[Analysis of scatterer microstructure feature based on Chirp-Z transform cepstrum].
Guo, Jianzhong; Lin, Shuyu
2007-12-01
The fundamental research field of medical ultrasound has been the characterization of tissue scatterers. The signal processing method is widely used in this research field. A new method of Chirp-Z Transform Cepstrum for mean spacing estimation of tissue scatterers using ultrasonic scattered signals has been developed. By using this method together with conventional AR cepstrum method, we processed the backscattered signals of mimic tissue and pig liver in vitro. The results illustrated that the Chirp-Z Transform Cepstrum method is effective for signal analysis of ultrasonic scattering and characterization of tissue scatterers, and it can improve the resolution for mean spacing estimation of tissue scatterers.
Pianigiani, Elisa; Ierardi, Francesca; Fimiani, Michele
2013-12-01
Skin allografts represent an important therapeutic resource in the treatment of severe skin loss. The risk associated with application of processed tissues in humans is very low, however, human material always carries the risk of disease transmission. To minimise the risk of contamination of grafts, processing is carried out in clean rooms where air quality is monitored. Procedures and quality control tests are performed to standardise the production process and to guarantee the final product for human use. Since we only validate and distribute aseptic tissues, we conducted a study to determine what type of quality controls for skin processing are the most suitable for detecting processing errors and intercurrent contamination, and for faithfully mapping the process without unduly increasing production costs. Two different methods for quality control were statistically compared using the Fisher exact test. On the basis of the current study we selected our quality control procedure based on pre- and post-processing tissue controls, operator and environmental controls. Evaluation of the predictability of our control methods showed that tissue control was the most reliable method of revealing microbial contamination of grafts. We obtained 100 % sensitivity by doubling tissue controls, while maintaining high specificity (77 %).
Express diagnostics of intact and pathological dental hard tissues by optical PNC method
NASA Astrophysics Data System (ADS)
Masychev, Victor I.; Alexandrov, Michail T.
2000-03-01
The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1 mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC- method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be used as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.
In situ characterization of the brain-microdevice interface using Device Capture Histology
Woolley, Andrew J.; Desai, Himanshi A.; Steckbeck, Mitchell A.; Patel, Neil K.; Otto, Kevin J.
2011-01-01
Accurate assessment of brain-implantable microdevice bio-integration remains a formidable challenge. Prevailing histological methods require device extraction prior to tissue processing, often disrupting and removing the tissue of interest which had been surrounding the device. The Device-Capture Histology method, presented here, overcomes many limitations of the conventional Device-Explant Histology method, by collecting the device and surrounding tissue intact for subsequent labeling. With the implant remaining in situ, accurate and precise imaging of the morphologically preserved tissue at the brain/microdevice interface can then be collected and quantified. First, this article presents the Device-Capture Histology method for obtaining and processing the intact, undisturbed microdevice-tissue interface, and images using fluorescent labeling and confocal microscopy. Second, this article gives examples of how to quantify features found in the captured peridevice tissue. We also share histological data capturing 1) the impact of microdevice implantation on tissue, 2) the effects of an experimental anti-inflammatory coating, 3) a dense grouping of cell nuclei encapsulating a long-term implant, and 4) atypical oligodendrocyte organization neighboring a longterm implant. Data sets collected using the Device-Capture Histology method are presented to demonstrate the significant advantages of processing the intact microdevice-tissue interface, and to underscore the utility of the method in understanding the effects of the brain-implantable microdevices on nearby tissue. PMID:21802446
de By, Theo M M H; McDonald, Carl; Süßner, Susanne; Davies, Jill; Heng, Wee Ling; Jashari, Ramadan; Bogers, Ad J J C; Petit, Pieter
2017-11-01
Surgeons needing human cardiovascular tissue for implantation in their patients are confronted with cardiovascular tissue banks that use different methods to identify and decontaminate micro-organisms. To elucidate these differences, we compared the quality of processing methods in 20 tissue banks and 1 reference laboratory. We did this to validate the results for accepting or rejecting tissue. We included the decontamination methods used and the influence of antibiotic cocktails and residues with results and controls. The minor details of the processes were not included. To compare the outcomes of microbiological testing and decontamination methods of heart valve allografts in cardiovascular tissue banks, an international quality round was organized. Twenty cardiovascular tissue banks participated in this quality round. The quality round method was validated first and consisted of sending purposely contaminated human heart valve tissue samples with known micro-organisms to the participants. The participants identified the micro-organisms using their local decontamination methods. Seventeen of the 20 participants correctly identified the micro-organisms; if these samples were heart valves to be released for implantation, 3 of the 20 participants would have decided to accept their result for release. Decontamination was shown not to be effective in 13 tissue banks because of growth of the organisms after decontamination. Articles in the literature revealed that antibiotics are effective at 36°C and not, or less so, at 2-8°C. The decontamination procedure, if it is validated, will ensure that the tissue contains no known micro-organisms. This study demonstrates that the quality round method of sending contaminated tissues and assessing the results of the microbiological cultures is an effective way of validating the processes of tissue banks. Only when harmonization, based on validated methods, has been achieved, will surgeons be able to fully rely on the methods used and have confidence in the consistent sterility of the tissue grafts. Tissue banks should validate their methods so that all stakeholders can trust the outcomes. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Perić Kačarević, Zeljka; Kavehei, Faraz; Houshmand, Alireza; Franke, Jörg; Smeets, Ralf; Rimashevskiy, Denis; Wenisch, Sabine; Schnettler, Reinhard; Jung, Ole; Barbeck, Mike
2018-04-01
Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone ® ) and non-sintered (Bio-Oss ® ) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.
The self-assembling process and applications in tissue engineering
Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.
2018-01-01
Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174
Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.
Piotrowski-Daspit, Alexandra S; Nelson, Celeste M
2016-07-10
The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.
Real-time caries diagnostics by optical PNC method
NASA Astrophysics Data System (ADS)
Masychev, Victor I.; Alexandrov, Michail T.
2000-11-01
The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC-method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be sued as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.
Applying an analytical method to study neutron behavior for dosimetry
NASA Astrophysics Data System (ADS)
Shirazi, S. A. Mousavi
2016-12-01
In this investigation, a new dosimetry process is studied by applying an analytical method. This novel process is associated with a human liver tissue. The human liver tissue has compositions including water, glycogen and etc. In this study, organic compound materials of liver are decomposed into their constituent elements based upon mass percentage and density of every element. The absorbed doses are computed by analytical method in all constituent elements of liver tissue. This analytical method is introduced applying mathematical equations based on neutron behavior and neutron collision rules. The results show that the absorbed doses are converged for neutron energy below 15MeV. This method can be applied to study the interaction of neutrons in other tissues and estimating the absorbed dose for a wide range of neutron energy.
Yu, Peiqiang
2013-02-20
Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.
Robust path planning for flexible needle insertion using Markov decision processes.
Tan, Xiaoyu; Yu, Pengqian; Lim, Kah-Bin; Chui, Chee-Kong
2018-05-11
Flexible needle has the potential to accurately navigate to a treatment region in the least invasive manner. We propose a new planning method using Markov decision processes (MDPs) for flexible needle navigation that can perform robust path planning and steering under the circumstance of complex tissue-needle interactions. This method enhances the robustness of flexible needle steering from three different perspectives. First, the method considers the problem caused by soft tissue deformation. The method then resolves the common needle penetration failure caused by patterns of targets, while the last solution addresses the uncertainty issues in flexible needle motion due to complex and unpredictable tissue-needle interaction. Computer simulation and phantom experimental results show that the proposed method can perform robust planning and generate a secure control policy for flexible needle steering. Compared with a traditional method using MDPs, the proposed method achieves higher accuracy and probability of success in avoiding obstacles under complicated and uncertain tissue-needle interactions. Future work will involve experiment with biological tissue in vivo. The proposed robust path planning method can securely steer flexible needle within soft phantom tissues and achieve high adaptability in computer simulation.
Endoscopic ultrasound guided fine needle aspiration and useful ancillary methods
Tadic, Mario; Stoos-Veic, Tajana; Kusec, Rajko
2014-01-01
The role of endoscopic ultrasound (EUS) in evaluating pancreatic pathology has been well documented from the beginning of its clinical use. High spatial resolution and the close proximity to the evaluated organs within the mediastinum and abdominal cavity allow detection of small focal lesions and precise tissue acquisition from suspected lesions within the reach of this method. Fine needle aspiration (FNA) is considered of additional value to EUS and is performed to obtain tissue diagnosis. Tissue acquisition from suspected lesions for cytological or histological analysis allows, not only the differentiation between malignant and non-malignant lesions, but, in most cases, also the accurate distinction between the various types of malignant lesions. It is well documented that the best results are achieved only if an adequate sample is obtained for further analysis, if the material is processed in an appropriate way, and if adequate ancillary methods are performed. This is a multi-step process and could be quite a challenge in some cases. In this article, we discuss the technical aspects of tissue acquisition by EUS-guided-FNA (EUS-FNA), as well as the role of an on-site cytopathologist, various means of specimen processing, and the selection of the appropriate ancillary method for providing an accurate tissue diagnosis and maximizing the yield of this method. The main goal of this review is to alert endosonographers, not only to the different possibilities of tissue acquisition, namely EUS-FNA, but also to bring to their attention the importance of proper sample processing in the evaluation of various lesions in the gastrointestinal tract and other accessible organs. All aspects of tissue acquisition (needles, suction, use of stylet, complications, etc.) have been well discussed lately. Adequate tissue samples enable comprehensive diagnoses, which answer the main clinical questions, thus enabling targeted therapy. PMID:25339816
Tabatabaei, Fahimeh Sadat; Tatari, Saeed; Samadi, Ramin; Moharamzadeh, Keyvan
2016-10-01
Dentin has become an interesting potential biomaterial for tissue engineering of oral hard tissues. It can be used as a scaffold or as a source of growth factors in bone tissue engineering. Different forms of dentin have been studied for their potential use as bone substitutes. Here, we systematically review different methods of dentin preparation and the efficacy of processed dentin in bone tissue engineering. An electronic search was carried out in PubMed and Scopus databases for articles published from 2000 to 2016. Studies on dentin preparation for application in bone tissue engineering were selected. The initial search yielded a total of 1045 articles, of which 37 were finally selected. Review of studies showed that demineralization was the most commonly used dentin preparation process for use in tissue engineering. Dentin extract, dentin particles (tooth ash), freeze-dried dentin, and denatured dentin are others method of dentin preparation. Based on our literature review, we can conclude that preparation procedure and the size and shape of dentin particles play an important role in its osteoinductive and osteoconductive properties. Standardization of these methods is important to draw a conclusion in this regard. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2616-2627, 2016. © 2016 Wiley Periodicals, Inc.
Tissue Fixation and Processing for the Histological Identification of Lipids.
Carriel, Víctor; Campos, Fernando; Aneiros-Fernández, José; Kiernan, John A
2017-01-01
Lipids are a heterogeneous group of substances characterized by their solubility in organic solvents and insolubility in water. Lipids can be found as normal components of different tissues and organs, and they can be affected by several pathological conditions. The histochemical identification of lipids plays an important role in histopathological diagnosis and research, but successful staining depends on adequate fixation and processing of the tissue. Here we describe methods to fix and process tissue samples for the histochemical identification of lipids in frozen or paraffin-embedded tissues.
A Chemoenzymatic Histology Method for O-GlcNAc Detection.
Aguilar, Aime Lopez; Hou, Xiaomeng; Wen, Liuqing; Wang, Peng G; Wu, Peng
2017-12-14
Modification of nuclear and cytoplasmic proteins by the addition or removal of O-GlcNAc dynamically impacts multiple biological processes. Here, we present the development of a chemoenzymatic histology method for the detection of O-GlcNAc in tissue specimens. We applied this method to screen murine organs, uncovering specific O-GlcNAc distribution patterns in different tissue structures. We then utilized our histology method for O-GlcNAc detection in human brain specimens from healthy donors and donors with Alzheimer's disease and found higher levels of O-GlcNAc in specimens from healthy donors. We also performed an analysis using a multiple cancer tissue array, uncovering different O-GlcNAc levels between healthy and cancerous tissues, as well as different O-GlcNAc cellular distributions within certain tissue specimens. This chemoenzymatic histology method therefore holds great potential for revealing the biology of O-GlcNAc in physiopathological processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microwave processing of gustatory tissues for immunohistochemistry
Bond, Amanda; Kinnamon, John C.
2013-01-01
We use immunohistochemistry to study taste cell structure and function as a means to elucidate how taste receptor cells communicate with nerve fibers and adjacent taste cells. This conventional method, however, is time consuming. In the present study we used taste buds from rat circumvallate papillae to compare conventional immunohistochemical tissue processing with microwave processing for the colocalization of several biochemical pathway markers (PLCβ2, syntaxin-1, IP3R3, α-gustducin) and the nuclear stain, Sytox. The results of our study indicate that in microwave versus conventional immunocytochemistry: (1) fixation quality is improved; (2) the amount of time necessary for processing tissue is decreased; (3) antigen retrieval is no longer needed; (4) image quality is superior. In sum, microwave tissue processing of gustatory tissues is faster and superior to conventional immunohistochemical tissue processing for many applications. PMID:23473796
Willbold, Elmar; Reebmann, Mattias; Jeffries, Richard; Witte, Frank
2013-11-01
Solid metallic implants in soft or hard tissues are serious challenges for histological processing. However, metallic implants are more frequently used in e.g. cardiovascular or orthopaedic therapies. Before clinical use, these devices need to be tested thoroughly in a biological environment and histological analysis of their biocompatibility is a major requirement. To allow the histological analysis of metallic implants in tissues especially in calcified hard tissues, we describe a method for embedding these tissues in the resin Technovit 9100 New and removing the metallic implants by electrochemical dissolution. With the combination of these two processes, we are able to achieve 5 μm thick sections from soft or hard tissues with a superior preservation of tissue architecture and especially the implant-tissue interface. These sections can be stained by classical stainings, immunohistochemical and enzymehistochemical as well as DNA-based staining methods.
Bova, G Steven; Eltoum, Isam A; Kiernan, John A; Siegal, Gene P; Frost, Andra R; Best, Carolyn J M; Gillespie, John W; Su, Gloria H; Emmert-Buck, Michael R
2005-02-01
Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This article reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies, and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing, and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high quality, appropriately anatomically tagged scientific results. In optimized protocols is a source of inefficiency in current life science research. Improvement in this area will significantly increase life science quality and productivity. The article is divided into introduction, materials, protocols, and notes sections. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this article, readers are advised to read through the entire article first, identify protocols appropriate to their laboratory for each step in their workflow, and then reread entries in each section pertaining to each of these single protocols.
Rodriguez-Canales, Jaime; Hanson, Jeffrey C; Hipp, Jason D; Balis, Ulysses J; Tangrea, Michael A; Emmert-Buck, Michael R; Bova, G Steven
2013-01-01
Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This updated chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high-quality, appropriately anatomically tagged scientific results. Improvement in this area will significantly increase life science quality and productivity. The chapter is divided into introduction, materials, protocols, and notes subheadings. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this chapter, readers are advised to read through the entire chapter first, identify protocols appropriate to their laboratory for each step in their workflow, and then reread entries in each section pertaining to each of these single protocols.
Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas
2012-04-01
Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.
Dou, Zhiying; Li, Kefeng; Wang, Ping; Cao, Liu
2012-01-18
Vinegar and wine processing of medicinal plants are two traditional pharmaceutical techniques which have been used for thousands of years in China. Tetrahydropalmatine (THP), dehydrocorydaline (DHC) and protopine are three major bioactive molecules in Rhizoma Corydalis. In this study, a simple and reliable HPLC method was developed for simultaneous analysis of THP, DHC and protopine in rat tissues after gastric gavage administration of Rhizoma Corydalis. The validated HPLC method was successfully applied to investigate the effect of wine and vinegar processing on the compounds' distribution in rat tissues. Our results showed that processing mainly affect the T(max) and mean residence time (MRT) of the molecules without changing their C(max) and AUC(0-24)( )(h) Vinegar processing significantly increased the T(max) of DHC in heart, kidney, cerebrum, cerebrellum, brain stem and striatum and prolonged the T(max) of protopine in brain. No significant changes were observed on the T(max) of THP in rat tissues after vinegar processing. Wine processing reduced the T(max) of protopine and DHC in liver and spleen and T(max) of protopine in lung, but increased the T(max) of THP in all the rat tissues examined. To our knowledge, this is the first report on the effects of processing on the tissue distribution of the bioactive molecules from Rhizoma Corydalis.
[Role of debridement in treatment of chronic wounds].
Huljev, Dubravko; Gajić, Aleksandar; Triller, Ciril; Leskovec, Nada Kecelj
2012-10-01
Debridement is the process of removing dead tissue from the wound bed. Since devitalized tissue can obstruct or completely stop healing of the wound, it is indicated to debride wound bed as part of the treatment process. The aim of debridement is to transform a chronic wound into an acute wound and to initiate the process of healing. Debridement is the foundation of each wound treatment and it has to be repeated, depending on the necrotic tissue formation. There are several types of debridement: surgical, autolytic, chemical, enzymatic, mechanical, and biological. Using previous knowledge and advances in technology, new types of debridement have been introduced. Besides standard methods, methods of pulsed lavage debridement (hydro-surgery, water-jet) and ultrasound-assisted wound treatment (UAW) are ever more widely introduced. The method of debridement the clinician will choose depends on the amount of necrotic (devitalized) tissue in the wound bed, the size and depth of the wound, the underlying disease, the possible comorbidity, as well as on the general condition of the patient. Frequently, the methods of debridement are combined in order to achieve better removal of devitalized tissue. Debridement in addition significantly reduces bacterial burden. Regardless of the method of debridement, it is essential to take pain to the lowest point.
[Debridement- crucial procedure in the treatment of chronic wounds].
Huljev, Dubravko
2013-10-01
Debridement is the process of removing dead tissue from the wound bed. Devitalized tissue can obstruct or completely stop healing of the wound. The aim of debridement is to transform a chronic wound into an acute wound and to initiate the process of healing. Debridement is the basis of each wound treatment and it has to be repeated, depending on the necrotic tissue formation. There are several types of debridement, as follows: mechanical, autolytic, chemical, enzymatic, biological, and new debridement techniques. With advances in technology, new types of debridement have been introduced. Besides standard methods, methods of pulsed lavage debridement (hydro-surgery, water-jet) and ultrasound-assisted wound treatment are ever more frequently introduced. The method of debridement the clinician will choose depends on the amount of necrotic (devitalized) tissue in the wound bed, size and depth of the wound, underlying disease, possible comorbidity, and the patient general condition. Frequently, the methods of debridement are combined in order to achieve better removal of devitalized tissue. In addition, debridement significantly reduces bacterial burden.
Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.
Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun
2018-01-01
Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.
Emergence of Scaffold-free Approaches for Tissue Engineering Musculoskeletal Cartilages
DuRaine, Grayson D.; Brown, Wendy E.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2014-01-01
This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages –for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc – are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well. PMID:25331099
Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.
Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J
2016-12-15
To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.
The effects of tissue processing on markers for T and B cells from solid tissues.
Millard, P R; Rabin, B S; Whiteside, T L; Hubbard, J D
1977-03-01
Suspensions of lymphoid cells from tissues have been used for the determination of the quantitative relationship between the T and B cell populations. The distribution of the lymphocytes within a given tissue, however, cannot be demonstrated once such a suspension has been prepared. Various methods of characterizing lymphocytes within tissues were evaluated. The method of tissue preparation can alter the capability of detecting the lymphocyte markers. Fluorescein-labeled anti-immunoglobulin sera reacted equally well with lymphocytes in tissue regardless of the method of tissue preparation. Complement-coated sheep erythrocytes were less effective in detecting lymphocyte markers in tissue sections than in cell suspensions. Quantitative assays of lymphocytes could be done in suspensions only. Unaltered sheep erythrocytes did not bind to T lymphocytes in tissue. T lymphocytes could be identified in tissue sections, however, by the use of anti-human T cell serum.
Buzzi, Marina; Guarino, Anna; Gatto, Claudio; Manara, Sabrina; Dainese, Luca; Polvani, Gianluca; Tóthová, Jana D'Amato
2014-01-01
We investigated the presence of antibiotics in cryopreserved cardiovascular tissues and cryopreservation media, after tissue decontamination with antibiotic cocktails, and the impact of antibiotic residues on standard tissue bank microbiological analyses. Sixteen cardiovascular tissues were decontaminated with bank-prepared cocktails and cryopreserved by two different tissue banks according to their standard operating procedures. Before and after decontamination, samples underwent microbiological analysis by standard tissue bank methods. Cryopreserved samples were tested again with and without the removal of antibiotic residues using a RESEP tube, after thawing. Presence of antibiotics in tissue homogenates and processing liquids was determined by a modified agar diffusion test. All cryopreserved tissue homogenates and cryopreservation media induced important inhibition zones on both Staphylococcus aureus- and Pseudomonas aeruginosa-seeded plates, immediately after thawing and at the end of the sterility test. The RESEP tube treatment markedly reduced or totally eliminated the antimicrobial activity of tested tissues and media. Based on standard tissue bank analysis, 50% of tissues were found positive for bacteria and/or fungi, before decontamination and 2 out of 16 tested samples (13%) still contained microorganisms after decontamination. After thawing, none of the 16 cryopreserved samples resulted positive with direct inoculum method. When the same samples were tested after removal of antibiotic residues, 8 out of 16 (50%) were contaminated. Antibiotic residues present in tissue allografts and processing liquids after decontamination may mask microbial contamination during microbiological analysis performed with standard tissue bank methods, thus resulting in false negatives.
Gatto, Claudio; Manara, Sabrina; Dainese, Luca; Polvani, Gianluca; Tóthová, Jana D'Amato
2014-01-01
We investigated the presence of antibiotics in cryopreserved cardiovascular tissues and cryopreservation media, after tissue decontamination with antibiotic cocktails, and the impact of antibiotic residues on standard tissue bank microbiological analyses. Sixteen cardiovascular tissues were decontaminated with bank-prepared cocktails and cryopreserved by two different tissue banks according to their standard operating procedures. Before and after decontamination, samples underwent microbiological analysis by standard tissue bank methods. Cryopreserved samples were tested again with and without the removal of antibiotic residues using a RESEP tube, after thawing. Presence of antibiotics in tissue homogenates and processing liquids was determined by a modified agar diffusion test. All cryopreserved tissue homogenates and cryopreservation media induced important inhibition zones on both Staphylococcus aureus- and Pseudomonas aeruginosa-seeded plates, immediately after thawing and at the end of the sterility test. The RESEP tube treatment markedly reduced or totally eliminated the antimicrobial activity of tested tissues and media. Based on standard tissue bank analysis, 50% of tissues were found positive for bacteria and/or fungi, before decontamination and 2 out of 16 tested samples (13%) still contained microorganisms after decontamination. After thawing, none of the 16 cryopreserved samples resulted positive with direct inoculum method. When the same samples were tested after removal of antibiotic residues, 8 out of 16 (50%) were contaminated. Antibiotic residues present in tissue allografts and processing liquids after decontamination may mask microbial contamination during microbiological analysis performed with standard tissue bank methods, thus resulting in false negatives. PMID:25397402
Adult stem cell lineage tracing and deep tissue imaging
Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung
2015-01-01
Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667] PMID:26634741
Lenas, Petros; Moos, Malcolm; Luyten, Frank P
2009-12-01
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
McAllister, David R; Joyce, Michael J; Mann, Barton J; Vangsness, C Thomas
2007-12-01
Allografts are commonly used during sports medicine surgical procedures in the United States, and their frequency of use is increasing. Based on surgeon reports, it is estimated that more than 60 000 allografts were used in knee surgeries by members of the American Orthopaedic Society for Sports Medicine in 2005. In the United States, there are governmental agencies and other regulatory bodies involved in the oversight of tissue banks. In 2005, the Food and Drug Administration finalized its requirements for current good tissue practice and has mandated new rules regarding the "manufacture" of allogenic tissue. In response to well-publicized infections associated with the implantation of allograft tissue, some tissue banks have developed methods to sterilize allograft tissue. Although many surgeons have significant concerns about the safety of allografts, the majority believe that sterilized allografts are safe but that the sterilization process negatively affects tissue biology and biomechanics. However, most know very little about the principles of sterilization and the proprietary processes currently used in tissue banking. This article will review the current status of allograft tissue regulation, procurement, processing, and sterilization in the United States.
A rapid and efficient assay for extracting DNA from fungi
Griffin, Dale W.; Kellogg, C.A.; Peak, K.K.; Shinn, E.A.
2002-01-01
Aims: A method for the rapid extraction of fungal DNA from small quantities of tissue in a batch-processing format was investigated. Methods and Results: Tissue (< 3.0 mg) was scraped from freshly-grown fungal isolates. The tissue was suspended in buffer AP1 and subjected to seven rounds of freeze/thaw using a crushed dry ice/ethanol bath and a boiling water bath. After a 30 min boiling step, the tissue was quickly ground against the wall of the microfuge tube using a sterile pipette tip. The Qiagen DNeasy Plant Tissue Kit protocol was then used to purify the DNA for PCR/ sequencing applications. Conclusions: The method allowed batch DNA extraction from multiple fungal isolates using a simple yet rapid and reliable assay. Significance and Impact of the Study: Use of this assay will allow researchers to obtain DNA from fungi quickly for use in molecular assays that previously required specialized instrumentation, was time-consuming or was not conducive to batch processing.
Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues.
Hendijani, Fatemeh
2017-04-01
Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits. © 2017 John Wiley & Sons Ltd.
Penza, Veronica; Ortiz, Jesús; Mattos, Leonardo S; Forgione, Antonello; De Momi, Elena
2016-02-01
Single-incision laparoscopic surgery decreases postoperative infections, but introduces limitations in the surgeon's maneuverability and in the surgical field of view. This work aims at enhancing intra-operative surgical visualization by exploiting the 3D information about the surgical site. An interactive guidance system is proposed wherein the pose of preoperative tissue models is updated online. A critical process involves the intra-operative acquisition of tissue surfaces. It can be achieved using stereoscopic imaging and 3D reconstruction techniques. This work contributes to this process by proposing new methods for improved dense 3D reconstruction of soft tissues, which allows a more accurate deformation identification and facilitates the registration process. Two methods for soft tissue 3D reconstruction are proposed: Method 1 follows the traditional approach of the block matching algorithm. Method 2 performs a nonparametric modified census transform to be more robust to illumination variation. The simple linear iterative clustering (SLIC) super-pixel algorithm is exploited for disparity refinement by filling holes in the disparity images. The methods were validated using two video datasets from the Hamlyn Centre, achieving an accuracy of 2.95 and 1.66 mm, respectively. A comparison with ground-truth data demonstrated the disparity refinement procedure: (1) increases the number of reconstructed points by up to 43 % and (2) does not affect the accuracy of the 3D reconstructions significantly. Both methods give results that compare favorably with the state-of-the-art methods. The computational time constraints their applicability in real time, but can be greatly improved by using a GPU implementation.
Methods And Systems For Using Reference Images In Acoustic Image Processing
Moore, Thomas L.; Barter, Robert Henry
2005-01-04
A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.
Methods of saccharification of polysaccharides in plants
Howard, John; Fake, Gina
2014-04-29
Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.
Kellie, John F; Higgs, Richard E; Ryder, John W; Major, Anthony; Beach, Thomas G; Adler, Charles H; Merchant, Kalpana; Knierman, Michael D
2014-07-23
A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).
Bova, G Steven; Eltoum, Isam A; Kiernan, John A; Siegal, Gene P; Frost, Andra R; Best, Carolyn J M; Gillespie, John W; Emmert-Buck, Michael R
2005-01-01
Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of pancreatic malignancy and other biological phenomena. This chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed-over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification. High-quality tissue microdissection does not necessarily mean high-quality samples to analyze. The quality of biomaterials obtained for analysis is highly dependent on steps upstream and downstream from tissue microdissection. We provide protocols for each of these steps, and encourage you to improve upon these. It is worth the effort of every laboratory to optimize and document its technique at each stage of the process, and we provide a starting point for those willing to spend the time to optimize. In our view, poor documentation of tissue and cell type of origin and the use of nonoptimized protocols is a source of inefficiency in current life science research. Even incremental improvement in this area will increase productivity significantly.
A minimum spanning forest based classification method for dedicated breast CT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei, E-mail: bfei@emory.edu
Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting modelmore » used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.« less
Warth, Arne; Muley, Thomas; Meister, Michael; Weichert, Wilko
2015-01-01
Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.
Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering
NASA Technical Reports Server (NTRS)
Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)
2003-01-01
The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.
Accurate tumor localization and tracking in radiation therapy using wireless body sensor networks.
Pourhomayoun, Mohammad; Jin, Zhanpeng; Fowler, Mark
2014-07-01
Radiation therapy is an effective method to combat cancerous tumors by killing the malignant cells or controlling their growth. Knowing the exact position of the tumor is a very critical prerequisite in radiation therapy. Since the position of the tumor changes during the process of radiation therapy due to the patient׳s movements and respiration, a real-time tumor tracking method is highly desirable in order to deliver a sufficient dose of radiation to the tumor region without damaging the surrounding healthy tissues. In this paper, we develop a novel tumor positioning method based on spatial sparsity. We estimate the position by processing the received signals from only one implantable RF transmitter. The proposed method uses less number of sensors compared to common magnetic transponder based approaches. The performance of the proposed method is evaluated in two different cases: (1) when the tissue configuration is perfectly determined (acquired beforehand by MRI or CT) and (2) when there are some uncertainties about the tissue boundaries. The results demonstrate the high accuracy and performance of the proposed method, even when the tissue boundaries are imperfectly known. Copyright © 2014 Elsevier Ltd. All rights reserved.
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND
Bessonova, O.V.; Khokhlova, V.A.; Canney, M.S.; Bailey, M.R.; Crum, L.A.
2010-01-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue. PMID:20582159
A derating method for therapeutic applications of high intensity focused ultrasound
NASA Astrophysics Data System (ADS)
Bessonova, O. V.; Khokhlova, V. A.; Canney, M. S.; Bailey, M. R.; Crum, L. A.
2010-05-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. A new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal wave-forms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND.
Bessonova, O V; Khokhlova, V A; Canney, M S; Bailey, M R; Crum, L A
2010-01-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.
Cryopreservation of Viable Human Lung Tissue for Versatile Post-thaw Analyses and Culture
Baatz, John E.; Newton, Danforth A.; Riemer, Ellen C.; Denlinger, Chadrick E.; Jones, E. Ellen; Drake, Richard R.; Spyropoulos, Demetri D.
2018-01-01
Clinical trials are currently used to test therapeutic efficacies for lung cancer, infections and diseases. Animal models are also used as surrogates for human disease. Both approaches are expensive and time-consuming. The utility of human biospecimens as models is limited by specialized tissue processing methods that preserve subclasses of analytes (e.g. RNA, protein, morphology) at the expense of others. We present a rapid and reproducible method for the cryopreservation of viable lung tissue from patients undergoing lobectomy or transplant. This method involves the pseudo-diaphragmatic expansion of pieces of fresh lung tissue with cryoprotectant formulation (pseudo-diaphragmatic expansion-cryoprotectant perfusion or PDX-CP) followed by controlled-rate freezing in cryovials. Expansion-perfusion rates, volumes and cryoprotectant formulation were optimized to maintain tissue architecture, decrease crystal formation and increase long-term cell viability. Rates of expansion of 4 cc/min or less and volumes ranging from 0.8–1.2 × tissue volume were well-tolerated by lung tissue obtained from patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis, showing minimal differences compared to standard histopathology. Morphology was greatly improved by the PDX-CP procedure compared to simple fixation. Fresh versus post-thawed lung tissue showed minimal differences in histology, RNA integrity numbers and post-translational modified protein integrity (2-dimensional differential gel electrophoresis). It was possible to derive numerous cell types, including alveolar epithelial cells, fibroblasts and stem cells, from the tissue for at least three months after cryopreservation. This new method should provide a uniform, cost-effective approach to the banking of biospecimens, with versatility to be amenable to any post-acquisition process applicable to fresh tissue samples. PMID:24982205
Ghalavand, Zohreh; Heidary Rouchi, Alireza; Bahraminasab, Hassan; Ravanasa, Elham; Mirsamadi, Elnaz Sadat; Nodeh Farahani, Narges; Nikmanesh, Bahram
2018-02-03
Microbiological screening of tissue allografts is crucial to prevent the transmission of bacterial and fungal infections to transplant recipients. Klebsiella was the most prevalent and resistant contaminating microorganism observed in our setting in the Iranian Tissue Bank. This study was conducted to determine the presence of extended-spectrum β-lactamase (ESBL) genes, antimicrobial resistance patterns of Klebsiella pneumoniae isolates, and their clonal relationships in allograft materials. K. pneumoniae contaminating bone and other tissue allografts recovered from deceased donors were identified and ESBL isolates were detected using a phenotypic confirmatory method. Antimicrobial susceptibility testing was carried out using the disk diffusion method. Distribution of ESBL genes and molecular typing were performed using polymerase chain reaction (PCR) and Repetitive-element (rep-PCR) methods. Of 3828 donated tissues, 51 (1.3%) were found contaminated by K. pneumoniae isolates. Compared to tissue allografts from brain-dead, heart-beating tissue donors, allografts from donors with circulatory cessation were associated with a higher risk of K. pneumoniae contamination [odds ratio (OR), 1.2 (CI 95% 0.9-2.3) (P value < 0.001)]. Half of the isolates produced ESBL, and the rate of susceptibility to cephalosporins was 51%. Among isolates, 22 (43.1%) harbored CTX-M, 31 (60.8%) SHV, and 9 (17.6%) harbored TEM types. The rep-dendrogram indicated that clones having identical or related strains with a similar antibiotype were isolated in the same period. This study provides evidence that a single clone of K. pneumoniae contaminated tissue allografts recovered from many different donors. A single clone found on tissues from several donors suggests contamination of tissues from a single source such as the tissue recovery process and environment. Genomic DNA testing and clonality of contaminating bacteria using molecular methods can focus the epidemiologic investigation on the tissue allograft recovery process including a search for contamination of the tissue recovery room environment, recovery staff, recovery equipment, reagents, solutions and supplies.
Kornmuller, Anna; Brown, Cody F C; Yu, Claire; Flynn, Lauren E
2017-04-11
Cell function is mediated by interactions with the extracellular matrix (ECM), which has complex tissue-specific composition and architecture. The focus of this article is on the methods for fabricating ECM-derived porous foams and microcarriers for use as biologically-relevant substrates in advanced 3D in vitro cell culture models or as pro-regenerative scaffolds and cell delivery systems for tissue engineering and regenerative medicine. Using decellularized tissues or purified insoluble collagen as a starting material, the techniques can be applied to synthesize a broad array of tissue-specific bioscaffolds with customizable geometries. The approach involves mechanical processing and mild enzymatic digestion to yield an ECM suspension that is used to fabricate the three-dimensional foams or microcarriers through controlled freezing and lyophilization procedures. These pure ECM-derived scaffolds are highly porous, yet stable without the need for chemical crosslinking agents or other additives that may negatively impact cell function. The scaffold properties can be tuned to some extent by varying factors such as the ECM suspension concentration, mechanical processing methods, or synthesis conditions. In general, the scaffolds are robust and easy to handle, and can be processed as tissues for most standard biological assays, providing a versatile and user-friendly 3D cell culture platform that mimics the native ECM composition. Overall, these straightforward methods for fabricating customized ECM-derived foams and microcarriers may be of interest to both biologists and biomedical engineers as tissue-specific cell-instructive platforms for in vitro and in vivo applications.
Ultrasonic Apparatus and Method to Assess Compartment Syndrome
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor)
2009-01-01
A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.
Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation.
Lim, Sanghyun; Chisholm, Kenneth; Coffin, Robert H; Peters, Rick D; Al-Mughrabi, Khalil I; Wang-Pruski, Gefu; Pinto, Devanand M
2012-04-06
Foliar diseases, such as late blight, result in serious threats to potato production. As such, potato leaf tissue becomes an important substrate to study biological processes, such as plant defense responses to infection. Nonetheless, the potato leaf proteome remains poorly characterized. Here, we report protein profiling of potato leaf tissues using a modified differential centrifugation approach to separate the leaf tissues into cell wall and cytoplasmic fractions. This method helps to increase the number of identified proteins, including targeted putative cell wall proteins. The method allowed for the identification of 1484 nonredundant potato leaf proteins, of which 364 and 447 were reproducibly identified proteins in the cell wall and cytoplasmic fractions, respectively. Reproducibly identified proteins corresponded to over 70% of proteins identified in each replicate. A diverse range of proteins was identified based on their theoretical pI values, molecular masses, functional classification, and biological processes. Such a protein extraction method is effective for the establishment of a highly qualified proteome profile.
Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R
2008-06-01
The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.
A micromethod for the enzymatic estimation of the degree of glycogen ramification.
Serafini, M T; Alemany, M
1987-10-01
A comparison of methods for the evaluation of glycogen content in liver tissue of rats has been carried out by determining the recoveries in the differential ethanol precipitation of glycogen from alkaline tissue digests as well as the actual quantitative equivalence between glycogen content and actual glucose measured. Hydrolytic/enzymatic methods gave lower results than non-specific chemical methods such as anthrone. These lower values, combined with the losses in the purification process resulted in much lower glycogen estimations than the actual estimated tissue content. A method has been devised for the measurement of glycogen ramification in small liver tissue samples, using neutral periodate oxidation of the molecule, followed by determination of the formic acid evolved from the branch ends with formic acid dehydrogenase. The method gave results very similar to the classical methods in which the acid formed is measured titrimetrically. Rat liver tissue contained a mean 323 +/- 69 mmol of glucose equivalents of glycogen per gram of tissue; this glycogen had a mean chain length of 11.4 +/- 0.8 units.
Cheah, Pike See; Mohidin, Norhani; Mohd Ali, Bariah; Maung, Myint; Latif, Azian Abdul
2008-01-01
This study illustrates and quantifies the changes on corneal tissue between the paraffin-embedded and resin-embedded blocks and thus, selects a better target in investigational ophthalmology and optometry via light microscopy. Corneas of two cynomolgus monkeys (Macaca fascicularis) were used in this study. The formalin-fixed cornea was prepared in paraffin block via the conventional tissue processing protocol (4-day protocol) and stained with haematoxylin and eosin. The glutaraldehyde-fixed cornea was prepared in resin block via the rapid and modified tissue processing procedure (1.2-day protocol) and stained with toluidine blue. The paraffin-embedded sample exhibits various undesired tissue damage and artifact such as thinner epithelium (due to the substantial volumic extraction from the tissue), thicker stroma layer (due to the separation of lamellae and the presence of voids) and the distorted endothelium. In contrast, the resin-embedded corneal tissue has demonstrated satisfactory corneal ultrastructural preservation. The rapid and modified tissue processing method for preparing the resin-embedded is particularly beneficial to accelerate the microscopic evaluation in ophthalmology and optometry. PMID:22570589
Herson, M R; Hamilton, K; White, J; Alexander, D; Poniatowski, S; O'Connor, A J; Werkmeister, J A
2018-04-25
Current regulatory requirements demand an in-depth understanding and validation of protocols used in tissue banking. The aim of this work was to characterize the quality of split thickness skin allografts cryopreserved or manufactured using highly concentrated solutions of glycerol (50, 85 or 98%), where tissue water activity (a w ), histology and birefringence changes were chosen as parameters. Consistent a w outcomes validated the proposed processing protocols. While no significant changes in tissue quality were observed under bright-field microscopy or in collagen birefringence, in-process findings can be harnessed to fine-tune and optimize manufacturing outcomes in particular when further radiation sterilization is considered. Furthermore, exposing the tissues to 85% glycerol seems to derive the most efficient outcomes as far as a w and control of microbiological growth.
Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy
NASA Astrophysics Data System (ADS)
Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.
2005-09-01
The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.
NASA Astrophysics Data System (ADS)
Yokoyama, Ryouta; Yagi, Shin-ichi; Tamura, Kiyoshi; Sato, Masakazu
2009-07-01
Ultrahigh speed dynamic elastography has promising potential capabilities in applying clinical diagnosis and therapy of living soft tissues. In order to realize the ultrahigh speed motion tracking at speeds of over thousand frames per second, synthetic aperture (SA) array signal processing technology must be introduced. Furthermore, the overall system performance should overcome the fine quantitative evaluation in accuracy and variance of echo phase changes distributed across a tissue medium. On spatial evaluation of local phase changes caused by pulsed excitation on a tissue phantom, investigation was made with the proposed SA signal system utilizing different virtual point sources that were generated by an array transducer to probe each component of local tissue displacement vectors. The final results derived from the cross-correlation method (CCM) brought about almost the same performance as obtained by the constrained least square method (LSM) extended to successive echo frames. These frames were reconstructed by SA processing after the real-time acquisition triggered by the pulsed irradiation from a point source. The continuous behavior of spatial motion vectors demonstrated the dynamic generation and traveling of the pulsed shear wave at a speed of one thousand frames per second.
Comparison of tissue processing methods for microvascular visualization in axolotls.
Montoro, Rodrigo; Dickie, Renee
2017-01-01
The vascular system, the pipeline for oxygen and nutrient delivery to tissues, is essential for vertebrate development, growth, injury repair, and regeneration. With their capacity to regenerate entire appendages throughout their lifespan, axolotls are an unparalleled model for vertebrate regeneration, but they lack many of the molecular tools that facilitate vascular imaging in other animal models. The determination of vascular metrics requires high quality image data for the discrimination of vessels from background tissue. Quantification of the vasculature using perfused, cleared specimens is well-established in mammalian systems, but has not been widely employed in amphibians. The objective of this study was to optimize tissue preparation methods for the visualization of the microvascular network in axolotls, providing a basis for the quantification of regenerative angiogenesis. To accomplish this aim, we performed intracardiac perfusion of pigment-based contrast agents and evaluated aqueous and non-aqueous clearing techniques. The methods were verified by comparing the quality of the vascular images and the observable vascular density across treatment groups. Simple and inexpensive, these tissue processing techniques will be of use in studies assessing vascular growth and remodeling within the context of regeneration. Advantages of this method include: •Higher contrast of the vasculature within the 3D context of the surrounding tissue •Enhanced detection of microvasculature facilitating vascular quantification •Compatibility with other labeling techniques.
Simulations and experiments of photon propagation in biological tissue and liquid crystal waveguides
NASA Astrophysics Data System (ADS)
Lines, Collin M.
The development of non-invasive methods to probe human tissue is an ongoing challenge in biomedical optics. In vivo measurements by conventional methods are limited by the mean free path (MFP) of a photon, which is governed by the spatial distribution of chromophores and the absorption and scattering properties of the tissue. As one of the strongest chromophores in human tissues, hemoglobin concentrations in human tissue greatly affect the MFP of photons in visible wavelengths (i.e. bruising). Changes in the concentration of hemoglobin and other chromophores within the tissue (minor trauma causing a contusion, increased bilirubin due to jaundice, etc.) will affect the MFP, leading to a visibly different appearance (color) of the tissue. As color perception is a complex physiological process, these changes are diffcult to quantify by human observation alone. The transport of hemoglobin and its breakdown products in tissue is related to a number of medical conditions that could benefit from a non-invasive method to determine the hemoglobin levels.
Cleveland, Emily C; Albano, Nicholas J; Hazen, Alexes
2015-10-01
The use of autologous adipose tissue harvested through liposuction techniques for soft-tissue augmentation has become commonplace among cosmetic and reconstructive surgeons alike. Despite its longstanding use in the plastic surgery community, substantial controversy remains regarding the optimal method of processing harvested lipoaspirate before grafting. This evidence-based review builds on prior examinations of the literature to evaluate both established and novel methods for lipoaspirate processing. A comprehensive, systematic review of the literature was conducted using Ovid MEDLINE in January of 2015 to identify all relevant publications subsequent to the most recent review on this topic. Randomized controlled trials, clinical trials, and comparative studies comparing at least two of the following techniques were included: decanting, cotton gauze (Telfa) rolling, centrifugation, washing, filtration, and stromal vascular fraction isolation. Nine articles comparing various methods of processing human fat for autologous grafting were selected based on inclusion and exclusion criteria. Five compared established processing techniques (i.e., decanting, cotton gauze rolling, centrifugation, and washing) and four publications evaluated newer proprietary technologies, including washing, filtration, and/or methods to isolate stromal vascular fraction. The authors failed to find compelling evidence to advocate a single technique as the superior method for processing lipoaspirate in preparation for autologous fat grafting. A paucity of high-quality data continues to limit the clinician's ability to determine the optimal method for purifying harvested adipose tissue. Novel automated technologies hold promise, particularly for large-volume fat grafting; however, extensive additional research is required to understand their true utility and efficiency in clinical settings.
Comparison of six methods for isolating mycobacteria from swine lymph nodes.
Thoen, C O; Richards, W D; Jarnagin, J L
1974-03-01
Six laboratory methods were compared for isolating acid-fast bacteria. Tuberculous lymph nodes from each of 48 swine as identified by federal meat inspectors were processed by each of the methods. Treated tissue suspensions were inoculated onto each of eight media which were observed at 7-day intervals for 9 weeks. There were no statistically significant differences between the number of Mycobacterium avium complex bacteria isolated by each of the six methods. Rapid tissue preparation methods involving treatment with 2% sodium hydroxide or treatment with 0.2% zephiran required only one-third to one-fourth the processing time as a standard method. There were small differences in the amount of contamination among the six methods, but no detectable differences in the time of first appearance of M. avium complex colonies.
Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie
2015-01-01
Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly available. PMID:25974182
Reiser, Vladimír; Smith, Ryan C; Xue, Jiyan; Kurtz, Marc M; Liu, Rong; Legrand, Cheryl; He, Xuanmin; Yu, Xiang; Wong, Peggy; Hinchcliffe, John S; Tanen, Michael R; Lazar, Gloria; Zieba, Renata; Ichetovkin, Marina; Chen, Zhu; O'Neill, Edward A; Tanaka, Wesley K; Marton, Matthew J; Liao, Jason; Morris, Mark; Hailman, Eric; Tokiwa, George Y; Plump, Andrew S
2011-11-01
With expanding biomarker discovery efforts and increasing costs of drug development, it is critical to maximize the value of mass-limited clinical samples. The main limitation of available methods is the inability to isolate and analyze, from a single sample, molecules requiring incompatible extraction methods. Thus, we developed a novel semiautomated method for tissue processing and tissue milling and division (TMAD). We used a SilverHawk atherectomy catheter to collect atherosclerotic plaques from patients requiring peripheral atherectomy. Tissue preservation by flash freezing was compared with immersion in RNAlater®, and tissue grinding by traditional mortar and pestle was compared with TMAD. Comparators were protein, RNA, and lipid yield and quality. Reproducibility of analyte yield from aliquots of the same tissue sample processed by TMAD was also measured. The quantity and quality of biomarkers extracted from tissue prepared by TMAD was at least as good as that extracted from tissue stored and prepared by traditional means. TMAD enabled parallel analysis of gene expression (quantitative reverse-transcription PCR, microarray), protein composition (ELISA), and lipid content (biochemical assay) from as little as 20 mg of tissue. The mean correlation was r = 0.97 in molecular composition (RNA, protein, or lipid) between aliquots of individual samples generated by TMAD. We also demonstrated that it is feasible to use TMAD in a large-scale clinical study setting. The TMAD methodology described here enables semiautomated, high-throughput sampling of small amounts of heterogeneous tissue specimens by multiple analytical techniques with generally improved quality of recovered biomolecules.
NASA Astrophysics Data System (ADS)
Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.
This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.
Chen, Jun; Hou, Ting; Fang, Yun; Chen, Zhi-peng; Liu, Xiao; Cai, Hao; Lu, Tu-lin; Yan, Guo-jun; Cai, Bao-chang
2011-01-01
A simple and low-cost HPLC method with UV absorbance detection was developed and validated to simultaneously determine strychnine and brucine, the most abundant alkaloids in the processed Semen Strychni, in rat tissues (kidney, liver, spleen, lung, heart, stomach, small intestine, brain and plasma). The tissue samples were treated with a simple liquid-liquid extraction prior to HPLC. The LOQs were in the range of 0.039-0.050 µg/ml for different tissue or plasma samples. The extraction recoveries varied from 71.63 to 98.79%. The linear range was 0.05-2 µg/ml with correlation coefficient of over 0.991. The intra- and inter-day precision was less than 15%. Then the method was used to measure the tissue distribution of strychnine and brucine after intravenous administration of 1 mg/kg crude alkaloids fraction (CAF) extracted from the processed Semen Strychni. The results revealed that strychnine and brucine possessed similar tissue distribution characterization. The highest level was observed in kidney, while the lowest level was found in brain. It was indicated that kidney might be the primary excretion organ of prototype strychnine and brucine. It was also deduced that strychnine and brucine had difficulty in crossing the blood-brain barrier. Furthermore, no long-term accumulation of strychnine and brucine was found in rat tissues.
