liu, Yu-Chi; Alvarez Paraz, Carisa M; Cajucom-Uy, Howard Yu; Agahari, Djoni; Sethuraman, Selvam; Tan, Donald T-H; Mehta, Jodhbir S
2014-07-01
The aim of this study was to investigate donor, tissue, and precut procedure risk factors for endothelial cell density (ECD) loss in posterior lamellar corneal tissue preparation by an eye bank for Descemet stripping automated endothelial keratoplasty. A total of 259 corneoscleral rims precut by the Singapore Eye Bank from October 2011 to August 2013 were evaluated. Donor characteristics, tissue characteristics, and precut procedure parameters were analyzed. The mean donor age was 57.18 ± 11.35 years, and the mean cutting transition time was 4.16 ± 0.75 seconds. The mean ECD was 2826 ± 225 and 2787 ± 224 cells per square millimeter before and after precutting, respectively, with an average ECD change of -1.38% ± 3.28%. The precutting procedure failure rate was 1.2%. Mutivariate regression analysis showed that an older donor age, a higher ECD before cutting, and a slower cutting transition speed were significant factors. Corneas with an ECD >2800 cells per square millimeter before precutting, cutting transition time >5.5 seconds, and corneas with donor age >65 years were significantly more likely to have greater than 5% ECD loss after precutting (odds ratio, 6.42, 1.66, and 1.62; 95% confidence interval, 1.44-29.43, 1.45-2.72, and 1.66-5.82, respectively). Donor source, death-to-preservation time (range, 0.67-10.88 hours), death-to-precutting time (range, 0-7 days), and graft thickness (range, 43-232 μm) were not statistically significant factors. The ECD loss in the precut tissue prepared by the eye bank was very low. The risk factors identified provide better understanding of how to improve the quality and safety profiles when preparing graft tissue for Descemet stripping automated endothelial keratoplasty.
Shavandi, Amin; Bekhit, Alaa El-Din A; Ali, M Azam; Sun, Zhifa
2015-09-01
In the present study, chitosan/hydroxyapatite (HA)/β-tircalcium phosphate (β-TCP) composites were produced using squid pen derived chitosan (CHS) and commercial crab derived chitosan (CHC). CHS was prepared from squid pens by alkaline N-deacetylation. HA and β-TCP were extracted from mussel shells using a microwave irradiation method. Two different composites were prepared by incorporating 50% (w/w) HA/(β-TCP) in CHS or CHC followed by lyophilization and cross-linking of composites by tripolyphosphate (TPP). The effect of different freezing temperatures of -20, -80 and -196 °C on the physicochemical characteristics of composites was investigated. A simulated body fluid (SBF) solution was used for preliminary in vitro study for 1, 7, 14 and 28 days and the composites were characterized by XRD, FTIR, TGA, SEM, μ-CT and ICP-MS. Porosity, pore size, water uptake; water retention abilities and in vitro degradations of the prepared composites were evaluated. The CHS composites were found to have higher porosity (62%) compared to the CHC composites (porosity 42%) and better mechanical properties. The results of this study indicated that composites produced at -20 °C had higher mechanical properties and lower degradation rate compared with -80 °C. Chitosan from the squid pen is an excellent biomaterial candidate for bone tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Defining the nociceptor transcriptome
Thakur, Matthew; Crow, Megan; Richards, Natalie; Davey, Gareth I. J.; Levine, Emma; Kelleher, Jayne H.; Agley, Chibeza C.; Denk, Franziska; Harridge, Stephen D. R.; McMahon, Stephen B.
2014-01-01
Unbiased “omics” techniques, such as next generation RNA-sequencing, can provide entirely novel insights into biological systems. However, cellular heterogeneity presents a significant barrier to analysis and interpretation of these datasets. The neurons of the dorsal root ganglia (DRG) are an important model for studies of neuronal injury, regeneration and pain. The majority of investigators utilize a dissociated preparation of whole ganglia when studying cellular and molecular function. We demonstrate that the standard methods for producing these preparations gives a 10%-neuronal mixture of cells, with the remainder of cells constituting satellite glia and other non-neuronal cell types. Using a novel application of magnetic purification, we consistently obtain over 95% pure, viable neurons from adult tissue, significantly enriched for small diameter nociceptors expressing the voltage gated ion channel Nav1.8. Using genome-wide RNA-sequencing we compare the currently used (10% neuronal) and pure (95% nociceptor) preparations and find 920 genes enriched. This gives an unprecedented insight into the molecular composition of small nociceptive neurons in the DRG, potentially altering the interpretation of previous studies performed at the tissue level, and indicating a number of novel markers of this widely-studied population of cells. We anticipate that the ease of use, affordability and speed of this technique will see it become widely adopted, delivering a greatly improved capacity to study the roles of nociceptors in health and disease. PMID:25426020
Emerging chitin and chitosan nanofibrous materials for biomedical applications
NASA Astrophysics Data System (ADS)
Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun
2014-07-01
Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.
Ohno, Shinichi; Saitoh, Yurika; Ohno, Nobuhiko; Terada, Nobuo
2017-01-01
Medical and biological scientists wish to understand the in vivo structures of the cells and tissues that make up living animal organs, as well as the locations of their molecular components. Recently, the live imaging of animal cells and tissues with fluorescence-labeled proteins produced via gene manipulation has become increasingly common. Therefore, it is important to ensure that findings derived from histological or immunohistochemical tissue sections of living animal organs are compatible with those obtained from live images of the same organs, which can be assessed using recently developed digital imaging techniques. Over the past two decades, we have performed immunohistochemical and morphological studies of the cells and tissues in living animal organs using a novel in vivo cryotechnique. The use of a specially designed liquid cryogen system with or without a cryoknife during this cryotechnique solved the technical problems that inevitably arise during the conventional preparation methods employed prior to light or electron microscopic examinations. Our in vivo cryotechnique has been found to be extremely useful for arresting transient physiological processes in cells and tissues and for maintaining their functional components-such as rapidly changing signaling molecules, membrane channels, or receptors-in situ. The purpose of the present review is to describe the basic mechanism underlying cryotechniques and the significance of our in vivo cryotechnique. In addition, it describes various morphological or immunohistochemical findings, observations made using quantum dots, and a Raman cryomicroscopy-based method for assessing oxygen saturation in the erythrocytes flowing through intestinal tissues.
