Sample records for tissue temperature response

  1. Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating

    NASA Astrophysics Data System (ADS)

    Li, Chenghai; Miao, Jiaming; Yang, Kexin; Guo, Xiasheng; Tu, Juan; Huang, Pintong; Zhang, Dong

    2018-05-01

    Although predicting temperature variation is important for designing treatment plans for thermal therapies, research in this area is yet to investigate the applicability of prevalent thermal conduction models, such as the Pennes equation, the thermal wave model of bio-heat transfer, and the dual phase lag (DPL) model. To address this shortcoming, we heated a tissue phantom and ex vivo bovine liver tissues with focused ultrasound (FU), measured the temperature response, and compared the results with those predicted by these models. The findings show that, for a homogeneous-tissue phantom, the initial temperature increase is accurately predicted by the Pennes equation at the onset of FU irradiation, although the prediction deviates from the measured temperature with increasing FU irradiation time. For heterogeneous liver tissues, the predicted response is closer to the measured temperature for the non-Fourier models, especially the DPL model. Furthermore, the DPL model accurately predicts the temperature response in biological tissues because it increases the phase lag, which characterizes microstructural thermal interactions. These findings should help to establish more precise clinical treatment plans for thermal therapies.

  2. A multi-physics model for ultrasonically activated soft tissue.

    PubMed

    Suvranu De, Rahul

    2017-02-01

    A multi-physics model has been developed to investigate the effects of cellular level mechanisms on the thermomechanical response of ultrasonically activated soft tissue. Cellular level cavitation effects have been incorporated in the tissue level continuum model to accurately determine the thermodynamic states such as temperature and pressure. A viscoelastic material model is assumed for the macromechanical response of the tissue. The cavitation model based equation-of-state provides the additional pressure arising from evaporation of intracellular and cellular water by absorbing heat due to structural and viscoelastic heating in the tissue, and temperature to the continuum level thermomechanical model. The thermomechanical response of soft tissue is studied for the operational range of frequencies of oscillations and applied loads for typical ultrasonically activated surgical instruments. The model is shown to capture characteristics of ultrasonically activated soft tissue deformation and temperature evolution. At the cellular level, evaporation of water below the boiling temperature under ambient conditions is indicative of protein denaturation around the temperature threshold for coagulation of tissues. Further, with increasing operating frequency (or loading), the temperature rises faster leading to rapid evaporation of tissue cavity water, which may lead to accelerated protein denaturation and coagulation.

  3. System for and method of freezing biological tissue

    NASA Technical Reports Server (NTRS)

    Williams, T. E.; Cygnarowicz, T. A. (Inventor)

    1978-01-01

    Biological tissue is frozen while a polyethylene bag placed in abutting relationship against opposed walls of a pair of heaters. The bag and tissue are cooled with refrigerating gas at a time programmed rate at least equal to the maximum cooling rate needed at any time during the freezing process. The temperature of the bag, and hence of the tissue, is compared with a time programmed desired value for the tissue temperature to derive an error indication. The heater is activated in response to the error indication so that the temperature of the tissue follows the desired value for the time programmed tissue temperature. The tissue is heated to compensate for excessive cooling of the tissue as a result of the cooling by the refrigerating gas. In response to the error signal, the heater is deactivated while the latent heat of fusion is being removed from the tissue while the tissue is changing phase from liquid to solid.

  4. Effect of increasing temperature in the differential activity of oxidative stress biomarkers in various tissues of the Rock goby, Gobius paganellus.

    PubMed

    Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joana; Diniz, Mário S

    2014-06-01

    Oxidative stress biomarkers have been widely used in the development of ecological indices and in the assessment of exposure of aquatic organisms to contaminants from agricultural, industrial and urban pollution. However, temperature is known to also have a significant effect on oxidative stress biomarkers. This way, temperature is a confounding factor that may result in difficulties in the interpretation of oxidative stress biomarkers response patterns. Since climate change is expected to result in more frequent and intense heat wave events it is pertinent to investigate the effect of increasing temperature in the oxidative stress response of common aquatic organisms. It is also important to assess the differential response of different body tissues, given that they are differently exposed to temperature depending on their location and physiological function. This study investigates the effect of increasing temperature (20 °C-34 °C) in the response of multiple biomarkers of oxidative stress: lipid peroxidation, glutathione-S-transferase, superoxide dismutase and catalase activities, in the muscle, liver and gills of a common coastal fish, the Rock goby, Gobius paganellus. The response of the oxidative stress biomarkers analysed were always higher in the gills than in the other tissues. Muscle generally presented the lower levels of any of the biomarkers tested when compared to other tissues. Nevertheless, muscle tissue always responded significantly to temperature, as did the liver, while the gills were unresponsive in terms of lipid peroxidation and glutathione-S-transferase. Unresponsive tissues to temperature may be particularly interesting as indicators of pollution, given that temperature will not be a confounding variable in their oxidative stress response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Quantitative analysis of circadian single cell oscillations in response to temperature

    PubMed Central

    Kramer, Achim; Herzel, Hanspeter

    2018-01-01

    Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell’s ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation. PMID:29293562

  6. Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.

    PubMed

    Kim, Kyunghan; Guo, Zhixiong

    2007-05-01

    A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.

  7. Influence of temperature on viral hemorrhagic septicemia (Genogroup IVa) in Pacific herring, Clupea pallasii Valenciennes

    USGS Publications Warehouse

    Hershberger, P.K.; Purcell, M.K.; Hart, L.M.; Gregg, J.L.; Thompson, R.L.; Garver, K.A.; Winton, J.R.

    2013-01-01

    An inverse relationship between water temperature and susceptibility of Pacific herring (Clupea pallasii) to viral hemorrhagic septicemia, genogroup IVa (VHS) was indicated by controlled exposure studies where cumulative mortalities, viral shedding rates, and viral persistence in survivors were greatest at the coolest exposure temperatures. Among groups of specific pathogen-free (SPF) Pacific herring maintained at 8, 11, and 15 °C, cumulative mortalities after waterborne exposure to viral hemorrhagic septicemia virus (VHSV) were 78%, 40%, and 13%, respectively. The prevalence of survivors with VHSV-positive tissues 25 d post-exposure was 64%, 16%, and 0% (at 8, 11 and 15 °C, respectively) with viral prevalence typically higher in brain tissues than in kidney/spleen tissue pools at each temperature. Similarly, geometric mean viral titers in brain tissues and kidney/spleen tissue pools decreased at higher temperatures, and kidney/spleen titers were generally 10-fold lower than those in brain tissues at each temperature. This inverse relationship between temperature and VHS severity was likely mediated by an enhanced immune response at the warmer temperatures, where a robust type I interferon response was indicated by rapid and significant upregulation of the herring Mx gene. The effect of relatively small temperature differences on the susceptibility of a natural host to VHS provides insights into conditions that preface periodic VHSV epizootics in wild populations throughout the NE Pacific.

  8. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge.

    PubMed

    Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya

    2018-01-18

    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  9. Reconstruction of the forehead acoustic properties in an Indo-Pacific humpback dolphin (Sousa chinensis), with investigation on the responses of soft tissue sound velocity to temperature.

    PubMed

    Song, Zhongchang; Zhang, Yu; Berggren, Per; Wei, Chong

    2017-02-01

    Computed tomography (CT) imaging and ultrasound experimental measurements were combined to reconstruct the acoustic properties (density, velocity, and impedance) of the head from a deceased Indo-Pacific humpback dolphin (Sousa chinensis). The authors extracted 42 soft forehead tissue samples to estimate the sound velocity and density properties at room temperature, 25.0  °C. Hounsfield Units (HUs) of the samples were read from CT scans. Linear relationships between the tissues' HUs and velocity, and HUs and density were revealed through regression analyses. The distributions of the head acoustic properties at axial, coronal, and sagittal cross sections were reconstructed, suggesting that the forehead soft tissues were characterized by low-velocity in the melon, high-velocity in the muscle and connective tissues. Further, the sound velocities of melon, muscle, and connective tissue pieces were measured under different temperatures to investigate tissues' velocity response to temperature. The results demonstrated nonlinear relationships between tissues' sound velocity and temperature. This study represents a first attempt to provide general information on acoustic properties of this species. The results could provide meaningful information for understanding the species' bioacoustic characteristics and for further investigation on sound beam formation of the dolphin.

  10. Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures.

    PubMed

    Dalvi, Rishikesh S; Das, Tilak; Debnath, Dipesh; Yengkokpam, Sona; Baruah, Kartik; Tiwari, Lalchand R; Pal, Asim K

    2017-04-01

    We investigated the metabolic and cellular stress responses in an endemic catfish Horabagrus brachysoma acclimated to ambient (26°C), 31, 33 and 36°C for 30 days. After acclimation, fish were sampled to investigate changes in the levels of blood glucose, tissue glycogen and ascorbic acid, activities of enzymes involved in glycolysis (LDH), citric acid cycle (MDH), gluconeogenesis (FBPase and G6Pase), pentose phosphate pathway (G6PDH), protein metabolism (AST and ALT), phosphate metabolism (ACP and ALP) and energy metabolism (ATPase), and HSP70 levels in various tissues. Acclimation to higher temperatures (33 and 36°C) significantly increased activities of LDH, MDH, ALP, ACP, AST, ALT and ATPase and blood glucose levels, whereas decreased the G6PDH enzyme activity and, tissue glycogen and ascorbic acid. Results indicated an overall increase in the carbohydrate, protein and lipid metabolism implying increased metabolic demands for maintaining homeostasis in fish acclimated to higher temperatures (33 and 36°C). We observed tissue specific response of HSP70 in H. brachysoma, with significant increase in gill and liver at 33 and 36°C, and in brain and muscle at 36°C, enabling cellular protection at higher acclimation temperatures. In conclusion, H. brachysoma adjusted metabolic and cellular responses to withstand increased temperatures, however, these responses suggest that the fish was under stress at 33°C or higher temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    PubMed

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes.

  12. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures

    PubMed Central

    Rossmann, Christian; Haemmerich, Dieter

    2016-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  13. High-temperature responses of North American cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.

    1984-04-01

    High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less

  14. Interstitial Photoacoustic Sensor for the Measurement of Tissue Temperature during Interstitial Laser Phototherapy

    PubMed Central

    Li, Zhifang; Chen, Haiyu; Zhou, Feifan; Li, Hui; Chen, Wei R.

    2015-01-01

    Photothermal therapy is an effective means to induce tumor cell death, since tumor tissue is more sensitive to temperature increases than normal tissue. Biological responses depend on tissue temperature; target tissue temperature needs to be precisely measured and controlled to achieve desired thermal effects. In this work, a unique photoacoustic (PA) sensor is proposed for temperature measurement during interstitial laser phototherapy. A continuous-wave laser light and a pulsed laser light, for photothermal irradiation and photoacoustic temperature measurement, respectively, were delivered to the target tissue through a fiber coupler. During laser irradiation, the PA amplitude was measured. The Grüneisen parameter and the bioheat equation were used to determine the temperature in strategic positions in the target tissue. Our results demonstrate that the interstitial PA amplitude is a linear function of temperature in the range of 22 to 55 °C, as confirmed by thermocouple measurement. Furthermore, by choosing appropriate laser parameters, the maximum temperature surrounding the active diffuse fiber tip in tissue can be controlled in the range of 41 to 55 °C. Thus, this sensor could potentially be used for fast, accurate, and convenient three-dimensional temperature measurement, and for real-time feedback and control of interstitial laser phototherapy in cancer treatment. PMID:25756865

  15. Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures

    NASA Technical Reports Server (NTRS)

    Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.

    1995-01-01

    We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.

  16. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography.

    PubMed

    Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor

    2014-08-01

    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.

  17. Can crayfish take the heat? Procambarus clarkii show nociceptive behaviour to high temperature stimuli, but not low temperature or chemical stimuli

    PubMed Central

    Puri, Sakshi; Faulkes, Zen

    2015-01-01

    Nociceptors are sensory neurons that are tuned to tissue damage. In many species, nociceptors are often stimulated by noxious extreme temperatures and by chemical agonists that do not damage tissue (e.g., capsaicin and isothiocyanate). We test whether crustaceans have nociceptors by examining nociceptive behaviours and neurophysiological responses to extreme temperatures and potentially nocigenic chemicals. Crayfish (Procambarus clarkii) respond quickly and strongly to high temperatures, and neurons in the antenna show increased responses to transient high temperature stimuli. Crayfish showed no difference in behavioural response to low temperature stimuli. Crayfish also showed no significant changes in behaviour when stimulated with capsaicin or isothiocyanate compared to controls, and neurons in the antenna did not change their firing rate following application of capsaicin or isothiocyanate. Noxious high temperatures appear to be a potentially ecologically relevant noxious stimulus for crayfish that can be detected by sensory neurons, which may be specialized nociceptors. PMID:25819841

  18. Role of temperature dependence of optical properties in laser irradiation of biological tissue

    NASA Astrophysics Data System (ADS)

    Rastegar, Sohi; Kim, Beop-Min; Jacques, Steven L.

    1992-08-01

    Optical properties of biological tissue can change as a result of thermal denaturation due to temperature rise; a familiar example is whitening observed in cooking egg-white. Changes in optical properties with temperature have been reported in the literature. Temperature rise due to laser irradiation is a function of the optical properties of tissue which themselves are a function of temperature of the tissue. This creates a coupling between light and temperature fields for biological tissue under laser irradiation. The effects of this coupling on the temperature response and light distribution may play an important role in dosimetry consideration for therapeutic as well as diagnostic application of lasers in medicine. In a previous study this problem was addressed in one dimension, for short irradiation exposures, using certain simplifying assumptions. The purpose of this research was to develop a mathematical model for dynamic optical changes with thermal denaturation and a computer program for simulation of these effects for a multi-dimensional geometry.

  19. The effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents.

    PubMed

    Källman, Ulrika; Engström, Maria; Bergstrand, Sara; Ek, Anna-Christina; Fredrikson, Mats; Lindberg, Lars-Göran; Lindgren, Margareta

    2015-03-01

    Although repositioning is considered an important intervention to prevent pressure ulcers, tissue response during loading in different lying positions has not been adequately explored. To compare the effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents. From May 2011 to August 2012, interface pressure, skin temperature, and blood flow at three tissue depths were measured for 1 hr over the sacrum in 30° supine tilt and 0° supine positions and over the trochanter major in 30° lateral and 90° lateral positions in 25 residents aged 65 years or older. Measurement of interface pressure was accomplished using a pneumatic pressure transmitter connected to a digital manometer, skin temperature using a temperature sensor, and blood flow using photoplethysmography and laser Doppler flowmetry. Interface pressure was significantly higher in the 0° supine and 90° lateral positions than in 30° supine tilt and 30° lateral positions. The mean skin temperature increased from baseline in all positions. Blood flow was significantly higher in the 30° supine tilt position compared to the other positions. A hyperemic response in the post pressure period was seen at almost all tissue depths and positions. The 30° supine tilt position generated less interface pressure and allowed greater tissue perfusion, suggesting that this position is the most beneficial. © The Author(s) 2014.

  20. Thermotolerance in preirradiated intestine and its influence on time-temperature relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hume, S.P.; Marigold, J.C.; Manjil, L.G.

    The crypt compartment of mouse jejunum showed a transient increase in thermal susceptibility approximately 10 days after moderate X-ray doses to the abdomen (9-10 Gy). The increase in response was manifest as an increase in slope of the crypt dose-response curve but was limited to temperatures below 43/sup 0/C. As a result, the 43/sup 0/C inflexion in the Arrhenius plot (the relationship between treatment time and temperature) for thermal sensitivity of crypts was eliminated in preirradiated tissue, and the curve became monophasic over the range 42.0-44.5/sup 0/C. At temperatures below 42/sup 0/C, the curve again deviated. At supranormal temperatures ofmore » 42/sup 0/C and below, the durations of hyperthermia needed for measurable effect were sufficient to allow thermotolerance to be expressed within the heating period. Neither the threshold heating times nor this thermotolerance were affected by prior irradiation. In the temperature range 42-43/sup 0/C, an earlier development of thermotolerance could be demonstrated in control tissue by challenging with an acute high-temperature heat treatment. This thermotolerance was eliminated in preirradiated tissue, resulting in the apparent increase in sensitivity. The findings support the view that the complex nature of the time-temperature relationship seen in normal tissue in vivo is a manifestation of the ability of the tissue to progressively acquire a thermotolerant state during treatment at temperatures below approximately 43/sup 0/C, so that the intrinsic sensitivity is modulated while being assessed.« less

  1. Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii.

    PubMed

    Strobel, Anneli; Leo, Elettra; Pörtner, Hans O; Mark, Felix C

    2013-09-01

    Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7°C) and hypercapnia- (0.2kPa CO2) acclimation vs. control conditions (1°C, 0.04kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2. © 2013.

  2. Monitoring of tissue heating with medium intensity focused ultrasound via four dimensional optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Oyaga Landa, Francisco Javier; Ronda Penacoba, Silvia; Deán-Ben, Xosé Luís.; Montero de Espinosa, Francisco; Razansky, Daniel

    2018-02-01

    Medium intensity focused ultrasound (MIFU) holds promise in important clinical applications. Generally, the aim in MIFU is to stimulate physiological mechanisms that reinforce healing responses, avoiding reaching temperatures that can cause permanent tissue damage. The outcome of interventions is then strongly affected by the temperature distribution in the treated region, and accurate monitoring represents a significant clinical need. In this work, we showcase the capacities of 4D optoacoustic imaging to monitor tissue heating during MIFU. The proposed method allows localizing the ultrasound focus, estimating the peak temperature and measuring the size of the heat-affected volume. Calibration experiments in a tissue-mimicking phantom demonstrate that the optoacoustically-estimated temperature accurately matches thermocouple readings. The good performance of the suggested approach in real tissues is further showcased in experiments with bovine muscle samples.

  3. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  4. Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom

    2014-03-01

    Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.

  5. Non-Fourier thermal transport induced structural hierarchy and damage to collagen ultrastructure subjected to laser irradiation.

    PubMed

    Sahoo, Nilamani; Narasimhan, Arunn; Dhar, Purbarun; Das, Sarit K

    2018-05-01

    Comprehending the mechanism of thermal transport through biological tissues is an important factor for optimal ablation of cancerous tissues and minimising collateral tissue damage. The present study reports detailed mapping of the rise in internal temperature within the tissue mimics due to NIR (1064 nm) laser irradiation, both for bare mimics and with gold nanostructures infused. Gold nanostructures such as mesoflowers and nanospheres have been synthesised and used as photothermal converters to enhance the temperature rise, resulting in achieving the desired degradation of malignant tissue in targeted region. Thermal history was observed experimentally and simulated considering non-Fourier dual phase lag (DPL) model incorporated Pennes bio-heat transfer equation using COMSOL Multiphysics software. The gross deviation in temperature i.e. rise from the classical Fourier model for bio-heat conduction suggests additional effects of temperature rise on the secondary structures and morphological and physico-chemical changes to the collagen ultrastructures building the tissue mass. The observed thermal denaturation in the collagen fibril morphologies have been explained based on the physico-chemical structure of collagen and its response to thermal radiation. The large shift in frequency of amides A and B is pronounced at a depth of maximum temperature rise compared with other positions in tissue phantom. Observations for change in band of amide I, amide II, and amide III are found to be responsible for damage to collagen ultra-structure. Variation in the concentration of gold nanostructures shows the potentiality of localised hyperthermia treatment subjected to NIR radiation through a proposed free radical mechanism.

  6. Tissue temperature distribution measurement by MRI and laser immunology for cancer treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yichao; Gnyawali, Surya C.; Wu, Feng; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.

    2007-02-01

    In cancer treatment and immune response enhancement research, Magnetic Resonance Imaging (MRI) is an ideal method for non-invasive, three-dimensional temperature measurement. We used a 7.1-Tesla magnetic resonance imager for ex vivo tissues and small animal to determine temperature distribution of target tissue during laser irradiation. The feasibility of imaging is approved with high spatial resolution and high signal-noise- ratio. Tissue-simulating gel phantom gel, biological tissues, and tumor-bearing animals were used in the experiments for laser treatment and MR imaging. Thermal couple measurement of temperature in target samples was used for system calibration. An 805-nm laser was used to irradiate the samples with a laser power in the range of 1 to 2.5 watts. Using the MRI system and a specially developed processing algorithm, a clear temperature distribution matrix in the target tissue and surrounding tissue was obtained. The temperature profiles show that the selective laser photothermal effect could result in tissue temperature elevation in a range of 10 to 45 °C. The temperature resolution of the measurement was about 0.37°C including the total system error. The spatial resolution was 0.4 mm (128x128 pixels with field of view of 5.5x5.5 cm). The temperature distribution provided in vivo thermal information and future reference for optimizing dye concentration and irradiation parameters to achieve optimal thermal effects in cancer treatment.

  7. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio elastograms, which provide additional valuable information for disease diagnosis. Finally, measurements of temperature dependent variables, including sound speed, attenuation coefficient, and thermal expansion in canine liver tissue, are performed. This information is necessary for the estimation of the temperature profile during ablation. A mapping function between the gradient of timeshifts and tissue temperature is calculated using this information and subsequently applied to estimate temperature profiles.

  8. A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments.

    PubMed

    Dutta, Jaideep; Kundu, Balaram

    2017-05-01

    The genesis of the present research paper is to develop a revised exact analytical solution of thermal profile of 1-D Pennes' bioheat equation (PBHE) for living tissues influenced in thermal therapeutic treatments. In order to illustrate the temperature distribution in living tissue both Fourier and non-Fourier model of 1-D PBHE has been solved by 'Separation of variables' technique. Till date most of the research works have been carried out with the constant initial steady temperature of tissue which is not at all relevant for the biological body due to its nonhomogeneous living cells. There should be a temperature variation in the body before the therapeutic treatment. Therefore, a coupled heat transfer in skin surface before therapeutic heating must be taken account for establishment of exact temperature propagation. This approach has not yet been considered in any research work. In this work, an initial condition for solving governing differential equation of heat conduction in biological tissues has been represented as a function of spatial coordinate. In a few research work, initial temperature distribution with PBHE has been coupled in such a way that it eliminates metabolic heat generation. The study has been devoted to establish the comparison of thermal profile between present approach and published theoretical approach for particular initial and boundary conditions inflicted in this investigation. It has been studied that maximum temperature difference of existing approach for Fourier temperature distribution is 19.6% while in case of non-Fourier, it is 52.8%. We have validated our present analysis with experimental results and it has been observed that the temperature response based on the spatial dependent variable initial condition matches more accurately than other approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells.

    PubMed

    Phadnis, Akshay; Kumar, Sumit; Srivastava, Atul

    2016-10-01

    The work presented in this paper focuses on numerically investigating the thermal response of gold nanoshells-embedded biological tissue phantoms with potential applications into photo-thermal therapy wherein the interest is in destroying the cancerous cells with minimum damage to the surrounding healthy cells. The tissue phantom has been irradiated with a pico-second laser. Radiative transfer equation (RTE) has been employed to model the light-tissue interaction using discrete ordinate method (DOM). For determining the temperature distribution inside the tissue phantom, the RTE has been solved in combination with a generalized non-Fourier heat conduction model namely the dual phase lag bio-heat transfer model. The numerical code comprising the coupled RTE-bio-heat transfer equation, developed as a part of the current work, has been benchmarked against the experimental as well as the numerical results available in the literature. It has been demonstrated that the temperature of the optical inhomogeneity inside the biological tissue phantom embedded with gold nanoshells is relatively higher than that of the baseline case (no nanoshells) for the same laser power and operation time. The study clearly underlines the impact of nanoshell concentration and its size on the thermal response of the biological tissue sample. The comparative study concerned with the size and concentration of nanoshells showed that 60nm nanoshells with concentration of 5×10 15 mm -3 result into the temperature levels that are optimum for the irreversible destruction of cancer infected cells in the context of photo-thermal therapy. To the best of the knowledge of the authors, the present study is one of the first attempts to quantify the influence of gold nanoshells on the temperature distributions inside the biological tissue phantoms upon laser irradiation using the dual phase lag heat conduction model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3

    PubMed Central

    Lateef, Dalya M.; Abreu-Vieira, Gustavo; Xiao, Cuiying

    2014-01-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3−/y) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3−/y metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3−/y mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3−/y mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3−/y mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3−/y mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue. PMID:24452453

  11. Activatable thermo-sensitive ICG encapsulated pluronic nanocapsules for temperature sensitive fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Nouizi, Farouk; Sampathkumaran, Uma; Zhu, Yue; Alam, Maksudul M.; Gulsen, Gultekin

    2015-03-01

    Fluorescent tomography has been hindered by poor tissue penetration and weak signal which results in poor spatial resolution and quantification accuracy. Recently, it has been reported that activatable temperature responsive fluorescent probes which respond to focused ultrasound heating can improve the resolution and quantification of fluorescent tomography in deep tissue. This has lead to a new imaging modality, "Temperature-modulated fluorescent tomography." This technique relies on activatable thermo-sensitive fluorescent nanocapsules for whose fluorescence quantum efficiency is temperature dependent. Within a 4-5° C temperature range, the fluorescent signal increase more than 10-fold. In this molecular probe, Indocyanine Green (ICG) is encapsulated inside the core of a thermo-reversible pluronic micelle. Here we show the fluorescence response and temperature range of the nanocapsules which have been optimized for a higher temperature range to be used for in vivo animal imaging. We report on the feasibility of these temperature-sensitive reversible nanocapsules for in vivo applications by studying the pharmacokinetics in a subcutaneous mouse tumor model in vivo.

  12. The effects of prostaglandin E2 on the firing rate activity of thermosensitive and temperature insensitive neurons in the ventromedial preoptic area of the rat hypothalamus.

    PubMed

    Ranels, Heather J; Griffin, John D

    2003-02-21

    In response to an immune system challenge with lipopolysaccharide (LPS), recent work has shown that Fos immunoreactivity is displayed by neurons in the ventromedial preoptic area of the hypothalamus (VMPO). In addition, neurons in this region show distinct axonal projections to the anterior perifornical area (APFx) and the paraventricular nucleus (PVN). It has been hypothesized that neurons within the VMPO integrate their local responses to temperature with changes in firing activity that result from LPS induced production of prostaglandin E(2) (PGE(2)). This may be an important mechanism by which the set-point regulation of thermoeffector neurons in the APFx and PVN is altered, resulting in hyperthermia. To characterize the firing rate activity of VMPO neurons, single-unit recordings were made of neuronal extracellular activity in rat hypothalamic tissue slices. Based on the slope of firing rate as a function of tissue temperature, neurons were classified as either warm sensitive or temperature insensitive. Neurons were then treated with PGE(2) (200 nM) while tissue temperature was held at a constant level ( approximately 36 degrees C). The majority of temperature insensitive neurons responded to PGE(2) with an increase in firing rate activity, while warm sensitive neurons showed a reduction in firing rate. This suggests that both warm sensitive and temperature insensitive neurons in the VMPO may play critical and contrasting roles in the production of a fever during an acute phase response to infection.

  13. Vagus nerve is involved in the changes in body temperature induced by intragastric administration of 1,8-cineole via TRPM8 in mice.

    PubMed

    Urata, Tomomi; Mori, Noriyuki; Fukuwatari, Tsutomu

    2017-05-22

    Transient Receptor Potential Melastatin 8 (TRPM8) is a cold receptor activated by mild cold temperature (<28°C). TRPM8 expressed in cutaneous sensory nerves is involved in cold sensation and thermoregulation. TRPM8 mRNA is detected in various tissues, including the gastrointestinal mucosa, and in the vagal afferent nerve. The relationship between vagal afferent nerve-specific expression of TRPM8 and thermoregulation remains unclear. In this study, we aimed to investigate whether TRPM8 expression in the vagal afferent nerve is involved in autonomic thermoregulation. We found that intragastric administration of 1,8-cineole, a TRPM8 agonist, increased intrascapular brown adipose tissue and colonic temperatures, and M8-B-treatment (TRPM8 antagonist) inhibited these responses. Intravenous administration of 1,8-cineole also showed similar effects. In vagotomized mice, the responses induced by intragastric administration of 1,8-cineole were attenuated. These results suggest that TRPM8 expressed in tissues apart from cutaneous sensory nerves are involved in autonomic thermoregulation response. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge

    USGS Publications Warehouse

    Palmisano, Aldo N.; Winton, J.R.; Dickhoff, Walton W.

    2000-01-01

    In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6??C; + 10.6??C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold, Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight.

  15. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  16. Thermal effects in tissues induced by interstitial irradiation of near infrared laser with a cylindrical diffuser

    NASA Astrophysics Data System (ADS)

    Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.

  17. Development of a new mini-invasive tumour hyperthermia probe using high-temperature water vapour.

    PubMed

    Yu, Tian-Hua; Zhou, Yi-Xin; Liu, Jing

    2004-01-01

    A new mini-invasive hyperthermia probe using high-temperature water vapour for deep regional tumour treatment was developed in this paper. The vacuum insulation mechanism was incorporated into the probe to avoid heating damage to the normal tissues around the edge of the insertion path. To better understand the heat transfer behaviour in living tissues due to operation of the probe, theoretical models based on the Pennes' equation were established and two closed form analytical solutions under constant flux or temperature heating at the tip of probe were obtained. Parametric studies were performed to investigate the influence of various parameters on the temperature response of tissues heated by the probe. Further, several simulating experiments on the actual heating performance of the probe fabricated in this paper were conducted on the in vitro biological materials (fresh pork) and phantom gel. It was demonstrated that the probe can cause a high enough temperature over the treatment area to thermally destroy the tumour tissue in due time, while the temperature over the surrounding healthy tissues can be kept below a safe threshold value. This mini-invasive heating probe may have significant applications in future clinical tumour hyperthermia.

  18. Non-invasive characterization of normal and pathological tissues through dynamic infrared imaging in the hamster cheek pouch oral cancer model

    NASA Astrophysics Data System (ADS)

    Herrera, María. S.; Monti Hughes, Andrea; Salva, Natalia; Padra, Claudio; Schwint, Amanda; Santa Cruz, Gustavo A.

    2017-05-01

    Biomedical infrared thermography, a non-invasive and functional imaging method, provides information on the normal and abnormal status and response of tissues in terms of spatial and temporal variations in body infrared radiance. It is especially attractive in cancer research due to the hypervascular and hypermetabolic activity of solid tumors. Moreover, healthy tissues like skin or mucosa exposed to radiation can be examined since inflammation, changes in water content, exudation, desquamation, erosion and necrosis, between others, are factors that modify their thermal properties. In this work we performed Dynamic Infrared Imaging (DIRI) to contribute to the understanding and evaluation of normal tissue, tumor and precancerous tissue response and radiotoxicity in an in vivo model, the hamster cheek pouch, exposed to Boron Neutron Capture Therapy. In this study, we particularly focused on the observation of temperature changes under forced transient conditions associated with mass moisture transfer in the tissue-air interface, in each tissue with or without treatment. We proposed a simple mathematical procedure that considerers the heat transfer from tissue to ambient through convection and evaporation to model the transient (exponential decay o recover) thermal study. The data was fitted to determined the characteristic decay and recovery time constants of the temperature as a function of time. Also this model allowed to explore the mass flux of moisture, as a degree of evaporation occurring on the tissue surface. Tissue thermal responses under provocation tests could be used as a non-invasive method to characterize tissue physiology.