Algorithms and Results of Eye Tissues Differentiation Based on RF Ultrasound
Jurkonis, R.; Janušauskas, A.; Marozas, V.; Jegelevičius, D.; Daukantas, S.; Patašius, M.; Paunksnis, A.; Lukoševičius, A.
2012-01-01
Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation. PMID:22654643
Hogan, Nancy; Schmidt, Lee; Coolican, Maggie
2014-09-01
Donated tissues can save lives of critically burned patients and those needing a heart valve replacement. Tissues enhance the lives of a million recipients annually through transplants of corneas, bones, tendons, and vein grafts. Unfortunately, the need for some tissues exceeds their availability. The goal of the quantitative component of this mixed methods study was to identify the grief, posttraumatic stress, personal growth, and ongoing attachment response of tissue donors' family members during a 2-year period. Simultaneous mixed methods design. The sample for this study consisted of 52 tissue donors' family members, mostly widows (83%). Data were collected for 2 years to test changes in grief, posttraumatic stress, panic behavior, personal growth, and ongoing attachment. The bereaved participants experienced significantly fewer grief reactions, less posttraumatic stress, and greater personal growth. There was no significant difference in the ongoing attachment to their deceased loved ones. The results of this study may reinforce the positive meaning that tissue donors' family members can find in tissue donation. Findings also demonstrate that the bereavement process corroborates contemporary bereavement and attachment theories. Health professionals are encouraged to seek donations with less worry that tissue donors' family members will experience adverse outcomes during bereavement.
Fabrication of scaffolds in tissue engineering: A review
NASA Astrophysics Data System (ADS)
Zhao, Peng; Gu, Haibing; Mi, Haoyang; Rao, Chengchen; Fu, Jianzhong; Turng, Lih-sheng
2018-03-01
Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.
Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei
2012-01-01
Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675
Stirling, C A
1978-09-01
Molten (328 K) 20% gelatin is used as a 'glue' to hold together separate tissue elements or tissue elements that may be separated when cutting small blocks of tissue for plastic embedding. Standard aldehyde and osmium fixation, dehydration and epoxy embedding are compatible with this as is semi-thin sectioning for light microscopy or thin sectioning for electron microscopy.
Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun
2013-03-01
Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid processing offer well-interconnected and nontoxic substrates for cell growth, avoiding problems associated with a solvent residue. This suggests that these elastic PLCL scaffolds formed by supercritical fluid processing could be used for cartilage tissue engineering.
Bacterial contamination of amniotic membrane in a tissue bank from Iran.
Aghayan, Hamid Reza; Goodarzi, Parisa; Baradaran-Rafii, Alireza; Larijani, Bagher; Moradabadi, Leila; Rahim, Fakher; Arjmand, Babak
2013-09-01
Human Amniotic Membrane (AM) transplantation can promote tissue healing and reduce inflammation, tissue scarring and neovascularization. Homa Peyvand Tamin (HPT) tissue bank has focused on manufacturing human cell and tissue based products including AM. The purpose of this study is to evaluate and identify bacterial contamination of AMs that is produced by HPT for several ophthalmic applications. From July 2006 to April 2011, 122 placentas from cesarean sections were retrieved by HPT after obtaining informed consent from the donors. Besides testing donor's blood sample for viral markers, microbiological evaluation was performed pre and post processing. During tissue processing, decontamination was performed by an antibiotic cocktail including; Gentamicin, Ceftriaxone and Cloxacillin. Of 271 cesarean section AM donors who were screened as potential donors, 122 were accepted for processing and assessed for microbiological contamination. Donors' age were between 21 and 41 years (Mean = 27.61 ± 0.24). More than 92% of mothers were in their first or second gravidity with full term pregnancies. The most prevalent organisms were Staphylococci species (72.53%). After processing, contamination rates markedly decreased by 84.62% (p value = 0.013). According to our results, most of bacterial contaminations were related to donation process and the contamination pattern suggests procurement team as a source. Therefore we recommend that regular training programs should be implemented by tissue banks for procurement staff. These programs should focus on improved donor screening and proper aseptic technique for tissue retrieval. We also suggest that tissue banks should periodically check the rate and types of tissue contaminations. These data help them to find system faults and to update processing methods.
Collagen Quantification in Tissue Specimens.
Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I
2017-01-01
Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.
Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models.
Blutke, Andreas; Wanke, Rüdiger
2018-03-06
In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical uniform random (VUR) sections.
Three-dimensional cell to tissue assembly process
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Lewis, Marian L. (Inventor); Cross, John H. (Inventor); Huls, Mary H. (Inventor)
1992-01-01
The present invention relates a 3-dimensional cell to tissue and maintenance process, more particularly to methods of culturing cells in a culture environment, either in space or in a gravity field, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.
Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B
2017-08-01
Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demos, Stavros; Levenson, Richard
The present disclosure relates to a method for analyzing tissue specimens. In one implementation the method involves obtaining a tissue sample and exposing the sample to one or more fluorophores as contrast agents to enhance contrast of subcellular compartments of the tissue sample. The tissue sample is illuminated by an ultraviolet (UV) light having a wavelength between about 200 nm to about 400 nm, with the wavelength being selected to result in penetration to only a specified depth below a surface of the tissue sample. Inter-image operations between images acquired under different imaging parameters allow for improvement of the imagemore » quality via removal of unwanted image components. A microscope may be used to image the tissue sample and provide the image to an image acquisition system that makes use of a camera. The image acquisition system may create a corresponding image that is transmitted to a display system for processing and display.« less
Mueller coherency matrix method for contrast image in tissue polarimetry
NASA Astrophysics Data System (ADS)
Arce-Diego, J. L.; Fanjul-Vélez, F.; Samperio-García, D.; Pereda-Cubián, D.
2007-07-01
In this work, we propose the use of the Mueller Coherency matrix of biological tissues in order to increase the information from tissue images and so their contrast. This method involves different Mueller Coherency matrix based parameters, like the eigenvalues analysis, the entropy factor calculation, polarization components crosstalks, linear and circular polarization degrees, hermiticity or the Quaternions analysis in case depolarisation properties of tissue are sufficiently low. All these parameters make information appear clearer and so increase image contrast, so pathologies like cancer could be detected in a sooner stage of development. The election will depend on the concrete pathological process under study. This Mueller Coherency matrix method can be applied to a single tissue point, or it can be combined with a tomographic technique, so as to obtain a 3D representation of polarization contrast parameters in pathological tissues. The application of this analysis to concrete diseases can lead to tissue burn depth estimation or cancer early detection.
Hodovana, O I
2015-01-01
Results of investigation of mineral density condition of skeletal osseous tissue in patients with inflammatory and dystrophic-inflammatory diseases of periodontal tissues with ultrasound densitometry method have been presented. Various changes of osseous tissue of skeletal bones have been detected: osteopenia, osteoporosis and osteosclerosis, which correlated with the severity of pathological process in periodontium. Analysis of the obtained results has been carried out depending on patients' sex as well as form and severity degree of the course of periodontal diseases. It has been established that the peak of detected impairments of mineral density in the skeleton is due to osteopenia, the degree of severity of which deteriorates with the severity of pathological process in periodontal tissues, especially in women.
Gupta, Vijayalaxmi; Holets-Bondar, Lesya; Roby, Katherine F; Enders, George; Tash, Joseph S
2015-01-01
Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging. Specimens must be harvested with minimal time after landing to minimize postflight readaptation alterations in protein expression/translation, posttranslational modifications, and expression, as well as changes in gene expression and tissue histological degradation after euthanasia. We report the development of a widely applicable strategy for determining the window of optimal species-specific and tissue-specific posteuthanasia harvest that can be utilized to integrate into multi-investigator Biospecimen Sharing Programs. We also determined methods for ISS-compatible long-term tissue storage (10 months at -80°C) that yield recovery of high quality mRNA and protein for western analysis after sample return. Our focus was reproductive tissues. The time following euthanasia where tissues could be collected and histological integrity was maintained varied with tissue and species ranging between 1 and 3 hours. RNA quality was preserved in key reproductive tissues fixed in RNAlater up to 40 min after euthanasia. Postfixation processing was also standardized for safe shipment back to our laboratory. Our strategy can be adapted for other tissues under NASA's Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities.
Abraham, Michael H; Gola, Joelle M R; Ibrahim, Adam; Acree, William E; Liu, Xiangli
2014-07-01
There is considerable interest in the blood-tissue distribution of agrochemicals, and a number of researchers have developed experimental methods for in vitro distribution. These methods involve the determination of saline-blood and saline-tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution. The authors set out equations for gas-tissue and blood-tissue distribution, for partition from water into skin and for permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equations can be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivo blood-tissue distribution where available. The predictions require no more than simple arithmetic. The present method represents a much easier and much more economic way of estimating blood-tissue partitions than the method that uses saline-blood and saline-tissue partitions. It has the added advantages of yielding the required in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin and permeation from water through skin. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Dovhaliuk, Rostyslav Y.
2013-09-01
We present a novel measurement method of optic axes orientation distribution which uses a relatively simple measurement setup. The principal difference of our method from other well-known methods lies in direct approach for measuring the orientation of optical axis of polycrystalline networks biological crystals. Our test polarimetry setup consists of HeNe laser, quarter wave plate, two linear polarizers and a CCD camera. We also propose a methodology for processing of measured optic axes orientation distribution which consists of evaluation of statistical, correlational and spectral moments. Such processing of obtained data can be used to classify particular tissue sample as "healthy" or "pathological". For our experiment we use thin layers of histological section of normal and muscular dystrophy tissue sections. It is shown that the difference between mentioned moments` values of normal and pathological samples can be quite noticeable with relative difference up to 6.26.
Steinberg, Idan; Tamir, Gil; Gannot, Israel
2018-03-16
Solid malignant tumors are one of the leading causes of death worldwide. Many times complete removal is not possible and alternative methods such as focused hyperthermia are used. Precise control of the hyperthermia process is imperative for the successful application of such treatment. To that end, this research presents a fast method that enables the estimation of deep tissue heat distribution by capturing and processing the transient temperature at the boundary based on a bio-heat transfer model. The theoretical model is rigorously developed and thoroughly validated by a series of experiments. A 10-fold improvement is demonstrated in resolution and visibility on tissue mimicking phantoms. The inverse problem is demonstrated as well with a successful application of the model for imaging deep-tissue embedded heat sources. Thereby, allowing the physician then ability to dynamically evaluate the hyperthermia treatment efficiency in real time.
Li, Ruilong; Zhu, Yaxian; Zhang, Yong
2015-06-01
A novel method for in situ determination of the polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the root surface of Kandelia obovata seedlings was established using laser-induced time-resolved nanosecond fluorescence spectroscopy (LITRF). The linear dynamic ranges for the established method were 1.5-1240ng/spot for phenanthrene, 1.0-1360ng/spot for pyrene and 5.0-1220ng/spot for benzo[a]pyrene. Then, the mechanisms of PAHs transport from the Ko root surface to tissues were investigated. The three-phase model including fast, slow and very slow fractions was superior to the single or dual-phase model to describe the PAHs transport processes. Moreover, the fast fraction of PAHs transport process was mainly due to passive movement, while the slow and very slow fractions were not. Passive movement was the main process of B[a]P adsorbed onto Ko root surface transport to tissues. In addition, the extent of the PAHs transport to Ko root tissues at different salinity were evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improved measurement of vibration amplitude in dynamic optical coherence elastography
Kennedy, Brendan F.; Wojtkowski, Maciej; Szkulmowski, Maciej; Kennedy, Kelsey M.; Karnowski, Karol; Sampson, David D.
2012-01-01
Abstract: Optical coherence elastography employs optical coherence tomography (OCT) to measure the displacement of tissues under load and, thus, maps the resulting strain into an image, known as an elastogram. We present a new improved method to measure vibration amplitude in dynamic optical coherence elastography. The tissue vibration amplitude caused by sinusoidal loading is measured from the spread of the Doppler spectrum, which is extracted using joint spectral and time domain signal processing. At low OCT signal-to-noise ratio (SNR), the method provides more accurate vibration amplitude measurements than the currently used phase-sensitive method. For measurements performed on a mirror at OCT SNR = 5 dB, our method introduces <3% error, compared to >20% using the phase-sensitive method. We present elastograms of a tissue-mimicking phantom and excised porcine tissue that demonstrate improvements, including a 50% increase in the depth range of reliable vibration amplitude measurement. PMID:23243565
Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei
2012-10-01
To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors' classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors' automatic classification and manual segmentation were 91.6% ± 2.0%. A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution.
Investigation of laser-tissue interaction in medicine by means of laser spectroscopic measurements
NASA Astrophysics Data System (ADS)
Lademann, Juergen; Weigmann, Hans-Juergen
1995-01-01
Toxic and carcinogenic substances were produced during laser application in medicine for the cutting and evaporation of tissue. The laser smoke presents a danger potential for the medical staff and the patients. The laser tissue interaction process was investigated by means of laser spectroscopic measurements which give the possibility of measuring metastable molecular states directly as a prerequisite to understand and to influence fundamental laser tissue interaction processes in order to reduce the amount of harmful chemicals. Highly excited atomic and molecular states and free radicals (CN, OH, C2, CH, CH2) have been detected applying spontaneous and laser induced fluorescence methods. It was found that the formation of harmful substances in the laser plumes can be reduced significantly by optimization of the surrounding gas atmosphere. A high content of oxygen or water in the interaction zone has been found, in agreement with the results of classical and analytical methods, as a suitable way to decrease pollutant emission. The experimental methods and the principal results are applicable not only in laser medicine but in laser material treatment generally.
Kowalski, John B; Merritt, Karen; Gocke, David; Osborne, Joel
2012-08-01
A quantitative method was developed and validated to assess bioburden on tissue from human donors and to compare bioburden determination results to swab culture results from the same donor. An initial study with allograft tissue from 101 donors showed a wide range of bioburden levels; values from no colony-forming units (CFU) detected to >28,000 CFU were observed. Tissues from donors that had swab cultures negative for objectionable microorganisms generally had lower bioburden than tissues from donors where objectionable microorganisms were recovered by swab culturing. In a follow-up study with 1,445 donors, a wide range of bioburden levels was again observed on tissues from donors that were swab culture negative for objectionable microorganisms. Tissues from 885 (61%) of these donors had no recoverable bioburden (<2 CFU). Importantly, tissues from 560 (39%) of the donors had recoverable bioburden which ranged from 1 to >24,000 CFU. Identification of bioburden isolates showed a diversity of genera and species. In compliance with the recent revision of the American Association of Tissue Banks K2.210 Standard, the quantitative bioburden determination method was validated with a composite tissue sample that contains bone and soft tissue sections tested together in one extraction vessel. A recovery efficiency of 68% was validated and the composite sample was shown to be representative of all of the tissues recovered from a donor. The use of the composite sample in conjunction with the quantitative bioburden determination method will facilitate an accurate assessment of the numbers and types of contaminating microorganisms on allografts prior to disinfection/sterilization. This information will ensure that disinfection/sterilization processes are properly validated and the capability of the overall allograft process is understood on a donor by donor basis.
Weber, Daniela; Davies, Michael J.; Grune, Tilman
2015-01-01
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. PMID:26141921
Weber, Daniela; Davies, Michael J; Grune, Tilman
2015-08-01
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. © 2015 Published by Elsevier Ltd.
Yu, Anthony; Prentice, Heather A; Burfeind, William E; Funahashi, Tadashi; Maletis, Gregory B
2018-03-01
Allograft tissue is frequently used in anterior cruciate ligament reconstruction (ACLR). It is often irradiated and/or chemically processed to decrease the risk of disease transmission, but some tissue is aseptically harvested without further processing. Irradiated and chemically processed allograft tissue appears to have a higher risk of revision, but whether this processing decreases the risk of infection is not clear. To determine the incidence of deep surgical site infection after ACLR with allograft in a large community-based sample and to evaluate the association of allograft processing and the risk of deep infection. Cohort study; Level of evidence, 3. The authors conducted a cohort study using the Kaiser Permanente Anterior Cruciate Ligament Reconstruction Registry. Primary isolated unilateral ACLR with allograft were identified from February 1, 2005 to September 30, 2015. Ninety-day postoperative deep infections were identified via an electronic screening algorithm and then validated through chart review. Logistic regression was used to evaluate the likelihood of 90-day postoperative deep infection per allograft processing method: processed (graft treated chemically and/or irradiated) or nonprocessed (graft not irradiated or chemically processed). Of 10,190 allograft cases, 8425 (82.7%) received a processed allograft, and 1765 (17.3%) received a nonprocessed allograft. There were 15 (0.15%) deep infections during the study period: 4 (26.7%) coagulase-negative Staphylococcus, 4 (26.7%) methicillin-sensitive Staphylococcus aureus, 1 (6.7%) Peptostreptococcus micros, and 6 (40.0%) with no growth. There was no difference in the likelihood for 90-day deep infection for processed versus nonprocessed allografts (odds ratio = 1.36, 95% CI = 0.31-6.04). The overall incidence of deep infection after ACLR with allograft tissue was very low (0.15%), suggesting that the methods currently employed by tissue banks to minimize the risk of infection are effective. In this cohort, no difference in the likelihood of infection between processed and nonprocessed allografts could be identified.
NASA Astrophysics Data System (ADS)
Chavez-Sanchez, Cristina M.; Alvarez-Borrego, Josue; Montoya-Rodriguez, L.; Garcia-Gasca, A.; Fajer Avila, Emma J.; Pacheco-Marges, R.
2004-10-01
White spot syndrome (WSSV) is a viral disease which affects many crustacean species including commercial shrimps. Adequate, precise and quick methods to diagnose on time the presence of the disease in order to apply different strategies to avoid the dispersion and to reduce mortalities is necessary. Histopathology is an important diagnostic method. However, histopathology has the problem that requires time to prepare the histological slides and time to arrive to some diagnosis because this depend on the nature of the tissues, the pathogen(s) to find, the number of organisms, number of slides to analyze and the skill of the technician. This paper try to demonstrate the sensibility of one digital system of processing and recognition of images using color correlation with phase filters, to identify inclusion bodies of WSSV. Infected tissues were processed to obtain histological slides and to verify that the inclusion bodies observed were of WSV, in situ hybridization were carried out. The sensibility results of the recognition of the inclusion bodies of WSSV with the color correlation program was 86.1%. The highest percentage of recognition was in nervous system and tegument glands with 100%. The values in the stomach epithelium and heart tissue was 78.45% of recognition. Tissues with the lowest recognition values were lymphoid organ and hematopoietic tissue. It is necessary further studies to increase the sensibility and to obtain the specificity.
Moore, Stephanie N.; Hawley, Gregory D.; Smith, Emily N.; Mignemi, Nicholas A.; Ihejirika, Rivka C.; Yuasa, Masato; Cates, Justin M. M.; Liu, Xulei; Schoenecker, Jonathan G.
2016-01-01
Introduction Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Methods Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined. Results Precision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathological state of the mineralization. Conclusions Radiographic analysis can discriminate muscle injury-induced soft tissue calcification from adjacent bone and follow its clinical course over time without requiring the sacrifice of the animal. While the STiCSS cannot identify the specific type of soft tissue calcification present, it is still a useful and valid method by which to quantify the degree of soft tissue calcification. This methodology allows for longitudinal measurements of soft tissue calcification in a single animal, which is relatively less expensive, less time-consuming, and exposes the animal to less radiation than in vivo μCT. Therefore, this high-throughput, longitudinal analytic method for quantifying soft tissue calcification is a viable alternative for the study of soft tissue calcification. PMID:27438007
NASA Astrophysics Data System (ADS)
Abdallah, Omar; Qananwah, Qasem; Abo Alam, Kawther; Bolz, Armin
2010-04-01
This paper describes the development of an early detection method for probing pathological tissue variations. The method could be used for classifying various tissue alteration namely tumors tissue or skin disorders. The used approach is based on light scattering and absorption spectroscopy. Spectral content of the scattered light provides diagnostic information about the tissue contents. The importance of this method is using a safe light that has less power than the used in the imaging methods that will enable the frequent examination of tissue, while the exiting modalities have drawbacks like ionization, high cost, time-consuming, and agents' usage. A modality for mapping the oxygen saturation distribution in tissues noninvasively is new in this area of research, since this study focuses on the oxygen molecule in the tissue which supposed to be homogenously distributed through the tissues. Cancers may cause greater vascularization and greater oxygen consumption than in normal tissue. Therefore, oxygen existence and homogeneity will be alternated depending on the tissue state. In the proposed system, the signal was extracted after illuminating the tissue by light emitting diodes (LED's) that emits light in two wavelengths, red (660 nm) and infrared (880 nm). The absorption in these wavelengths is mainly due to oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) while other blood and tissue contents nearly have low effect on the signal. The backscattered signal which is received by a photodiodes array (128 PDs) was measured and processed using LabVIEW. Photoplethysmogram (PPG) signals have been measured at different locations. These signals will be used to differentiate between the normal and the pathological tissues. Variations in hemoglobin concentration and blood perfusion will also be used as an important indication feature for this purpose.
A review of cutting mechanics and modeling techniques for biological materials.
Takabi, Behrouz; Tai, Bruce L
2017-07-01
This paper presents a comprehensive survey on the modeling of tissue cutting, including both soft tissue and bone cutting processes. In order to achieve higher accuracy in tissue cutting, as a critical process in surgical operations, the meticulous modeling of such processes is important in particular for surgical tool development and analysis. This review paper is focused on the mechanical concepts and modeling techniques utilized to simulate tissue cutting such as cutting forces and chip morphology. These models are presented in two major categories, namely soft tissue cutting and bone cutting. Fracture toughness is commonly used to describe tissue cutting while Johnson-Cook material model is often adopted for bone cutting in conjunction with finite element analysis (FEA). In each section, the most recent mathematical and computational models are summarized. The differences and similarities among these models, challenges, novel techniques, and recommendations for future work are discussed along with each section. This review is aimed to provide a broad and in-depth vision of the methods suitable for tissue and bone cutting simulations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Gibson, Eli; Gaed, Mena; Gómez, José A.; Moussa, Madeleine; Pautler, Stephen; Chin, Joseph L.; Crukley, Cathie; Bauman, Glenn S.; Fenster, Aaron; Ward, Aaron D.
2013-01-01
Background: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1) How does prostate tissue deform during histology processing? (2) What spatial misalignment of the tissue sections is induced by microtome cutting? (3) How does the choice of reconstruction model affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE) after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]). The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals), while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9° (angle) and 0.9-1.3 mm (depth). Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. Conclusions: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and should be flexible enough to model isotropic scaling. PMID:24392245
Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation
Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan
2010-01-01
Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939
CINTRA, Luciano Tavares Angelo; BERNABÉ, Pedro Felício Estrada; de MORAES, Ivaldo Gomes; GOMES-FILHO, João Eduardo; OKAMOTO, Tetuo; CONSOLARO, Alberto; PINHEIRO, Tiago Novaes
2010-01-01
Objective The aim of this study was to compare two methodologies used in the evaluation of tissue response to root-end filling materials in rats. Material and Methods Forty rats were divided into 4 groups: in Groups I and II (control groups), empty polyethylene tubes were implanted in the extraction site and in the subcutaneous tissue, respectively; in Groups III and IV, polyethylene tubes filled with ProRoot MTA were implanted in the extraction site and in the subcutaneous tissue, respectively. The animals were killed 7 and 30 days after tube implantation, and the hemi-maxillas and the capsular subcutaneous tissue, both with the tubes, were removed. Specimens were processed and evaluated histomorphologicaly under light microscopy. The scores obtained were analyzed statistically by the Kruskal-Wallis test (p<0.05). Results There were no statistically significant differences between the implantation methods (p=0.78033, p=0.72039). It was observed that the 30-day groups presented a more mature healing process due to smaller number of inflammatory cells. Conclusion The present study showed no differences in tissue responses as far as the implantation site and the studied period were concerned. Alveolar socket implantation methodology represents an interesting method in the study of the biological properties of root-end filling endodontic materials due to the opportunity to evaluate bone tissue response. PMID:20379685
Drilling electrode for real-time measurement of electrical impedance in bone tissues.
Dai, Yu; Xue, Yuan; Zhang, Jianxun
2014-03-01
In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.
Realistic tissue visualization using photoacoustic image
NASA Astrophysics Data System (ADS)
Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong
2018-02-01
Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.
Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage
Mansour, Joseph M.; Lee, Zhenghong; Welter, Jean F.
2016-01-01
In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue. PMID:26817458
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K
2013-02-01
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.
Challenges in validating the sterilisation dose for processed human amniotic membranes
NASA Astrophysics Data System (ADS)
Yusof, Norimah; Hassan, Asnah; Firdaus Abd Rahman, M. N.; Hamid, Suzina A.
2007-11-01
Most of the tissue banks in the Asia Pacific region have been using ionising radiation at 25 kGy to sterilise human tissues for save clinical usage. Under tissue banking quality system, any dose employed for sterilisation has to be validated and the validation exercise has to be a part of quality document. Tissue grafts, unlike medical items, are not produced in large number per each processing batch and tissues relatively have a different microbial population. A Code of Practice established by the International Atomic Energy Agency (IAEA) in 2004 offers several validation methods using smaller number of samples compared to ISO 11137 (1995), which is meant for medical products. The methods emphasise on bioburden determination, followed by sterility test on samples after they were exposed to verification dose for attaining of sterility assurance level (SAL) of 10 -1. This paper describes our experience in using the IAEA Code of Practice in conducting the validation exercise for substantiating 25 kGy as sterilisation dose for both air-dried amnion and those preserved in 99% glycerol.
Morawski, Markus; Kirilina, Evgeniya; Scherf, Nico; Jäger, Carsten; Reimann, Katja; Trampel, Robert; Gavriilidis, Filippos; Geyer, Stefan; Biedermann, Bernd; Arendt, Thomas; Weiskopf, Nikolaus
2017-11-28
Recent breakthroughs in magnetic resonance imaging (MRI) enabled quantitative relaxometry and diffusion-weighted imaging with sub-millimeter resolution. Combined with biophysical models of MR contrast the emerging methods promise in vivo mapping of cyto- and myelo-architectonics, i.e., in vivo histology using MRI (hMRI) in humans. The hMRI methods require histological reference data for model building and validation. This is currently provided by MRI on post mortem human brain tissue in combination with classical histology on sections. However, this well established approach is limited to qualitative 2D information, while a systematic validation of hMRI requires quantitative 3D information on macroscopic voxels. We present a promising histological method based on optical 3D imaging combined with a tissue clearing method, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel (CLARITY), adapted for hMRI validation. Adapting CLARITY to the needs of hMRI is challenging due to poor antibody penetration into large sample volumes and high opacity of aged post mortem human brain tissue. In a pilot experiment we achieved transparency of up to 8 mm-thick and immunohistochemical staining of up to 5 mm-thick post mortem brain tissue by a combination of active and passive clearing, prolonged clearing and staining times. We combined 3D optical imaging of the cleared samples with tailored image processing methods. We demonstrated the feasibility for quantification of neuron density, fiber orientation distribution and cell type classification within a volume with size similar to a typical MRI voxel. The presented combination of MRI, 3D optical microscopy and image processing is a promising tool for validation of MRI-based microstructure estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Nondestructive mechanical characterization of developing biological tissues using inflation testing.
Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S
2017-10-01
One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Combined FLIM and reflectance confocal microscopy for epithelial imaging
NASA Astrophysics Data System (ADS)
Jabbour, Joey M.; Cheng, Shuna; Shrestha, Sebina; Malik, Bilal; Jo, Javier A.; Applegate, Brian; Maitland, Kristen C.
2012-03-01
Current methods for detection of oral cancer lack the ability to delineate between normal and precancerous tissue with adequate sensitivity and specificity. The usual diagnostic mechanism involves visual inspection and palpation followed by tissue biopsy and histopathology, a process both invasive and time-intensive. A more sensitive and objective screening method can greatly facilitate the overall process of detection of early cancer. To this end, we present a multimodal imaging system with fluorescence lifetime imaging (FLIM) for wide field of view guidance and reflectance confocal microscopy for sub-cellular resolution imaging of epithelial tissue. Moving from a 12 x 12 mm2 field of view with 157 ìm lateral resolution using FLIM to 275 x 200 μm2 with lateral resolution of 2.2 μm using confocal microscopy, hamster cheek pouch model is imaged both in vivo and ex vivo. The results indicate that our dual modality imaging system can identify and distinguish between different tissue features, and, therefore, can potentially serve as a guide in early oral cancer detection..
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
Silk fibroin as biomaterial for bone tissue engineering.
Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra
2016-02-01
Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee
2017-07-06
Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.
Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan
2016-01-01
The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.
Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A
2017-09-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces
Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.
2017-01-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332
Translational Research in Pediatrics IV: Solid Tissue Collection and Processing.
Gillio-Meina, Carolina; Zielke, H Ronald; Fraser, Douglas D
2016-01-01
Solid tissues are critical for child-health research. Specimens are commonly obtained at the time of biopsy/surgery or postmortem. Research tissues can also be obtained at the time of organ retrieval for donation or from tissue that would otherwise have been discarded. Navigating the ethics of solid tissue collection from children is challenging, and optimal handling practices are imperative to maximize tissue quality. Fresh biopsy/surgical specimens can be affected by a variety of factors, including age, gender, BMI, relative humidity, freeze/thaw steps, and tissue fixation solutions. Postmortem tissues are also vulnerable to agonal factors, body storage temperature, and postmortem intervals. Nonoptimal tissue handling practices result in nucleotide degradation, decreased protein stability, artificial posttranslational protein modifications, and altered lipid concentrations. Tissue pH and tryptophan levels are 2 methods to judge the quality of solid tissue collected for research purposes; however, the RNA integrity number, together with analyses of housekeeping genes, is the new standard. A comprehensive clinical data set accompanying all tissue samples is imperative. In this review, we examined: the ethical standards relating to solid tissue procurement from children; potential sources of solid tissues; optimal practices for solid tissue processing, handling, and storage; and reliable markers of solid tissue quality. Copyright © 2016 by the American Academy of Pediatrics.
Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M Laird
2016-09-01
Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85-115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze-thaw and for up to three months. © The Author(s) 2016.
Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M. Laird
2016-01-01
Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85–115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze–thaw and for up to three months. PMID:27527103
Volkov, A V; Shutov, Iu M; Shutova, M Z
2012-01-01
The influence of anthropology on topographical anatomical structure peculiarities of soft tissue formations of shoulder girdle has been investigated. The dependence of anatomical structure and topography of muscles, ligaments, tendon sheaths, synovial bursae, rotator cuffs on patient's body constitution type has been examined. The influence of a somatotype on topical damage of soft tissue structures of shoulder girdle has been proved. The so-called "holes" or weak areas, joint capsules, places where ligaments attach to bones and cartilages, where vascular formations also take place have been revealed. It is in these areas that degenerative inflammatory process begins. First of all this process influences hemolymph circulation, then it results in disturbance in production and resorption of synovial fluid and causes destructive processes in ligaments, tendons and osteochondral tissue. Due to research the ability to conduct differential diagnosis has been determined, methods of modality treatment and prevention of periarticular tissue diseases have been optimized.
Tissue simulating gel for medical research
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor)
1991-01-01
A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.
Tissue simulating gel for medical research
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor)
1989-01-01
A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene gylcol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances were injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.
Siegert, F; Weijer, C J; Nomura, A; Miike, H
1994-01-01
We describe the application of a novel image processing method, which allows quantitative analysis of cell and tissue movement in a series of digitized video images. The result is a vector velocity field showing average direction and velocity of movement for every pixel in the frame. We apply this method to the analysis of cell movement during different stages of the Dictyostelium developmental cycle. We analysed time-lapse video recordings of cell movement in single cells, mounds and slugs. The program can correctly assess the speed and direction of movement of either unlabelled or labelled cells in a time series of video images depending on the illumination conditions. Our analysis of cell movement during multicellular development shows that the entire morphogenesis of Dictyostelium is characterized by rotational cell movement. The analysis of cell and tissue movement by the velocity field method should be applicable to the analysis of morphogenetic processes in other systems such as gastrulation and neurulation in vertebrate embryos.
Weber, R; Knaup, P; Knietitg, R; Haux, R; Merzweiler, A; Mludek, V; Schilling, F H; Wiedemann, T
2001-01-01
The German Society for Paediatric Oncology and Haematology (GPOH) runs nation-wide multicentre clinical trials to improve the treatment of children suffering from malignant diseases. We want to provide methods and tools to support the centres of these trials in developing trial specific modules for the computer-based DOcumentation System for Paediatric Oncology (DOSPO). For this we carried out an object-oriented business process analysis for the Cooperative Soft Tissue Sarcoma Trial at the Olgahospital Stuttgart for Child and Adolescent Medicine. The result is a comprehensive business process model consisting of UML-diagrams and use case specifications. We recommend the object-oriented business process analysis as a method for the definition of requirements in information processing projects in the field of clinical trials in general. For this our model can serve as basis because it slightly can be adjusted to each type of clinical trial.
[Current Perceptions of Lipofilling on the Basis of the New Guideline on "Autologous Fat Grafting"].
Prantl, L; Rennekampff, H O; Giunta, R E; Harder, Y; von Heimburg, D; Heine, N; Herold, C; Kneser, U; Lampert, F; Machens, H G; Mirastschijski, U; Müller, D; Pallua, N; Schantz, T; Schönborn, A; Ueberreiter, K; Witzel, C H; Bull, G; Rezek, D; Sattler, G; Vogt, P M; Horch, R E
2016-12-01
Introduction: Autologous fat transfer has recently become an increasingly popular surgical procedure and comprises harvesting, processing and transplantation of adipose tissue, as well as professional follow-up care. This method, as a surgical procedure, can be utilised for trauma-, disease- or age-related soft tissue volume deficits and soft tissue augmentation. As usage is increasing, but the variables of fat harvest, specific indications and fashion of fat transfer are poorly defined, there is a great demand for development of a guideline in the field of reconstructive and aesthetic surgery. Methods: All relevant points were discussed within the scope of a consensus conference including a nominal group process of all societies involved in the procedure and ratified with a strong consensus (>95%). Literature from the standard medical databases over the last 10 years was retrieved, studied and specific guidelines were concluded. Results: Consensus was achieved among all professionals involved on the following points: 1. definition 2. indication/contraindication, 3. preoperative measures 4. donor sites 5. techniques of processing 6. transplantation 7. follow-up care 8. storage 9. efficacy 10. documentation 11. evaluation of patient safety. Conclusion: Definite indications and professional expertise are paramount for autologous fat tissue transfer. Successful transfers are based on the use of correct methods as well as specific instruments and materials. Autologous adipose tissue transplantation is considered to be a safe procedure in reconstructive and aesthetic surgery, due to the low rate of postoperative complications and sequelae. © Georg Thieme Verlag KG Stuttgart · New York.
FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.
Zhang, Chen; Liang, Tianzhu; Mok, Philip K T; Yu, Weichuan
2017-07-01
In ultrasound image analysis, the speckle tracking methods are widely applied to study the elasticity of body tissue. However, "feature-motion decorrelation" still remains as a challenge for the speckle tracking methods. Recently, a coupled filtering method and an affine warping method were proposed to accurately estimate strain values, when the tissue deformation is large. The major drawback of these methods is the high computational complexity. Even the graphics processing unit (GPU)-based program requires a long time to finish the analysis. In this paper, we propose field-programmable gate array (FPGA)-based implementations of both methods for further acceleration. The capability of FPGAs on handling different image processing components in these methods is discussed. A fast and memory-saving image warping approach is proposed. The algorithms are reformulated to build a highly efficient pipeline on FPGA. The final implementations on a Xilinx Virtex-7 FPGA are at least 13 times faster than the GPU implementation on the NVIDIA graphic card (GeForce GTX 580).
Bonavina, Luigi; Laface, Letizia; Picozzi, Stefano; Nencioni, Marco; Siboni, Stefano; Bona, Davide; Sironi, Andrea; Sorba, Francesca; Clemente, Claudio
2010-09-01
With the development of tissue banking, a need for homogeneous methods of collection, processing, and storage of tissue has emerged. We describe the implementation of a biological bank in a high-volume, tertiary care University referral center for esophageal cancer surgery. We also propose an original punch biopsy technique of the surgical specimen. The method proved to be simple, reproducible, and not expensive. Unified standards for specimen collection are necessary to improve results of specimen-based diagnostic testing and research in surgical oncology.
-3228 Research Interests Application of numerical methods to process problems Fuel and chemical biochemistry and numerical methods), University of Wisconsin at Madison, 2009-2014 Professional Experience Stem Cells Under Defined Conditions," Tissue Engineering Part C Methods (2013)
Hassanpour, Saeid; Saboonchi, Ahmad
2016-12-01
This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo
2014-01-01
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method. PMID:24887553
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
NASA Astrophysics Data System (ADS)
Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo
2014-06-01
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.
Vavadi, Hamed; Zhu, Quing
2016-01-01
Imaging-guided near infrared diffuse optical tomography (DOT) has demonstrated a great potential as an adjunct modality for differentiation of malignant and benign breast lesions and for monitoring treatment response of breast cancers. However, diffused light measurements are sensitive to artifacts caused by outliers and errors in measurements due to probe-tissue coupling, patient and probe motions, and tissue heterogeneity. In general, pre-processing of the measurements is needed by experienced users to manually remove these outliers and therefore reduce imaging artifacts. An automated method of outlier removal, data selection, and filtering for diffuse optical tomography is introduced in this manuscript. This method consists of multiple steps to first combine several data sets collected from the same patient at contralateral normal breast and form a single robust reference data set using statistical tests and linear fitting of the measurements. The second step improves the perturbation measurements by filtering out outliers from the lesion site measurements using model based analysis. The results of 20 malignant and benign cases show similar performance between manual data processing and automated processing and improvement in tissue characterization of malignant to benign ratio by about 27%. PMID:27867711
Dynamic soft tissue deformation estimation based on energy analysis
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Yao, Bin
2016-10-01
The needle placement accuracy of millimeters is required in many needle-based surgeries. The tissue deformation, especially that occurring on the surface of organ tissue, affects the needle-targeting accuracy of both manual and robotic needle insertions. It is necessary to understand the mechanism of tissue deformation during needle insertion into soft tissue. In this paper, soft tissue surface deformation is investigated on the basis of continuum mechanics, where a geometry model is presented to quantitatively approximate the volume of tissue deformation. The energy-based method is presented to the dynamic process of needle insertion into soft tissue based on continuum mechanics, and the volume of the cone is exploited to quantitatively approximate the deformation on the surface of soft tissue. The external work is converted into potential, kinetic, dissipated, and strain energies during the dynamic rigid needle-tissue interactive process. The needle insertion experimental setup, consisting of a linear actuator, force sensor, needle, tissue container, and a light, is constructed while an image-based method for measuring the depth and radius of the soft tissue surface deformations is introduced to obtain the experimental data. The relationship between the changed volume of tissue deformation and the insertion parameters is created based on the law of conservation of energy, with the volume of tissue deformation having been obtained using image-based measurements. The experiments are performed on phantom specimens, and an energy-based analytical fitted model is presented to estimate the volume of tissue deformation. The experimental results show that the energy-based analytical fitted model can predict the volume of soft tissue deformation, and the root mean squared errors of the fitting model and experimental data are 0.61 and 0.25 at the velocities 2.50 mm/s and 5.00 mm/s. The estimating parameters of the soft tissue surface deformations are proven to be useful for compensating the needle-targeting error in the rigid needle insertion procedure, especially for percutaneous needle insertion into organs.
Ilyin, S E; Plata-Salamán, C R
2000-02-15
Homogenization of tissue samples is a common first step in the majority of current protocols for RNA, DNA, and protein isolation. This report describes a simple device for centrifugation-mediated homogenization of tissue samples. The method presented is applicable to RNA, DNA, and protein isolation, and we show examples where high quality total cell RNA, DNA, and protein were obtained from brain and other tissue samples. The advantages of the approach presented include: (1) a significant reduction in time investment relative to hand-driven or individual motorized-driven pestle homogenization; (2) easy construction of the device from inexpensive parts available in any laboratory; (3) high replicability in the processing; and (4) the capacity for the parallel processing of multiple tissue samples, thus allowing higher efficiency, reliability, and standardization.
Imparato, Giorgia; Urciuolo, Francesco; Casale, Costantino; Netti, Paolo A
2013-10-01
The realization of thick and viable tissues equivalents in vitro is one of the mayor challenges in tissue engineering, in particular for their potential use in tissue-on-chip technology. In the present study we succeeded in creating 3D viable dermis equivalent tissue, via a bottom-up method, and proved that the final properties, in terms of collagen assembly and organization of the 3D tissue, are tunable and controllable by micro-scaffold properties and degradation rate. Gelatin porous microscaffolds with controlled stiffness and degradation rate were realized by changing the crosslinking density through different concentrations of glyceraldehyde. Results showed that by modulating the crosslinking density of the gelatin microscaffolds it is possible to guide the process of collagen deposition and assembly within the extracellular space and match the processes of scaffold degradation, cell traction and tissue maturation to obtain firmer collagen network able to withstand the effect of contraction. © 2013 Published by Elsevier Ltd.
Disinfection of human musculoskeletal allografts in tissue banking: a systematic review.
Mohr, J; Germain, M; Winters, M; Fraser, S; Duong, A; Garibaldi, A; Simunovic, N; Alsop, D; Dao, D; Bessemer, R; Ayeni, O R
2016-12-01
Musculoskeletal allografts are typically disinfected using antibiotics, irradiation or chemical methods but protocols vary significantly between tissue banks. It is likely that different disinfection protocols will not have the same level of microorganism kill; they may also have varying effects on the structural integrity of the tissue, which could lead to significant differences in terms of clinical outcome in recipients. Ideally, a disinfection protocol should achieve the greatest bioburden reduction with the lowest possible impact on tissue integrity. A systematic review of three databases found 68 laboratory and clinical studies that analyzed the microbial bioburden or contamination rates of musculoskeletal allografts. The use of peracetic acid-ethanol or ionizing radiation was found to be most effective for disinfection of tissues. The use of irradiation is the most frequently published method for the terminal sterilization of musculoskeletal allografts; it is widely used and its efficacy is well documented in the literature. However, effective disinfection results were still observed using the BioCleanse™ Tissue Sterilization process, pulsatile lavage with antibiotics, ethylene oxide, and chlorhexidine. The variety of effective methods to reduce contamination rate or bioburden, in conjunction with limited high quality evidence provides little support for the recommendation of a single bioburden reduction method.
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei
2013-01-01
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy. PMID:23482880
Estimating Tool–Tissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool
Zhao, Baoliang; Nelson, Carl A.
2016-01-01
Robot-assisted minimally invasive surgery (MIS) has gained popularity due to its high dexterity and reduced invasiveness to the patient; however, due to the loss of direct touch of the surgical site, surgeons may be prone to exert larger forces and cause tissue damage. To quantify tool–tissue interaction forces, researchers have tried to attach different kinds of sensors on the surgical tools. This sensor attachment generally makes the tools bulky and/or unduly expensive and may hinder the normal function of the tools; it is also unlikely that these sensors can survive harsh sterilization processes. This paper investigates an alternative method by estimating tool–tissue interaction forces using driving motors' current, and validates this sensorless force estimation method on a 3-degree-of-freedom (DOF) robotic surgical grasper prototype. The results show that the performance of this method is acceptable with regard to latency and accuracy. With this tool–tissue interaction force estimation method, it is possible to implement force feedback on existing robotic surgical systems without any sensors. This may allow a haptic surgical robot which is compatible with existing sterilization methods and surgical procedures, so that the surgeon can obtain tool–tissue interaction forces in real time, thereby increasing surgical efficiency and safety. PMID:27303591
Estimating Tool-Tissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool.
Zhao, Baoliang; Nelson, Carl A
2016-10-01
Robot-assisted minimally invasive surgery (MIS) has gained popularity due to its high dexterity and reduced invasiveness to the patient; however, due to the loss of direct touch of the surgical site, surgeons may be prone to exert larger forces and cause tissue damage. To quantify tool-tissue interaction forces, researchers have tried to attach different kinds of sensors on the surgical tools. This sensor attachment generally makes the tools bulky and/or unduly expensive and may hinder the normal function of the tools; it is also unlikely that these sensors can survive harsh sterilization processes. This paper investigates an alternative method by estimating tool-tissue interaction forces using driving motors' current, and validates this sensorless force estimation method on a 3-degree-of-freedom (DOF) robotic surgical grasper prototype. The results show that the performance of this method is acceptable with regard to latency and accuracy. With this tool-tissue interaction force estimation method, it is possible to implement force feedback on existing robotic surgical systems without any sensors. This may allow a haptic surgical robot which is compatible with existing sterilization methods and surgical procedures, so that the surgeon can obtain tool-tissue interaction forces in real time, thereby increasing surgical efficiency and safety.
Moore, Stephanie N; Hawley, Gregory D; Smith, Emily N; Mignemi, Nicholas A; Ihejirika, Rivka C; Yuasa, Masato; Cates, Justin M M; Liu, Xulei; Schoenecker, Jonathan G
2016-01-01
Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined. Precision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathological state of the mineralization. Radiographic analysis can discriminate muscle injury-induced soft tissue calcification from adjacent bone and follow its clinical course over time without requiring the sacrifice of the animal. While the STiCSS cannot identify the specific type of soft tissue calcification present, it is still a useful and valid method by which to quantify the degree of soft tissue calcification. This methodology allows for longitudinal measurements of soft tissue calcification in a single animal, which is relatively less expensive, less time-consuming, and exposes the animal to less radiation than in vivo μCT. Therefore, this high-throughput, longitudinal analytic method for quantifying soft tissue calcification is a viable alternative for the study of soft tissue calcification.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)
1996-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Improving the Performance of the Prony Method Using a Wavelet Domain Filter for MRI Denoising
Lentini, Marianela; Paluszny, Marco
2014-01-01
The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method. PMID:24834108
Improving the performance of the prony method using a wavelet domain filter for MRI denoising.
Jaramillo, Rodney; Lentini, Marianela; Paluszny, Marco
2014-01-01
The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method.
Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.
Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G
2016-11-01
Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.
Robust cell tracking in epithelial tissues through identification of maximum common subgraphs
Bardenet, Rémi; Zartman, Jeremiah J.; Baker, Ruth E.
2016-01-01
Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a ‘maximum common subgraph’ to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell–cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. PMID:28334699
NASA Astrophysics Data System (ADS)
Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan
2014-12-01
Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.
Optical coherence elastography in ophthalmology
NASA Astrophysics Data System (ADS)
Kirby, Mitchell A.; Pelivanov, Ivan; Song, Shaozhen; Ambrozinski, Łukasz; Yoon, Soon Joon; Gao, Liang; Li, David; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2017-12-01
Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.
Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering
Boccaccio, A.; Ballini, A.; Pappalettere, C.; Tullo, D.; Cantore, S.; Desiate, A.
2011-01-01
Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014. Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance. In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated. PMID:21278921
Photoactivated methods for enabling cartilage-to-cartilage tissue fixation
NASA Astrophysics Data System (ADS)
Sitterle, Valerie B.; Roberts, David W.
2003-06-01
The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.
McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J
2008-05-01
Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.
Khan, Jenna; Lieberman, Joshua A; Lockwood, Christina M
2017-05-01
microRNAs (miRNAs) hold promise as biomarkers for a variety of disease processes and for determining cell differentiation. These short RNA species are robust, survive harsh treatment and storage conditions and may be extracted from blood and tissue. Pre-analytical variables are critical confounders in the analysis of miRNAs: we elucidate these and identify best practices for minimizing sample variation in blood and tissue specimens. Pre-analytical variables addressed include patient-intrinsic variation, time and temperature from sample collection to storage or processing, processing methods, contamination by cells and blood components, RNA extraction method, normalization, and storage time/conditions. For circulating miRNAs, hemolysis and blood cell contamination significantly affect profiles; samples should be processed within 2 h of collection; ethylene diamine tetraacetic acid (EDTA) is preferred while heparin should be avoided; samples should be "double spun" or filtered; room temperature or 4 °C storage for up to 24 h is preferred; miRNAs are stable for at least 1 year at -20 °C or -80 °C. For tissue-based analysis, warm ischemic time should be <1 h; cold ischemic time (4 °C) <24 h; common fixative used for all specimens; formalin fix up to 72 h prior to processing; enrich for cells of interest; validate candidate biomarkers with in situ visualization. Most importantly, all specimen types should have standard and common workflows with careful documentation of relevant pre-analytical variables.