NASA Astrophysics Data System (ADS)
Bassan, Paul; Sachdeva, Ashwin; Shanks, Jonathan H.; Brown, Mick D.; Clarke, Noel W.; Gardner, Peter
2014-03-01
Fourier transform infrared (FT-IR) chemical imaging has been demonstrated as a promising technique to complement histopathological assessment of biomedical tissue samples. Current histopathology practice involves preparing thin tissue sections and staining them using hematoxylin and eosin (H&E) after which a histopathologist manually assess the tissue architecture under a visible microscope. Studies have shown that there is disagreement between operators viewing the same tissue suggesting that a complementary technique for verification could improve the robustness of the evaluation, and improve patient care. FT-IR chemical imaging allows the spatial distribution of chemistry to be rapidly imaged at a high (diffraction-limited) spatial resolution where each pixel represents an area of 5.5 × 5.5 μm2 and contains a full infrared spectrum providing a chemical fingerprint which studies have shown contains the diagnostic potential to discriminate between different cell-types, and even the benign or malignant state of prostatic epithelial cells. We report a label-free (i.e. no chemical de-waxing, or staining) method of imaging large pieces of prostate tissue (typically 1 cm × 2 cm) in tens of minutes (at a rate of 0.704 × 0.704 mm2 every 14.5 s) yielding images containing millions of spectra. Due to refractive index matching between sample and surrounding paraffin, minimal signal processing is required to recover spectra with their natural profile as opposed to harsh baseline correction methods, paving the way for future quantitative analysis of biochemical signatures. The quality of the spectral information is demonstrated by building and testing an automated cell-type classifier based upon spectral features.
Jahangiri, Azin; Barzegar-Jalali, Mohammad; Garjani, Alireza; Javadzadeh, Yousef; Hamishehkar, Hamed; Asadpour-Zeynali, Karim; Adibkia, Khosro
2016-01-20
Fixed-dose combination of atorvastatin calcium (ATV) and ezetimibe (EZT) provides a considerable advantage in the management of hyperlipidemia. However, both ATV and EZT suffer from the poor aqueous solubility, which can limit their oral bioavailability. The aim of the present study was to improve the in vitro performance and evaluate the in vivo efficiency of the improved (ATV/EZT) fixed-dose combination. The formulation was prepared through solid dispersion (SD)technique, using Polyvinylpyrrolidone K30 via solvent method. Solid-state analysis and the in vitro drug release of the prepared formulations were also assessed. In order to estimate the therapeutic efficiency of the prepared SDs, in vivo studies including measurement of serum lipid levels, liver index and histological analysis of the liver tissue in hyperlipidemic rats were conducted. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) showed that the drugs crystallinity was notably decreased during the preparation process. All SDs showed enhanced release for both drugs compared to their binary mixture, drugs: polymer physical mixtures (PMs) and marketed product. Administration of ATV/EZT SD led to a remarkable decrease (P<0.05) in the serum levels of total cholesterol (TC) and LDL-C in the high fat diet-induced hyperlipidemic rats compared to the PM. Additionally, the histopathological examination of the liver tissue revealed the improved efficiency of the SDs on the liver steatosis. According to the obtained results, ATV/EZT SD with improved physicochemical characteristics, showed favorable effects on the serum lipid levels and liver steatosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Panduric, Dragana Gabric; Juric, Ivona Bago; Music, Svetozar; Molčanov, Krešimir; Sušic, Mato; Anic, Ivica
2014-07-01
The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill. Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals. FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group. The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.
2014-01-01
Background Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage. Methods A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm’s robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods. Results Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage. Conclusions Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues. PMID:24521154
Zhang, Bing; Zhang, Pei-biao; Wang, Zong-liang; Lyu, Zhong-wen; Wu, Han
2017-01-01
Objective: A new therapeutic strategy using nanocomposite scaffolds of grafted hydroxyapatite (g-HA)/poly(lactide-co-glycolide) (PLGA) carried with autologous mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) was assessed for the therapy of critical bone defects. At the same time, tissue response and in vivo mineralization of tissue-engineered implants were investigated. Methods: A composite scaffold of PLGA and g-HA was fabricated by the solvent casting and particulate-leaching method. The tissue-engineered implants were prepared by seeding the scaffolds with autologous bone marrow MSCs in vitro. Then, mineralization and osteogenesis were observed by intramuscular implantation, as well as the repair of the critical radius defects in rabbits. Results: After eight weeks post-surgery, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that g-HA/PLGA had a better interface of tissue response and higher mineralization than PLGA. Apatite particles were formed and varied both in macropores and micropores of g-HA/PLGA. Computer radiographs and histological analysis revealed that there were more and more quickly formed new bone formations and better fusion in the bone defect areas of g-HA/PLGA at 2–8 weeks post-surgery. Typical bone synostosis between the implant and bone tissue was found in g-HA/PLGA, while only fibrous tissues formed in PLGA. Conclusions: The incorporation of g-HA mainly improved mineralization and bone formation compared with PLGA. The application of MSCs can enhance bone formation and mineralization in PLGA scaffolds compared with cell-free scaffolds. Furthermore, it can accelerate the absorption of scaffolds compared with composite scaffolds. PMID:29119734
Cao, Xuefei; Muskhelishvili, Levan; Latendresse, John; Richter, Patricia; Heflich, Robert H
2017-03-01
Exposure to cigarette smoke causes a multitude of pathological changes leading to tissue damage and disease. Quantifying such changes in highly differentiated in vitro human tissue models may assist in evaluating the toxicity of tobacco products. In this methods development study, well-differentiated human air-liquid-interface (ALI) in vitro airway tissue models were used to assess toxicological endpoints relevant to tobacco smoke exposure. Whole mainstream smoke solutions (WSSs) were prepared from 2 commercial cigarettes (R60 and S60) that differ in smoke constituents when machine-smoked under International Organization for Standardization conditions. The airway tissue models were exposed apically to WSSs 4-h per day for 1-5 days. Cytotoxicity, tissue barrier integrity, oxidative stress, mucin secretion, and matrix metalloproteinase (MMP) excretion were measured. The treatments were not cytotoxic and had marginal effects on tissue barrier properties; however, other endpoints responded in time- and dose-dependent manners, with the R60 resulting in higher levels of response than the S60 for many endpoints. Based on the lowest effect dose, differences in response to the WSSs were observed for mucin induction and MMP secretion. Mitigation of mucin induction by cotreatment of cultures with N-acetylcysteine suggests that oxidative stress contributes to mucus hypersecretion. Overall, these preliminary results suggest that quantifying disease-relevant endpoints using ALI airway models is a potential tool for tobacco product toxicity evaluation. Additional research using tobacco samples generated under smoking machine conditions that more closely approximate human smoking patterns will inform further methods development. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by US Government employees and is in the public domain in the US.