  19. Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy.

    PubMed

    Pham, Ngot Thi; Lee, Seul Lee; Park, Suhyun; Lee, Yong Wook; Kang, Hyun Wook

    2017-04-01

    High-sensitivity temperature sensors have been used to validate real-time thermal responses in tissue during photothermal treatment. The objective of the current study was to evaluate the feasible application of a fiber Bragg grating (FBG) sensor for diffuser-assisted laser-induced interstitial thermotherapy (LITT) particularly to treat tubular tissue disease. A 600 - ? m core-diameter diffuser was employed to deliver 980-nm laser light for coagulation treatment. Both a thermocouple and a FBG were comparatively tested to evaluate temperature measurements in ex vivo liver tissue. The degree of tissue denaturation was estimated as a function of irradiation times and quantitatively compared with light distribution as well as temperature development. At the closer distance to a heat source, the thermocouple measured up to 41% higher maximum temperature than the FBG sensor did after 120-s irradiation (i.e., 98.7 ° C ± 6.1 ° C for FBG versus 131.0 ° C ± 5.1 ° C for thermocouple; p < 0.001 ). Ex vivo porcine urethra tests confirmed the real-time temperature measurements of the FBG sensor as well as consistently circumferential tissue denaturation after 72-s irradiation ( coagulation thickness = 2.2 ± 0.3 ?? mm ). The implementation of FBG can be a feasible sensing technique to instantaneously monitor the temperature developments during diffuser-assisted LITT for treatment of tubular tissue structure.

  20. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    PubMed

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  1. Review of overlap between thermoregulation and pain modulation in fibromyalgia

    PubMed Central

    Larson, Alice A.; Pardo, José V.; Pasley, Jeffrey D.

    2013-01-01

    Fibromyalgia syndrome is characterized by widespread pain that is exacerbated by cold and stress but relieved by warmth. We review the points along thermal and pain pathways where temperature may influence pain. We also present evidence addressing the possibility that brown adipose tissue activity is linked to the pain of fibromyalgia given that cold initiates thermogenesis in brown adipose tissue via adrenergic activity, while warmth suspends thermogenesis. Although females have a higher incidence of fibromyalgia as well as more resting thermogenesis, they are less able to recruit brown adipose tissue in response to chronic stress than males. In addition, conditions that are frequently comorbid with fibromyalgia compromise brown adipose activity making it less responsive to sympathetic stimulation. This results in lower body temperatures, lower metabolic rates, and lower circulating cortisol/corticosterone in response to stress - characteristics of fibromyalgia. In the periphery, sympathetic nerves to brown adipose also project to surrounding tissues, including tender points characterizing fibromyalgia. As a result, the musculoskeletal hyperalgesia associated with conditions like fibromyalgia may result from referred pain in the adjacent muscle and skin. PMID:23887348

  2. Validation of microwave radiometry for measuring the internal temperature profile of human tissue

    NASA Astrophysics Data System (ADS)

    Levick, A.; Land, D.; Hand, J.

    2011-06-01

    A phantom target with a known linear temperature gradient has been developed for validating microwave radiometry for measuring internal temperature profiles within human tissue. The purpose of the phantom target is to simulate the temperature gradient found within the surface layers of a baby's brain during hypothermal neuroprotection therapy, in which the outer surface of the phantom represents the skin surface and the inner surface the brain core. The target comprises a volume of phantom tissue material with similar dielectric properties to high water-content human tissue, contained between two copper plates at known temperatures. The antenna of a microwave radiometer is in contact with one surface of the phantom material. We have measured the microwave temperature of the phantom with microwave radiometry in a frequency band of 3.0-3.5 GHz. Our microwave temperature measurements have small 0.05 °C (type A) uncertainties associated with random effects and provide temperatures consistent with values determined using theoretical models of the antenna-target system within uncertainties. The measurements are in good agreement with the major signal contribution being formed over a near plane-wave response within the material with a much smaller contribution from close to the antenna face.

  3. Optical imaging characterizing brain response to thermal insult in injured rodent

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.

    2018-02-01

    We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.

  4. Longer growing seasons shift grassland vegetation towards more-productive species

    NASA Astrophysics Data System (ADS)

    Fridley, Jason D.; Lynn, Josh S.; Grime, J. P.; Askew, A. P.

    2016-09-01

    Despite advances in plant functional ecology that provide a framework for predicting the responses of vegetation to environmental change, links between plant functional strategies and elevated temperatures are poorly understood. Here, we analyse the response of a species-rich grassland in northern England to two decades of temperature and rainfall manipulations in the context of the functional attributes of 21 coexisting species that represent a large array of resource-use strategies. Three principal traits, including body size (canopy height), tissue investment (leaf construction cost), and seed size, varied independently across species and reflect tradeoffs associated with competitiveness, stress tolerance, and colonization ability. Unlike past studies, our results reveal a strong association between functional traits and temperature regime; species favoured by extended growing seasons have taller canopies and faster assimilation rates, which has come at the expense of those species of high tissue investment. This trait-warming association was three times higher in deep soils, suggesting species shifts have been strongly mediated by competition. In contrast, vegetation shifts from rainfall manipulations have been associated only with tissue investment. Functional shifts towards faster growing species in response to warming may be responsible for a marginal increase in productivity in a system that was assumed to be nutrient-limited.

  5. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.

    PubMed

    Kohlgruber, Ayano C; Gal-Oz, Shani T; LaMarche, Nelson M; Shimazaki, Moto; Duquette, Danielle; Nguyen, Hung N; Mina, Amir I; Paras, Tyler; Tavakkoli, Ali; von Andrian, Ulrich; Banks, Alexander S; Shay, Tal; Brenner, Michael B; Lynch, Lydia

    2018-05-01

    γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (T reg ) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF + γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα + and Pdpn + stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2 + T reg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.

  6. Increased expression of Hsp70 and Hsp90 mRNA as biomarkers of thermal stress in loggerhead turtle embryos (Caretta Caretta).

    PubMed

    Tedeschi, J N; Kennington, W J; Berry, O; Whiting, S; Meekan, M; Mitchell, N J

    2015-01-01

    The survival and viability of sea turtle embryos is dependent upon favourable nest temperatures throughout the incubation period. Consequently, future generations of sea turtles may be at risk from increasing nest temperatures due to climate change, but little is known about how embryos respond to heat stress. Heat shock genes are likely to be important in this process because they code for proteins that prevent cellular damage in response to environmental stressors. This study provides the first evidence of an expression response in the heat shock genes of embryos of loggerhead sea turtles (Caretta caretta) exposed to realistic and near-lethal temperatures (34°C and 36°C) for 1 or 3 hours. We investigated changes in Heat shock protein 60 (Hsp60), Hsp70, and Hsp90 mRNA in heart (n=24) and brain tissue (n=29) in response to heat stress. Under the most extreme treatment (36°C, 3h), Hsp70 increased mRNA expression by a factor of 38.8 in heart tissue and 15.7 in brain tissue, while Hsp90 mRNA expression increased by a factor of 98.3 in heart tissue and 14.7 in brain tissue. Hence, both Hsp70 and Hsp90 are useful biomarkers for assessing heat stress in the late-stage embryos of sea turtles. The method we developed can be used as a platform for future studies on variation in the thermotolerance response from the clutch to population scale, and can help us anticipate the resilience of reptile embryos to extreme heating events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Validation of a Hybrid Microwave-Optical Monitor to Investigate Thermal Provocation in the Microvasculature.

    PubMed

    Al-Armaghany, Allann; Tong, Kenneth; Highton, David; Leung, Terence S

    2016-01-01

    We have previously developed a hybrid microwave-optical system to monitor microvascular changes in response to thermal provocation in muscle. The hybrid probe is capable of inducing deep heat from the skin surface using mild microwaves (1-3 W) and raises the tissue temperature by a few degrees Celsius. This causes vasodilation and the subsequent increase in blood volume is detected by the hybrid probe using near infrared spectroscopy. The hybrid probe is also equipped with a skin cooling system which lowers the skin temperature while allowing microwaves to warm up deeper tissues. The hybrid system can be used to assess the condition of the vasculature in response to thermal stimulation. In this validation study, thermal imaging has been used to assess the temperature distribution on the surface of phantoms and human calf, following microwave warming. The results show that the hybrid system is capable of changing the skin temperature with a combination of microwave warming and skin cooling. It can also detect thermal responses in terms of changes of oxy/deoxy-hemoglobin concentrations.

  8. A two-scale model of radio-frequency electrosurgical tissue ablation

    NASA Astrophysics Data System (ADS)

    Karaki, Wafaa; Rahul; Lopez, Carlos A.; Borca-Tasciuc, Diana-Andra; De, Suvranu

    2017-12-01

    Radio-frequency electrosurgical procedures are widely used to simultaneously dissect and coagulate tissue. Experiments suggest that evaporation of cellular and intra-cellular water plays a significant role in the evolution of the temperature field at the tissue level, which is not adequately captured in a single scale energy balance equation. Here, we propose a two-scale model to study the effects of microscale phase change and heat dissipation in response to radiofrequency heating on the tissue level in electrosurgical ablation procedures. At the microscale, the conservation of mass along with thermodynamic and mechanical equilibrium is applied to obtain an equation-of-state relating vapor mass fraction to temperature and pressure. The evaporation losses are incorporated in the macro-level energy conservation and results are validated with mean experimental temperature distributions measured from electrosurgical ablation testing on ex vivo porcine liver at different power settings of the electrosurgical instrument. Model prediction of water loss and its effect on the temperature along with the effect of the mechanical properties on results are evaluated and discussed.

  9. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ma, Daoyuan; Xiao, Zhizhong; Xu, Shihong; Wang, Yanfeng; Wang, Yufu; Xiao, Yongshuang; Song, Zongcheng; Teng, Zhaojun; Liu, Qinghua; Li, Jun

    2015-01-01

    High temperature influences the homeostasis of fish. We investigated the effects of elevated temperature on tissues of Japanese flounder ( Paralichthys olivaceus) by analyzing the histology and heat shock protein 70 ( hsp70) expression of fish reared in warm conditions. In this study, temperature was increased at 1±0.5°C/day starting at 24±0.5°C, and was kept at that temperature for 5 days before the next rise. After raising temperature at the rate up to 32±0.5°C, tissue samples from midgut, spleen, stomach, liver, muscle, gill, heart, trunk kidney and brain were collected for histological analysis and mRNA assay. Almost all the tissues showed changes in morphological structure and hsp70 level at 32±0.5°C. Histological assessment of the tissues indicated that the gill had the most serious damage, including highly severe epithelial lifting and edema, curved tips and hyperemia at the ending of the lamellars, desquamation and necrosis. The next most severe damage was found in liver and kidney. The hsp70 levels in all the tissues first increased and then decreased. The gut, stomach, muscle, heart, and brain had the highest expressions in 6 h, whereas the spleen, liver, gill and kidney had the highest expressions in 2 h. Therefore, tissues with the most significant lesions (especially gill and liver) responded much earlier (2 h) in hsp70 expression than other tissues, and these tissues demonstrated the most marked histological disruption and elevated mRNA levels, making them ideal candidates for further studies on the thermal physiology of this species.

  10. Non-pharmacological and pharmacological strategies of brown adipose tissue recruitment in humans.

    PubMed

    Lee, Paul; Greenfield, Jerry R

    2015-12-15

    Humans maintain core temperature through a complex neuroendocrine circuitry, coupling environmental thermal and nutritional cues to heat-producing and dissipating mechanisms. Up to 40% of resting energy expenditure contributes to thermal homeostasis maintenance. Recent re-discovery of thermogenic brown adipose tissue (BAT) has brought the relation between ambient temperature, thermogenesis and systemic energy and substrate metabolism to the forefront. In addition to well-known pituitary-thyroid-adrenal axis, new endocrine signals, such as FGF21 and irisin, orchestrate crosstalk between white adipose tissue (WAT), BAT and muscle, tuning non-shivering and shivering thermogenesis responses. Cold exposure modulates the endocrine milieu, and cold-induced hormones cause bioenergetics transformation sufficient to impact whole body metabolism. This review will appraise the nature of human BAT and the basis of BAT-centred therapeutics, highlighting how the interaction between hormones and adipose tissue impacts metabolic responses. Non-pharmacological and pharmacological strategies of BAT recruitment and/or fat browning for metabolic benefits will be discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Imaging technique for real-time temperature monitoring during cryotherapy of lesions.

    PubMed

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-11-01

    Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to ?16°C and analyzed the data for single measurement variations. The nonlinearity (?Tmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and ?13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.

  12. Imaging technique for real-time temperature monitoring during cryotherapy of lesions

    PubMed Central

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-01-01

    Abstract. Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to −16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and −13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms. PMID:27822579

  13. A Tissue Propagation Model for Validating Close-Proximity Biomedical Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Bonds, Q.; Herzig, P.; Weller, T.

    2016-01-01

    The propagation of thermally-generated electromagnetic emissions through stratified human tissue is studied herein using a non-coherent mathematical model. The model is developed to complement subsurface body temperature measurements performed using a close proximity microwave radiometer. The model takes into account losses and reflections as thermal emissions propagate through the body, before being emitted at the skin surface. The derivation is presented in four stages and applied to the human core phantom, a physical representation of a stomach volume of skin, muscle, and blood-fatty tissue. A drop in core body temperature is simulated via the human core phantom and the response of the propagation model is correlated to the radiometric measurement. The results are comparable, with differences on the order of 1.5 - 3%. Hence the plausibility of core body temperature extraction via close proximity radiometry is demonstrated, given that the electromagnetic characteristics of the stratified tissue layers are known.

  14. Diverse of Erythropoiesis Responding to Hypoxia and Low Environmental Temperature in Vertebrates.

    PubMed

    Maekawa, Shun; Kato, Takashi

    2015-01-01

    Erythrocytes are responsible for transporting oxygen to tissue and are essential for the survival of almost all vertebrate animals. Circulating erythrocyte counts are tightly regulated and respond to erythrocyte mass and oxygen tension. Since the discovery of erythropoietin, the erythropoietic responses to environment and tissue oxygen tension have been investigated in mice and human. Moreover, it has recently become increasingly clear that various environmental stresses could induce the erythropoiesis via various modulating systems, while all vertebrates live in various environments and habitually adapt to environmental stress. Therefore, it is considered that investigations of erythropoiesis in vertebrates provide a lead to the various erythropoietic responses to environmental stress. This paper comparatively introduces the present understanding of erythropoiesis in vertebrates. Indeed, there is a wide range of variations in vertebrates' erythropoiesis. This paper also focused on erythropoietic responses to environmental stress, hypoxia, and lowered temperature in vertebrates.

  15. Investigation of Factors Affecting Body Temperature Changes During Routine Clinical Head Magnetic Resonance Imaging

    PubMed Central

    Kim, Myeong Seong

    2016-01-01

    Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872

  16. Transcriptome sequencing of rhizome tissue of Sinopodophyllum hexandrum at two temperatures.

    PubMed

    Kumari, Anita; Singh, Heikham Russiachand; Jha, Ashwani; Swarnkar, Mohit Kumar; Shankar, Ravi; Kumar, Sanjay

    2014-10-07

    Sinopodophyllum hexandrum is an endangered medicinal herb, which is commonly present in elevations ranging between 2,400-4,500 m and is sensitive to temperature. Medicinal property of the species is attributed to the presence of podophyllotoxin in the rhizome tissue. The present work analyzed transcriptome of rhizome tissue of S. hexandrum exposed to 15°C and 25°C to understand the temperature mediated molecular responses including those associated with podophyllotoxin biosynthesis. Deep sequencing of transcriptome with an average coverage of 88.34X yielded 60,089 assembled transcript sequences representing 20,387 unique genes having homology to known genes. Fragments per kilobase of exon per million fragments mapped (FPKM) based expression analysis revealed genes related to growth and development were over-expressed at 15°C, whereas genes involved in stress response were over-expressed at 25°C. There was a decreasing trend of podophyllotoxin accumulation at 25°C; data was well supported by the expression of corresponding genes of the pathway. FPKM data was validated by quantitative real-time polymerase chain reaction data using a total of thirty four genes and a positive correlation between the two platforms of gene expression was obtained. Also, detailed analyses yielded cytochrome P450s, methyltransferases and glycosyltransferases which could be the potential candidate hitherto unidentified genes of podophyllotoxin biosynthesis pathway. The present work revealed temperature responsive transcriptome of S. hexandrum on Illumina platform. Data suggested expression of genes for growth and development and podophyllotoxin biosynthesis at 15°C, and prevalence of those associated with stress response at 25°C.

  17. Temperature distribution in target tumor tissue and photothermal tissue destruction during laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan

    2016-03-01

    Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.

  18. Heating of tissues by microwaves: a model analysis.

    PubMed

    Foster, K R; Lozano-Nieto, A; Riu, P J; Ely, T S

    1998-01-01

    We consider the thermal response times for heating of tissue subject to nonionizing (microwave or infrared) radiation. The analysis is based on a dimensionless form of the bioheat equation. The thermal response is governed by two time constants: one (tau1) pertains to heat convection by blood flow, and is of the order of 20-30 min for physiologically normal perfusion rates; the second (tau2) characterizes heat conduction and varies as the square of a distance that characterizes the spatial extent of the heating. Two idealized cases are examined. The first is a tissue block with an insulated surface, subject to irradiation with an exponentially decreasing specific absorption rate, which models a large surface area of tissue exposed to microwaves. The second is a hemispherical region of tissue exposed at a spatially uniform specific absorption rate, which models localized exposure. In both cases, the steady-state temperature increase can be written as the product of the incident power density and an effective time constant tau(eff), which is defined for each geometry as an appropriate function of tau1 and tau2. In appropriate limits of the ratio of these time constants, the local temperature rise is dominated by conductive or convective heat transport. Predictions of the block model agree well with recent data for the thresholds for perception of warmth or pain from exposure to microwave energy. Using these concepts, we developed a thermal averaging time that might be used in standards for human exposure to microwave radiation, to limit the temperature rise in tissue from radiation by pulsed sources. We compare the ANSI exposure standards for microwaves and infrared laser radiation with respect to the maximal increase in tissue temperature that would be allowed at the maximal permissible exposures. A historical appendix presents the origin of the 6-min averaging time used in the microwave standard.

  19. The influence of tissue layering on microwave thermographic measurements.

    PubMed

    Hawley, M S; Conway, J; Anderson, A P; Cudd, P A

    1988-01-01

    Non-invasive thermal imaging and temperature measurement by microwave radiometry has been investigated for medical diagnostic applications and monitoring hyperthermia treatment of cancer, in the context of heterogeneous body structure. The temperature measured by a radiometer is a function of the emission and propagation of microwaves in tissue and the receiving characteristics of the radiometric probe. Propagation of microwaves in lossy media was analysed by a spectral diffraction approach. Extension of this technique via a cascade transmission line model provides an efficient algorithm for predicting the field patterns of aperture antennas contacting multi-layered tissue. A coherent radiative transfer analysis was used to relate the field pattern of a radiating antenna to its receiving characteristics when used as a radiometer probe, leading to a method for simulating radiometric data. Measurements and simulations were used to assess the effect of overlying fat layers upon radiometer response to temperature hot spots in muscle-type media. Results suggest that dielectric layering in tissue greatly influences measured temperatures and should be accounted for in the interpretation of radiometric data.

  20. Brown adipose tissue is linked to a distinct thermoregulatory response to mild cold in people

    USDA-ARS?s Scientific Manuscript database

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated ...

  1. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    PubMed

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-11-01

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney). © 2017 American Academy of Forensic Sciences.

  2. Regional pressure and temperature variations across the injured human brain: comparisons between paired intraparenchymal and ventricular measurements.

    PubMed

    Childs, Charmaine; Shen, Liang

    2015-06-23

    Intraparenchymal, multimodality sensors are commonly used in the management of patients with severe traumatic brain injury (TBI). The 'gold standard', based on accuracy, reliability and cost for intracranial pressure (ICP) monitoring is within the cerebral ventricle (external strain gauge). There are no standards yet for intracerebral temperature monitoring and little is known of temperature differences between brain tissue and ventricle. The aim of the study therefore was to determine pressure and temperature differences at intraparenchymal and ventricular sites during five days of continuous neuromonitoring. Patients with severe TBI requiring emergency surgery. patients who required ICP monitoring were eligible for recruitment. Two intracerebral probe types were used: a) intraventricular, dual parameter sensor (measuring pressure, temperature) with inbuilt catheter for CSF drainage: b) multiparameter intraparenchymal sensor measuring pressure, temperature and oxygen partial pressure. All sensors were inserted during surgery and under aseptic conditions. Seventeen patients, 12 undergoing neurosurgery (decompressive craniectomy n = 8, craniotomy n = 4) aged 21-78 years were studied. Agreement of measures for 9540 brain tissue-ventricular temperature 'pairs' and 10,291 brain tissue-ventricular pressure 'pairs' were determined using mixed model to compare mean temperature and pressure for longitudinal data. There was no significant overall difference for mean temperature (p = 0.92) or mean pressure readings (p = 0.379) between tissue and ventricular sites. With 95.8 % of paired temperature readings within 2SD (-0.4 to 0.4 °C) differences in temperature between brain tissue and ventricle were clinically insignificant. For pressure, 93.5 % of readings pairs fell within the 2SD range (-9.4756 to 7.8112 mmHg). However, for individual patients, agreement for mean tissue-ventricular pressure differences was poor on occasions. There is good overall agreement between paired temperature measurements obtained from deep white matter and brain ventricle in patients with and without early neurosurgery. For paired ICP measurements, 93.5 % of readings were within 2SD of mean difference. Whilst the majority of paired readings were comparable (within 10 mmHg) clinically relevant tissue-ventricular dissociations were noted. Further work is required to unravel the events responsible for short intervals of pressure dissociation before tissue pressure readings can be definitively accepted as a reliable surrogate for ventricular pressure.

  3. Protein synthesis is defended in the mitochondrial fraction of gill but not heart in cunner (Tautogolabrus adspersus) exposed to acute hypoxia and hypothermia.

    PubMed

    Lewis, Johanne M; Driedzic, William R

    2010-02-01

    The cunner, Tautogolabrus adspersus, is a north-temperate teleost which relies upon metabolic depression to survive the extreme low water temperatures of its habitat during the winter. Previous study has demonstrated a decrease in protein synthesis accompanies the metabolic depression observed at the whole animal level during seasonal low temperature exposure. As such, the objective of the current study was to determine: (i) if the response of decreased protein synthesis is conserved across environmental stressors and (ii) if the response of metabolic depression is conserved across levels of cellular organization. This was accomplished through the measurement of in vivo protein synthesis rates in the whole tissue, cytosolic and mitochondrial protein pools (reflective of nuclear encoded proteins imported into mitochondria) of heart and gill in cunner exposed to either acute low temperature (8-4 degrees C) or acute hypoxia (10% O(2) saturation). In both heart and gill, rates of protein synthesis in the whole tissue and cytosolic protein pools were substantially depressed by 80% in response to acute hypothermia. In hypoxic heart, protein synthesis was significantly decreased by 50-60% in the whole tissue, cytosolic and mitochondrial pools; however, in gill there was no significant difference in rates of protein synthesis in any cellular fraction between normoxic and hypoxic groups. Most strikingly the rate of new protein accumulation in the mitochondrial fraction of gill did not change in response to either a decrease in temperature or hypoxia. The defense of protein synthesis in the gill is most likely associated with the importance of maintaining ionic regulation and the oxidative capacity in this front line organ for gas and ion exchange.

  4. Enhancement of thermal response of normal and malignant tissues by Corynebacterium parvum. [Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urano, M.; Yamashita, T.; Suit, H.D.

    1984-06-01

    Further studies were carried out on the combined effects of Corynebacterium parvum and hyperthermia on animal tissues and cultured Chinese hamster ovary cells. Experimental animals were C3Hf/Sed mice derived from a defined flora mouse colony. Tumors were eighth-generation isotransplants of a spontaneous fibrosarcoma, FSa-II. Hyperthermia was given by immersing the mouse foot or culture flasks in the constant temperature water bath. Present experiments include thermal enhancement of C. parvum at different temperatures, effect of the agent on the kinetics of thermal resistance, and the mechanism of the thermal enhancement. The thermal enhancement by C. parvum was independent of temperature inmore » a range between 42.5 and 46.5 degrees, and it increased with decreasing temperature. The analysis of the Arrhenius plot suggested a comparable activation energy for combined treatments and for heat alone between 42.5 and 46.5 degrees. The thermal resistance developed very rapidly in both normal and tumor tissues. Systemic administration of C. parvum failed to modify the kinetics of thermal resistance. Several experiments were attempted in order to disclose the mechanism. A single injection of C. parvum-induced macrophages failed to enhance thermal response of the mouse foot, while 3 daily injections of the macrophages enhanced the response, indicating that the enhancement by C. parvum is at least partly attributed to the C. parvum-induced macrophages. Whole-body irradiation of 6 Gy and/or administration of anti-mouse T-cell serum and histamine failed to inhibit the C. parvum enhancement of thermal response. No thermal enhancement was observed for Chinese hamster ovary cells treated at 43.0 degrees in vitro with C. parvum or thiomersalate, a preservative supplemented in C. parvum, although cytotoxic effect was shown at a high concentration of thiomersalate.« less

  5. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature.

    PubMed

    Coble, Derrick J; Fleming, Damarius; Persia, Michael E; Ashwell, Chris M; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2014-12-10

    In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.

  6. Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry.

    PubMed

    De Leeuw, A A; Crezee, J; Lagendijk, J J

    1993-01-01

    Multisensor (7-14) thermocouple thermometry is used at our department for temperature measurement with our 'Coaxial TEM' regional hyperthermia system. A special design of the thermometry system with high resolution (0.005 degrees C) and fast data-acquisition (all channels within 320 ms) together with a pulsed power technique allows assessment of specific absorption rate (SAR) information in patients along catheter tracks. A disadvantage of thermocouple thermometry, EM interference, is almost entirely eliminated by application of absorbing ferrite beads around the probe leads. We investigated the effect of remaining disturbance on the temperature decay after power-off, both experimentally in phantoms and in the clinic, and with numerical simulations. Probe and tissue characteristics influence the response time tau dist of the decay of the disturbance. In our clinical practice a normal pulse sequence is 50 s power-on, 10 s power-off: a response time longer than the power-off time results in a deflection of the temperature course at the start. Based on analysis of temperature decays correction of temperature is possible. A double-pulse technique is introduced to provide an initial correction of temperature, and fast information about accuracy. Sometimes disturbance with a relatively long response time occurs, probably due to a bad contact between probe, catheter and/or tissue. Thermocouple thermometry proved to be suitable to measure the SAR along a catheter track. This is used to optimize the SAR distribution by patient positioning before treatment. A clinical example illustrates this.

  7. Immediate and long-term transcriptional response of hind muscle tissue to transient variation of incubation temperature in broilers.

    PubMed

    Naraballobh, Watcharapong; Trakooljul, Nares; Muráni, Eduard; Brunner, Ronald; Krischek, Carsten; Janisch, Sabine; Wicke, Michael; Ponsuksili, Siriluck; Wimmers, Klaus

    2016-05-04

    In oviparous species accidental variation of incubation temperatures may occur under natural conditions and mechanisms may have evolved by natural selection that facilitate coping with these stressors. However, under controlled artificial incubation modification of egg incubation temperature has been shown to have a wide-ranging impact on post-hatch development in several poultry species. Because developmental changes initiated in-ovo can affect poultry production, understanding the molecular routes and epigenetic alterations induced by incubation temperature differences may allow targeted modification of phenotypes. In order to identify molecular pathways responsive to variable incubation temperature, broiler eggs were incubated at a lower or higher temperature (36.8 °C, 38.8 °C) relative to control (37.8 °C) over two developmental intervals, embryonic days (E) 7-10 and 10-13. Global gene expression of M. gastrocnemius was assayed at E10, E13, and slaughter age [post-hatch day (D) 35] (6 groups; 3 time points; 8 animals each) by microarray analysis and treated samples were compared to controls within each time point. Transcript abundance differed for between 113 and 738 genes, depending on treatment group, compared to the respective control. In particular, higher incubation temperature during E7-10 immediately affected pathways involved in energy and lipid metabolism, cell signaling, and muscle development more so than did other conditions. But lower incubation temperature during E10-13 affected pathways related to cellular function and growth, and development of organ, tissue, and muscle as well as nutrient metabolism pathways at D35. Shifts in incubation temperature provoke specific immediate and long-term transcriptional responses. Further, the transcriptional response to lower incubation temperature, which did not affect the phenotypes, mediates compensatory effects reflecting adaptability. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype, reflecting considerable phenotypic plasticity.

  8. Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility.

    PubMed

    Mateus, Ana Rita A; Marques-Pita, Manuel; Oostra, Vicencio; Lafuente, Elvira; Brakefield, Paul M; Zwaan, Bas J; Beldade, Patrícia

    2014-11-21

    The environmental regulation of development can result in the production of distinct phenotypes from the same genotype and provide the means for organisms to cope with environmental heterogeneity. The effect of the environment on developmental outcomes is typically mediated by hormonal signals which convey information about external cues to the developing tissues. While such plasticity is a wide-spread property of development, not all developing tissues are equally plastic. To understand how organisms integrate environmental input into coherent adult phenotypes, we must know how different body parts respond, independently or in concert, to external cues and to the corresponding internal signals. We quantified the effect of temperature and ecdysone hormone manipulations on post-growth tissue patterning in an experimental model of adaptive developmental plasticity, the butterfly Bicyclus anynana. Following a suite of traits evolving by natural or sexual selection, we found that different groups of cells within the same tissue have sensitivities and patterns of response that are surprisingly distinct for the external environmental cue and for the internal hormonal signal. All but those wing traits presumably involved in mate choice responded to developmental temperature and, of those, all but the wing traits not exposed to predators responded to hormone manipulations. On the other hand, while patterns of significant response to temperature contrasted traits on autonomously-developing wings, significant response to hormone manipulations contrasted neighboring groups of cells with distinct color fates. We also showed that the spatial compartmentalization of these responses cannot be explained by the spatial or temporal compartmentalization of the hormone receptor protein. Our results unravel the integration of different aspects of the adult phenotype into developmental and functional units which both reflect and impact evolutionary change. Importantly, our findings underscore the complexity of the interactions between environment and physiology in shaping the development of different body parts.

  9. Syndecan-1 Is Required to Maintain Intradermal Fat and Prevent Cold Stress

    PubMed Central

    Wollny, Damian; Clark, Rod J.; Roopra, Avtar; Colman, Ricki J.; MacDougald, Ormond A.; Shedd, Timothy A.; Nelson, David W.; Yen, Mei-I; Yen, Chi-Liang Eric; Alexander, Caroline M.