From Farm to Pharma: An Overview of Industrial Heparin Manufacturing Methods.
van der Meer, Jan-Ytzen; Kellenbach, Edwin; van den Bos, Leendert J
2017-06-21
The purification of heparin from offal is an old industrial process for which commercial recipes date back to 1922. Although chemical, chemoenzymatic, and biotechnological alternatives for this production method have been published in the academic literature, animal-tissue is still the sole source for commercial heparin production in industry. Heparin purification methods are closely guarded industrial secrets which are not available to the general (scientific) public. However by reviewing the academic and patent literature, we aim to provide a comprehensive overview of the general methods used in industry for the extraction of heparin from animal tissue.
Needle Steering in Biological Tissue using Ultrasound-based Online Curvature Estimation
Moreira, Pedro; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2014-01-01
Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes. Accurate placement of the needle tip is important to the success of many needle procedures. The current needle steering systems depend on needle-tissue-specific data, such as maximum curvature, that is unavailable prior to an interventional procedure. In this paper, we present a novel three-dimensional adaptive steering method for flexible bevel-tipped needles that is capable of performing accurate tip placement without previous knowledge about needle curvature. The method steers the needle by integrating duty-cycled needle steering, online curvature estimation, ultrasound-based needle tracking, and sampling-based motion planning. The needle curvature estimation is performed online and used to adapt the path and duty cycling. We evaluated the method using experiments in a homogenous gelatin phantom, a two-layer gelatin phantom, and a biological tissue phantom composed of a gelatin layer and in vitro chicken tissue. In all experiments, virtual obstacles and targets move in order to represent the disturbances that might occur due to tissue deformation and physiological processes. The average targeting error using our new adaptive method is 40% lower than using the conventional non-adaptive duty-cycled needle steering method. PMID:26229729
Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang
2010-01-01
The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268
Motion compensation for in vivo subcellular optical microscopy.
Lucotte, B; Balaban, R S
2014-04-01
In this review, we focus on the impact of tissue motion on attempting to conduct subcellular resolution optical microscopy, in vivo. Our position is that tissue motion is one of the major barriers in conducting these studies along with light induced damage, optical probe loading as well as absorbing and scattering effects on the excitation point spread function and collection of emitted light. Recent developments in the speed of image acquisition have reached the limit, in most cases, where the signal from a subcellular voxel limits the speed and not the scanning rate of the microscope. Different schemes for compensating for tissue displacements due to rigid body and deformation are presented from tissue restriction, gating, adaptive gating and active tissue tracking. We argue that methods that minimally impact the natural physiological motion of the tissue are desirable because the major reason to perform in vivo studies is to evaluate normal physiological functions. Towards this goal, active tracking using the optical imaging data itself to monitor tissue displacement and either prospectively or retrospectively correct for the motion without affecting physiological processes is desirable. Critical for this development was the implementation of near real time image processing in conjunction with the control of the microscope imaging parameters. Clearly, the continuing development of methods of motion compensation as well as significant technological solutions to the other barriers to tissue subcellular optical imaging in vivo, including optical aberrations and overall signal-to-noise ratio, will make major contributions to the understanding of cell biology within the body.
Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy.
Ryan, Duncan P; Gould, Elizabeth A; Seedorf, Gregory J; Masihzadeh, Omid; Abman, Steven H; Vijayaraghavan, Sukumar; Macklin, Wendy B; Restrepo, Diego; Shepherd, Douglas P
2017-09-20
Optical tissue clearing has revolutionized researchers' ability to perform fluorescent measurements of molecules, cells, and structures within intact tissue. One common complication to all optically cleared tissue is a spatially heterogeneous refractive index, leading to light scattering and first-order defocus. We designed C-DSLM (cleared tissue digital scanned light-sheet microscopy) as a low-cost method intended to automatically generate in-focus images of cleared tissue. We demonstrate the flexibility and power of C-DSLM by quantifying fluorescent features in tissue from multiple animal models using refractive index matched and mismatched microscope objectives. This includes a unique measurement of myelin tracks within intact tissue using an endogenous fluorescent reporter where typical clearing approaches render such structures difficult to image. For all measurements, we provide independent verification using standard serial tissue sectioning and quantification methods. Paired with advancements in volumetric image processing, C-DSLM provides a robust methodology to quantify sub-micron features within large tissue sections.Optical clearing of tissue has enabled optical imaging deeper into tissue due to significantly reduced light scattering. Here, Ryan et al. tackle first-order defocus, an artefact of a non-uniform refractive index, extending light-sheet microscopy to partially cleared samples.
Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization
NASA Astrophysics Data System (ADS)
Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom
2014-03-01
Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.
NASA Astrophysics Data System (ADS)
Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.
2011-05-01
We propose and examine a new approach to visualizing a local network of cutaneous blood vessels using laser optical methods for applications in biometry and photomedicine. Various optical schemes of the formation of biometrical information on the architecture of blood vessels of skin tissue are analyzed. We developed an optical model of the interaction of the laser radiation with the biological tissue and a mathematical algorithm of processing of measurement results. We show that, in medicine, the visualization of blood vessels makes it possible to calculate and determine regions of disturbance of blood microcirculation and to control tissue hypoxia, as well as to maintain the local concentration of oxygen at a level necessary for the normal cellular metabolism. We propose noninvasive optical methods for modern photomedicine and biometry for diagnostics and elimination of tissue hypoxia and for personality identification and verification via the pattern of cutaneous blood vessels.
Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M
2015-08-01
We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.
Maletis, Gregory B; Chen, Jason; Inacio, Maria C S; Love, Rebecca M; Funahashi, Tadashi T
2017-07-01
The optimal graft for anterior cruciate ligament reconstruction (ACLR) remains controversial. To compare the risk of aseptic revision between bone-patellar tendon-bone (BPTB) autografts, hamstring autografts, and soft tissue allografts. Cohort study; Level of evidence, 2. Prospectively collected ACLR cases reconstructed with BPTB autografts, hamstring autografts, and soft tissue allografts were identified using the Kaiser Permanente ACLR Registry. Aseptic revision was the endpoint. The type of graft and allograft processing method (nonprocessed, <1.8-Mrad irradiation with and without chemical processing [Allowash or AlloTrue], ≥1.8-Mrad irradiation with and without chemical processing, and chemical processing alone [BioCleanse]) were the exposures evaluated. Analyses were adjusted for age, sex, and race. Kaplan-Meier curves and Cox proportional hazards models were employed. The cohort included 14,015 cases: there were 8924 (63.7%) male patients, there were 6397 (45.6%) white patients, 4557 (32.5%) ACLRs used BPTB autografts, 3751 ACLRs (26.8%) used soft tissue allografts, and 5707 (40.7%) ACLRs used hamstring autografts. The median age was 34.6 years for soft tissue allografts, 24.3 years for hamstring autografts, and 22.0 years for BPTB autografts. The crude nonadjusted revision rates were 85 (1.9%) in BPTB autograft cases, 132 (2.3%) in hamstring autograft cases, and 83 (2.2%) in soft tissue allograft cases. After adjusting for age, sex, and race, compared with hamstring autografts, a higher risk of revision was found with allografts with ≥1.8 Mrad without chemical processing after 2.5 years (hazard ratio [HR], 3.88; 95% CI, 1.48-10.12) and ≥1.8 Mrad with chemical processing after 1 year (HR, 3.43; 95% CI, 1.58-7.47) and with BioCleanse processed grafts at any time point (HR, 3.02; 95% CI, 1.40-6.50). Nonprocessed allografts and those irradiated with <1.8 Mrad with or without chemical processing were not found to have a different risk of revision compared with hamstring autografts. Compared with BPTB autografts, a higher risk of revision was seen with hamstring autografts (HR, 1.51; 95% CI, 1.15-1.99) and BioCleanse processed allografts (HR, 4.67; 95% CI, 2.15-10.16). Allografts irradiated with <1.8 Mrad with chemical processing (Allowash or AlloTrue) (HR, 2.19; 95% CI, 1.42-3.38) and without chemical processing (HR, 2.31; 95% CI, 1.40-3.82) had a higher risk of revision, as did allografts with ≥1.8 Mrad without chemical processing after 2 years (HR, 6.30; 95% CI, 3.18-12.48) and ≥1.8 Mrad with chemical processing (Allowash or AlloTrue) after 1 year (HR, 5.03; 95% CI, 2.30-11.00) compared with BPTB autografts. Nonprocessed allografts did not have a higher risk of revision compared with autografts. With the numbers available, direct comparisons between the specific allograft processing methods were not possible. When soft tissue allografts are used for ACLR, processing and time from surgery affect the risk of revision. Tissue processing has a significant effect on the risk of revision surgery, which is most profound with more highly processed grafts and increases with increasing follow-up time. Surgeons and patients need to be aware of the increased risks of revision with the various soft tissue allografts used for ACLR.
K, Jalal Deen; R, Ganesan; A, Merline
2017-07-27
Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. Creative Commons Attribution License
K, Jalal Deen; R, Ganesan; A, Merline
2017-01-01
Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. PMID:28749127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr; Lee, Taewon
2015-09-15
Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue compositionmore » for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite accurate under a variety of conditions. Our GPU-based fast MCS implementation took approximately 3 s to generate each angular projection for a 6 cm thick breast, which is believed to make this process acceptable for clinical applications. In addition, the clinical preferences of three radiologists were evaluated; the preference for the proposed method compared to the preference for the convolution-based method was statistically meaningful (p < 0.05, McNemar test). Conclusions: The proposed fully iterative scatter correction method and the GPU-based fast MCS using tissue-composition ratio estimation successfully improved the image quality within a reasonable computational time, which may potentially increase the clinical utility of DBT.« less
The model of drugs distribution dynamics in biological tissue
NASA Astrophysics Data System (ADS)
Ginevskij, D. A.; Izhevskij, P. V.; Sheino, I. N.
2017-09-01
The dose distribution by Neutron Capture Therapy follows the distribution of 10B in the tissue. The modern models of pharmacokinetics of drugs describe the processes occurring in conditioned "chambers" (blood-organ-tumor), but fail to describe the spatial distribution of the drug in the tumor and in normal tissue. The mathematical model of the spatial distribution dynamics of drugs in the tissue, depending on the concentration of the drug in the blood, was developed. The modeling method is the representation of the biological structure in the form of a randomly inhomogeneous medium in which the 10B distribution occurs. The parameters of the model, which cannot be determined rigorously in the experiment, are taken as the quantities subject to the laws of the unconnected random processes. The estimates of 10B distribution preparations in the tumor and healthy tissue, inside/outside the cells, are obtained.
Activity Based Profiling of Deubiquitylating Enzymes and Inhibitors in Animal Tissues.
McLellan, Lauren; Forder, Cassie; Cranston, Aaron; Harrigan, Jeanine; Jacq, Xavier
2016-01-01
The attachment of ubiquitin or ubiquitin-like modifiers to proteins is an important signal for the regulation of a variety of biological processes including the targeting of substrates for degradation, receptor internalization, regulation of gene expression, and DNA repair. Posttranslational modification of proteins by ubiquitin controls many cellular processes, and aberrant ubiquitylation can contribute to cancer, immunopathologies, and neurodegeneration. Thus, deubiquitylating enzymes (DUBs) that remove ubiquitin from proteins have become attractive therapeutic targets. Monitoring the activity of DUBs in cells or in tissues is critical for understanding the biological function of DUBs in particular pathways and is essential for determining the physiological specificity and potency of small-molecule DUB inhibitors. Here, we describe a method for the homogenization of animal tissues and incubation of tissue lysates with ubiquitin-based activity probes to monitor DUB activity in mouse tissues and target engagement following treatment of animals with small-molecule DUB inhibitors.
Application of laser-capture microdissection to analysis of gene expression in the testis.
Sluka, Pavel; O'Donnell, Liza; McLachlan, Robert I; Stanton, Peter G
2008-01-01
The isolation and molecular analysis of highly purified cell populations from complex, heterogeneous tissues has been a challenge for many years. Spermatogenesis in the testis is a particularly difficult process to study given the unique multiple cellular associations within the seminiferous epithelium, making the isolation of specific cell types difficult. Laser-capture microdissection (LCM) is a recently developed technique that enables the isolation of individual cell populations from complex tissues. This technology has enhanced our ability to directly examine gene expression in enriched testicular cell populations by routine methods of gene expression analysis, such as real-time RT-PCR, differential display, and gene microarrays. The application of LCM has however introduced methodological hurdles that have not been encountered with more conventional molecular analyses of whole tissue. In particular, tissue handling (i.e. fixation, storage, and staining), consumables (e.g. slide choice), staining reagents (conventional H&E vs. fluorescence), extraction methods, and downstream applications have all required re-optimisation to facilitate differential gene expression analysis using the small amounts of material obtained using LCM. This review will discuss three critical issues that are essential for successful procurement of cells from testicular tissue sections; tissue morphology, capture success, and maintenance of molecular integrity. The importance of these issues will be discussed with specific reference to the two most commonly used LCM systems; the Arcturus PixCell IIe and PALM systems. The rat testis will be used as a model, and emphasis will be placed on issues of tissue handling, processing, and staining methods, including the application of fluorescence techniques to assist in the identification of cells of interest for the purposes of mRNA expression analysis.
Rasinger, J D; Marbaix, H; Dieu, M; Fumière, O; Mauro, S; Palmblad, M; Raes, M; Berntssen, M H G
2016-09-16
The rapidly growing aquaculture industry drives the search for sustainable protein sources in fish feed. In the European Union (EU) since 2013 non-ruminant processed animal proteins (PAP) are again permitted to be used in aquafeeds. To ensure that commercial fish feeds do not contain PAP from prohibited species, EU reference methods were established. However, due to the heterogeneous and complex nature of PAP complementary methods are required to guarantee the safe use of this fish feed ingredient. In addition, there is a need for tissue specific PAP detection to identify the sources (i.e. bovine carcass, blood, or meat) of illegal PAP use. In the present study, we investigated and compared different protein extraction, solubilisation and digestion protocols on different proteomics platforms for the detection and differentiation of prohibited PAP. In addition, we assessed if tissue specific PAP detection was feasible using proteomics tools. All work was performed independently in two different laboratories. We found that irrespective of sample preparation gel-based proteomics tools were inappropriate when working with PAP. Gel-free shotgun proteomics approaches in combination with direct spectral comparison were able to provide quality species and tissue specific data to complement and refine current methods of PAP detection and identification. To guarantee the safe use of processed animal protein (PAP) in aquafeeds efficient PAP detection and monitoring tools are required. The present study investigated and compared various proteomics workflows and shows that the application of shotgun proteomics in combination with direct comparison of spectral libraries provides for the desired species and tissue specific classification of this heat sterilized and pressure treated (≥133°C, at 3bar for 20min) protein feed ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.
[Image reconstruction of conductivity on magnetoacoustic tomography with magnetic induction].
Li, Jingyu; Yin, Tao; Liu, Zhipeng; Xu, Guohui
2010-04-01
The electric characteristics such as impedance and conductivity of the organization will change in the case where pathological changes occurred in the biological tissue. The change in electric characteristics usually took place before the change in the density of tissues, and also, the difference in electric characteristics such as conductivity between normal tissue and pathological tissue is obvious. The method of magneto-acoustic tomography with magnetic induction is based on the theory of magnetic eddy current induction, the principle of vibration generation and acoustic transmission to get the boundary of the pathological tissue. The pathological change could be inspected by electricity characteristic imaging which is invasive to the tissue. In this study, a two-layer concentric spherical model is established to simulate the malignant tumor tissue surrounded by normal tissue mutual relations of the magneto-sound coupling effect and the coupling equations in the magnetic field are used to get the algorithms for reconstructing the conductivity. Simulation study is conducted to test the proposed model and validate the performance of the reconstructed algorithms. The result indicates that the use of signal processing method in this paper can image the conductivity boundaries of the sample in the scanning cross section. The computer simulating results validate the feasibility of applying the method of magneto-acoustic tomography with magnetic induction for malignant tumor imaging.
Alternative to xylene as a clearing agent in histopathology
Alwahaibi, Nasar; Aljaradi, Shaima; Alazri, Horiyah
2018-01-01
INTRODUCTION: Clearing is an essential step in processing tissue for light microscopy. Xylene is the clearing agent used most commonly worldwide. Xylene is toxic and therefore a threat to personnel working in histopathology laboratories. We evaluated a safer alternative clearing agent for use in the histopathology laboratory. MATERIALS AND METHODS: We used 230 formalin-fixed, paraffin-embedded tissue blocks from 19 different tissues. Half of the specimens were processed using xylene and half were processed using UltraClear™. Tissues were evaluated for eight parameters: sectioning, nuclear staining, cytoplasmic staining, overall cell morphology, clarity of staining, uniformity of staining, quality of immunohistochemistry (IHC), and cost. RESULTS: Both UltraClear™ and xylene processed sections scored 100% for IHC. Sections processed using UltraClear™ were easy to cut (81.7%) as were xylene processed sections (96.5%). UltraClear™ processed sections showed 67%, 60.9%, 52.2%, 63.5%, and 67% for nuclear staining, cytoplasmic staining, cell morphology, clarity of staining, and uniformity of staining, respectively. UltraClear™ is twice as expensive as xylene. We found that tissues processed using UltraClear™ were easy to cut and worked well for both hematoxylin and eosin and IHC staining. CONCLUSION: UltraClear™ is less toxic, less flammable, friendlier to the environment, and easy to handle, but it is two times expensive than xylene. The findings of this study recommend the use of UltraClear™ solution as a routine clearing agent in histopathology laboratories. However, further studies are required. PMID:29692586
NASA Astrophysics Data System (ADS)
Oh, Jung Hun; Kerns, Sarah; Ostrer, Harry; Powell, Simon N.; Rosenstein, Barry; Deasy, Joseph O.
2017-02-01
The biological cause of clinically observed variability of normal tissue damage following radiotherapy is poorly understood. We hypothesized that machine/statistical learning methods using single nucleotide polymorphism (SNP)-based genome-wide association studies (GWAS) would identify groups of patients of differing complication risk, and furthermore could be used to identify key biological sources of variability. We developed a novel learning algorithm, called pre-conditioned random forest regression (PRFR), to construct polygenic risk models using hundreds of SNPs, thereby capturing genomic features that confer small differential risk. Predictive models were trained and validated on a cohort of 368 prostate cancer patients for two post-radiotherapy clinical endpoints: late rectal bleeding and erectile dysfunction. The proposed method results in better predictive performance compared with existing computational methods. Gene ontology enrichment analysis and protein-protein interaction network analysis are used to identify key biological processes and proteins that were plausible based on other published studies. In conclusion, we confirm that novel machine learning methods can produce large predictive models (hundreds of SNPs), yielding clinically useful risk stratification models, as well as identifying important underlying biological processes in the radiation damage and tissue repair process. The methods are generally applicable to GWAS data and are not specific to radiotherapy endpoints.
Fixation methods for electron microscopy of human and other liver
Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter
2010-01-01
For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830
[Registration and 3D rendering of serial tissue section images].
Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang
2002-12-01
It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.
Rusina, Tatsiana P; Carlsson, Pernilla; Vrana, Branislav; Smedes, Foppe
2017-10-03
Passive sampling is widely used to measure levels of contaminants in various environmental matrices, including fish tissue. Equilibrium passive sampling (EPS) of persistent organic pollutants (POP) in fish tissue has been hitherto limited to application in lipid-rich tissue. We tested several exposure methods to extend EPS applicability to lean tissue. Thin-film polydimethylsiloxane (PDMS) passive samplers were exposed statically to intact fillet and fish homogenate and dynamically by rolling with cut fillet cubes. The release of performance reference compounds (PRC) dosed to passive samplers prior to exposure was used to monitor the exchange process. The sampler-tissue exchange was isotropic, and PRC were shown to be good indicators of sampler-tissue equilibration status. The dynamic exposures demonstrated equilibrium attainment in less than 2 days for all three tested fish species, including lean fish containing 1% lipid. Lipid-based concentrations derived from EPS were in good agreement with lipid-normalized concentrations obtained using conventional solvent extraction. The developed in-tissue EPS method is robust and has potential for application in chemical monitoring of biota and bioaccumulation studies.
NASA Astrophysics Data System (ADS)
Eckert, R.; Neyhart, J. T.; Burd, L.; Polikar, R.; Mandayam, S. A.; Tseng, M.
2003-03-01
Mammography is the best method available as a non-invasive technique for the early detection of breast cancer. The radiographic appearance of the female breast consists of radiolucent (dark) regions due to fat and radiodense (light) regions due to connective and epithelial tissue. The amount of radiodense tissue can be used as a marker for predicting breast cancer risk. Previously, we have shown that the use of statistical models is a reliable technique for segmenting radiodense tissue. This paper presents improvements in the model that allow for further development of an automated system for segmentation of radiodense tissue. The segmentation algorithm employs a two-step process. In the first step, segmentation of tissue and non-tissue regions of a digitized X-ray mammogram image are identified using a radial basis function neural network. The second step uses a constrained Neyman-Pearson algorithm, developed especially for this research work, to determine the amount of radiodense tissue. Results obtained using the algorithm have been validated by comparing with estimates provided by a radiologist employing previously established methods.
Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.
Ciarrocchi, Esther; Belcari, Nicola
2017-12-01
Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.
Effect of Fixatives and Tissue Processing on the Content and Integrity of Nucleic Acids
Srinivasan, Mythily; Sedmak, Daniel; Jewell, Scott
2002-01-01
Clinical and molecular medicines are undergoing a revolution based on the accelerated advances in biotechnology such as DNA microarrays and proteomics. Answers to fundamental questions such as how does the DNA sequence differ between individuals and what makes one individual more prone for a certain disease are eagerly being sought in this postgenomic era. Several government and nonprofit organizations provide the researchers access to human tissues for molecular studies. The tissues procured by the different organizations may differ with respect to fixation and processing parameters that may affect significantly the molecular profile of the tissues. It is imperative that a prospective investigator be aware of the potential contributing factors before designing a project. The purpose of this review is to provide an overview of the methods of human tissue acquisition, fixation, and preservation. In addition, the parameters of procurement and fixation that affect the quality of the tissues at the molecular level are discussed. PMID:12466110
Kwiatkowski, M; Wurlitzer, M; Krutilin, A; Kiani, P; Nimer, R; Omidi, M; Mannaa, A; Bussmann, T; Bartkowiak, K; Kruber, S; Uschold, S; Steffen, P; Lübberstedt, J; Küpker, N; Petersen, H; Knecht, R; Hansen, N O; Zarrine-Afsar, A; Robertson, W D; Miller, R J D; Schlüter, H
2016-02-16
Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Kwiatkowski, M.; Wurlitzer, M.; Krutilin, A.; Kiani, P.; Nimer, R.; Omidi, M.; Mannaa, A.; Bussmann, T.; Bartkowiak, K.; Kruber, S.; Uschold, S.; Steffen, P.; Lübberstedt, J.; Küpker, N.; Petersen, H.; Knecht, R.; Hansen, N.O.; Zarrine-Afsar, A.; Robertson, W.D.; Miller, R.J.D.; Schlüter, H.
2016-01-01
Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Biological significance Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. PMID:26778141
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Lin, Min; Wan, Baikun; Zhou, Yu; Wang, Yizhong
2005-01-01
In this paper, a new method of body fat and its distribution testing is proposed based on CT image processing. As it is more sensitive to slight differences in attenuation than standard radiography, CT depicts the soft tissues with better clarity. And body fat has a distinct grayness range compared with its neighboring tissues in a CT image. An effective multi-thresholds image segmentation method based on potential function clustering is used to deal with multiple peaks in the grayness histogram of a CT image. The CT images of abdomens of 14 volunteers with different fatness are processed with the proposed method. Not only can the result of total fat area be got, but also the differentiation of subcutaneous fat from intra-abdominal fat has been identified. The results show the adaptability and stability of the proposed method, which will be a useful tool for diagnosing obesity.
Wavelet data processing of micro-Raman spectra of biological samples
NASA Astrophysics Data System (ADS)
Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.
2006-02-01
A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.
Delgado-Goñi, Teresa; Campo, Sonia; Martín-Sitjar, Juana; Cabañas, Miquel E; San Segundo, Blanca; Arús, Carles
2013-08-01
In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4-2.5 g of glucose; and 0.73-2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.
Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M
2015-12-01
Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.
Tissue oxygen measurement system
NASA Technical Reports Server (NTRS)
Soller, Babs R. (Inventor)
2004-01-01
A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.
[Use of tissue engineering in the reconstruction of flexor tendon injuries of the hand].
Bíró, Vilmos
2015-02-08
In his literary analysis, the author describes a novel method applied in the reconstruction of flexor tendon injuries of the hand. This procedure is named tissue engineering, and it is examined mainly under experimental circumstances. After definition of the method and descriptions of literary preliminaries the author discusses the healing process of the normal tendon tissue, then development of the scaffold, an important step of tissue engineering is described. After these topics the introduction of the pluripotent mesenchymal stem cells into the scaffold, and proliferation of these cells and development of the sliding systems are presented. The mechanical resisting ability of the formed tendon tissue is also discussed. Finally, the author concludes that as long as results of experimental research cannot be successfully applied into clinical practice, well-tried tendon reconstruction operations and high quality postoperative rehabilitation are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ink, S.L.; Gregory, J.F. III; Sartain, D.B.
The effect of thermal processing on the bioavailability of vitamin B/sub 6/ in liver and muscle was examined by radioisotopic enrichment of these tissues. Rats were fed a single gelled test meal containing rat liver or muscle intrinsically enriched by vascular perfusion with (/sup 3/H)vitamin B/sub 6/ or a gelled test meal containing (/sup 3/H)pyridoxine (PN). Diets were extrinsically enriched with (/sup 14/C)PN to permit a direct comparison of enrichment methods. Absorption and metabolism were examined by analysis of tissues and excreta 24 h after the test meal had been consumed. The bioavailability of (/sup 3/H)B/sub 6/ vitamers in themore » raw tissues was equivalent to that of (/sup 3/H)PN in controls. Thermal processing of the tissues (121/sup 0/C, 45 min) induced destruction of 25-30% of the (/sup 3/H)B/sub 6/ vitamers and weakly reduced (less than or equal to10%) the utilization of the remaining(/sup 3/H)B/sub 6/ vitamers. The presence of monosodium glutamate (MSG) during thermal processing did not alter the results. The utilization of (/sup 14/C)PN was unaffected by diet composition. These data demonstrate the high bioavailability of vitamin B/sub 6/ in animal-derived foods and support the use of isotopic enrichment methods as an alternative to conventional bioassay procedures.« less
Evaluation of new antibiotic cocktails against contaminating bacteria found in allograft tissues.
Serafini, Agnese; Riello, Erika; Trojan, Diletta; Cogliati, Elisa; Palù, Giorgio; Manganelli, Riccardo; Paolin, Adolfo
2016-12-01
Contamination of retrieved tissues is a major problem for allograft safety. Consequently, tissue banks have implemented decontamination protocols to eliminate microorganisms from tissues. Despite the widespread adoption of these protocols, few comprehensive studies validating such methods have been published. In this manuscript we compare the bactericidal activity of different antibiotic cocktails at different temperatures against a panel of bacterial species frequently isolated in allograft tissues collected at the Treviso Tissue Bank Foundation, a reference organization of the Veneto Region in Italy that was instituted to select, recover, process, store and distribute human tissues. We were able to identify at least two different formulations capable of killing most of the bacteria during prolonged incubation at 4 °C.
Hormone Profiling in Plant Tissues.
Müller, Maren; Munné-Bosch, Sergi
2017-01-01
Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.
NASA Astrophysics Data System (ADS)
Ding, Li
High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.
Tissue recovery practices and bioburden: a systematic review.
Brubaker, S; Lotherington, K; Zhao, Jie; Hamilton, B; Rockl, G; Duong, A; Garibaldi, A; Simunovic, N; Alsop, D; Dao, D; Bessemer, R; Ayeni, O R
2016-12-01
For successful transplantation, allografts should be free of microorganisms that may cause harm to the allograft recipient. Before or during recovery and subsequent processing, tissues can become contaminated. Effective tissue recovery methods, such as minimizing recovery times (<24 h after death) and the number of experienced personnel performing recovery, are examples of factors that can affect the rate of tissue contamination at recovery. Additional factors, such as minimizing the time after asystole to recovery and the total time it takes to perform recovery, the type of recovery site, the efficacy of the skin prep performed immediately prior to recovery of tissue, and certain technical recovery procedures may also result in control of the rate of contamination. Due to the heterogeneity of reported recovery practices and experiences, it cannot be concluded if the use of other barriers and/or hygienic precautions to avoid contamination have had an effect on bioburden detected after tissue recovery. Qualified studies are lacking which indicates a need exists for evidence-based data to support methods that reduce or control bioburden.
Quantitative diagnosis of tongue cancer from histological images in an animal model
NASA Astrophysics Data System (ADS)
Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Chen, Zhuo G.; Fei, Baowei
2016-03-01
We developed a chemically-induced oral cancer animal model and a computer aided method for tongue cancer diagnosis. The animal model allows us to monitor the progress of the lesions over time. Tongue tissue dissected from mice was sent for histological processing. Representative areas of hematoxylin and eosin stained tissue from tongue sections were captured for classifying tumor and non-tumor tissue. The image set used in this paper consisted of 214 color images (114 tumor and 100 normal tissue samples). A total of 738 color, texture, morphometry and topology features were extracted from the histological images. The combination of image features from epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the classification results. With ten iteration nested cross validation, the method achieved an average sensitivity of 96.5% and a specificity of 99% for tongue cancer detection. The next step of this research is to apply this approach to human tissue for computer aided diagnosis of tongue cancer.
Terekhov, G V; Furmanov, Iu A; Gvozdetskiĭ, V S; Savitskaia, I M
2008-06-01
A new method of the live biological tissues connection, using thermal energy of a high-temperature argon plasma, constituting perspective trend of application of a new nonsuture methods of the tissues connection, original for the world practice, was elaborated in the Department of Experimental Surgery together with the Institute of welding named after Academician E. O. Paton NAS of Ukraine. The argon-plasma welding application secure safe adhesion of the connecting surfaces formation due to the protein complexes temperature denaturation occurrence. The absence of foreign bodies in the connection zone as well as the presence of the plasma flow bacterocidal properties secure, while application of this new method, a significant lowering of a bacterial soiling of the formatted anastomoses, not interfering with the tissue natural regeneration process course.
Multiplexed 3D FRET imaging in deep tissue of live embryos
Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei
2015-01-01
Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920
A review on color normalization and color deconvolution methods in histopathology.
Onder, Devrim; Zengin, Selen; Sarioglu, Sulen
2014-01-01
The histopathologists get the benefits of wide range of colored dyes to have much useful information about the lesions and the tissue compositions. Despite its advantages, the staining process comes up with quite complex variations in staining concentrations and correlations, tissue fixation types, and fixation time periods. Together with the improvements in computing power and with the development of novel image analysis methods, these imperfections have led to the emerging of several color normalization algorithms. This article is a review of the currently available digital color normalization methods for the bright field histopathology. We describe the proposed color normalization methodologies in detail together with the lesion and tissue types used in the corresponding experiments. We also present the quantitative validation approaches for each of the proposed methodology where available.
NASA Astrophysics Data System (ADS)
Kozlov, Valentine I.; Skobelkin, Oleg K.; Fatkullin, Ildar; Terman, Oleg A.; Chizhov, Gennadii; Gabidullina, Rushania
1994-12-01
To study the possibility of using Nd:YAG laser to weld the tissues of the uterus experiments in rats and dogs have been conducted. With the biomicroscopy and the laser Doppler flowmetry we have evaluated the microcirculation in the uterus wall under traditional suture and laser welding suture. As a model of the wound, the dissection of serosa and muscles of the organ wall have been used. In laser welding suture we have welded the zone of tissue about 1 mm3 with the laser (power density 270 W/cm2). Histological control has been fulfilled on various phases of the healing process. The investigation of the uterus wall demonstrates that there are zones of microcirculation disorders in tissues: (1) the zone of coagulation of microvessels and adjacent tissues (about 100 micrometers ); (2) the zone of stasis (150 - 200 micrometers ); (3) the zone of reactive-destructive changes of microvessels (300 micrometers ), (4) the zone of malfunctional microcirculatory changes (600 micrometers ). The coagulation of microvessels changes the character of inflammation and the healing process, decreases the exudation phase and the leucocyte infiltration of tissues, and accelerates the capillary growth. In contrast with traditional suture, in the case of laser welding suture the edema and hemorrhagic signs are less expressed. The complete restoration of microcirculation under laser welding suture has been observed by the fourteenth day of the healing process. Under the traditional suture method normalization of tissue nutritious blood flow has been achieved by 21 days.
NASA Astrophysics Data System (ADS)
Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
System for and method of freezing biological tissue
NASA Technical Reports Server (NTRS)
Williams, T. E.; Cygnarowicz, T. A. (Inventor)
1978-01-01
Biological tissue is frozen while a polyethylene bag placed in abutting relationship against opposed walls of a pair of heaters. The bag and tissue are cooled with refrigerating gas at a time programmed rate at least equal to the maximum cooling rate needed at any time during the freezing process. The temperature of the bag, and hence of the tissue, is compared with a time programmed desired value for the tissue temperature to derive an error indication. The heater is activated in response to the error indication so that the temperature of the tissue follows the desired value for the time programmed tissue temperature. The tissue is heated to compensate for excessive cooling of the tissue as a result of the cooling by the refrigerating gas. In response to the error signal, the heater is deactivated while the latent heat of fusion is being removed from the tissue while the tissue is changing phase from liquid to solid.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2015-01-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994
Piroth, Tobias; Pauly, Marie-Christin; Schneider, Christian; Wittmer, Annette; Möllers, Sven; Döbrössy, Máté; Winkler, Christian; Nikkhah, Guido
2014-01-01
Restorative cell therapy concepts in neurodegenerative diseases are aimed at replacing lost neurons. Despite advances in research on pluripotent stem cells, fetal tissue from routine elective abortions is still regarded as the only safe cell source. Progenitor cells isolated from distinct first-trimester fetal CNS regions have already been used in clinical trials and will be used again in a new multicenter trial funded by the European Union (TRANSEURO). Bacterial contamination of human fetal tissue poses a potential risk of causing infections in the brain of the recipient. Thus, effective methods of microbial decontamination and validation of these methods are required prior to approval of a neurorestorative cell therapy trial. We have developed a protocol consisting of subsequent washing steps at different stages of tissue processing. Efficacy of microbial decontamination was assessed on rat embryonic tissue incubated with high concentrations of defined microbe solutions including representative bacterial and fungal species. Experimental microbial contamination was reduced by several log ranks. Subsequently, we have analyzed the spectrum of microbial contamination and the effect of subsequent washing steps on aborted human fetal tissue; 47.7% of the samples taken during human fetal tissue processing were positive for a microbial contamination, but after washing, no sample exhibited bacterial growth. Our data suggest that human fetal tissue for neural repair can carry microbes of various species, highlighting the need for decontamination procedures. The decontamination protocol described in this report has been shown to be effective as no microbes could be detected at the end of the procedure.
Detection of Hydroxyapatite in Calcified Cardiovascular Tissues
Lee, Jae Sam; Morrisett, Joel D.; Tung, Ching-Hsuan
2012-01-01
Objective The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. Methods A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Results Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Conclusion Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. PMID:22877867
Three-dimensional co-culture process
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
1992-01-01
The present invention relates to a 3-dimensional co-culture process, more particularly to methods or co-culturing at least two types of cells in a culture environment, either in space or in unit gravity, with minimum shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region to form 3-dimensional tissue-like structures. Several examples of multicellular 3-dimensional experiences are included. The protocol and procedure are also set forth. The process allows simultaneous culture of multiple cell types and supporting substrates in a manner which does not disrupt the 3-dimensional spatial orientation of these components. The co-cultured cells cause a mutual induction effect which mimics the natural hormonal signals and cell interactions found in the intact organism. This causes the tissues to differentiate and form higher 3-dimensional structures such as glands, junctional complexes polypoid geometries, and microvilli which represent the corresponding in-vitro structures to a greater degree than when the cell types are cultured individually or by conventional processes. This process was clearly demonstrated for the case of two epithelial derived colon cancer lines, each co-cultured with normal human fibroblasts and with microcarrier bead substrates. The results clearly demonstrate increased 3-dimensional tissue-like structure and biochemical evidence of an increased differentiation state. With the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and has some of the characteristics of in-vitro tissue. The process provides enhanced 3-dimensional tissue which create a multicellular organoid differentiation model.
Akbarzadeh, Rosa; Yousefi, Azizeh-Mitra
2014-08-01
Tissue engineering makes use of 3D scaffolds to sustain three-dimensional growth of cells and guide new tissue formation. To meet the multiple requirements for regeneration of biological tissues and organs, a wide range of scaffold fabrication techniques have been developed, aiming to produce porous constructs with the desired pore size range and pore morphology. Among different scaffold fabrication techniques, thermally induced phase separation (TIPS) method has been widely used in recent years because of its potential to produce highly porous scaffolds with interconnected pore morphology. The scaffold architecture can be closely controlled by adjusting the process parameters, including polymer type and concentration, solvent composition, quenching temperature and time, coarsening process, and incorporation of inorganic particles. The objective of this review is to provide information pertaining to the effect of these parameters on the architecture and properties of the scaffolds fabricated by the TIPS technique. © 2014 Wiley Periodicals, Inc.
A generic strategy for pharmacological caging of growth factors for tissue engineering.
Karlsson, Maria; Lienemann, Philipp S; Sprossmann, Natallia; Heilmann, Katharina; Brummer, Tilman; Lutolf, Matthias P; Ehrbar, Martin; Weber, Wilfried
2013-07-07
The caging of small molecules has revolutionized biological research by providing a means to regulate a wide range of processes. Here we report on a generic pharmacological method to cage proteins in a similar fashion. The present approach is of value in both fundamental and applied research, e.g. in tissue engineering.
Koziel, Jacek A; Nguyen, Lam T; Glanville, Thomas D; Ahn, Heekwon; Frana, Timothy S; Hans van Leeuwen, J
2017-10-01
A passive sampling method, using retracted solid-phase microextraction (SPME) - gas chromatography-mass spectrometry and time-weighted averaging, was developed and validated for tracking marker volatile organic compounds (VOCs) emitted during aerobic digestion of biohazardous animal tissue. The retracted SPME configuration protects the fragile fiber from buffeting by the process gas stream, and it requires less equipment and is potentially more biosecure than conventional active sampling methods. VOC concentrations predicted via a model based on Fick's first law of diffusion were within 6.6-12.3% of experimentally controlled values after accounting for VOC adsorption to the SPME fiber housing. Method detection limits for five marker VOCs ranged from 0.70 to 8.44ppbv and were statistically equivalent (p>0.05) to those for active sorbent-tube-based sampling. The sampling time of 30min and fiber retraction of 5mm were found to be optimal for the tissue digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Zhanwei; Yang, Yongjian; Bai, Yuan; Wang, Lijun; Su, Le; Chen, Yong; Li, Xianchang; Zhou, Xiaodong; Jia, Jun; Shen, Aiguo; Hu, Jiming
2013-03-01
The existing methods for early and differential diagnosis of oral cancer are limited due to the unapparent early symptoms and the imperfect imaging examination methods. In this paper, the classification models of oral adenocarcinoma, carcinoma tissues and a control group with just four features are established by utilizing the hybrid Gaussian process (HGP) classification algorithm, with the introduction of the mechanisms of noise reduction and posterior probability. HGP shows much better performance in the experimental results. During the experimental process, oral tissues were divided into three groups, adenocarcinoma (n = 87), carcinoma (n = 100) and the control group (n = 134). The spectral data for these groups were collected. The prospective application of the proposed HGP classification method improved the diagnostic sensitivity to 56.35% and the specificity to about 70.00%, and resulted in a Matthews correlation coefficient (MCC) of 0.36. It is proved that the utilization of HGP in LRS detection analysis for the diagnosis of oral cancer gives accurate results. The prospect of application is also satisfactory.
Hinderer, Svenja; Brauchle, Eva
2015-01-01
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713
Computer-based objective quantitative assessment of pulmonary parenchyma via x-ray CT
NASA Astrophysics Data System (ADS)
Uppaluri, Renuka; McLennan, Geoffrey; Sonka, Milan; Hoffman, Eric A.
1998-07-01
This paper is a review of our recent studies using a texture- based tissue characterization method called the Adaptive Multiple Feature Method. This computerized method is automated and performs tissue classification based upon the training acquired on a set of representative examples. The AMFM has been applied to several different discrimination tasks including normal subjects, subjects with interstitial lung disease, smokers, asbestos-exposed subjects, and subjects with cystic fibrosis. The AMFM has also been applied to data acquired using different scanners and scanning protocols. The AMFM has shown to be successful and better than other existing techniques in discriminating the tissues under consideration. We demonstrate that the AMFM is considerably more sensitive and specific in characterizing the lung, especially in the presence of mixed pathology, as compared to more commonly used methods. Evidence is presented suggesting that the AMFM is highly sensitive to some of the earliest disease processes.
Engineering stromal-epithelial interactions in vitro for ...
Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to
Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium
NASA Astrophysics Data System (ADS)
Karwoski, Ronald A.; Bartholmai, Brian; Zavaletta, Vanessa A.; Holmes, David; Robb, Richard A.
2008-03-01
The goal of Lung Tissue Resource Consortium (LTRC) is to improve the management of diffuse lung diseases through a better understanding of the biology of Chronic Obstructive Pulmonary Disease (COPD) and fibrotic interstitial lung disease (ILD) including Idiopathic Pulmonary Fibrosis (IPF). Participants are subjected to a battery of tests including tissue biopsies, physiologic testing, clinical history reporting, and CT scanning of the chest. The LTRC is a repository from which investigators can request tissue specimens and test results as well as semi-quantitative radiology reports, pathology reports, and automated quantitative image analysis results from the CT scan data performed by the LTRC core laboratories. The LTRC Radiology Core Laboratory (RCL), in conjunction with the Biomedical Imaging Resource (BIR), has developed novel processing methods for comprehensive characterization of pulmonary processes on volumetric high-resolution CT scans to quantify how these diseases manifest in radiographic images. Specifically, the RCL has implemented a semi-automated method for segmenting the anatomical regions of the lungs and airways. In these anatomic regions, automated quantification of pathologic features of disease including emphysema volumes and tissue classification are performed using both threshold techniques and advanced texture measures to determine the extent and location of emphysema, ground glass opacities, "honeycombing" (HC) and "irregular linear" or "reticular" pulmonary infiltrates and normal lung. Wall thickness measurements of the trachea, and its branches to the 3 rd and limited 4 th order are also computed. The methods for processing, segmentation and quantification are described. The results are reviewed and verified by an expert radiologist following processing and stored in the public LTRC database for use by pulmonary researchers. To date, over 1200 CT scans have been processed by the RCL and the LTRC project is on target for recruitment of the 2200 patients with 1800 CT scans in the repository for the 5-year effort. Ongoing analysis of the results in the LTRC database by the LTRC participating institutions and outside investigators are underway to look at the clinical and physiological significance of the imaging features of these diseases and correlate these findings with quality of life and other important prognostic indicators of severity. In the future, the quantitative measures of disease may have greater utility by showing correlation with prognosis, disease severity and other physiological parameters. These imaging features may provide non-invasive alternative endpoints or surrogate markers to alleviate the need for tissue biopsy or provide an accurate means to monitor rate of disease progression or response to therapy.
Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng
2011-01-01
Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.
Xu, Feng; Beyazoglu, Turker; Hefner, Evan; Gurkan, Umut Atakan
2011-01-01
Cellular alignment plays a critical role in functional, physical, and biological characteristics of many tissue types, such as muscle, tendon, nerve, and cornea. Current efforts toward regeneration of these tissues include replicating the cellular microenvironment by developing biomaterials that facilitate cellular alignment. To assess the functional effectiveness of the engineered microenvironments, one essential criterion is quantification of cellular alignment. Therefore, there is a need for rapid, accurate, and adaptable methodologies to quantify cellular alignment for tissue engineering applications. To address this need, we developed an automated method, binarization-based extraction of alignment score (BEAS), to determine cell orientation distribution in a wide variety of microscopic images. This method combines a sequenced application of median and band-pass filters, locally adaptive thresholding approaches and image processing techniques. Cellular alignment score is obtained by applying a robust scoring algorithm to the orientation distribution. We validated the BEAS method by comparing the results with the existing approaches reported in literature (i.e., manual, radial fast Fourier transform-radial sum, and gradient based approaches). Validation results indicated that the BEAS method resulted in statistically comparable alignment scores with the manual method (coefficient of determination R2=0.92). Therefore, the BEAS method introduced in this study could enable accurate, convenient, and adaptable evaluation of engineered tissue constructs and biomaterials in terms of cellular alignment and organization. PMID:21370940
NASA Astrophysics Data System (ADS)
Weber, João Batista Blessmann; Camilotti, Renata Stifelman; Jasper, Juliana; Casagrande, Liliane Cristina Onofre; Maito, Fábio Luiz Dal Moro
2017-05-01
Bisphosphonates (BPs) are being increasingly used for the treatment of metabolic and oncological pathologies involving the skeletal system. Because of the severity of the BP associated osteonecrosis of the jaws, the difficulties of treatment, and patient discomfort, additional support methods for their management are needed. Laser therapy has an easy handling, photobiostimulator effect on tissues healing, so it can be considered a preferred therapy. The aim of this study was to evaluate the influence of low-level laser therapy in the 685- and 830-nm wavelength in the healing process of the bone and soft tissues in rats under BP therapy [zoledronic acid (ZA)] and dexamethasone concomitantly that underwent a surgery for the extraction of upper molars. There were statistically significant differences in the clinical evaluation of the wound and the weight of the animals. Regarding the histological evaluation, it was possible to observe the different maturations of the healing stage between groups. The effect of drug therapy with ZA and dexamethasone in the bone tissue repair process induces osteonecrosis of the jaw in rats and slows down the healing process. In the laser groups, at the stipulated dosimetry, a positive influence on the bone and soft tissue repair process was observed.
Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun
2018-01-01
Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.
NASA Astrophysics Data System (ADS)
Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Zakharov, Valery P.; Khramov, Alexander G.
2016-04-01
Optical coherence tomography (OCT) is usually employed for the measurement of tumor topology, which reflects structural changes of a tissue. We investigated the possibility of OCT in detecting changes using a computer texture analysis method based on Haralick texture features, fractal dimension and the complex directional field method from different tissues. These features were used to identify special spatial characteristics, which differ healthy tissue from various skin cancers in cross-section OCT images (B-scans). Speckle reduction is an important pre-processing stage for OCT image processing. In this paper, an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images was used. The Haralick texture feature set includes contrast, correlation, energy, and homogeneity evaluated in different directions. A box-counting method is applied to compute fractal dimension of investigated tissues. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. The complex directional field (as well as the "classical" directional field) can help describe an image as set of directions. Considering to a fact that malignant tissue grows anisotropically, some principal grooves may be observed on dermoscopic images, which mean possible existence of principal directions on OCT images. Our results suggest that described texture features may provide useful information to differentiate pathological from healthy patients. The problem of recognition melanoma from nevi is decided in this work due to the big quantity of experimental data (143 OCT-images include tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevi). We have sensitivity about 90% and specificity about 85%. Further research is warranted to determine how this approach may be used to select the regions of interest automatically.
NASA Astrophysics Data System (ADS)
Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya
2018-04-01
A number of tissue-like disordered media exhibit local anisotropy of scattering in the scaling behavior. Scaling behavior contains wealth of fractal or multifractal properties. We demonstrate that the spatial dielectric fluctuations in a sample of biological tissue exhibit multifractal anisotropy. Multifractal anisotropy encoded in the wavelength variation of the light scattering Mueller matrix and manifesting as an intriguing spectral diattenuation effect. We developed an inverse method for the quantitative assessment of the multifractal anisotropy. The method is based on the processing of relevant Mueller matrix elements in Fourier domain by using Born approximation, followed by the multifractal analysis. The approach promises for probing subtle micro-structural changes in biological tissues associated with the cancer and precancer, as well as for non-destructive characterization of a wide range of scattering materials.