Gholipour, Yousef; Giudicessi, Silvana L; Nonami, Hiroshi; Erra-Balsells, Rosa
2010-07-01
Nanoparticles (NPs) of diamond, titanium dioxide, titanium silicon oxide, barium strontium titanium oxide, and silver (Ag) were examined for their potential as MALDI matrixes for direct laser desorption/ionization of carbohydrates, especially fructans, from plant tissue. Two sample preparation methods including solvent-assisted and solvent-free (dry) NPs deposition were performed and compared. All examined NPs except for Ag could desorb/ionize standard sucrose and fructans in positive and in negative ion mode. Ag NPs yielded good signals only for nonsalt-doped samples that were measured in the negative ion mode. In the case of in vivo studies, except for Ag, all NPs studied could desorb/ionize carbohydrates from tissue in both the positive and negative ion modes. Furthermore, compared to the results obtained with soluble sugars extracted from plant tissues, fructans with higher molecular weight intact molecular ions could be detected when the plant tissues were directly profiled. The limit of detection (LOD) of fructans and the ratios between signal intensities and fructan concentrations were analyzed. NPs had similar LODs for standard fructan triose (1-kestose) in the positive ion mode and better LODs in the negative ion mode when compared with the common crystalline organic MALDI matrixes used for carbohydrates (2,5-dihydroxybenzoic acid and nor-harmane) or carbon nanotubes. Solvent-free NP deposition on tissues partially improves the signal acquisition. Although lower signal-to-noise ratio sugar signals were acquired from the tissues when compared to the solvent-assisted method, the reproducibility averaged over all sample was more uniform.
Vitrenko, Yakov; Kostenko, Iryna; Kulebyakina, Kateryna; Duda, Alla; Klunnyk, Mariya; Sorochynska, Khrystyna
2017-02-16
Cell preparations to be used in clinical practice must be free of infectious agents. Safety concerns are especially elevated upon the use of human fetal tissues, which are otherwise highly advantageous in cell therapy. We demonstrate that treating fetal samples with antibiotic, extensive washing, and homogenization prior to cryoconservation efficiently removes microbes in general. Screening a large collection by an automatic culture system showed that 89.2% fetal tissue samples were sterile, while contamination was detected in 10.8% samples. Liver and chorion were contaminated more than the brain, kidney, lung, and soft tissues. Broad-range PCR from the bacterial 16s rRNA gene was adopted as a confirmatory assay; however, the concordance between the culture-based and PCR assays was weak. Taxonomic identification was done for contaminated samples by bacteriological methods and sequencing 16s rRNA PCR products. The two approaches revealed different spectra of taxonomic groups sharing only Lactobacillus, the most frequently found genus. In addition, other representatives of vaginal microbiota were detected by culture-based identification, while PCR product sequencing has also revealed a subset of nosocomial microorganisms. Importantly, species known to cause sepsis were identified by both techniques, arguing for their indispensability and mutual complementarity. We suggest that most contaminations are taken up during collection of fetal material rather than originating from an in utero infection. In conclusion, a rigorous microbiological control by culture and PCR is a prerequisite for safe clinical use of fetal tissue suspensions.
Interpreting dual ELISA and qPCR data for bacterial kidney disease of salmonids.
Nance, Shelly L; Riederer, Michael; Zubkowski, Tyler; Trudel, Marc; Rhodes, Linda D
2010-09-02
Although there are a variety of methods available for the detection of Renibacterium salmoninarum, the causative agent of bacterial kidney disease in salmon and trout, the enzyme-linked immunosorbent assay (ELISA) is probably the most widely used method. However, ELISA measures bacterial antigen, which does not necessarily reflect the number of cells present. We hypothesized that dual analysis of kidney tissue by ELISA and a quantitative real-time polymerase chain reaction assay (qPCR) would provide complementary information about antigen level and the number of bacterial genomes. We found that DNA extracted from the insoluble fraction of the ELISA tissue preparation produced the same qPCR result as DNA extracted directly from frozen tissue, permitting true dual analysis of the same tissue sample. We examined kidney tissue in this manner from individual free-ranging juvenile Chinook salmon and antibiotic-treated captive subadult Chinook salmon and observed 3 different patterns of results. Among the majority of fish, there was a strong correlation between the ELISA value and the qPCR value. However, subsets of fish exhibited either low ELISA values with elevated qPCR values or higher ELISA values with very low qPCR values. These observations suggest a conceptual model that allows inferences about the state of infection of individual fish based on dual ELISA/qPCR results. Although this model requires further assessment through experimental infections and treatments, it may have utility in broodstock selection programs that currently apply egg-culling practices based on ELISA alone.
FIB-SEM imaging of carbon nanotubes in mouse lung tissue.
Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian
2014-06-01
Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.
High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique.
Pinskiy, Vadim; Jones, Jamie; Tolpygo, Alexander S; Franciotti, Neil; Weber, Kevin; Mitra, Partha P
2015-01-01
Cryostat sectioning is a popular but labor-intensive method for preparing histological brain sections. We have developed a modification of the commercially available CryoJane tape collection method that significantly improves the ease of collection and the final quality of the tissue sections. The key modification involves an array of UVLEDs to achieve uniform polymerization of the glass slide and robust adhesion between the section and slide. This report presents system components and detailed procedural steps, and provides examples of end results; that is, 20 μm mouse brain sections that have been successfully processed for routine Nissl, myelin staining, DAB histochemistry, and fluorescence. The method is also suitable for larger brains, such as rat and monkey.
High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique
Pinskiy, Vadim; Jones, Jamie; Tolpygo, Alexander S.; Franciotti, Neil; Weber, Kevin; Mitra, Partha P.
2015-01-01
Cryostat sectioning is a popular but labor-intensive method for preparing histological brain sections. We have developed a modification of the commercially available CryoJane tape collection method that significantly improves the ease of collection and the final quality of the tissue sections. The key modification involves an array of UVLEDs to achieve uniform polymerization of the glass slide and robust adhesion between the section and slide. This report presents system components and detailed procedural steps, and provides examples of end results; that is, 20μm mouse brain sections that have been successfully processed for routine Nissl, myelin staining, DAB histochemistry, and fluorescence. The method is also suitable for larger brains, such as rat and monkey. PMID:26181725
Rasinger, J D; Marbaix, H; Dieu, M; Fumière, O; Mauro, S; Palmblad, M; Raes, M; Berntssen, M H G
2016-09-16
The rapidly growing aquaculture industry drives the search for sustainable protein sources in fish feed. In the European Union (EU) since 2013 non-ruminant processed animal proteins (PAP) are again permitted to be used in aquafeeds. To ensure that commercial fish feeds do not contain PAP from prohibited species, EU reference methods were established. However, due to the heterogeneous and complex nature of PAP complementary methods are required to guarantee the safe use of this fish feed ingredient. In addition, there is a need for tissue specific PAP detection to identify the sources (i.e. bovine carcass, blood, or meat) of illegal PAP use. In the present study, we investigated and compared different protein extraction, solubilisation and digestion protocols on different proteomics platforms for the detection and differentiation of prohibited PAP. In addition, we assessed if tissue specific PAP detection was feasible using proteomics tools. All work was performed independently in two different laboratories. We found that irrespective of sample preparation gel-based proteomics tools were inappropriate when working with PAP. Gel-free shotgun proteomics approaches in combination with direct spectral comparison were able to provide quality species and tissue specific data to complement and refine current methods of PAP detection and identification. To guarantee the safe use of processed animal protein (PAP) in aquafeeds efficient PAP detection and monitoring tools are required. The present study investigated and compared various proteomics workflows and shows that the application of shotgun proteomics in combination with direct comparison of spectral libraries provides for the desired species and tissue specific classification of this heat sterilized and pressure treated (≥133°C, at 3bar for 20min) protein feed ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Chunhui; Guan, Guangying; Ling, Yuting; Lang, Stephen; Wang, Ruikang K.; Huang, Zhihong; Nabi, Ghulam
2015-03-01
Objectives. Prostate cancer is the most frequently diagnosed malignancy in men. Digital rectal examination (DRE) - a known clinical tool based on alteration in the mechanical properties of tissues due to cancer has traditionally been used for screening prostate cancer. Essentially, DRE estimates relative stiffness of cancerous and normal prostate tissue. Optical coherence elastography (OCE) are new optical imaging techniques capable of providing cross-sectional imaging of tissue microstructure as well as elastogram in vivo and in real time. In this preliminary study, OCE was used in the setting of the human prostate biopsies ex vivo, and the images acquired were compared with those obtained using standard histopathologic methods. Methods. 120 prostate biopsies were obtained by TRUS guided needle biopsy procedures from 9 patients with clinically suspected cancer of the prostate. The biopsies were approximately 0.8mm in diameter and 12mm in length, and prepared in Formalin solution. Quantitative assessment of biopsy samples using OCE was obtained in kilopascals (kPa) before histopathologic evaluation. The results obtained from OCE and standard histopathologic evaluation were compared provided the cross-validation. Sensitivity, specificity, and positive and negative predictive values were calculated for OCE (histopathology was a reference standard). Results. OCE could provide quantitative elasticity properties of prostate biopsies within benign prostate tissue, prostatic intraepithelial neoplasia, atypical hyperplasia and malignant prostate cancer. Data analysed showed that the sensitivity and specificity of OCE for PCa detection were 1 and 0.91, respectively. PCa had significantly higher stiffness values compared to benign tissues, with a trend of increasing in stiffness with increasing of malignancy. Conclusions. Using OCE, microscopic resolution elastogram is promising in diagnosis of human prostatic diseases. Further studies using this technique to improve the detection and staging of malignant cancer of the prostate are ongoing.
LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.
Marshall, J C; Shakespear, R A; Odell, W D
1976-11-01
Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.
A novel technique for reference point generation to aid in intraoral scan alignment.
Renne, Walter G; Evans, Zachary P; Mennito, Anthony; Ludlow, Mark
2017-11-12
When using a completely digital workflow on larger prosthetic cases it is often difficult to communicate to the laboratory or chairside Computer Aided Design and Computer Aided Manufacturing system the provisional prosthetic information. The problem arises when common hard tissue data points are limited or non-existent such as in complete arch cases in which the 3D model of the complete arch provisional restorations must be aligned perfectly with the 3D model of the complete arch preparations. In these instances, soft tissue is not enough to ensure an accurate automatic or manual alignment due to a lack of well-defined reference points. A new technique is proposed for the proper digital alignment of the 3D virtual model of the provisional prosthetic to the 3D virtual model of the prepared teeth in cases where common and coincident hard tissue data points are limited. Clinical considerations: A technique is described in which fiducial composite resin dots are temporarily placed on the intraoral keratinized tissue in strategic locations prior to final impressions. These fiducial dots provide coincident and clear 3D data points that when scanned into a digital impression allow superimposition of the 3D models. Composite resin dots on keratinized tissue were successful at allowing accurate merging of provisional restoration and post-preparation 3D models for the purpose of using the provisional restorations as a guide for final CLINICAL SIGNIFICANCE: Composite resin dots placed temporarily on attached tissue were successful at allowing accurate merging of the provisional restoration 3D models to the preparation 3D models for the purposes of using the provisional restorations as a guide for final restoration design and manufacturing. In this case, they allowed precise superimposition of the 3D models made in the absence of any other hard tissue reference points, resulting in the fabrication of ideal final restorations. © 2017 Wiley Periodicals, Inc.
An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.
Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai
2014-03-01
Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.
[Preparation trauma in stomatology].
Novák, L; Půza, V; Cervinka, M; Kolárová, J
1997-01-01
In this paper authors deal with the causes of preparation trauma in stomatology. They have studied effects of high temperature on human cells cultured in vitro. Based both on literature data and on their own experience they summarize basic principles of preparation which prevent preparation trauma. They summarize how to eliminate as much as possible factors that damage hard dental tissues and pulp.
Golubeva, Yelena G.; Smith, Roberta M.; Sternberg, Lawrence R.
2013-01-01
Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc.) and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone) during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection) and membrane (laser cutting microdissection) slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction that facilitated efficient dissection and high quality RNA retrieval from CryoJane preparations. CryoJane technology therefore has the potential to facilitate standardization of laser microdissection slide preparation from frozen tissues. PMID:23805281
Niranjan, Ramesh; Koushik, Chandru; Saravanan, Sekaran; Moorthi, Ambigapathi; Vairamani, Mariappanadar; Selvamurugan, Nagarajan
2013-03-01
Hydrogels are hydrophilic polymers that have a wide range of biomedical applications including bone tissue engineering. In this study we report preparation and characterization of a thermosensitive hydrogel (Zn-CS/β-GP) containing zinc (Zn), chitosan (CS) and beta-glycerophosphate (β-GP) for bone tissue engineering. The prepared hydrogel exhibited a liquid state at room temperature and turned into a gel at body temperature. The hydrogel was characterized by SEM, EDX, XRD, FT-IR and swelling studies. The hydrogel enhanced antibacterial activity and promoted osteoblast differentiation. Thus, we suggest that the Zn-CS/β-GP hydrogel could have potential impact as an injectable in situ forming scaffold for bone tissue engineering applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs
Costa, Pedro F.; Dias, Ana F.; Reis, Rui L.
2012-01-01
The aim of this work was to study the effect of cryopreservation over the functionality of tissue-engineered constructs, analyzing the survival and viability of cells seeded, cultured, and cryopreserved onto 3D scaffolds. Further, it also evaluated the effect of cryopreservation over the properties of the scaffold material itself since these are critical for the engineering of most tissues and in particular, tissues such as bone. For this purpose, porous scaffolds, namely fiber meshes based on a starch and poly(caprolactone) blend were seeded with goat bone marrow stem cells (GBMSCs) and cryopreserved for 7 days. Discs of the same material seeded with GBMSCs were also used as controls. After this period, these samples were analyzed and compared to samples collected before the cryopreservation process. The obtained results demonstrate that it is possible to maintain cell viability and scaffolds properties upon cryopreservation of tissue-engineered constructs based on starch scaffolds and goat bone marrow mesenchymal cells using standard cryopreservation methods. In addition, the outcomes of this study suggest that the greater porosity and interconnectivity of scaffolds favor the retention of cellular content and cellular viability during cryopreservation processes, when compared with nonporous discs. These findings indicate that it might be possible to prepare off-the-shelf engineered tissue substitutes and preserve them to be immediately available upon request for patients' needs. PMID:22676448
Bio-Imaging of Colorectal Cancer Models Using Near Infrared Labeled Epidermal Growth Factor
Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip
2012-01-01
Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues. PMID:23144978
Bio-imaging of colorectal cancer models using near infrared labeled epidermal growth factor.
Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip
2012-01-01
Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues.
Poursamar, S Ali; Lehner, Alexander N; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Samadikuchaksaraei, Ali; Antunes, A P M
2016-06-01
In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.
Shadjou, Nasrin; Hasanzadeh, Mohammad
2015-10-01
Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.
Szewczyk, Mariusz; Jesionek–Kupnicka, Dorota; Lipinski, Piotr; Różański, Waldemar
2014-01-01
Introduction The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). Material and methods The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. Results In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Conclusions Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode. PMID:25247088
Cleveland, Emily C; Albano, Nicholas J; Hazen, Alexes
2015-10-01
The use of autologous adipose tissue harvested through liposuction techniques for soft-tissue augmentation has become commonplace among cosmetic and reconstructive surgeons alike. Despite its longstanding use in the plastic surgery community, substantial controversy remains regarding the optimal method of processing harvested lipoaspirate before grafting. This evidence-based review builds on prior examinations of the literature to evaluate both established and novel methods for lipoaspirate processing. A comprehensive, systematic review of the literature was conducted using Ovid MEDLINE in January of 2015 to identify all relevant publications subsequent to the most recent review on this topic. Randomized controlled trials, clinical trials, and comparative studies comparing at least two of the following techniques were included: decanting, cotton gauze (Telfa) rolling, centrifugation, washing, filtration, and stromal vascular fraction isolation. Nine articles comparing various methods of processing human fat for autologous grafting were selected based on inclusion and exclusion criteria. Five compared established processing techniques (i.e., decanting, cotton gauze rolling, centrifugation, and washing) and four publications evaluated newer proprietary technologies, including washing, filtration, and/or methods to isolate stromal vascular fraction. The authors failed to find compelling evidence to advocate a single technique as the superior method for processing lipoaspirate in preparation for autologous fat grafting. A paucity of high-quality data continues to limit the clinician's ability to determine the optimal method for purifying harvested adipose tissue. Novel automated technologies hold promise, particularly for large-volume fat grafting; however, extensive additional research is required to understand their true utility and efficiency in clinical settings.
Microwave Processing of Crowns from Winter Cereals for Light Microscopy.
USDA-ARS?s Scientific Manuscript database
Microwave processing of tissue considerably shortens the time it takes to prepare samples for light and electron microscopy. However, plant tissues from different species and different regions of the plant respond differently making it impossible to use a single protocol for all plant tissue. The ...
Gholipour, Yousef; Nonami, Hiroshi; Erra-Balsells, Rosa
2008-12-15
Underivatized carbohydrates of tulip bulb and leaf tissues were characterized in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by using carbon nanotubes (CNTs) as matrix. Two sample preparation methods--(i) depositing CNTs on the fresh tissue slices placed on the probe and (ii) locating semitransparent tissues on a dried layer of CNTs on the probe--were examined. Furthermore, practicability of in situ starch analysis by MALDI-TOF MS was examined by detection of glucose originated from on-probe amyloglucosidase-catalyzed degradation of starch on the tissue surface. Besides, CNTs could efficiently desorb/ionize natural mono-, di-, and oligosaccharides extracted from tulip bulb tissues as well as glucose resulting from starch enzymatic degradation in vitro. These results were compared with those obtained by in situ MALDI-TOF MS analysis of similar tissues. Positive ion mode showed superior signal reproducibility. CNTs deposited under semitransparent tissue could also desorb/ionize neutral carbohydrates, leading to nearly complete elimination of matrix cluster signals but with an increase in tissue-originated signals. Furthermore, several experiments were carried out to compare the efficiency of 2,5-dihydroxybenzoic acid, nor-harmane, alpha-cyano-4-hydroxycinnamic acid, and CNTs as matrices for MALDI of neutral carbohydrates from the intact plant tissue surface and for enzymatic tissue starch degradation; these results are discussed in brief. Among matrices studied, the lowest laser power was needed to acquire carbohydrate signals with high signal-to-noise ratio and resolution when CNTs were used.
Bessey, Cindy; Vanderklift, Mathew A
2014-02-15
Stable isotope analysis (SIA) is a powerful tool in many fields of research that enables quantitative comparisons among studies, if similar methods have been used. The goal of this study was to determine if three different drying methods commonly used to prepare samples for SIA yielded different δ(15)N and δ(13)C values. Muscle subsamples from 10 individuals each of three teleost species were dried using three methods: (i) oven, (ii) food dehydrator, and (iii) freeze-dryer. All subsamples were analysed for δ(15)N and δ(13)C values, and nitrogen and carbon content, using a continuous flow system consisting of a Delta V Plus mass spectrometer and a Flush 1112 elemental analyser via a Conflo IV universal interface. The δ(13)C values were normalized to constant lipid content using the equations proposed by McConnaughey and McRoy. Although statistically significant, the differences in δ(15)N values between the drying methods were small (mean differences ≤0.21‰). The differences in δ(13)C values between the drying methods were not statistically significant, and normalising the δ(13)C values to constant lipid content reduced the mean differences for all treatments to ≤0.65‰. A statistically significant difference of ~2% in C content existed between tissues dried in a food dehydrator and those dried in a freeze-dryer for two fish species. There was no significant effect of fish size on the differences between methods. No substantial effect of drying method was found on the δ(15)N or δ(13)C values of teleost muscle tissue. Copyright © 2013 John Wiley & Sons, Ltd.
Ma, Li; Mattheos, Nikos; Sun, Yan; Liu, Xi Ling; Yip Chui, Ying; Lang, Niklaus Peter
2015-08-01
The aim of the present study was to evaluate and compare the wound-healing process following osteotomies performed with either conventional rotary burs or piezoelectric surgery in a rabbit model. Two types of osteotomy window defects of the nasal cavities were prepared on the nasal bone of 16 adult New Zealand white rabbits with either a conventional rotary bur or piezo surgery. The defects were covered with a resorbable membrane. Four animals were killed at 1, 2, 3, and 5 weeks after the surgical procedure, respectively. Histological and morphometric evaluations were performed to assess the volumetric density of various tissue components: the blood clot, vascularized structures, provisional matrix, osteoid, mineralized bone, bone debris, residual tissue, and old bone. Significantly more bone debris was found at 1 week in the conventionally-prepared defects compared to the piezo surgically-prepared defects. At 2 and 3 weeks, a newly-formed hard tissue bridge, mainly composed of woven bone, was seen; however, no statistically-significant differences were observed. At 5 weeks, the defects were completely filled with newly-formed bone. The defects prepared by piezo surgery showed a significantly decreased proportion of bone debris at 1 week, compared to conventional rotary bur defect. © 2014 Wiley Publishing Asia Pty Ltd.
Preparation and High-temperature Anti-adhesion Behavior of a Slippery Surface on Stainless Steel.