    2014-01-01

    Homeostatic temperature regulation is fundamental to mammalian physiology and is controlled by acute and chronic responses of local, endocrine and nervous regulators. Here, we report that loss of the heparan sulfate proteoglycan, syndecan-1, causes a profoundly depleted intradermal fat layer, which provides crucial thermogenic insulation for mammals. Mice without syndecan-1 enter torpor upon fasting and show multiple indicators of cold stress, including activation of the stress checkpoint p38α in brown adipose tissue, liver and lung. The metabolic phenotype in mutant mice, including reduced liver glycogen, is rescued by housing at thermoneutrality, suggesting that reduced insulation in cool temperatures underlies the observed phenotypes. We find that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for adipocyte differentiation in vitro. Intradermal fat shows highly dynamic differentiation, continuously expanding and involuting in response to hair cycle and ambient temperature. This physiology probably confers a unique role for Sdc1 in this adipocyte sub-type. The PPARγ agonist rosiglitazone rescues Sdc1−/− intradermal adipose tissue, placing PPARγ downstream of Sdc1 in triggering adipocyte differentiation. Our study indicates that disruption of intradermal adipose tissue development results in cold stress and complex metabolic pathology. PMID:25101993

  10. Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature

    NASA Astrophysics Data System (ADS)

    Welch, Ashley J.; van Gemert, Martin J. C.

    The development of a unified theory for the optical and thermal response of tissue to laser radiation is no longer in its infancy, though it is still not fully developed. This book describes our current understanding of the physical events that can occur when light interacts with tissue, particularly the sequence of formulations that estimate the optical and thermal responses of tissue to laser radiation. This overview is followed by an important chapter that describes the basic interactions of light with tissue. Part I considers basic tissue optics. Tissue is treated as an absorbing and scattering medium and methods are presented for calculating and measuring light propagation, including polarized light. Also, methods for estimating tissue optical properties from measurements of reflection and transmission are discussed. Part II concerns the thermal response of tissue owing to absorbed light, and rate reactions are presented for predicting the extent of laser induced thermal damage. Methods for measuring temperature, thermal properties, rate constants, pulsed ablation and laser tissue interactions are detailed. Part III is devoted to examples that use the theory presented in Parts I and II to analyze various medical applications of lasers. Discussions of Optical Coherence Tomography (OCT), forensic optics, and light stimulation of nerves are also included.

  11. A novel modeling and simulation technique of photo--thermal interactions between lasers and living biological tissues undergoing multiple changes in phase.

    PubMed

    Dua, Rajan; Chakraborty, Suman

    2005-06-01

    Knowledge of heat transfer in biological bodies has many therapeutic applications involving either raising or lowering of temperature, and often requires precise monitoring of the spatial distribution of thermal histories that are produced during a treatment protocol. Extremes of temperature into the freezing and burning ranges are useful in surgical procedures for selective killing and/or removal of target tissues. For example, the primary objective of hyperthermia is to raise the temperature of the diseased tissue to a therapeutic value, typically 41- 44 degrees C, and then thermally destroy it. The present paper therefore aims to develop a mathematical model for effective simulation of photo--thermal interactions between laser rays and biological tissues. In particular, damage of biological tissues when subjected to single point laser diathermy is numerically investigated using a unique enthalpy-based approach for modeling multiple phase change, (namely, melting of fat and vaporization of water content of the tissues) and the associated release/absorption of latent heat in conjunction with unsteady state heat conduction mechanisms. The governing equations of bio-heat transfer coupled with initial and boundary conditions are solved using a finite volume approach in conjunction with line by a line tri-diagonal matrix algorithm (TDMA) solver. Temperature responses of tissues subject to laser heating are quantitatively investigated in detail using the present model, and the resultant solutions are expected to be immensely useful in a variety of Bio-thermal practices in medicine and surgery.

  12. Effect of artificial gravity on thermoregulation, respiratory metabolism and intermediary metabolism of animals

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1973-01-01

    Metabolic alterations in animals exposed to radial acceleration are reported. Temperatures in acutely stressed animals dropped profoundly in correlation with decreased food consumption. Repeated exposure of the acutely stressed animal caused a decrease in hypothermic response whereas deceleration or reduction of G load did not significantly change body temperatures. Adrenal corticosteroids affected significantly the animal's recovery rate. No changes occured in body temperature patterns of chronically centrifuged animals after full adaptation; their respiratory rate increased very significantly in terms of CO2 output as did their glucose uptake by muscle tissues and their insulin responsiveness or sensitivity.

  13. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].

    PubMed

    Moshonov, J; Stabholz, A; Leopold, Y; Rosenberg, I; Stabholz, A

    2001-10-01

    The interaction of laser energy with target tissue is mainly determined by two non operator-dependent factors: the specific wavelength of the laser and the optical properties of the target tissues. Power density, energy density, pulse repetition rate, pulse duration and the mode of energy transferring to the tissue are dictated by the clinician. Combination of these factors enables to control optimal response for the clinical application. Four responses are described when the laser beam hits the target tissue: reflection, absorption, transmission and scattering. Three main mechanisms of interaction between the laser and the biological tissues exist: photothermic, photoacoustic and photochemical. The effect of lasers on the soft tissues of the oral cavity is based on transformation of light energy into thermal energy which, in turn heats the target tissue to produce the desirable effect. In comparison to the scalpel used in surgical procedures, the laser beam is characterized by tissue natural sterility and by minimum bleeding during the surgical procedures due to blood vessels welding. The various effects achieved by the temperature elevation during the laser application on the soft tissue are: I. coagulation and hemostasis II. tissue sterilization III. tissue welding IV. incision and excision V. ablation and vaporization Ablation and melting are the two basic modalities by which the effect of lasers on the hard tissues of the tooth is produced. When discussing the effect of laser on dental hard tissues, the energy absorption in the hydroxyapatite plays a major role in addition to its absorption in water. When laser energy is absorbed in the water of the hard tissues, a rapid volume expansion of the evaporating water occurs as a result of a substantial temperature elevation in the interaction site. Microexplosions are produced causing hard tissue disintegration. If pulp temperatures are raised beyond 5 degrees C level, damage to the dental pulp is irreversible. Histologically, after laser ablation, presence of odontoblastic nuclei is important. Consistency and composition of the intracellular tissue is another factor influencing cell viability. If heat is intensive and exists for an extended time, the consistency of the intracellular ground substance may not be preserved. Accordingly, the application of excessive energy densities has been shown to result in significant damage to pulp tissue and in particular to odontoblasts. Studies showed that the use of Er:YAG laser to treat dental hard tissues is both safe and effective for caries removal, cavity preparation and enamel etching.

  14. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    NASA Astrophysics Data System (ADS)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  15. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue.

    PubMed

    Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano

    2017-09-01

    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Attenuation of the anti-contractile effect of cooling in the rat aorta by perivascular adipose tissue.

    PubMed

    Rafique, Y; AlBader, M; Oriowo, M

    2017-09-01

    In addition to providing mechanical support for blood vessels, the perivascular adipose tissue (PVAT) secretes a number of vasoactive substances and exerts an anticontractile effect. The main objective of this study was to find out whether the anticontractile effect of cooling in the rat aorta is affected by PVAT. Our hypothesis was that PVAT would enhance the anticontractile effect of cooling in the rat aorta. Aorta segments, with or without PVAT, were used in this investigation. Cumulative concentration-response curves were established for phenylephrine at 37°C or 24°C. Phenylephrine (10 -9 M - 10 -5 M) induced concentration-dependent contractions of aorta segments with or without PVAT at 37°C. The maximum response, but not pD 2 value, was reduced in aorta segments with PVAT. Cooling the tissues to 24 °C resulted in a significant reduction in the maximum response in aorta segments without PVAT with no change in pD 2 values. However, the anticontractile effect of cooling was attenuated in the presence of PVAT with no significant (p > 0.05) change in either the maximum response or pD 2 value. L-NAME potentiated PE-induced contractions and this was greater in aorta segments without PVAT at both temperatures. The expression of eNOS protein and basal tissue level of nitric oxide (NO) were greater in aorta segments with PVAT at both temperatures. However, PE significantly increased tissue levels of NO only in aorta segments without PVAT. We concluded that PVAT-induced loss of anticontractile effect of cooling against PE-induced contractions could be due to impaired generation of NO in aorta segments with PVAT. © 2017 John Wiley & Sons Ltd.

  17. Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.

    PubMed

    Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M

    2014-04-01

    The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of the mechanical properties correlation in hierarchical biological materials, and human dental tissue in particular. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery.

    PubMed

    Kim, Jae Dong; Jung, Youn Jae; Woo, Chang Hee; Choi, Young Chan; Choi, Ji Suk; Cho, Yong Woo

    2017-01-01

    Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media. The PEGylated human α-elastin nanoparticles (PhENPs) showed a narrow size distribution with an average diameter of 330±33nm and were able to encapsulate significant amounts of insulin and bovine serum albumin (BSA) upon simple mixing at low temperature in water and subsequent heating to physiological temperature. The release profiles of insulin and BSA showed sustained release for 72h. Overall, the thermo-responsive self-assembled PhENPs provide a useful tool for a range of protein delivery and tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Non-Invasive Blood Perfusion Measurements Using a Combined Temperature and Heat Flux Surface Probe

    PubMed Central

    Ricketts, Patricia L.; Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Pullins, Clay A.; Meyers, Leah A.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.

    2009-01-01

    Non-invasive blood perfusion measurement systems have been developed and tested in a phantom tissue and an animal model. The probes use a small sensor with a laminated flat thermocouple to measure the heat transfer and temperature response to an arbitrary thermal event (convective or conductive) imposed on the tissue surface. Blood perfusion and thermal contact resistance are estimated by comparing heat flux data with a mathematical model of the tissue. The perfusion probes were evaluated for repeatability and sensitivity using both a phantom tissue test stand and exposed rat liver tests. Perfusion in the phantom tissue tests was varied by controlling the flow of water into the phantom tissue test section, and the perfusion in the exposed liver tests was varied by temporarily occluding blood flow through the portal vein. The phantom tissue tests indicated that the probes can be used to detect small changes in perfusion (0.005 ml/ml/s). The probes qualitatively tracked the changes in the perfusion of the liver model due to occlusion of the portal vein. PMID:19885372

  20. Central control of body temperature

    PubMed Central

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  1. Central control of body temperature.

    PubMed

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  2. Inflammation-sensitive in situ smart scaffolding for regenerative medicine.

    PubMed

    Patra, Hirak K; Sharma, Yashpal; Islam, Mohammad Mirazul; Jafari, Mohammad Javad; Murugan, N Arul; Kobayashi, Hisatoshi; Turner, Anthony P F; Tiwari, Ashutosh

    2016-10-06

    To cope with the rapid evolution of the tissue engineering field, it is now essential to incorporate the use of on-site responsive scaffolds. Therefore, it is of utmost importance to find new 'Intelligent' biomaterials that can respond to the physicochemical changes in the microenvironment. In this present report, we have developed biocompatible stimuli responsive polyaniline-multiwalled carbon nanotube/poly(N-isopropylacrylamide), (PANI-MWCNT/PNIPAm) composite nanofiber networks and demonstrated the physiological temperature coordinated cell grafting phenomenon on its surface. The composite nanofibers were prepared by a two-step process initiated with an assisted in situ polymerization followed by electrospinning. To obtain a smooth surface in individual nanofibers with the thinnest diameter, the component ratios and electrospinning conditions were optimized. The temperature-gated rearrangements of the molecular structure are characterized by FTIR spectroscopy with simultaneous macromolecular architecture changes reflected on the surface morphology, average diameter and pore size as determined by scanning electron microscopy. The stimuli responsiveness of the nanofibers has first been optimized with computational modeling of temperature sensitive components (coil-like and globular conformations) to tune the mechanism for temperature dependent interaction during in situ scaffolding with the cell membrane. The nanofiber networks show excellent biocompatibility, tested with fibroblasts and also show excellent sensitivity to inflammation to combat loco-regional acidosis that delay the wound healing process by an in vitro model that has been developed for testing the proposed responsiveness of the composite nanofiber networks. Cellular adhesion and detachment are regulated through physiological temperature and show normal proliferation of the grafted cells on the composite nanofibers. Thus, we report for the first time, the development of physiological temperature gated inflammation-sensitive smart biomaterials for advanced tissue regeneration and regenerative medicine.

  3. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements

    PubMed Central

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-01-01

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008

  4. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.

    PubMed

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-11-24

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.

  5. A portable thermal imaging device as a feedback system for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoffer, Oshrit A.; Ben-David, Merav A.; Katz, Eyal; Sholomov, Meny; Kelson, Itzhak; Gannot, Israel

    2018-02-01

    Breast cancer is the most frequently diagnosed cancer among women in the Western world. Currently, no imaging technique assesses tumor heat generation and vasculature changes during radiotherapy in viable tumor and as adjuvant therapy. Thermography is a non-ionizing, non-invasive, portable and low-cost imaging modality. The purpose of this study was to investigate the use of thermography in cancer treatment monitoring for feedback purposes. Six stage-IV breast cancer patients with viable breast tumor and 8 patients (9 breasts) who underwent tumor resection were monitored by a thermal camera prior to radiotherapy sessions over several weeks of radiation treatment. The thermal changes over the treated breast were calculated and analyzed for comparison with healthy surrounded breast tissue or contralateral breast. A model of a breast with a tumor was created. The COMSOL FEM software was used to carry out the analysis. The effects of tumor metabolism and breast tissue perfusion on the temperature difference were analyzed. All patients with active tumors exhibited drops in maximal temperature of the tumor during radiation therapy. The patients who underwent radiotherapy as adjuvant treatment exhibited a rise in maximal temperature over the treated breast in correlation with skin erythema during radiation. This difference between the groups was statistically significant (P=0.001). The simulated human breast cancer models analysis showed that tumor aggressiveness reduction causes decrease in the tumor temperature. Inflammation causes vasodilatation and increases tissue perfusion, resulted in an increase in breast tissue temperature. A correlation was demonstrated between the clinical outcome and the simulation. We report a method for monitoring cancer response to radiation therapy, which measures the physiological response along with clinical response. These anticipatory efficacy evaluations of radiotherapy during treatment may further promote changes in treatment regimen, either radiation associated or combination as in chemo-radiation protocols. The probable treatment delivery changes may incorporate the total dose delivery, fraction dose and intensity as well as adding chemotherapy for non-responding tumors during radiotherapy. All the above possibilities will contribute to the advances of individualized, personalized cancer treatment for optimal treatment effectiveness.

  6. Low temperature stress on the hematological parameters and HSP gene expression in the turbot Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Ji, Liqin; Jiang, Keyong; Liu, Mei; Wang, Baojie; Han, Longjiang; Zhang, Mingming; Wang, Lei

    2016-05-01

    To study the effect of low temperature stress on hematological parameters and HSP gene expression in the turbot ( Scophthalmus maximus), water temperature was lowered rapidly from 18 to 1°C. During the cooling process, three individuals were removed from culture tanks at 18, 13, 8, 5, 3, and 1°C. Blood samples and tissues were taken from each individual, hematological indices and HSP gene expression in tissues were measured. The red blood cell count, white blood cell count, and hemoglobin concentration decreased significantly ( P < 0.05) as temperature decreased. Enzyme activities of plasma alanine transaminase and creatine kinase increased as temperature decreased, whereas aspartic transaminase and γ-glutamyl transpeptidase activities displayed no obvious changes above 1°C and lactate dehydrogenase activity increased first and then decreased. Blood urea nitrogen and uric acid levels were highest at 8°C, and creatinine concentration was highest at 3°C. The concentrations of plasma cortisol, cholesterol, and triglyceride all increased significantly ( P < 0.05) as temperature decreased. The serum glucose concentration increased first and then decreased to the initial level. The HSP70 mRNA expression showed various patterns in different tissues, whereas HSP90 mRNA expression showed the same tendency in all tissues. Overall, these results indicate that temperature decreases in the range of 8 to 5°C may induce a stress response in S. maximus and that temperature should be kept above 8°C in the aquaculture setting to avoid damage to the fish.

  7. A 3D thermal model to analyze the temperature changes of digits during cold stress and predict the danger of frostbite in human fingers.

    PubMed

    Fallahi, Amir; Reza Salimpour, Mohammad; Shirani, Ebrahim

    2017-04-01

    The existing computational models of frostbite injury are limited to one and two dimensional schemes. In this study, a coupled thermo-fluid model is applied to simulate a finger exposed to cold weather. The spatial variability of finger-tip temperature is compared to experimental ones to validate the model. A semi-realistic 3D model for tissue and blood vessels is used to analyze the transient heat transfer through the finger. The effect of heat conduction, metabolic heat generation, heat transport by blood perfusion, heat exchange between tissues and large vessels are considered in energy balance equations. The current model was then tested in different temperatures and air speeds to predict the danger of frostbite in humans for different gloves. Two prevalent gloves which are commonly used in cold climate are considered for investigation. The endurance time and the fraction of necrotic tissues are two main factors suggested for obtaining the response of digit tissues to different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    PubMed

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is regulated in reproductive tissues in response to heat stress to modulate resource allocation dynamics.

  9. Monte Carlo method for photon heating using temperature-dependent optical properties.

    PubMed

    Slade, Adam Broadbent; Aguilar, Guillermo

    2015-02-01

    The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology

    PubMed Central

    Ruys, Andrew J.

    2018-01-01

    Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614

  11. Modeling electrical power absorption and thermally-induced biological tissue damage.

    PubMed

    Zohdi, T I

    2014-01-01

    This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.

  12. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat.

    PubMed

    Hess, Moritz; Wildhagen, Henning; Junker, Laura Verena; Ensminger, Ingo

    2016-08-26

    Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.

  13. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance.

    PubMed

    Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N

    2011-03-01

    Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.

  14. Prediction of facial cooling while walking in cold wind.

    PubMed

    Tikuisis, Peter; Ducharme, Michel B; Brajkovic, Dragan

    2007-09-01

    A dynamic model of cheek cooling has been modified to account for increased skin blood circulation of individuals walking in cold wind. This was achieved by modelling the cold-induced vasodilation response to cold as a varying blood perfusion term, which provided a source of convective heat to the skin tissues of the model. Physiologically-valid blood perfusion was fitted to replicate the cheek skin temperature responses of 12 individuals experimentally exposed to air temperatures from -10 to 10 degrees C at wind speeds from 2 to 8 ms(-1). Resultant cheek skin temperatures met goodness-of-fit criteria and implications on wind chill predictions are discussed.

  15. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms.

    PubMed

    Seebacher, Frank; Little, Alexander G

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  16. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    PubMed Central

    Seebacher, Frank; Little, Alexander G.

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits. PMID:28824463

  17. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    NASA Astrophysics Data System (ADS)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  18. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  19. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-04-01

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  20. Physiological plasticity, long term resistance or acclimation to temperature, in the Antarctic bivalve, Laternula elliptica.

    PubMed

    Morley, Simon A; Hirse, Timo; Thorne, Michael A S; Pörtner, Hans O; Peck, Lloyd S

    2012-05-01

    To further investigate the previously reported limited acclimation capacities of Antarctic marine stenotherms, the Antarctic mud clam, Laternula elliptica (King and Broderip, 1830-1831), was incubated at 3.0°C for 89days. The thermal windows of a suite of biochemical and physiological metrics that characterise tissue aerobic status, were then measured in response to acute temperature elevation (2-2.5°C increase per week). To test if acclimation had occurred at the higher temperature, results were compared with published data, from the preceding year, for L. elliptica which had been incubated at ambient temperature (0.0°C) and then subjected to the same acute temperature treatments. Incubation to 3.0°C led to a temperature induced increase of tissue aerobic status (reduced intracellular cCO(2) with increased O(2) consumption, PLA (phospho-L-arginine) and ATP). At the highest acute temperature (7.5°C) the increase in anaerobic pathways (summed acetate/succinate and propionate) was less after 3.0°C than 0.0°C incubation. No other metric shifted its reaction norm in response to acute temperature elevation and so whole animal acclimation had not occurred, even after 3months at 3.0°C. Combined with the constant mortality throughout the 3.0°C incubation period, these data suggest that the recorded physiological changes were either the early stages of acclimation or, more likely, time limited resistance mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.

    PubMed

    Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal

    2015-11-01

    Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the initial stages of the irradiation. The temperature rise due to pulsed and CW laser irradiation converged as the time of irradiation increased. A similar trend was observed when comparing the thermal dose for pulsed and CW laser irradiation in the vascular model. Finite element models (continuum and vascular) were developed that can be used to predict temperature rise and quantify the thermal dose resulting from laser irradiation of excised rat skin samples and live anesthetized mouse tissue. The vascular model incorporating blood perfusion effects predicted temperature rise better in the live animal tissue. The models developed demonstrated that pulsed lasers caused greater temperature rise and delivered a greater thermal dose than CW lasers of equal average power, especially during the initial transients of irradiation. This analysis will be beneficial for thermal therapy applications where maximum delivery of thermal dose over a short period of time is important. © 2015 Wiley Periodicals, Inc.

  2. Temperature effects on kinetics of paralytic shellfish toxin elimination in Atlantic surfclams, Spisula solidissima

    NASA Astrophysics Data System (ADS)

    Monica Bricelj, V.; Cembella, Allan D.; Laby, David

    2014-05-01

    Surfclams, Spisula solidissima, pose a particular health risk for human consumption as they are characterized by accumulation of extremely high levels of toxins associated with paralytic shellfish poisoning (PSP), slow toxin elimination and an extremely high post-ingestive capacity for toxin bioconversion. Surfclam populations experience a wide range of temperatures along the NW Atlantic continental shelf, and are undergoing range contraction that has been attributed to global warming. In this study the influence of temperature (5, 12 and 21 °C) on detoxification kinetics of individual PSP toxins in two tissue compartments of juvenile surfclams (∼35 mm shell length) was determined under controlled laboratory conditions, over prolonged (2.4 months) depuration. Clams were toxified with a representative regional Gulf of Maine isolate of the dinoflagellate Alexandrium fundyense of known toxin profile, allowing tracking of changes in toxin composition and calculated toxicity in surfclam tissues. The visceral mass detoxified at all temperatures, although toxin loss rate increased with increasing temperature. In contrast, total toxin content and calculated toxicities in other tissues remained constant or even increased during depuration, suggesting a physiological or biochemical toxin-retention mechanism in this tissue pool and temperature-independent detoxification. In vivo toxin compositional changes in surfclam tissues found in this study provide evidence of specific toxin conversion pathways, involving both reductive and decarbamoylation pathways. We conclude that such toxin biotransformations, especially in non-visceral tissues, may introduce a discrepancy in describing kinetics of total toxicity (in saxitoxin equivalents [STXeq]) of S. solidissima over prolonged detoxification. Nevertheless, use of total toxicity values generated by routine regulatory monitoring based upon mouse bioassays or calculated from chemical analytical determination of molar toxin concentrations is adequate for first-order modeling of toxin kinetics in this species. Furthermore, the differential detoxification response of viscera and other tissues in relation to temperature emphasizes the need for two-compartment modeling to describe the fate of PSP toxins in this species. Finally, key parameters were identified that may prove useful in hindcasting the timing of toxic blooms or new toxin input in deep offshore waters where routine monitoring of toxic phytoplankton is impractical.

  3. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    PubMed

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  4. [Role of oxotremorine in arginine vasopressin-induced hypothermia and its effects on behavioral thermoregulatory response in rats].

    PubMed

    Shen, Zi-Ling; Yang, Yong-Lu; Sun, Bing; Tang, Yu; Wang, Nian

    2012-03-01

    To investigate the role of oxotremorine in arginine vasopressin (AVP)-induced hypothermia and its effects on the behavioral thermoregulatory response. Core temperature (Tc), brown adipose tissue (BAT) temperature and motor activities were monitored in undisturbed female SD rats using radiotelemetry. The behavioral thermoregulatory response was monitored in rats using radiotelemetric temperature gradient apparatus. Effect of AVP (10 microg/kg) and oxotremorine (0.25 mg/kg) on Tc, motor activities, BAT temperature (T(BAT)), grooming activities and the behavioral thermoregulatory response were observed in rats. Administration of AVP and oxotremorine caused a significant drop in Tc, T(BAT), and an increases in grooming activities, respectively. The hypothermic responses were accompanied with a preference for cooler ambient temperature. Oxotremorine augmented the reduction of Tc, T(BAT), and the elevation of grooming activities resulting from AVP, and lasting a longer time. Administration of oxotremorine followed immediately by AVP injection in rats was also shown to induce a preference for cooler ambient temperature, but there was no significant difference compared with AVP. AVP-induced hypothermia was related with the set point temperature reduction, inhibiton of BAT thermogenesis and an increases in grooming activities. Oxotremorine could participate in peripheral AVP-induced hypothermia by affecting BAT thermogenesis and behavioral thermoregulation.

  5. Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure

    PubMed Central

    Tupone, Domenico

    2014-01-01

    SUMMARY Thermogenesis, the production of heat energy, is the specific, neurally-regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically-driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis. PMID:24630813

  6. Down-regulation of respiration in pear fruit depends on temperature.

    PubMed

    Ho, Quang Tri; Hertog, Maarten L A T M; Verboven, Pieter; Ambaw, Alemayehu; Rogge, Seppe; Verlinden, Bert E; Nicolaï, Bart M

    2018-04-09

    The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.

  7. Season-dependent effects of elevated temperature on stress biomarkers, energy metabolism and gamete development in mussels.

    PubMed

    Múgica, M; Sokolova, I M; Izagirre, U; Marigómez, I

    2015-02-01

    In coastal areas, sessile species can be severely affected by thermal stress associated to climate change. Presently, the effect of elevated temperature on metabolic, cellular and tissue-level responses of mussels was determined to assess whether the responses vary seasonally with seawater temperature and reproductive stage. Mussels were collected in fall, winter and summer, and (a) maintained at 16, 12, and 20 °C respectively or (b) subject to gradual temperature elevation for 8 days (+1 °C per day; from 16 to 24 °C in fall, from 12 to 20 °C in winter and from 20 to 28 °C in summer) and further maintained at 24 °C (fall), 20 °C (winter) and 28 °C (summer) for the following 6 days. Temperature elevation induced membrane destabilization, lysosomal enlargement, and reduced the aerobic scope in fall and summer whereas in winter no significant changes were found. Changes at tissue-level were only evident at 28 °C. Gamete development was impaired irrespective of season. Since the threshold of negative effects of warming was close to ambient temperatures in summer (24 °C or above) studied mussel populations would be vulnerable to the global climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Identification of reduced-order thermal therapy models using thermal MR images: theory and validation.

    PubMed

    Niu, Ran; Skliar, Mikhail

    2012-07-01

    In this paper, we develop and validate a method to identify computationally efficient site- and patient-specific models of ultrasound thermal therapies from MR thermal images. The models of the specific absorption rate of the transduced energy and the temperature response of the therapy target are identified in the reduced basis of proper orthogonal decomposition of thermal images, acquired in response to a mild thermal test excitation. The method permits dynamic reidentification of the treatment models during the therapy by recursively utilizing newly acquired images. Such adaptation is particularly important during high-temperature therapies, which are known to substantially and rapidly change tissue properties and blood perfusion. The developed theory was validated for the case of focused ultrasound heating of a tissue phantom. The experimental and computational results indicate that the developed approach produces accurate low-dimensional treatment models despite temporal and spatial noises in MR images and slow image acquisition rate.

  9. Comparing biomarker responses during thermal acclimation: A lethal vs non-lethal approach in a tropical reef clownfish.

    PubMed

    Madeira, Carolina; Madeira, Diana; Diniz, Mário S; Cabral, Henrique N; Vinagre, Catarina

    2017-02-01

    Knowledge of thermal stress biology for most tropical fish species in reef ecosystems under climate change is still quite limited. Thus, the objective of this study was to measure the time-course changes of thermal stress biomarkers in the commercially exploited coral reef fish Amphiprion ocellaris, during a laboratory simulated event of increased temperature. Heat shock protein 70kDa (Hsp70) and total ubiquitin (Ub) were determined in the muscle (lethal method) and in the fin (non-lethal alternative method) under two temperature treatments (control - 26°C and elevated temperature - 30°C) throughout one month with weekly samplings. Results suggest that biomarker basal levels are tissue-specific and influence the degree of response under temperature exposure. Responses were highly inducible in the muscle but not in fin tissue, indicating that the latter is not reliable for monitoring purposes. Thermal stress was observed in the muscle after one week of exposure (both biomarkers increased significantly) and Ub levels then decreased, suggesting the animals were able to acclimate by maintaining high levels of Hsp70 and through an effective protein turnover. In addition, the results show that mortality rates did not differ between treatments. This indicates that A. ocellaris is capable of displaying a plastic response to elevated temperature by adjusting the protein quality control system to protect cell functions, without decreasing survival. Thus, this coral reef fish species presents a significant acclimation potential under ocean warming scenarios of +4°C. Monitoring of thermal stress through a non-lethal method, fin-clipping, although desirable proved to be inadequate for this species. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata).

    PubMed

    Feidantsis, Konstantinos; Antonopoulou, Efthimia; Lazou, Antigone; Pörtner, Hans O; Michaelidis, Basile

    2013-07-01

    The present study aimed to investigate the seasonal cellular stress response in vital organs, like the heart, the liver, the whole blood and the skeletal (red and white) muscles of the Mediterranean fish Sparus aurata during a 1-year acclimatization period in the field, in two examined depths (0-2 m and 10-12 m). Processes studied included heat shock protein expression and protein kinase activation. Molecular responses were addressed through the expression of Hsp70 and Hsp90, the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). The induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs in the examined five tissues of the gilthead sea bream indicated a cellular stress response under the prism of a seasonal pattern which was characterized by distinct tissue specificity. Specifically, Hsp induction and MAPK activation occurred before peak summer water temperatures, with no further increases in their levels despite increases in water temperatures. Moreover, although water temperature did not vary significantly with depth of immersion, significant effects of depth on cellular stress response were observed, probably caused by different light regime. The expression and the activation of these certain proteins can be used as tools to define the extreme thermal limits of the gilthead sea bream.

  11. Thermal therapy techniques for skin and superficial tissue disease

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.

    2000-01-01

    There are numerous diseases and abnormal growths and conditions that afflict the skin and underlying superficial tissues. In addition to cancers such as primary, recurrent, and metastatic melanomas and carcinomas, there are many non-malignant conditions such as psoriasis plaques, port wine stains, warts, and superficial cut and bum wounds. Many of these clinical conditions have been shown responsive to treatment with thermal therapy - either low temperature freezing (cryotherapy),. moderate temperature warming to about 41-45°C (hyperthermia), or high temperature (>50°C) ablation or coagulation necrosis therapy. Because both very low and very high temperature therapies are for the most part non-selectively destructive in nature, they normally are used for applications where therapy can be localized precisely in the desired target and some necrosis of adjacent normal tissues is acceptable. With the exception of precision controlled cryotherapy or laser surgery (e.g. wart, mole, tattoo and port wine stain removal) or focal thermal surgery of small deep-seated nodules, it is generally preferred to use moderate thermal therapy (hyperthermia) in the treatment of skin and subcutaneous tissue disease in order to preserve the protective barrier characteristic of intact skin within the target region while inducing more subtle long term therapeutic improvement in the disease condition. This type of subtle thermal therapy is usually administered in combination with one or more other therapies such as radiation or chemotherapy - something with a differential effect on the target and surrounding normal tissues that can be magnified by the adjuvant use of heat.