Zhang, Haipeng; Fu, Tong; Zhang, Zhiru; Fan, Zhimin; Zheng, Chao; Han, Bing
2014-08-01
To explore the value of application of support vector machine-recursive feature elimination (SVM-RFE) method in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases. Fresh breast tissue samples of 168 patients (all female; ages 22-75) were obtained by routine surgical resection from May 2011 to May 2012 at the Department of Breast Surgery, the First Hospital of Jilin University. Among them, there were 51 normal tissues, 66 benign and 51 malignant breast lesions. All the specimens were assessed by Raman spectroscopy, and the SVM-RFE algorithm was used to process the data and build the mathematical model. Mahalanobis distance and spectral residuals were used as discriminating criteria to evaluate this data-processing method. 1 800 Raman spectra were acquired from the fresh samples of human breast tissues. Based on spectral profiles, the presence of 1 078, 1 267, 1 301, 1 437, 1 653, and 1 743 cm(-1) peaks were identified in the normal tissues; and 1 281, 1 341, 1 381, 1 417, 1 465, 1 530, and 1 637 cm(-1) peaks were found in the benign and malignant tissues. The main characteristic peaks differentiating benign and malignant lesions were 1 340 and 1 480 cm(-1). The accuracy of SVM-RFE in discriminating normal and malignant lesions was 100.0%, while that in the assessment of benign lesions was 93.0%. There are distinct differences among the Raman spectra of normal, benign and malignant breast tissues, and SVM-RFE method can be used to build differentiation model of breast lesions.
Bioprinting for Neural Tissue Engineering.
Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas
2018-01-01
Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Application of Sheet Technology in Cartilage Tissue Engineering.
Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei
2016-04-01
Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.
Simulation of a fast diffuse optical tomography system based on radiative transfer equation
NASA Astrophysics Data System (ADS)
Motevalli, S. M.; Payani, A.
2016-12-01
Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.
Olender, E; Brubaker, S; Uhrynowska-Tyszkiewicz, I; Wojtowicz, A; Kaminski, A
2014-10-01
The idea of cell treatment of various diseases and medical conditions has become very popular. Some procedures are well established, as is autologous chondrocyte implantation, whereas others are still in the process of early development, laboratory experiments, and some clinical trials. This report is devoted to an example of an emerging cell treatment: bone augmentation with the use of autologous cells and its legal and technical background. Various requirements set by law must be met by tissue banks performing cell seeding of grafts. In Europe, the requirements are described in directives 2004/23/EC, 2006/17/EC, 2006/86/EC, and in the regulation 2007/1394/EC. Revitalization of biostatic allografts gives new, promising tools for creation of functional parts of organs; brings the methodology used in tissue banks closer to tissue engineering; places the enterprise in the mainstream of advanced biotechnology; allows the full potential of tissue allografts; and opens a new, large area for clinical and laboratory research. Cell and tissue processing also have a financial impact on the treatment: it produces additional expenditures. Clinical effectiveness will be the most decisive factor of whether this innovative treatment will be applied in a particular type of medical condition. From a tissue establishment perspective, the most important issue is to develop a procedure that ensures safety for the patient in graft quality terms.
Kim, Jung-Suk; Im, Byung Gee; Jin, Gyuhyung; Jang, Jae-Hyung
2016-08-31
Guiding newly generated tissues in a gradient pattern, thereby precisely mimicking inherent tissue morphology and subsequently arranging the intimate networks between adjacent tissues, is essential to raise the technical levels of tissue engineering and facilitate its transition into the clinic. In this study, a straightforward electrospinning method (the tubing-electrospinning technique) was developed to create fibrous matrices readily with diverse gradient patterns and to induce patterned cellular responses. Gradient fibrous matrices can be produced simply by installing a series of polymer-containing lengths of tubing into an electrospinning circuit and sequentially processing polymers without a time lag. The loading of polymer samples with different characteristics, including concentration, wettability, and mechanical properties, into the tubing system enabled unique features in fibrous matrices, such as longitudinal gradients in fiber density, surface properties, and mechanical stiffness. The resulting fibrous gradients were shown to arrange cellular migration and residence in a gradient manner, thereby offering efficient cues to mediate patterned tissue formation. The one-step process using tubing-electrospinning apparatus can be used without significant modifications regardless of the type of fibrous gradient. Hence, the tubing-electrospinning system can serve as a platform that can be readily used by a wide-range of users to induce patterned tissue formation in a gradient manner, which will ultimately improve the functionality of tissue engineering scaffolds.
Attique, Muhammad; Gilanie, Ghulam; Hafeez-Ullah; Mehmood, Malik S.; Naweed, Muhammad S.; Ikram, Masroor; Kamran, Javed A.; Vitkin, Alex
2012-01-01
Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described. PMID:22479421
Ju, Ping; Liu, Zhenzhen; Jiang, Yu; Zhao, Simin; Zhang, Lunhui; Zhang, Yuanyuan; Gu, Liqiang; Tang, Xing; Bi, Kaishun; Chen, Xiaohui
2015-07-01
LS-177 is a novel small-molecule kinase inhibitor employed to interrupt the c-Met signaling pathway. A rapid and sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for determination of LS-177 in rat plasma and tissues. The biosamples were extracted by liquid-liquid extraction with methyl tert-butyl ether and separated on a C18 column (50 × 4.6 mm, 2.6 µm) using a gradient elution mobile phase consisting of acetonitrile-0.1% formic acid water. Under the optimal conditions, the selectivity of the method was satisfactory with no endogenous interference. The intraday and interday precisions (relative standard deviation) were <10.5% and the accuracy (relative error) was from -12.5 to 12.5% at all quality control levels. Excellent recovery and negligible matrix effects were observed. Stability studies showed that LS-177 was stable during the preparation and analytical processes. The UPLC-MS/MS method was successfully applied to pharmacokinetic and tissue distribution studies. The results indicated that there was no significant drug accumulation after multiple-dose oral administration of LS-177. The tissue distribution study exhibited significant higher uptakes of LS-177 in stomach, intestine, lung and liver among all of the tissues. The results in pharmacokinetics and tissue distribution may provide a meaningful basis for clinical application. Copyright © 2014 John Wiley & Sons, Ltd.
Hoffman, Matthew P; Taylor, Erik N; Aninwene, George E; Sadayappan, Sakthivel; Gilbert, Richard J
2018-02-01
Contraction of muscular tissue requires the synchronized shortening of myofibers arrayed in complex geometrical patterns. Imaging such myofiber patterns with diffusion-weighted MRI reveals architectural ensembles that underlie force generation at the organ scale. Restricted proton diffusion is a stochastic process resulting from random translational motion that may be used to probe the directionality of myofibers in whole tissue. During diffusion-weighted MRI, magnetic field gradients are applied to determine the directional dependence of proton diffusion through the analysis of a diffusional probability distribution function (PDF). The directions of principal (maximal) diffusion within the PDF are associated with similarly aligned diffusion maxima in adjacent voxels to derive multivoxel tracts. Diffusion-weighted MRI with tractography thus constitutes a multiscale method for depicting patterns of cellular organization within biological tissues. We provide in this review, details of the method by which generalized Q-space imaging is used to interrogate multidimensional diffusion space, and thereby to infer the organization of muscular tissue. Q-space imaging derives the lowest possible angular separation of diffusion maxima by optimizing the conditions by which magnetic field gradients are applied to a given tissue. To illustrate, we present the methods and applications associated with Q-space imaging of the multiscale myoarchitecture associated with the human and rodent tongues. These representations emphasize the intricate and continuous nature of muscle fiber organization and suggest a method to depict structural "blueprints" for skeletal and cardiac muscle tissue. © 2016 Wiley Periodicals, Inc.
Characterization of laser-tissue interaction processes by low-boiling emitted substances
NASA Astrophysics Data System (ADS)
Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.
1996-01-01
Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.
The Prostate, Lung, Colorectal and Ovarian Cancer (PLCO) Screening Trial Pathology Tissue Resource.
Zhu, Claire S; Huang, Wen-Yi; Pinsky, Paul F; Berg, Christine D; Sherman, Mark; Yu, Kelly J; Carrick, Danielle M; Black, Amanda; Hoover, Robert; Lenz, Petra; Williams, Craig; Hawkins, Laura; Chaloux, Matthew; Yurgalevitch, Susan; Mathew, Sunitha; Miller, Amy; Olivo, Vanessa; Khan, Asia; Pretzel, Shannon M; Multerer, Deborah; Beckmann, Patricia; Broski, Karen G; Freedman, Neal D
2016-12-01
Pathology tissue specimens with associated epidemiologic and clinical data are valuable for cancer research. The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial undertook a large-scale effort to create a public resource of pathology tissues from PLCO participants who developed a cancer during the trial. Formalin-fixed paraffin-embedded tissue blocks were obtained from pathology laboratories on a loan basis for central processing of tissue microarrays, with additional free-standing tissue cores collected for nucleic acid extraction. Pathology tissue specimens were obtained for prostate cancer (n = 1,052), lung cancer (n = 434), colorectal cancer (n = 675) and adenoma (n = 658), ovarian cancer and borderline tumors (n = 212), breast cancer (n = 870), and bladder cancer (n = 204). The process of creating this resource was complex, involving multidisciplinary teams with expertise in pathology, epidemiology, information technology, project management, and specialized laboratories. Creating the PLCO tissue resource required a multistep process, including obtaining medical records and contacting pathology departments where pathology materials were stored after obtaining necessary patient consent and authorization. The potential to link tissue biomarkers to prospectively collected epidemiologic information, screening and clinical data, and matched blood or buccal samples offers valuable opportunities to study etiologic heterogeneity, mechanisms of carcinogenesis, and biomarkers for early detection and prognosis. The methods and protocols developed for this effort, and the detailed description of this resource provided here, will be useful for those seeking to use PLCO pathology tissue specimens for their research and may also inform future tissue collection efforts in other settings. Cancer Epidemiol Biomarkers Prev; 25(12); 1635-42. ©2016 AACR. ©2016 American Association for Cancer Research.
Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry.
Reiser, Karen; Stoller, Patrick; Knoesen, André
2017-06-01
Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated from the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.
Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiser, Karen; Stoller, Patrick; Knoesen, André
Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated frommore » the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.« less
Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry
Reiser, Karen; Stoller, Patrick; Knoesen, André
2017-06-01
Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated frommore » the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.« less
NASA Astrophysics Data System (ADS)
Kunin, Anatoly A.; Erina, Stanislava V.; Kashuba, Victor A.; Pankova, Svetlana N.; Stepanov, Nicolay N.; Kazmina, Svetlana G.; Dergunova, Elvira I.; Buerger, F.; Herdt, Alexander; Podolskaya, Elana E.; Shumilovitch, Bogdan R.; Ippolitov, Yu. A.; Tchernov, V. I.
1997-12-01
Nowadays low-power therapy is one of the leading trends in a combined treatment of the oral cavity and lips diseases. The present paper sums up the results of the investigation into the biological effects caused by low-power laser light (LPLL) during its interaction with hard and soft tissues of the oral cavity and lips. A research on the effect of LPLL upon the remineralization processes in the hard dental tissues in the stage in the stage of an initial caries was carried out in 150 patients. The biological effects caused by an interaction of LPLL with the parodontium tissues in the process of treatment of medium degree disease of the parodontium were studied in 140 patients; the effects of the above mentioned character which generated in lips tissues during treatment of a post-radiation chilitis were analyzed in 32 patients. Immunological, biochemical histochemical, morphological, stomatoscopic, bacteriological and other methods were employed while studying the bioeffects caused by LPLL in the parodontium, lips tissues and hard tissues of the tooth.
Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle
Valentinitsch, Alexander; Karampinos, Dimitrios C.; Alizai, Hamza; Subburaj, Karupppasamy; Kumar, Deepak; Link, Thomas M.; Majumdar, Sharmila
2012-01-01
Purpose To introduce and validate an automated unsupervised multi-parametric method for segmentation of the subcutaneous fat and muscle regions in order to determine subcutaneous adipose tissue (SAT) and intermuscular adipose tissue (IMAT) areas based on data from a quantitative chemical shift-based water-fat separation approach. Materials and Methods Unsupervised standard k-means clustering was employed to define sets of similar features (k = 2) within the whole multi-modal image after the water-fat separation. The automated image processing chain was composed of three primary stages including tissue, muscle and bone region segmentation. The algorithm was applied on calf and thigh datasets to compute SAT and IMAT areas and was compared to a manual segmentation. Results The IMAT area using the automatic segmentation had excellent agreement with the IMAT area using the manual segmentation for all the cases in the thigh (R2: 0.96) and for cases with up to moderate IMAT area in the calf (R2: 0.92). The group with the highest grade of muscle fat infiltration in the calf had the highest error in the inner SAT contour calculation. Conclusion The proposed multi-parametric segmentation approach combined with quantitative water-fat imaging provides an accurate and reliable method for an automated calculation of the SAT and IMAT areas reducing considerably the total post-processing time. PMID:23097409
Microwave sensing for meat and fish structure evaluation
NASA Astrophysics Data System (ADS)
Clerjon, S.; Damez, J. L.
2007-04-01
Monitoring changes in muscle structure during the ageing of bovine meat and quality loss due to fish freezing are major industrial challenges. During ageing, bovine muscle becomes tender through muscle fibre deterioration, and full control of this process is essential. Conversely, degradation of fish muscle, often due to long storage or a freezing cycle, lowers quality. To improve competitiveness, and to respond to consumer quality demand, muscle structure needs to be evaluated in-line. We present here a polarimetric microwave method (10-24 GHz) consisting in free space and contact reflection coefficient measurements using a horn antenna and rectangular probes, respectively. This method is based on the measurement of dielectric properties of tissues parallel and perpendicular to muscle fibre directions. The dielectric properties of structured tissues such as muscles are anisotropic, but during processing structural disorganization reduces this anisotropy. The method is illustrated by the discrimination of fresh and frozen-thawed fish fillets and by monitoring of meat ageing.
Adipose Tissue Quantification by Imaging Methods: A Proposed Classification
Shen, Wei; Wang, ZiMian; Punyanita, Mark; Lei, Jianbo; Sinav, Ahmet; Kral, John G.; Imielinska, Celina; Ross, Robert; Heymsfield, Steven B.
2007-01-01
Recent advances in imaging techniques and understanding of differences in the molecular biology of adipose tissue has rendered classical anatomy obsolete, requiring a new classification of the topography of adipose tissue. Adipose tissue is one of the largest body compartments, yet a classification that defines specific adipose tissue depots based on their anatomic location and related functions is lacking. The absence of an accepted taxonomy poses problems for investigators studying adipose tissue topography and its functional correlates. The aim of this review was to critically examine the literature on imaging of whole body and regional adipose tissue and to create the first systematic classification of adipose tissue topography. Adipose tissue terminology was examined in over 100 original publications. Our analysis revealed inconsistencies in the use of specific definitions, especially for the compartment termed “visceral” adipose tissue. This analysis leads us to propose an updated classification of total body and regional adipose tissue, providing a well-defined basis for correlating imaging studies of specific adipose tissue depots with molecular processes. PMID:12529479
Optimized adipose tissue engineering strategy based on a neo-mechanical processing method.
He, Yunfan; Lin, Maohui; Wang, Xuecen; Guan, Jingyan; Dong, Ziqing; Feng, Lu; Xing, Malcolm; Feng, Chuanbo; Li, Xiaojian
2018-05-26
Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared to those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared to those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.
Tissue preparation for immunocytochemistry.
Williams, J H; Mepham, B L; Wright, D H
1997-01-01
AIMS: To investigate the effect of tissue preparation on immunostaining and to establish whether there is a standard tissue preparation schedule that allows optimal demonstration of all antigens. METHODS: Blocks of tonsil were subjected to variations to a standard fixation, processing, and section preparation schedule. The sections were stained with five antibodies-L26 (CD20), UCHL1 (CD45RO), CD3, vimentin, and anti-kappa light chain--using the streptavidinbiotin immunostaining technique. When further investigation was necessary, other tissues and antibodies were used and where weak immunostaining was obtained the use of microwave pretreatment to improve staining was tested. RESULTS: Several factors involved in fixation were found to affect immunoreactivity. These included the duration, pH, and type of fixative used. In tissue processing only temperature and the duration of the dehydration and wax infiltration steps affected immunoreactivity. Of all the factors investigated, the temperature and duration of the section drying had the greatest effect. In contrast, long term storage of cut sections before immunostaining had no effect on the reactivity of the antibodies tested. Antibodies were found to be affected by alterations to tissue preparation by varying degrees, UCHL1 and vimentin being the most susceptible to changes in fixation and L26 to changes in processing. Where weak staining occurred, microwave pretreatment was generally found to eliminate the problem. CONCLUSIONS: There is no standard tissue preparation schedule for the optimal demonstration of all antigens. Factors involved in all aspects of tissue preparation can affect immunoreactivity, so it is important that precise details of the preparation schedule are given when reporting immunocytochemical studies, rather than using the general term "routinely fixed and processed". Images PMID:9215127
Automatic tissue image segmentation based on image processing and deep learning
NASA Astrophysics Data System (ADS)
Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting
2018-02-01
Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.
Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.
Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum
2016-04-01
Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X.
2015-12-01
Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.
Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X
2015-12-01
Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.
Streamlined bioreactor-based production of human cartilage tissues.
Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D
2016-05-27
Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.
Sorokina, Iryna V; Myroshnychenko, Mykhailo S; Kapustnyk, Nataliia V; Khramova, Tetyana O; Dehtiarova, Oksana V; Danylchenko, Svitlana I
2018-01-01
Introduction: The kidneys connective tissue condition in the antenatal period affects the formation of tissues and it changes with the development of various general pathological processes in this organ. The aim of the study was to identify the morphological features of kidneys connective tissue of fetuses and newborns from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity. Materials and methods: The material of the study was the tissue of kidneys of mature fetuses and newborns from mothers with physiological pregnancy (28 cases), as well as from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity (78 cases). Immunohistochemical study was performed by an indirect Coons method according to M. Brosman's technique using monoclonal antibodies to collagen type I, III and IV. Results: The kidneys connective tissue of fetuses and newborns developing under the maternal preeclampsia conditions is characterized by the qualitative and quantitative changes that indicate the development of sclerotic processes in this organ, the severity of which increase with the age and with the increase of the maternal preeclampsia severity. Qualitative changes are characterized by an increase of the fibrous component, thickening of the bundles of connective tissue fibers, and a decrease in the distance between them. Quantitative changes are characterized by a pronounced predominance of collagen fibers over elastic fibers, almost total absence in some field of view elastic fibers and the violation of the content of collagen type I, III and IV. Conclusion: Maternal preeclampsia underlies the development of qualitative and quantitative changes in kidneys connective tissue of fetuses and newborns, which as a result will lead to disruption of the functions of these organs in such children.
Lansdown, Drew A; Riff, Andrew J; Meadows, Molly; Yanke, Adam B; Bach, Bernard R
2017-10-01
Allograft tissue is used in 22% to 42% of anterior cruciate ligament (ACL) reconstructions. Clinical outcomes have been inconsistent with allograft tissue, with some series reporting no differences in outcomes and others reporting increased risk of failure. There are numerous variations in processing and preparation that may influence the eventual performance of allograft tissue in ACL reconstruction. We sought to perform a systematic review to summarize the factors that affect the biomechanical properties of allograft tissue for use in ACL reconstruction. Many factors might impact the biomechanical properties of allograft tissue, and these should be understood when considering using allograft tissue or when reporting outcomes from allograft reconstruction. What factors affect the biomechanical properties of allograft tissue used for ACL reconstruction? We performed a systematic review to identify studies on factors that influence the biomechanical properties of allograft tissue through PubMed and SCOPUS databases. We included cadaveric and animal studies that reported on results of biomechanical testing, whereas studies on fixation, histologic evaluation, and clinical outcomes were excluded. There were 319 unique publications identified through the search with 48 identified as relevant to answering the study question. For each study, we recorded the type of tissue tested, parameters investigated, and the effects on biomechanical behavior, including load to failure and stiffness. Primary factors identified to influence allograft tissue properties were graft tissue type, sterilization methods (irradiation and chemical processing), graft preparation, donor parameters, and biologic adjuncts. Load to failure and graft stiffness varied across different tissue types, with nonlooped tibialis grafts exhibiting the lowest values. Studies on low-dose irradiation showed variable effects, whereas high-dose irradiation consistently produced decreased load to failure and stiffness values. Various chemical sterilization measures were also associated with negative effects on biomechanical properties. Prolonged freezing decreased load to failure, ultimate stress, and ultimate strain. Up to eight freeze-thaw cycles did not lead to differences in biomechanical properties of cadaveric grafts. Regional differences were noted in patellar tendon grafts, with the central third showing the highest load to failure and stiffness. Graft diameter strongly contributed to load-to-failure measurements. Age older than 40 years, and especially older than 65 years, negatively impacted biomechanical properties, whereas gender had minimal effect on the properties of allograft tissue. Biologic adjuncts show potential for improving in vivo properties of allograft tissue. Future clinical studies on allograft ACL reconstruction should investigate in vivo graft performance with standardized allograft processing and preparation methods that limit the negative effects on the biomechanical properties of tissue. Additionally, biologic adjuncts may improve the biomechanical properties of allograft tissue, although future preclinical and clinical studies are necessary to clarify the role of these treatments. Based on the findings of this systematic review that emphasize biomechanical properties of ACL allografts, surgeons should favor the use of central third patellar tendon or looped soft tissue grafts, maximize graft cross-sectional area, and favor grafts from donors younger than 40 years of age while avoiding grafts subjected to radiation doses > 20 kGy, chemical processing, or greater than eight freeze-thaw cycles.
Yan, Zhinong; Vorst, Keith L; Zhang, Lei; Ryser, Elliot T
2007-05-01
A novel one-ply composite tissue (CT) method using the Soleris (formerly BioSys) optical analysis system was compared with the conventional U.S. Department of Agriculture (USDA) environmental sponge enrichment method for recovery of Listeria from food contact surfaces and poultry-processing environments. Stainless steel and high-density polyethylene plates were inoculated to contain a six-strain L. monocytogenes cocktail at 10(4), 10(2), and 10 CFU per plate, whereas samples from naturally contaminated surfaces and floor drains from a poultry-processing facility were collected with CTs and environmental sponges. CT samples were transferred into Soleris system vials, and presumptive-positive samples were further confirmed. Sponge samples were processed for Listeria using the USDA culture method. L. monocytogenes recovery rates from inoculated stainless steel and polyethylene surfaces were then compared for the two methods in terms of sensitivity, specificity, and positive and negative predictive values. No significant differences (P > 0.05) were found between the two methods for recovery of L. monocytogenes from any of the inoculated stainless steel and polyethylene surfaces or environmental samples. Sensitivity, specificity, and overall accuracy of the CT-Soleris for recovery of Listeria from environmental samples were 83, 97, and 95%, respectively. Listeria was detected 2 to 3 days sooner with the CT-Soleris method than with the USDA culture method, thus supporting the increased efficacy of this new protocol for environmental sampling.
Cutting performance orthogonal test of single plane puncture biopsy needle based on puncture force
NASA Astrophysics Data System (ADS)
Xu, Yingqiang; Zhang, Qinhe; Liu, Guowei
2017-04-01
Needle biopsy is a method to extract the cells from the patient's body with a needle for tissue pathological examination. Many factors affect the cutting process of soft tissue, including the geometry of the biopsy needle, the mechanical properties of the soft tissue, the parameters of the puncture process and the interaction between them. This paper conducted orthogonal experiment of main cutting parameters based on single plane puncture biopsy needle, and obtained the cutting force curve of single plane puncture biopsy needle by studying the influence of the inclination angle, diameter and velocity of the single plane puncture biopsy needle on the puncture force of the biopsy needle. Stage analysis of the cutting process of biopsy needle puncture was made to determine the main influencing factors of puncture force during the cutting process, which provides a certain theoretical support for the design of new type of puncture biopsy needle and the operation of puncture biopsy.
Micromechanical Devices for Control of Cell-Cell Interaction, and Methods of Use Thereof
NASA Technical Reports Server (NTRS)
Bhatia, Sangeeta N. (Inventor); Hui, Elliot (Inventor)
2017-01-01
The development and function of living tissues depends largely on interactions between cells that can vary in both time and space; however, temporal control of cell-cell interaction is experimentally challenging. By employing a micromachined silicon substrate with moving parts, herein is disclosed the dynamic regulation of cell-cell interactions via direct manipulation of adherent cells with micron-scale precision. The inventive devices and methods allow mechanical control of both tissue composition and spatial organization. The inventive device and methods enable the investigation of dynamic cell-cell interaction in a multitude of applications, such as intercellular communication, spanning embryogenesis, homeostasis, and pathogenic processes.
Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella
2018-01-17
Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.
NASA Astrophysics Data System (ADS)
Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella
2018-01-01
Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.
Segmentation of liver region with tumorous tissues
NASA Astrophysics Data System (ADS)
Zhang, Xuejun; Lee, Gobert; Tajima, Tetsuji; Kitagawa, Teruhiko; Kanematsu, Masayuki; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Hoshi, Hiroaki; Nawano, Shigeru; Shinozaki, Kenji
2007-03-01
Segmentation of an abnormal liver region based on CT or MR images is a crucial step in surgical planning. However, precisely carrying out this step remains a challenge due to either connectivities of the liver to other organs or the shape, internal texture, and homogeneity of liver that maybe extensively affected in case of liver diseases. Here, we propose a non-density based method for extracting the liver region containing tumor tissues by edge detection processing. False extracted regions are eliminated by a shape analysis method and thresholding processing. If the multi-phased images are available then the overall outcome of segmentation can be improved by subtracting two phase images, and the connectivities can be further eliminated by referring to the intensity on another phase image. Within an edge liver map, tumor candidates are identified by their different gray values relative to the liver. After elimination of the small and nonspherical over-extracted regions, the final liver region integrates the tumor region with the liver tissue. In our experiment, 40 cases of MDCT images were used and the result showed that our fully automatic method for the segmentation of liver region is effective and robust despite the presence of hepatic tumors within the liver.
Optical biopsy of pre-malignant or degenerative lesions: the role of the inflammatory process
NASA Astrophysics Data System (ADS)
da Silva Martinho, Herculano
2011-03-01
Recent technological advances in fiber optics, light sources, detectors, and molecular biology have stimulated unprecedented development of optical methods to detect pathological changes in tissues. These methods, collectively termed "optical biopsy," are nondestructive in situ and real-time assays. Optical biopsy techniques as fluorescence spectroscopy, polarized light scattering spectroscopy, optical coherence tomography, confocal reflectance microscopy, and Raman spectroscopy had been extensively used to characterize several pathological tissues. In special, Raman spectroscopy technique had been able to probe several biochemical alterations due to pathology development as change in the DNA, glycogen, phospholipid, non-collagenous proteins. All studies claimed that the optical biopsy methods were able to discriminate normal and malignant tissues. However, few studies had been devoted to the discrimination of very common subtle or early pathological states as inflammatory process, which are always present on, e.g., cancer lesion border. In this work we present a systematic comparison of optical biopsy data on several kinds of lesions were inflammatory infiltrates play the role (breast, cervical, and oral lesion). It will be discussed the essential conditions for the optimization of discrimination among normal and alterated states based on statistical analysis.
O'Rourke, Matthew B; Padula, Matthew P
2016-01-01
Since emerging in the late 19(th) century, formaldehyde fixation has become a standard method for preservation of tissues from clinical samples. The advantage of formaldehyde fixation is that fixed tissues can be stored at room temperature for decades without concern for degradation. This has led to the generation of huge tissue banks containing thousands of clinically significant samples. Here we review techniques for proteomic analysis of formalin-fixed, paraffin-embedded (FFPE) tissue samples with a specific focus on the methods used to extract and break formaldehyde crosslinks. We also discuss an error-of-interpretation associated with the technique known as "antigen retrieval." We have discovered that this term has been mistakenly applied to two disparate molecular techniques; therefore, we argue that a terminology change is needed to ensure accurate reporting of experimental results. Finally, we suggest that more investigation is required to fully understand the process of formaldehyde fixation and its subsequent reversal.
Progress toward automatic classification of human brown adipose tissue using biomedical imaging
NASA Astrophysics Data System (ADS)
Gifford, Aliya; Towse, Theodore F.; Walker, Ronald C.; Avison, Malcom J.; Welch, E. B.
2015-03-01
Brown adipose tissue (BAT) is a small but significant tissue, which may play an important role in obesity and the pathogenesis of metabolic syndrome. Interest in studying BAT in adult humans is increasing, but in order to quantify BAT volume in a single measurement or to detect changes in BAT over the time course of a longitudinal experiment, BAT needs to first be reliably differentiated from surrounding tissue. Although the uptake of the radiotracer 18F-Fluorodeoxyglucose (18F-FDG) in adipose tissue on positron emission tomography (PET) scans following cold exposure is accepted as an indication of BAT, it is not a definitive indicator, and to date there exists no standardized method for segmenting BAT. Consequently, there is a strong need for robust automatic classification of BAT based on properties measured with biomedical imaging. In this study we begin the process of developing an automated segmentation method based on properties obtained from fat-water MRI and PET-CT scans acquired on ten healthy adult subjects.
Experimental investigation on light propagation through apple tissue structures
NASA Astrophysics Data System (ADS)
Askoura, Mohamed Lamine; Piron, Vianney; Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Madieta, Emmanuel; Mehinagic, Emira
2015-07-01
The interaction of light with biological materials, such as fruits and vegetables, is a complex process which involves both absorption, and scattering events at different scales. Measuring the optical properties of a fruit allows understanding the physical and chemical characteristics. In this paper, an optical bench based on the use of a continuous laser source and a CCD camera was developed to study the light diffusion inside apple tissue structures. The method refers to the well-known steady-state spatially resolved method. First, the optoelectronics system was tested with a tissue phantom in order to show the optimal sensing range required to obtain the best estimated optical properties. Second, experimental results were obtained using peeled and unpeeled apples as interrogated tissues. The data were confronted with a diffusion model in order to extract the optical properties at two wavelengths of 633, and 852 nm. To better understand the effect of the apple tissue structures, investigations into the propagation of light through a half cut apple were also performed.
Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer.
Dennis, Sarah Grace; Trusk, Thomas; Richards, Dylan; Jia, Jia; Tan, Yu; Mei, Ying; Fann, Stephen; Markwald, Roger; Yost, Michael
2015-09-22
Tissue engineering has centralized its focus on the construction of replacements for non-functional or damaged tissue. The utilization of three-dimensional bioprinting in tissue engineering has generated new methods for the printing of cells and matrix to fabricate biomimetic tissue constructs. The solid freeform fabrication (SFF) method developed for three-dimensional bioprinting uses an additive manufacturing approach by depositing droplets of cells and hydrogels in a layer-by-layer fashion. Bioprinting fabrication is dependent on the specific placement of biological materials into three-dimensional architectures, and the printed constructs should closely mimic the complex organization of cells and extracellular matrices in native tissue. This paper highlights the use of the Palmetto Printer, a Cartesian bioprinter, as well as the process of producing spatially organized, viable constructs while simultaneously allowing control of environmental factors. This methodology utilizes computer-aided design and computer-aided manufacturing to produce these specific and complex geometries. Finally, this approach allows for the reproducible production of fabricated constructs optimized by controllable printing parameters.
Accuracy improvement of multimodal measurement of speed of sound based on image processing
NASA Astrophysics Data System (ADS)
Nitta, Naotaka; Kaya, Akio; Misawa, Masaki; Hyodo, Koji; Numano, Tomokazu
2017-07-01
Since the speed of sound (SOS) reflects tissue characteristics and is expected as an evaluation index of elasticity and water content, the noninvasive measurement of SOS is eagerly anticipated. However, it is difficult to measure the SOS by using an ultrasound device alone. Therefore, we have presented a noninvasive measurement method of SOS using ultrasound (US) and magnetic resonance (MR) images. By this method, we determine the longitudinal SOS based on the thickness measurement using the MR image and the time of flight (TOF) measurement using the US image. The accuracy of SOS measurement is affected by the accuracy of image registration and the accuracy of thickness measurements in the MR and US images. In this study, we address the accuracy improvement in the latter thickness measurement, and present an image-processing-based method for improving the accuracy of thickness measurement. The method was investigated by using in vivo data obtained from a tissue-engineered cartilage implanted in the back of a rat, with an unclear boundary.
NASA Astrophysics Data System (ADS)
Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya
2013-02-01
Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.
Patterning methods for polymers in cell and tissue engineering.
Kim, Hong Nam; Kang, Do-Hyun; Kim, Min Sung; Jiao, Alex; Kim, Deok-Ho; Suh, Kahp-Yang
2012-06-01
Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment.
Micro-CT scouting for transmission electron microscopy of human tissue specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, A. G.; Stempinski, E. S.; XIAO, X.
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
NASA Astrophysics Data System (ADS)
Filiaci, Mattia Emidio
2001-12-01
In recent years the application of near infrared non- invasive methods for medical diagnostics and clinical studies has grown rapidly. The ease of use, low cost and portability of these methods is a clear advantage over other techniques such as MRI. The limitations in detection of optical property inhomogeneities in tissues, such as tumors or hematomas, is due to the diffusive, highly scattering nature of near infrared light propagation. I have studied and developed methods to improve the spatial localization of these inhomogeneities in biological tissues, especially for the application of functional studies of the human brain in vivo. Recently much attention has been given to the study of the processes in the human brain that lead to the changing of the optical parameters that characterize the tissue, measured by our frequency-domain instrumentation. These processes have been divided into two main categories with different time-scales. The slower one is mostly due to the fluctuations in the absorption coefficient caused by oxy- and deoxy-hemoglobin changes in the tissue. The temporal analysis of the signal resulting from this process is studied in detail, and I also introduce a time-series data analysis technique that has not been applied to this field before but was introduced in another area very recently. The faster time-scale process has been attributed to the electrochemical excitation of the individual neurons in the brain that have been observed to cause a change in the scattering coefficient of the tissue. This is the other primary parameter that is measured by our frequency domain instrument. However, before this work it has not been clear how to go about to better localize these smaller fluctuations. I present a novel idea for improving spatial localization of macroscopic optical parameter fluctuations, and study the characteristics of this optical probe design using analytical solutions to the diffusion equation and Monte Carlo simulations that more appropriately represent the volume of excitation of the cortex neurons.
Micro-CT scouting for transmission electron microscopy of human tissue specimens
Morales, A. G.; Stempinski, E. S.; XIAO, X.; ...
2016-02-08
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
Zhang, Xuewei; Yu, Peiqiang
2014-07-02
Non-invasive techniques are a key to study nutrition and structure interaction. Fourier transform infrared microspectroscopy coupled with a synchrotron radiation source (SR-IMS) is a rapid, non-invasive, and non-destructive bioanalytical technique. To understand internal structure changes in relation to nutrient availability in oil seed processing is vital to find optimal processing conditions. The objective of this study was to use a synchrotron-based bioanalytical technique SR-IMS as a non-invasive and non-destructive tool to study the effects of heat-processing methods and oil seed canola type on modeled protein structure based on spectral data within intact tissue that were randomly selected and quantify the relationship between the modeled protein structure and protein nutrient supply to ruminants. The results showed that the moisture heat-related processing significantly changed (p<0.05) modeled protein structures compared to the raw canola (control) and those processing by dry heating. The moisture heating increased (p<0.05) spectral intensities of amide I, amide II, α-helices, and β-sheets but decreased (p<0.05) the ratio of modeled α-helices to β-sheet spectral intensity. There was no difference (p>0.05) in the protein spectral profile between the raw and dry-heated canola tissue and between yellow- and brown-type canola tissue. The results indicated that different heat processing methods have different impacts on the protein inherent structure. The protein intrinsic structure in canola seed tissue was more sensitive and more response to the moisture heating in comparison to the dry heating. These changes are expected to be related to the nutritive value. However, the current study is based on limited samples, and more large-scale studies are needed to confirm our findings.
Bardos, Tamas; Farkas, Boglarka; Mezes, Beata; Vancsodi, Jozsef; Kvell, Krisztian; Czompoly, Tamas; Nemeth, Peter; Bellyei, Arpad; Illes, Tamas
2009-11-01
A focal cartilage lesion has limited capacity to heal, and the repair modalities used at present are still unable to provide a universal solution. Pure cartilage graft implantation appears to be a simple option, but it has not been applied widely as cartilage will not reattach easily to the subchondral bone. We used a multiple-incision technique (processed chondrograft) to increase cartilage graft surface. We hypothesized that pure cartilage graft with augmented osteochondral fusion capacity may be used for cartilage repair and we compared this method with other repair techniques. Controlled laboratory study. Full-thickness focal cartilage defects were created on the medial femoral condyle of 9-month-old pigs; defects were repaired using various methods including bone marrow stimulation, autologous chondrocyte implantation, and processed chondrograft. After the repair, at weeks 6 and 24, macroscopic and histologic evaluation was carried out. Compared with other methods, processed chondrograft was found to be similarly effective in cartilage repair. Defects without repair and defects treated with bone marrow stimulation appeared slightly irregular with fibrocartilage filling. Autologous chondrocyte implantation produced hyalinelike cartilage, although its cellular organization was distinguishable from the surrounding articular cartilage. Processed chondrograft demonstrated good osteochondral integration, and the resulting tissue appeared to be hyaline cartilage. The applied cartilage surface processing method allows acceptable osteochondral integration, and the repair tissue appears to have good macroscopic and histologic characteristics. If further studies confirm its efficacy, this technique could be considered for human application in the future.
Fowler, Carol B; O'Leary, Timothy J; Mason, Jeffrey T
2008-07-01
Understanding the chemistry of protein modification by formaldehyde fixation and subsequent tissue processing is central to developing improved methods for antigen retrieval in immunohistochemistry and for recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissues for proteomic analysis. Our initial studies of single proteins, such as bovine pancreatic ribonuclease A (RNase A), in 10% buffered formalin solution revealed that upon removal of excess formaldehyde, monomeric RNase A exhibiting normal immunoreactivity could be recovered by heating at 60 degrees C for 30 min at pH 4. We next studied tissue surrogates, which are gelatin-like plugs of fixed proteins that have sufficient physical integrity to be processed using normal tissue histology. Following histological processing, proteins could be extracted from the tissue surrogates by combining heat, detergent, and a protein denaturant. However, gel electrophoresis revealed that the surrogate extracts contained a mixture of monomeric and multimeric proteins. This suggested that during the subsequent steps of tissue processing protein-formaldehyde adducts undergo further modifications that are not observed in aqueous proteins. As a first step toward understanding these additional modifications we have performed a comparative evaluation of RNase A following fixation in buffered formaldehyde alone and after subsequent dehydration in 100% ethanol by combining gel electrophoresis, chemical modification, and circular dichroism spectroscopic studies. Our results reveal that ethanol-induced rearrangement of the conformation of fixed RNase A leads to protein aggregation through the formation of large geometrically compatible hydrophobic beta-sheets that are likely stabilized by formaldehyde cross-links, hydrogen bonds, and van der Waals interactions. It requires substantial energy to reverse the formaldehyde cross-links within these sheets and regenerate protein monomers free of formaldehyde modifications. Accordingly, the ethanol-dehydration step in tissue histology may be important in confounding the successful recovery of proteins from FFPE tissues for immunohistochemical and proteomic analysis.
Boucheron, Laura E
2013-07-16
Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.
Kang, Hyun-Wook
2012-01-01
Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications. PMID:22443315
Modeling the heat transfer problem for the novel combined cryosurgery and hyperthermia system.
Zhao, Gang; Bai, Xue-Fei; Luo, Da-Wei; Gao, Da-Yong
2006-01-01
A multidimensional, finite element analysis (FEA) for the freezing, holding, rewarming and heating processes of biological tissues during the cryosurgery process of the new Combined Cryosurgery/Hyperthermia System is presented to theoretically test its validity. The tissues are treated as nonideal materials freezing over a temperature range, and the thermophysical properties of which are temperature dependent. The enthalpy method is applied to solve the highly nonlinear problem. It was found that when the same boundary condition and the same target tissue presented, the novel Cryosurgery/Hyperthermia System could supply the target tissue an approximative cooling rate, a much lower minimal temperature, a much greater warming rate, and a much greater thermal gradients compared with that of the simplified Endocare system. The numerical simulation indicates that the novel combined cryosurgery and hyperthermia system can provide an excellent curative effect in the corresponding cryotherapy. And the most attractive feature of this FEA framework is that it can be easily mastered by the surgeon without in-depth theory of heat transfer to analyze the cryosurgery process beforehand due to the friendly GUI (graphical user interface) of Ansys software.
NASA Astrophysics Data System (ADS)
Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei
2014-03-01
Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.
A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue.
Kassem, Mustafa S; Fok, Sandra Y Y; Smith, Kristie L; Kuligowski, Michael; Balleine, Bernard W
2018-01-15
High resolution neuronal information is extraordinarily useful in understanding the brain's functionality. The development of the Golgi-Cox stain allowed observation of the neuron in its entirety with unrivalled detail. Tissue clearing techniques, e.g., CLARITY and CUBIC, provide the potential to observe entire neuronal circuits intact within tissue and without previous restrictions with regard to section thickness. Here we describe an improved Golgi-Cox stain method, optimised for use with CLARITY and CUBIC that can be used in both fresh and fixed tissue. Using this method, we were able to observe neurons in their entirety within a fraction of the time traditionally taken to clear tissue (48h). We were also able to show for the first-time that Golgi stained tissue is fluorescent when visualized using a multi-photon microscope, allowing us to image synaptic spines with a detail previously unachievable. These novel methods provide cheap and easy to use techniques to investigate the morphology of cellular processes in the brain at a new-found depth, speed, utility and detail, without previous restrictions of time, tissue type and section thickness. This is the first application of a Golgi-Cox stain to cleared brain tissue, it is investigated and discussed in detail, describing different methodologies that may be used, a comparison between the different clearing techniques and lastly the novel interaction of these techniques with this ultra-rapid stain. Copyright © 2017 Elsevier B.V. All rights reserved.
Khouj, Yasser; Dawson, Jeremy; Coad, James; Vona-Davis, Linda
2018-01-01
Hyperspectral imaging (HSI) is a non-invasive optical imaging modality that shows the potential to aid pathologists in breast cancer diagnoses cases. In this study, breast cancer tissues from different patients were imaged by a hyperspectral system to detect spectral differences between normal and breast cancer tissues. Tissue samples mounted on slides were identified from 10 different patients. Samples from each patient included both normal and ductal carcinoma tissue, both stained with hematoxylin and eosin stain and unstained. Slides were imaged using a snapshot HSI system, and the spectral reflectance differences were evaluated. Analysis of the spectral reflectance values indicated that wavelengths near 550 nm showed the best differentiation between tissue types. This information was used to train image processing algorithms using supervised and unsupervised data. The K-means method was applied to the hyperspectral data cubes, and successfully detected spectral tissue differences with sensitivity of 85.45%, and specificity of 94.64% with true negative rate of 95.8%, and false positive rate of 4.2%. These results were verified by ground-truth marking of the tissue samples by a pathologist. In the hyperspectral image analysis, the image processing algorithm, K-means, shows the greatest potential for building a semi-automated system that could identify and sort between normal and ductal carcinoma in situ tissues.
Studying cytokinesis in Drosophila epithelial tissues.
Pinheiro, D; Bellaïche, Y
2017-01-01
Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Determination of notochord cells of Xenopus laevis.
Zeng, M B
1993-12-01
In amphibians, numerous works of influences of the notochord on neighbouring tissues have been accumulated. However, on the contrary, scarcely any work is known about how the notochord is influenced by its neighbouring tissues and how it is determined. By using the experimental method of explantation and culturing in vitro, how the notochord is determined in the early development and whether the neighbouring tissues exert influences on it have been investigated. The results showed that the determination of notochord is a progressive process and the presumptive notochord of Xenopus appears to be a very good material to study influences of neighbouring tissues on the determination of the notochord.
NASA Astrophysics Data System (ADS)
Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad
2016-03-01
Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.
Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja
2015-11-18
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research
Stuker, Florian; Ripoll, Jorge; Rudin, Markus
2011-01-01
Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development. PMID:24310495
Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Shin, Eun Seok; Kim, Sung Min
2018-01-01
The purpose of this study was to propose a hybrid ensemble classifier to characterize coronary plaque regions in intravascular ultrasound (IVUS) images. Pixels were allocated to one of four tissues (fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), and dense calcium (DC)) through processes of border segmentation, feature extraction, feature selection, and classification. Grayscale IVUS images and their corresponding virtual histology images were acquired from 11 patients with known or suspected coronary artery disease using 20 MHz catheter. A total of 102 hybrid textural features including first order statistics (FOS), gray level co-occurrence matrix (GLCM), extended gray level run-length matrix (GLRLM), Laws, local binary pattern (LBP), intensity, and discrete wavelet features (DWF) were extracted from IVUS images. To select optimal feature sets, genetic algorithm was implemented. A hybrid ensemble classifier based on histogram and texture information was then used for plaque characterization in this study. The optimal feature set was used as input of this ensemble classifier. After tissue characterization, parameters including sensitivity, specificity, and accuracy were calculated to validate the proposed approach. A ten-fold cross validation approach was used to determine the statistical significance of the proposed method. Our experimental results showed that the proposed method had reliable performance for tissue characterization in IVUS images. The hybrid ensemble classification method outperformed other existing methods by achieving characterization accuracy of 81% for FFT and 75% for NC. In addition, this study showed that Laws features (SSV and SAV) were key indicators for coronary tissue characterization. The proposed method had high clinical applicability for image-based tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
Du, Bowen; Lofton, Jonathan M; Peter, Katherine T; Gipe, Alexander D; James, C Andrew; McIntyre, Jenifer K; Scholz, Nathaniel L; Baker, Joel E; Kolodziej, Edward P
2017-09-20
Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log K ow vs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban stormwater runoff and exposed biota.
Implementation of a burn scar assessment system by ultrasound techniques.
Du, Yi-Chun; Lin, Chih-Ming; Chen, Yung-Fu; Chen, Chung-Lin; Chen, Tainsong
2006-01-01
Tissue injury and its ensuing healing process cause scar formation. In addition to physical disability, the subsequent disfigurements from burns often bring negative psychological impacts on the survivors. Scar hypertrophy and contracture limit the joint motion and body function of the patient. With fast development of the current available technologies regarding the scar therapies, not only the process of wound healing has to be focused, but also the cosmetic and functional outcomes need to be emphasized. Therefore, proper evaluation and assessment of the healing process to nil scar status is highly recommended. However, the currently employed tools for scar evaluation are mostly subjective. For example, Vancouver General Hospital (VGH) scar index uses color, pigmentation, vascularity, pliability, and depth of the scar as dependent variables for scar evaluation. These parameters only estimate the superficial surface of the scar, but they can not evaluate the deeper tissue within dermis. Ultrasound is a safe, inexpensive, and multifunctional technique for probing tissue characteristics. In addition, its resolution is not inferior to other measurement techniques. Although 3D-ultrasound is available in clinical application, it's still not widely used in scar evaluation because of its high cost. In this study, we proposed a system for scar assessment using B-mode ultrasonic technique. By utilizing the reconstruction methods to search the scar border, many characteristic parameters, including depth, area and volume, can be estimated. The proposed method is useful in assisting the clinician to evaluate the treatment effect and to plan further therapeutic strategy more objectively. In this report, the quantitative assessment system was used to evaluate the scar of a seriously burned patient. In order to verify the reliability of systematic reconstruction method, we constructed a phantom to imitate the scar tissue. The results show that it can achieve more than 90% in accuracy.