Zhang, Pengfei; Huawei, Chen; Liu, Guang; Zhang, Liwen; Zhang, Deyuan
2018-03-29
Anti-adhesion surfaces with high-temperature resistance have a wide application potential in electrosurgical instruments, engines, and pipelines. A typical anti-wetting superhydrophobic surface easily fails when exposed to a high-temperature liquid. Recently, Nepenthes-inspired slippery surfaces demonstrated a new way to solve the adhesion problem. A lubricant layer on the slippery surface can act as a barrier between the repelled materials and the surface structure. However, the slippery surfaces in previous studies rarely showed high-temperature resistance. Here, we describe a protocol for the preparation of slippery surfaces with high-temperature resistance. A photolithography-assisted method was used to fabricate pillar structures on stainless steel. By functionalizing the surface with saline, a slippery surface was prepared by adding silicone oil. The prepared slippery surface maintained the anti-wetting property for water, even when the surface was heated to 300 °C. Also, the slippery surface exhibited great anti-adhesion effects on soft tissues at high temperatures. This type of slippery surface on stainless steel has applications in medical devices, mechanical equipment, etc.
Ertuğrul, İhsan Furkan; Maden, Murat; Orhan, Ekim Onur; Özkorucuklu, Sabriye Perçin
2015-12-18
The aim of the study was to evaluate the effects of micro-electric current on sodium hypochlorite's (NaOCl's) tissue-dissolution abilities, compared with other activation methods, including sonic, ultrasonic, pipetting, and temperature. Bovine muscle tissues (n = 154) with standard sizes and weights were prepared and divided into two temperature groups: room temperature and 45 °C. Each temperature group was divided into seven sub-groups by activation methods: D = distilled water (-control); NaOCl = 5.25 % passive NaOCl (+ control); P = 5.25 % NaOCl with pipetting; SA = 5.25 % NaOCl with sonic activation; UA = 5.25 % NaOCl with ultrasonic activation; E-NaOCl = 5.25 % NaOCl with micro-electric current; and E-NaOCl + P = 5.25 % NaOCl with micro-electric current and pipetting. Specimens were weighed before and after treatment. Average, standard deviation, minimum, maximum, and median were calculated for each group. Resulting data were analyzed statistically using multi-way ANOVA and Tukey HSD tests. The level of the alpha-type error was set at < 0.05. At room temperature, the E-NaOCl + P group dissolved the highest amount of tissue (p < 0.05), and the UA, SA, and P groups dissolved significantly higher amounts of tissue than did the positive control or E-NaOCl groups (p < 0.05). At 45 °C, there was no significant difference between the SA and E-NaOCl groups (p > 0.05), and the E-NaOCl + P group dissolved a higher amount of tissue than any other group (p < 0.05). Using NaOCl with micro-electric current can improve the tissue-dissolving ability of the solution. In addition, this method can be combined with additional techniques, such as heating and/or pipetting, to achieve a synergistic effect of NaOCl on tissue dissolution.
3D printing biodegradable scaffolds with chitosan materials for tissue engineering
NASA Astrophysics Data System (ADS)
Bardakova, K. N.; Demina, T. S.; Grebenik, E. A.; Minaev, N. V.; Akopova, T. A.; Bagratashvili, V. N.; Timashev, P. S.
2018-04-01
Chitosan-g-oligo (L,L-lactide) copolymer was synthesized through a solvent-free reaction in an extruder. Three-dimensional scaffolds based on photosensitive composition contained the synthetized copolymer were formed by two-photon polymerization. The optimum ratio of components, methods of preparation of photopolymerizable mixtures, parameters of the laser structuring and procedure of washing from unbound crosslinkers have been optimized. Chitosan scaffolds were non-cytotoxic and might therefore be a suitable candidate for treating spinal cord injuries and other neuronal degenerative diseases.
Novel Tissue Protective Agents for the Treatment of Acute Radiation-induced BMF
2013-03-01
induced apoptosis in the following hematopoietic cell lines: HL-60, NB-4 cells, 32Dc13 and EML cell line. Experimental design and methods: HL-60, a...et al., 1999). EML Cell line (ATCC CRL-11691), a bone marrow cell line obtained by immortalizing bone marrow cells from male BDF1 mice with a...Membrane preparations were made from HL-60, NB-4, 32Dc13 and EML cells attempts were made to co-immunoprecipitate the CD131 molecule with EPOR in
2015-09-01
University, The Stanford CA 94305-2004 REPORT DATE : October 2015 TYPE OF REPORT: annual PREPARED FOR: U.S. Army Medical Research and Materiel... DATE (DD-MM-YYYY) October 2015 2. REPORT TYPE Annual Report 3. DATES COVERED (From - To) 30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTITLE Monitoring...ABSTRACT Currently, prostate cancers are classified using the Gleason Grade system and immunohistochemistry. The shortcoming of this method is that
Preservation of three-dimensional spatial structure in the gut microbiome.
Hasegawa, Yuko; Mark Welch, Jessica L; Rossetti, Blair J; Borisy, Gary G
2017-01-01
Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT) compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH) and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA) and 4', 6-diamidino-2-phenylindole (DAPI). Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA) or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.
Dahab, Gamal M; Kheriza, Mohamed M; El-Beltagi, Hussien M; Fouda, Abdel-Motaal M; El-Din, Osama A Sharaf
2004-01-01
The precise quantification of fibrous tissue in liver biopsy sections is extremely important in the classification, diagnosis and grading of chronic liver disease, as well as in evaluating the response to antifibrotic therapy. Because the recently described methods of digital image analysis of fibrosis in liver biopsy sections have major flaws, including the use of out-dated techniques in image processing, inadequate precision and inability to detect and quantify perisinusoidal fibrosis, we developed a new technique in computerized image analysis of liver biopsy sections based on Adobe Photoshop software. We prepared an experimental model of liver fibrosis involving treatment of rats with oral CCl4 for 6 weeks. After staining liver sections with Masson's trichrome, a series of computer operations were performed including (i) reconstitution of seamless widefield images from a number of acquired fields of liver sections; (ii) image size and solution adjustment; (iii) color correction; (iv) digital selection of a specified color range representing all fibrous tissue in the image and; (v) extraction and calculation. This technique is fully computerized with no manual interference at any step, and thus could be very reliable for objectively quantifying any pattern of fibrosis in liver biopsy sections and in assessing the response to antifibrotic therapy. It could also be a valuable tool in the precise assessment of antifibrotic therapy to other tissue regardless of the pattern of tissue or fibrosis.