  12. Survival mechanisms of vertebrate ectotherms at subfreezing temperatures: applications in cryomedicine.

    PubMed

    Costanzo, J P; Lee, R E; DeVries, A L; Wang, T; Layne, J R

    1995-03-01

    Various marine fishes, amphibians, and reptiles survive at temperatures several degrees below the freezing point of their body fluids by virtue of adaptive mechanisms that promote freeze avoidance or freeze tolerance. Freezing is avoided by a colligative depression of the blood freezing point, supercooling of the body fluids, or the biosynthesis of unique antifreeze proteins that inhibit the propagation of ice within body fluids. Conversely, freeze tolerance is an adaptation for the survival of tissue freezing under ecologically relevant thermal and temporal conditions that is conferred by the biosynthesis of permeating carbohydrate cryoprotectants and an extensive dehydration of tissues and organs. Such cryoprotective responses, invoked by the onset of freezing, mitigate the osmotic stress associated with freeze-concentration of cytoplasm, attendant metabolic perturbations, and physical damage. Cryomedical research has historically relied on mammalian models for experimentation even though endotherms do not naturally experience subfreezing temperatures. Some vertebrate ectotherms have "solved" not only the problem of freezing individual tissues and organs, but also that of simultaneously freezing all organ systems. An emerging paradigm in cryomedicine is the application of principles governing natural cold hardiness to the development of protocols for the cryopreservation of mammalian tissues and organs.

  13. Responsiveness to thyroid hormone and to ambient temperature underlies differences between brown adipose tissue and skeletal muscle thermogenesis in a mouse model of diet-induced obesity.

    PubMed

    Ueta, Cintia B; Olivares, Emerson L; Bianco, Antonio C

    2011-09-01

    Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism.

  14. Responsiveness to Thyroid Hormone and to Ambient Temperature Underlies Differences Between Brown Adipose Tissue and Skeletal Muscle Thermogenesis in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Ueta, Cintia B.; Olivares, Emerson L.

    2011-01-01

    Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism. PMID:21771890

  15. Physical analysis on laser-induced cerebral damage

    NASA Astrophysics Data System (ADS)

    Luo, Xiaosen; Liu, Jiangang; Tao, Chunkan; Lan, Xiufeng; Cao, Lingyan; Pan, Weimin; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2005-01-01

    Experimental investigation on cerebral damage of adult SD rats induced by 532nm CW laser was performed. Tissue heat conductive equation was set up based on two-layered structure model. Finite difference algorithm was utilized to numerically simulate the temperature distribution in the brain tissue. Allowing for tissue response to temperature variation, free boundary model was used to discuss tissue thermal coagulation formation in brain. Experimental observations show that thermal coagulation and necrosis can be caused due to laser light absorption. The result of the calculation shows that the process of the thermal coagulation of the given mode comprises two stages: fast and slow. At the first stage, necrosis domain grows fast. Then necrosis domain growth becomes slower because of the competition between the heat diffusion into the surrounding undamaged tissue and the heat dissipation caused by blood perfusion. At the center of coagulation area no neuron was observed and at the transitional zone few nervous cells were seen by microscope. The research can provide reference data for developing clinical therapy of some kind of encephalic diseases by using 532nm laser, and for making cerebral infarction models in animal experiment.

  16. Behavioural and Physiological Responses of Gammarus pulex Exposed to Cadmium and Arsenate at Three Temperatures: Individual and Combined Effects

    PubMed Central

    Vellinger, Céline; Felten, Vincent; Sornom, Pascal; Rousselle, Philippe; Beisel, Jean-Nicolas; Usseglio-Polatera, Philippe

    2012-01-01

    This study aimed at investigating both the individual and combined effects of cadmium (Cd) and arsenate (AsV) on the physiology and behaviour of the Crustacean Gammarus pulex at three temperatures (5, 10 and15°C). G. pulex was exposed during 96 h to (i) two [Cd] alone, (ii) two [AsV] alone, and (iii) four combinations of [Cd] and [AsV] to obtain a complete factorial plane. After exposure, survival, [AsV] or [Cd] in body tissues, behavioural (ventilatory and locomotor activities) and physiological responses (iono-regulation of [Na+] and [Cl−] in haemolymph) were examined. The interactive effects (antagonistic, additive or synergistic) of binary mixtures were evaluated for each tested temperature using a predictive model for the theoretically expected interactive effect of chemicals. In single metal exposure, both the internal metal concentration in body tissues and the mortality rate increased along metallic gradient concentration. Cd alone significantly impaired both [Na+] and [Cl−] while AsV alone had a weak impact only on [Cl−]. The behavioural responses of G. pulex declined with increasing metal concentration suggesting a reallocation of energy from behavioural responses to maintenance functions. The interaction between AsV and Cd was considered as ‘additive’ for all the tested binary mixtures and temperatures (except for the lowest combination at 10°C considered as “antagonistic”). In binary mixtures, the decrease in both ventilatory and locomotor activities and the decline in haemolymphatic [Cl−] were amplified when respectively compared to those observed with the same concentrations of AsV or Cd alone. However, the presence of AsV decreased the haemolymphatic [Na+] loss when G. pulex was exposed to the lowest Cd concentration. Finally, the observed physiological and behavioural effects (except ventilation) in G. pulex exposed to AsV and/or Cd were exacerbated under the highest temperature. The discussion encompasses both the toxicity mechanisms of these metals and their interaction with rising temperature. PMID:22761731

  17. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback.

    PubMed

    Teigen, Laura E; Orczewska, Julieanna I; McLaughlin, Jessica; O'Brien, Kristin M

    2015-10-01

    Molecular chaperones [heat shock proteins (HSPs)] increase in response to rapid changes in temperatures, but long-term acclimation to cold temperature may also warrant elevations in HSPs. In fishes, cold acclimation increases mitochondrial density and oxidative stress in some tissues, which may increase demand for HSPs. We hypothesized that levels of HSPs, as well as sirtuins (SIRTs), NAD-dependent deacetylases that mediate changes in metabolism and responses to oxidative stress (including increases in HSPs), would increase during cold acclimation of threespine stickleback (Gasterosteus aculeatus). Transcript levels of hsp70, hsc70, hsp60 and hsp90-α, sirts1-4, as well as protein levels of HSP60, HSP90 and HSC70 were quantified in liver and pectoral adductor muscle of stickleback during cold acclimation from 20 °C to 8 °C. In liver, cold acclimation stimulated a transient increase in mRNA levels of hsp60 and hsc70. Transcript levels of sirt1 and sirt2 also increased in response to cold acclimation and remained elevated. In pectoral muscle, mRNA levels of hsp60, hsp90-α, hsc70 and sirt1 all transiently increased in response to cold acclimation, while levels of sirts2-4 remained constant or declined. Similar to transcript levels, protein levels of HSC70 increased in both liver and pectoral muscle. Levels of HSP90 also increased in liver after 4 weeks at 8 °C. HSP60 remained unchanged in both tissues, as did HSP90 in pectoral muscle. Our results indicate that while both HSPs and SIRTs increase in response to cold acclimation in stickleback, the response is tissue and isoform specific, likely reflecting differences in metabolism and oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  19. Molecularly designed water soluble, intelligent, nanosize polymeric carriers.

    PubMed

    Pişkin, Erhan

    2004-06-11

    Intelligent polymers, also referred as "stimuli-responsive polymers" undergo strong property changes (in shape, surface characteristics, solubility, etc.) when only small changes in their environment (changes in temperature, pH, ionic strength light, electrical and magnetic field, etc.). They have been used in several novel applications, drug delivery systems, tissue engineering scaffolds, bioseparation, biomimetic actuators, etc. The most popular member of these type of polymers is poly(N-isopropylacrylamide) (poly(NIPA)) which exhibits temperature-sensitive character, in which the polymer chains change from water-soluble coils to water-insoluble globules in aqueous solution as temperature increases above the lower critical solution temperature (LCST) of the polymer. Copolymerization of NIPA with acrylic acid (AAc) allows the synthesis of both pH and temperature-responsive copolymers. This paper summarizes some of our related studies in which NIPA and its copolymers were synthesized and used as intelligent carriers in diverse applications.

  20. The mechanism of joint capsule thermal modification in an in-vitro sheep model.

    PubMed

    Hayashi, K; Peters, D M; Thabit, G; Hecht, P; Vanderby, R; Fanton, G S; Markel, M D

    2000-01-01

    The purpose of this study was to understand the mechanism responsible for joint capsule shrinkage after nonablative laser application in an in-vitro sheep model. Femoropatellar joint capsular tissue specimens harvested from 20 adult sheep were treated with one of three power settings of a holmium:yttrium-aluminum-garnet laser or served as a control. Laser treatment significantly shortened the tissue and decreased tissue stiffness in all three laser groups, whereas failure strength was not altered significantly by laser treatment. Transmission electron microscopic examination showed swollen collagen fibrils and loss of membrane integrity of fibroblasts. A thermometric study revealed nonablative laser energy caused tissue temperature to rise in the range of 64 degrees C to 100 degrees C. Electrophoresis after trypsin digestion of the tissue revealed significant loss of distinct alpha bands of Type I collagen in laser treated samples, whereas alpha bands were present in laser treated tissue without trypsin digestion. The results of this study support the concept that the primary mechanism responsible for the effect of nonablative laser energy is thermal denaturation of collagen in joint capsular tissue associated with unwinding of the triple helical structure of the collagen molecule.

  1. Ultrasound Guidance and Monitoring of Laser-Based Fat Removal

    PubMed Central

    Shah, Jignesh; Thomsen, Sharon; Milner, Thomas E.; Emelianov, Stanislav Y.

    2009-01-01

    Background and Objectives We report on a study to investigate feasibility of utilizing ultrasound imaging to guide laser removal of subcutaneous fat. Ultrasound imaging can be used to identify the tissue composition and to monitor the temperature increase in response to laser irradiation. Study Design/Materials and Methods Laser heating was performed on ex vivo porcine subcutaneous fat through the overlying skin using a continuous wave laser operating at 1,210 nm optical wavelength. Ultrasound images were recorded using a 10 MHz linear array-based ultrasound imaging system. Results Ultrasound imaging was utilized to differentiate between water-based and lipid-based regions within the porcine tissue and to identify the dermis-fat junction. Temperature maps during the laser exposure in the skin and fatty tissue layers were computed. Conclusions Results of our study demonstrate the potential of using ultrasound imaging to guide laser fat removal. PMID:19065554

  2. Anesthesia, Microcirculation and Wound Repair in Aging

    PubMed Central

    Bentov, Itay; Reed, May J.

    2014-01-01

    Age related changes in skin contribute to impaired wound healing after surgical procedures. Changes in skin with age include decline in thickness and composition, a decrease in the number of most cell types and diminished microcirculation. The microcirculation provides tissue perfusion, fluid homeostasis, and delivery of oxygen and other nutrients. It also controls temperature and the inflammatory response. Surgical incisions cause further disruption of the microvasculature of aged skin. Perioperative management can be modified to minimize insults to aged tissues. Judicious use of fluids, maintenance of normal body temperature, pain control and increased tissue oxygen tension are examples of adjustable variables that support the microcirculation. Anesthetic agents influence the microcirculation from a combination of effects on cardiac output, arterial pressure and local micro-vascular changes. We examine the role of anesthetic management in optimizing the microcirculation and potentially improving post-operative wound repair in older persons. PMID:24195972

  3. Silver halide fiber optic radiometry for temperature monitoring and control of tissues heated by microwave

    NASA Astrophysics Data System (ADS)

    Shenfeld, Ofer; Belotserkovsky, Edward; Goldwasser, Benad; Zur, Albert; Katzir, Abraham

    1993-02-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields, such as the treatment of malignancies, urinary retention, and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a nonuniform way by the microwave radiation. Conventional temperature sensors used today are inaccurate in the presence of microwave radiation and require contact with the heated tissue. Fiber optic radiometry makes it possible to measure temperatures accurately in the presence of microwave radiation and does not require contact with the tissue. Accurate temperature measurements of tissues heated by microwave was obtained using a silver halide optic radiometer, enabling control of the heating process in other regions of the tissue samples. Temperature mappings of the heated tissues were performed and the nonuniform temperature distributions in these tissues was demonstrated.

  4. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Doughty, Austin; Liu, Shaojie; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2017-02-01

    We have recently developed Laser Immunotherapy (LIT), a targeted cancer treatment modality using synergistic application of near-infrared laser irradiation and in situ immunological stimulation. This study further investigates the principles underlying the immune response to LIT treatment by studying immunological impact of the laser photothermal effect in vivo, in vitro, and ex vivo. Tumor cells were stressed in vitro, and samples were collected to analyze protein expression with a Western Blot. Additionally, a tumor model was designed using bovine liver tissue suspended in agarose gel which was treated using laser interstitially and monitored with both proton-resonance frequency shift MR thermometry and thermocouples. From the bovine liver tumor model, we were able to develop the correlation between tissue temperature elevation and laser power and distance from the fiber tip. Similar data was collected by monitoring the temperature of a metastatic mammary tumor in a rat during laser irradiation. Ultimately, these results show that the laser irradiation of LIT leads to clear immunological effects for an effective combination therapy to treat metastatic cancers.

  5. The glutathione-dependent system of antioxidant defense is not modulated by temperature acclimation in muscle tissues from striped bass, Morone saxatilis.

    PubMed

    Grim, Jeffrey M; Simonik, Elizabeth A; Semones, Molly C; Kuhn, Donald E; Crockett, Elizabeth L

    2013-02-01

    Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Abscisic Acid Deficiency Antagonizes High-Temperature Inhibition of Disease Resistance through Enhancing Nuclear Accumulation of Resistance Proteins SNC1 and RPS4 in Arabidopsis[C][W

    PubMed Central

    Mang, Hyung-Gon; Qian, Weiqiang; Zhu, Ying; Qian, Jun; Kang, Hong-Gu; Klessig, Daniel F.; Hua, Jian

    2012-01-01

    Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)–deficient mutant aba2 enhances resistance mediated by the resistance (R) gene SUPPRESSOR OF npr1-1 CONSTITUTIVE1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein RESISTANCE TO PSEUDOMONAS SYRINGAE4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses. PMID:22454454

  7. Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression.

    PubMed

    Ikegami, Keisuke; Atsumi, Yusuke; Yorinaga, Eriko; Ono, Hiroko; Murayama, Itaru; Nakane, Yusuke; Ota, Wataru; Arai, Natsumi; Tega, Akinori; Iigo, Masayuki; Darras, Veerle M; Tsutsui, Kazuyoshi; Hayashi, Yoshitaka; Yoshida, Shosei; Yoshimura, Takashi

    2015-02-01

    In temperate zones, animals restrict breeding to specific seasons to maximize the survival of their offspring. Birds have evolved highly sophisticated mechanisms of seasonal regulation, and their testicular mass can change 100-fold within a few weeks. Recent studies on Japanese quail revealed that seasonal gonadal development is regulated by central thyroid hormone activation within the hypothalamus, depending on the photoperiodic changes. By contrast, the mechanisms underlying seasonal testicular regression remain unclear. Here we show the effects of short day and low temperature on testicular regression in quail. Low temperature stimulus accelerated short day-induced testicular regression by shutting down the hypothalamus-pituitary-gonadal axis and inducing meiotic arrest and germ cell apoptosis. Induction of T3 coincided with the climax of testicular regression. Temporal gene expression analysis over the course of apoptosis revealed the suppression of LH response genes and activation of T3 response genes involved in amphibian metamorphosis within the testis. Daily ip administration of T3 mimicked the effects of low temperature stimulus on germ cell apoptosis and testicular mass. Although type 2 deiodinase, a thyroid hormone-activating enzyme, in the brown adipose tissue generates circulating T3 under low-temperature conditions in mammals, there is no distinct brown adipose tissue in birds. In birds, type 2 deiodinase is induced by low temperature exclusively in the liver, which appears to be caused by increased food consumption. We conclude that birds use low temperature-induced circulating T3 not only for adaptive thermoregulation but also to trigger apoptosis to accelerate seasonal testicular regression.

  8. Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus two summer annuals.

    PubMed

    Cohu, Christopher M; Muller, Onno; Adams, William W; Demmig-Adams, Barbara

    2014-09-01

    Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant. © 2014 Scandinavian Plant Physiology Society.

  9. Mast Cell Dependent Vascular Changes Associated with an Acute Response to Cold Immersion in Primary Contact Urticaria

    PubMed Central

    Meyer, Joseph; Gorbach, Alexander M.; Liu, Wei-Min; Medic, Nevenka; Young, Michael; Nelson, Celeste; Arceo, Sarah; Desai, Avanti; Metcalfe, Dean D.; Komarow, Hirsh D.

    2013-01-01

    Background While a number of the consequences of mast cell degranulation within tissues have been documented including tissue-specific changes such as bronchospasm and the subsequent cellular infiltrate, there is little known about the immediate effects of mast cell degranulation on the associated vasculature, critical to understanding the evolution of mast cell dependent inflammation. Objective To characterize the microcirculatory events that follow mast cell degranulation. Methodology/Principal Findings Perturbations in dermal blood flow, temperature and skin color were analyzed using laser-speckle contrast imaging, infrared and polarized-light colorimetry following cold-hand immersion (CHI) challenge in patients with cold-induced urticaria compared to the response in healthy controls. Evidence for mast cell degranulation was established by documentation of serum histamine levels and the localized release of tryptase in post-challenge urticarial biopsies. Laser-speckle contrast imaging quantified the attenuated response to cold challenge in patients on cetirizine. We found that the histamine-associated vascular response accompanying mast cell degranulation is rapid and extensive. At the tissue level, it is characterized by a uniform pattern of increased blood flow, thermal warming, vasodilation, and recruitment of collateral circulation. These vascular responses are modified by the administration of an antihistamine. Conclusions/Significance Monitoring the hemodynamic responses within tissues that are associated with mast cell degranulation provides additional insight into the evolution of the acute inflammatory response and offers a unique approach to assess the effectiveness of treatment intervention. PMID:23451084

  10. Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1993-05-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.

  11. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing.

    PubMed

    Liu, Juan; Zhang, XueJiao; Zhang, FangPeng; Hong, Ni; Wang, GuoPing; Wang, Aiming; Wang, LiPing

    2015-11-16

    MicroRNAs (miRNAs) have functions in diverse biological processes such as growth, signal transduction, disease resistance, and stress responses in plants. Thermotherapy is an effective approach for elimination of viruses from fruit trees. However, the role of miRNAs in this process remains elusive. Previously, we showed that high temperature treatment reduces the titers of Apple stem grooving virus (ASGV) from the tips of in vitro-grown Pyrus pyrifolia plants. In this study, we identified high temperature-altered pear miRNAs using the next generation sequencing technology, and futher molecularly characterized miRNA-mediated regulaton of target gene expression in the meristem tip and base tissues of in vitro-grown, ASGV-infected pear shoots under different temperatures. Using in vitro-grown P. pyrifolia shoot meristem tips infected with ASGV, a total of 22,592,997 and 20,411,254 clean reads were obtained from Illumina high-throughput sequencing of small RNA libraries at 24 °C and 37 °C, respectively. We identified 149 conserved and 141 novel miRNAs. Seven conserved miRNAs and 77 novel miRNAs were differentially expressed at different temperatures. Target genes for differentially expressed known and novel miRNAs were predicted and functionally annotated. Gene Ontology (GO) analysis showed that high-ranking miRNA target genes were involved in metabolic processes, responses to stress, and signaling, indicating that these high temperature-responsive miRNAs have functions in diverse gene regulatory networks. Spatial expression patterns of the miRNAs and their target genes were found to be expressed in shoot tip and base tissues by qRT-PCR. In addition, high temperature reduced viral titers in the shoot meristem tip, while negatively regulated miRNA-mediated target genes related to resistance disease defense and hormone signal transduction pathway were up-regulated in the P. pyrifolia shoot tip in response to high temperature. These results suggested that miRNAs may have important functions in the high temperature-dependent decrease of ASGV titer in in vitro-grown pear shoots. This is the first report of miRNAs differentially expressed at 24 °C and 37 °C in the meristem tip of pear shoots infected with ASGV. The results of this study provide valuable information for further exploration of the function of high temperature-altered miRNAs in suppressing viral infections in pear and other fruit trees.

  12. Identification of Reduced-Order Thermal Therapy Models Using Thermal MR Images: Theory and Validation

    PubMed Central

    2013-01-01

    In this paper, we develop and validate a method to identify computationally efficient site- and patient-specific models of ultrasound thermal therapies from MR thermal images. The models of the specific absorption rate of the transduced energy and the temperature response of the therapy target are identified in the reduced basis of proper orthogonal decomposition of thermal images, acquired in response to a mild thermal test excitation. The method permits dynamic reidentification of the treatment models during the therapy by recursively utilizing newly acquired images. Such adaptation is particularly important during high-temperature therapies, which are known to substantially and rapidly change tissue properties and blood perfusion. The developed theory was validated for the case of focused ultrasound heating of a tissue phantom. The experimental and computational results indicate that the developed approach produces accurate low-dimensional treatment models despite temporal and spatial noises in MR images and slow image acquisition rate. PMID:22531754

  13. Habituation of the metabolic and ventilatory responses to cold-water immersion in humans.

    PubMed

    Tipton, Michael J; Wakabayashi, Hitoshi; Barwood, Martin J; Eglin, Clare M; Mekjavic, Igor B; Taylor, Nigel A S

    2013-01-01

    An experiment was undertaken to answer long-standing questions concerning the nature of metabolic habituation in repeatedly cooled humans. It was hypothesised that repeated skin and deep-body cooling would produce such a habituation that would be specific to the magnitude of the cooling experienced, and that skin cooling alone would dampen the cold-shock but not the metabolic response to cold-water immersion. Twenty-one male participants were divided into three groups, each of which completed two experimental immersions in 12°C water, lasting until either rectal temperature fell to 35°C or 90min had elapsed. Between these two immersions, the control group avoided cold exposures, whilst two experimental groups completed five additional immersions (12°C). One experimental group repeatedly immersed for 45min in average, resulting in deep-body (1.18°C) and skin temperature reductions. The immersions in the second experimental group were designed to result only in skin temperature reductions, and lasted only 5min. Only the deep-body cooling group displayed a significantly blunted metabolic response during the second experimental immersion until rectal temperature decreased by 1.18°C, but no habituation was observed when they were cooled further. The skin cooling group showed a significant habituation in the ventilatory response during the initial 5min of the second experimental immersion, but no alteration in the metabolic response. It is concluded that repeated falls of skin and deep-body temperature can habituate the metabolic response, which shows tissue temperature specificity. However, skin temperature cooling only will lower the cold-shock response, but appears not to elicit an alteration in the metabolic response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effects of organism preparation in metallothionein and metal analysis in marine invertebrates for biomonitoring marine pollution.

    PubMed

    Oaten, J F P; Hudson, M D; Jensen, A C; Williams, I D

    2015-06-15

    Metallothionein (MT) is established as a potentially useful biomarker for monitoring aquatic pollution. This paper addresses widespread inconsistencies in storage conditions, tissue type selection and pre-treatment of samples before MT and metal analysis in biomarker studies. This variation hampers comparability and so the widespread implementation of this monitoring approach. Actively sampled Mytilus edulis in Southampton Water, UK were exposed to different storage temperatures, a variety of tissue types were analysed, and various pre-treatments of transportation on ice, transportation in seawater, depuration, and rapid dissection in the field were examined. Storage temperatures of -20 °C were found to be adequate for periods of at least ten weeks, as MT was not reduced by protein degradation compared with samples kept at -80 °C. Whole tissue and digestive gland concentrations of MT and metals were significantly positively correlated and directly relatable. MT in the digestive gland appeared to be more responsive to metals than in whole tissue, where it may be diluted, masking MT responses. However, longer study periods may suffer the effects of mass changes to the digestive gland, which alters MT concentration, and it may therefore be advisable to measure whole tissue. Depuration and transportation in seawater reduced both MT and metal concentrations in the digestive gland, and few correlations between MT and metals were identified for these treatments. It is therefore recommended that: i) samples are transported to the laboratory on ice and dissected as soon as possible thereafter, ii) depuration should not be used when examining MT response to metal exposure until further research clarifying its utility is reported, iii) either whole tissue or the digestive gland can be used to measure MT, though whole tissue may be preferable on long-term studies, and iv) organisms can be stored at -20 °C before analysis for up to ten weeks. These practices can be applied to future biomonitoring studies and will improve the comparability and repeatability of using MT as a biomarker. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering

    NASA Astrophysics Data System (ADS)

    Raczkowska, Joanna; Stetsyshyn, Yurij; Awsiuk, Kamil; Lekka, Małgorzata; Marzec, Monika; Harhay, Khrystyna; Ohar, Halyna; Ostapiv, Dmytro; Sharan, Mykola; Yaremchuk, Iryna; Bodnar, Yulia; Budkowski, Andrzej

    2017-06-01

    The novel temperature-responsive poly(cholesteryl methacylate) (PChMa) coatings derived from renewable sources were synthesized and characterized. Temperature induced changes in wettability were accompanied by surface roughness modifications, traced with AFM. Topographies recorded for temperatures increasing from 5 to 25 °C showed a slight but noticeable increase of calculated root mean square (RMS) roughness by a factor of 1.5, suggesting a horizontal rearrangement in the structure of PChMa coatings. Another structural reordering was observed in the 55-85 °C temperature range. The recorded topography changed noticeably from smooth at 55 °C to very structured and rough at 60 °C and returned eventually to relatively smooth at 85 °C. In addition, temperature transitions of PChMa molecules were revealed by DSC measurements. The biocompatibility of the PChMa-grafted coatings was shown for cultures of granulosa cells and a non malignant bladder cancer cell (HCV29 line) culture.

  16. Radiofrequency ablation of liver tumors (I): biological background.

    PubMed

    Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius

    2010-01-01

    Majority of patients suffering from liver tumors are not candidates for surgery. Currently, minimal invasive techniques have become available for local destruction of hepatic tumors. Radiofrequency ablation is based on biological response to tissue hyperthermia. The aim of this article is to review available biological data on tissue destruction mechanisms. Experimental evidence shows that tissue injury following thermal ablation occurs in two distinct phases. The initial phase is direct injury, which is determined by energy applied, tumor biology, and tumor microenvironment. The temperature varies along the ablation zone and this is reflected by different morphological changes in affected tissues. The local hyperthermia alters metabolism, exacerbates tissue hypoxia, and increases thermosensitivity. The second phase - indirect injury - is observed after the cessation of heat stimulus. This phase represents a balance of several promoting and inhibiting mechanisms, such as induction of apoptosis, heat shock proteins, Kupffer cell activation, stimulation of the immune response, release of cytokines, and ischemia-reperfusion injury. A deeper understanding of the underlying mechanisms may possibly lead to refinements in radiofrequency ablation technology, resulting in advanced local tumor control and prolonged overall survival.

  17. Short Communication: Effect of heat stress on heat-shock protein (Hsp60) mRNA expression in rainbow trout Oncorhynchus mykiss.

    PubMed

    Shi, H N; Liu, Z; Zhang, J P; Kang, Y J; Wang, J F; Huang, J Q; Wang, W M

    2015-05-18

    The enhanced expression of heat shock proteins (hsps) in organisms can be detected in response to many kinds of stressor. For fish, high temperature is an important stressor, and hsp expression is associated with differences in environmental temperature. In this study, rainbow trout (Oncorhynchus mykiss) that were accustomed to an aquatic temperature of 18°C were exposed to an elevated temperature (25°C), and hsp60 expression in the gill, liver, spleen, heart, and head kidney was quantified using real-time polymerase chain reaction in unstressed and heat-stressed animals. The fish responded to heat stress in a time- and tissue-specific manner. Cardiac hsp60 mRNA levels were largely unchanged, and the greatest induction of hsp60 in heat-stressed animals was recorded in the liver, suggesting that protein damage and the consequent requirement for the Hsp60 protein are probably greater in hepatic tissue. Therefore, fish must be provided with optimal temperature conditions in order to realize their potential growth and maximize fish farm profits.

  18. Biothermomechanics of skin tissues

    NASA Astrophysics Data System (ADS)

    Xu, F.; Lu, T. J.; Seffen, K. A.

    Biothermomechanics of skin is highly interdisciplinary involving bioheat transfer, burn damage, biomechanics and neurophysiology. During heating, thermally induced mechanical stress arises due to the thermal denaturation of collagen, resulting in macroscale shrinkage. Thus, the strain, stress, temperature and thermal pain/damage are highly correlated; in other words, the problem is fully coupled. The aim of this study is to develop a computational approach to examine the heat transfer process and the heat-induced mechanical response, so that the differences among the clinically applied heating modalities can be quantified. Exact solutions for temperature, thermal damage and thermal stress for a single-layer skin model were first derived for different boundary conditions. For multilayer models, numerical simulations using the finite difference method (FDM) and finite element method (FEM) were used to analyze the temperature, burn damage and thermal stress distributions in the skin tissue. The results showed that the thermomechanical behavior of skin tissue is very complex: blood perfusion has little effect on thermal damage but large influence on skin temperature distribution, which, in turn, influences significantly the resulting thermal stress field; the stratum corneum layer, although very thin, has a large effect on the thermomechanical behavior of skin, suggesting that it should be properly accounted for in the modeling of skin thermal stresses; the stress caused by non-uniform temperature distribution in the skin may also contribute to the thermal pain sensation.

  19. Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis

    PubMed Central

    Zhang, Shuang-Shuang; Yang, Hongxing; Ding, Lan; Song, Ze-Ting; Ma, Hong; Chang, Fang

    2017-01-01

    High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress. PMID:28442596

  20. Effect of luminescence transport through adipose tissue on measurement of tissue temperature by using ZnCdS nanothermometers

    NASA Astrophysics Data System (ADS)

    Volkova, Elena K.; Yanina, Irina Yu.; Sagaydachnaya, Elena; Konyukhova, Julia G.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2018-02-01

    The spectra of luminescence of ZnCdS nanoparticles (ZnCdS NPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the signal of luminescence of ZnCdS NPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. It is shown that the presence of a phase transition in adipose tissue upon its heating (polymorphic transformations of lipids) leads to a nonmonotonic temperature dependence of the intensity of luminescence for the nanoparticles introduced into adipose tissue. This is due to a change in the light scattering by the tissue. The light scattering of adipose tissue greatly distorts the results of temperature measurements. The application of these nanoparticles is possible for temperature measurements in very thin or weakly scattering samples.