Herculano-Houzel, Suzana; von Bartheld, Christopher S; Miller, Daniel J; Kaas, Jon H
2015-04-01
The number of cells comprising biological structures represents fundamental information in basic anatomy, development, aging, drug tests, pathology and genetic manipulations. Obtaining unbiased estimates of cell numbers, however, was until recently possible only through stereological techniques, which require specific training, equipment, histological processing and appropriate sampling strategies applied to structures with a homogeneous distribution of cell bodies. An alternative, the isotropic fractionator (IF), became available in 2005 as a fast and inexpensive method that requires little training, no specific software and only a few materials before it can be used to quantify total numbers of neuronal and non-neuronal cells in a whole organ such as the brain or any dissectible regions thereof. This method entails transforming a highly anisotropic tissue into a homogeneous suspension of free-floating nuclei that can then be counted under the microscope or by flow cytometry and identified morphologically and immunocytochemically as neuronal or non-neuronal. We compare the advantages and disadvantages of each method and provide researchers with guidelines for choosing the best method for their particular needs. IF is as accurate as unbiased stereology and faster than stereological techniques, as it requires no elaborate histological processing or sampling paradigms, providing reliable estimates in a few days rather than many weeks. Tissue shrinkage is also not an issue, since the estimates provided are independent of tissue volume. The main disadvantage of IF, however, is that it necessarily destroys the tissue analyzed and thus provides no spatial information on the cellular composition of biological regions of interest.
Kim, Byoung Soo; Jang, Jinah; Chae, Suhun; Gao, Ge; Kong, Jeong-Sik; Ahn, Minjun; Cho, Dong-Woo
2016-08-22
Three-dimensional (3D) cell-printed constructs have been recognized as promising biological substitutes for tissue/organ regeneration. They provide tailored physical properties and biological cues via multi-material printing process. In particular, hybrid bioprinting, enabling to use biodegradable synthetic polymers as framework, has been an attractive method to support weak hydrogels. The constructs with controlled architecture and high shape fidelity were fabricated through this method, depositing spatial arrangement of multi-cell types into microscale constructs. Among biodegradable synthetic polymers, polycaprolactone (PCL) has been commonly chosen in fabrication of cell-printed constructs because of its low melting temperature of 60 °C to be dispensed with extrusion-based bioprinting system. However, in addition to PCL, various synthetic polymers have been widely applied for tissue regeneration. These polymers have distinctive characteristics essential for tissue/organ regeneration. Nevertheless, it is difficult to use some polymers, such as poly (lactic-co-glycolic acid) (PLGA) and polylactic acid (PLA) with 3D bioprinting technology because of their high melting temperature to be dispensed, which can result in thermal damage to the cells in the printed constructs during the fabrication process. We present a novel bioprinting method to use various synthetic polymers in fabrication of cell-printed constructs. PCL was introduced as a protective layer to prevent thermal damage caused by high temperature of polymers during fabrication. Remarkable improvement in cellular activities in the printed constructs with PCL layers was observed compared with the construct without PCL. This bioprinting method can be applied to fabricate more tissue-like constructs through the use of various biomaterials.
Removal of plutonium from hepatic tissue
Lindenbaum, Arthur; Rosenthal, Marcia W.
1979-01-01
A method is provided for removing plutonium from hepatic tissues by introducing into the body and blood stream a solution of the complexing agent DTPA and an adjunct thereto. The adjunct material induces aberrations in the hepatic tissue cells and removes intracellularly deposited plutonium which is normally unavailable for complexation with the DTPA. Once the intracellularly deposited plutonium has been removed from the cell by action of the adjunct material, it can be complexed with the DTPA present in the blood stream and subsequently removed from the body by normal excretory processes.
Farace, P; Pontalti, R; Cristoforetti, L; Antolini, R; Scarpa, M
1997-11-01
This paper presents an automatic method to obtain tissue complex permittivity values to be used as input data in the computer modelling for hyperthermia treatment planning. Magnetic resonance (MR) images were acquired and the tissue water content was calculated from the signal intensity of the image pixels. The tissue water content was converted into complex permittivity values by monotonic functions based on mixture theory. To obtain a water content map by MR imaging a gradient-echo pulse sequence was used and an experimental procedure was set up to correct for relaxation and radiofrequency field inhomogeneity effects on signal intensity. Two approaches were followed to assign the permittivity values to fat-rich tissues: (i) fat-rich tissue localization by a segmentation procedure followed by assignment of tabulated permittivity values; (ii) water content evaluation by chemical shift imaging followed by permittivity calculation. Tests were performed on phantoms of known water content to establish the reliability of the proposed method. MRI data were acquired and processed pixel-by-pixel according to the outlined procedure. The signal intensity in the phantom images correlated well with water content. Experiments were performed on volunteers' healthy tissue. In particular two anatomical structures were chosen to calculate permittivity maps: the head and the thigh. The water content and electric permittivity values were obtained from the MRI data and compared to others in the literature. A good agreement was found for muscle, cerebrospinal fluid (CSF) and white and grey matter. The advantages of the reported method are discussed in the light of possible application in hyperthermia treatment planning.
A novel protocol for generating intact, whole-head spider cephalothorax tissue sections.
Long, Skye M
2018-04-01
The diversity of spider behavior and sensory systems provides an excellent opportunity for comparative studies of the relationship between the brain and behavior. However, the morphology of spiders poses a challenge for histologists since the spider cephalothorax contains heterogeneous tissues and has both tough external and internal sclerotized regions. Unlike the heads of insects, the cephalothorax is highly pressurized, which can cause tissues to shift during processing and can reduce tissue cohesion in thick sections. This work describes a novel protocol for producing thick whole-head sections for morphological study by softening the exoskeleton and stabilizing friable tissue, without freezing or dehydration. It also presents an effective whole-head DiI staining method that uses minimal dehydration and highlights neural structures.
In vivo photoacoustic monitoring of anti-obesity photothermal lipolysis
NASA Astrophysics Data System (ADS)
Lee, Donghyun; Lee, Jung Ho; Hahn, Sei Kwang; Kim, Chulhong
2018-02-01
Obesity with a body mass index is greater than 30 kg/m2 is one of the rapidly growing diseases in advanced societies and can lead to stroke, type 2 diabetes, and heart failure. Common methods of removing subcutaneous adipose tissues are liposuction and laser treatment. In this study, we used photoacoustic imaging to monitor the anti-obesity photothermal degradation process. To improve the photothermal lipid degradation efficiency without any invasive methods, we synthesized hyaluronic acid hollow hold nanosphere adipocyte targeting sequence peptide (HA-HAuNS-ATS) conjugates. The conjugate enhanced the skin penetration ability and biodegradability of the nanoparticles using hyaluronate and enhanced the targeting effect on adipose tissue with adipocyte targeting sequence peptide. Thus, the conjugate can be delivered to the adipose tissue by simply spreading the conjugate on the skin without any invasive method. Then, the photothermal lipolysis and delivery of the conjugate were photoacoustically monitored in vivo. These results demonstrate the potential for photoacoustic method to be applied for photothermal lipolysis monitoring.
Alomari, Yazan M.; MdZin, Reena Rahayu
2015-01-01
Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved. PMID:25793010
Comparison of hard tissues that are useful for DNA analysis in forensic autopsy.
Kaneko, Yu; Ohira, Hiroshi; Tsuda, Yukio; Yamada, Yoshihiro
2015-11-01
Forensic analysis of DNA from hard tissues can be important when investigating a variety of cases resulting from mass disaster or criminal cases. This study was conducted to evaluate the most suitable tissues, method and sample size for processing of hard tissues prior to DNA isolation. We also evaluated the elapsed time after death in relation to the quantity of DNA extracted. Samples of hard tissues (37 teeth, 42 skull, 42 rib, and 39 nails) from 42 individuals aged between 50 and 83 years were used. The samples were taken from remains following forensic autopsy (from 2 days to 2 years after death). To evaluate the integrity of the nuclear DNA isolated, the percentage of allele calls for short tandem repeat profiles were compared between the hard tissues. DNA typing results indicated that until 1 month after death, any of the four hard tissue samples could be used as an alternative to teeth, allowing analysis of all of the loci. However, in terms of the sampling site, collection method and sample size adjustment, the rib appeared to be the best choice in view of the ease of specimen preparation. Our data suggest that the rib could be an alternative hard tissue sample for DNA analysis of human remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pindyurin, Alexey V
2017-01-01
A thorough study of the genome-wide binding patterns of chromatin proteins is essential for understanding the regulatory mechanisms of genomic processes in eukaryotic nuclei, including DNA replication, transcription, and repair. The DNA adenine methyltransferase identification (DamID) method is a powerful tool to identify genomic binding sites of chromatin proteins. This method does not require fixation of cells and the use of specific antibodies, and has been used to generate genome-wide binding maps of more than a hundred different proteins in Drosophila tissue culture cells. Recent versions of inducible DamID allow performing cell type-specific profiling of chromatin proteins even in small samples of Drosophila tissues that contain heterogeneous cell types. Importantly, with these methods sorting of cells of interest or their nuclei is not necessary as genomic DNA isolated from the whole tissue can be used as an input. Here, I describe in detail an FLP-inducible DamID method, namely generation of suitable transgenic flies, activation of the Dam transgenes by the FLP recombinase, isolation of DNA from small amounts of dissected tissues, and subsequent identification of the DNA binding sites of the chromatin proteins.
OBT analysis method using polyethylene beads for limited quantities of animal tissue.
Kim, S B; Stuart, M
2015-08-01
This study presents a polyethylene beads method for OBT determination in animal tissues and animal products for cases where the amount of water recovered by combustion is limited by sample size or quantity. In the method, the amount of water recovered after combustion is enhanced by adding tritium-free polyethylene beads to the sample prior to combustion in an oxygen bomb. The method reduces process time by allowing the combustion water to be easily collected with a pipette. Sufficient water recovery was achieved using the polyethylene beads method when 2 g of dry animal tissue or animal product were combusted with 2 g of polyethylene beads. Correction factors, which account for the dilution due to the combustion water of the beads, are provided for beef, chicken, pork, fish and clams, as well as egg, milk and cheese. The method was tested by comparing its OBT results with those of the conventional method using animal samples collected on the Chalk River Laboratories (CRL) site. The results determined that the polyethylene beads method added no more than 25% uncertainty when appropriate correction factors are used. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Shear wave elastography using Wigner-Ville distribution: a simulated multilayer media study.
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2016-08-01
Shear Wave Elastography (SWE) is a quantitative ultrasound-based imaging modality for distinguishing normal and abnormal tissue types by estimating the local viscoelastic properties of the tissue. These properties have been estimated in many studies by propagating ultrasound shear wave within the tissue and estimating parameters such as speed of wave. Vast majority of the proposed techniques are based on the cross-correlation of consecutive ultrasound images. In this study, we propose a new method of wave detection based on time-frequency (TF) analysis of the ultrasound signal. The proposed method is a modified version of the Wigner-Ville Distribution (WVD) technique. The TF components of the wave are detected in a propagating ultrasound wave within a simulated multilayer tissue and the local properties are estimated based on the detected waves. Image processing techniques such as Alternative Sequential Filters (ASF) and Circular Hough Transform (CHT) have been utilized to improve the estimation of TF components. This method has been applied to a simulated data from Wave3000™ software (CyberLogic Inc., New York, NY). This data simulates the propagation of an acoustic radiation force impulse within a two-layer tissue with slightly different viscoelastic properties between the layers. By analyzing the local TF components of the wave, we estimate the longitudinal and shear elasticities and viscosities of the media. This work shows that our proposed method is capable of distinguishing between different layers of a tissue.
Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.
Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong
2017-06-01
Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO 2 method for delipidation and decellularization of adipose tissue whilst retaining its ECM and its subsequent utilization as a bioactive surface coating material for soft tissue engineering, angiogenesis and wound healing applications. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, M.A.; Braue Jr, E.H.
1992-12-31
Ten anesthetized hairless guinea pigs Crl:IAF(HA)BR were exposed to 10 pi of neat sulfur mustard (HD) in a vapor cup on their skin for 7 min. At 24 h postexposure, the guinea pigs were euthanatized and skin sections taken for histologic evaluation. The skin was fixed using either 10% neutral buffered formalin (NBF), McDowell Trump fixative (4CF-IG), Zenker`s formol-saline (Helly`s fluid), or Zenker`s fluid. Fixed skin sections were cut in half: one half was embedded in paraffin and the other half in plastic (glycol methacrylate). Paraffin-embedded tissue was stained with hematoxylin and eosin; plastic-embedded tissue was stained with Lee`s methylenemore » blue basic fuchsin. Skin was also frozen unfixed, sectioned by cryostat, and stained with pinacyanole. HD-exposed skin was evaluated histologically for the presence of epidermal and follicular necrosis, microblister formation, epidermitis, and intracellular edema to determine the optimal fixation and embedding method for lesion preservation. The percentage of histologic sections with lesions varied little between fixatives and was similar for both paraffin and plastic embedding material. Plastic-embedded sections were thinner, allowing better histologic evaluation, but were more difficult to stain. Plastic embedding material did not infiltrate tissue fixed in Zenker`s fluid or Zenker`s formol-saline. Frozen tissue sections were prepared in the least processing time and lesion preservation was comparable to fixed tissue. It was concluded that standard histologic processing using formalin fixation and paraffin embedding is adequate for routine histopathological evaluation of HD skin lesions in the hairless guinea pig.... Sulfur mustard, Vesicating agents, Pathology, Hairless guinea pig model, Fixation.« less
Satellite cell proliferation in adult skeletal muscle
NASA Technical Reports Server (NTRS)
Morrison, Paul R. (Inventor); Thomason, Donald B. (Inventor); Stancel, George M. (Inventor); Booth, Frank W. (Inventor)
1995-01-01
Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.
Fell, Shari; Bröckl, Stephanie; Büttner, Mathias; Rettinger, Anna; Zimmermann, Pia; Straubinger, Reinhard K
2016-09-15
Bovine tuberculosis (bTB), which is caused by Mycobacterium bovis and M. caprae, is a notifiable animal disease in Germany. Diagnostic procedure is based on a prescribed protocol that is published in the framework of German bTB legislation. In this protocol small sample volumes are used for DNA extraction followed by real-time PCR analyses. As mycobacteria tend to concentrate in granuloma and the infected tissue in early stages of infection does not necessarily show any visible lesions, it is likely that DNA extraction from only small tissue samples (20-40 mg) of a randomly chosen spot from the organ and following PCR testing may result in false negative results. In this study two DNA extraction methods were developed to process larger sample volumes to increase the detection sensitivity of mycobacterial DNA in animal tissue. The first extraction method is based on magnetic capture, in which specific capture oligonucleotides were utilized. These nucleotides are linked to magnetic particles and capture Mycobacterium-tuberculosis-complex (MTC) DNA released from 10 to 15 g of tissue material. In a second approach remaining sediments from the magnetic capture protocol were further processed with a less complex extraction protocol that can be used in daily routine diagnostics. A total number of 100 tissue samples from 34 cattle (n = 74) and 18 red deer (n = 26) were analyzed with the developed protocols and results were compared to the prescribed protocol. All three extraction methods yield reliable results by the real-time PCR analysis. The use of larger sample volume led to a sensitivity increase of DNA detection which was shown by the decrease of Ct-values. Furthermore five samples which were tested negative or questionable by the official extraction protocol were detected positive by real time PCR when the alternative extraction methods were used. By calculating the kappa index, the three extraction protocols resulted in a moderate (0.52; protocol 1 vs 3) to almost perfect agreement (1.00; red deer sample testing with all protocols). Both new methods yielded increased detection rates for MTC DNA detection in large sample volumes and consequently improve the official diagnostic protocol.
Thomas-Porch, Caasy; Li, Jie; Zanata, Fabiana; Martin, Elizabeth C; Pashos, Nicholas; Genemaras, Kaylynn; Poche, J Nicholas; Totaro, Nicholas P; Bratton, Melyssa R; Gaupp, Dina; Frazier, Trivia; Wu, Xiying; Ferreira, Lydia Masako; Tian, Weidong; Wang, Guangdi; Bunnell, Bruce A; Flynn, Lauren; Hayes, Daniel; Gimble, Jeffrey M
2018-04-25
Decellularized human adipose tissue has potential clinical utility as a processed biological scaffold for soft tissue cosmesis, grafting and reconstruction. Adipose tissue decellularization has been accomplished using enzymatic-, detergent-, and/or solvent-based methods. To examine the hypothesis that distinct decellularization processes may yield scaffolds with differing compositions, the current study employed mass spectrometry to compare the proteomes of human adipose-derived matrices generated through three independent methods combining enzymatic-, detergent-, and/or solvent-based steps. In addition to protein content, bioscaffolds were evaluated for DNA depletion, ECM composition, and physical structure using optical density, histochemical staining, and scanning electron microscopy (SEM). Mass spectrometry (MS) based proteomic analyses identified 25 proteins (having at least two peptide sequences detected) in the scaffolds generated with an enzymatic approach, 143 with the detergent approach, and 102 with the solvent approach, as compared to 155 detected in unprocessed native human fat. Immunohistochemical detection confirmed the presence of the structural proteins actin, collagen type VI, fibrillin, laminin, and vimentin. Subsequent in vivo analysis of the predominantly enzymatic- and detergent-based decellularized scaffolds following subcutaneous implantation in GFP + transgenic mice demonstrated that the matrices generated with both approaches supported the ingrowth of host-derived adipocyte progenitors and vasculature in a time dependent manner. Together, these results determine that decellularization methods influence the protein composition of adipose tissue-derived bioscaffolds. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
ON THE BIOMECHANICAL FUNCTION OF SCAFFOLDS FOR ENGINEERING LOAD BEARING SOFT TISSUES
Stella, John A.; D’Amore, Antonio; Wagner, William R.; Sacks, Michael S.
2010-01-01
Replacement or regeneration of load bearing soft tissues has long been the impetus for the development bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors. PMID:20060509
Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.
2014-01-01
Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality. PMID:25350384
3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery
NASA Astrophysics Data System (ADS)
Bentz, Brian Z.; Costas, Alfonso; Gaind, Vaibhav; Garcia, Jose M.; Webb, Kevin J.
2017-03-01
Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing, evaluation, and calibration. This work demonstrates that 3D printing is an ideal method for fabricating such objects, allowing intricate inhomogeneities to be placed at exact locations in complex or anatomically realistic geometries, a process that is difficult or impossible using molds. We show printed mouse phantoms we have fabricated for developing deep tissue fluorescence imaging methods, and measurements of both their optical and mechanical properties. Additionally, we present a printed phantom of the human mouth that we use to develop an artery localization method to assist in oral surgery.
* Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process.
Fawzy El-Sayed, Karim M; Dörfer, Christof E
2017-12-01
The human periodontium is a uniquely complex vital structure, supporting and anchoring the teeth in their alveolar sockets, thereby playing a decisive role in tooth homeostasis and function. Chronic periodontitis is a highly prevalent immune-inflammatory disease of the periodontium, affecting 15% of adult individuals, and is characterized by progressive destruction of the periodontal tooth-investing tissues, culminating in their irreversible damage. Current periodontal evidence-based treatment strategies achieve periodontal healing via repair processes, mostly combating the inflammatory component of the disease, to halt or reduce prospective periodontal tissue loss. However, complete periodontal tissue regeneration remains a hard fought-for goal in the field of periodontology and multiple in vitro and in vivo studies have been conducted, in the conquest to achieve a functional periodontal tissue regeneration in humans. The present review evaluates the current status of periodontal regeneration attempted through tissue-engineering concepts, ideal requirements for experimental animal models under investigation, the methods of induction and classification of the experimentally created periodontal defects, types of experimental defects employed in the diverse animal studies, as well as the current state of knowledge obtained from in vivo animal experiments, with special emphasis on large animal models.
Dedrick, D F; Sherer, Y D; Biebuyck, J F
1975-06-01
A new method of rapid sampling of brain tissue, "freeze-blowing," has been used to compare the neurochemistry of the brain during anesthesia with that in the awake state. The method avoids anoxia associated with the sampling process. Physiologic variables, including body temperature, blood-gas tensions and blood pressure, were carefully monitored and controlled in the experimental animals. None of the agents tested (halothane, morphine, and ketamine) reduced the brain tissue high-energy phosphate reserved. All three drugs doubled glucose levels. Morphine lowered both lactate and the lactate/pyruvate ratio. Uniformly, the three anesthetic agents led to twofold increases of brain cyclic 3'-5' adenosine monophosphate concentrations. These changes suggest a possible role for cyclic nucleotides in central neurotransmission.
Patterning Methods for Polymers in Cell and Tissue Engineering
Kim, Hong Nam; Kang, Do-Hyun; Kim, Min Sung; Jiao, Alex; Kim, Deok-Ho; Suh, Kahp-Yang
2017-01-01
Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment. PMID:22258887
Patel, J; Lal, S; Nuss, K; Wilshaw, S P; von Rechenberg, B; Hall, R M; Tipper, J L
2018-04-15
Less than optimal particle isolation techniques have impeded analysis of orthopaedic wear debris in vivo. The purpose of this research was to develop and test an improved method for particle isolation from tissue. A volume of 0.018 mm 3 of clinically relevant CoCrMo, Ti-6Al-4V or Si 3 N 4 particles was injected into rat stifle joints for seven days of in vivo exposure. Following sacrifice, particles were located within tissues using histology. The particles were recovered by enzymatic digestion of periarticular tissue with papain and proteinase K, followed by ultracentrifugation using a sodium polytungstate density gradient. Particles were recovered from all samples, observed using SEM and the particle composition was verified using EDX, which demonstrated that all isolated particles were free from contamination. Particle size, aspect ratio and circularity were measured using image analysis software. There were no significant changes to the measured parameters of CoCrMo or Si 3 N 4 particles before and after the recovery process (KS tests, p > 0.05). Titanium particles were too few before and after isolation to analyse statistically, though size and morphologies were similar. Overall the method demonstrated a significant improvement to current particle isolation methods from tissue in terms of sensitivity and efficacy at removal of protein, and has the potential to be used for the isolation of ultra-low wearing total joint replacement materials from periprosthetic tissues. This research presents a novel method for the isolation of wear particles from tissue. Methodology outlined in this work would be a valuable resource for future researchers wishing to isolate particles from tissues, either as part of preclinical testing, or from explants from patients for diagnostic purposes. It is increasingly recognised that analysis of wear particles is critical to evaluating the safety of an orthopaedic device. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ex vivo method to visualize and quantify vascular networks in native and tissue engineered skin.
Egaña, José Tomás; Condurache, Alexandru; Lohmeyer, Jörn Andreas; Kremer, Mathias; Stöckelhuber, Beate M; Lavandero, Sergio; Machens, Hans-Günther
2009-03-01
Neovascularization plays a pivotal role in tissue engineering and tissue regeneration. However, reliable technologies to visualize and quantify blood vessel networks in target tissue areas are still pending. In this work, we introduce a new method which allows comparing vascularization levels in normal and tissue-engineered skin. Normal skin was isolated, and vascular dermal regeneration was analyzed based on tissue transillumination and computerized digital segmentation. For tissue-engineered skin, a bilateral full skin defect was created in a nude mouse model and then covered with a commercially available scaffold for dermal regeneration. After 3 weeks, the whole skin (including scaffold for dermal regeneration) was harvested, and vascularization levels were analyzed. The blood vessel network in the skin was better visualized by transillumination than by radio-angiographic studies, the gold standard for angiographies. After visualization, the whole vascular network was digitally segmented showing an excellent overlapping with the original pictures. Quantification over the digitally segmented picture was performed, and an index of vascularization area (VAI) and length (VLI) of the vessel network was obtained in target tissues. VAI/VLI ratio was calculated to obtain the vessel size index. We present a new technique which has several advantages compared to others, as animals do not require intravascular perfusions, total areas of interest can be quantitatively analyzed at once, and the same target tissue can be processed for further experimental analysis.
Chu, Kai On; Wang, Chi Chiu; Chu, Ching Yan; Rogers, Michael Scott; Choy, Kwong Wai; Pang, Chi Pui
2004-10-25
Catechins levels in organ tissues, particularly liver, determined by published methods are unexpectedly low, probably due to the release of oxidative enzymes, metal ions and reactive metabolites from tissue cells during homogenization and to the pro-oxidant effects of ascorbic acid during sample processing in the presence of metal ions. We describe a new method for simultaneous analysis of eight catechins in tissue: (+)-catechin (C), (-)-epicatechin (EC), (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-catechin gallate (CG), (-)-epicatechin gallate (ECG), (-)-gallocatechin gallate (GCG) and (-)-epigallocatechin gallate (EGCG) (Fig. 1). The new extraction procedure utilized a methanol/ethylacetate/dithionite (2:1:3) mixture during homogenization for simultaneous enzyme precipitation and antioxidant protection. Selective solid phase extraction was used to remove most interfering bio-matrices. Reversed phase HPLC with CoulArray detection was used to determine the eight catechins simultaneously within 25 min. Good linearity (>0.9922) was obtained in the range 20-4000 ng/g. The coefficients of variance (CV) were less than 5%. Absolute recovery ranged from 62 to 96%, accuracy 92.5 +/- 4.5 to 104.9 +/- 6%. The detection limit was 5 ng/g. This method is capable for determining catechins in rat tissues of liver, brain, spleen, and kidney. The method is robust, reproducible, with high recovery, and has been validated for both in vitro and in vivo sample analysis.
Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A
2018-01-01
In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.
Li, Zhi; Gothard, Elizabeth; Coles, Mark C.; Ambler, Carrie A.
2018-01-01
In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time. PMID:29535723
Yang, Bin; Xu, Yanyan; Wu, Yuanyuan; Wu, Huanyu; Wang, Yuan; Yuan, Lei; Xie, Jiabin; Li, Yubo; Zhang, Yanjun
2016-10-15
A rapid, sensitive and selective ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous determination of ten Aconitum alkaloids in rat tissues. The tissue samples were prepared by a simple procedure protein precipitation with acetonitrile containing 0.1% acetic acid and separated on an Agilent XDB C18 column (4.6 mm×50mm, 1.8μm) using gradient elution with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) at a flow rate of 0.3mL/min. The quantitive determination was performed on an electrospray ionization (ESI) triple quadrupole tandem mass spectrometer using selective reaction monitoring (SRM) under positive ionization mode. The established method was fully validated according to the USA Food and Drug Administration (FDA) bioanalytical method validation guidance and the results demonstrated that the method was sensitive and selective with the lowest limits of quantification (LLOQ) at 0.025ng/mL in rat tissue homogenates. Meanwhile, the linearity, precision, accuracy, extraction recovery, matrix effect and stability were all within the required limits of biological sample analysis. After method validation, the validated method was successfully applied to the tissue distribution study on the compatibility of Heishunpian (HSP, the processed product of Aconitum carmichaelii Debx) and Fritillariae thunbergii Bulbus (Zhebeimu, ZBM). The results indicated that the distribution feature of monoester diterpenoid aconitines (MDAs), diester diterpenoid aconitines (DDAs) and non-ester alkaloids (NEAs) were inconsistency, and the compatibility of HSP and ZBM resulted in the distribution amount of DDAs increased in tissues. What's more, the results could provide the reliable basis for systematic research on the substance foundation of the compatibility of the herbal pair. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemical imaging analysis of the brain with X-ray methods
NASA Astrophysics Data System (ADS)
Collingwood, Joanna F.; Adams, Freddy
2017-04-01
Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.
Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M
2008-01-01
A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780
A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process.
Zeng, Jie; Yin, Yixia; Zhang, Li; Hu, Wanghui; Zhang, Chaocan; Chen, Wanyu
2016-03-01
The storage method for living cells is one of the major challenges in cell-based applications. Here, a novel supramolecular gel cryopreservation system (BDTC gel system) is introduced, which can observably increase the neural cell viability during cryopreservation process because this system can (1) confine the ice crystal growth in the porous of BDTC gel system, (2) decrease the amount of ice crystallization and cryopreservation system's freezing point, and (3) reduce the change rates of cell volumes and osmotic shock. In addition, thermoreversible BDTC supramolecular gel is easy to be removed after thawing so it does not hinder the adherence, growth, and proliferation of cells. The results of functionality assessments indicate that BDTC gel system can minimize the neural cell damage during cryopreservation process. This method will be potentially applied in cryopreservation of other cell types, tissues, or organs and will benefit cell therapy, tissue engineering, and organs transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wound diagnostics with microwaves.
Schertlen, Ralph; Pivit, Florian; Wiesbeck, Werner
2002-01-01
The reflection of electromagnetic waves on material surfaces is very depending on the electric and magnetic properties of these materials, on their structure and on the surface texture. Therefore the different layers and dielectric properties of healthy and unsound body tissue also show different reflection behavior towards incidentating electromagnetic waves. By analyzing the reflected signals of incident electromagnetic waves, it is possible to get information about the inner structure of the reflecting body tissue. This effect could then be used for a contactless analysis of body tissue e.g. to gain crucial medical information about healing processes. In this paper the results of several full wave simulations of various tissue structures are presented and the significance and usability of this method is shown.
NASA Astrophysics Data System (ADS)
Zhong, Lingyun; Tong, Hengli; Lv, Mu; Deng, Yufen
2017-09-01
According to the theory of traditional Chinese Medicine (TCM), all Chinese materia medica need to be processed using Pao zhi which is a processing technology before being used in clinic. Ginger juice, made from dried or fresh ginger, is one of the main TCM processing accessories and always used to help change some Chinese materia medica’s properties for its warm or hot nature. The purpose of this paper is to discuss the influence of ginger juice on Rhizoma Coptidis (RC) by determining 5-hydroxytryptamine (5-HT) content and observing morphological changes in the harns tissue of rats. Raw Rhizoma Coptidis (RRC), fresh ginger juice processed Rhizoma Coptidis (FGJPRC), dried juice processed Rhizoma Coptidis (DGJPRC), dried ginger juice (DGJ) and fresh ginger juice (FGJ) were prepared using appropriate methods. Immunohistochemical staining was used to observe the distribution of 5-HT and fluorescence spectrophotometry was applied to determine 5-hydroxytryptamine content in the brain tissue of rats. 5 - HT in brain tissue of the rats of RRC group was distributed most densely, with the highest content. Compared to the blank group, RRC and different ginger processed RC groups could lead to increasing content of 5-HT in rat encephalon, and significant differences in RRC. Compared with the RRC, the 5-HT content in rat encephalon in DGJPRC, FGJPRC, FGJ and DGJ groups reduced, and DGJPRC, FGJPRC groups showed significant difference, FGJ and DGJ groups showed extreme significant differences. The research showed that processing with hot, warm accessories would moderate the cold nature of RC. The cold and hot nature of Traditional Chinese Materia Medica could be expressed by the difference of 5-HT contents and morphological changes of rats’ brain tissue. Simultaneously, the research showed the different excipient of ginger juice would have different effects on the processing of RC.
Staples, Emily; Ingram, Richard James Michael; Atherton, John Christopher; Robinson, Karen
2013-01-01
Sensitive measurement of multiple cytokine profiles from small mucosal tissue biopsies, for example human gastric biopsies obtained through an endoscope, is technically challenging. Multiplex methods such as Luminex assays offer an attractive solution but standard protocols are not available for tissue samples. We assessed the utility of three commercial Luminex kits (VersaMAP, Bio-Plex and MILLIPLEX) to measure interleukin-17A (IL-17) and interferon-gamma (IFNγ) concentrations in human gastric biopsies and we optimised preparation of mucosal samples for this application. First, we assessed the technical performance, limits of sensitivity and linear dynamic ranges for each kit. Next we spiked human gastric biopsies with recombinant IL-17 and IFNγ at a range of concentrations (1.5 to 1000 pg/mL) and assessed kit accuracy for spiked cytokine recovery and intra-assay precision. We also evaluated the impact of different tissue processing methods and extraction buffers on our results. Finally we assessed recovery of endogenous cytokines in unspiked samples. In terms of sensitivity, all of the kits performed well within the manufacturers' recommended standard curve ranges but the MILLIPLEX kit provided most consistent sensitivity for low cytokine concentrations. In the spiking experiments, the MILLIPLEX kit performed most consistently over the widest range of concentrations. For tissue processing, manual disruption provided significantly improved cytokine recovery over automated methods. Our selected kit and optimised protocol were further validated by measurement of relative cytokine levels in inflamed and uninflamed gastric mucosa using Luminex and real-time polymerase chain reaction. In summary, with proper optimisation Luminex kits (and for IL-17 and IFNγ the MILLIPLEX kit in particular) can be used for the sensitive detection of cytokines in mucosal biopsies. Our results should help other researchers seeking to quantify multiple low concentration cytokines in small tissue samples. PMID:23644159
Gel spinning of silk tubes for tissue engineering
Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.
2011-01-01
Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570
Temperature-controlled two-wavelength laser soldering of tissues.
Gabay, Ilan; Abergel, Avraham; Vasilyev, Tamar; Rabi, Yaron; Fliss, Dan M; Katzir, Abraham
2011-11-01
Laser tissue soldering is a method for bonding of incisions in tissues. A biological solder is spread over the cut, laser radiation heats the solder and the underlying cut edges and the incision is bonded. This method offers many advantages over conventional techniques (e.g., sutures). Past researches have shown that laser soldering, using a single laser, does not provide sufficient strength for bonding of cuts in thick (>1 mm) tissues. This study introduces a novel method for laser soldering of thick tissues, under temperature control, using two lasers, emitting two different wavelengths. An experimental system was built, using two lasers: (i) a CO(2) laser, whose radiation heated the upper surface of the tissue and (ii) a GaAs laser that heated an albumin layer under the tissue. An infrared fiber-optic radiometer monitored the temperature of the tissue. All three devices were connected to a computer that controlled the process. A computer simulation was written to optimize the system parameters. The system was tested on tissue phantoms, to validate the simulation and ensure that both the upper and lower sides of the cut were heated, and that the temperature could be controlled on both sides. The system was then used ex vivo to bond longitudinal cuts of lengths ∼12 mm in the esophagi of large farm pigs. The theoretical simulations showed a good stabilization of the temperatures at the upper and lower tissue surfaces at the target values. Experiments on tissue phantom showed a good agreement with these simulations. Incisions in esophagi, removed from large farm pigs, were then successfully bonded. The mean burst pressure was ∼3.6 m of water. This study demonstrated the capability of soldering cuts in thick tissues, paving the way for new types of surgical applications. Copyright © 2010 Wiley Periodicals, Inc.
Elucidation of the mechanisms of optical clearing in collagen tissue with multiphoton imaging
NASA Astrophysics Data System (ADS)
Hovhannisyan, Vladimir; Hu, Po-Sheng; Chen, Shean-Jen; Kim, Chang-Seok; Dong, Chen-Yuan
2013-04-01
Optical clearing (OC) is a promising method to overcome limitations in biomedical depth-resolved optical studies. Mechanisms of OC in purified bovine Achilles tendon, chicken skin, and chicken tendon were studied using time-lapsed, three-dimensional second harmonic generation (SHG) and two-photon fluorescence microscopic imaging. Quantified nonlinear optical measurements allowed temporal separation of two processes in collagen OC with glycerol. The first one is a fast process of tissue dehydration accompanied with collagen shrinkage and the second relatively slow process is glycerol penetration into the interfibrillar space of collagen alongside with CF swelling. The use of 50% glycerol induced less-expressed OC via partial substitution of water molecules with glycerol molecules. We also found that phosphate-buffered saline- and glycerol-treatments were reversible, and fiber morphology and SHG signal intensity were recovered after the removal of immersion agents. It was shown that tissue OC was a dynamic process and elucidation of its physical mechanisms may help choose optimal diagnostic, treatment, and modification regimes for collagen-based as well as other types of biomaterials.
Detection of hydroxyapatite in calcified cardiovascular tissues.
Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan
2012-10-01
The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Le, Tao; Yu, Huan; Niu, Xiaodong
2015-05-15
An indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and time-resolved fluoroimmunoassay (TR-FIA) based on an anti-N-butylquinoxaline-2-carboxamide (BQCA) monoclonal antibody were standardized and validated for quinoxaline-2-carboxylic acid (QCA) screening in animal tissues and its performance were compared to HPLC. The sensitivities obtained for edible tissue extracts were 1.62 and 1.12 ng ml(-1) for ic-ELISA and TR-FIA detection, respectively. Two samples were spiked with QCA and analyzed by both methods. The recovery values ranged from 92.6% to 112.2% and the coefficients of variation were less than 15% for QCA spiking into swine tissue samples at concentrations of 2.5-50.0 μg kg(-1). Excellent correlations (r(2)=0.987-0.996) of the ic-ELISA/HPLC and TR-FIA/HPLC data were observed for processed samples. The results demonstrated that the ic-ELISA and TR-FIA methods were rapid and accurate for the residue detection of QCA in animal tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Thermo-Poromechanics Finite Element Model for Predicting Arterial Tissue Fusion
NASA Astrophysics Data System (ADS)
Fankell, Douglas P.
This work provides modeling efforts and supplemental experimental work performed towards the ultimate goal of modeling heat transfer, mass transfer, and deformation occurring in biological tissue, in particular during arterial fusion and cutting. Developing accurate models of these processes accomplishes two goals. First, accurate models would enable engineers to design devices to be safer and less expensive. Second, the mechanisms behind tissue fusion and cutting are widely unknown; models with the ability to accurately predict physical phenomena occurring in the tissue will allow for insight into the underlying mechanisms of the processes. This work presents three aims and the efforts in achieving them, leading to an accurate model of tissue fusion and more broadly the thermo-poromechanics (TPM) occurring within biological tissue. Chapters 1 and 2 provide the motivation for developing accurate TPM models of biological tissue and an overview of previous modeling efforts. In Chapter 3, a coupled thermo-structural finite element (FE) model with the ability to predict arterial cutting is offered. From the work presented in Chapter 3, it became obvious a more detailed model was needed. Chapter 4 meets this need by presenting small strain TPM theory and its implementation in an FE code. The model is then used to simulate thermal tissue fusion. These simulations show the model's promise in predicting the water content and temperature of arterial wall tissue during the fusion process, but it is limited by its small deformation assumptions. Chapters 5-7 attempt to address this limitation by developing and implementing a large deformation TPM FE model. Chapters 5, 6, and 7 present a thermodynamically consistent, large deformation TPM FE model and its ability to simulate tissue fusion. Ultimately, this work provides several methods of simulating arterial tissue fusion and the thermo-poromechanics of biological tissue. It is the first work, to the author's knowledge, to simulate the fully coupled TPM of biological tissue and the first to present a fully coupled large deformation TPM FE model. In doing so, a stepping stone for more advanced modeling of biological tissue has been laid.
Extra-dimensional Demons: A method for incorporating missing tissue in deformable image registration
Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Reh, Douglas D.; Gallia, Gary L.; Siewerdsen, Jeffrey H.
2012-01-01
Purpose: A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. Methods: A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to “tissue” in the moving image and “air” in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed “extra-dimensional” Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Results: Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate “ejection” of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Conclusions: Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate “ejection” of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance. PMID:22957637
Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B
2009-08-01
This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.
Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images
NASA Astrophysics Data System (ADS)
Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne
2014-03-01
Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.
Yohannes, Indra; Kolditz, Daniel; Langner, Oliver; Kalender, Willi A
2012-03-07
Tissue- and water-equivalent materials (TEMs) are widely used in quality assurance and calibration procedures, both in radiodiagnostics and radiotherapy. In radiotherapy, particularly, the TEMs are often used for computed tomography (CT) number calibration in treatment planning systems. However, currently available TEMs may not be very accurate in the determination of the calibration curves due to their limitation in mimicking radiation characteristics of the corresponding real tissues in both low- and high-energy ranges. Therefore, we are proposing a new formulation of TEMs using a stoichiometric analysis method to obtain TEMs for the calibration purposes. We combined the stoichiometric calibration and the basic data method to compose base materials to develop TEMs matching standard real tissues from ICRU Report 44 and 46. First, the CT numbers of six materials with known elemental compositions were measured to get constants for the stoichiometric calibration. The results of the stoichiometric calibration were used together with the basic data method to formulate new TEMs. These new TEMs were scanned to validate their CT numbers. The electron density and the stopping power calibration curves were also generated. The absolute differences of the measured CT numbers of the new TEMs were less than 4 HU for the soft tissues and less than 22 HU for the bone compared to the ICRU real tissues. Furthermore, the calculated relative electron density and electron and proton stopping powers of the new TEMs differed by less than 2% from the corresponding ICRU real tissues. The new TEMs which were formulated using the proposed technique increase the simplicity of the calibration process and preserve the accuracy of the stoichiometric calibration simultaneously.
Fabricating optical phantoms to simulate skin tissue properties and microvasculatures
NASA Astrophysics Data System (ADS)
Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald
2015-03-01
This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.
Poorly processed reusable surface disinfection tissue dispensers may be a source of infection
2014-01-01
Background Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Methods Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. Results 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Conclusions Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice. PMID:24447780
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
Liu, Fang; Velikina, Julia V; Block, Walter F; Kijowski, Richard; Samsonov, Alexey A
2017-02-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model
Velikina, Julia V.; Block, Walter F.; Kijowski, Richard; Samsonov, Alexey A.
2017-01-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexibl representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplifie treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure. PMID:28113746
Quantifying Three-Dimensional Morphology and RNA from Individual Embryos
Green, Rebecca M.; Leach, Courtney L.; Hoehn, Natasha; Marcucio, Ralph S.; Hallgrímsson, Benedikt
2017-01-01
Quantitative analysis of morphogenesis aids our understanding of developmental processes by providing a method to link changes in shape with cellular and molecular processes. Over the last decade many methods have been developed for 3D imaging of embryos using microCT scanning to quantify the shape of embryos during development. These methods generally involve a powerful, cross-linking fixative such as paraformaldehyde to limit shrinkage during the CT scan. However, the extended time frames that these embryos are incubated in such fixatives prevent use of the tissues for molecular analysis after microCT scanning. This is a significant problem because it limits the ability to correlate variation in molecular data with morphology at the level of individual embryos. Here, we outline a novel method that allows RNA, DNA or protein isolation following CT scan while also allowing imaging of different tissue layers within the developing embryo. We show shape differences early in craniofacial development (E11.5) between common mouse genetic backgrounds, and demonstrate that we are able to generate RNA from these embryos after CT scanning that is suitable for downstream RT-PCR and RNAseq analyses. PMID:28152580
NASA Astrophysics Data System (ADS)
Nallala, Jayakrupakar; Gobinet, Cyril; Diebold, Marie-Danièle; Untereiner, Valérie; Bouché, Olivier; Manfait, Michel; Sockalingum, Ganesh Dhruvananda; Piot, Olivier
2012-11-01
Innovative diagnostic methods are the need of the hour that could complement conventional histopathology for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded tissue arrays.
Detection of lobular structures in normal breast tissue.
Apou, Grégory; Schaadt, Nadine S; Naegel, Benoît; Forestier, Germain; Schönmeyer, Ralf; Feuerhake, Friedrich; Wemmert, Cédric; Grote, Anne
2016-07-01
Ongoing research into inflammatory conditions raises an increasing need to evaluate immune cells in histological sections in biologically relevant regions of interest (ROIs). Herein, we compare different approaches to automatically detect lobular structures in human normal breast tissue in digitized whole slide images (WSIs). This automation is required to perform objective and consistent quantitative studies on large data sets. In normal breast tissue from nine healthy patients immunohistochemically stained for different markers, we evaluated and compared three different image analysis methods to automatically detect lobular structures in WSIs: (1) a bottom-up approach using the cell-based data for subsequent tissue level classification, (2) a top-down method starting with texture classification at tissue level analysis of cell densities in specific ROIs, and (3) a direct texture classification using deep learning technology. All three methods result in comparable overall quality allowing automated detection of lobular structures with minor advantage in sensitivity (approach 3), specificity (approach 2), or processing time (approach 1). Combining the outputs of the approaches further improved the precision. Different approaches of automated ROI detection are feasible and should be selected according to the individual needs of biomarker research. Additionally, detected ROIs could be used as a basis for quantification of immune infiltration in lobular structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ozkan, Seher
Tissue engineering involves the fabrication of biodegradable scaffolds, on which various types of cells are grown, to provide tissue constructs for tissue repair/regeneration. Native tissues have complex structures, with functions and properties changing spatially and temporally, and require special tailoring of tissue engineering scaffolds to allow mimicking of their complex elegance. The understanding of the rheological behavior of the biodegradable polymer and the thermo-mechanical history that the polymer experiences during processing is critical in fabricating scaffolds with appropriate microstructural distributions. This study has first focused on the rheological material functions of various gel-like fluids including biofluids and hydrogels, which can emulate the viscoelastic behavior of biofluids. Viscoplasticity and wall slip were recognized as key attributes of such systems. Furthermore, a new technology base involving twin-screw extrusion/spiral winding (TSESW) process was developed for the shaping of functionally-graded scaffolds. This novel scaffold fabrication technology was applied to the development of polycaprolactone (PCL) scaffolds, incorporated with tricalcium phosphate nanoparticles and various porogens in graded fashion. The protein encapsulation and controlled release capabilities of the TSESW process was also demonstrated by dispersing bovine serum albumin (BSA) protein into the PCL matrix. Effects of processing conditions and porosity distributions on compressive properties, surface topography, encapsulation efficiency, release profiles and the secondary structure of BSA were investigated. The PCL scaffolds were determined to be biocompatible, with the proliferation rates of human fetal osteoblast cells (hFOB) increasing with increasing porosity and decreasing concentration of TCP. BSA proteins were determined to be denatured to a greater extent with melt extrusion in the 80-100°C range (in comparison to wet extrusion using organic solvents). Finally, the surface topographies of melt processed poly(L-lactic acid) (ranging from nanoindentations to spherulitic protrusions) were determined to affect the orientation directions of fibroblast and osteoblast-like cells and the spherulitic surfaces giving rise to reduced proliferation rates of fibroblasts.
NASA Astrophysics Data System (ADS)
Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.
2018-04-01
The method of Doppler color mapping of one specific (previously chosen) velocity in a turbulent flow inside biological tissues using optical coherence tomography is described. The key features of the presented method are: the raw data are separated into three parts, corresponding to the unmoving biological tissue, the positively and negatively directed biological fluid flows; the further independent signal processing procedure yields the structure image and two images of the chosen velocity, which are then normalised, encoded and joined. The described method can be used to obtain in real time the anatomical maps of the chosen velocities in normal and pathological states. The described method can be applied not only in optical coherence tomography, but also in endoscopic and Doppler ultrasonic medical imaging systems.
Deep learning classifier with optical coherence tomography images for early dental caries detection
NASA Astrophysics Data System (ADS)
Karimian, Nima; Salehi, Hassan S.; Mahdian, Mina; Alnajjar, Hisham; Tadinada, Aditya
2018-02-01
Dental caries is a microbial disease that results in localized dissolution of the mineral content of dental tissue. Despite considerable decline in the incidence of dental caries, it remains a major health problem in many societies. Early detection of incipient lesions at initial stages of demineralization can result in the implementation of non-surgical preventive approaches to reverse the demineralization process. In this paper, we present a novel approach combining deep convolutional neural networks (CNN) and optical coherence tomography (OCT) imaging modality for classification of human oral tissues to detect early dental caries. OCT images of oral tissues with various densities were input to a CNN classifier to determine variations in tissue densities resembling the demineralization process. The CNN automatically learns a hierarchy of increasingly complex features and a related classifier directly from training data sets. The initial CNN layer parameters were randomly selected. The training set is split into minibatches, with 10 OCT images per batch. Given a batch of training patches, the CNN employs two convolutional and pooling layers to extract features and then classify each patch based on the probabilities from the SoftMax classification layer (output-layer). Afterward, the CNN calculates the error between the classification result and the reference label, and then utilizes the backpropagation process to fine-tune all the layer parameters to minimize this error using batch gradient descent algorithm. We validated our proposed technique on ex-vivo OCT images of human oral tissues (enamel, cortical-bone, trabecular-bone, muscular-tissue, and fatty-tissue), which attested to effectiveness of our proposed method.
Treweek, Jennifer B; Chan, Ken Y; Flytzanis, Nicholas C; Yang, Bin; Deverman, Benjamin E; Greenbaum, Alon; Lignell, Antti; Xiao, Cheng; Cai, Long; Ladinsky, Mark S; Bjorkman, Pamela J; Fowlkes, Charless C; Gradinaru, Viviana
2015-11-01
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
Face-based smoothed finite element method for real-time simulation of soft tissue
NASA Astrophysics Data System (ADS)
Mendizabal, Andrea; Bessard Duparc, Rémi; Bui, Huu Phuoc; Paulus, Christoph J.; Peterlik, Igor; Cotin, Stéphane
2017-03-01
In soft tissue surgery, a tumor and other anatomical structures are usually located using the preoperative CT or MR images. However, due to the deformation of the concerned tissues, this information suffers from inaccuracy when employed directly during the surgery. In order to account for these deformations in the planning process, the use of a bio-mechanical model of the tissues is needed. Such models are often designed using the finite element method (FEM), which is, however, computationally expensive, in particular when a high accuracy of the simulation is required. In our work, we propose to use a smoothed finite element method (S-FEM) in the context of modeling of the soft tissue deformation. This numerical technique has been introduced recently to overcome the overly stiff behavior of the standard FEM and to improve the solution accuracy and the convergence rate in solid mechanics problems. In this paper, a face-based smoothed finite element method (FS-FEM) using 4-node tetrahedral elements is presented. We show that in some cases, the method allows for reducing the number of degrees of freedom, while preserving the accuracy of the discretization. The method is evaluated on a simulation of a cantilever beam loaded at the free end and on a simulation of a 3D cube under traction and compression forces. Further, it is applied to the simulation of the brain shift and of the kidney's deformation. The results demonstrate that the method outperforms the standard FEM in a bending scenario and that has similar accuracy as the standard FEM in the simulations of the brain-shift and of the kidney's deformation.