Bae, Steven S; Menninga, Isaac; Hoshino, Richard; Humphreys, Christine; Chan, Clara C
2018-06-01
The purpose of this study was to develop a nomogram to predict postcut thickness of corneal grafts prepared at an eye bank for Descemet stripping automated endothelial keratoplasty (DSAEK). Retrospective chart review was performed of DSAEK graft preparations by 3 experienced technicians from April 2012 to May 2017 at the Eye Bank of Canada-Ontario Division. Variables collected included the following: donor demographics, death-to-preservation time, death-to-processing time, precut tissue thickness, postcut tissue thickness, microkeratome head size, endothelial cell count, cut technician, and rate of perforation. Linear regression models were generated for each microkeratome head size (300 and 350 μm). A total of 780 grafts were processed during the study period. Twelve preparation attempts resulted in perforation (1.5%) and were excluded. Mean precut tissue thickness was 510 ± 49 μm (range: 363-670 μm). Mean postcut tissue thickness was 114 ± 22 μm (range: 57-193 μm). Seventy-nine percent (608/768) of grafts were ≤130 μm. The linear regression models included precut thickness and donor age, which were able to predict the thickness to within 25 μm 80% of the time. We report a nomogram to predict thickness of DSAEK corneal grafts prepared in an eye bank setting, which was accurate to within 25 μm 80% of the time. Other eye banks could consider performing similar analyses.
Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy
German, Christopher L.; Gudheti, Manasa V.; Fleckenstein, Annette E.; Jorgensen, Erik M.
2018-01-01
Localization microscopy techniques – such as photoactivation localization microscopy (PALM), fluorescent PALM (FPALM), ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM) – provide the highest precision for single molecule localization currently available. However, localization microscopy has been largely limited to cell cultures due to the difficulties that arise in imaging thicker tissue sections. Sample fixation and antibody staining, background fluorescence, fluorophore photoinstability, light scattering in thick sections, and sample movement create significant challenges for imaging intact tissue. We have developed a sample preparation and image acquisition protocol to address these challenges in rat brain slices. The sample preparation combined multiple fixation steps, saponin permeabilization, and tissue clarification. Together, these preserve intracellular structures, promote antibody penetration, reduce background fluorescence and light scattering, and allow acquisition of images deep in a 30 μm thick slice. Image acquisition challenges were resolved by overlaying samples with a permeable agarose pad and custom-built stainless steel imaging adapter, and sealing the imaging chamber. This approach kept slices flat, immobile, bathed in imaging buffer, and prevented buffer oxidation during imaging. Using this protocol, we consistently obtained single molecule localizations of synaptic vesicle and active zone proteins in three-dimensions within individual synaptic terminals of the striatum in rat brain slices. These techniques may be easily adapted to the preparation and imaging of other tissues, substantially broadening the application of super-resolution imaging. PMID:28924666
Infrared spectroscopic analysis of skin tumor of mice treated with several medicinal plants
Ali, Huma; Dixit, Savita
2013-01-01
Objective To evaluate the differences between cancerous tissue, drug treated tissue and its corresponding normal tissue by infrared spectroscopic analysis. Methods Methanolic extracts of Azadirachta indica, Ocimum sanctum, Aloe barbandesis, Tinospora cordifolia and Triticum aestivum were assessed for the isolation and purification of active compound. After that, combine crude and combine isolated samples were prepared. Skin tumor was induced by topical application of 7, 12-dimethyl benz (a) anthracene and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of different drugs, it was administered at a concentration of 400 mg/kg body weight daily up to 16 weeks. Fourier transform infrared spectroscopy analysis was used to differentiate the drug treated tissues with the normal and cancerous tissue. In the present study, spectra of different tissues were recorded in the range of 400-4 000 cm−1. Results The results of the present study have shown that the remarkable difference exists between the IR spectra of normal, drugs treated and cancerous tissue in terms of frequencies and intensities of prominent bands of cellular biomolecules. Conclusions Fourier transform infrared spectroscopy analysis suggests the chemopreventive effect of above treated drugs and the best result was observed in combine crude sample and in combine isolated sample or synergistic effect of individual crude and isolated extract in 7, 12-dimethyl benz (a) anthracene croton oil induced skin carcinogenesis in Swiss albino mice.
Qamar, Irmeen; Rehman, Suhailur; Mehdi, Ghazala; Maheshwari, Veena; Ansari, Hena A; Chauhan, Sunanda
2018-01-01
Cytologic examination of body fluids commonly involves the use of direct or sediment smears, cytocentrifuge preparations, membrane filter preparations, or cell block sections. Cytospin and cell block techniques are extremely useful in improving cell yield of thin serous effusions and urine samples, and ensure high diagnostic efficacy. We studied cytospin preparations and cell block sections prepared from 180 samples of body fluids and urine samples to compare the relative efficiency of cell retrieval, preservation of cell morphology, ease of application of special stains, and diagnostic efficacy. Samples were collected and processed to prepare cytospin smears and cell block sections. We observed that overall, cell yield and preservation of individual cell morphology were better in cytospin preparations as compared to cell blocks, while preservation of architectural pattern was better in cell block sections. The number of suspicious cases also decreased on cell block sections, with increased detection of malignancy. It was difficult to prepare cell blocks from urine samples due to low cellularity. Cytospin technology is a quick, efficient, and cost-effective method of increasing cell yield in hypocellular samples, with better preservation of cell morphology. Cell blocks are better prepared from high cellularity fluids; however, tissue architecture is better studied, with improved rate of diagnosis and decrease in ambiguous results. Numerous sections can be prepared from a small amount of material. Special stains and immunochemical stains can be easily applied to cell blocks. It also provides a source of archival material.