  1. Thermally tolerant corals have limited capacity to acclimatize to future warming.

    PubMed

    Rodolfo-Metalpa, Riccardo; Hoogenboom, Mia O; Rottier, Cécile; Ramos-Esplá, Alfonso; Baker, Andrew C; Fine, Maoz; Ferrier-Pagès, Christine

    2014-10-01

    Thermal stress affects organism performance differently depending on the ambient temperature to which they are acclimatized, which varies along latitudinal gradients. This study investigated whether differences in physiological responses to temperature are consistent with regional differences in temperature regimes for the stony coral Oculina patagonica. To resolve this question, we experimentally assessed how colonies originating from four different locations characterized by >3 °C variation in mean maximum annual temperature responded to warming from 20 to 32 °C. We assessed plasticity in symbiont identity, density, and photosynthetic properties, together with changes in host tissue biomass. Results show that, without changes in the type of symbiont hosted by coral colonies, O. patagonica has limited capacity to acclimatize to future warming. We found little evidence of variation in overall thermal tolerance, or in thermal optima, in response to spatial variation in ambient temperature. Given that the invader O. patagonica is a relatively new member of the Mediterranean coral fauna, our results also suggest that coral populations may need to remain isolated for a long period of time for thermal adaptation to potentially take place. Our study indicates that for O. patagonica, mortality associated with thermal stress manifests primarily through tissue breakdown under moderate but prolonged warming (which does not impair symbiont photosynthesis and, therefore, does not lead to bleaching). Consequently, projected global warming is likely to cause repeat incidents of partial and whole colony mortality and might drive a gradual range contraction of Mediterranean corals. © 2014 John Wiley & Sons Ltd.

  2. Quantification of a thermal damage threshold for astrocytes using infrared laser generated heat gradients.

    PubMed

    Liljemalm, Rickard; Nyberg, Tobias

    2014-04-01

    The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.

  3. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  4. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration.

    PubMed

    D'Antò, Vincenzo; Raucci, Maria Grazia; Guarino, Vincenzo; Martina, Stefano; Valletta, Rosa; Ambrosio, Luigi

    2016-02-01

    Our goal was to characterize the response of human mesenchymal stem cells (hMSCs) to a novel composite scaffold for bone tissue engineering. The hydroxyapatite-polycaprolactone (HA-PCL) composite scaffolds were prepared by a sol-gel method at room temperature and the scaffold morphology was investigated by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) to validate the synthesis process. The response of two different lines of hMSCs, bone-marrow-derived human mesenchymal stem cells (BMSCs) and dental pulp stem cells (DPSCs) in terms of cell proliferation and differentiation into the osteoblastic phenotype, was evaluated using Alamar blue assay, SEM, histology and alkaline phosphatase activity. Our results indicate that tissue engineering by means of composite HA-PCL scaffolds may represent a new therapeutic strategy to repair craniofacial bone defects. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Lisa R.

    2008-11-15

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that aremore » elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition.« less

  6. Perilipin-2 Deletion Promotes Carbohydrate-Mediated Browning of White Adipose Tissue at Ambient Temperature.

    PubMed

    Libby, Andrew E; Bales, Elise S; Monks, Jenifer; Orlicky, David J; McManaman, James L

    2018-06-04

    Mice lacking Perilipin-2 (Plin2-null) are resistant to obesity, insulin resistance, and fatty liver induced by western or high fat diets. In the current study, we found that compared to wild type (WT) mice on western diet, Plin2-null adipose tissue was more insulin sensitive, and that inguinal subcutaneous white adipose tissue (iWAT) exhibited profound browning and robust induction of thermogenic and carbohydrate responsive genetic programs at room temperature. Surprisingly, these Plin2-null responses correlated with the content of simple carbohydrates, rather than fat, in the diet, and were independent of adipose Plin2 expression. To define Plin2 and sugar effects on adipose browning, WT and Plin2-null mice were placed on chow diets containing 20% sucrose in their drinking water for 6 weeks. Compared to WT mice, iWAT of Plin2-null mice exhibited pronounced browning and striking increases in the expression of thermogenic and insulin responsive genes on this diet. Significantly, Plin2-null iWAT browning was associated with reduced sucrose intake and elevated serum FGF21 levels, which correlated with greatly enhanced hepatic FGF21 production. These data identify Plin2 actions as novel mediators of sugar-induced adipose browning through indirect effects of hepatic FGF21 expression, and suggest that adipose browning mechanisms may contribute to Plin2-null resistance to obesity. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The relationship between surface temperature, tissue temperature, microbubble formation, and steam pops.

    PubMed

    Thompson, Nathaniel; Lustgarten, Daniel; Mason, Bryan; Mueller, Enkhtuyaa; Calame, James; Bell, Stephen; Spector, Peter

    2009-07-01

    It has been proposed that microbubble (MB) monitoring can be used to safely titrate radiofrequency (RF) power. However, MB formation has been found to be an insensitive indicator of tissue temperature during RF delivery. We hypothesized that MB formation corresponds to surface-not tissue--temperature, and therefore would be an insensitive predictor of steam pops. An in vitro bovine heart model was used to measure surface and tissue temperatures during RF delivery under conditions designed to cause steam pops. Sensitivity of type II MB (MBII) formation as a predictor of steam pops and for surface temperatures more than 80 degrees C was calculated. Of 105 lesions delivered, 99 steam pops occurred. Twenty-one steam pops were preceded by MBII. MBII were seen in 26 lesions, five of which were not associated with steam pop. Surface temperature at onset of MBII was 87 +/- 9 degrees C versus a tissue temperature of 78 +/- 23 degrees C (P = 0.044). Surface temperature at the time of steam pops was 71 +/- 17 degrees C versus a tissue temperature of 102 +/- 17 degrees C (P < 0.0001). The sensitivity of MBII for steam pops was 21%, and 58% for detecting surface temperature in excess of 80 degrees C. MBII correlated better with surface temperature than with tissue temperature; steam pops, on the other hand, correlated better with tissue temperature. MBII was an insensitive marker of steam pops and surface temperature in excess of 80 degrees C. Therefore, MBII should not be used to titrate RF power.

  8. Transcriptomic responses to high water temperature in two species of Pacific salmon

    PubMed Central

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Pavlidis, Paul; Miller, Kristi M

    2014-01-01

    Characterizing the cellular stress response (CSR) of species at ecologically relevant temperatures is useful for determining whether populations and species can successfully respond to current climatic extremes and future warming. In this study, populations of wild-caught adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to ecologically relevant ‘cool’ or ‘warm’ water temperatures to uncover common transcriptomic responses to elevated water temperature in non-lethally sampled gill tissue. We detected the differential expression of 49 microarray features (29 unique annotated genes and one gene with unknown function) associated with protein folding, protein synthesis, metabolism, oxidative stress and ion transport that were common between populations and species of Pacific salmon held at 19°C compared with fish held at a cooler temperature (13 or 14°C). There was higher mortality in fish held at 19°C, which suggests a possible relationship between a temperature-induced CSR and mortality in these species. Our results suggest that frequently encountered water temperatures ≥19°C, which are capable of inducing a common CSR across species and populations, may increase risk of upstream spawning migration failure for pink and sockeye salmon. PMID:24567748

  9. Thermoelectric needle probe for temperature measurements in biological materials.

    PubMed

    Korn, U; Rav-Noy, Z; Shtrikman, S; Zafrir, M

    1980-04-01

    In certain biological and medical applications it is important to measure and follow temperature changes inside a body or tissue. Any probe inserted into a tissue causes damage to tissue and distortion to the initial temperature distribution. To minimize this interference, a fine probe is needed. Thus, thin film technology is advantageous and was utilized by us to produce sensitive probes for these applications. The resulting probe is a small thermocouple at the tip of a thin needle (acupuncture stainless steel needle, approximately 0.26 mm in diameter and length in the range 5-10 cm was used). The junction was produced at the needle's tip by coating the needle with thin layers of insulating and thermoelectric materials. The first layer is an insulating one and is composed of polyacrylonitrile (PAN) and polymide produced by plasma polymerization and dip-coating respectively. This layer covers all the needle except the tip. The second layer is a vacuum deposited thermoelectric thin layer of Bi-5% Sb alloy coating also the tip. The third layer is for insulation and protection and is composed of PAN and polyimide. In this arrangement the junction is at the needle's tip, the needle is one conductor, the thermoelectric layer is the other and they are isolated by the plastic layer. The probe is handy and mechanically sturdy. The sensitivity is typically 77 microV/degrees C at room temperature and is constant to within 2% up to 90 degrees C. The response is fast (less than 1 sec) the noise is small, (less than 0.05 degrees C) and because of the small dimension, damage to tissue and disturbance to the measured temperature field are minimal.

  10. Stimulus-responsive hydrogels: Theory, modern advances, and applications

    PubMed Central

    Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A.

    2016-01-01

    Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry. PMID:27134415

  11. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy

    NASA Astrophysics Data System (ADS)

    Liu, Shaojie; Doughty, Austin; Mesiya, Sana; Pettitt, Alex; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Temperature distribution in tissue is a crucial factor in determining the outcome of photothermal therapy in cancer treatment. In order to investigate the temperature distribution in tumor tissue during laser irradiation, we developed a novel ex vivo device to simulate the photothermal therapy on tumors. A 35°C, a thermostatic incubator was used to provide a simulation environment for body temperature of live animals. Different biological tissues (chicken breast and bovine liver) were buried inside a tissue-simulating gel and considered as tumor tissues. An 805-nm laser was used to irradiate the target tissue. A fiber with an interstitial cylindrical diffuser (10 mm) was directly inserted in the center of the tissue, and the needle probes of a thermocouple were inserted into the tissue paralleling the laser fiber at different distances to measure the temperature distribution. All of the procedures were performed in the incubator. Based on the results of this study, the temperature distribution in bovine liver is similar to that of tumor tissue under photothermal therapy with the same doses. Therefore, the developed model using bovine liver for determining temperature distribution can be used during interstitial photothermal therapy.

  12. Responses of human sensory characteristics to 532 nm pulse laser stimuli.

    PubMed

    Kim, Ji-Sun; Oh, Han-Byeol; Kim, A-Hee; Kim, Jun-Sik; Lee, Eun-Suk; Goh, Bong-Jun; Kim, Jae-Young; Jang, Kyungmin; Park, Jong-Rak; Chung, Soon-Cheol; Jun, Jae-Hoon

    2016-04-29

    Lasers are advantageous in some applications to stimulate a small target area and is used in various fields such as optogenetic, photoimmunological and neurophysiological studies. This study aims to implement a non-contact sense of touch without damaging biological tissues using laser. Various laser parameters were utilized in safety range to induce a sense of touch and investigate the human responses. With heat distribution simulation, the amount of changes in the temperature and the tendency in laser parameters of sensory stimulation were analyzed. The results showed the identified tactile responses in safety range with various laser parameters and temperature distribution for the laser stimulus was obtained through the simulation. This study can be applied to the areas of sensory receptor stimulation, neurophysiology and clinical medicine.

  13. Validation of cold chain shipping environment for transport of allografts as part of a human tissue bank returns policy.

    PubMed

    Rooney, P; Eagle, M J; Kearney, J N

    2015-12-01

    Human tissue is shipped to surgeons in the UK in either a freeze-dried or frozen state. To ensure quality and safety of the tissue, frozen tissue must be shipped in insulated containers such that tissue is maintained at an appropriate temperature. UK Blood Transfusion Service regulations state "Transportation systems must be validated to show maintenance of the required storage temperature" and also state that frozen, non-cryopreserved tissue "must be transported… at -20 °C or lower" (Guidelines for the Blood Transfusion Services in the United Kingdom, 8th Edn. 2013). To maintain an expiry date for frozen tissue longer than 6 months, the tissue must be maintained at a temperature of -40 °C or below. The objective of this study was to evaluate and validate the capability of a commercially available insulated polystyrene carton (XPL10), packed with dry ice, to maintain tissue temperature below -40 °C. Tissue temperature of a single frozen femoral head or a single frozen Achilles tendon, was recorded over a 4-day period at 37 °C, inside a XPL10 carton with dry ice as refrigerant. The data demonstrate that at 37 °C, the XPL10 carton with 9.5 kg of dry ice maintained femoral head and tendon tissue temperature below -55 °C for at least 48 h; tissue temperature did not rise above -40 °C until at least 70 h. Data also indicated that at a storage temperature lower than 37 °C, tissue temperature was maintained for longer periods.

  14. Indirect effects of climate changes on cadmium bioavailability and biological effects in the Mediterranean mussel Mytilus galloprovincialis.

    PubMed

    Nardi, Alessandro; Mincarelli, Luana Fiorella; Benedetti, Maura; Fattorini, Daniele; d'Errico, Giuseppe; Regoli, Francesco

    2017-02-01

    Despite the great interest in the consequences of climate change on the physiological functioning of marine organisms, indirect and interactive effects of rising temperature and pCO 2 on bioaccumulation and responsiveness to environmental pollutants are still poorly explored, particularly in terms of cellular mechanisms. According to future projections of temperature and pH/pCO 2 , this study investigated the main cellular pathways involved in metal detoxification and oxidative homeostasis in Mediterranean mussels, Mytilus galloprovincialis, exposed for 4 weeks to various combinations of two levels of pH/pCO 2 (8.2/∼400 μatm and 7.4/∼3000 μatm), temperature (20 and 25 °C), and cadmium addition (0 and 20 μg/L). Bioaccumulation was increased in metal exposed organisms but it was not further modulated by different temperature and pH/pCO 2 combinations. However, interactions between temperature, pH and cadmium had significant effects on induction of metallothioneins, responses of the antioxidant system and the onset of oxidative damages, which was tissue dependent. Multiple stressors increased metallothioneins concentrations in the digestive gland revealing different oxidative effects: while temperature and cadmium enhanced glutathione-dependent antioxidant protection and capability to neutralize peroxyl radicals, the metal increased the accumulation of lipid peroxidation products under acidified conditions. Gills did not reveal specific effects for different combinations of factors, but a general stress condition was observed in this tissue after various treatments. Significant variations of immune system were mainly caused by increased temperature and low pH, while co-exposure to acidification and cadmium enhanced metal genotoxicity and the onset of permanent DNA damage in haemocytes. Elaboration of the whole biomarker data in a cellular hazard index, corroborated the synergistic effects of temperature and acidification which increased the toxicological effects of cadmium. The overall results confirmed that climate change could influence ecotoxicological effects of environmental contaminants, highlighting the importance of a better knowledge of cellular mechanisms to understand and predict responsiveness of marine organisms to such multiple stressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Variability in the intensity of nematode larvae from gastrointestinal tissues of a natural herbivore.

    PubMed

    van Kuren, Andrew T; Boag, Brian; Hruban, Emilie; Cattadori, Isabella M

    2013-04-01

    The migration of infective nematode larvae into the tissues of their hosts has been proposed as a mechanism of reducing larval mortality and increase parasite lifetime reproductive success. Given that individual hosts differ in the level of exposure, strength of immune response and physiological conditions we may expect the number of larvae in tissue to vary both between and within hosts. We used 2 gastrointestinal nematode species common in the European rabbit (Oryctolagus cuniculus) and examined how the number of larvae in the tissue changed with the immune response, parasite intensity-dependent constraints in the lumen and seasonal weather factors, in rabbits of different age, sex and breeding status. For both nematode species, larvae from the gastrointestinal tissue exhibited strong seasonal and host age-related patterns with fewer larvae recovered in summer compared to winter and more in adults than in juveniles. The number of larvae of the 2 nematodes was positively associated with intensity of parasite infection in the lumen and antibody responses while it was negatively related with air temperature and rainfall. Host sex, reproductive status and co-infection with the second parasite species contributed to increase variability between hosts. We concluded that heterogeneities in host conditions are a significant cause of variability of larval abundance in the gastrointestinal tissues. These findings can have important consequences for the dynamics of nematode infections and how parasite's life-history strategies adjust to host changes.

  16. Transcriptomic characterization of temperature stress responses in larval zebrafish.

    PubMed

    Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin

    2012-01-01

    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28 °C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16 °C) or heat (34 °C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish.

  17. Design of optimal hyperthermia protocols for prostate cancer by controlling HSP expression through computer modeling (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Rylander, Marissa N.; Feng, Yusheng; Diller, Kenneth; Bass, J.

    2005-04-01

    Heat shock proteins (HSP) are critical components of a complex defense mechanism essential for preserving cell survival under adverse environmental conditions. It is inevitable that hyperthermia will enhance tumor tissue viability, due to HSP expression in regions where temperatures are insufficient to coagulate proteins, and would likely increase the probability of cancer recurrence. Although hyperthermia therapy is commonly used in conjunction with radiotherapy, chemotherapy, and gene therapy to increase therapeutic effectiveness, the efficacy of these therapies can be substantially hindered due to HSP expression when hyperthermia is applied prior to these procedures. Therefore, in planning hyperthermia protocols, prediction of the HSP response of the tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of overall tissue response. In this paper, we present a highly accurate, adaptive, finite element tumor model capable of predicting the HSP expression distribution and tissue damage region based on measured cellular data when hyperthermia protocols are specified. Cubic spline representations of HSP27 and HSP70, and Arrhenius damage models were integrated into the finite element model to enable prediction of the HSP expression and damage distribution in the tissue following laser heating. Application of the model can enable optimized treatment planning by controlling of the tissue response to therapy based on accurate prediction of the HSP expression and cell damage distribution.

  18. Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis.

    PubMed

    Zhang, Shuang-Shuang; Yang, Hongxing; Ding, Lan; Song, Ze-Ting; Ma, Hong; Chang, Fang; Liu, Jian-Xiang

    2017-05-01

    High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress. © 2017 American Society of Plant Biologists. All rights reserved.

  19. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    PubMed

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  20. Viral chimeras decrypt the role of enterovirus capsid proteins in viral tropism, acid sensitivity and optimal growth temperature

    PubMed Central

    Royston, Léna; Essaidi-Laziosi, Manel; Piuz, Isabelle; Geiser, Johan; Huang, Song; Kaiser, Laurent; Garcin, Dominique

    2018-01-01

    Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world’s most prevalent pathogens and could aid target selection for vaccine or antiviral development. PMID:29630666

  1. Physiological Response of the Hard Coral Pocillopora verrucosa from Lombok, Indonesia, to Two Common Pollutants in Combination with High Temperature.

    PubMed

    Kegler, Pia; Baum, Gunilla; Indriana, Lisa F; Wild, Christian; Kunzmann, Andreas

    2015-01-01

    Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16-95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81-100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming.

  2. Physiological Response of the Hard Coral Pocillopora verrucosa from Lombok, Indonesia, to Two Common Pollutants in Combination with High Temperature

    PubMed Central

    Kegler, Pia; Baum, Gunilla; Indriana, Lisa F.; Wild, Christian; Kunzmann, Andreas

    2015-01-01

    Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16–95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81–100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming. PMID:26555818

  3. Glycolytic adjustments in tissues of frog Rana ridibunda and land snail Helix lucorum during seasonal hibernation.

    PubMed

    Michaelidis, Basile; Kyriakopoulou-Sklavounou, Pasqualina; Staikou, Alexandra; Papathanasiou, Ioanna; Konstantinou, Kiriaki

    2008-12-01

    The present work aimed to contribute to the understanding of the adaptation of the glycolytic pathway in tissues of frog Rana ridibunda and land snail species Helix lucorum during seasonal hibernation. Moreover responses of glycolytic enzymes from cold acclimated R. ridibunda and H. lucorum were studied as well. The drop in Po(2) in the blood of hibernated frogs and land snails indicated lower oxygen consumption and a decrease in their metabolic rate. The activities of glycolytic enzymes indicated that hibernation had a differential effect on the glycolyis in the two species studied and also in the tissues of the same species. The activity of l-LDH decreased significantly in the skeletal muscle and heart of hibernated R. ridibunda indicating a low glycolytic potential. Similar biochemical responses were observed in the same tissues during cold acclimation. The continuous increase in the activities of glycolytic enzymes studied, except for HK, might indicate a compensation for the impacts of low temperature on the enzymatic activities. In contrast to R. ridibunda, the activities of the enzymes increased and remained at higher levels than those of the prehibernation controls indicating maintenance of glycolytic potential in the tissues of hibernating land snails.

  4. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    PubMed

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed.

  5. Thermal modeling of lesion growth with radiofrequency ablation devices

    PubMed Central

    Chang, Isaac A; Nguyen, Uyen D

    2004-01-01

    Background Temperature is a frequently used parameter to describe the predicted size of lesions computed by computational models. In many cases, however, temperature correlates poorly with lesion size. Although many studies have been conducted to characterize the relationship between time-temperature exposure of tissue heating to cell damage, to date these relationships have not been employed in a finite element model. Methods We present an axisymmetric two-dimensional finite element model that calculates cell damage in tissues and compare lesion sizes using common tissue damage and iso-temperature contour definitions. The model accounts for both temperature-dependent changes in the electrical conductivity of tissue as well as tissue damage-dependent changes in local tissue perfusion. The data is validated using excised porcine liver tissues. Results The data demonstrate the size of thermal lesions is grossly overestimated when calculated using traditional temperature isocontours of 42°C and 47°C. The computational model results predicted lesion dimensions that were within 5% of the experimental measurements. Conclusion When modeling radiofrequency ablation problems, temperature isotherms may not be representative of actual tissue damage patterns. PMID:15298708

  6. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus.

    PubMed

    Hernroth, Bodil; Sköld, Helen Nilsson; Wiklander, Kerstin; Jutfelt, Fredrik; Baden, Susanne

    2012-11-01

    Rising atmospheric carbon dioxide concentration is causing global warming, which affects oceans by elevating water temperature and reducing pH. Crustaceans have been considered tolerant to ocean acidification because of their retained capacity to calcify during subnormal pH. However, we report here that significant immune suppression of the Norway lobster, Nephrops norvegicus, occurs after a 4-month exposure to ocean acidification (OA) at a level predicted for the year 2100 (hypercapnic seawater with a pH lowered by 0.4 units). Experiments carried out at different temperatures (5, 10, 12, 14, 16, and 18°C) demonstrated that the temperature within this range alone did not affect lobster immune responses. In the OA-treatment, hemocyte numbers were reduced by almost 50% and the phagocytic capacity of the remaining hemocytes was inhibited by 60%. The reduction in hemocyte numbers was not due to increased apoptosis in hematopoetic tissue. Cellular responses to stress were investigated through evaluating advanced glycation end products (AGE) and lipid oxidation in lobster hepatopancreata, and OA-treatment was shown to significantly increase AGEs', indicating stress-induced protein alterations. Furthermore, the extracellular pH of lobster hemolymph was reduced by approximately 0.2 units in the OA-treatment group, indicating either limited pH compensation or buffering capacity. The negative effects of OA-treatment on the nephropidae immune response and tissue homeostasis were more pronounced at higher temperatures (12-18°C versus 5°C), which may potentially affect disease severity and spread. Our results signify that ocean acidification may have adverse effects on the physiology of lobsters, which previously had been overlooked in studies of basic parameters such as lobster growth or calcification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Optical-thermal light-tissue interactions during photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Gould, Taylor; Wang, Quanzeng; Pfefer, T. Joshua

    2014-03-01

    Photoacoustic imaging (PAI) has grown rapidly as a biomedical imaging technique in recent years, with key applications in cancer diagnosis and oximetry. In spite of these advances, the literature provides little insight into thermal tissue interactions involved in PAI. To elucidate these basic phenomena, we have developed, validated, and implemented a three-dimensional numerical model of tissue photothermal (PT) response to repetitive laser pulses. The model calculates energy deposition, fluence distributions, transient temperature and damage profiles in breast tissue with blood vessels and generalized perfusion. A parametric evaluation of these outputs vs. vessel diameter and depth, optical beam diameter, wavelength, and irradiance, was performed. For a constant radiant exposure level, increasing beam diameter led to a significant increase in subsurface heat generation rate. Increasing vessel diameter resulted in two competing effects - reduced mean energy deposition in the vessel due to light attenuation and greater thermal superpositioning due to reduced thermal relaxation. Maximum temperatures occurred either at the surface or in subsurface regions of the dermis, depending on vessel geometry and position. Results are discussed in terms of established exposure limits and levels used in prior studies. While additional experimental and numerical study is needed, numerical modeling represents a powerful tool for elucidating the effect of PA imaging devices on biological tissue.

  8. In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Petrova, Elena V.; Motamedi, Massoud; Oraevsky, Alexander A.; Ermilov, Sergey A.

    2016-03-01

    Cryoablation of prostate cancer is an FDA approved clinical procedure, which involves repetitive rapid cooling of a lesion to lethal temperatures of -40°C and below. The major drawback of the technique is the insufficient control over the fast thermal processes that may result in severe complications (impotence, incontinence, perforation of the rectal wall) and morbidity. The developed optoacoustic imaging technique provides non-invasive real-time temperature mapping of tissue adjacent to prostate and enables more efficient control over the procedure, which is necessary to reduce side effects and accelerate the physician's learning curve. In these studies we successfully demonstrated real-time transrectal optoacoustic imaging during prostate cryoablation in live canine model focused on optoacoustic thermography of the rectal wall within the depth of 1cm. Our method utilized previously discovered universal thermal dependence of the normalized optoacoustic response of blood. Nanosecond-pulse radiation of Ti-Sapphire laser tuned to the isosbestic point of hemoglobin (802+/-3 nm) was delivered via fiberoptic illuminators assembled on both sides of the linear array of the 128-channel transrectal ultrasound probe. Temperature readouts at discrete locations inside and nearby prostate were also performed using standard transperineal needle sensors. The effect of homeostasis on optoacoustic imaging in live tissue was examined during cooling and shown to be significant only within the range of +/-1.5°C in respect to the body temperature. Accuracy of in vivo optoacoustic temperature measurements was determined as +/-2°C for the range of temperature from +35 to -15°C, which is more than sufficient for tracking the essential isotherms in the course of clinical procedures.

  9. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    PubMed Central

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (p<0.05). It was concluded that the bipolar electrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  10. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    PubMed Central

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  11. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  12. Effects of pressure rise on cw laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  13. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl; Kolff, M. Willemijn; Holman, Rebecca

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79more » sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.« less

  14. Consistency of signal intensity and T2* in frozen ex vivo heart muscle, kidney, and liver tissue.

    PubMed

    Kaye, Elena A; Josan, Sonal; Lu, Aiming; Rosenberg, Jarrett; Daniel, Bruce L; Pauly, Kim Butts

    2010-03-01

    To investigate tissue dependence of the MRI-based thermometry in frozen tissue by quantification and comparison of signal intensity and T2* of ex vivo frozen tissue of three different types: heart muscle, kidney, and liver. Tissue samples were frozen and imaged on a 0.5 Tesla MRI scanner with ultrashort echo time (UTE) sequence. Signal intensity and T2* were determined as the temperature of the tissue samples was decreased from room temperature to approximately -40 degrees C. Statistical analysis was performed for (-20 degrees C, -5 degrees C) temperature interval. The findings of this study demonstrate that signal intensity and T2* are consistent across three types of tissue for (-20 degrees C, -5 degrees C) temperature interval. Both parameters can be used to calculate a single temperature calibration curve for all three types of tissue and potentially in the future serve as a foundation for tissue-independent MRI-based thermometry.

  15. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie

    2018-01-01

    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  16. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.

    PubMed

    Huth, Troy J; Place, Sean P

    2013-11-20

    The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a pivotal species in polar research spanning several decades. The comparison of these findings to previous studies demonstrates the efficacy of transcriptomics and digital gene expression analysis as tools in future studies of polar organisms and has greatly increased the available genomic resources for the suborder Notothenioidei, particularly in the Trematominae subfamily.

  17. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii

    PubMed Central

    2013-01-01

    Background The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14–25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. Results Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (−1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. Conclusions Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a pivotal species in polar research spanning several decades. The comparison of these findings to previous studies demonstrates the efficacy of transcriptomics and digital gene expression analysis as tools in future studies of polar organisms and has greatly increased the available genomic resources for the suborder Notothenioidei, particularly in the Trematominae subfamily. PMID:24252228

  18. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    PubMed

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

    PubMed

    Reef, Ruth; Slot, Martijn; Motro, Uzi; Motro, Michal; Motro, Yoav; Adame, Maria F; Garcia, Milton; Aranda, Jorge; Lovelock, Catherine E; Winter, Klaus

    2016-08-01

    In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.

  20. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis

    PubMed Central

    Nguyen, Khoa D.; Qiu, Yifu; Cui, Xiaojin; Goh, Y.P. Sharon; Mwangi, Julia; David, Tovo; Mukundan, Lata; Brombacher, Frank; Locksley, Richard M.; Chawla, Ajay

    2011-01-01

    All homeotherms utilize thermogenesis to maintain core body temperature, ensuring that cellular functions and physiologic processes can ensue in cold environments1-3. In the prevailing model, when the hypothalamus senses cold temperatures, it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue (BAT) and white adipose tissue (WAT)4,5. Acting via the β3-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes6, whereas it stimulates the expression of thermogenic genes, such as PPARγ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1), and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes7-9. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report an unexpected requirement for the interleukin 4 (IL4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Cold exposure rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in BAT and lipolysis in WAT. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL4 increased thermogenic gene expression, fatty acid mobilization, and energy expenditure, all in a macrophage-dependent manner. We have thus discovered a surprising role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold. PMID:22101429

  1. The TRPM2 channel: A thermo-sensitive metabolic sensor.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2017-09-03

    Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.

  2. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    PubMed

    Jacobsen, Svein; Stauffer, Paul R

    2007-02-21

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.

  3. Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator?

    NASA Astrophysics Data System (ADS)

    Jacobsen, Svein; Stauffer, Paul R.

    2007-02-01

    The total thermal dose that can be delivered during hyperthermia treatments is frequently limited by temperature heterogeneities in the heated tissue volume. Reliable temperature information on the heated area is thus vital for the optimization of clinical dosimetry. Microwave radiometry has been proposed as an accurate, quick and painless temperature sensing technique for biological tissue. Advantages include the ability to sense volume-averaged temperatures from subsurface tissue non-invasively, rather than with a limited set of point measurements typical of implanted temperature probes. We present a procedure to estimate the maximum tissue temperature from a single radiometric brightness temperature which is based on a numerical simulation of 3D tissue temperature distributions induced by microwave heating at 915 MHz. The temperature retrieval scheme is evaluated against errors arising from unknown variations in thermal, electromagnetic and design model parameters. Whereas realistic deviations from base values of dielectric and thermal parameters have only marginal impact on performance, pronounced deviations in estimated maximum tissue temperature are observed for unanticipated variations of the temperature or thickness of the bolus compartment. The need to pay particular attention to these latter applicator construction parameters in future clinical implementation of the thermometric method is emphasized.