Finite-Element Methods for Real-Time Simulation of Surgery
NASA Technical Reports Server (NTRS)
Basdogan, Cagatay
2003-01-01
Two finite-element methods have been developed for mathematical modeling of the time-dependent behaviors of deformable objects and, more specifically, the mechanical responses of soft tissues and organs in contact with surgical tools. These methods may afford the computational efficiency needed to satisfy the requirement to obtain computational results in real time for simulating surgical procedures as described in Simulation System for Training in Laparoscopic Surgery (NPO-21192) on page 31 in this issue of NASA Tech Briefs. Simulation of the behavior of soft tissue in real time is a challenging problem because of the complexity of soft-tissue mechanics. The responses of soft tissues are characterized by nonlinearities and by spatial inhomogeneities and rate and time dependences of material properties. Finite-element methods seem promising for integrating these characteristics of tissues into computational models of organs, but they demand much central-processing-unit (CPU) time and memory, and the demand increases with the number of nodes and degrees of freedom in a given finite-element model. Hence, as finite-element models become more realistic, it becomes more difficult to compute solutions in real time. In both of the present methods, one uses approximate mathematical models trading some accuracy for computational efficiency and thereby increasing the feasibility of attaining real-time up36 NASA Tech Briefs, October 2003 date rates. The first of these methods is based on modal analysis. In this method, one reduces the number of differential equations by selecting only the most significant vibration modes of an object (typically, a suitable number of the lowest-frequency modes) for computing deformations of the object in response to applied forces.
Nano-biomimetics for nano/micro tissue regeneration.
Singh, Dolly; Singh, Deepti; Zo, Sunmi; Han, Sung Soo
2014-10-01
Nanostructured biomimetics have recently shown great promise in the field of tissue engineering. They can be used as nanoscaffolds and tailored at the molecular level. The scaffold topography closely resembles the native extracellular matrix in terms of framing, porosity and bio-functionality. This review covers the approaches used for biomimetic fabrication, including soft lithography, the plasmonic nanohybrid matrix method and multilayer self-assembly scaffolds for tissue regeneration. It brings together knowledge from different arenas about the synthesis, characterization and functionalization of matrices to accelerate the tissue regeneration process. Every tissue in the body presents different challenges and requires a specific fabrication process designed to identify and mirror the particular organ. For example, microfluidics systems aim to mimic the extracellular matrix of vascular and cartilage tissue, and these systems have different parts with completely different mechanical strength, cellular adhesion and interplay between matrix and cells. A fully functional nanomatrix designed by a self-assembling methodology for use as a vascular tissue engineering scaffold needs to have intrinsic microvessels that facilitate the transportation of metabolites and nutrients. Similarly, in the case of peripheral nerve regeneration, a scaffold needs to have sufficient mechanical strength to protect the regenerating tissue, yet be biodegradable enough to avoid a possible second surgery. To enhance the functionality of scaffolds, increasing focus has been placed on in vitro and in vivo research to achieve optimal scaffold design. Nanobiomimetics unarguably offer the most suitable physicochemical scaffold properties for tissue regeneration.
NASA Technical Reports Server (NTRS)
Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.
Goto, N
1987-09-01
This paper describes a new series of staining methods which can discriminatively demonstrate every structure of the nervous system, including axons and capillaries, in animal and human materials. Methods described in this paper consist of one primary stain, luxol fast blue-periodic acid Schiff-hematoxylin (LPH) and six different subsidiary staining methods. The LPH triple stain can precisely differentiate the following structures: neurons (Nissl bodies, cytoplasm, nuclear membrane and nucleolus), various kinds of nuclei (glia, ependyma, endothelium, leucocyte, connective tissue, etc.), myelin sheaths, neuronal processes (axons and dendrites), reacted glial cell bodies (protoplasmic astrocytes, foamy cells, etc.), blood vessels (arteries, veins and capillaries), meninges, intervening connective tissue, erythrocytes, lipofuscin granules, amyloid bodies, and others. Subsidiary staining methods are also described briefly. Applications are discussed in the context of staining technology and neuromorphological research.
Mathematical modelling of tissue formation in chondrocyte filter cultures.
Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J
2011-12-17
In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.
NASA Astrophysics Data System (ADS)
Märk, Julia; Ruschke, Karen; Dortay, Hakan; Schreiber, Isabelle; Sass, Andrea; Qazi, Taimoor; Pumberger, Matthias; Laufer, Jan
2014-03-01
The capability to image stem cells in vivo in small animal models over extended periods of time is important to furthering our understanding of the processes involved in tissue regeneration. Photoacoustic imaging is suited to this application as it can provide high resolution (tens of microns) absorption-based images of superficial tissues (cm depths). However, stem cells are rare, highly migratory, and can divide into more specialised cells. Genetic labelling strategies are therefore advantageous for their visualisation. In this study, methods for the transfection and viral transduction of mesenchymal stem cells with reporter genes for the co-expression of tyrosinase and a fluorescent protein (mCherry). Initial photoacoustic imaging experiments of tyrosinase expressing cells in small animal models of tissue regeneration were also conducted. Lentiviral transduction methods were shown to result in stable expression of tyrosinase and mCherry in mesenchymal stem cells. The results suggest that photoacoustic imaging using reporter genes is suitable for the study of stem cell driven tissue regeneration in small animals.
Theuerkauf, Regine-Susanne; Ahammer, Helmut; Siwetz, Monika; Helige, Christine; Dohr, Gottfried; Walcher, Wolfgang; Palacio, José Ramón; Martinez, Paz; Sedlmayr, Peter
2010-05-01
We report a new morphometric method for measurement of the amount of cell death in three-dimensional multicellular spheroids of the trophoblast-like cell line AC1-M59 and of cultured pieces of decidua tissue (decidua spheroids) in response to a cytotoxic agent. The viability of the spheroids was assessed by adding propidium iodide to the culture medium at the end of the toxic treatment. On fluorescence and brightfield images of serial cryosections the areas of propidium iodide fluorescence and the entire corresponding spheroids were measured by applying digital image processing and ratiometrical quantification. As an example, we evaluated the cytotoxic effect of hydrogen peroxide on both types of spheroids. The relative potency of hydrogen peroxide to induce tissue damage was assessed quantitatively for determination of the minimal concentration that leads to an increase in cytotoxicity. The method presented suggests general applicability for in vitro determination of toxicity against tissues. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing
Wüst, Silke; Müller, Ralph; Hofmann, Sandra
2011-01-01
Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing. PMID:24956301
Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing.
Wüst, Silke; Müller, Ralph; Hofmann, Sandra
2011-08-04
Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing.
Gonzalez, Maria E; Anthon, Gordon E; Barrett, Diane M
2010-09-01
Two different analytical methods were evaluated for their capacity to provide quantitative information on onion cell membrane permeability and integrity after high pressure and thermal processing and to study the impact of these processing treatments on cell compartmentalization and texture quality. To determine changes in cell membrane permeability and/or integrity the methodologies utilized were: (1) measurement of a biochemical product, pyruvate, formed as a result of membrane permeabilization followed by enzymatic activity and (2) leakage of electrolytes into solution. These results were compared to previously determined methods that quantified cell viability and ¹H-NMR T(2) of onions. These methods allowed for the monitoring of changes in the plasma and tonoplast membranes after high pressure or thermal processing. High pressure treatments consisted of 5 min holding times at 50, 100, 200, 300, or 600 MPa. Thermal treatments consisted of 30 min water bath exposure to 40, 50, 60, 70, or 90 °C. There was strong agreement between the methods in the determination of the ranges of high pressure and temperature that induce changes in the integrity of the plasma and tonoplast membranes. Membrane rupture could clearly be identified at 300 MPa and above in high pressure treatments and at 60 °C and above in the thermal treatments. Membrane destabilization effects could already be visualized following the 200 MPa and 50 °C treatments. The texture of onions was influenced by the state of the membranes and was abruptly modified once membrane integrity was lost. In this study, we used chemical, biochemical, and histological techniques to obtain information on cell membrane permeability and onion tissue integrity after high pressure and thermal processing. Because there was strong agreement between the various methods used, it is possible to implement something relatively simple, such as ion leakage, into routine quality assurance measurements to determine the severity of preservation methods and the shelf life of processed vegetables.
DEEP--a tool for differential expression effector prediction.
Degenhardt, Jost; Haubrock, Martin; Dönitz, Jürgen; Wingender, Edgar; Crass, Torsten
2007-07-01
High-throughput methods for measuring transcript abundance, like SAGE or microarrays, are widely used for determining differences in gene expression between different tissue types, dignities (normal/malignant) or time points. Further analysis of such data frequently aims at the identification of gene interaction networks that form the causal basis for the observed properties of the systems under examination. To this end, it is usually not sufficient to rely on the measured gene expression levels alone; rather, additional biological knowledge has to be taken into account in order to generate useful hypotheses about the molecular mechanism leading to the realization of a certain phenotype. We present a method that combines gene expression data with biological expert knowledge on molecular interaction networks, as described by the TRANSPATH database on signal transduction, to predict additional--and not necessarily differentially expressed--genes or gene products which might participate in processes specific for either of the examined tissues or conditions. In a first step, significance values for over-expression in tissue/condition A or B are assigned to all genes in the expression data set. Genes with a significance value exceeding a certain threshold are used as starting points for the reconstruction of a graph with signaling components as nodes and signaling events as edges. In a subsequent graph traversal process, again starting from the previously identified differentially expressed genes, all encountered nodes 'inherit' all their starting nodes' significance values. In a final step, the graph is visualized, the nodes being colored according to a weighted average of their inherited significance values. Each node's, or sub-network's, predominant color, ranging from green (significant for tissue/condition A) over yellow (not significant for either tissue/condition) to red (significant for tissue/condition B), thus gives an immediate visual clue on which molecules--differentially expressed or not--may play pivotal roles in the tissues or conditions under examination. The described method has been implemented in Java as a client/server application and a web interface called DEEP (Differential Expression Effector Prediction). The client, which features an easy-to-use graphical interface, can freely be downloaded from the following URL: http://deep.bioinf.med.uni-goettingen.de.
Optical Microangiography Based on Optical Coherence Tomography
NASA Astrophysics Data System (ADS)
Reif, Roberto; Wang, Ruikang K.
Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.
Reproducible MRI Measurement of Adipose Tissue Volumes in Genetic and Dietary Rodent Obesity Models
Johnson, David H.; Flask, Chris A.; Ernsberger, Paul R.; Wong, Wilbur C. K.; Wilson, David L.
2010-01-01
Purpose To develop ratio MRI [lipid/(lipid+water)] methods for assessing lipid depots and compare measurement variability to biological differences in lean controls (spontaneously hypertensive rats, SHRs), dietary obese (SHR-DO), and genetic/dietary obese (SHROBs) animals. Materials and Methods Images with and without CHESS water-suppression were processed using a semi-automatic method accounting for relaxometry, chemical shift, receive coil sensitivity, and partial volume. Results Partial volume correction improved results by 10–15%. Over six operators, volume variation was reduced to 1.9 ml from 30.6 ml for single-image-analysis with intensity inhomogeneity. For three acquisitions on the same animal, volume reproducibility was <1%. SHROBs had 6X visceral and 8X subcutaneous adipose tissue than SHRs. SHR-DOs had enlarged visceral depots (3X SHRs). SHROB had significantly more subcutaneous adipose tissue, indicating a strong genetic component to this fat depot. Liver ratios in SHR-DO and SHROB were higher than SHR, indicating elevated fat content. Among SHROBs, evidence suggested a phenotype SHROB* having elevated liver ratios and visceral adipose tissue volumes. Conclusion Effects of diet and genetics on obesity were significantly larger than variations due to image acquisition and analysis, indicating that these methods can be used to assess accumulation/depletion of lipid depots in animal models of obesity. PMID:18821617
Larouche, Danielle; Cantin-Warren, Laurence; Desgagné, Maxime; Guignard, Rina; Martel, Israël; Ayoub, Akram; Lavoie, Amélie; Gauvin, Robert; Auger, François A.; Moulin, Véronique J.; Germain, Lucie
2016-01-01
Abstract There is a clinical need for skin substitutes to replace full-thickness skin loss. Our group has developed a bilayered skin substitute produced from the patient's own fibroblasts and keratinocytes referred to as Self-Assembled Skin Substitute (SASS). After cell isolation and expansion, the current time required to produce SASS is 45 days. We aimed to optimize the manufacturing process to standardize the production of SASS and to reduce production time. The new approach consisted in seeding keratinocytes on a fibroblast-derived tissue sheet before its detachment from the culture plate. Four days following keratinocyte seeding, the resulting tissue was stacked on two fibroblast-derived tissue sheets and cultured at the air–liquid interface for 10 days. The resulting total production time was 31 days. An alternative method adapted to more contractile fibroblasts was also developed. It consisted in adding a peripheral frame before seeding fibroblasts in the culture plate. SASSs produced by both new methods shared similar histology, contractile behavior in vitro and in vivo evolution after grafting onto mice when compared with SASSs produced by the 45-day standard method. In conclusion, the new approach for the production of high-quality human skin substitutes should allow an earlier autologous grafting for the treatment of severely burned patients. PMID:27872793
[Biofabrication: new approaches for tissue regeneration].
Horch, Raymund E; Weigand, Annika; Wajant, Harald; Groll, Jürgen; Boccaccini, Aldo R; Arkudas, Andreas
2018-04-01
The advent of Tissue Engineering (TE) in the early 1990ies was fostered by the increasing need for functional tissue and organ replacement. Classical TE was based on the combination of carrier matrices, cells and growth factors to reconstitute lost or damaged tissue and organs. Despite considerable results in vitro and in experimental settings the lack of early vascularization has hampered its translation into daily clinical practice so far. A new field of research, called "biofabrication" utilizing latest 3D printing technologies aims at hierarchically and spatially incorporating different cells, biomaterials and molecules into a matrix to alleviate a directed maturation of artificial tissue. A literature research of the relevant publications regarding biofabrication and bioprinting was performed using the PubMed data base. Relevant papers were selected and evaluated with secondary analysis of specific citations on the bioprinting techniques. 180 relevant papers containing the key words were identified and evaluated. Basic principles into the developing field of bioprinting technology could be discerned. Key elements comprise the high-throughput assembly of cells and the fabrication of complex and functional hierarchically organized tissue constructs. Five relevant technological principles for bioprinting were identified, such as stereolithography, extrusion-based printing, laser-assisted printing, inkjet-based printing and nano-bioprinting. The different technical methods of 3D printing were found to be associated with various positive but also negative effects on cells and proteins during the printing process. Research efforts in this field obviously aim towards the development of optimizing the so called bioinks and the printing technologies. This review details the evolution of the classical methods of TE in Regenerative Medicine into the evolving field of biofabrication by bioprinting. The advantages of 3D bioprinting over traditional tissue engineering techniques are based on the assembling of cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures, that can be utilized not only to potentially produce functional replacement tissues or organs but also to serve as new models for basic research. Mimicking the stromal microenvironment of tumor cells to study the process of tumor formation and progression, metastasis, angiogenesis and modulation of the associated processes is one of these applications under research. To this end a close collaboration of specialists from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery will be necessary to develop future strategies that can overcome current limitations of tissue generation. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Sapozhnikova, Veronika V.; Shakhova, Natalia M.; Kamensky, Vladislav A.; Kuranov, Roman V.; Loshenov, Victor B.; Petrova, Svetlana A.
2003-07-01
A new approach to improving the diagnostic value of optical methods is suggested, which is based on a complementary investigation of different optical parameters of biotissues. The aim of this paper is comparative study of the feasibility of two optical methods - fluorescence spectroscopy and optical coherence tomography - for visualization of borders of neoplastic processes in the uterine cervix and vulva. Fluorescence spectroscopy is based on the detection of biochemical and optical coherence tomography on backscattering properties in norm and pathological changes of tissues. By means of these optical methods changes in biochemical and morphological properties of tissues were investigated. A parallel analysis of these two optical methods and histology from the center of tumors and their optical borders was made. Thirteen female patients with neoplastic changes in uterine cervix and vulva were enrolled in this study. The borders of the tumor determined by optical methods (fluorescence spectroscopy and optical coherence tomography) are coinciding with the biopsy proved ones. In addition, OCT and fluorescence borders of tumor in the uterine cervix and vulva exceeds colposcopically detectable borders, the averaging difference 2 mm. In future optical methods would considerably enhance diagnostic accuracy of conventional methods used in oncogynecology.
High throughput DNA damage quantification of human tissue with home-based collection device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costes, Sylvain V.; Tang, Jonathan; Yannone, Steven M.
Kits, methods and systems for providing a service to provide a subject with information regarding the state of a subject's DNA damage. Collection, processing and analysis of samples are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, G.M.; Snezhko, A.D.
1961-08-28
A modified polarographic method has been developed to determine continuously variations in the oxygen content of tissue by inserting a platinum needle as an electrode directly into the tissue of a living animal. The''oxygen test," in which the animal is allowed to breathe a controlled amount of pure oxygen, gives information about the rate of utilization of oxygen by the tissue. Ordinarily the increase in the oxygen diffusion current DELTA I is stable in form and amplitude for any given experimental animal and for a given location of the electrode. Thus, after a total irradiation of 700 to 1000 r,more » the value of DELTA I increased by a factor of two. A decrease in the ability of tissue to utilize oxygen after irradiation is indicated. Local irradiation gives a low value of DELTA I, and indicates that the unirradiated cells utilize oxygen at a faster rate than before irradiation. The oxygen content of the tissue was observed to vary rhythmically with two periods. One rhythm had a small amplitude and a high frequency of 15 to 20 oscillations per minute, and the other rhythm had a large amplitude and a low frequency of 2 to 3 oscillations per minute. Irradiation leads to a suppression of this rhythmic oscillation in the oxygen content of the tissue. These effects are most readily apparent in the irradiation of growing rootlets (Vicia fabia) and of a multiplying yeast culture. This method sheds some light on the course of chemical processes such as oxidation that occur in the cell as a function of the period of time after irradiation. (TTT)« less
Danišovič, Ľ.; Majidi, A.; Varga, I.
2015-01-01
Transmission electron microscopy reveals ultrastructural details of cells, and it is a valuable method for studying cell organelles. That is why we used this method for detailed morphological description of different adult tissue-derived stem cells, focusing on the morphological signs of their functions (proteosynthetic activity, exchange with external environment, etc.) and their comparison. Preparing a specimen from the cell culture suitable for transmission electron microscopy is, however, much more challenging than routine tissue processing for normal histological examination. There are several issues that need to be solved while working with cell pellets instead of solid tissue. Here we describe a simple protocol for the isolation and culture of mesenchymal stem cells from different adult tissues, with applications to stem cell biology and regenerative medicine. Since we are working with population of cells that was obtained after many days of passaging, very efficient and gentle procedures are highly necessary. We demonstrated that our semi-conservative approach regarding to histological techniques and processing of cells for transmission electron microscopy is a well reproducible procedure which results in quality pictures and images of cell populations with minimum distortions and artifacts. We also commented about riskiest steps and histochemical issues (e.g., precise pH, temperature) while preparing the specimen. We bring full and detailed procedures of fixation, post-fixation, infiltration, embedding, polymerization and contrasting of cell obtained from in vitro cell and tissue cultures, with modifications according to our experience. All this steps are essential for us to know more about adult stem cells derived from different sources or about other random cell populations. The knowledge about detailed ultra-structure of adult stem cells cultured in vitro are also essential for their using in regenerative medicine and tissue engineering. PMID:26708176
Verweij, P E; Smedts, F; Poot, T; Bult, P; Hoogkamp-Korstanje, J A; Meis, J F
1996-01-01
AIMS: To evaluate the performance of an immunoperoxidase stain using the monoclonal antibody EB-A1 to detect Aspergillus species in formalin fixed, paraffin wax embedded tissue. METHODS: The monoclonal antibody EB-A1 directed against galactomannan was used to detect Aspergillus species in 23 patients with suspected or confirmed invasive aspergillosis. Immunostaining was performed on formalin fixed, paraffin wax embedded tissue using the streptavidin-biotin method and compared with conventional haematoxylin and eosin, periodic acid-Schiff, and Gomori-Grocott stains. Results of immunostaining were semiquantitatively analysed with regard to both intensity of staining and number of positively staining micro-organisms. Tissue sections from 16 patients with confirmed invasive mycoses due to Candida species, Apophysomyces elegans, Rhizopus oryzae, Pseudallescheria boydii and Histoplasma capsulatum were used as controls. RESULTS: In 19 (83%) of 23 cases invasive aspergillosis was confirmed by both histological examination and culture (18 Aspergillus fumigatus and one A flavus). Immunoperoxidase stains were positive in 17 (89%) of 19 cases including one case of disseminated infection due to A flavus. Furthermore, the immunoperoxidase stain was positive in a culture negative tissue section with histological evidence of mycelial development, indicating the presence of Aspergillus species. Some cross-reactivity was observed with the highly related fungus P boydii, although the number of mycelial elements that stained was low. CONCLUSIONS: Immunoperoxidase staining using the monoclonal antibody EB-A1 performs well on routinely processed tissue sections and permits detection and generic identification of Aspergillus species, although it was no better than conventional histopathology in identifying the presence of an infection. An additional advantage is that the immunostain may help to provide an aetiological diagnosis when cultures remain negative. Images PMID:8943743
Schmitt, Christopher J.; Finger, Susan E.
1987-01-01
The influence of sample preparation on measured concentrations of eight elements in the edible tissues of two black basses (Centrarchidae), two catfishes (Ictaluridae), and the black redhorse,Moxostoma duquesnei (Catostomidae) from two rivers in southeastern Missouri contaminated by mining and related activities was investigated. Concentrations of Pb, Cd, Cu, Zn, Fe, Mn, Ba, and Ca were measured in two skinless, boneless samples of axial muscle from individual fish prepared in a clean room. One sample (normally-processed) was removed from each fish with a knife in a manner typically used by investigators to process fish for elemental analysis and presumedly representative of methods employed by anglers when preparing fish for home consumption. A second sample (clean-processed) was then prepared from each normally-processed sample by cutting away all surface material with acid-cleaned instruments under ultraclean conditions. The samples were analyzed as a single group by atomic absorption spectrophotometry. Of the elements studied, only Pb regularly exceeded current guidelines for elemental contaminants in foods. Concentrations were high in black redhorse from contaminated sites, regardless of preparation method; for the other fishes, whether or not Pb guidelines were exceeded depended on preparation technique. Except for Mn and Ca, concentrations of all elements measured were significantly lower in cleanthan in normally-processed tissue samples. Absolute differences in measured concentrations between clean- and normally-processed samples were most evident for Pb and Ba in bass and catfish and for Cd and Zn in redhorse. Regardless of preparation method, concentrations of Pb, Ca, Mn, and Ba in individual fish were closely correlated; samples that were high or low in one of these four elements were correspondingly high or low in the other three. In contrast, correlations between Zn, Fe, and Cd occurred only in normallyprocessed samples, suggesting that these correlations resulted from high concentrations on the surfaces of some samples. Concentrations of Pb and Ba in edible tissues of fish from contaminated sites were highly correlated with Ca content, which was probably determined largely by the amount of tissue other than muscle in the sample because fish muscle contains relatively little Ca. Accordingly, variation within a group of similar samples can be reduced by normalizing Pb and Ba concentrations to a standard Ca concentration. When sample size (N) is large, this can be accomplished statistically by analysis of covariance; whenN is small, molar ratios of [Pb]/[Ca] and [Ba]/[Ca] can be computed. Without such adjustments, unrealistically large Ns are required to yield statistically reliable estimates of Pb concentrations in edible tissues. Investigators should acknowledge that reported concentrations of certain elements are only estimates, and that regardless of the care exercised during the collection, preparation, and analysis of samples, results should be interpreted with the awareness that contamination from external sources may have occurred.
Enhancement of in vitro Guayule propagation
NASA Technical Reports Server (NTRS)
Dastoor, M. N.; Schubert, W. W.; Petersen, G. R. (Inventor)
1982-01-01
A method for stimulating in vitro propagation of Guayule from a nutrient medium containing Guayule tissue by adding a substituted trialkyl amine bioinducing agent to the nutrient medium is described. Selective or differentiated propagation of shoots or callus is obtained by varying the amounts of substituted trialky amine present in the nutrient medium. The luxuriant growth provided may be processed for its poly isoprene content or may be transferred to a rooting medium for production of whole plants as identical clones of the original tissue. The method also provides for the production of large numbers of Guayule plants having identical desirable properties such as high polyisoprene levels.
Pharmacokinetic study of arctigenin in rat plasma and organ tissue by RP-HPLC method.
He, Fan; Dou, De-Qiang; Hou, Qiang; Sun, Yu; Kang, Ting-Guo
2013-01-01
A high-performance liquid chromatography (HPLC) technique was developed for the determination of arctigenin in plasma and various organs of rats after the oral administration of 30, 50 and 70 mgkg(-1) of arctigenin to the Sprague-Dawley rats. Results showed that the validated HPLC method was simple, fast, reproducible and suitable to the determination of arctigenin in rat plasma and organ tissue and one-compartmental model with zero-order absorption process can well describe the changes of arctigenin concentration in the plasma. The concentration of compound was highest in the spleen, less in the liver and the least in the lung.
Breast cancer histopathology image analysis: a review.
Veta, Mitko; Pluim, Josien P W; van Diest, Paul J; Viergever, Max A
2014-05-01
This paper presents an overview of methods that have been proposed for the analysis of breast cancer histopathology images. This research area has become particularly relevant with the advent of whole slide imaging (WSI) scanners, which can perform cost-effective and high-throughput histopathology slide digitization, and which aim at replacing the optical microscope as the primary tool used by pathologist. Breast cancer is the most prevalent form of cancers among women, and image analysis methods that target this disease have a huge potential to reduce the workload in a typical pathology lab and to improve the quality of the interpretation. This paper is meant as an introduction for nonexperts. It starts with an overview of the tissue preparation, staining and slide digitization processes followed by a discussion of the different image processing techniques and applications, ranging from analysis of tissue staining to computer-aided diagnosis, and prognosis of breast cancer patients.
Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing
2015-07-01
Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Types of neural guides and using nanotechnology for peripheral nerve reconstruction
Biazar, Esmaeil; Khorasani, MT; Montazeri, Naser; Pourshamsian, Khalil; Daliri, Morteza; T, Mostafa Rezaei; B, Mahmoud Jabarvand; Khoshzaban, Ahad; K, Saeed Heidari; Jafarpour, Mostafa; Roviemiab, Ziba
2010-01-01
Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and nonabsorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structures can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons, and structural features, such as porosity, provide a clearer role for nanofibers in the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of artificial and natural guides, and methods to improve the performance of tubes, such as orientation, nanotechnology applications for nerve reconstruction, fibers and nanofibers, electrospinning methods, and their application in peripheral nerve reconstruction are reviewed. PMID:21042546
Liu, Wei; Xu, Libin; Lamberson, Connor; Haas, Dorothea; Korade, Zeljka; Porter, Ned A.
2014-01-01
We describe a highly sensitive method for the detection of 7-dehydrocholesterol (7-DHC), the biosynthetic precursor of cholesterol, based on its reactivity with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in a Diels-Alder cycloaddition reaction. Samples of biological tissues and fluids with added deuterium-labeled internal standards were derivatized with PTAD and analyzed by LC-MS. This protocol permits fast processing of samples, short chromatography times, and high sensitivity. We applied this method to the analysis of cells, blood, and tissues from several sources, including human plasma. Another innovative aspect of this study is that it provides a reliable and highly reproducible measurement of 7-DHC in 7-dehydrocholesterol reductase (Dhcr7)-HET mouse (a model for Smith-Lemli-Opitz syndrome) samples, showing regional differences in the brain tissue. We found that the levels of 7-DHC are consistently higher in Dhcr7-HET mice than in controls, with the spinal cord and peripheral nerve showing the biggest differences. In addition to 7-DHC, sensitive analysis of desmosterol in tissues and blood was also accomplished with this PTAD method by assaying adducts formed from the PTAD “ene” reaction. The method reported here may provide a highly sensitive and high throughput way to identify at-risk populations having errors in cholesterol biosynthesis. PMID:24259532
Provo-Klimek, Judy A; Troyer, Deryl L
2002-01-01
The authors have previously reported the development of a novel technique for sampling and preparing tissue slides for routine microscopic examination, without the use of a microtome. Termed "RAMP" (Rapid Adhesive Mediated Procedure), this simple, albeit somewhat crude, technique holds promise as a method that can be used in the field by veterinary practitioners for rapid microscopic evaluations to obtain early preliminary estimates of the nature of a mass or lesion. We incorporated the use of this method into a gross anatomy course in an attempt to gauge its utility for novices in tissue sampling and histology slide preparation. By having each group of students take a tissue sample from their cadaver, the activity simulated an actual necropsy situation in which practitioners in the field might use the technique. Because students were able to follow their specimen from sampling to microscopic examination, the activity provided a valuable integration of their learning of gross and microscopic anatomy. We conducted an evaluation of the process and the resulting slides with two successive classes of students. We conclude that the RAMP method is reasonably successful in the hands of individuals not trained in tissue preparation; was well received by the students as a valuable learning tool; and could potentially yield useful histological information for practicing veterinarians. Limitations of the method are also discussed.
A simple and sensitive high-throughput GFP screening in woody and herbaceous plants.
Hily, Jean-Michel; Liu, Zongrang
2009-03-01
Green fluorescent protein (GFP) has been used widely as a powerful bioluminescent reporter, but its visualization by existing methods in tissues or whole plants and its utilization for high-throughput screening remains challenging in many species. Here, we report a fluorescence image analyzer-based method for GFP detection and its utility for high-throughput screening of transformed plants. Of three detection methods tested, the Typhoon fluorescence scanner was able to detect GFP fluorescence in all Arabidopsis thaliana tissues and apple leaves, while regular fluorescence microscopy detected it only in Arabidopsis flowers and siliques but barely in the leaves of either Arabidopsis or apple. The hand-held UV illumination method failed in all tissues of both species. Additionally, the Typhoon imager was able to detect GFP fluorescence in both green and non-green tissues of Arabidopsis seedlings as well as in imbibed seeds, qualifying it as a high-throughput screening tool, which was further demonstrated by screening the seedlings of primary transformed T(0) seeds. Of the 30,000 germinating Arabidopsis seedlings screened, at least 69 GFP-positive lines were identified, accounting for an approximately 0.23% transformation efficiency. About 14,000 seedlings grown in 16 Petri plates could be screened within an hour, making the screening process significantly more efficient and robust than any other existing high-throughput screening method for transgenic plants.
Sharma, Shrushrita; Zhang, Yunyan
2017-01-01
Loss of tissue coherency in brain white matter is found in many neurological diseases such as multiple sclerosis (MS). While several approaches have been proposed to evaluate white matter coherency including fractional anisotropy and fiber tracking in diffusion-weighted imaging, few are available for standard magnetic resonance imaging (MRI). Here we present an image post-processing method for this purpose based on Fourier transform (FT) power spectrum. T2-weighted images were collected from 19 patients (10 relapsing-remitting and 9 secondary progressive MS) and 19 age- and gender-matched controls. Image processing steps included: computation, normalization, and thresholding of FT power spectrum; determination of tissue alignment profile and dominant alignment direction; and calculation of alignment complexity using a new measure named angular entropy. To test the validity of this method, we used a highly organized brain white matter structure, corpus callosum. Six regions of interest were examined from the left, central and right aspects of both genu and splenium. We found that the dominant orientation of each ROI derived from our method was significantly correlated with the predicted directions based on anatomy. There was greater angular entropy in patients than controls, and a trend to be greater in secondary progressive MS patients. These findings suggest that it is possible to detect tissue alignment and anisotropy using traditional MRI, which are routinely acquired in clinical practice. Analysis of FT power spectrum may become a new approach for advancing the evaluation and management of patients with MS and similar disorders. Further confirmation is warranted.
Vrooman, Henri A; Cocosco, Chris A; van der Lijn, Fedde; Stokking, Rik; Ikram, M Arfan; Vernooij, Meike W; Breteler, Monique M B; Niessen, Wiro J
2007-08-01
Conventional k-Nearest-Neighbor (kNN) classification, which has been successfully applied to classify brain tissue in MR data, requires training on manually labeled subjects. This manual labeling is a laborious and time-consuming procedure. In this work, a new fully automated brain tissue classification procedure is presented, in which kNN training is automated. This is achieved by non-rigidly registering the MR data with a tissue probability atlas to automatically select training samples, followed by a post-processing step to keep the most reliable samples. The accuracy of the new method was compared to rigid registration-based training and to conventional kNN-based segmentation using training on manually labeled subjects for segmenting gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in 12 data sets. Furthermore, for all classification methods, the performance was assessed when varying the free parameters. Finally, the robustness of the fully automated procedure was evaluated on 59 subjects. The automated training method using non-rigid registration with a tissue probability atlas was significantly more accurate than rigid registration. For both automated training using non-rigid registration and for the manually trained kNN classifier, the difference with the manual labeling by observers was not significantly larger than inter-observer variability for all tissue types. From the robustness study, it was clear that, given an appropriate brain atlas and optimal parameters, our new fully automated, non-rigid registration-based method gives accurate and robust segmentation results. A similarity index was used for comparison with manually trained kNN. The similarity indices were 0.93, 0.92 and 0.92, for CSF, GM and WM, respectively. It can be concluded that our fully automated method using non-rigid registration may replace manual segmentation, and thus that automated brain tissue segmentation without laborious manual training is feasible.
A sprayable luminescent pH sensor and its use for wound imaging in vivo.
Schreml, Stephan; Meier, Robert J; Weiß, Katharina T; Cattani, Julia; Flittner, Dagmar; Gehmert, Sebastian; Wolfbeis, Otto S; Landthaler, Michael; Babilas, Philipp
2012-12-01
Non-invasive luminescence imaging is of great interest for studying biological parameters in wound healing, tumors and other biomedical fields. Recently, we developed the first method for 2D luminescence imaging of pH in vivo on humans, and a novel method for one-stop-shop visualization of oxygen and pH using the RGB read-out of digital cameras. Both methods make use of semitransparent sensor foils. Here, we describe a sprayable ratiometric luminescent pH sensor, which combines properties of both these methods. Additionally, a major advantage is that the sensor spray is applicable to very uneven tissue surfaces due to its consistency. A digital RGB image of the spray on tissue is taken. The signal of the pH indicator (fluorescein isothiocyanate) is stored in the green channel (G), while that of the reference dye [ruthenium(II)-tris-(4,7-diphenyl-1,10-phenanthroline)] is stored in the red channel (R). Images are processed by rationing luminescence intensities (G/R) to result in pseudocolor pH maps of tissues, e.g. wounds. © 2012 John Wiley & Sons A/S.
On the biomechanical function of scaffolds for engineering load-bearing soft tissues.
Stella, John A; D'Amore, Antonio; Wagner, William R; Sacks, Michael S
2010-07-01
Replacement or regeneration of load-bearing soft tissues has long been the impetus for the development of bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity, all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Laser biostimulation of wound healing: bioimpedance measurements support histology.
Solmaz, Hakan; Dervisoglu, Sergulen; Gulsoy, Murat; Ulgen, Yekta
2016-11-01
Laser biostimulation in medicine has become widespread supporting the idea of therapeutic effects of photobiomodulation in biological tissues. The aim of this study was to investigate the biostimulation effect of laser irradiation on healing of cutaneous skin wounds, in vivo, by means of bioimpedance measurements and histological examinations. Cutaneous skin wounds on rats were subjected to 635 nm diode laser irradiations at two energy densities of 1 and 3 J/cm 2 separately. Changes in the electrical properties of the wound sites were examined with multi-frequency electrical impedance measurements performed on the 3rd, 7th, 10th, and 14th days following the wounding. Tissue samples were both morphologically and histologically examined to determine the relationship between electrical properties and structure of tissues during healing. Laser irradiations of both energy densities stimulated the wound healing process. In particular, laser irradiation of lower energy density had more evidence especially for the first days of healing process. On the 7th day of healing, 3 J/cm 2 laser-irradiated tissues had significantly smaller wound areas compared to non-irradiated wounds (p < 0.05). The electrical impedance results supported the idea of laser biostimulation on healing of cutaneous skin wounds. Thus, bioimpedance measurements may be considered as a non-invasive supplementary method for following the healing process of laser-irradiated tissues.
Shamloo, Amir; Mohammadaliha, Negar; Mohseni, Mina
2015-10-20
This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal gradients of biochemical factors is attainable inside microdevices. Since biomaterials with tunable properties are a worthwhile option to construct artificial extracellular matrix, in vitro platforms that simultaneously utilize natural, synthetic, or engineered biomaterials inside microfluidic devices are phenomenally advantageous to experimental studies in the field of tissue engineering. Additionally, collaboration between experimental and computational methods is a useful way to predict and understand mechanisms responsible for complex biological phenomena. Computational results can be verified by using experimental platforms. Computational methods can also broaden the understanding of the mechanisms behind the biological phenomena observed during experiments. Furthermore, computational methods are powerful tools to optimize the fabrication of microfluidic devices and biomaterials with specific features. Here we present a succinct review of the benefits of microfluidic devices, biomaterial, and computational methods in the case of tissue engineering and regeneration medicine. Furthermore, some breakthroughs in biological phenomena including the neuronal axon development, cancerous cell migration and blood vessel formation via angiogenesis by virtue of the aforementioned approaches are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
HPASubC: A suite of tools for user subclassification of human protein atlas tissue images
Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.
2015-01-01
Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380
Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging.
Nallala, Jayakrupakar; Lloyd, Gavin Rhys; Stone, Nicholas
2015-04-07
In infrared spectral histopathology, paraffin embedded tissues are often de-paraffinized using chemical agents such as xylene and hexane. These chemicals are known to be toxic and the routine de-waxing procedure is time consuming. A comparative study was carried out to identify alternate de-paraffinization methods by using paraffin oil and electronic de-paraffinization (using a mathematical computer algorithm) and their effectiveness was compared to xylene and hexane. Sixteen adjacent tissue sections obtained from a single block of a normal colon tissue were de-paraffinized using xylene, hexane and paraffin oil (+ hexane wash) at five different time points each for comparison. One section was reserved unprocessed for electronic de-paraffinization based on a modified extended multiplicative signal correction (EMSC). IR imaging was carried out on these tissue sections. Coefficients based on the fit of a pure paraffin model to the IR images were then calculated to estimate the amount of paraffin remaining after processing. Results indicate that on average xylene removes more paraffin in comparison to hexane and paraffin oil although the differences were small. This makes paraffin oil, followed by a hexane wash, an interesting and less toxic alternative method of de-paraffinization. However, none of the chemical methods removed paraffin completely from the tissues at any given time point. Moreover, paraffin was removed more easily from the glandular regions than the connective tissue regions indicating a form of differential paraffin retention based on the histology. In such cases, the use of electronic de-paraffinization to neutralize such variances across different tissue regions might be considered. Moreover it is faster, reduces scatter artefacts by index matching and enables samples to be easily stored for further analysis if required.
Cao, G; Cutler, R G
1995-06-20
A current hypothesis explaining the aging process implicates the accumulation of oxidized protein in animal tissues. This hypothesis is based on a series of reports showing an age-dependent increase in protein carbonyl content and an age-dependent loss of enzyme function. This hypothesis is also supported by the report of a novel effect of N-tert-butyl-alpha-phenylnitrone (PBN) in reversing these age-dependent changes. Here we specifically study the method that was used to measure reactive protein carbonyls in tissues. This method uses 2,4-dinitrophenylhydrazine (DNPH) and includes a washing procedure. Our results indicate that reactive protein carbonyls in normal crude tissue extracts cannot be reliably measured by this method, although it does reliably measure reactive carbonyls in purified proteins which have been oxidatively modified in vitro. The nucleic acids in tissues could be a major problem encountered in the assay. Using the streptomycin sulfate treatment combined with a dialysis step, we were successful in removing most nucleic acids from a crude tissue extract, but then the reactive carbonyl level in the crude tissue extract was too low to be reliably measured. This streptomycin sulfate treatment procedure, however, had no effect on the reactive carbonyl measurement of an oxidized protein sample. The unwashed free DNPH was another major problem in the assay because of its very strong absorption around 370 nm, where reactive carbonyls were quantitated. Nevertheless, on using the procedure described in the literature to measure total "reactive carbonyls" in rat liver and gerbil brain cortex, no change with age or PBN treatment was found. Then, we investigated a HPLC procedure which uses sodium dodecyl sulfate in the mobile phase but this was also found to be unsuitable for the reactive protein carbonyl assay in tissues.
Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs
Costa, Pedro F.; Dias, Ana F.; Reis, Rui L.
2012-01-01
The aim of this work was to study the effect of cryopreservation over the functionality of tissue-engineered constructs, analyzing the survival and viability of cells seeded, cultured, and cryopreserved onto 3D scaffolds. Further, it also evaluated the effect of cryopreservation over the properties of the scaffold material itself since these are critical for the engineering of most tissues and in particular, tissues such as bone. For this purpose, porous scaffolds, namely fiber meshes based on a starch and poly(caprolactone) blend were seeded with goat bone marrow stem cells (GBMSCs) and cryopreserved for 7 days. Discs of the same material seeded with GBMSCs were also used as controls. After this period, these samples were analyzed and compared to samples collected before the cryopreservation process. The obtained results demonstrate that it is possible to maintain cell viability and scaffolds properties upon cryopreservation of tissue-engineered constructs based on starch scaffolds and goat bone marrow mesenchymal cells using standard cryopreservation methods. In addition, the outcomes of this study suggest that the greater porosity and interconnectivity of scaffolds favor the retention of cellular content and cellular viability during cryopreservation processes, when compared with nonporous discs. These findings indicate that it might be possible to prepare off-the-shelf engineered tissue substitutes and preserve them to be immediately available upon request for patients' needs. PMID:22676448
Metal ion transport quantified by ICP-MS in intact cells
Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.
2016-01-01
The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181
Metal ion transport quantified by ICP-MS in intact cells.
Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A
2016-02-03
The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.
Immunocytochemical detection of astrocytes in brain slices in combination with Nissl staining.
Korzhevskii, D E; Otellin, V A
2005-07-01
The present study was performed to develop a simple and reliable method for the combined staining of specimens to allow the advantages of immunocytochemical detection of astrocytes and assessment of the functional state of neurons by the Nissl method to be assessed simultaneously. The protocol suggested for processing paraffin sections allows preservation of tissue structure at high quality and allows the selective identification of astrocytes with counterstaining of neurons by the Nissl method. The protocol can be used without modification for processing brain specimens from humans and various mammals--except mice and rabbits.
Wong, Kim; Navarro, José Fernández; Bergenstråhle, Ludvig; Ståhl, Patrik L; Lundeberg, Joakim
2018-06-01
Spatial Transcriptomics (ST) is a method which combines high resolution tissue imaging with high troughput transcriptome sequencing data. This data must be aligned with the images for correct visualization, a process that involves several manual steps. Here we present ST Spot Detector, a web tool that automates and facilitates this alignment through a user friendly interface. jose.fernandez.navarro@scilifelab.se. Supplementary data are available at Bioinformatics online.
Bedez, Mathieu; Belhachmi, Zakaria; Haeberlé, Olivier; Greget, Renaud; Moussaoui, Saliha; Bouteiller, Jean-Marie; Bischoff, Serge
2016-01-15
The resolution of a model describing the electrical activity of neural tissue and its propagation within this tissue is highly consuming in term of computing time and requires strong computing power to achieve good results. In this study, we present a method to solve a model describing the electrical propagation in neuronal tissue, using parareal algorithm, coupling with parallelization space using CUDA in graphical processing unit (GPU). We applied the method of resolution to different dimensions of the geometry of our model (1-D, 2-D and 3-D). The GPU results are compared with simulations from a multi-core processor cluster, using message-passing interface (MPI), where the spatial scale was parallelized in order to reach a comparable calculation time than that of the presented method using GPU. A gain of a factor 100 in term of computational time between sequential results and those obtained using the GPU has been obtained, in the case of 3-D geometry. Given the structure of the GPU, this factor increases according to the fineness of the geometry used in the computation. To the best of our knowledge, it is the first time such a method is used, even in the case of neuroscience. Parallelization time coupled with GPU parallelization space allows for drastically reducing computational time with a fine resolution of the model describing the propagation of the electrical signal in a neuronal tissue. Copyright © 2015 Elsevier B.V. All rights reserved.
Segmentation and automated measurement of chronic wound images: probability map approach
NASA Astrophysics Data System (ADS)
Ahmad Fauzi, Mohammad Faizal; Khansa, Ibrahim; Catignani, Karen; Gordillo, Gayle; Sen, Chandan K.; Gurcan, Metin N.
2014-03-01
estimated 6.5 million patients in the United States are affected by chronic wounds, with more than 25 billion US dollars and countless hours spent annually for all aspects of chronic wound care. There is need to develop software tools to analyze wound images that characterize wound tissue composition, measure their size, and monitor changes over time. This process, when done manually, is time-consuming and subject to intra- and inter-reader variability. In this paper, we propose a method that can characterize chronic wounds containing granulation, slough and eschar tissues. First, we generate a Red-Yellow-Black-White (RYKW) probability map, which then guides the region growing segmentation process. The red, yellow and black probability maps are designed to handle the granulation, slough and eschar tissues, respectively found in wound tissues, while the white probability map is designed to detect the white label card for measurement calibration purpose. The innovative aspects of this work include: 1) Definition of a wound characteristics specific probability map for segmentation, 2) Computationally efficient regions growing on 4D map; 3) Auto-calibration of measurements with the content of the image. The method was applied on 30 wound images provided by the Ohio State University Wexner Medical Center, with the ground truth independently generated by the consensus of two clinicians. While the inter-reader agreement between the readers is 85.5%, the computer achieves an accuracy of 80%.
Molecular pathology of prostate cancer.
Cazares, L H; Drake, R R; Esquela-Kirscher, A; Lance, R S; Semmes, O J; Troyer, D A
2010-01-01
This chapter includes discussion of the molecular pathology of tissue, blood, urine, and expressed prostatic secretions. Because we are unable to reliably image the disease in vivo, a 12 core method that oversamples the peripheral zone is widely used. This generates large numbers of cores that need to be carefully processed and sampled. In spite of the large number of tissue cores, the amount of tumor available for study is often quite limited. This is a particular challenge for research, as new biomarker assays will need to preserve tissue architecture intact for histopathology. Methods of processing and reporting pathology are discussed. With the exception of ductal variants, recognized subtypes of prostate cancer are largely confined to research applications, and most prostate cancers are acinar. Biomarker discovery in urine and expressed prostatic secretions would be useful since these are readily obtained and are proximate fluids. The well-known challenges of biomarker discovery in blood and urine are referenced and discussed. Mediators of carcinogenesis can serve as biomarkers as exemplified by mutations in PTEN and TMPRSS2:ERG fusion. The use of proteomics in biomarker discovery with an emphasis on imaging mass spectroscopy of tissues is discussed. Small RNAs are of great interest, however, their usefulness as biomarkers in clinical decision making remains the subject of ongoing research. The chapter concludes with an overview of blood biomarkers such as circulating nucleic acids and tumor cells and bound/free isoforms of prostate specific antigen (PSA).
NASA Astrophysics Data System (ADS)
Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu
2012-02-01
One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.
Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct
NASA Astrophysics Data System (ADS)
Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza
2014-06-01
Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.