Güney, Aysun; Malda, Jos; Dhert, Wouter J A; Grijpma, Dirk W
2017-05-09
Biodegradable PCL-b-PTMC-b-PCL triblock copolymers based on trimethylene carbonate (TMC) and ε-caprolactone (CL) were prepared and used in the 3D printing of tissue engineering scaffolds. Triblock copolymers of various molecular weights containing equal amounts of TMC and CL were prepared. These block copolymers combine the low glass transition temperature of amorphous PTMC (approximately -20°C) and the semi-crystallinity of PCL (glass transition approximately -60°C and melting temperature approximately 60°C). PCL-b-PTMC-b-PCL triblock copolymers were synthesized by sequential ring opening polymerization (ROP) of TMC and ε-CL. From these materials, films were prepared by solvent casting and porous structures were prepared by extrusion-based 3D printing. Films prepared from a polymer with a relatively high molecular weight of 62 kg/mol had a melting temperature of 58°C and showed tough and resilient behavior, with values of the elastic modulus, tensile strength and elongation at break of approximately 120 MPa, 16 MPa and 620%, respectively. Porous structures were prepared by 3D printing. Ethylene carbonate was used as a crystalizable and water-extractable solvent to prepare structures with microporous strands. Solutions, containing 25 wt% of the triblock copolymer, were extruded at 50°C then cooled at different temperatures. Slow cooling at room temperature resulted in pores with widths of 18 ± 6 μm and lengths of 221 ± 77 μm, rapid cooling with dry ice resulted in pores with widths of 13 ± 3 μm and lengths of 58 ± 12 μm. These PCL-b-PTMC-b-PCL triblock copolymers processed into porous structures at relatively low temperatures may find wide application as designed degradable tissue engineering scaffolds. In this preliminary study we prepared biodegradable triblock copolymers based on 1,3-trimethylene carbonate and ε-caprolactone and assessed their physical characteristics. Furthermore, we evaluated their potential as melt-processable thermoplastic elastomeric biomaterials in 3D printing of tissue engineering scaffolds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonda, Kohsuke, E-mail: gonda@med.tohoku.ac.jp; Miyashita, Minoru; Watanabe, Mika
2012-09-28
Highlights: Black-Right-Pointing-Pointer Organic fluorescent material-assembled nanoparticles for IHC were prepared. Black-Right-Pointing-Pointer New nanoparticle fluorescent intensity was 10.2-fold greater than Qdot655. Black-Right-Pointing-Pointer Nanoparticle staining analyzed a wide range of ER expression levels in tissue. Black-Right-Pointing-Pointer Nanoparticle staining enhanced the quantitative sensitivity for ER diagnosis. -- Abstract: The detection of estrogen receptors (ERs) by immunohistochemistry (IHC) using 3,3 Prime -diaminobenzidine (DAB) is slightly weak as a prognostic marker, but it is essential to the application of endocrine therapy, such as antiestrogen tamoxifen-based therapy. IHC using DAB is a poor quantitative method because horseradish peroxidase (HRP) activity depends on reaction time, temperature andmore » substrate concentration. However, IHC using fluorescent material provides an effective method to quantitatively use IHC because the signal intensity is proportional to the intensity of the photon excitation energy. However, the high level of autofluorescence has impeded the development of quantitative IHC using fluorescence. We developed organic fluorescent material (tetramethylrhodamine)-assembled nanoparticles for IHC. Tissue autofluorescence is comparable to the fluorescence intensity of quantum dots, which are the most representative fluorescent nanoparticles. The fluorescent intensity of our novel nanoparticles was 10.2-fold greater than quantum dots, and they did not bind non-specifically to breast cancer tissues due to the polyethylene glycol chain that coated their surfaces. Therefore, the fluorescent intensity of our nanoparticles significantly exceeded autofluorescence, which produced a significantly higher signal-to-noise ratio on IHC-imaged cancer tissues than previous methods. Moreover, immunostaining data from our nanoparticle fluorescent IHC and IHC with DAB were compared in the same region of adjacent tissues sections to quantitatively examine the two methods. The results demonstrated that our nanoparticle staining analyzed a wide range of ER expression levels with higher accuracy and quantitative sensitivity than DAB staining. This enhancement in the diagnostic accuracy and sensitivity for ERs using our immunostaining method will improve the prediction of responses to therapies that target ERs and progesterone receptors that are induced by a downstream ER signal.« less
Clinical outcomes of Descemet membrane endothelial keratoplasty using eye bank-prepared tissues.
Deng, Sophie X; Sanchez, P James; Chen, Luxia
2015-03-01
To investigate the outcomes of Descemet membrane endothelial keratoplasty (DMEK) using prestripped donor tissue prepared by an eye bank. Retrospective, noncomparative case series. This retrospective, noncomparative, observational study investigated the outcomes of the first 40 consecutive DMEK procedures performed by a single surgeon using prestripped tissues prepared by a single eye bank during the period September 17, 2013 to July 1, 2014. A new technique to unfold the Descemet membrane grafts using a single cannula was described. Medical records were reviewed to obtain the prestripped and poststripped endothelial cell counts (ECC), postoperative ECC, visual acuity measurements, and complications. Of the 43 prestripped tissues received, 40 were transplanted. The leading indications for DMEK were Fuchs endothelial corneal dystrophy (n = 28) and bullous keratopathy (n = 11). Nine DMEK procedures were performed in combination with phacoemulsification and posterior chamber intraocular lens implantation. Six patients had undergone prior glaucoma surgeries. The mean follow-up duration was 5.3 months (range, 1 week to 11 months). Preoperative spectacle-corrected visual acuity was ≤20/200 in 8 patients (20%) and ≤20/40 in 37 patients (92.5%). Primary graft failure occurred in the first case. Thirty-eight patients had improved vision postoperatively. Among the 39 patients who had successful DMEK, postoperative BCVA was ≥20/20 in 20 patients (51.2%), ≥20/25 in 30 patients (76.9%), and ≥20/40 in 34 patients (87.2%) by the last follow-up. There was no secondary graft failure. Rejection occurred in 2 patients because of self-discontinuation of topical corticosteroid. The most common complication was partial detachment requiring air injection (11 of 40 patients; 27.5%). Mean ECC loss after stripping of Descemet membrane was 3.9% (range, 6.5% gain to 14.5% loss). During the first 6 months after transplantation, the average ECC loss was 30.5% (range, 3.8%-67.4% loss). DMEK using eye bank-prepared tissue achieved outcomes comparable to those reported for DMEK using surgeon-prepared tissue. Published by Elsevier Inc.
Garelnabi, Mahdi; Litvinov, Dmitry; Parthasarathy, Sampath
2010-01-01
Background: Azelaic acid (AzA) is the best known dicarboxilic acid to have pharmaceutical benefits and clinical applications and also to be associated with some diseases pathophysiology. Materials and Methods: We extracted and methylesterified AzA and determined its concentration in human plasma obtained from healthy individuals and also in mice fed AzA containing diet for three months. Results: AzA was detected in Gas Chromatography (GC) and confirmed by Liquid chromatography mass spectrometry (LCMS), and gas chromatography mass spectrometry (GCMC). Our results have shown that AzA can be determined efficiently in selected biological samples by GC method with 1nM limit of detection (LoD) and the limit of quantification (LoQ); was established at 50nM. Analytical Sensitivity as assayed by hexane demonstrated an analytical sensitivity at 0.050nM. The method has demonstrated 8-10% CV batch repeatability across the sample types and 13-18.9% CV for the Within-Lab Precision analysis. The method has shown that AzA can efficiently be recovered from various sample preparation including liver tissue homogenate (95%) and human plasma (97%). Conclusions: Because of its simplicity and lower limit of quantification, the present method provides a useful tool for determining AzA in various biological sample preparations. PMID:22558586
Quantitative thin layer chromatographic multi-sulfonamide screening procedure.
Thomas, M H; Soroka, K E; Thomas, S H
1983-07-01
In-situ optical scanning of fluorescamine derivatives on thin layer silica gel plates provides a rapid method for the determination of multiple sulfonamides at levels below 0.1 ppm. Sample preparation is minimal. Homogenized liver or muscle is extracted with ethyl acetate and then back-extracted into 0.2M glycine buffer. After pH adjustment, the extract is washed with hexane and extracted with methylene chloride. The organic phase is evaporated to dryness and reconstituted in methanol. Pre-adsorbent layer silica gel plates are used for chromatography. The method has been applied to residues of sulfamethazine, sulfadimethoxine, sulfathiazole, sulfaquinoxaline, and sulfabromomethazine in cattle, swine, turkey, and duck tissues.