  4. Relationships between brain and body temperature, clinical and imaging outcomes after ischemic stroke

    PubMed Central

    Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M

    2013-01-01

    Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281

  5. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio)

    PubMed Central

    2013-01-01

    Background Thyroid hormone (TH) is best known for its role in development in animals, and for its control of metabolic heat production (thermogenesis) during cold acclimation in mammals. It is unknown whether the regulatory role of TH in thermogenesis is derived in mammals, or whether TH also mediates thermal responses in earlier vertebrates. Ectothermic vertebrates show complex responses to temperature variation, but the mechanisms mediating these are poorly understood. The molecular mechanisms underpinning TH action are very similar across vertebrates, suggesting that TH may also regulate thermal responses in ectotherms. We therefore aimed to determine whether TH regulates thermal acclimation in the zebrafish (Danio rerio). We induced hypothyroidism, followed by supplementation with 3,5-diiodothyronine (T2) or 3,5,3′-triiodothyronine (T3) in zebrafish exposed to different chronic temperatures. We measured whole-animal responses (swimming performance and metabolic rates), tissue-specific regulatory enzyme activities, gene expression, and free levels of T2 and T3. Results We found that both T3 and the lesser-known T2, regulate thermal acclimation in an ectotherm. To our knowledge, this is the first such study to show this. Hypothyroid treatment impaired performance measures in cold-acclimated but not warm-acclimated individuals, whereas supplementation with both TH metabolites restored performance. TH could either induce or repress responses, depending on the actual temperature and thermal history of the animal. Conclusions The low sensitivity to TH at warm temperatures could mean that increasing temperatures (that is, global warming) will reduce the capacity of animals to regulate their physiologies to match demands. We suggest that the properties that underlie the role of TH in thermal acclimation (temperature sensitivity and metabolic control) may have predisposed this hormone for a regulatory role in the evolution of endothermy. PMID:23531055

  6. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio).

    PubMed

    Little, Alexander G; Kunisue, Tatsuya; Kannan, Kurunthachalam; Seebacher, Frank

    2013-03-26

    Thyroid hormone (TH) is best known for its role in development in animals, and for its control of metabolic heat production (thermogenesis) during cold acclimation in mammals. It is unknown whether the regulatory role of TH in thermogenesis is derived in mammals, or whether TH also mediates thermal responses in earlier vertebrates. Ectothermic vertebrates show complex responses to temperature variation, but the mechanisms mediating these are poorly understood. The molecular mechanisms underpinning TH action are very similar across vertebrates, suggesting that TH may also regulate thermal responses in ectotherms. We therefore aimed to determine whether TH regulates thermal acclimation in the zebrafish (Danio rerio). We induced hypothyroidism, followed by supplementation with 3,5-diiodothyronine (T2) or 3,5,3'-triiodothyronine (T3) in zebrafish exposed to different chronic temperatures. We measured whole-animal responses (swimming performance and metabolic rates), tissue-specific regulatory enzyme activities, gene expression, and free levels of T2 and T3. We found that both T3 and the lesser-known T2, regulate thermal acclimation in an ectotherm. To our knowledge, this is the first such study to show this. Hypothyroid treatment impaired performance measures in cold-acclimated but not warm-acclimated individuals, whereas supplementation with both TH metabolites restored performance. TH could either induce or repress responses, depending on the actual temperature and thermal history of the animal. The low sensitivity to TH at warm temperatures could mean that increasing temperatures (that is, global warming) will reduce the capacity of animals to regulate their physiologies to match demands. We suggest that the properties that underlie the role of TH in thermal acclimation (temperature sensitivity and metabolic control) may have predisposed this hormone for a regulatory role in the evolution of endothermy.

  7. Mechanisms for the control of local tissue blood flow during thermal interventions: influence of temperature‐dependent ATP release from human blood and endothelial cells

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.; Ali, Leena; Lotlikar, Makrand D.; González‐Alonso, José

    2017-01-01

    New Findings What is the central question of this study? Skin and muscle blood flow increases with heating and decreases with cooling, but the temperature‐sensitive mechanisms underlying these responses are not fully elucidated. What is the main finding and its importance? We found that local tissue hyperaemia was related to elevations in ATP release from erythrocytes. Increasing intravascular ATP augmented skin and tissue perfusion to levels equal or above thermal hyperaemia. ATP release from isolated erythrocytes was altered by heating and cooling. Our findings suggest that erythrocytes are involved in thermal regulation of blood flow via modulation of ATP release. Local tissue perfusion changes with alterations in temperature during heating and cooling, but the thermosensitivity of the vascular ATP signalling mechanisms for control of blood flow during thermal interventions remains unknown. Here, we tested the hypotheses that the release of the vasodilator mediator ATP from human erythrocytes, but not from endothelial cells or other blood constituents, is sensitive to both increases and reductions in temperature and that increasing intravascular ATP availability with ATP infusion would potentiate thermal hyperaemia in limb tissues. We first measured blood temperature, brachial artery blood flow and plasma [ATP] during passive arm heating and cooling in healthy men and found that they increased by 3.0 ± 1.2°C, 105 ± 25 ml min−1 °C−1 and twofold, respectively, (all P < 0.05) with heating, but decreased or remained unchanged with cooling. In additional men, infusion of ATP into the brachial artery increased skin and deep tissue perfusion to levels equal or above thermal hyperaemia. In isolated erythrocyte samples exposed to different temperatures, ATP release increased 1.9‐fold from 33 to 39°C (P < 0.05) and declined by ∼50% at 20°C (P < 0.05), but no changes were observed in cultured human endothelial cells, plasma or serum samples. In conclusion, increases in plasma [ATP] and skin and deep tissue perfusion with limb heating are associated with elevations in ATP release from erythrocytes, but not from endothelial cells or other blood constituents. Erythrocyte ATP release is also sensitive to temperature reductions, suggesting that erythrocytes may function as thermal sensors and ATP signalling generators for control of tissue perfusion during thermal interventions. PMID:27859767

  8. Stable microwave radiometry system for long term monitoring of deep tissue temperature

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-02-01

    Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.

  9. Stable Microwave Radiometry System for Long Term Monitoring of Deep Tissue Temperature.

    PubMed

    Stauffer, Paul R; Rodriques, Dario B; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W; Maccarini, Paolo F

    2013-02-26

    There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.

  10. Molecular and functional analyses of novel anti-lipopolysaccharide factors in giant river prawn (Macrobrachium rosenbergii, De Man) and their expression responses under pathogen and temperature exposure.

    PubMed

    Srisapoome, Prapansak; Klongklaew, Nawanith; Areechon, Nontawith; Wongpanya, Ratree

    2018-06-15

    Anti-lipopolysaccharide factor (ALF) is an immune-related protein that is crucially involved in immune defense mechanisms against invading pathogens in crustaceans. In the current study, three different ALFs of giant river prawn (Mr-ALF3, Mr-ALF8 and Mr-ALF9) were discovered. Based on sequence analysis, Mr-ALF3 and Mr-ALF9 were identified as new members of ALFs in crustaceans (groups F and G, respectively). Structurally, each newly identified Mr-ALF contained three α-helices packed against a four-stranded β-sheet bearing the LPS-binding motif, which usually binds to the cell wall components of bacteria. Tissue expression analysis using quantitative real-time RT-PCR (qRT-PCR) demonstrated that Mr-ALF3 was expressed in most tissues, and the highest expression was in the heart and hemocytes. The Mr-ALF8 gene was highly expressed in the heart, hemocytes, midgut, hepatopacreas and hindgut, respectively, while the Mr-ALF9 gene was modestly expressed in the heart and hemocytes, respectively. The transcriptional responses of the Mr-ALFs to Aeromonas hydrophila and hot/cold temperatures were investigated by qRT-PCR in the gills, hepatopancreas and hemocytes. We found that all Mr-ALFs were clearly suppressed in all tested tissues when the experimental prawns were exposed to extreme temperatures (25 and 35 °C). Moreover, the expression levels of these genes were significantly induced in all examined tissues by 2 different concentrations of A. hydrophila (1 × 10 6 and 1 × 10 9  CFU/ml), particularly 12 and 96 h after the injection. Finally, binding activity analysis of LPS-motif peptides of each Mr-ALF revealed that the LPS peptide of Mr-ALF3 exhibited the strongest adhesion to two pathogenic Gram-negative bacteria, A. hydrophila and Vibrio harveyi, and the non-pathogenic Gram-positive Bacillus megaterium. The results also showed that the Mr-ALF8 and Mr-ALF9 peptides had mild antimicrobial effects against similar tested bacteria. Based on information obtained in this study, novel ALF genes were clearly identified. Analyses of their responses under pathogenic and temperature stresses demonstrated the binding and antimicrobial activities of these ALFs and the consequent physiological effects, indicating their crucial functional roles in the prawn immune system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The response of a boreal deep-sea sponge holobiont to acute thermal stress.

    PubMed

    Strand, R; Whalan, S; Webster, N S; Kutti, T; Fang, J K H; Luter, H M; Bannister, R J

    2017-05-22

    Effects of elevated seawater temperatures on deep-water benthos has been poorly studied, despite reports of increased seawater temperature (up to 4 °C over 24 hrs) coinciding with mass mortality events of the sponge Geodia barretti at Tisler Reef, Norway. While the mechanisms driving these mortality events are unclear, manipulative laboratory experiments were conducted to quantify the effects of elevated temperature (up to 5 °C, above ambient levels) on the ecophysiology (respiration rate, nutrient uptake, cellular integrity and sponge microbiome) of G. barretti. No visible signs of stress (tissue necrosis or discolouration) were evident across experimental treatments; however, significant interactive effects of time and treatment on respiration, nutrient production and cellular stress were detected. Respiration rates and nitrogen effluxes doubled in responses to elevated temperatures (11 °C & 12 °C) compared to control temperatures (7 °C). Cellular stress, as measured through lysosomal destabilisation, was 2-5 times higher at elevated temperatures than for control temperatures. However, the microbiome of G. barretti remained stable throughout the experiment, irrespective of temperature treatment. Mortality was not evident and respiration rates returned to pre-experimental levels during recovery. These results suggest other environmental processes, either alone or in combination with elevated temperature, contributed to the mortality of G. barretti at Tisler reef.

  12. Laser balloon angioplasty: effect of tissue temperature on weld strength of human postmortem intima-media separations.

    PubMed

    Jenkins, R D; Sinclair, I N; Anand, R; Kalil, A G; Schoen, F J; Spears, J R

    1988-01-01

    Dehiscence of portions of atheromatous plaques fractured during percutaneous transluminal coronary angioplasty may contribute to both abrupt reclosure and gradual restenosis. Laser balloon angioplasty has been shown to be effective in welding human plaque-arterial wall separations in vitro by heating tissues with a Nd:YAG laser during balloon inflation. To define the potentially useful therapeutic range of tissue temperature required to achieve thermal welds, 220 1-cm diameter discs of human postmortem atheromatous aortic tissue, the intimal plaque of which had been separated from the media, were exposed to 3-25 watts of Nd:YAG laser radiation delivered over a 12-mm2 nominal spot size for 20 seconds via a 400-micron core optical fiber. As measured with a thermistor, adventitial temperature reflected the temperature at the plaque-media junction to within 10 degrees C. The degree of tissue temperature elevation was related to delivered energy, while effective tissue penetration increased to maximum depth of 3 mm at the highest power density. Strength of tissue welds was defined as the force required to shear opposing layers of welded segments. Adventitial tissue temperatures below 80 degrees C were not associated with appreciable welds, while equilibrium temperatures between 95 degrees C and 140 degrees C were consistently associated with effective mean weld strengths, which increased linearly from 25 to 110 g, respectively. Temperatures greater than 150 degrees C were associated with rapid tissue dehydration and charring. These data suggest that the therapeutic range of tissue temperature that provides effective thermal fusion of intima-media separations is broad and that the depth and degree of thermal coagulation can be controlled by manipulation of laser energy delivery.

  13. Effect of thermal acclimation on organ mass, tissue respiration, and allometry in Leichhardtian river prawns Macrobrachium tolmerum (Riek, 1951).

    PubMed

    Crispin, Taryn S; White, Craig R

    2013-01-01

    Changes to an animal's abiotic environment-and consequent changes in the allometry of metabolic rate in the whole animal and its constituent parts-has considerable potential to reveal important patterns in both intraspecific and interindividual variation of metabolic rates. This study demonstrates that, after 6 wk of thermal acclimation at replicate treatments of 16°, 21°, and 25°C, standard metabolic rate (SMR) scales allometrically in Leichhardtian river prawns Macrobrachium tolmerum ([Formula: see text]) and that the scaling exponent and normalization constant of the relationship between SMR and body mass is not significantly different among acclimation treatments when measured at 21°C. There is, however, significant variation among individuals in whole-animal metabolic rate. We hypothesized that these observations may arise because of changes in the metabolic rate and allometry of metabolic rate or mass of organ tissues within the animal. To investigate this hypothesis, rates of oxygen consumption in a range of tissues (gills, gonads, hepatopancreas, chelae muscle, tail muscle) were measured at 21°C and related to the body mass (M) and whole-animal SMR of individual prawns. We demonstrate that thermal acclimation had no effect on organ and tissue mass, that most organ and tissue (gills, gonads, hepatopancreas) respiration rates do not change with acclimation temperature, and that residual variation in the allometry of M. tolmerum SMR is not explained by differences in organ and tissue mass and respiration rates. These results suggest that body size and ambient temperature may independently affect metabolic rate in this species. Both chelae and tail muscle, however, exhibited a reduction in respiration rate in animals acclimated to 25° relative to those acclimated to 16° and 21°C. This reduction in respiration rates of muscle at higher temperatures is evidence of a tissue-specific acclimation response that was not detectable at the whole-animal level.

  14. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    NASA Astrophysics Data System (ADS)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina, cornea or the skin. Good agreement between model and experimental results established the validity of the model.

  15. Living matter: the "lunar eclipse" phenomena.

    PubMed

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use anti-angiogenesis with an immediately following cryoaponecrosis and cryoapoptosis in the treatment of malignant tumor. Both the "lunar eclipse" in vivo as well as the similar phenomena, namely the total moon and total solar lunar eclipses, are is part of living nature.

  16. Technique development for photoacoustic imaging guided interventions

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Zhang, Haonan; Yuan, Jie; Feng, Ting; Xu, Guan; Wang, Xueding

    2015-03-01

    Laser-induced thermotherapy (LITT), i.e. tissue destruction induced by a local increase of temperature by means of laser light energy transmission, has been frequently used for minimally invasive treatments of various diseases such as benign thyroid nodules and liver cancer. The emerging photoacoustic (PA) imaging, when integrated with ultrasound (US), could contribute to LITT procedure. PA can enable a good visualization of percutaneous apparatus deep inside tissue and, therefore, can offer accurate guidance of the optical fibers to the target tissue. Our initial experiment demonstrated that, by picking the strong photoacoustic signals generated at the tips of optical fibers as a needle, the trajectory and position of the fibers could be visualized clearly using a commercial available US unit. When working the conventional US Bscan mode, the fibers disappeared when the angle between the fibers and the probe surface was larger than 60 degree; while working on the new PA mode, the fibers could be visualized without any problem even when the angle between the fibers and the probe surface was larger than 75 degree. Moreover, with PA imaging function integrated, the optical fibers positioned into the target tissue, besides delivering optical energy for thermotherapy, can also be used to generate PA signals for on-line evaluation of LITT. Powered by our recently developed PA physio-chemical analysis, PA measurements from the tissue can provide a direct and accurate feedback of the tissue responses to laser ablation, including the changes in not only chemical compositions but also histological microstructures. The initial experiment on the rat liver model has demonstrated the excellent sensitivity of PA imaging to the changes in tissue temperature rise and tissue status (from native to coagulated) when the tissue is treated in vivo with LITT.

  17. Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity.

    PubMed

    Deng, Zexing; Guo, Yi; Ma, Peter X; Guo, Baolin

    2018-09-15

    Stimuli responsive cryogels with multi-functionality have potential application for electrical devices, actuators, sensors and biomedical devices. However, conventional thermal sensitive poly(N-isopropylacrylamide) cryogels show slow temperature response speed and lack of multi-functionality, which greatly limit their practical application. Herein we present conductive fast (2 min for both deswelling and reswelling behavior) thermally responsive poly(N-isopropylacrylamide) cryogels with rapid shape memory properties (3 s for shape recovery), near-infrared (NIR) light sensitivity and pressure dependent conductivity, and further demonstrated their applications as temperature sensitive on-off switch, NIR light sensitive on-off switch, water triggered shape memory on-off switch and pressure dependent device. These cryogels were first prepared in dimethyl sulfoxide below its melting temperature in ice bath and subsequently put into aniline or pyrrole solution to in situ deposition of conducting polyaniline or polypyrrole nanoparticles. The continuous macroporous sponge-like structure provides cryogels with rapid responsivity both in deswelling, reswelling kinetics and good elasticity. After incorporating electrically conductive polyaniline or polypyrrole nanoaggregates, the hybrid cryogels exhibit desirable conductivity, photothermal property, pressure dependent conductivity and good cytocompatibility. These multifunctional hybrid cryogels make them great potential as stimuli responsive electrical device, tissue engineering scaffolds, drug delivery vehicle and electronic skin. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Gene expression patterns of two dominant tallgrass prairie species differ in response to warming and altered precipitation

    NASA Astrophysics Data System (ADS)

    Smith, Melinda D.; Hoffman, Ava M.; Avolio, Meghan L.

    2016-05-01

    To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species (Zea mays) to assess correlations in leaf temperature (Tleaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly change in abundance levels with Tleaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing Tleaf in S. nutans. The differential transcriptomic responses of the co-dominant C4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.

  19. Ccl22/MDC, is a prostaglandin dependent pyrogen, acting in the anterior hypothalamus to induce hyperthermia via activation of brown adipose tissue

    PubMed Central

    Osborn, Olivia; Sanchez-Alavez, Manuel; Dubins, Jeffrey S.; Gonzalez, Alejandro Sanchez; Morrison, Brad; Hadcock, John R.; Bartfai, Tamas

    2011-01-01

    CC Chemokine ligand 22 (Ccl22) is a selective, high affinity ligand at the CC chemokine receptor 4 (Ccr4). We have identified cDNAs encoding both ligand and receptor of the Ccl22-Ccr4 pair in cDNA libraries of the anterior hypothalamus/preoptic area (AH/POA) by PCR. The AH/POA is the key brain region where endogenous pyrogens have been shown to act on warm sensitive neurons to affect thermogenesis in brown adipose tissue (BAT) and other thermogenically responsive tissues. We show that functional Ccr4 receptors are present in the AH/POA neurons as injection of Ccl22 into the POA but not to other hypothalamic nuclei induces an increase in core body temperature as measured by radiotelemetry. Indomethacin (5mg/kg s.c) pretreatment markedly reduced the hyperthermia evoked by POA injection of Ccl22 (10 ng/0.5ul) and thus suggests that this hyperthermia is mediated through cyclooxygenase activation and thus likely through the formation and action of the pyrogen prostaglandin E2. The temperature elevation involves a decrease in the respiratory exchange ratio and increased activation of the brown adipose tissue as demonstrated by 18F-FDG –PET imaging. We describe a novel role to the ligand Ccl22 and its receptor Ccr4 in the anterior hypothalamus in temperature regulation that depends on the synthesis of the endogenous pyrogen, prostaglandin E2. PMID:21177120

  20. Tissue oxidative metabolism can increase the difference between local temperature and arterial blood temperature by up to 1.3oC: Implications for brain, brown adipose tissue, and muscle physiology.

    PubMed

    Zaretsky, Dmitry V; Romanovsky, Andrej A; Zaretskaia, Maria V; Molkov, Yaroslav I

    2018-01-01

    Tissue temperature increases, when oxidative metabolism is boosted. The source of nutrients and oxygen for this metabolism is the blood. The blood also cools down the tissue, and this is the only cooling mechanism, when direct dissipation of heat from the tissue to the environment is insignificant, e.g. , in the brain. While this concept is relatively simple, it has not been described quantitatively. The purpose of the present work was to answer two questions: 1) to what extent can oxidative metabolism make the organ tissue warmer than the body core, and, 2) how quickly are changes in the local metabolism reflected in the temperature of the tissue? Our theoretical analysis demonstrates that, at equilibrium, given that heat exchange with the organ is provided by the blood, the temperature difference between the organ tissue and the arterial blood is proportional to the arteriovenous difference in oxygen content, does not depend on the blood flow, and cannot exceed 1.3 o C. Unlike the equilibrium temperature difference, the rate of change of the local temperature, with respect to time, does depend on the blood flow. In organs with high perfusion rates, such as the brain and muscles, temperature changes occur on a time scale of a few minutes. In organs with low perfusion rates, such changes may have characteristic time constants of tens or hundreds of minutes. Our analysis explains, why arterial blood temperature is the main determinant of the temperature of tissues with limited heat exchange, such as the brain.

  1. Transcriptional Analysis of Resistance to Low Temperatures in Bermudagrass Crown Tissues

    PubMed Central

    Melmaiee, Kalpalatha; Anderson, Michael; Elavarthi, Sathya; Guenzi, Arron; Canaan, Patricia

    2015-01-01

    Bermudagrass (Cynodon dactylon L pers.) is one of the most geographically adapted and utilized of the warm-season grasses. However, bermudagrass adaptation to the Northern USA is limited by freeze damage and winterkill. Our study provides the first large-scale analyses of gene expression in bermudagrass regenerative crown tissues during cold acclimation. We compared gene expression patterns in crown tissues from highly cold tolerant “MSU” and susceptible “Zebra” genotypes exposed to near-freezing temperatures. Suppressive subtractive hybridization was used to isolate putative cold responsive genes Approximately, 3845 transcript sequences enriched for cold acclimation were deposited in the GenBank. A total of 4589 ESTs (3184 unigenes) including 744 ESTs associated with the bermudagrass disease spring dead spot were printed on microarrays and hybridized with cold acclimated complementary Deoxyribonucleic acid (cDNA). A total of 587 differentially expressed unigenes were identified in this study. Of these only 97 (17%) showed significant NCBI matches. The overall expression pattern revealed 40% more down- than up-regulated genes, which was particularly enhanced in MSU compared to Zebra. Among the up-regulated genes 68% were uniquely expressed in MSU (36%) or Zebra (32%). Among the down-regulated genes 40% were unique to MSU, while only 15% to Zebra. Overall expression intensity was significantly higher in MSU than in Zebra (p value ≤ 0.001) and the overall number of genes expressed at 28 days was 2.7 fold greater than at 2 days. These changes in expression patterns reflect the strong genotypic and temporal response to cold temperatures. Additionally, differentially expressed genes from this study can be utilized for developing molecular markers in bermudagrass and other warm season grasses for enhancing cold hardiness. PMID:26348040

  2. Thioesterase Superfamily Member 2/Acyl-CoA Thioesterase 13 (Them2/Acot13) Regulates Adaptive Thermogenesis in Mice*

    PubMed Central

    Kang, Hye Won; Ozdemir, Cafer; Kawano, Yuki; LeClair, Katherine B.; Vernochet, Cecile; Kahn, C. Ronald; Hagen, Susan J.; Cohen, David E.

    2013-01-01

    Members of the acyl-CoA thioesterase (Acot) gene family hydrolyze fatty acyl-CoAs, but their biological functions remain incompletely understood. Thioesterase superfamily member 2 (Them2; synonym Acot13) is enriched in oxidative tissues, associated with mitochondria, and relatively specific for long chain fatty acyl-CoA substrates. Using Them2−/− mice, we have demonstrated key roles for Them2 in regulating hepatic glucose and lipid metabolism. However, reduced body weights and decreased adiposity in Them2−/− mice observed despite increased food consumption were not well explained. To explore a role in thermogenesis, mice were exposed to ambient temperatures ranging from thermoneutrality (30 °C) to cold (4 °C). In response to short term (24-h) exposures to decreasing ambient temperatures, Them2−/− mice exhibited increased adaptive responses in physical activity, food consumption, and energy expenditure when compared with Them2+/+ mice. By contrast, genotype-dependent differences were not observed in mice that were equilibrated (96 h) at each ambient temperature. In brown adipose tissue, the absence of Them2 was associated with reduced lipid droplets, alterations in the ultrastructure of mitochondria, and increased expression of thermogenic genes. Indicative of a direct regulatory role for Them2 in heat production, cultured primary brown adipocytes from Them2−/− mice exhibited increased norepinephrine-mediated triglyceride hydrolysis and increased rates of O2 consumption, together with elevated expression of thermogenic genes. At least in part by regulating intracellular fatty acid channeling, Them2 functions in brown adipose tissue to suppress adaptive increases in energy expenditure. PMID:24072708

  3. Thermo-responsive cell culture carrier: Effects on macrophage functionality and detachment efficiency.

    PubMed

    Rennert, Knut; Nitschke, Mirko; Wallert, Maria; Keune, Natalie; Raasch, Martin; Lorkowski, Stefan; Mosig, Alexander S

    2017-01-01

    Harvesting cultivated macrophages for tissue engineering purposes by enzymatic digestion of cell adhesion molecules can potentially result in unintended activation, altered function, or behavior of these cells. Thermo-responsive polymer is a promising tool that allows for gentle macrophage detachment without artificial activation prior to subculture within engineered tissue constructs. We therefore characterized different species of thermo-responsive polymers for their suitability as cell substrate and to mediate gentle macrophage detachment by temperature shift. Primary human monocyte- and THP-1-derived macrophages were cultured on thermo-responsive polymers and characterized for phagocytosis and cytokine secretion in response to lipopolysaccharide stimulation. We found that both cell types differentially respond in dependence of culture and stimulation on thermo-responsive polymers. In contrast to THP-1 macrophages, primary monocyte-derived macrophages showed no signs of impaired viability, artificial activation, or altered functionality due to culture on thermo-responsive polymers compared to conventional cell culture. Our study demonstrates that along with commercially available UpCell carriers, two other thermo-responsive polymers based on poly(vinyl methyl ether) blends are attractive candidates for differentiation and gentle detachment of primary monocyte-derived macrophages. In summary, we observed similar functionality and viability of primary monocyte-derived macrophages cultured on thermo-responsive polymers compared to standard cell culture surfaces. While this first generation of custom-made thermo-responsive polymers does not yet outperform standard culture approaches, our results are very promising and provide the basis for exploiting the unique advantages offered by custom-made thermo-responsive polymers to further improve macrophage culture and recovery in the future, including the covalent binding of signaling molecules and the reduction of centrifugation and washing steps. Optimizing these and other benefits of thermo-responsive polymers could greatly improve the culture of macrophages for tissue engineering applications.

  4. Control of brown and beige fat development

    PubMed Central

    Wang, Wenshan; Seale, Patrick

    2017-01-01

    Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli — notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells and revealed unanticipated cell-lineage relationships between vascular smooth muscle and beige adipocytes, and between brown fat and skeletal muscle cells. Additionally, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells play crucial roles in regulating the differentiation and function of brown and beige fat. PMID:27552974

  5. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin.

    PubMed

    Rietveld, P L; Wilkinson, C; Franssen, H M; Balk, P A; van der Plas, L H; Weisbeek, P J; Douwe de Boer, A

    2000-03-01

    Tulip (Tulipa gesneriana L.) is a bulbous plant species that requires a period of low temperature for proper growth and flowering. The mechanism of sensing the low temperature period is unknown. The study presented in this paper shows that the essential developmental change in tulip bulbs during cold treatment is an increase in sensitivity to the phytohormone auxin. This is demonstrated using a model system consisting of isolated internodes grown on tissue culture medium containing different combinations of the phytohormones auxin and gibberellin. Using mathematical modelling, equations taken from the field of enzyme kinetics were fitted through the data. By doing so it became apparent that longer periods of low temperature resulted in an increased maximum response at a lower auxin concentration. Besides the cold treatment, gibberellin also enhances the response to auxin in the internodes in this in vitro system. A working model describing the relationship between the cold requirement, gibberellin action and auxin sensitivity is put forward. Possible analogies with other cold-requiring processes such as vernalization and stratification, and the interaction of auxin and gibberellin in the stalk elongation process in other plant species are discussed.

  6. NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis.

    PubMed

    Chang, Ji Suk; Fernand, Vivian; Zhang, Yubin; Shin, Jeho; Jun, Hee-Jin; Joshi, Yagini; Gettys, Thomas W

    2012-03-16

    PGC-1α is an inducible transcriptional coactivator that regulates cellular energy metabolism and adaptation to environmental and nutritional stimuli. In tissues expressing PGC-1α, alternative splicing produces a truncated protein (NT-PGC-1α) corresponding to the first 267 amino acids of PGC-1α. Brown adipose tissue also expresses two novel exon 1b-derived isoforms of PGC-1α and NT-PGC-1α, which are 4 and 13 amino acids shorter in the N termini than canonical PGC-1α and NT-PGC-1α, respectively. To evaluate the ability of NT-PGC-1α to substitute for PGC-1α and assess the isoform-specific role of NT-PGC-1α, adaptive thermogenic responses of adipose tissue were evaluated in mice lacking full-length PGC-1α (FL-PGC-1(-/-)) but expressing slightly shorter but functionally equivalent forms of NT-PGC-1α (NT-PGC-1α(254)). At room temperature, NT-PGC-1α and NT-PGC-1α(254) were produced from conventional exon 1a-derived transcripts in brown adipose tissue of wild type and FL-PGC-1α(-/-) mice, respectively. However, cold exposure shifted transcription to exon 1b, increasing exon 1b-derived mRNA levels. The resulting transcriptional responses produced comparable increases in energy expenditure and maintenance of core body temperature in WT and FL-PGC-1α(-/-) mice. Moreover, treatment of the two genotypes with a selective β(3)-adrenergic receptor agonist produced similar increases in energy expenditure, mitochondrial DNA, and reductions in adiposity. Collectively, these findings illustrate that the transcriptional and physiological responses to sympathetic input are unabridged in FL-PGC-1α(-/-) mice, and that NT-PGC-1α is sufficient to link β(3)-androgenic receptor activation to adaptive thermogenesis in adipose tissue. Furthermore, the transcriptional shift from exon 1a to 1b supports isoform-specific roles for NT-PGC-1α in basal and adaptive thermogenesis.

  7. Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals.

    PubMed

    Rupp, Kimberly A; Herman, Daniel C; Hertel, Jay; Saliba, Susan A

    2012-08-01

    Crossover. To compare the time required to decrease intramuscular temperature 8°C below baseline temperature, and to compare intramuscular temperature 90 minutes posttreatment, between 2 cryotherapy modalities. Cryotherapy is used to treat pain from muscle injuries. Cooler intramuscular temperatures may reduce cellular metabolism and secondary hypoxic injury to attenuate acute injury response, specifically the rate of chemical mediator activity. Modalities that decrease intramuscular temperature quickly may be beneficial in the treatment of muscle injuries. Eighteen healthy subjects received 2 cryotherapy conditions, crushed-ice bag (CIB) and cold-water immersion (CWI), in a randomly allocated order, separated by 72 hours. Each condition was applied until intramuscular temperature decreased 8°C below baseline. Intramuscular temperature was monitored in the gastrocnemius, 1 cm below subcutaneous adipose tissue. The primary outcome was time to decrease intramuscular temperature 8°C below baseline. A secondary outcome was intramuscular temperature at the end of a 90-minute rewarming period. Paired t tests were used to examine outcomes. Time to reach an 8°C reduction in intramuscular temperature was not significantly different between CIB and CWI (mean difference, 2.6 minutes; 95% confidence interval: -3.10, 8.30). Intramuscular temperature remained significantly colder 90 minutes post-CWI compared to CIB (mean difference, 2.8°C; 95% confidence interval: 2.07°C, 3.52°C). There was no difference in time required to reduce intramuscular temperature 8°C 1 cm below adipose tissue using CIB and CWI. However, intramuscular temperature remained significantly colder 90 minutes following CWI. These results provide clinicians with information that may guide treatment-modality decisions.