Modeling Physiological Events in 2D vs. 3D Cell Culture
Duval, Kayla; Grover, Hannah; Han, Li-Hsin; Mou, Yongchao; Pegoraro, Adrian F.; Fredberg, Jeffery
2017-01-01
Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research. PMID:28615311
DeRose, Yoko S.; Gligorich, Keith M.; Wang, Guoying; Georgelas, Ann; Bowman, Paulette; Courdy, Samir J.; Welm, Alana L.; Welm, Bryan E.
2013-01-01
Research models that replicate the diverse genetic and molecular landscape of breast cancer are critical for developing the next generation therapeutic entities that can target specific cancer subtypes. Patient-derived tumorgrafts, generated by transplanting primary human tumor samples into immune-compromised mice, are a valuable method to model the clinical diversity of breast cancer in mice, and are a potential resource in personalized medicine. Primary tumorgrafts also enable in vivo testing of therapeutics and make possible the use of patient cancer tissue for in vitro screens. Described in this unit are a variety of protocols including tissue collection, biospecimen tracking, tissue processing, transplantation, and 3-dimensional culturing of xenografted tissue, that enable use of bona fide uncultured human tissue in designing and validating cancer therapies. PMID:23456611
In vivo Degradation of Three-Dimensional Silk Fibroin Scaffolds
Wang, Yongzhong; Rudym, Darya D.; Walsh, Ashley; Abrahamsen, Lauren; Kim, Hyeon-Joo; Kim, Hyun Suk; Kirker-Head, Carl; Kaplan, David L.
2011-01-01
Three-dimensional porous scaffolds prepared from regenerated silk fibroin using either an all aqueous process or a process involving an organic solvent, hexafluoroisopropanol (HFIP) have shown promise in cell culture and tissue engineering applications. However, their biocompatibility and in vivo degradation has not been fully established. The present study was conducted to systematically investigate how processing method (aqueous vs. organic solvent) and processing variables (silk fibroin concentration and pore size) affect the short-term (up to 2 months) and long-term (up to 1 year) in vivo behavior of the protein scaffolds in both nude and Lewis rats. The samples were analyzed by histology for scaffold morphological changes and tissue ingrowth, and by real-time RT-PCR and immunohistochemistry for immune responses. Throughout the period of implantation, all scaffolds were well-tolerated by the host animals and immune responses to the implants were mild. Most scaffolds prepared from the all aqueous process degraded to completion between two and six months, while those prepared from organic solvent (hexafluoroisopropanol (HFIP)) process persisted beyond one year. Due to widespread cellular invasion throughout the scaffold, the degradation of aqueous-derived scaffolds appears to be more homogeneous than that of HFIP-derived scaffolds. In general and especially for the HFIP-derived scaffolds, a higher original silk fibroin concentration (e.g. 17%) and smaller pore size (e.g. 100–200 µm) resulted in lower levels of tissue ingrowth and slower degradation. These results demonstrate that the in vivo behavior of the three-dimensional silk fibroin scaffolds is related to the morphological and structural features that resulted from different scaffold preparation processes. The insights gained in this study can serve as a guide for processing scenarios to match desired morphological and structural features and degradation time with tissue-specific applications. PMID:18502501
Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh
2017-03-09
It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.
Detecting phenotype-driven transitions in regulatory network structure.
Padi, Megha; Quackenbush, John
2018-01-01
Complex traits and diseases like human height or cancer are often not caused by a single mutation or genetic variant, but instead arise from functional changes in the underlying molecular network. Biological networks are known to be highly modular and contain dense "communities" of genes that carry out cellular processes, but these structures change between tissues, during development, and in disease. While many methods exist for inferring networks and analyzing their topologies separately, there is a lack of robust methods for quantifying differences in network structure. Here, we describe ALPACA (ALtered Partitions Across Community Architectures), a method for comparing two genome-scale networks derived from different phenotypic states to identify condition-specific modules. In simulations, ALPACA leads to more nuanced, sensitive, and robust module discovery than currently available network comparison methods. As an application, we use ALPACA to compare transcriptional networks in three contexts: angiogenic and non-angiogenic subtypes of ovarian cancer, human fibroblasts expressing transforming viral oncogenes, and sexual dimorphism in human breast tissue. In each case, ALPACA identifies modules enriched for processes relevant to the phenotype. For example, modules specific to angiogenic ovarian tumors are enriched for genes associated with blood vessel development, and modules found in female breast tissue are enriched for genes involved in estrogen receptor and ERK signaling. The functional relevance of these new modules suggests that not only can ALPACA identify structural changes in complex networks, but also that these changes may be relevant for characterizing biological phenotypes.
Paolin, Adolfo; Trojan, Diletta; Petit, Pieter; Coato, Paola; Rigoli, Roberto
2017-01-01
Microbiological contamination of retrieved tissues has become a very important topic and a critical aspect in the safety of allografts. We have analysed contamination in 11,129 tissues with a longitudinal contamination profile for each individual tissue. More specifically, 10,035 musculoskeletal tissues and 1,094 cardiovascular tissues were retrieved from a total of 763 multi-tissue donors, of whom 105 were heart-beating donors as well as organ donors, while the remaining 658 were non-heart beating donors and tissue donors only. All tissues were decontaminated twice, the first time immediately after retrieval and the second time after processing. Each tissue was submitted to microbiological culture three times, i.e., upon retrieval (Time 1), after the first decontamination (Time 2) and after the second decontamination (Time 3). The contamination rate for musculoskeletal tissues was 52%, 16.2% and 0.5% at Time 1, 2 and 3, respectively. The contamination rate for cardiovascular tissues was 84%, 42% and 6%. More than one strain was simultaneously present in 10.8% of musculoskeletal tissues and 44.6% of cardiovascular tissues. Out of 8,560 non-heart-beating donor musculoskeletal tissues, 4,689 (54.8%), 1,383 (16.2%) and 42 (0.5%) were contaminated at Time 1, Time 2 and Time 3, respectively. Out of 1,475 heart-beating donor musculoskeletal tissues, 522 (35.4%) 113 (7.7%) and 2 (0.1%) tissues were found to be contaminated at Time 1, 2 and 3, respectively. Out of 984 non-heart beating donor cardiovascular tissues, 869 (88.3%), 449 (45.6%) and 69 (7%) proved positive at Time 1, 2 and 3 respectively, while 50 (45.5%) and 10 (9.1%) heart-beating donor cardiovascular tissues were contaminated at Time 1 and 2. No tissue was contaminated at Time 3. Based on our methods, the two-step decontamination approach is mandatory in order to drastically reduce the number of tissues found to be positive at the end of the process.
Paolin, Adolfo; Trojan, Diletta; Petit, Pieter; Coato, Paola; Rigoli, Roberto
2017-01-01
Microbiological contamination of retrieved tissues has become a very important topic and a critical aspect in the safety of allografts. We have analysed contamination in 11,129 tissues with a longitudinal contamination profile for each individual tissue. More specifically, 10,035 musculoskeletal tissues and 1,094 cardiovascular tissues were retrieved from a total of 763 multi-tissue donors, of whom 105 were heart-beating donors as well as organ donors, while the remaining 658 were non-heart beating donors and tissue donors only. All tissues were decontaminated twice, the first time immediately after retrieval and the second time after processing. Each tissue was submitted to microbiological culture three times, i.e., upon retrieval (Time 1), after the first decontamination (Time 2) and after the second decontamination (Time 3). The contamination rate for musculoskeletal tissues was 52%, 16.2% and 0.5% at Time 1, 2 and 3, respectively. The contamination rate for cardiovascular tissues was 84%, 42% and 6%. More than one strain was simultaneously present in 10.8% of musculoskeletal tissues and 44.6% of cardiovascular tissues. Out of 8,560 non-heart-beating donor musculoskeletal tissues, 4,689 (54.8%), 1,383 (16.2%) and 42 (0.5%) were contaminated at Time 1, Time 2 and Time 3, respectively. Out of 1,475 heart-beating donor musculoskeletal tissues, 522 (35.4%) 113 (7.7%) and 2 (0.1%) tissues were found to be contaminated at Time 1, 2 and 3, respectively. Out of 984 non-heart beating donor cardiovascular tissues, 869 (88.3%), 449 (45.6%) and 69 (7%) proved positive at Time 1, 2 and 3 respectively, while 50 (45.5%) and 10 (9.1%) heart-beating donor cardiovascular tissues were contaminated at Time 1 and 2. No tissue was contaminated at Time 3. Based on our methods, the two-step decontamination approach is mandatory in order to drastically reduce the number of tissues found to be positive at the end of the process. PMID:28267776
Automatic recognition of fundamental tissues on histology images of the human cardiovascular system.
Mazo, Claudia; Trujillo, Maria; Alegre, Enrique; Salazar, Liliana
2016-10-01
Cardiovascular disease is the leading cause of death worldwide. Therefore, techniques for improving diagnosis and treatment in this field have become key areas for research. In particular, approaches for tissue image processing may support education system and medical practice. In this paper, an approach to automatic recognition and classification of fundamental tissues, using morphological information is presented. Taking a 40× or 10× histological image as input, three clusters are created with the k-means algorithm using a structural tensor and the red and the green channels. Loose connective tissue, light regions and cell nuclei are recognised on 40× images. Then, the cell nuclei's features - shape and spatial projection - and light regions are used to recognise and classify epithelial cells and tissue into flat, cubic and cylindrical. In a similar way, light regions, loose connective and muscle tissues are recognised on 10× images. Finally, the tissue's function and composition are used to refine muscle tissue recognition. Experimental validation is then carried out by histologist following expert criteria, along with manually annotated images that are used as a ground-truth. The results revealed that the proposed approach classified the fundamental tissues in a similar way to the conventional method employed by histologists. The proposed automatic recognition approach provides for epithelial tissues a sensitivity of 0.79 for cubic, 0.85 for cylindrical and 0.91 for flat. Furthermore, the experts gave our method an average score of 4.85 out of 5 in the recognition of loose connective tissue and 4.82 out of 5 for muscle tissue recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fabrication of 3D Reconstituted Organoid Arrays by DNA-programmed Assembly of Cells (DPAC)
Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J
2016-01-01
Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) that are composed into specific three dimensional (3D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this unit, we describe DNA-programmed Assembly of Cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide “velcro,” allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids, and permits positioning constituent cells with single-cell resolution even within cultures several centimeters long. PMID:27622567
Engel, Erwan; Ratel, Jérémy
2007-06-22
The objective of the work was to assess the relevance for the authentication of food of a novel chemometric method developed to correct mass spectrometry (MS) data from instrumental drifts, namely, the comprehensive combinatory standard correction (CCSC). Applied to gas chromatography (GC)-MS data, the method consists in analyzing a liquid sample with a mixture of n internal standards and in using the best combination of standards to correct the MS signal provided by each compound. The paper focuses on the authentication of the type of feeding in farm animals based on the composition in volatile constituents of their adipose tissues. The first step of the work enabled on one hand to ensure the feasibility of the conversion of the adipose tissue sample into a liquid phase required for the use of the CCSC method and on the other hand, to determine the key parameters of the extraction of the volatile fraction from this liquid phase by dynamic headspace. The second step showed the relevance of the CCSC pre-processing of the MS fingerprints generated by dynamic headspace-MS analysis of lamb tissues, for the discrimination of animals fed exclusively with pasture (n=8) or concentrate (n=8). When compared with filtering of raw data, internal normalization and correction by a single standard, the CCSC method increased by 17.1-, 3.3- and 1.3-fold, respectively, the number of mass fragments which discriminated the type of feeding. The final step confirmed the advantage of the CCSC pre-processing of dynamic headspace-gas chromatography-MS data for revealing molecular tracers of the type of feeding those number (n=72) was greater when compared to the number of tracers obtained with raw data (n=42), internal normalization (n=63) and correction by a single standard (n=57). The relevance of the information gained by using the CCSC method is discussed.
NASA Astrophysics Data System (ADS)
van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine
2017-02-01
Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns.
Van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine
2017-01-01
Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns. PMID:28220842
Evaluation of laser radiation regimes at thermal tissue destruction
NASA Astrophysics Data System (ADS)
Ivanov, Anatoly; Kazaryan, Mishik A.; Molodykh, E. I.; Shchetinkina, T. A.
1996-01-01
The existing methods of laser destruction of biotissues, widely spread in surgery and coagulation action, are based on local heat emission in the tissues after light absorption. Here we present the results of the simulation of tissues heat destruction, taking into account the influence of blood and lymph circulation on the processes of heat transfer. The problem is adapted to the case of liver tissue with tumor. A liver is considered as a capillary-porous body with internal blood circulation. Heatconductivity and tissue-blood heat transfer are considered. Heat action is assumed to be implemented with contact laser scalpel. The mathematical model consists of two inhomogeneous nonlinear equations of heatconductivity with spherical symmetry. Nonstationary temperature fields of tissue and blood are determined and the main parameters are: (1) coefficients of heatconductivity and capacitance of blood and tissue, (2) blood and tissue density, (3) total metabolic energy, (4) volume coefficient accounting for heat-exchange between tissue and blood, and (5) blood circulation velocity. The power of laser radiation was taken into account in boundary conditions set for the center of coagulated tissue volume. We also took into account the process connected with changing of substance phase (vaporization). The original computer programs allow one to solve the problem varying in a wide range of the main parameters. Reasonable agreement was found between the calculation results and the experimental data for operations on microsamples and on test animals. It was demonstrated, in particular, that liver tissue coagulation regime is achieved at 10 W laser power during 25 s. The coagulation radius of 0.7 cm with the given tumor radius of 0.5 cm corresponds to the real clinical situation in case of metastasis liver affection.
Developmental biology and tissue engineering.
Marga, Francoise; Neagu, Adrian; Kosztin, Ioan; Forgacs, Gabor
2007-12-01
Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the laboratory, i.e., in vitro, to fabricate replacement organs for regenerative medicine. The classical approach to generate tissues/organs is by seeding and expanding cells in appropriately shaped biocompatible scaffolds, in the hope that the maturation process will result in the desired structure. To accomplish this goal more naturally and efficiently, we set up and implemented a novel TE method that is based on principles of developmental biology and employs bioprinting, the automated delivery of cellular composites into a three-dimensional (3D) biocompatible environment. The novel technology relies on the concept of tissue liquidity according to which multicellular aggregates composed of adhesive and motile cells behave in analogy with liquids: in particular, they fuse. We emphasize the major role played by tissue fusion in the embryo and explain how the parameters (surface tension, viscosity) that govern tissue fusion can be used both experimentally and theoretically to control and simulate the self-assembly of cellular spheroids into 3D living structures. The experimentally observed postprinting shape evolution of tube- and sheet-like constructs is presented. Computer simulations, based on a liquid model, support the idea that tissue liquidity may provide a mechanism for in vitro organ building. Copyright 2008 Wiley-Liss, Inc.
Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki
2016-01-01
To enable an objective evaluation of photocoagulation, we characterize thermal tissue changes induced by laser irradiation with different laser parameters using optical coherence tomography (OCT). Spectral-domain OCT with a newly developed image processing method was used to monitor the thermal changes of ex vivo porcine retina. A sequence of OCT B-scans was obtained at the same retinal position simultaneously with the photocoagulation. Cross-sectional tissue displacement maps with respect to an OCT image taken before laser irradiation were computed for images taken before, during, and after laser irradiation, by using a correlation-based custom algorithm. Cross-sectional correlation maps (OCT correlation maps) were also computed from an OCT image taken before laser irradiation as a base-line to visualize alterations of tissue microstructure induced by laser irradiation. By systematically controlling laser power and exposure times, tissue displacements and structural changes of 200 retinal regions of 10 porcine eyes were characterized. Thermal tissue changes were characterized by B-scan images, OCT correlation maps, and tissue displacement maps. Larger tissue deformation was induced with higher laser power and shorter exposure time, while the same total laser energy (10 mJ) was applied. The measured tissue displacements revealed the complicated dynamics of tissue displacements. Three types of dynamics were observed; lateral expansion, lateral constriction, and a type showing more complicated dynamics. The results demonstrated the ability of this OCT-based method to evaluate retinal changes induced by laser irradiation. This evaluation could lead to further understanding of thermal effects, and increasing reproducibility of photocoagulation therapy.
Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Reh, Douglas D; Gallia, Gary L; Siewerdsen, Jeffrey H
2012-09-01
A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to "tissue" in the moving image and "air" in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed "extra-dimensional" Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate "ejection" of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate "ejection" of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance.
Noninvasive glucose monitoring by optical reflective and thermal emission spectroscopic measurements
NASA Astrophysics Data System (ADS)
Saetchnikov, V. A.; Tcherniavskaia, E. A.; Schiffner, G.
2005-08-01
Noninvasive method for blood glucose monitoring in cutaneous tissue based on reflective spectrometry combined with a thermal emission spectroscopy has been developed. Regression analysis, neural network algorithms and cluster analysis are used for data processing.
PREPARATION OF WHOLE SMALL FISH FOR HISTOLOGICAL EVALUATION
Toxicologic pathology, which is primarily concerned with chemically-induced structural changes in cells or tissues, depends on the proper histological processing of test specimens. In fishes, histopathological examination is widely recognized as a reliable method for disease diag...
Computation and application of tissue-specific gene set weights.
Frost, H Robert
2018-04-06
Gene set testing, or pathway analysis, has become a critical tool for the analysis of highdimensional genomic data. Although the function and activity of many genes and higher-level processes is tissue-specific, gene set testing is typically performed in a tissue agnostic fashion, which impacts statistical power and the interpretation and replication of results. To address this challenge, we have developed a bioinformatics approach to compute tissuespecific weights for individual gene sets using information on tissue-specific gene activity from the Human Protein Atlas (HPA). We used this approach to create a public repository of tissue-specific gene set weights for 37 different human tissue types from the HPA and all collections in the Molecular Signatures Database (MSigDB). To demonstrate the validity and utility of these weights, we explored three different applications: the functional characterization of human tissues, multi-tissue analysis for systemic diseases and tissue-specific gene set testing. All data used in the reported analyses is publicly available. An R implementation of the method and tissue-specific weights for MSigDB gene set collections can be downloaded at http://www.dartmouth.edu/∼hrfrost/TissueSpecificGeneSets. rob.frost@dartmouth.edu.
The mechanics of development: models and methods for tissue morphogenesis
Gjorevski, Nikolce; Nelson, Celeste M.
2011-01-01
Embryonic development is a physical process during which masses of cells are sculpted into functional organs. The mechanical properties of tissues and the forces exerted on them serve as epigenetic regulators of morphogenesis. Understanding these mechanobiological effects in the embryo requires new experimental approaches. Here we focus on branching of the lung airways and bending of the heart tube to describe examples of mechanical and physical cues that guide cell fate decisions and organogenesis. We highlight recent technological advances to measure tissue elasticity and endogenous mechanical stresses in real time during organ development. We also discuss recent progress in manipulating forces in intact embryos. PMID:20860059
Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V
2018-01-01
Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
The Role of Bioreactors in Ligament and Tendon Tissue Engineering.
Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj
2016-01-01
Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.
De-Deus, Gustavo; Marins, Juliana; Neves, Aline de Almeida; Reis, Claudia; Fidel, Sandra; Versiani, Marco A; Alves, Haimon; Lopes, Ricardo Tadeu; Paciornik, Sidnei
2014-02-01
The accumulation of debris occurs after root canal preparation procedures specifically in fins, isthmus, irregularities, and ramifications. The aim of this study was to present a step-by-step description of a new method used to longitudinally identify, measure, and 3-dimensionally map the accumulation of hard-tissue debris inside the root canal after biomechanical preparation using free software for image processing and analysis. Three mandibular molars presenting the mesial root with a large isthmus width and a type II Vertucci's canal configuration were selected and scanned. The specimens were assigned to 1 of 3 experimental approaches: (1) 5.25% sodium hypochlorite + 17% EDTA, (2) bidistilled water, and (3) no irrigation. After root canal preparation, high-resolution scans of the teeth were accomplished, and free software packages were used to register and quantify the amount of accumulated hard-tissue debris in either canal space or isthmus areas. Canal preparation without irrigation resulted in 34.6% of its volume filled with hard-tissue debris, whereas the use of bidistilled water or NaOCl followed by EDTA showed a reduction in the percentage volume of debris to 16% and 11.3%, respectively. The closer the distance to the isthmus area was the larger the amount of accumulated debris regardless of the irrigating protocol used. Through the present method, it was possible to calculate the volume of hard-tissue debris in the isthmuses and in the root canal space. Free-software packages used for image reconstruction, registering, and analysis have shown to be promising for end-user application. Copyright © 2014. Published by Elsevier Inc.
Martínez-Rovira, Immaculada; Boisgard, Raphaël; Pottier, Géraldine; Kuhnast, Bertrand; Jan, Sébastien
2016-01-01
The development of a reliable dose monitoring system in hadron therapy is essential in order to control the treatment plan delivery. Positron Emission Tomography (PET) is the only method used in clinics nowadays for quality assurance. However, the accuracy of this method is limited by the loss of signal due to the biological washout processes. Up to the moment, very few studies measured the washout processes and there is no database of washout data as a function of the tissue and radioisotope. One of the main difficulties is related to the complexity of such measurements, along with the limited time slots available in hadron therapy facilities. Thus, in this work, we proposed an alternative in vivo methodology for the measurement and modeling of the biological washout parameters without any radiative devices. It consists in the implementation of a point-like radioisotope source by direct injection on the tissues of interest and its measurement by means of high-resolution preclinical PET systems. In particular, the washout of 11C carbonate radioisotopes was assessed, considering that 11C is is the most abundant β+ emitter produced by carbon beams. 11C washout measurements were performed in several tissues of interest (brain, muscle and 9L tumor xenograf) in rodents (Wistar rat). Results show that the methodology presented is sensitive to the washout variations depending on the selected tissue. Finally, a first qualitative correlation between 11C tumor washout properties and tumor metabolism (via 18F-FDG tracer uptake) was found.
Nuclear medicine in cancer diagnosis and therapy
NASA Astrophysics Data System (ADS)
Chernov, V.; Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.
2017-09-01
Early cancer diagnosis remains one of the most actual problems of medicine, since it allows using the most effective methods of cancer treating. Unlike most diagnostic methods used in oncology, the methods of nuclear medicine allow assessing not so much the anatomic changes in the organ as the disturbance of metabolic processes in tumors and surrounding tissues. The authors describe the main radiopharmaceuticals used for diagnose and radiotherapy of malignant tumors.
Image processing and 3D visualization in forensic pathologic examination
NASA Astrophysics Data System (ADS)
Oliver, William R.; Altschuler, Bruce R.
1996-02-01
The use of image processing is becoming increasingly important in the evaluation of violent crime. While much work has been done in the use of these techniques for forensic purposes outside of forensic pathology, its use in the pathologic examination of wounding has been limited. We are investigating the use of image processing and three-dimensional visualization in the analysis of patterned injuries and tissue damage. While image processing will never replace classical understanding and interpretation of how injuries develop and evolve, it can be a useful tool in helping an observer notice features in an image, may help provide correlation of surface to deep tissue injury, and provide a mechanism for the development of a metric for analyzing how likely it may be that a given object may have caused a given wound. We are also exploring methods of acquiring three-dimensional data for such measurements, which is the subject of a second paper.
A FSI-based structural approach for micromechanical characterization of adipose tissue
NASA Astrophysics Data System (ADS)
Seyfi, Behzad; Sabzalinejad, Masoumeh; Haddad, Seyed M. H.; Fatouraee, Nasser; Samani, Abbas
2017-03-01
This paper presents a novel computational method for micromechanical modeling of adipose tissue. The model can be regarded as the first step for developing an inversion based framework that uses adipose stiffness data obtained from elastography to determine its microstructural alterations. Such information can be used as biomarkers for diseases associated with adipose tissue microstructure alteration (e.g. adipose tissue fibrosis and inflammation in obesity). In contrast to previous studies, the presented model follows a multiphase structure which accounts for both solid and fluid components as well as their mechanical interaction. In the model, the lipid droplets and extracellular matrix were considered as the fluid and solid phase, respectively. As such, the fluid-structure interaction (FSI) problem was solved using finite element method. In order to gain insight into how microstructural characteristics influence the macro scale mechanical properties of the adipose tissue, a compression mechanical test was simulated using the FSI model and its results were fitted to corresponding experimental data. The simulation procedure was performed for adipocytes in healthy conditions while the stiffness of extracellular matrix in normal adipose tissue was found by varying it systematically within an optimization process until the simulation response agreed with experimental data. Results obtained in this study are encouraging and show the capability of the proposed model to capture adipose tissue macroscale mechanical behavior based on its microstructure under health and different pathological conditions.
Ferreira, A P A; Póvoa, L C; Zanier, J F C; Machado, D C; Ferreira, A S
2017-08-03
Evidence on the diagnostic performance of palpatory methods and possible confounding factors is scarce. To examine the sensitivity of palpatory methods for location of lumbopelvic landmarks and to assess its association with personal characteristics. Eighty-three participants (41 men, 55.6 (16.5) years, 25.9 (4.8) kg/m2 [mean (SD)]) were enrolled in this single-blinded study. Fourteen body and softy-tissue landmarks were sequentially palpated from the spinous process of L4 to the ischial tuberosity. CT-scan images were used to assess what landmark was located. Sensitivity for location was in range 22-86% for soft-tissues and 26-69% for bony landmarks. Reduction in sensitivity was observed from the quadratus lumborum to the inferior and lateral angle of the sacrum (86-26% and 75-33%, left and right sides, respectively). Palpations of L4 and L5 spinous processes were systematically more cephalic than other landmarks. Gender was weakly correlated to almost all landmarks (rpb= 0.333 or weaker). Body mass index was weakly correlated to the accurate location of ILAS and quadratus lumborum, great trochanter, PSIS, and piriformis (rpb=-0.307 or weaker). Systematic and propagation errors were present using sequential palpatory methods. Palpation in men was more sensitive and higher BMI was associated with lower sensitivity for lumbopelvic landmarks.
Large scale isolation and purification of soluble RAGE from lung tissue.
Englert, Judson M; Ramsgaard, Lasse; Valnickova, Zuzana; Enghild, Jan J; Oury, Tim D
2008-09-01
The receptor for advanced glycation end-products (RAGE) has been implicated in numerous disease processes including: atherosclerosis, diabetic nephropathy, impaired wound healing and neuropathy to name a few. Treatment of animals with a soluble isoform of the receptor (sRAGE) has been shown to prevent and even reverse many disease processes. Isolating large quantities of pure sRAGE for in vitro and in vivo studies has hindered its development as a therapeutic strategy in other RAGE mediated diseases that require long-term therapy. This article provides an improvement in both yield and detail of a previously published method to obtain 10mg of pure, endotoxin free sRAGE from 65 g of lung tissue.
Code of Federal Regulations, 2010 CFR
2010-04-01
... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...
Thermometry system development for thermoradiotherapy of deep-seated tumours
NASA Astrophysics Data System (ADS)
Fadeev, A. M.; Ivanov, S. M.; Perelstein, E. A.; Polozov, S. M.
2017-12-01
Therapeutic hyperthermia (including RF hyperthermia) in combination with radiotherapy (called thermoradiotherapy) is one of widely used contemporary cancer treatment methods. The independent electron linac and RF system or their combinations are necessary for effective therapy. Whole-body hyperthermia is used for treatment of metastatic cancer that was spread throughout the body, regional one is used for treatment of part of the body (for instance leg or abdominal cavity). Local hyperthermia with characteristic size of heating volume of 20-100 mm permits to heat tumour without overheating of healthy tissues. The thermometry of deep suited tissues during the hyperthermia process is an important and complex task. Invasive methods as thermistors, optical sensors or thermo-couples can not be widely used because all of them are able to transport tumor cells to the healthy region of the patient body. Distant methods of the temperature measurement such, as radiothermometry and acoustic thermometry can not be used for tissues seated deeper than 5-7 cm. One of possible ways to solve the problem of temperature measurement of the deep suited tissues is discussed in this article: it was proposed to use the same electrodes for RF hyperthermia and thermometry. As known electrodynamics characteristics of tissues are sufficiently depends on temperature. It was proposed to use this effect for active radiothermometry in local hyperthermia. Two opposite RF dipoles can be used as generator and receiver of pick-up signal.
NASA Astrophysics Data System (ADS)
Baria, Enrico; Cicchi, Riccardo; Rotellini, Matteo; Nesi, Gabriella; Massi, Daniela; Pavone, Francesco S.
2016-03-01
Atherosclerosis is a widespread cardiovascular disease caused by the deposition of lipids (such as cholesterol and triglycerides) on the inner arterial wall. The rupture of an atherosclerotic plaque, resulting in a thrombus, is one of the leading causes of death in the Western World. Preventive assessment of plaque vulnerability is therefore extremely important and can be performed by studying collagen organization and lipid composition in atherosclerotic arterial tissues. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires immune-histochemical examination and a morpho-functional approach. Instead, a label-free and non-invasive alternative is provided by nonlinear microscopy. In this study, we combined SHG and FLIM microscopy in order to characterize collagen organization and lipids in human carotid ex vivo tissues affected by atherosclerosis. SHG and TPF images, acquired from different regions within atherosclerotic plaques, were processed through image pattern analysis methods (FFT, GLCM). The resulting information on collagen and cholesterol distribution and anisotropy, combined with collagen and lipids fluorescence lifetime measured from FLIM images, allowed characterization of carotid samples and discrimination of different tissue regions. The presented method can be applied for automated classification of atherosclerotic lesions and plaque vulnerability. Moreover, it lays the foundation for a potential in vivo diagnostic tool to be used in clinical setting.
Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.
Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F
2017-01-01
Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Rossa, Carlos; Sloboda, Ron; Usmani, Nawaid; Tavakoli, Mahdi
2016-07-01
This paper proposes a method to predict the deflection of a flexible needle inserted into soft tissue based on the observation of deflection at a single point along the needle shaft. We model the needle-tissue as a discretized structure composed of several virtual, weightless, rigid links connected by virtual helical springs whose stiffness coefficient is found using a pattern search algorithm that only requires the force applied at the needle tip during insertion and the needle deflection measured at an arbitrary insertion depth. Needle tip deflections can then be predicted for different insertion depths. Verification of the proposed method in synthetic and biological tissue shows a deflection estimation error of [Formula: see text]2 mm for images acquired at 35 % or more of the maximum insertion depth, and decreases to 1 mm for images acquired closer to the final insertion depth. We also demonstrate the utility of the model for prostate brachytherapy, where in vivo needle deflection measurements obtained during early stages of insertion are used to predict the needle deflection further along the insertion process. The method can predict needle deflection based on the observation of deflection at a single point. The ultrasound probe can be maintained at the same position during insertion of the needle, which avoids complications of tissue deformation caused by the motion of the ultrasound probe.
Soft tissue decomposition of submerged, dismembered pig limbs enclosed in plastic bags.
Pakosh, Caitlin M; Rogers, Tracy L
2009-11-01
This study examines underwater soft tissue decomposition of dismembered pig limbs deposited in polyethylene plastic bags. The research evaluates the level of influence that disposal method has on underwater decomposition processes and details observations specific to this scenario. To our knowledge, no other study has yet investigated decomposing, dismembered, and enclosed remains in water environments. The total sample size consisted of 120 dismembered pig limbs, divided into a subsample of 30 pig limbs per recovery period (34 and 71 days) for each treatment. The two treatments simulated non-enclosed and plastic enclosed disposal methods in a water context. The remains were completely submerged in Lake Ontario for 34 and 71 days. In both recovery periods, the non-enclosed samples lost soft tissue to a significantly greater extent than their plastic enclosed counterparts. Disposal of remains in plastic bags therefore results in preservation, most likely caused by bacterial inhibition and reduced oxygen levels.
NASA Astrophysics Data System (ADS)
Zharkikh, E. V.; Dremin, V. V.; Filina, M. A.; Makovik, I. N.; Potapova, E. V.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dunaev, A. V.
2017-11-01
The paper shows the possibility of assessing the functional state of microcirculatory-tissue systems of patients with diabetes mellitus by laser Doppler flowmetry (LDF), diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy (FS) methods. A review of the existing non-invasive optical technologies used to assess the state of microcirculation and oxygen metabolism in tissues of patients with diabetes is conducted. A series of experimental studies involving 76 patients with diabetes and 46 healthy volunteers was carried out. A wavelet analysis of LDF-grams was used to evaluate the adaptive changes of microcirculation during the temperature tests. The obtained data revealed that the proposed methodology in the form of combined use of several diagnostic technologies (LDF, FS and DRS) allows us to detect the presence or absence of trophic disorders and to evaluate adaptation processes during thermal tests.
Ultrashort pulse high repetition rate laser system for biological tissue processing
Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.
1998-01-01
A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.
NASA Astrophysics Data System (ADS)
Webb, Kevin; Gaind, Vaibhav; Tsai, Hsiaorho; Bentz, Brian; Chelvam, Venkatesh; Low, Philip
2012-02-01
We describe an approach for the evaluation of targeted anti-cancer drug delivery in vivo. The method emulates the drug release and activation process through acceptor release from a targeted donor-acceptor pair that exhibits fluorescence resonance energy transfer (FRET). In this case, folate targeting of the cancer cells is used - 40 % of all human cancers, including ovarian, lung, breast, kidney, brain and colon cancer, over-express folate receptors. We demonstrate the reconstruction of the spatially-dependent FRET parameters in a mouse model and in tissue phantoms. The FRET parameterization is incorporated into a source for a diffusion equation model for photon transport in tissue, in a variant of optical diffusion tomography (ODT) called FRET-ODT. In addition to the spatially-dependent tissue parameters in the diffusion model (absorption and diffusion coefficients), the FRET parameters (donor-acceptor distance and yield) are imaged as a function of position. Modulated light measurements are made with various laser excitation positions and a gated camera. More generally, our method provides a new vehicle for studying disease at the molecular level by imaging FRET parameters in deep tissue, and allows the nanometer FRET ruler to be utilized in deep tissue.
Tissue vascularization through 3D printing: Will technology bring us flow?
Paulsen, S J; Miller, J S
2015-05-01
Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.
Ultrashort pulse high repetition rate laser system for biological tissue processing
Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.
1998-02-24
A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.
NASA Astrophysics Data System (ADS)
Novianti, T.; Sadikin, M.; Widia, S.; Juniantito, V.; Arida, E. A.
2018-03-01
Development of unidentified specific gene is essential to analyze the availability these genes in biological process. Identification unidentified specific DNA of HIF 1α genes is important to analyze their contribution in tissue regeneration process in lizard tail (Hemidactylus platyurus). Bioinformatics and PCR techniques are relatively an easier method to identify an unidentified gene. The most widely used method is BLAST (Basic Local Alignment Sequence Tools) method for alignment the sequences from the other organism. BLAST technique is online software from website https://blast.ncbi.nlm.nih.gov/Blast.cgi that capable to generate the similar sequences from closest kinship to distant kindship. Gecko japonicus is a species that it has closest kinship with H. platyurus. Comparing HIF 1 α gene sequence of G. japonicus with the other species used multiple alignment methods from Mega7 software. Conserved base areas were identified using Clustal IX method. Primary DNA of HIF 1 α gene was design by Primer3 software. HIF 1α gene of lizard (H. platyurus) was successfully amplified using a real-time PCR machine by primary DNA that we had designed from Gecko japonicus. Identification unidentified gene of HIF 1a lizard has been done successfully with multiple alignment method. The study was conducted by analyzing during the growth of tail on day 1, 3, 5, 7, 10, 13 and 17 of lizard tail after autotomy. Process amplification of HIF 1α gene was described by CT value in real time PCR machine. HIF 1α expression of gene is quantified by Livak formula. Chi-square statistic test is 0.000 which means that there is a different expression of HIF 1 α gene in every growth day treatment.
A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process
An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng
2016-01-01
New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery. PMID:27122192
A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process.
An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng
2016-04-28
New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery.
Wang, Shen-Ling; Qi, Hong; Ren, Ya-Tao; Chen, Qin; Ruan, Li-Ming
2018-05-01
Thermal therapy is a very promising method for cancer treatment, which can be combined with chemotherapy, radiotherapy and other programs for enhanced cancer treatment. In order to get a better effect of thermal therapy in clinical applications, optimal internal temperature distribution of the tissue embedded with gold nanoparticles (GNPs) for enhanced thermal therapy was investigated in present research. The Monte Carlo method was applied to calculate the heat generation of the tissue embedded with GNPs irradiated by continuous laser. To have a better insight into the physical problem of heat transfer in tissues, the two-energy equation was employed to calculate the temperature distribution of the tissue in the process of GNPs enhanced therapy. The Arrhenius equation was applied to evaluate the degree of permanent thermal damage. A parametric study was performed to investigate the influence factors on the tissue internal temperature distribution, such as incident light intensity, the GNPs volume fraction, the periodic heating and cooling time, and the incident light position. It was found that period heating and cooling strategy can effectively avoid overheating of skin surface and heat damage of healthy tissue. Lower GNPs volume fraction will be better for the heat source distribution. Furthermore, the ring heating strategy is superior to the central heating strategy in the treatment effect. All the analysis provides theoretical guidance for optimal temperature control of tissue embedded with GNP for enhanced thermal therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan
2013-03-01
Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.
Ex vivo applications of multiphoton microscopy in urology
NASA Astrophysics Data System (ADS)
Jain, Manu; Mukherjee, Sushmita
2016-03-01
Background: Routine urological surgery frequently requires rapid on-site histopathological tissue evaluation either during biopsy or intra-operative procedure. However, resected tissue needs to undergo processing, which is not only time consuming but may also create artifacts hindering real-time tissue assessment. Likewise, pathologist often relies on several ancillary methods, in addition to H&E to arrive at a definitive diagnosis. Although, helpful these techniques are tedious and time consuming and often show overlapping results. Therefore, there is a need for an imaging tool that can rapidly assess tissue in real-time at cellular level. Multiphoton microscopy (MPM) is one such technique that can generate histology-quality images from fresh and fixed tissue solely based on their intrinsic autofluorescence emission, without the need for tissue processing or staining. Design: Fresh tissue sections (neoplastic and non-neoplastic) from biopsy and surgical specimens of bladder and kidney were obtained. Unstained deparaffinized slides from biopsy of medical kidney disease and oncocytic renal neoplasms were also obtained. MPM images were acquired using with an Olympus FluoView FV1000MPE system. After imaging, fresh tissues were submitted for routine histopathology. Results: Based on the architectural and cellular details of the tissue, MPM could characterize normal components of bladder and kidney. Neoplastic tissue could be differentiated from non-neoplastic tissue and could be further classified as per histopathological convention. Some of the tumors had unique MPM signatures not otherwise seen on H&E sections. Various subtypes of glomerular lesions were identified as well as renal oncocytic neoplasms were differentiated on unstained deparaffinized slides. Conclusions: We envision MPM to become an integral part of regular diagnostic workflow for rapid assessment of tissue. MPM can be used to evaluate the adequacy of biopsies and triage tissues for ancillary studies. It can also be used as an adjunct to frozen section analysis for intra-operative margin assessment. Further, it can play an important role for pathologist for guiding specimen grossing, selecting tissue for tumor banking and as a rapid ancillary diagnostic tool.
Liu, Xiuxiu; Tang, Minghai; Liu, Taohong; Wang, Chunyan; Tang, Qiaoxin; Xiao, Yaxin; Yang, Ruixin; Chao, Ruobing
2017-12-27
1. Mesaconine, an ingredient from Aconitum carmichaelii Debx., has been proven to have cardiac effect. For further development and better pharmacological elucidation, the in vivo process and intestinal absorptive behavior of mesaconine should be investigated comprehensively. 2. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of mesaconine in rat plasma, tissue homogenates, urine and feces to investigate the in vivo pharmacokinetic profiles, tissue distribution and excretion. The intestinal absorptive behavior of mesaconine was investigated using in vitro everted rat gut sac model. 3. Mesaconine was well distributed in tissues and a mass of unchanged form was detected in feces. It was difficultly absorbed into blood circulatory system after oral administration. The insufficient oral bioavailability of mesaconine may be mainly attributed to its low intestinal permeability due to a lack of lipophilicity. The absorption of mesaconine in rat's intestine is a first-order process with the passive diffusion mechanism.
[Reconstructive surgery of penile deformities and tissue deficiencies].
Kelemen, Zsolt
2009-05-31
Penile deformities and tissue deficiencies can disturb sexual intercourse or make it impossible. The aim of the study is to summarize the different diseases according to their clinical appearance and pathological processes and to review operative methods and personal experiences. Surgical treatment of hypo- and epispadias is usually performed in childhood, but curvatures after unsuccessful operation can demand the reconstruction of urethra, skin and corpora cavernosa eventually. Peyronie's disease and curvature after penile fracture desire the reconstruction of tunica albuginea. Plaque surgery used to be performed with dermal, tunica vaginalis or venous grafts, but best results are obtained by shortening procedure on the contralateral side according to the Heinecke-Mikulitz principle. Tissue deficiencies and curvatures were observed after necrotic inflammatory processes, like Fournier's gangrene or chronic dermatitis. Skin defects were cured by flaps and grafts. Abscesses of penis, severe tissue defects and also curvatures were observed after intracavernous injection in cases of erectile dysfunction. Possibilities of reconstruction seem to be very poor. Oil granuloma of penis presents a new task for penile reconstruction. The best results of skin replacement were achieved by temporary embedding of the penis in scrotum.
A high-throughput semi-automated preparation for filtered synaptoneurosomes.
Murphy, Kathryn M; Balsor, Justin; Beshara, Simon; Siu, Caitlin; Pinto, Joshua G A
2014-09-30
Synaptoneurosomes have become an important tool for studying synaptic proteins. The filtered synaptoneurosomes preparation originally developed by Hollingsworth et al. (1985) is widely used and is an easy method to prepare synaptoneurosomes. The hand processing steps in that preparation, however, are labor intensive and have become a bottleneck for current proteomic studies using synaptoneurosomes. For this reason, we developed new steps for tissue homogenization and filtration that transform the preparation of synaptoneurosomes to a high-throughput, semi-automated process. We implemented a standardized protocol with easy to follow steps for homogenizing multiple samples simultaneously using a FastPrep tissue homogenizer (MP Biomedicals, LLC) and then filtering all of the samples in centrifugal filter units (EMD Millipore, Corp). The new steps dramatically reduce the time to prepare synaptoneurosomes from hours to minutes, increase sample recovery, and nearly double enrichment for synaptic proteins. These steps are also compatible with biosafety requirements for working with pathogen infected brain tissue. The new high-throughput semi-automated steps to prepare synaptoneurosomes are timely technical advances for studies of low abundance synaptic proteins in valuable tissue samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Brain tissues volume measurements from 2D MRI using parametric approach
NASA Astrophysics Data System (ADS)
L'vov, A. A.; Toropova, O. A.; Litovka, Yu. V.
2018-04-01
The purpose of the paper is to propose a fully automated method of volume assessment of structures within human brain. Our statistical approach uses maximum interdependency principle for decision making process of measurements consistency and unequal observations. Detecting outliers performed using maximum normalized residual test. We propose a statistical model which utilizes knowledge of tissues distribution in human brain and applies partial data restoration for precision improvement. The approach proposes completed computationally efficient and independent from segmentation algorithm used in the application.
Electrospun nanofibers for neural tissue engineering
NASA Astrophysics Data System (ADS)
Xie, Jingwei; MacEwan, Matthew R.; Schwartz, Andrea G.; Xia, Younan
2010-01-01
Biodegradable nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. We begin with a brief discussion on the electrospinning of nanofibers and methods for controlling the structure, porosity, and alignment of the electrospun nanofibers. The methods include control of the nanoscale morphology and microscale alignment of the nanofibers, as well as the fabrication of macroscale, three-dimensional tubular structures. We then highlight recent studies that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this feature article is to provide valuable insights into methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.
Segmentation of bone pixels from EROI Image using clustering method for bone age assessment
NASA Astrophysics Data System (ADS)
Bakthula, Rajitha; Agarwal, Suneeta
2016-03-01
The bone age of a human can be identified using carpal and epiphysis bones ossification, which is limited to teen age. The accurate age estimation depends on best separation of bone pixels and soft tissue pixels in the ROI image. The traditional approaches like canny, sobel, clustering, region growing and watershed can be applied, but these methods requires proper pre-processing and accurate initial seed point estimation to provide accurate results. Therefore this paper proposes new approach to segment the bone from soft tissue and background pixels. First pixels are enhanced using BPE and the edges are identified by HIPI. Later a K-Means clustering is applied for segmentation. The performance of the proposed approach has been evaluated and compared with the existing methods.
Power transfer for rotating medical machine.
Sofia, A; Tavilla, A C; Gardenghi, R; Nicolis, D; Stefanini, I
2016-08-01
Very often biological tissues need to be treated inside of a biomedical centrifuge even during the centrifugation step without process interruption. In this paper an advantageous energy transfer method capable of providing sufficient electric power for the rotating and active part is presented.
Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues.
Sindhwani, Shrey; Syed, Abdullah Muhammad; Wilhelm, Stefan; Glancy, Dylan R; Chen, Yih Yang; Dobosz, Michael; Chan, Warren C W
2016-05-24
The role of tissue architecture in mediating nanoparticle transport, targeting, and biological effects is unknown due to the lack of tools for imaging nanomaterials in whole organs. Here, we developed a rapid optical mapping technique to image nanomaterials in intact organs ex vivo and in three-dimensions (3D). We engineered a high-throughput electrophoretic flow device to simultaneously transform up to 48 tissues into optically transparent structures, allowing subcellular imaging of nanomaterials more than 1 mm deep into tissues which is 25-fold greater than current techniques. A key finding is that nanomaterials can be retained in the processed tissue by chemical cross-linking of surface adsorbed serum proteins to the tissue matrix, which enables nanomaterials to be imaged with respect to cells, blood vessels, and other structures. We developed a computational algorithm to analyze and quantitatively map nanomaterial distribution. This method can be universally applied to visualize the distribution and interactions of materials in whole tissues and animals including such applications as the imaging of nanomaterials, tissue engineered constructs, and biosensors within their intact biological environment.
Metastasis Infiltration: An Investigation of the Postoperative Brain-Tumor Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raore, Bethwel; Schniederjan, Matthew; Prabhu, Roshan
Purpose: This study aims to evaluate brain infiltration of metastatic tumor cells past the main tumor resection margin to assess the biological basis for the use of stereotactic radiosurgery treatment of the tumor resection cavity and visualized resection edge or clinical target volume. Methods and Materials: Resection margin tissue was obtained after gross total resection of a small group of metastatic lesions from a variety of primary sources. The tissue at the border of the tumor and brain tissue was carefully oriented and processed to evaluate the presence of tumor cells within brain tissue and their distance from the resectionmore » margin. Results: Microscopic assessment of the radially oriented tissue samples showed no tumor cells infiltrating the surrounding brain tissue. Among the positive findings were reactive astrocytosis observed on the brain tissue immediately adjacent to the tumor resection bed margin. Conclusions: The lack of evidence of metastatic tumor cell infiltration into surrounding brain suggests the need to target only a narrow depth of the resection cavity margin to minimize normal tissue injury and prevent treatment size-dependent stereotactic radiosurgery complications.« less
Treweek, Jennifer B; Deverman, Benjamin E; Greenbaum, Alon; Lignell, Antti; Xiao, Cheng; Cai, Long; Ladinsky, Mark S; Bjorkman, Pamela J; Fowlkes, Charless C; Gradinaru, Viviana
2016-01-01
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks. PMID:26492141
Cryotherapy simulator for localized prostate cancer.
Hahn, James K; Manyak, Michael J; Jin, Ge; Kim, Dongho; Rewcastle, John; Kim, Sunil; Walsh, Raymond J
2002-01-01
Cryotherapy is a treatment modality that uses a technique to selectively freeze tissue and thereby cause controlled tissue destruction. The procedure involves placement of multiple small diameter probes through the perineum into the prostate tissue at selected spatial intervals. Transrectal ultrasound is used to properly position the cylindrical probes before activation of the liquid Argon cooling element, which lowers the tissue temperature below -40 degrees Centigrade. Tissue effect is monitored by transrectal ultrasound changes as well as thermocouples placed in the tissue. The computer-based cryotherapy simulation system mimics the major surgical steps involved in the procedure. The simulated real-time ultrasound display is generated from 3-D ultrasound datasets where the interaction of the ultrasound with the instruments as well as the frozen tissue is simulated by image processing. The thermal and mechanical simulations of the tissue are done using a modified finite-difference/finite-element method optimized for real-time performance. The simulator developed is a part of a comprehensive training program, including a computer-based learning system and hands-on training program with a proctor, designed to familiarize the physician with the technique and equipment involved.