  8. Heat treatment of human esophageal tissues: Effect on esophageal cancer detection using oxygenated hemoglobin diffuse reflectance ratio

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.

    2011-03-01

    The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.

  9. Temperature-responsive release of cortisol from its binding globulin: a protein thermocouple.

    PubMed

    Cameron, Angus; Henley, David; Carrell, Robin; Zhou, Aiwu; Clarke, Anthony; Lightman, Stafford

    2010-10-01

    Only 5% of circulating cortisol is active and unbound to carrier proteins. Because cortisol levels vary rapidly due to the pulsatile nature of cortisol secretion, the dynamics of cortisol binding are critical determinants of tissue levels of free cortisol and consequent hormonal signaling. The major glucocorticoid carrier protein is corticosteroid binding globulin (CBG), a member of the serpin family that undergoes conformational changes to bind and release hormones. This mechanism has been noted to be temperature responsive, and we have now investigated the effects of temperature on the binding of human CBG to both cortisol and progesterone. Recombinant human CBG was synthesized and used for binding studies with cortisol and progesterone between 34 and 43 C. Binding was monitored by recording the change in intrinsic protein fluorescence. Binding of the steroids to the other major carrier, serum albumin, was measured in a similar manner. There was no effect of temperature on the interaction between human serum albumin and either cortisol or progesterone. The association of both cortisol and progesterone with CBG is more than three orders of magnitude greater than that with HSA, and this interaction was extremely responsive to changes in temperature. The affinity of both cortisol and progesterone for CBG drops approximately 16-fold as temperature increases from 35 to 42 C. This study clearly shows that even within the clinically relevant range of temperatures found in humans, CBG acts as a protein thermocouple that is exquisitely sensitive to temperature change and will release cortisol in response to fever or external sources of heat. This has major implications for our understanding of cortisol regulation in febrile patients.

  10. The Nuclear Receptor Rev-erbα Controls Circadian Thermogenic Plasticity

    PubMed Central

    Gerhart-Hines, Zachary; Everett, Logan J.; Loro, Emanuele; Briggs, Erika R.; Bugge, Anne; Hou, Catherine; Ferrara, Christine; Seale, Patrick; Pryma, Daniel A.; Khurana, Tejvir S.; Lazar, Mitchell A.

    2013-01-01

    Circadian oscillation of body temperature is a basic, evolutionary-conserved feature of mammalian biology1. Additionally, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure2. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα, a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare dramatically better at 5 AM (Zeitgeber time 22) when Rev-erbα is barely expressed than at 5 PM (ZT10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 5 PM, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (UCP1) by cold temperatures is preceded by rapid down-regulation of Rev-erbα in BAT. Rev-erbα represses UCP1 in a brown adipose cell-autonomous manner and BAT UCP1 levels are high in Rev-erbα-null mice even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands. PMID:24162845

  11. Differentiating fatty and non-fatty tissue using photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2014-03-01

    In this paper, we demonstrate a temporal-domain intensity-based photoacoustic imaging method that can differentiate between fatty and non-fatty tissues. PA pressure intensity is partly dependent on the tissue's speed of sound, which increases as temperature increases in non-fatty tissue and decreases in fatty tissue. Therefore, by introducing a temperature change in the tissue and subsequently monitoring the change of the PA intensity, it is possible to distinguish between the two types of tissue. A commercial ultrasound system with a 128-element 5-14 MHz linear array transducer and a tunable ND:YAG laser were used to produce PA images. Ex-vivo bovine fat and porcine liver tissues were precooled to below 10°C and then warmed to room-temperature over ~1 hour period. A thermocouple monitored the temperature rise while PA images were acquired at 0.5°C intervals. The averaged intensity of the illuminated tissue region at each temperature interval was plotted and linearly fitted. Liver samples showed a mean increase of 2.82 %/°C, whereas bovine fat had a mean decrease of 6.24 %/°C. These results demonstrate that this method has the potential to perform tissue differentiation in the temporal-domain.

  12. In Vivo Simulator for Microwave Treatment

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)

    2001-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about 6 GHz. A computer simulation provides initial screening capabilities for an antenna such as antenna. frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 GHz and 12 GHz is applied to monopole microwave radiator having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may be used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  13. Transcatheter Antenna For Microwave Treatment

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)

    2000-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiation having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may he used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  14. Microwave Treatment for Cardiac Arrhythmias

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Pacifico, Antonio (Inventor)

    1999-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiator having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may be used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  15. Effects of temperature acclimation on Pacific bluefin tuna (Thunnus orientalis) cardiac transcriptome.

    PubMed

    Jayasundara, Nishad; Gardner, Luke D; Block, Barbara A

    2013-11-01

    Little is known about the mechanisms underpinning thermal plasticity of vertebrate hearts. Bluefin tuna hearts offer a unique model to investigate processes underlying thermal acclimation. Their hearts, while supporting an endothermic physiology, operate at ambient temperature, and are presented with a thermal challenge when migrating to different thermal regimes. Here, we examined the molecular responses in atrial and ventricular tissues of Pacific bluefin tuna acclimated to 14°C, 20°C, and 25°C. Quantitative PCR studies showed an increase in sarcoplasmic reticulum Ca(2+) ATPase gene expression with cold acclimation and an induction of Na(+)/Ca(2+)-exchanger gene at both cold and warm temperatures. These data provide evidence for thermal plasticity of excitation-contraction coupling gene expression in bluefin tunas and indicate an increased capacity for internal Ca(2+) storage in cardiac myocytes at 14°C. Transcriptomic analysis showed profound changes in cardiac tissues with acclimation. A principal component analysis revealed that temperature effect was greatest on gene expression in warm-acclimated atrium. Overall data showed an increase in cardiac energy metabolism at 14°C, potentially compensating for cold temperature to optimize bluefin tuna performance in colder oceans. In contrast, metabolic enzyme activity and gene expression data suggest a decrease in ATP production at 25°C. Expression of genes involved in protein turnover and molecular chaperones was also decreased at 25°C. Expression of genes involved in oxidative stress response and programmed cell death suggest an increase in oxidative damage and apoptosis at 25°C, particularly in the atrium. These findings provide insights into molecular processes that may characterize cardiac phenotypes at upper thermal limits of teleosts.

  16. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire

    Treesearch

    Rick G. Kelsey; Douglas J. Westlind

    2017-01-01

    The lethal temperature limit is 60 degrees Celsius (°C) for plant tissues, including trees, with lower temperatures causing heat stress. As fire injury increases on tree stems, there is an accompanying rise in tissue ethanol concentrations, physiologically linked to impaired mitochondrial oxidative phosphorylation energy production. We theorize that sublethal tissue...

  17. Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2.

    PubMed

    Charbel, F T; Hoffman, W E; Misra, M; Hannigan, K; Ausman, J I

    1997-10-01

    There are many techniques for monitoring the injured brain following trauma, subarachnoid hemorrhage, or surgery. It is thought that the major determinants for recovery of injured cerebral tissue are oxygen, glucose delivery, and the clearance of metabolites. These factors, at optimal levels, are probably responsible for the regaining of neuronal functions. These parameters are in turn dependent on the tissue's blood flow and metabolism. We have been using a single, compact, polyethylene sensor, the Paratrend 7 for the measurement of cerebral oxygen tension, CO2, pH, and temperature. This sensor is designed for continuous blood gas analysis to aid in monitoring neurosurgical patients, both during surgery and in the intensive care unit. Using the Paratrend 7 sensor, we found the normal range of values to be: PO2 33 +/- 11 mm Hg; PCO2 48 +/- 7 mm Hg; pH 7.19 +/- 0.11. Critical measurements are considered to be tissue PO2 < 10 mm Hg; PCO2 > 60 mm Hg, and pH < 6.8. We have had no complications with this device; the risks are similar to those of placing a parenchymal intracranial pressure monitor. We believe that assessment of interstitial cerebral oxygen saturation can be of great value both intraoperatively and postoperatively. In our experience, the Paratrend 7 system is an effective method of measuring tissue cerebral oxygen tension, along with carbon dioxide levels, pH, and temperature.

  18. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment

    NASA Astrophysics Data System (ADS)

    Mayfield, A. B.; Fan, T.-Y.; Chen, C.-S.

    2013-12-01

    Recent work has found that pocilloporid corals from regions characterized by unstable temperatures, such as those exposed to periodic upwelling, display a remarkable degree of phenotypic plasticity. In order to understand whether important reef builders from these upwelling reefs remain physiologically uncompromised at temperatures they will experience in the coming decades as a result of global climate change, a long-term elevated temperature experiment was conducted with Pocillopora damicornis specimens collected from Houbihu, a small embayment within Nanwan Bay, southern Taiwan that is characterized by 8-9 °C temperature changes during upwelling events. Upon nine months of exposure to nearly 30 °C, all colony (mortality and surface area), polyp ( Symbiodinium density and chlorophyll a content), tissue (total thickness), and molecular (gene expression and molecular composition)-level parameters were documented at similar levels between experimental corals and controls incubated at 26.5 °C, suggesting that this species can readily acclimate to elevated temperatures that cause significant degrees of stress, or even bleaching and mortality, in conspecifics of other regions of the Indo-Pacific. However, the gastrodermal tissue layer was relatively thicker in corals of the high temperature treatment sampled after nine months, possibly as an adaptive response to shade Symbiodinium from the higher photosynthetically active radiation levels that they were experiencing at that sampling time. Such shading may have prevented high light and high temperature-induced photoinhibition, and consequent bleaching, in these samples.

  19. Involvement of Ca2+ in Vacuole Degradation Caused by a Rapid Temperature Decrease in Saintpaulia Palisade Cells: A Case of Gene Expression Analysis in a Specialized Small Tissue.

    PubMed

    Ohnishi, Miwa; Kadohama, Noriaki; Suzuki, Yoshihiro; Kajiyama, Tomoharu; Shichijo, Chizuko; Ishizaki, Kimitsune; Fukaki, Hidehiro; Iida, Hidetoshi; Kambara, Hideki; Mimura, Tetsuro

    2015-07-01

    Saintpaulia (African violet) leaves are known to be damaged by a rapid temperature decrease when cold water is applied to the leaf surface; the injury is ascribed to the chloroplast damage caused by the cytosolic pH decrease following the degradation of the vacuolar membrane in the palisade cells. In this report, we present evidence for the involvement of Ca(2+) in facilitating the collapse of the vacuolar membrane and in turn in the temperature sensitivity of Saintpaulia leaves. In the presence of a Ca(2+) chelator (EGTA) or certain Ca(2+) channel inhibitors (Gd(3+) or La(3+)) but not others (verapamil or nifedipine), the pH of the vacuole, monitored through BCECF (2',7'-bis(carboxyethyl)-4 or 5-carboxyfluorescein) fluorescence, did not increase in response to a rapid temperature drop. These pharmacological observations are consistent with the involvement of mechanosensitive Ca(2+) channels in the collapse of the vacuolar membrane. The high level of expression of an MCA- (Arabidopsis mechanosensitive Ca(2+) channel) like gene, a likely candidate for a mechanosensitive Ca(2+) channel(s) in plant cells, was confirmed in the palisade tissue in Saintpaulia leaves by using a newly developed method of gene expression analysis for the specialized small tissues. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Thermal strategies of king penguins during prolonged fasting in water.

    PubMed

    Lewden, Agnès; Enstipp, Manfred R; Bonnet, Batshéva; Bost, Caroline; Georges, Jean-Yves; Handrich, Yves

    2017-12-15

    Most animals experience periods of unfavourable conditions, challenging their daily energy balance. During breeding, king penguins fast voluntarily for up to 1.5 months in the colony, after which they replenish their energy stores at sea. However, at sea, birds might encounter periods of low foraging profitability, forcing them to draw from previously stored energy (e.g. subcutaneous fat). Accessing peripheral fat stores requires perfusion, increasing heat loss and thermoregulatory costs. Hence, how these birds balance the conflicting demands of nutritional needs and thermoregulation is unclear. We investigated the physiological responses of king penguins to fasting in cold water by: (1) monitoring tissue temperatures, as a proxy of tissue perfusion, at four distinct sites (deep and peripheral); and (2) recording their oxygen consumption rate while birds floated inside a water tank. Despite frequent oscillations, temperatures of all tissues often reached near-normothermic levels, indicating that birds maintained perfusion to peripheral tissues throughout their fasting period in water. The oxygen consumption rate of birds increased with fasting duration in water, while it was also higher when the flank tissue was warmer, indicating greater perfusion. Hence, fasting king penguins in water maintained peripheral perfusion, despite the associated greater heat loss and, therefore, thermoregulatory costs, probably to access subcutaneous fat stores. Hence, the observed normothermia in peripheral tissues of king penguins at sea, upon completion of a foraging bout, is likely explained by their nutritional needs: depositing free fatty acids (FFA) in subcutaneous tissues after profitable foraging or mobilizing FFA to fuel metabolism when foraging success was insufficient. © 2017. Published by The Company of Biologists Ltd.

  1. Central neural control of thermoregulation and brown adipose tissue

    PubMed Central

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. PMID:26924538

  2. Central neural control of thermoregulation and brown adipose tissue.

    PubMed

    Morrison, Shaun F

    2016-04-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Demographic responses to warming: reproductive maturity and sex influence vulnerability in an octocoral

    NASA Astrophysics Data System (ADS)

    Arizmendi-Mejía, Rosana; Ledoux, Jean-Baptiste; Civit, Sergi; Antunes, Agostinho; Thanopoulou, Zoi; Garrabou, Joaquim; Linares, Cristina

    2015-12-01

    Ocean warming, caused by climate change, is critically impacting marine coastal ecosystems. Benthic organisms, such as anthozoans, are increasingly submitted to high temperatures that cause massive mortalities in tropical and temperate seas. To broaden our understanding of their response to thermal stress, we tested the putative role of reproductive maturity and sex in the susceptibility of the Mediterranean red gorgonian, Paramuricea clavata, to high temperatures. We experimentally compared the response to thermal stress of sexually immature (i.e., juveniles) versus mature individuals (i.e., adults), and of males versus females. Colonies' response was firstly assessed by measuring the percentage of tissue area exhibiting necrosis. Then, the reproductive output (i.e., fertility, size, and number of gonads) of both sexes was characterized. When compared to juveniles, adults showed a significantly higher percentage of necrosis, suggesting that during the reproductive period they are more vulnerable to high temperatures. Males and females showed a similar percentage of tissue damage and a significant decrease in their reproductive output. However, females' reproduction was more impacted, suggesting that females are more susceptible to thermal stress than males. A differential energy investment in reproduction may be the underlying cause of the observed responses. Adults invest a large proportion of their energy budget in reproduction; hence, they have fewer resources available to cope with stress, compared to juveniles. A similar situation seems to apply to females, with respect to males. Considering the current ocean-warming trend, our results imply that the long-term viability of shallow populations of long-lived anthozoans may be jeopardized in the future. This study reveals potential demographic consequences of warming that go beyond its associated increment of mortality rates. Given the important ecological role of many anthozoan species, these results can help better predict the future effects of climate change on coastal ecosystems.

  4. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets.

    PubMed

    Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H; Elias, Jeff; Pauly, Kim Butts

    2016-09-01

    In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. The simulated skull efficiency using individual-specific heterogeneous models predicts well (R(2) = 0.84) the experimental energy efficiency. This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.

  5. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    PubMed Central

    Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H.; Elias, Jeff; Pauly, Kim Butts

    2016-01-01

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R2 = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible. PMID:27587047

  6. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni,

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen humanmore » subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.« less

  7. The effects of Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound ablation on human cadaver breast tissue.

    PubMed

    Merckel, Laura G; Deckers, Roel; Baron, Paul; Bleys, Ronald L A W; van Diest, Paul J; Moonen, Chrit T W; Mali, Willem P Th M; van den Bosch, Maurice A A J; Bartels, Lambertus W

    2013-10-05

    Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound (MR-HIFU) is a promising technique for non-invasive breast tumor ablation. The purpose of this study was to investigate the effects of HIFU ablation and thermal exposure on ex vivo human breast tissue. HIFU ablations were performed in three unembalmed cadaveric breast specimens using a clinical MR-HIFU system. Sonications were performed in fibroglandular and adipose tissue. During HIFU ablation, time-resolved anatomical MR images were acquired to monitor macroscopic tissue changes. Furthermore, the breast tissue temperature was measured using a thermocouple to investigate heating and cooling under HIFU exposure. After HIFU ablation, breast tissue samples were excised and prepared for histopathological analysis. In addition, thermal exposure experiments were performed to distinguish between different levels of thermal damage using immunohistochemical staining. Irreversible macroscopic deformations up to 3.7 mm were observed upon HIFU ablation both in fibroglandular and in adipose tissue. No relationship was found between the sonication power or the maximum tissue temperature and the size of the deformations. Temperature measurements after HIFU ablation showed a slow decline in breast tissue temperature. Histopathological analysis of sonicated regions demonstrated ablated tissue and morphologically complete cell death. After thermal exposure, samples exposed to three different temperatures could readily be distinguished. In conclusion, the irreversible macroscopic tissue deformations in ex vivo human breast tissue observed during HIFU ablation suggest that it might be relevant to monitor tissue deformations during MR-HIFU treatments. Furthermore, the slow decrease in breast tissue temperature after HIFU ablation increases the risk of heat accumulation between successive sonications. Since cell death was inflicted after already 5 minutes at 75°C, MR-HIFU may find a place in non-invasive treatment of breast tumors. © 2013 Elsevier B.V. All rights reserved.

  8. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing

    PubMed Central

    Wang, Yinxiao; Wang, Wensheng; Zhao, Xiuqin; Zhang, Shilai; Zhang, Jing; Hu, Fengyi; Li, Zhikang

    2017-01-01

    Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional regulation of CT in O. longistaminata. Finally, most chilling-induced genes with alternative splicing exclusive to shoots were associated with photosynthesis and regulation of gene expression, while those enriched in rhizomes were primarily related to stress signal transduction; this indicates that tissue-specific transcriptional and post-transcriptional regulation mechanisms synergistically contribute to O. longistaminata long-term CT. Our findings provide an overview of the complex regulatory networks of CT in O. longistaminata. PMID:29190752

  9. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing.

    PubMed

    Zhang, Ting; Huang, Liyu; Wang, Yinxiao; Wang, Wensheng; Zhao, Xiuqin; Zhang, Shilai; Zhang, Jing; Hu, Fengyi; Fu, Binying; Li, Zhikang

    2017-01-01

    Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional regulation of CT in O. longistaminata. Finally, most chilling-induced genes with alternative splicing exclusive to shoots were associated with photosynthesis and regulation of gene expression, while those enriched in rhizomes were primarily related to stress signal transduction; this indicates that tissue-specific transcriptional and post-transcriptional regulation mechanisms synergistically contribute to O. longistaminata long-term CT. Our findings provide an overview of the complex regulatory networks of CT in O. longistaminata.

  10. Effect of cooling heat-stressed dairy cows during the dry period on insulin response.

    PubMed

    Tao, S; Thompson, I M; Monteiro, A P A; Hayen, M J; Young, L J; Dahl, G E

    2012-09-01

    Heat stress (HT) during the dry period affects hepatic gene expression and adipose tissue mobilization during the transition period. In addition, it is postulated that HT may alter insulin action on peripheral tissues. Our objective was to evaluate the effect of cooling heat-stressed cows during the dry period on insulin effects on peripheral tissues during the transition period. Cows were dried off 46 d before expected calving and assigned to 1 of 2 treatments: HT (n = 16) or cooling (CL, n = 16). During the dry period, the average temperature-humidity index was 78, but CL cows were cooled with sprinklers and fans, whereas HT cows were not. After calving, all cows were housed and managed under the same conditions. Rectal temperatures were measured twice daily (0730 and 1430 h) and respiration rate recorded 3 times weekly during the dry period. Dry matter intake was recorded daily from dry-off to 42 d relative to calving (DRC). Body weight and body condition score were measured weekly from dry-off to 42 DRC. Milk yield and composition were recorded daily to 42 wk postpartum. Glucose tolerance tests (GTT) and insulin challenges (IC) were performed at dry-off, -14, 7, and 28 DRC in a subset of cows (HT, n = 8; CL, n = 8). Relative to HT, CL cows had lower rectal temperatures (39.3 vs. 39.0°C) in the afternoon and respiration rate (69 vs. 48 breath/min). Cows from the cooling treatment tended to consume more feed than HT cows prepartum and postpartum. Compared with HT, CL cows gained more weight before calving but lost more weight and body condition in early lactation. Cows from the cooling treatment produced more milk than HT cows (34.0 vs. 27.7 kg/d), but treatments did not affect milk composition. Treatments did not affect circulating insulin and metabolites prepartum, but CL cows had decreased glucose, increased nonesterified fatty acid, and tended to have lower insulin concentrations in plasma postpartum compared with HT cows. Cooling prepartum HT cows did not affect the insulin responses to GTT and IC during the transition period and glucose responses to GTT and IC at -14 and 28 DRC were not affected by treatments. At 7 DRC, CL cows tended to have slower glucose clearance to GTT and weaker glucose response to IC relative to HT cows. Cows from the cooling treatment had stronger nonesterified fatty acid responses to IC postpartum but not prepartum compared with HT. In conclusion, cooling heat-stressed dairy cows in the dry period reduced insulin effects on peripheral tissues in early lactation but not in the dry period. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes.

    PubMed

    Harrington, Walter N; Haji, Mwafaq R; Galanzha, Ekaterina I; Nedosekin, Dmitry A; Nima, Zeid A; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S; Zharov, Vladimir P

    2016-11-08

    Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light-dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.

  12. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    NASA Astrophysics Data System (ADS)

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-11-01

    Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light-dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.

  13. Developing clinically successful biomedical devices by understanding the pathophysiology of the target tissue: insights from over 25 years at the microscope

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.; Coad, James E.

    2007-02-01

    Volumetric conductive-convective heat sources, microwave and radiofrequency energy sources, high intensity focused ultrasound (HIFU), laser irradiation and other non-ionizing irradiation sources can be used to generate hyperthermic tissue injury in a variety of clinical settings with therapeutic temperature gradients ranging from 40 to over 90°C. On the opposite side, cryotherapy can be used to freeze tissues with negative therapeutic temperature gradients. The development of a successful thermal therapy using any one of these devices requires a precise understanding of the desired clinical end point in terms of 1) diagnosis vs. therapy, 2) cure vs. palliative intent, 3) dysfunctional vs. malignant tissue and 4) long-term monitoring issues. The effects of a specific thermal exposure depend on the architecture of the heat source and overall thermal history. During initial treatment before heat generation or cooling becomes dominant, tissue interactions with the delivered treatment may affect the geometry of the treatment effect and body's healing response. These two parameters are also affected by tissue anatomy, blood supply and protein vs. lipid content. The thermal lesion and final clinical outcome represent the sum of direct primary and secondary short and long term delayed injury. The latter occurs primarily from host responses producing ischemia, inflammation and wound healing followed by possible regeneration and/or scar formation. Once the thermal insult has been deployed, the resulting lesions can be broadly divided into two major zones: 1) a complete tissue ablation with lethal tissue injury closer to the device and 2) a peripheral transition zone of partial injury. Hyperthermic complete ablation zones can have two sub-regions: 1) thermal fixation from direct denaturation of cellular and tissue components and 2) coagulative necrosis due to direct injury and delayed secondary host responses. With a variety of special techniques, direct cellular injury can be studied at post-therapy intervals of less than 12 hours. At 1-5 days, the acute effects of direct and secondary injury can be assessed with hematoxylin and eosin staining and other techniques. While early healing changes can be studied around 7-10 days, chronic changes are best assessed at variable intervals between 1-9 months. A thorough understanding of the interval dynamics of direct and delayed tissue responses after treatment is critical when choosing appropriate post-treatment times to assess the results. Since many preclinical studies represent "snap shots" in time, care needs to be taken when using acute experimental results to develop mathematical models to predict chronic clinical outcomes. Recent collaborative studies indicate that many pathologic effects can act as direct markers of clinical efficacy when combined with various imaging modalities. In addition, both animal and human studies are performed to establish safety and efficacy; therefore, understanding species differences and the appropriate selection of pathology techniques is critical when designing these studies. In summary, effective biomedical instrument development requires close cooperation among engineers, physiologists, internists, pathologists and radiologists from conceptualization through instrument development, validation and refinement.

  14. Mechanics of fresh, frozen-thawed and heated porcine liver tissue.

    PubMed

    Wex, Cora; Stoll, Anke; Fröhlich, Marlen; Arndt, Susann; Lippert, Hans

    2014-06-01

    For a better understanding of the effects of thermally altered soft tissue, the biothermomechanics of these tissues need to be studied. Without the knowledge of the underlying physical processes and the parameters that can be controlled clinically, thermal treatment of cancerous hepatic tissue or the preservation of liver grafts are based primarily on trial and error. Thus, this study is concerned with the investigation of the influence of temperature on the rheological properties and the histological properties of porcine liver. Heating previously cooled porcine liver tissue above 40 °C leads to significant, irreversible stiffness changes observed in the amplitude sweep. The increase of the complex shear module of healthy porcine liver from room temperature to 70 °C is approximately 9-fold. Comparing the temperatures -20 °C and 20 °C, no significant difference of the mechanical properties was observed. Furthermore, there is a strong relation between the mechanical and histological properties of the porcine liver. Temperatures above 40 °C destroy the collagen matrix within the liver tissue. This results in the alteration of the biomechanical properties. The time-temperature superposition principle is applied to generate temperature-dependent shift factors that can be described by a two-part exponential function model with an inflection temperature of 45 °C. Tumor ablation techniques such as heating or freezing have a significant influence on the histology of liver tissue. However, only for temperatures above body temperature an influence on the mechanical properties of hepatic tissues was noticeable. Freezing up to -20 °C did not affect the liver mechanics.

  15. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    PubMed

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  16. Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe

    PubMed Central

    Piano, Annamaria; Asirelli, Christian; Caselli, Federico; Fabbri, Elena

    2002-01-01

    Synthesis of heat shock proteins (Hsps) in response to elevated temperatures and other denaturing agents is a common feature of prokaryotic and eukaryotic cells. The heat-induced expression of Hsp70 family members in the gills and mantle of Ostrea edulis, a highly valued fisheries resource inhabiting primarily estuarine environments, has been studied. O edulis is exposed to a variety of natural and anthropogenic stresses in the environment. Two isoforms of about 72 kDa and 77 kDa were constitutively present in unstressed organisms, reflecting the housekeeping function performed by these proteins under normal circumstances. Their expression in animals undergoing thermal stress was highly variable, and on the average, little change occurred under different experimental conditions. A third isoform of about 69 kDa was induced in both tissues after exposure to ≥32°C; its synthesis was detected within 4 hours of poststress recovery at 15°C, reaching the maximum expression after 24 hours in the gills and after 48 hours in the mantle and declining thereafter. Hsp69 expression was low at 38°C, a temperature lethal for about 50% of the individuals tested. Densitometric analysis of Western blots revealed that Hsp69 was mostly responsible for the significant heat-induced overexpression of Hsp70s in O edulis. Comparison with heat shock responses in tissues of Crassostrea gigas indicated a similar pattern of Hsp70 expression. In this organism, however, Hsp69 was induced after exposure to ≥38°C. We conclude that tissue expression of Hsp69 in O edulis, and possibly other bivalves, is an early sign of thermal stress; determining whether these changes also correlate with other major environmental stresses is the goal of ongoing studies. PMID:12482201

  17. Thermal and Sedimentation Stress Are Unlikely Causes of Brown Spot Syndrome in the Coral Reef Sponge, Ianthella basta

    PubMed Central

    Luter, Heidi M.; Whalan, Steve; Webster, Nicole S.

    2012-01-01

    Background Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue. Methodology/Principal Findings Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea). Conclusions/Significance Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species. PMID:22745827

  18. Lipid biomarkers of thermal stress in scleractinian corals

    NASA Astrophysics Data System (ADS)

    Kneeland, J. M.; Hughen, K.; Cervino, J.; Eglinton, T. I.; Bartels, E.

    2007-12-01

    Lipid content and fatty acid profiles of corals and their symbiotic dinoflagellates are known to vary in response to heat stress and bleaching. To develop lipid biomarkers of heat stress and bleaching response in scleractinian corals, clones of Symbiodinium algae of clade subtypes C1 and D1 were cultured under a range of temperatures. The predominant lipids produced are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs. Other important compounds included a C22 penta-unsaturated fatty acid, which is thought to be a specific dinoflagellate marker, and a variety of sterols. Analysis of lipids extracted from coral skeleton indicated that palmitic and stearic acids were the most abundant compounds. The amount of unsaturated C16 and C18 fatty acids in coral skeleton relative to the saturated versions of those acids was much lower in coral skeleton than in the zooxanthellae tissue. This could indicate the incorporation of lipids from outside the coral host-symbiont system into the coral aragonite, or it could reflect diagenesis. A comparison between the lipids found in cloned zooxanthellae, coral tissue, and aragonitic skeleton will be presented to assess the usefulness of lipid biomarkers as indicators of temperature stress on corals.

  19. Thermal and sedimentation stress are unlikely causes of brown spot syndrome in the coral reef sponge, Ianthella basta.

    PubMed

    Luter, Heidi M; Whalan, Steve; Webster, Nicole S

    2012-01-01

    Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue. Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea). Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species.

  20. Heat transfer analysis of skin during thermal therapy using thermal wave equation.

    PubMed

    Kashcooli, Meisam; Salimpour, Mohammad Reza; Shirani, Ebrahim

    2017-02-01

    Specifying exact geometry of vessel network and its effect on temperature distribution in living tissues is one of the most complicated problems of the bioheat field. In this paper, the effects of blood vessels on temperature distribution in a skin tissue subjected to various thermal therapy conditions are investigated. Present model consists of counter-current multilevel vessel network embedded in a three-dimensional triple-layered skin structure. Branching angles of vessels are calculated using the physiological principle of minimum work. Length and diameter ratios are specified using length doubling rule and Cube law, respectively. By solving continuity, momentum and energy equations for blood flow and Pennes and modified Pennes bioheat equations for the tissue, temperature distributions in the tissue are measured. Effects of considering modified Pennes bioheat equation are investigated, comprehensively. It is also observed that blood has an impressive role in temperature distribution of the tissue, especially at high temperatures. The effects of different parameters such as boundary conditions, relaxation time, thermal properties of skin, metabolism and pulse heat flux on temperature distribution are investigated. Tremendous effect of boundary condition type at the lower boundary is noted. It seems that neither insulation nor constant temperature at this boundary can completely describe the real physical phenomena. It is expected that real temperature at the lower levels is somewhat between two predicted values. The effect of temperature on the thermal properties of skin tissue is considered. It is shown that considering temperature dependent values for thermal conductivity is important in the temperature distribution estimation of skin tissue; however, the effect of temperature dependent values for specific heat capacity is negligible. It is seen that considering modified Pennes equation in processes with high heat flux during low times is significant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review.