Brauchle, Eva; Schenke-Layland, Katja
2013-01-01
Raman spectroscopy is an established laser-based technology for the quality assurance of pharmaceutical products. Over the past few years, Raman spectroscopy has become a powerful diagnostic tool in the life sciences. Raman spectra allow assessment of the overall molecular constitution of biological samples, based on specific signals from proteins, nucleic acids, lipids, carbohydrates, and inorganic crystals. Measurements are non-invasive and do not require sample processing, making Raman spectroscopy a reliable and robust method with numerous applications in biomedicine. Moreover, Raman spectroscopy allows the highly sensitive discrimination of bacteria. Rama spectra retain information on continuous metabolic processes and kinetics such as lipid storage and recombinant protein production. Raman spectra are specific for each cell type and provide additional information on cell viability, differentiation status, and tumorigenicity. In tissues, Raman spectroscopy can detect major extracellular matrix components and their secondary structures. Furthermore, the non-invasive characterization of healthy and pathological tissues as well as quality control and process monitoring of in vitro-engineered matrix is possible. This review provides comprehensive insight to the current progress in expanding the applicability of Raman spectroscopy for the characterization of living cells and tissues, and serves as a good reference point for those starting in the field. PMID:23161832
Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies
Fiume, Elisa; Barberi, Jacopo; Verné, Enrica
2018-01-01
Nowadays, bioactive glasses (BGs) are mainly used to improve and support the healing process of osseous defects deriving from traumatic events, tumor removal, congenital pathologies, implant revisions, or infections. In the past, several approaches have been proposed in the replacement of extensive bone defects, each one with its own advantages and drawbacks. As a result, the need for synthetic bone grafts is still a remarkable clinical challenge since more than 1 million bone-graft surgical operations are annually performed worldwide. Moreover, recent studies show the effectiveness of BGs in the regeneration of soft tissues, too. Often, surgical criteria do not match the engineering ones and, thus, a compromise is required for getting closer to an ideal outcome in terms of good regeneration, mechanical support, and biocompatibility in contact with living tissues. The aim of the present review is providing a general overview of BGs, with particular reference to their use in clinics over the last decades and the latest synthesis/processing methods. Recent advances in the use of BGs in tissue engineering are outlined, where the use of porous scaffolds is gaining growing importance thanks to the new possibilities given by technological progress extended to both manufacturing processes and functionalization techniques. PMID:29547544
Doi, Kentaro; Tanaka, Shinsuke; Iida, Hideo; Eto, Hitomi; Kato, Harunosuke; Aoi, Noriyuki; Kuno, Shinichiro; Hirohi, Toshitsugu; Yoshimura, Kotaro
2013-11-01
The heterogeneous stromal vascular fraction (SVF), containing adipose-derived stem/progenitor cells (ASCs), can be easily isolated through enzymatic digestion of aspirated adipose tissue. In clinical settings, however, strict control of technical procedures according to standard operating procedures and validation of cell-processing conditions are required. Therefore, we evaluated the efficiency and reliability of an automated system for SVF isolation from adipose tissue. SVF cells, freshly isolated using the automated procedure, showed comparable number and viability to those from manual isolation. Flow cytometric analysis confirmed an SVF cell composition profile similar to that after manual isolation. In addition, the ASC yield after 1 week in culture was also not significantly different between the two groups. Our clinical study, in which SVF cells isolated with the automated system were transplanted with aspirated fat tissue for soft tissue augmentation/reconstruction in 42 patients, showed satisfactory outcomes with no serious side-effects. Taken together, our results suggested that the automated isolation system is as reliable a method as manual isolation and may also be useful in clinical settings. Automated isolation is expected to enable cell-based clinical trials in small facilities with an aseptic room, without the necessity of a good manufacturing practice-level cell processing area. Copyright © 2012 John Wiley & Sons, Ltd.
Elfer, Katherine N.; Sholl, Andrew B.; Wang, Mei; Tulman, David B.; Mandava, Sree H.; Lee, Benjamin R.; Brown, J. Quincy
2016-01-01
Real-time on-site histopathology review of biopsy tissues at the point-of-procedure has great potential for significant clinical value and improved patient care. For instance, on-site review can aid in rapid screening of diagnostic biopsies to reduce false-negative results, or in quantitative assessment of biospecimen quality to increase the efficacy of downstream laboratory and histopathology analysis. However, the only currently available rapid pathology method, frozen section analysis (FSA), is too time- and labor-intensive for use in screening large quantities of biopsy tissues and is too destructive for maximum tissue conservation in multiple small needle core biopsies. In this work we demonstrate the spectrally-compatible combination of the nuclear stain DRAQ5 and the anionic counterstain eosin as a dual-component fluorescent staining analog to hematoxylin and eosin intended for use on fresh, unsectioned tissues. Combined with optical sectioning fluorescence microscopy and pseudo-coloring algorithms, DRAQ5 and eosin (“D&E”) enables very fast, non-destructive psuedohistological imaging of tissues at the point-of-acquisition with minimal tissue handling and processing. D&E was validated against H&E on a one-to-one basis on formalin-fixed paraffin-embedded and frozen section tissues of various human organs using standard epi-fluorescence microscopy, demonstrating high fidelity of the staining mechanism as an H&E analog. The method was then applied to fresh, whole 18G renal needle core biopsies and large needle core prostate biospecimen biopsies using fluorescence structured illumination optical sectioning microscopy. We demonstrate the ability to obtain high-resolution histology-like images of unsectioned, fresh tissues similar to subsequent H&E staining of the tissue. The application of D&E does not interfere with subsequent standard-of-care H&E staining and imaging, preserving the integrity of the tissue for thorough downstream analysis. These results indicate that this dual-stain pseudocoloring method could provide a real-time histology-like image at the time of acquisition and valuable objective tissue analysis for the clinician at the time of service. PMID:27788264
Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy
2014-01-01
Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438
Ravi, Daniele; Fabelo, Himar; Callic, Gustavo Marrero; Yang, Guang-Zhong
2017-09-01
Recent advances in hyperspectral imaging have made it a promising solution for intra-operative tissue characterization, with the advantages of being non-contact, non-ionizing, and non-invasive. Working with hyperspectral images in vivo, however, is not straightforward as the high dimensionality of the data makes real-time processing challenging. In this paper, a novel dimensionality reduction scheme and a new processing pipeline are introduced to obtain a detailed tumor classification map for intra-operative margin definition during brain surgery. However, existing approaches to dimensionality reduction based on manifold embedding can be time consuming and may not guarantee a consistent result, thus hindering final tissue classification. The proposed framework aims to overcome these problems through a process divided into two steps: dimensionality reduction based on an extension of the T-distributed stochastic neighbor approach is first performed and then a semantic segmentation technique is applied to the embedded results by using a Semantic Texton Forest for tissue classification. Detailed in vivo validation of the proposed method has been performed to demonstrate the potential clinical value of the system.
In vitro 3D regeneration-like growth of human patient brain tissue.
Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J
2018-05-01
In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T. C.; Matsudaira, Paul; Barbastathis, George
2012-01-01
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, “3D HiLo” where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts. PMID:23262684
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T C; Matsudaira, Paul; Barbastathis, George
2012-12-03
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.
A survey of methods for the evaluation of tissue engineering scaffold permeability.
Pennella, F; Cerino, G; Massai, D; Gallo, D; Falvo D'Urso Labate, G; Schiavi, A; Deriu, M A; Audenino, A; Morbiducci, Umberto
2013-10-01
The performance of porous scaffolds for tissue engineering (TE) applications is evaluated, in general, in terms of porosity, pore size and distribution, and pore tortuosity. These descriptors are often confounding when they are applied to characterize transport phenomena within porous scaffolds. On the contrary, permeability is a more effective parameter in (1) estimating mass and species transport through the scaffold and (2) describing its topological features, thus allowing a better evaluation of the overall scaffold performance. However, the evaluation of TE scaffold permeability suffers of a lack of uniformity and standards in measurement and testing procedures which makes the comparison of results obtained in different laboratories unfeasible. In this review paper we summarize the most important features influencing TE scaffold permeability, linking them to the theoretical background. An overview of methods applied for TE scaffold permeability evaluation is given, presenting experimental test benches and computational methods applied (1) to integrate experimental measurements and (2) to support the TE scaffold design process. Both experimental and computational limitations in the permeability evaluation process are also discussed.
Calculation of singlet oxygen formation from one photon absorbing photosensitizers used in PDT
NASA Astrophysics Data System (ADS)
Potasek, M.; Parilov, Evgueni; Beeson, K.
2013-03-01
Advances in biophotonic medicine require new information on photodynamic mechanisms. In photodynamic therapy (PDT), a photosensitizer (PS) is injected into the body and accumulates at higher concentrations in diseased tissue compared to normal tissue. The PS absorbs light from a light source and generates excited-state triplet states of the PS. The excited triplet states of the PS can then react with ground state molecular oxygen to form excited singlet - state oxygen or form other highly reactive species. The reactive species react with living cells, resulting in cel l death. This treatment is used in many forms of cancer including those in the prostrate, head and neck, lungs, bladder, esophagus and certain skin cancers. We developed a novel numerical method to model the photophysical and photochemical processes in the PS and the subsequent energy transfer to O2, improving the understanding of these processes at a molecular level. Our numerical method simulates light propagation and photo-physics in PS using methods that build on techniques previously developed for optical communications and nonlinear optics applications.
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem
2016-03-01
We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.
Recent advancements in electrospinning design for tissue engineering applications: A review.
Kishan, Alysha P; Cosgriff-Hernandez, Elizabeth M
2017-10-01
Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892-2905, 2017. © 2017 Wiley Periodicals, Inc.
Tissue Pulsatility Imaging of Cerebral Vasoreactivity during Hyperventilation
Kucewicz, John C.; Dunmire, Barbrina; Giardino, Nicholas D.; Leotta, Daniel F.; Paun, Marla; Dager, Stephen R.; Beach, Kirk W.
2008-01-01
Tissue Pulsatility Imaging (TPI) is an ultrasonic technique that is being developed at the University of Washington to measure tissue displacement or strain due to blood flow over the cardiac and respiratory cycles. This technique is based in principle on plethysmography, an older non-ultrasound technology for measuring expansion of a whole limb or body part due to perfusion. TPI adapts tissue Doppler signal processing methods to measure the “plethysmographic” signal from hundreds or thousands of sample volumes in an ultrasound image plane. This paper presents a feasibility study to determine if TPI can be used to assess cerebral vasoreactivity. Ultrasound data were collected transcranially through the temporal acoustic window from four subjects before, during, and after voluntary hyperventilation. In each subject, decreases in tissue pulsatility during hyperventilation were observed that were statistically correlated with the subject’s end-tidal CO2 measurements. PMID:18336991
[Features of the periodontal pathology at patients with metabolic syndrome].
Ermolaeva, L A; Shishkin, A N; Sheveleva, N A; Penkovoi, E A; Sheveleva, M A; Sokolovich, N A; Khabarova, O V; Mihailova, E S
2016-01-01
The purpose of this article is to familiarize readers on the relationship between metabolic syndrome and periodontitis, as well as common pathogenetic processes underlying these diseases. The data of modern researches, devoted to the correlation of lesions of periodontal and systemic diseases associated with metabolic syndrome. In the article analyzed also the data of the original study of the interaction of periodontitis and metabolic syndrome, which also used special methods of examination like Doppler ultrasound microcirculatory vasculature of the periodontal tissues and ultrasound densitometry. The possible methods of diagnostics of a condition of periodontal tissues in patients with metabolic syndrome are considered. Conclusions about the relationship of each component of metabolic syndrome with periodontitis are made.
Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture
Amornvit, Pokpong; Srithavaj, Theerathavaj
2014-01-01
Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638
NASA Astrophysics Data System (ADS)
Sampson, David D.; Chin, Lixin; Gong, Peijun; Wijesinghe, Philip; Es'haghian, Shaghayegh; Allen, Wesley M.; Klyen, Blake R.; Kirk, Rodney W.; Kennedy, Brendan F.; McLaughlin, Robert A.
2016-03-01
INVITED TALK Advances in imaging tissue microstructure in living subjects, or in freshly excised tissue with minimum preparation and processing, are important for future diagnosis and surgical guidance in the clinical setting, particularly for application to cancer. Whilst microscopy methods continue to advance on the cellular scale and medical imaging is well established on the scale of the whole tumor or organ, it is attractive to consider imaging the tumor environment on the micro-scale, between that of cells and whole tissues. Such a scenario is ideally suited to optical coherence tomography (OCT), with the twin attractions of requiring little or no tissue preparation, and in vivo capability. OCT's intrinsic scattering contrast reveals many morphological features of tumors, but is frequently ineffective in revealing other important aspects, such as microvasculature, or in reliably distinguishing tumor from uninvolved stroma. To address these shortcomings, we are developing several advances on the basic OCT approach. We are exploring speckle fluctuations to image tissue microvasculature and we have been developing several parametric approaches to tissue micro-scale characterization. Our approaches extract, from a three-dimensional OCT data set, a two-dimensional image of an optical parameter, such as attenuation or birefringence, or a mechanical parameter, such as stiffness, that aids in characterizing the tissue. This latter method, termed optical coherence elastography, parallels developments in ultrasound and magnetic resonance imaging. Parametric imaging of birefringence and of stiffness both show promise in addressing the important issue of differentiating cancer from uninvolved stroma in breast tissue.
Analysis of tissue specific progenitor cell differentiation using FT-IR
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio
2007-07-01
Tissue specific progenitor cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-contact and non-destructive methods from the view point of safety. Or the analysis with small quantities of materials could be possible if the quantities of materials are acceptable. A non-contact and non-destructive quality control method has been required. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The changes in the cells and tissues, which are subtle and often not obvious in the histpathological studies, are shown to be well resolved using FT-IR. Moreover, although most techniques designed to detect one or a few changes, FT-IR is possible to identify the changes in the levels of various cellular biochemicals simultaneously under in vivo and in vitro conditions. The objective of this study is to establish the infrared spectroscopy of tissue specific progenitor cell differentiations as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examine the adipose differentiation kinetics of preadipose cells (3T3-L1) and the osteoblast differentiation kinetics of mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra.
Fontanarosa, Carolina; Pane, Francesca; Sepe, Nunzio; Pinto, Gabriella; Trifuoggi, Marco; Squillace, Marta; Errico, Francesco; Usiello, Alessandro; Pucci, Piero; Amoresano, Angela
2017-01-01
Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75-110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.
Román, Belén; González-Verdejo, Clara I; Peña, Francisco; Nadal, Salvador; Gómez, Pedro
2012-01-01
Quality and integrity of RNA are critical for transcription studies in plant molecular biology. In squash fruit and other high water content crops, the grinding of tissue with mortar and pestle in liquid nitrogen fails to produce a homogeneous and fine powered sample desirable to ensure a good penetration of the extraction reagent. To develop an improved pulverisation method to facilitate the homogenisation process of squash fruit tissue prior to RNA extraction without reducing quality and yield of the extracted RNA. Three methods of pulverisation, each followed by the same extraction protocol, were compared. The first approach consisted of the lyophilisation of the sample in order to remove the excess of water before grinding, the second one used a cryogenic mill and the control one a mortar grinding of frozen tissue. The quality of the isolated RNA was tested by carrying out a quantitative real time downstream amplification. In the three situations considered, mean values for A(260) /A(280) indicated minimal interference by proteins and RNA quality indicator (RQI) values were considered appropriate for quantitative real-time polymerase chain reaction (qRT-PCR) amplification. Successful qRT-PCR amplifications were obtained with cDNA isolated with the three protocols. Both apparatus can improve and facilitate the grinding step in the RNA extraction process in zucchini, resulting in isolated RNA of high quality and integrity as revealed by qRT-PCR downstream application. This is apparently the first time that a cryogenic mill has been used to prepare fruit samples for RNA extraction, thereby improving the sampling strategy because the fine powder obtained represents a homogeneous mix of the organ tissue. Copyright © 2012 John Wiley & Sons, Ltd.
Rønning, Sissel B; Østbye, Tone-Kari; Krasnov, Aleksei; Vuong, Tram T; Veiseth-Kent, Eva; Kolset, Svein O; Pedersen, Mona E
2017-04-01
Pin bones represent a major problem for processing and quality of fish products. Development of methods of removal requires better knowledge of the pin bones' attachment to the muscle and structures involved in the breakdown during loosening. In this study, pin bones from cod and salmon were dissected from fish fillets after slaughter or storage on ice for 5 days, and thereafter analysed with molecular methods, which revealed major differences between these species before and after storage. The connective tissue (CT) attaches the pin bone to the muscle in cod, while the pin bones in salmon are embedded in adipose tissue. Collagens, elastin, lectin-binding proteins and glycosaminoglycans (GAGs) are all components of the attachment site, and this differ between salmon and cod, resulting in a CT in cod that is more resistant to enzymatic degradation compared to the CT in salmon. Structural differences are reflected in the composition of transcriptome. Microarray analysis comparing the attachment sites of the pin bones with a reference muscle sample showed limited differences in salmon. In cod, on the other hand, the variances were substantial, and the gene expression profiles suggested difference in myofibre structure, metabolism and cell processes between the pin bone attachment site and the reference muscle. Degradation of the connective tissue occurs closest to the pin bones and not in the neighbouring tissue, which was shown using light microscopy. This study shows that the attachment of the pin bones in cod and salmon is different; therefore, the development of methods for removal should be tailored to each individual species.
Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L
2018-01-01
Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.
Erisken, Cevat; Kalyon, Dilhan M; Wang, Hongjun; Ornek-Ballanco, Ceren; Xu, Jiahua
2011-05-01
The ability to fabricate tissue engineering scaffolds containing systematic gradients in the distributions of stimulators provides additional means for the mimicking of the important gradients observed in native tissues. Here the concentration distributions of two bioactive agents were varied concomitantly for the first time (one increasing, whereas the other decreasing monotonically) in between the two sides of a nanofibrous scaffold. This was achieved via the application of a new processing method, that is, the twin-screw extrusion and electrospinning method, to generate gradients of insulin, a stimulator of chondrogenic differentiation, and β-glycerophosphate (β-GP), for mineralization. The graded poly(ɛ-caprolactone) mesh was seeded with human adipose-derived stromal cells and cultured over 8 weeks. The resulting tissue constructs were analyzed for and revealed indications of selective differentiation of human adipose-derived stromal cells toward chondrogenic lineage and mineralization as functions of position as a result of the corresponding concentrations of insulin and β-GP. Chondrogenic differentiation of the stem cells increased at insulin-rich locations and mineralization increased at β-GP-rich locations.
Favia, Gianfranco; Corsalini, Massimo; Di Venere, Daniela; Pettini, Francesco; Favia, Giorgio; Capodiferro, Saverio; Maiorano, Eugenio
2013-01-01
Aim: A study was performed on the articular disk and periarticular tissues of the temporo-mandibular joint (TMJ) with immunohistochemical techniques to give evidence to the presence of neuroreceptors (NRec) in these sites. Methods: The study was carried out on tissue samples obtained from 10 subjects without TMJ disease and from 7 patients with severe TMJ arthritis and arthrosis. We use antibodies directed against following antigens: Gliofibrillary Acidic Protein (GFAP), Leu-7, Myelin Basic Protein (MBP), Neurofilaments 68 kD (NF), Neuron Specific Enolase (NSE), S-100 protein (S-100) and Synaptophysin (SYN). Results: This study revealed that Ruffini's-like, Pacini's-like and Golgi's-like receptors can be demonstrated in TMJ periarticular tissues and that free nervous endings are present in the subsynovial tissues but not within the articular disk. We observed elongated cytoplamic processes of chondrocytes that demonstrated strong S-100 immunoreactivity but they were unreactive with all other antibodies. These cytoplamic processes were more abundant and thicker in the samples obtained from patients with disease TMJ. Conclusion: The results of this study confirm that different Nrec are detectable in TMJ periarticular tissues but they are absent within the articular disk. In the latter site, only condrocytic processes are evident, especially in diseased TMJ, and they might have been confused with nervous endings in previous morphological studies. Nevertheless the absence of immunoreactivity for NF, NSE and SYN proves that they are not of neural origin. PMID:24151441
A review of rapid prototyping techniques for tissue engineering purposes.
Peltola, Sanna M; Melchels, Ferry P W; Grijpma, Dirk W; Kellomäki, Minna
2008-01-01
Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient's individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused on the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.
Supercritical Carbon Dioxide-Assisted Decellularization of Aorta and Cornea.
Guler, Selcan; Aslan, Bahar; Hosseinian, Pezhman; Aydin, Halil Murat
2017-09-01
Tissue engineering approaches utilize both natural and synthetic materials in the repair and regeneration processes. A naturally sourced material for this purpose is required to be free from any antigenic matter such as cells or cellular components. Decellularization of tissues may be achieved through chemical or physical removal agents. Supercritical carbon dioxide (sc-CO 2 ) has been used on the purpose of removing bioburden from tissues and offers an alternative to the traditionally used treatment methods. In addition to many advantages it offers with regard to the successful decellularization of tissues, it is known to have a sterilization effect. This study provides an insight into sc-CO 2 -assisted decellularization trials of corneal and aortic tissues. Results showed that high pressure of the fluid bursts the cells during the treatment and rapid depressurization was found to be effective in the removal of the cells from the tissues. sc-CO 2 decellularization offers significantly reduced treatment times, complete decellularization, and preserved extracellular matrix structure.
Backscatter and attenuation properties of mammalian brain tissues
NASA Astrophysics Data System (ADS)
Wijekularatne, Pushpani Vihara
Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaev, M.P.
1962-01-01
Normal female rabbits, 2.5 to 3.0 kilograms in weight, were given a Co/ sup 60/ gamma dose of 800 r. Tissue samples of the Musculus longissimus dorsi were analyzed for glycogen content by the anthranone method, for monosacharrides, inorganic phosphate, adenosine phosphate, and lactic acid. The maximum drop in glycogen content was found to occur 24 hours after the irradiation. A whole-body dose of 800 r resulted in a significant drop in total carbohydrate content (both monosacharride content and glycogen content). The content of adenosinephosphate remained essentially unchanged. Irradiated muscle tissue, stored at --5 to +3 deg C decomposed moremore » rapidly than normal tissue. The content of glycogen was lower, and the free phosphate content was higher than in normal tissue. The adenosinephosphate decomposed more readily in the irradiated tissue. These differences in autolytic processes may be due to shifts in fermentative activity as a result of irradiation. (TTT).« less
Robust estimation of mammographic breast density: a patient-based approach
NASA Astrophysics Data System (ADS)
Heese, Harald S.; Erhard, Klaus; Gooßen, Andre; Bulow, Thomas
2012-02-01
Breast density has become an established risk indicator for developing breast cancer. Current clinical practice reflects this by grading mammograms patient-wise as entirely fat, scattered fibroglandular, heterogeneously dense, or extremely dense based on visual perception. Existing (semi-) automated methods work on a per-image basis and mimic clinical practice by calculating an area fraction of fibroglandular tissue (mammographic percent density). We suggest a method that follows clinical practice more strictly by segmenting the fibroglandular tissue portion directly from the joint data of all four available mammographic views (cranio-caudal and medio-lateral oblique, left and right), and by subsequently calculating a consistently patient-based mammographic percent density estimate. In particular, each mammographic view is first processed separately to determine a region of interest (ROI) for segmentation into fibroglandular and adipose tissue. ROI determination includes breast outline detection via edge-based methods, peripheral tissue suppression via geometric breast height modeling, and - for medio-lateral oblique views only - pectoral muscle outline detection based on optimizing a three-parameter analytic curve with respect to local appearance. Intensity harmonization based on separately acquired calibration data is performed with respect to compression height and tube voltage to facilitate joint segmentation of available mammographic views. A Gaussian mixture model (GMM) on the joint histogram data with a posteriori calibration guided plausibility correction is finally employed for tissue separation. The proposed method was tested on patient data from 82 subjects. Results show excellent correlation (r = 0.86) to radiologist's grading with deviations ranging between -28%, (q = 0.025) and +16%, (q = 0.975).
Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin
2016-01-01
Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165
NASA Astrophysics Data System (ADS)
Civale, John; Ter Haar, Gail; Rivens, Ian; Bamber, Jeff
2005-09-01
Currently, the intensity to be used in our clinical HIFU treatments is calculated from the acoustic path lengths in different tissues measured on diagnostic ultrasound images of the patient in the treatment position, and published values of ultrasound attenuation coefficients. This yields an approximate value for the acoustic power at the transducer required to give a stipulated focal intensity in situ. Estimation methods for the actual acoustic attenuation have been investigated in large parts of the tissue path overlying the target volume from the backscattered ultrasound signal for each patient (backscatter attenuation estimation: BAE). Several methods have been investigated. The backscattered echo information acquired from an Acuson scanner has been used to compute the diffraction-corrected attenuation coefficient at each frequency using two methods: a substitution method and an inverse diffraction filtering process. A homogeneous sponge phantom was used to validate the techniques. The use of BAE to determine the correct HIFU exposure parameters for lesioning has been tested in ex vivo liver. HIFU lesions created with a 1.7-MHz therapy transducer have been studied using a semiautomated image processing technique. The reproducibility of lesion size for given in situ intensities determined using BAE and empirical techniques has been compared.
Computational Modeling of Tissue Self-Assembly
NASA Astrophysics Data System (ADS)
Neagu, Adrian; Kosztin, Ioan; Jakab, Karoly; Barz, Bogdan; Neagu, Monica; Jamison, Richard; Forgacs, Gabor
As a theoretical framework for understanding the self-assembly of living cells into tissues, Steinberg proposed the differential adhesion hypothesis (DAH) according to which a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state. Experimental and theoretical efforts of four decades turned the DAH into a fundamental principle of developmental biology that has been validated both in vitro and in vivo. Based on computational models of cell sorting, we have developed a DAH-based lattice model for tissues in interaction with their environment and simulated biological self-assembly using the Monte Carlo method. The present brief review highlights results on specific morphogenetic processes with relevance to tissue engineering applications. Our own work is presented on the background of several decades of theoretical efforts aimed to model morphogenesis in living tissues. Simulations of systems involving about 105 cells have been performed on high-end personal computers with CPU times of the order of days. Studied processes include cell sorting, cell sheet formation, and the development of endothelialized tubes from rings made of spheroids of two randomly intermixed cell types, when the medium in the interior of the tube was different from the external one. We conclude by noting that computer simulations based on mathematical models of living tissues yield useful guidelines for laboratory work and can catalyze the emergence of innovative technologies in tissue engineering.
An improved method for isolating viruses from asymptomatic carrier fish
Amend, Donald F.; Pietsch, John P.
1972-01-01
This paper describes a method using elevated levels of penicillin, streptomycin, and nystatin instead of filters to control bacteria and mold contaminants in specimens processed for virus isolation. Filters were shown to significantly reduce the virus concentration. Virus and tissue cultures were not affected by this procedure. In field tests nearly three times more specimens were positive for virus with this method than with the widely used filter technique. Moreover, the cost of materials was less. This method is recommended for inspection and certification purposes.
NASA Astrophysics Data System (ADS)
Han, Taehee
A new technology to perform a minimally invasive cornea reshaping procedure has been developed. This can eliminate the incidence of the flap-related complications of the conventional eye refractive procedures by multiphoton processes using a very high-intensity (I ≥ 1013 W/cm 2), but low energy (Ep ˜ 100-200 microJ) femtosecond laser pulses. Due to much lower energy than that of the nanosecond laser pulses for the thermal photoablation, the multiphoton processes cause almost no collateral damage by heat and shock wave generation. In this method, a series of femtosecond laser pulses is used to create very narrow (< 30 microm) and sufficiently long (≥ 2.5 mm) micro-channels in the cornea. The micro-channels are oriented almost perpendicular to the eye's optical axis. Once the micro-channel reaches a desired length, another series of femtosecond pulses with higher intensity is efficiently delivered through the micro-channel to the endpoint where a certain amount of the stromal tissue is disintegrated by the multiphoton processes. The disintegrated fragments are ejected out of the cornea via the same micro-channel, allowing the corneal surface to collapse, and changing its refractive power. This new corneal reshaping method obviates any process of damaging the corneal surface layer, while retaining the advantages of the conventional refractive procedures such as Laser in situ keratomileusis (LASIK) and Photorefractive keratectomy (PRK). In order to demonstrate the flapless cornea reshaping procedure, we have conducted ex-vivo experiments on fresh porcine eyes. The reshaped corneas were evaluated by using optical coherence tomography (OCT). The test results have shown that this flapless intrastromal procedure can reshape the cornea as intended with almost no surface damage. We have also performed a series of experiments to demonstrate the multiphoton processes in the corneal tissue by very high-intensity femtosecond laser pulses. Through the optical emission spectroscopy, we investigated the spectral lines of calcium atom and ions from the femtosecond laser-induced plasma from the porcine corneal tissue. The experimental results have shown the intensity-dependence of ablation rate, which qualitatively verifies the characteristics of the multiphoton processes.
Blind source separation of ex-vivo aorta tissue multispectral images
Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson
2015-01-01
Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method’s performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue. PMID:26137366
Prostate cancer region prediction using MALDI mass spectra
NASA Astrophysics Data System (ADS)
Vadlamudi, Ayyappa; Chuang, Shao-Hui; Sun, Xiaoyan; Cazares, Lisa; Nyalwidhe, Julius; Troyer, Dean; Semmes, O. John; Li, Jiang; McKenzie, Frederic D.
2010-03-01
For the early detection of prostate cancer, the analysis of the Prostate-specific antigen (PSA) in serum is currently the most popular approach. However, previous studies show that 15% of men have prostate cancer even their PSA concentrations are low. MALDI Mass Spectrometry (MS) proves to be a better technology to discover molecular tools for early cancer detection. The molecular tools or peptides are termed as biomarkers. Using MALDI MS data from prostate tissue samples, prostate cancer biomarkers can be identified by searching for molecular or molecular combination that can differentiate cancer tissue regions from normal ones. Cancer tissue regions are usually identified by pathologists after examining H&E stained histological microscopy images. Unfortunately, histopathological examination is currently done on an adjacent slice because the H&E staining process will change tissue's protein structure and it will derogate MALDI analysis if the same tissue is used, while the MALDI imaging process will destroy the tissue slice so that it is no longer available for histopathological exam. For this reason, only the most confident cancer region resulting from the histopathological examination on an adjacent slice will be used to guide the biomarker identification. It is obvious that a better cancer boundary delimitation on the MALDI imaging slice would be beneficial. In this paper, we proposed methods to predict the true cancer boundary, using the MALDI MS data, from the most confident cancer region given by pathologists on an adjacent slice.
Vasilescu, Dragoş M.; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R.; Ochs, Matthias
2013-01-01
Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro–computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies. PMID:23264542
Chan, Pek-Lan; Rose, Ray J; Abdul Murad, Abdul Munir; Zainal, Zamri; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder
2014-01-01
The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses.
Three-dimensional micro-scale strain mapping in living biological soft tissues.
Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter
2018-04-01
Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase.
Van Noorden, C J
1984-01-01
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Numerical study on the thawing process of biological tissue induced by laser irradiation.
Zhou, Jianhua; Liu, Jing; Yu, Aibing
2005-06-01
Most of the laser applications in medicine and biology involve thermal effects. The laser-tissue thermal interaction has therefore received more and more attentions in recent years. However, previous works were mainly focused on the case of laser heating on normal tissues (37 degrees C or above). To date, little is known on the mechanisms of laser heating on the frozen biological tissues. Several latest experimental investigations have demonstrated that lasers have great potentials in tissue cryopreservation. But the lack of theoretical interpretation limits its further application in this area. The present paper proposes a numerical model for the thawing of biological tissues caused by laser irradiation. The Monte Carlo approach and the effective heat capacity method are, respectively, employed to simulate the light propagation and solid-liquid phase change heat transfer. The proposed model has four important features: (1) the tissue is considered as a nonideal material, in which phase transition occurs over a wide temperature range; (2) the solid phase, transition phase, and the liquid phase have different thermophysical properties; (3) the variations in optical properties due to phase-change are also taken into consideration; and (4) the light distribution is changing continually with the advancement of the thawing fronts. To this end, 15 thawing-front geometric configurations are presented for the Monte Carlo simulation. The least-squares parabola fitting technique is applied to approximate the shape of the thawing front. And then, a detailed algorithm of calculating the photon reflection/refraction behaviors at the thawing front is described. Finally, we develop a coupled light/heat transport solution procedure for the laser-induced thawing of frozen tissues. The proposed model is compared with three test problems and good agreement is obtained. The calculated results show that the light reflectance/transmittance at the tissue surface are continually changing with the progression of the thawing fronts and that lasers provide a new heating method superior to conventional heating through surface conduction because it can achieve a uniform volumetric heating. Parametric studies are performed to test the influences of the optical properties of tissue on the thawing process. The proposed model is rather general in nature and therefore can be applied to other nonbiological problems as long as the materials are absorbing and scattering media.
Automatic classification of tissue malignancy for breast carcinoma diagnosis.
Fondón, Irene; Sarmiento, Auxiliadora; García, Ana Isabel; Silvestre, María; Eloy, Catarina; Polónia, António; Aguiar, Paulo
2018-05-01
Breast cancer is the second leading cause of cancer death among women. Its early diagnosis is extremely important to prevent avoidable deaths. However, malignancy assessment of tissue biopsies is complex and dependent on observer subjectivity. Moreover, hematoxylin and eosin (H&E)-stained histological images exhibit a highly variable appearance, even within the same malignancy level. In this paper, we propose a computer-aided diagnosis (CAD) tool for automated malignancy assessment of breast tissue samples based on the processing of histological images. We provide four malignancy levels as the output of the system: normal, benign, in situ and invasive. The method is based on the calculation of three sets of features related to nuclei, colour regions and textures considering local characteristics and global image properties. By taking advantage of well-established image processing techniques, we build a feature vector for each image that serves as an input to an SVM (Support Vector Machine) classifier with a quadratic kernel. The method has been rigorously evaluated, first with a 5-fold cross-validation within an initial set of 120 images, second with an external set of 30 different images and third with images with artefacts included. Accuracy levels range from 75.8% when the 5-fold cross-validation was performed to 75% with the external set of new images and 61.11% when the extremely difficult images were added to the classification experiment. The experimental results indicate that the proposed method is capable of distinguishing between four malignancy levels with high accuracy. Our results are close to those obtained with recent deep learning-based methods. Moreover, it performs better than other state-of-the-art methods based on feature extraction, and it can help improve the CAD of breast cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A
2009-11-07
Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).
Co-culture systems-based strategies for articular cartilage tissue engineering.
Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi
2018-03-01
Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.
Stem cell homing-based tissue engineering using bioactive materials
NASA Astrophysics Data System (ADS)
Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei
2017-06-01
Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.
Optical probe for determining the fat/lean interface in cuts of meat
Weber, Thomas M.; Callow, Diane S.; Jones, James F.; Kuehl, Michael A.; Spletzer, Barry L.
2005-02-22
An apparatus and method for locating the boundary surface between a layer of fatty tissue and lean tissue in a cut of meat, such as beef, such as slabs of meat undergoing trimming and cutting in commercial meet processing facilitates. The invention exploits the fact that fatty tissue and lean tissue have significantly different responses to incident light energy. By gauging the degree to which a generated beam of light is scattered and reflected by the tissues under evaluation, the invention permits the character of the tissue to be ascertained. An incident beam of light, such as green light, is generated and transmitted to a probe tip, which tip is inserted into the cut of meat under investigation. The light beam is emitted into the meat tissues from the probe tip, and then is scattered and reflected by the tissues, whereupon some fraction of the emitted light returns to the probe tip. The returning light energy is transmitted to a detector; relative changes in the returning light transmitted to the detector permit the operator to determine when the probe tip is approaching or penetrating the fat/lean tissue interface.
Mathieson, William; Guljar, Nafia; Sanchez, Ignacio; Sroya, Manveer; Thomas, Gerry A
2018-05-03
DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissue blocks is amenable to analytical techniques, including sequencing. DNA extraction protocols are typically long and complex, often involving an overnight proteinase K digest. Automated platforms that shorten and simplify the process are therefore an attractive proposition for users wanting a faster turn-around or to process large numbers of biospecimens. It is, however, unclear whether automated extraction systems return poorer DNA yields or quality than manual extractions performed by experienced technicians. We extracted DNA from 42 FFPE clinical tissue biospecimens using the QiaCube (Qiagen) and ExScale (ExScale Biospecimen Solutions) automated platforms, comparing DNA yields and integrities with those from manual extractions. The QIAamp DNA FFPE Spin Column Kit was used for manual and QiaCube DNA extractions and the ExScale extractions were performed using two of the manufacturer's magnetic bead kits: one extracting DNA only and the other simultaneously extracting DNA and RNA. In all automated extraction methods, DNA yields and integrities (assayed using DNA Integrity Numbers from a 4200 TapeStation and the qPCR-based Illumina FFPE QC Assay) were poorer than in the manual method, with the QiaCube system performing better than the ExScale system. However, ExScale was fastest, offered the highest reproducibility when extracting DNA only, and required the least intervention or technician experience. Thus, the extraction methods have different strengths and weaknesses, would appeal to different users with different requirements, and therefore, we cannot recommend one method over another.
Liu, M J J; Chou, S M; Chua, C K; Tay, B C M; Ng, B K
2013-02-01
To date, naturally derived biomaterials are rarely used in advanced tissue engineering (TE) methods despite their superior biocompatibility. This is because these native materials, which consist mainly of proteins and polysaccharides, do not possess the ability to withstand harsh processing conditions. Unlike synthetic polymers, natural materials degrade and decompose rapidly in the presence of chemical solvents and high temperature, respectively. Thus, the fabrication of tissue scaffolds using natural biomaterials is often carried out using conventional techniques, where the efficiency in mass transport of nutrients and removal of waste products within the construct is compromised. The present study identified silk fibroin (SF) protein as a suitable material for the application of rapid prototyping (RP) or additive manufacturing (AM) technology. Using the indirect RP method, via the use of a mould, SF tissue scaffolds with both macro- and micro-morphological features can be produced and qualitatively examined by spectral-domain optical coherence tomography (SD-OCT). The advanced imaging technique showed the ability to differentiate the cells and SF material by producing high contrasting images, therefore suggesting the method as a feasible alternative to the histological analysis of cell growth within tissue scaffolds. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
Microwave energy fixation for electron microscopy.
Login, G. R.; Dvorak, A. M.
1985-01-01
We have demonstrated that microwave energy (MW) can be used in conjunction with chemical cross-linking agents in order to rapidly fix cell suspensions and tissue blocks for electron microscopy in 7-9 seconds. The optimal MW fixation method involved immersing tissues up to 1 cu cm in dilute aldehyde fixation and immediately irradiating the specimens in a conventional microwave oven for 9 seconds to 50 C. Ultrastructural preservation of samples irradiated by MW energy was comparable to that of the control samples immersed in aldehyde fixative for 2 hours at 25 C. Stereologic analysis showed that tissue blocks fixed by the MW fixation method did not cause organelles such as liver mitochondria and salivary gland granules to shrink or to swell. Potential applications for this new fixation technology include the investigation of rapid intracellular processes (eg, vesicular transport) and preservation of proteins that are difficult to demonstrate with routine fixation methods (eg, antigens and enzymes). Images Figure 4 Figure 5 Figure 2 Figure 3 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:3927740
NASA Astrophysics Data System (ADS)
Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V.
2013-07-01
Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy.
Puppi, Dario; Morelli, Andrea; Chiellini, Federica
2017-05-24
Additive manufacturing of scaffolds made of a polyhydroxyalkanoate blended with another biocompatible polymer represents a cost-effective strategy for combining the advantages of the two blend components in order to develop tailored tissue engineering approaches. The aim of this study was the development of novel poly(3-hydroxybutyrate- co -3-hydroxyhexanoate)/ poly(ε-caprolactone) (PHBHHx/PCL) blend scaffolds for tissue engineering by means of computer-aided wet-spinning, a hybrid additive manufacturing technique suitable for processing polyhydroxyalkanoates dissolved in organic solvents. The experimental conditions for processing tetrahydrofuran solutions containing the two polymers at different concentrations (PHBHHx/PCL weight ratio of 3:1, 2:1 or 1:1) were optimized in order to manufacture scaffolds with predefined geometry and internal porous architecture. PHBHHx/PCL scaffolds with a 3D interconnected network of macropores and a local microporosity of the polymeric matrix, as a consequence of the phase inversion process governing material solidification, were successfully fabricated. As shown by scanning electron microscopy, thermogravimetric, differential scanning calorimetric and uniaxial compressive analyses, blend composition significantly influenced the scaffold morphological, thermal and mechanical properties. In vitro biological characterization showed that the developed scaffolds were able to sustain the adhesion and proliferation of MC3T3-E1 murine preosteoblast cells. The additive manufacturing approach developed in this study, based on a polymeric solution processing method avoiding possible material degradation related to thermal treatments, could represent a powerful tool for the development of customized PHBHHx-based blend scaffolds for tissue engineering.
Taylor, M J; Baicu, S
2011-11-01
A critical component of treating type I diabetes by transplantation is the availability of sufficient high-quality islets. Currently, islets can be obtained only by reliance on an expensive, inconsistent, and toxic enzyme digestion process. As an alternative, we hypothesize that cryobiologic techniques can be used for differential freeze destruction of the pancreas to release islets that are selectively cryopreserved in situ. Pancreases were procured from juvenile pigs with the use of approved procedures. The concept of cryo-isolation is based on differential processing of the pancreas in 5 stages: 1) infiltrating islets in situ preferentially with a cryoprotectant (CPA) cocktail via antegrade perfusion of the major arteries; 2) retrograde ductal infusion of water (or saline solution) to fully distend the gland; 3) freezing the entire pancreas to -160°C, and stored in liquid nitrogen; 4) mechanically crushing and pulverizing the frozen pancreas into small fragments; and 5) thawing, filtering and washing the frozen fragments with RPMI 1640 culture medium to remove the CPA. Finally, the filtered effluent (cryo-isolate) was stained with dithizone for identification of intact islets, and samples were taken for static glucose-stimulated insullin release assessment. As predicted the cryo-isolated contained small fragments of residual tissue comprising an amorphous mass of acinar tissue with largely intact embedded islets. The degree of cleavage of the cryoprotected islets from the freeze-destroyed exocrine cells, was variable. Islets were typically larger than their counterparts isolated from juvenile pigs with conventional enzyme-digestion techniques. Functionally, the islets from replicate cryo-isolates responded to a glucose challenge with a mean stimulation index = 3.3 ± 0.7 (n = 3). An enzyme-free method of islet isolation relying on in situ cryopreservation of islets with simultaneous freeze-destruction of acinar tissue is feasible and proposed as a novel method that avoids the problems associated with conventional collagenase digestion methods. Copyright © 2011 Elsevier Inc. All rights reserved.
Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel
2012-01-01
Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696
Garrett, John D.; Fear, Elise C.
2015-01-01
Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study. PMID:25585106
Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui
2017-10-31
Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.
Bauer, Daniel R; Otter, Michael; Chafin, David R
2018-01-01
Studying and developing preanalytical tools and technologies for the purpose of obtaining high-quality samples for histological assays is a growing field. Currently, there does not exist a standard practice for collecting, fixing, and monitoring these precious samples. There has been some advancement in standardizing collection for the highest profile tumor types, such as breast, where HER2 testing drives therapeutic decisions. This review examines the area of tissue collection, transport, and monitoring of formalin diffusion and details a prototype system that could be used to help standardize tissue collection efforts. We have surveyed recent primary literature sources and conducted several site visits to understand the most error-prone processes in histology laboratories. This effort identified errors that resulted from sample collection techniques and subsequent transport delays from the operating room (OR) to the histology laboratories. We have therefore devised a prototype sample collection and transport concept. The system consists of a custom data logger and cold transport box and takes advantage of a novel cold + warm (named 2 + 2) fixation method. This review highlights the beneficial aspects of standardizing tissue collection, fixation, and monitoring. In addition, a prototype system is introduced that could help standardize these processes and is compatible with use directly in the OR and from remote sites.
NASA Astrophysics Data System (ADS)
Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.
2015-12-01
Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.
Oldenburg, Amy L
2010-01-01
We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named ‘nanotransducers’, which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30–400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young’s modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process. PMID:20124653
Positron emission tomography probe to monitor selected sugar metabolism in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Owen; Clark, Peter M.; Castillo, Blanca Graciela Flores
The invention disclosed herein discloses selected ribose isomers that are useful as PET probes (e.g. [18F]-2-fluoro-2-deoxy-arabinose). These PET probes are useful, for example, in methods designed to monitor physiological processes including ribose metabolism and/or to selectively observe certain tissue/organs in vivo. The invention disclosed herein further provides methods for making and using such probes.
Zhang, Wensheng; Edwards, Andrea; Fan, Wei; Zhu, Dongxiao; Zhang, Kun
2010-06-22
Comparative analysis of gene expression profiling of multiple biological categories, such as different species of organisms or different kinds of tissue, promises to enhance the fundamental understanding of the universality as well as the specialization of mechanisms and related biological themes. Grouping genes with a similar expression pattern or exhibiting co-expression together is a starting point in understanding and analyzing gene expression data. In recent literature, gene module level analysis is advocated in order to understand biological network design and system behaviors in disease and life processes; however, practical difficulties often lie in the implementation of existing methods. Using the singular value decomposition (SVD) technique, we developed a new computational tool, named svdPPCS (SVD-based Pattern Pairing and Chart Splitting), to identify conserved and divergent co-expression modules of two sets of microarray experiments. In the proposed methods, gene modules are identified by splitting the two-way chart coordinated with a pair of left singular vectors factorized from the gene expression matrices of the two biological categories. Importantly, the cutoffs are determined by a data-driven algorithm using the well-defined statistic, SVD-p. The implementation was illustrated on two time series microarray data sets generated from the samples of accessory gland (ACG) and malpighian tubule (MT) tissues of the line W118 of M. drosophila. Two conserved modules and six divergent modules, each of which has a unique characteristic profile across tissue kinds and aging processes, were identified. The number of genes contained in these models ranged from five to a few hundred. Three to over a hundred GO terms were over-represented in individual modules with FDR < 0.1. One divergent module suggested the tissue-specific relationship between the expressions of mitochondrion-related genes and the aging process. This finding, together with others, may be of biological significance. The validity of the proposed SVD-based method was further verified by a simulation study, as well as the comparisons with regression analysis and cubic spline regression analysis plus PAM based clustering. svdPPCS is a novel computational tool for the comparative analysis of transcriptional profiling. It especially fits the comparison of time series data of related organisms or different tissues of the same organism under equivalent or similar experimental conditions. The general scheme can be directly extended to the comparisons of multiple data sets. It also can be applied to the integration of data sets from different platforms and of different sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, R.
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less
Dimensionality and noise in energy selective x-ray imaging
Alvarez, Robert E.
2013-01-01
Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB. Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems. PMID:24320442
Progress in cryopreservation of dormant winter buds of selected tree species
USDA-ARS?s Scientific Manuscript database
In cryopreservation of germplasm, using dormant winter buds (DB) as source plant materials is economically favorable over tissue culture options (TC). Processing DB does not require aseptic conditions and involved cryopreservation procedures. Although, the DB cryopreservation method has been known f...
Gurav, Sandip Dhondiram; Jeniffer, Sherine; Punde, Ravindra; Gilibili, Ravindranath Reddy; Giri, Sanjeev; Srinivas, Nuggehally R; Mullangi, Ramesh
2012-04-01
A general practice in bioanalysis is that, whatever the biological matrix the analyte is being quantified in, the validation is performed in the same matrix as per regulatory guidelines. In this paper, we are presenting the applicability of a validated LC-MS/MS method in rat plasma for JI-101, to estimate the concentrations of JI-101 in various tissues that were harvested in a rat tissue distribution study. A simple protein precipitation technique was used to extract JI-101 and internal standard from the tissue homogenates. The recovery of JI-101 in all the matrices was found to be >70%. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI-101 and 180.1 → 110.1 for internal standard. The linearity range was 5.02-4017 ng/mL. The JI-101 levels were quantifiable in the various tissue samples harvested in this study. Therefore, the use of a previously validated JI-101 assay in plasma circumvented the tedious process of method development/validation in various tissue matrices. Copyright © 2011 John Wiley & Sons, Ltd.
Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.
2012-01-01
Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477