    PubMed

    Tahrir, Farzaneh G; Ganji, Fariba; Ahooyi, Taha M

    2015-01-01

    Recently, great attention has been paid to in situ gel-forming chitosan/glycerophosphate (CS/Gp) formulation due to its high biocompatibility with incorporated cells and medical agents, biodegradability and sharp thermosensitive gelation. CS/Gp is in liquid state at room temperature and after minimally invasive administration into the desired tissue, it forms a solid-like gel as a response to temperature increase. The overview of various recently patented strategies on injectable delivery systems indicates the significance of this formulation in biomedical applications. This thermosensitive hydrogel has a great potential as scaffold material in tissue engineering, due to its good biocompatibility, minimal immune reaction, high antibacterial nature, good adhesion to cells and the ability to be molded in various geometries. Moreover, CS/Gp hydrogel has been utilized as a smart drug delivery system to increase patient compliance by maintaining the drug level in the therapeutic window for a long time while avoiding the need for frequent injections of the therapeutic agent. This review paper highlights the recent patents and investigations on different formulations of CS/Gp hydrogels as tissue engineering scaffolds and carriers for therapeutic agents. Additionally, the dominant mechanism of sol-gel transition in those systems as well as their physicochemical properties and biocompatibility are discussed in detail.

  2. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    PubMed

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (p<0.05). Oxygen consumption, metabolic heat production and heat loss from the skin were less with the thermal swimsuit than with a normal swimsuit in both water temperatures (p<0.05). Total insulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (p<0.05). Tissue insulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (p<0.05), perhaps due to of the attenuation of shivering during immersion with a thermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  3. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes.

    PubMed

    Stillman, Jonathon H; Tagmount, Abderrahmane

    2009-10-01

    Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.

  4. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    PubMed

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  5. New insights into the parametrization of temperature and light responses of mono - and sesquiterpene emissions from Aleppo pine and rosemary

    NASA Astrophysics Data System (ADS)

    Staudt, M.; Bourgeois, I.; Al Halabi, R.; Song, W.; Williams, J.

    2017-03-01

    Phytogenic emission of large volatile organic compounds (VOCs) such as monoterpenes (MTs) and sesquiterpenes (SQTs) are key precursors to the formation and growth of atmospheric particles. However, controlled environment studies to elucidate emission responses to temperature and light are still sparse. In this study, the volatile contents and emission responses of Aleppo pine and Rosemary have been investigated. These two common Mediterranean species store semivolatiles inside (resin ducts) and outside (trichomes) their foliage tissues respectively. Both species emitted mainly MTs with basal emission rates of around 5 (Rosemary) and 10 (pine) μg g-1 h-1 and SQTs about one order of magnitude lower. In Aleppo pine, two volatile sources could be clearly distinguished: 1) de-novo synthesized emission of (E)-β-ocimene and linalool, which accounted for about 70% of the total VOC release, were not found in foliar VOC extracts and expressed light dependency (LD) and temperature responses typical for enzyme driven emissions; and 2) storage-derived emissions of various MTs and SQTs whose emissions increased exponentially with temperature, showed no light dependency and were all present in leaf extracts. In Rosemary, all emitted MTs and SQTs including many oxygenated compounds, showed responses typical for stored volatiles and were all found in leaf extracts. The emissions of individual volatiles or volatile classes could be well described with the commonly applied empirical algorithms developed for LD or non LD emissions. However, the shapes of the temperature responses, and hence the deduced coefficient values, were significantly different between oxygenated and non-oxygenated compounds. They also differed between the storage-derived emissions of the two plant species, for individual VOCs or VOC classes. We address the possible reasons for this variation in temperature responses and argue that they are mostly due to molecular interactions along the species specific leaf-internal diffusion paths including the build-up of transient VOC pools and degradation.

  6. Effect of low sea water temperature on water balance in the Atlantic salmon, (Salmo salar L.).

    PubMed

    Lega, Y V; Chernitsky, A G; Belkovsky, N M

    1992-08-01

    The water balance in Atlantic salmon (Salmo salar L.) overwintering in sea water (34 ‰) was investigated. With a decrease of temperature from 5.6 to 1.0°C the drinking rate decreased from 13.9 to 5.7 ml/kg/day, and the absolute amount of water absorbed decreased from 8.9 to 5.0 ml/kg/day. A decrease in temperature led, however, to an increase in the proportion of water absorbed in the intestines from 60 to 96%. Blood serum osmolarity increased from 320 to 440 mosm/1 with decreasing temperature and there was a reduction in tissue water content from 75 to 69% The disturbance of water balance at low temperature may be one of the factors responsible for mortality of salmon overwintering in sea water.

  7. Electrosurgical vessel sealing tissue temperature: experimental measurement and finite element modeling.

    PubMed

    Chen, Roland K; Chastagner, Matthew W; Dodde, Robert E; Shih, Albert J

    2013-02-01

    The temporal and spatial tissue temperature profile in electrosurgical vessel sealing was experimentally measured and modeled using finite element modeling (FEM). Vessel sealing procedures are often performed near the neurovascular bundle and may cause collateral neural thermal damage. Therefore, the heat generated during electrosurgical vessel sealing is of concern among surgeons. Tissue temperature in an in vivo porcine femoral artery sealed using a bipolar electrosurgical device was studied. Three FEM techniques were incorporated to model the tissue evaporation, water loss, and fusion by manipulating the specific heat, electrical conductivity, and electrical contact resistance, respectively. These three techniques enable the FEM to accurately predict the vessel sealing tissue temperature profile. The averaged discrepancy between the experimentally measured temperature and the FEM predicted temperature at three thermistor locations is less than 7%. The maximum error is 23.9%. Effects of the three FEM techniques are also quantified.

  8. HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues1[OPEN

    PubMed Central

    Simm, Stefan; Paupière, Marine Josephine; Theres, Klaus; Bovy, Arnaud; Schleiff, Enrico; Scharf, Klaus-Dieter

    2016-01-01

    Male reproductive tissues are more sensitive to heat stress (HS) compared to vegetative tissues, but the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection from HS. In tomato (Solanum lycopersicum), HsfA2 acts as coactivator of HsfA1a and is one of the major Hsfs accumulating in response to elevated temperatures. The contribution of HsfA2 in heat stress response (HSR) and thermotolerance was investigated in different tissues of transgenic tomato plants with suppressed HsfA2 levels (A2AS). Global transcriptome analysis and immunodetection of two major Hsps in vegetative and reproductive tissues showed that HsfA2 regulates subsets of HS-induced genes in a tissue-specific manner. Accumulation of HsfA2 by a moderate HS treatment enhances the capacity of seedlings to cope with a subsequent severe HS, suggesting an important role for HsfA2 in regulating acquired thermotolerance. In pollen, HsfA2 is an important coactivator of HsfA1a during HSR. HsfA2 suppression reduces the viability and germination rate of pollen that received the stress during the stages of meiosis and microspore formation but had no effect on more advanced stages. In general, pollen meiocytes and microspores are characterized by increased susceptibility to HS due to their lower capacity to induce a strong HSR. This sensitivity is partially mitigated by the developmentally regulated expression of HsfA2 and several HS-responsive genes mediated by HsfA1a under nonstress conditions. Thereby, HsfA2 is an important factor for the priming process that sustains pollen thermotolerance during microsporogenesis. PMID:26917685

  9. Effect of cold compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.

  10. Temperature-dependent elastic properties of brain tissues measured with the shear wave elastography method.

    PubMed

    Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping

    2017-01-01

    Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments.

    PubMed

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L(-1) of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox-oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47 protein and calmodulin) and repressed 43 proteins in 4 groups (groups 4-7), of which 6 were associated with photosynthesis II oxygen-evolving protein, the photosynthesis I reaction center, sugar metabolism, the redox-oxidative system and fatty acid metabolism. Differences in the response to ethylene and holding temperature at 30 °C were also revealed and have been discussed. The identities and quantities of the proteins found were linked with quality changes. This study demonstrates that ethylene and high temperature influence banana fruit ripening and senescence at the proteomic level and reveals the mechanisms by which high temperature accelerates banana fruit ripening.

  12. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments

    PubMed Central

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L−1 of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox–oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47 protein and calmodulin) and repressed 43 proteins in 4 groups (groups 4–7), of which 6 were associated with photosynthesis II oxygen-evolving protein, the photosynthesis I reaction center, sugar metabolism, the redox–oxidative system and fatty acid metabolism. Differences in the response to ethylene and holding temperature at 30 °C were also revealed and have been discussed. The identities and quantities of the proteins found were linked with quality changes. This study demonstrates that ethylene and high temperature influence banana fruit ripening and senescence at the proteomic level and reveals the mechanisms by which high temperature accelerates banana fruit ripening. PMID:27162640

  13. Cartilage engineering using chondrocyte cell sheets and its application in reconstruction of microtia.

    PubMed

    Zhou, Libin; Ding, Ruiying; Li, Baowei; Han, Haolun; Wang, Hongnan; Wang, Gang; Xu, Bingxin; Zhai, Suoqiang; Wu, Wei

    2015-01-01

    The imperfections of scaffold materials have hindered the clinical application of cartilage tissue engineering. The recently developed cell-sheet technique is adopted to engineer tissues without scaffold materials, thus is considered being potentially able to overcome the problems concerning the scaffold imperfections. This study constructed monolayer and bilayer chondrocyte cell sheets and harvested the sheets with cell scraper instead of temperature-responsive culture dishes. The properties of the cultured chondrocyte cell sheets and the feasibility of cartilage engineering using the chondrocyte cell sheets was further investigated via in vitro and in vivo study. Primary extracellular matrix (ECM) formation and type II collagen expression was detected in the cell sheets during in vitro culture. After implanted into nude mice for 8 weeks, mature cartilage discs were harvested. The morphology of newly formed cartilage was similar in the constructs originated from monolayer and bilayer chondrocyte cell sheet. The chondrocytes were located within evenly distributed ovoid lacunae. Robust ECM formation and intense expression of type II collagen was observed surrounding the evenly distributed chondrocytes in the neocartilages. Biochemical analysis showed that the DNA contents of the neocartilages were higher than native human costal cartilage; while the contents of the main component of ECM, glycosaminoglycan and hydroxyproline, were similar to native human costal cartilage. In conclusion, the chondrocyte cell sheet constructed using the simple and low-cost technique is basically the same with the cell sheet cultured and harvested in temperature-responsive culture dishes, and can be used for cartilage tissue engineering.

  14. Effects of interaction between temperature conditions and copper exposure on immune defense and other life-history traits of the blow fly Protophormia terraenovae.

    PubMed

    Pölkki, Mari; Kangassalo, Katariina; Rantala, Markus J

    2014-01-01

    Environmental pollution is considered one of the major threats to organisms. Direct effects of heavy metal pollution on various life-history traits are well recognized, while the effects of potential interactions between two distinct environmental conditions on different traits are poorly understood. Here, we have tested the effects of interactions between temperature conditions and heavy metal exposure on innate immunity and other life-history traits. Maggots of the blow fly Protophormia terraenovae were reared on either copper-contaminated or uncontaminated food, under three different temperature environments. Encapsulation response, body mass, and development time were measured for adult flies that were not directly exposed to copper. We found that the effects of copper exposure on immunity and other traits are temperature-dependent, suggesting that the ability to regulate toxic compounds in body tissues might depend on temperature conditions. Furthermore, we found that temperature has an effect on sex differences in immune defense. Males had an encapsulation response at higher temperatures stronger than that of females. Our results indicate that the effects of environmental conditions on different traits are much more intricate than what can be predicted. This is something that should be considered when conducting immunological experiments or comparing results of previous studies.

  15. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation

    PubMed Central

    Ji, Zhen; Brace, Christopher L

    2011-01-01

    Microwaves are a promising source for thermal tumor ablation due to their ability to rapidly heat dispersive biological tissues, often to temperatures in excess of 100 °C. At these high temperatures, tissue dielectric properties change rapidly and, thus, so do the characteristics of energy delivery. Precise knowledge of how tissue dielectric properties change during microwave heating promises to facilitate more accurate simulation of device performance and helps optimize device geometry and energy delivery parameters. In this study, we measured the dielectric properties of liver tissue during high-temperature microwave heating. The resulting data were compiled into either a sigmoidal function of temperature or an integration of the time–temperature curve for both relative permittivity and effective conductivity. Coupled electromagnetic–thermal simulations of heating produced by a single monopole antenna using the new models were then compared to simulations with existing linear and static models, and experimental temperatures in liver tissue. The new sigmoidal temperature-dependent model more accurately predicted experimental temperatures when compared to temperature–time integrated or existing models. The mean percent differences between simulated and experimental temperatures over all times were 4.2% for sigmoidal, 10.1% for temperature–time integration, 27.0% for linear and 32.8% for static models at the antenna input power of 50 W. Correcting for tissue contraction improved agreement for powers up to 75 W. The sigmoidal model also predicted substantial changes in heating pattern due to dehydration. We can conclude from these studies that a sigmoidal model of tissue dielectric properties improves prediction of experimental results. More work is needed to refine and generalize this model. PMID:21791728

  16. Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.

    PubMed

    Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries

    2018-01-01

    Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p  < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p  < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p  < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p  < 0.0001) and REV-ERBα ( p  < 0.01) in the BAT and CLOCK ( p  < 0.05), PER2 ( p  < 0.05), CRY1 ( p  < 0.05), CRY2 ( p  < 0.01), and REV-ERBα ( p  < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.

  17. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment.

    PubMed

    Yousefi, Azizeh-Mitra; Smucker, Byran; Naber, Alex; Wyrick, Cara; Shaw, Charles; Bennett, Katelyn; Szekely, Sarah; Focke, Carlie; Wood, Katherine A

    2018-02-01

    Tissue engineering using three-dimensional porous scaffolds has shown promise for the restoration of normal function in injured and diseased tissues and organs. Rigorous control over scaffold architecture in melt extrusion additive manufacturing is highly restricted mainly due to pronounced variations in the deposited strand diameter upon any variations in process conditions and polymer viscoelasticity. We have designed an I-optimal, split-plot experiment to study the extrudate swell in melt extrusion additive manufacturing and to control the scaffold architecture. The designed experiment was used to generate data to relate three responses (swell, density, and modulus) to a set of controllable factors (plotting needle diameter, temperature, pressure, and the dispensing speed). The fitted regression relationships were used to optimize the three responses simultaneously. The swell response was constrained to be close to 1 while maximizing the modulus and minimizing the density. Constraining the extrudate swell to 1 generates design-driven scaffolds, with strand diameters equal to the plotting needle diameter, and allows a greater control over scaffold pore size. Hence, the modulus of the scaffolds can be fully controlled by adjusting the in-plane distance between the deposited strands. To the extent of the model's validity, we can eliminate the effect of extrudate swell in designing these scaffolds, while targeting a range of porosity and modulus appropriate for bone tissue engineering. The result of this optimization was a predicted modulus of 14 MPa and a predicted density of 0.29 g/cm 3 (porosity ≈ 75%) using polycaprolactone as scaffold material. These predicted responses corresponded to factor levels of 0.6 μm for the plotting needle diameter, plotting pressure of 2.5 bar, melt temperature of 113.5 °C, and dispensing speed of 2 mm/s. The validation scaffold enabled us to quantify the percentage difference for the predictions, which was 9.5% for the extrudate swell, 19% for the density, and 29% for the modulus.

  18. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.

    PubMed

    Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo

    2013-10-01

    Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing thermotherapy is expected. 2013. Published by Elsevier Inc

  19. Decreased precision contributes to the hypoxic thermoregulatory response in lizards.

    PubMed

    Cadena, Viviana; Tattersall, Glenn J

    2009-01-01

    The decrease in body temperature (T(b)) observed in most vertebrate classes in response to hypoxia has been attributed to a regulated decrease in set-point, protecting organs against tissue death due to oxygen depletion. Hypoxia, however, imparts particular challenges to metabolic function which may, in turn, affect thermoregulation. In ectotherms, where thermoregulation is mainly behavioural, stressors that influence the propensity to move and respond to temperature gradients are expected to have an impact on thermoregulatory control. Using low oxygen as a potent stressor, we evaluated the variability and level of thermoregulation of inland bearded dragons. To examine the source of thermoregulatory variability, we studied their behaviour in an electronically controlled temperature-choice shuttle box, a constant temperature dual-choice shuttle box, and a linear thermal gradient. A significant increase in the size of the T(b) range was observed at the lowest oxygen concentration (4% O(2)), reflecting a decrease in thermoregulatory precision in the temperature-choice shuttle box. This was also accompanied by a drop of approximately 2-4 degrees C in T(b), the drop being greatest in situations where T(b) must be actively defended. Situations that force the lizards to continually choose temperatures, rather than passively remain at a given temperature, lead to an increase in the variability in the manifested T(b), which is further exaggerated in hypoxia. This study reveals that a decrease in thermoregulatory precision caused by a diminished propensity to move or effect appropriate thermoregulatory responses may be a contributing component in the lowering of selected body temperatures observed in many hypoxic ectotherms.

  20. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.

    PubMed

    Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I

    2009-09-01

    Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.

  1. Brown adipose tissue thermogenesis, the basic rest-activity cycle, meal initiation, and bodily homeostasis in rats.

    PubMed

    Blessing, William; Mohammed, Mazher; Ootsuka, Youichirou

    2013-09-10

    Laboratory rats alternate between behaviorally active and inactive states every 1-2h throughout the 24hour day, the ultradian basic rest-activity cycle (BRAC). During the behaviorally active phases of the BRAC, brown adipose tissue (BAT) temperature, body and brain temperature, and arterial pressure and heart rate increase in an integrated manner. Since the BAT temperature increases are substantially greater than the corresponding body and brain temperature increases, BAT thermogenesis contributes to the body and brain temperature increases. When food is available ad libitum, eating commences approximately 15min after the onset of an episodic increase in BAT temperature, and not at other times. If no food is available, the rat still disturbs the empty food container approximately 15min after the onset of an episodic increase in BAT temperature, and not at other times. The increase in brain temperature that precedes eating may facilitate the cognitive processing that occurs during the search for food, when the rat engages with the external environment. Rather than being triggered by changes in levels of body fuels or other meal-associated factors, in sedentary laboratory rats with ad libitum access to food, meal initiation normally occurs as part of the centrally-programmed ultradian BRAC. BRAC-associated BAT temperature increases occur in a thermoneutral environment and they are not preceded by falls in body or brain temperature, so they are not homeostatic thermoregulatory responses. The pattern of integrated behaviors and physiological functions associated with the BRAC presumably reflects Darwinian natural selection, and homeostatic thermoregulatory explanations of the BRAC-associated changes in temperature should be considered in this context. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Experiment study of bio-tissue's temperature irradiated by laser based on optical fiber F-P sensor

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Liu, Xia

    2014-08-01

    Laser has several advantages, such as strong anti-interference ability, quick speed, high power, agility and precision. It is widely applied in military and medicine fields. When laser acts on human body, biological tissue of human body will appear the phenomenon of ablation and carbonization and solidification. In order to effectively defend excess damage by laser, the thermal effect research of skin tissue should be carried out. Temperature is a key parameter in the processing between laser and bio-tissue. It is the mostly foundation using analyze size of thermal damage area and forecast thermal damage degree. In this paper, the low fineness optical fiber F-P sensing system for temperature measurement is designed and established. The real-time measurement system of temperature generated by laser irradiating bio-tissue is build based on the sensing system. The temperature distributing generated by laser in the bio-tissue is studied through experiment when the spot diameter of emission laser is difference with the same energy density and the energy density is difference with the same spot diameter of emission laser. The experimental results show that the sensing system can be used to the real-time temperature measurement of bio-tissue efficiency. It has small bulk. Its outer diameter is 250μm. And the hurt for bio-tissue is small. It has high respond speed. The respond time of temperature is less than 1s. These can be satisfied with practice demand. When the energy density of laser is same, the temperature rising in the same location is low along the spot diameter of emission laser increasing. When the spot diameter of emission laser is same, the temperature rising in the same location is increasing along with the energy density of laser increasing.

  3. Low temperature tolerance and cold hardening of cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 3000 m altitude in southern Wyoming, were quite cold tolerant (50% inhibition of staining occurred from -17/sup 0/ to -20/sup 0/C), while O. bigelovii and O. ramosissima, which are restricted to much warmer habitats, were not very cold tolerant (50%more » inhibition from -4/sup 0/ to -7/sup 0/). Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivity accounted for the =600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs. Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Differences in both morphology and tissue cold sensitivity apparently influenced the relative northern ranges of Lophocereus schottii with respect to the other columnar cacti and F. covillei with respect to the other barrel cacti, as well as the relative elevational range of Denmoza rhodacantha with respect to Trichocereus candicans in northcentral Argentina. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species.« less

  4. Ccl22/MDC, is a prostaglandin dependent pyrogen, acting in the anterior hypothalamus to induce hyperthermia via activation of brown adipose tissue.

    PubMed

    Osborn, Olivia; Sanchez-Alavez, Manuel; Dubins, Jeffrey S; Gonzalez, Alejandro Sanchez; Morrison, Brad; Hadcock, John R; Bartfai, Tamas

    2011-03-01

    CC Chemokine ligand 22 (Ccl22) is a selective, high affinity ligand at the CC chemokine receptor 4 (Ccr4). We have identified cDNAs encoding both ligand and receptor of the Ccl22-Ccr4 pair in cDNA libraries of the anterior hypothalamus/pre-optic area (AH/POA) by PCR. The AH/POA is the key brain region where endogenous pyrogens have been shown to act on warm sensitive neurons to affect thermogenesis in brown adipose tissue (BAT) and other thermogenically responsive tissues. We show that functional Ccr4 receptors are present in the AH/POA neurons as injection of Ccl22 into the POA but not to other hypothalamic nuclei induces an increase in core body temperature as measured by radiotelemetry. Indomethacin (5 mg/kg s.c) pre-treatment markedly reduced the hyperthermia evoked by POA injection of Ccl22 (10 ng/0.5 ul) and thus suggests that this hyperthermia is mediated through cyclooxygenase activation and thus likely through the formation and action of the pyrogen prostaglandin E2. The temperature elevation involves a decrease in the respiratory exchange ratio and increased activation of the brown adipose tissue as demonstrated by ¹⁸F-FDG-PET imaging. We describe a novel role to the ligand Ccl22 and its receptor Ccr4 in the anterior hypothalamus in temperature regulation that depends on the synthesis of the endogenous pyrogen, prostaglandin E2. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water.

    PubMed

    Chung, S H; Cerussi, A E; Merritt, S I; Ruth, J; Tromberg, B J

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R=0.96) with a difference of 1.1+/-0.91 degrees C over a range of 28-48 degrees C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  6. Gene expression patterns of two dominant tallgrass prairie species differ in response to warming and altered precipitation

    DOE PAGES

    Smith, Melinda D.; Hoffman, Ava M.; Avolio, Meghan L.

    2016-05-13

    To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C 4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species ( Zea mays) to assess correlations in leaf temperature (T leaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly changemore » in abundance levels with T leaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing T leaf in S. nutans. Furthermore, the differential transcriptomic responses of the co-dominant C 4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.« less

  7. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-07

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  8. Concurrent hyperthermia estimation schemes based on extended Kalman filtering and reduced-order modelling.

    PubMed

    Potocki, J K; Tharp, H S

    1993-01-01

    The success of treating cancerous tissue with heat depends on the temperature elevation, the amount of tissue elevated to that temperature, and the length of time that the tissue temperature is elevated. In clinical situations the temperature of most of the treated tissue volume is unknown, because only a small number of temperature sensors can be inserted into the tissue. A state space model based on a finite difference approximation of the bioheat transfer equation (BHTE) is developed for identification purposes. A full-order extended Kalman filter (EKF) is designed to estimate both the unknown blood perfusion parameters and the temperature at unmeasured locations. Two reduced-order estimators are designed as computationally less intensive alternatives to the full-order EKF. Simulation results show that the success of the estimation scheme depends strongly on the number and location of the temperature sensors. Superior results occur when a temperature sensor exists in each unknown blood perfusion zone, and the number of sensors is at least as large as the number of unknown perfusion zones. Unacceptable results occur when there are more unknown perfusion parameters than temperature sensors, or when the sensors are placed in locations that do not sample the unknown perfusion information.

  9. Human Physiology in an Aquatic Environment.

    PubMed

    Pendergast, David R; Moon, Richard E; Krasney, John J; Held, Heather E; Zamparo, Paola

    2015-09-20

    Water covers over 70% of the earth, has varying depths and temperatures and contains much of the earth's resources. Head-out water immersion (HOWI) or submersion at various depths (diving) in water of thermoneutral (TN) temperature elicits profound cardiorespiratory, endocrine, and renal responses. The translocation of blood into the thorax and elevation of plasma volume by autotransfusion of fluid from cells to the vascular compartment lead to increased cardiac stroke volume and output and there is a hyperperfusion of some tissues. Pulmonary artery and capillary hydrostatic pressures increase causing a decline in vital capacity with the potential for pulmonary edema. Atrial stretch and increased arterial pressure cause reflex autonomic responses which result in endocrine changes that return plasma volume and arterial pressure to preimmersion levels. Plasma volume is regulated via a reflex diuresis and natriuresis. Hydrostatic pressure also leads to elastic loading of the chest, increasing work of breathing, energy cost, and thus blood flow to respiratory muscles. Decreases in water temperature in HOWI do not affect the cardiac output compared to TN; however, they influence heart rate and the distribution of muscle and fat blood flow. The reduced muscle blood flow results in a reduced maximal oxygen consumption. The properties of water determine the mechanical load and the physiological responses during exercise in water (e.g. swimming and water based activities). Increased hydrostatic pressure caused by submersion does not affect stroke volume; however, progressive bradycardia decreases cardiac output. During submersion, compressed gas must be breathed which introduces the potential for oxygen toxicity, narcosis due to nitrogen, and tissue and vascular gas bubbles during decompression and after may cause pain in joints and the nervous system. Copyright © 2015 John Wiley & Sons, Inc.

  10. Cell delivery in regenerative medicine: the cell sheet engineering approach.

    PubMed

    Yang, Joseph; Yamato, Masayuki; Nishida, Kohji; Ohki, Takeshi; Kanzaki, Masato; Sekine, Hidekazu; Shimizu, Tatsuya; Okano, Teruo

    2006-11-28

    Recently, cell-based therapies have developed as a foundation for regenerative medicine. General approaches for cell delivery have thus far involved the use of direct injection of single cell suspensions into the target tissues. Additionally, tissue engineering with the general paradigm of seeding cells into biodegradable scaffolds has also evolved as a method for the reconstruction of various tissues and organs. With success in clinical trials, regenerative therapies using these approaches have therefore garnered significant interest and attention. As a novel alternative, we have developed cell sheet engineering using temperature-responsive culture dishes, which allows for the non-invasive harvest of cultured cells as intact sheets along with their deposited extracellular matrix. Using this approach, cell sheets can be directly transplanted to host tissues without the use of scaffolding or carrier materials, or used to create in vitro tissue constructs via the layering of individual cell sheets. In addition to simple transplantation, cell sheet engineered constructs have also been applied for alternative therapies such as endoscopic transplantation, combinatorial tissue reconstruction, and polysurgery to overcome limitations of regenerative therapies and cell delivery using conventional approaches.

  11. Uncovering Small RNA-Mediated Responses to Cold Stress in a Wheat Thermosensitive Genic Male-Sterile Line by Deep Sequencing1[W][OA

    PubMed Central

    Tang, Zhonghui; Zhang, Liping; Xu, Chenguang; Yuan, Shaohua; Zhang, Fengting; Zheng, Yonglian; Zhao, Changping

    2012-01-01

    The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress. PMID:22508932

  12. The Dynamic Behaviour of Ballistic Gelatin

    NASA Astrophysics Data System (ADS)

    Shepherd, C. J.; Appleby-Thomas, G. J.; Hazell, P. J.; Allsop, D. F.

    2009-12-01

    In order to characterise the effect of projectiles it is necessary to understand the mechanism of both penetration and resultant wounding in biological systems. Porcine gelatin is commonly used as a tissue simulant in ballistic tests because it elastically deforms in a similar manner to muscular tissue. Bullet impacts typically occur in the 350-850 m/s range; thus knowledge of the high strain-rate dynamic properties of both the projectile and target materials are desirable to simulate wounds. Unlike projectile materials, relatively little data exists on the dynamic response of flesh simulants. The Hugoniot for a 20 wt.% porcine gelatin, which exhibits a ballistic response similar to that of human tissues at room temperature, was determined using the plate-impact technique at impact velocities of 75-860 m/s. This resulted in impact stresses around three times higher than investigated elsewhere. In US-uP space the Hugoniot had the form US = 1.57+1.77 uP, while in P-uP space it was essentially hydrodynamic. In both cases this was in good agreement with the limited available data from the literature.

  13. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.

    PubMed

    Subramanian, Swetha; Mast, T Douglas

    2015-10-07

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.

  14. Prediction and Measurement of Temperature Rise Induced by High Intensity Focused Ultrasound in a Tissue-Mimicking Phantom

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2018-06-01

    The present study aims to predict the temperature rise induced by high intensity focused ultrasound (HIFU) in soft tissues to assess tissue damage during HIFU thermal therapies. With the help of a MATLAB-based software package developed for HIFU simulation, the HIFU field was simulated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective, and the HIFU-induced temperature rise in a tissue-mimicking phantom was simulated by solving Pennes' bioheat transfer (BHT) equation. In order to verify the simulation results, we performed in-vitro heating experiments on a tissue-mimicking phantom by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The temperature rise near the focal spot obtained from the HIFU simulator was in good agreement with that from the in-vitro experiments. This confirms that the HIFU simulator based on the KZK and the BHT equations captures the HIFU-induced temperature rise in soft tissues well enough to make it suitable for HIFU treatment planning.

  15. Antioxidant systems in supporting environmental and programmed adaptations to low temperatures.

    PubMed

    Blagojević, Dusko P

    2007-01-01

    Hetero and endothermic adaptive responses arising as a result of natural responses to environmental cues include antioxidant systems that support adaptations to environmental low temperatures in the broadest sense. These temperatures induce phase changes in energy production and consequently changes in the concentration of reactive oxygen species (ROS). The latter may lead to oxidative stress and the impairment of cellular homeostasis and antioxidant defence systems (ADS) scavenge the ROS so generated. In endotherms the ADS responds to oxidative pressure during acute cold stress conditions, this response is tissue specific and does not extend to prevent other oxidative damage. The early acute phase of cold exposure is accompanied by a significant depletion in redox equivalents. Under such conditions it is questionable if ADS has the capacity to neutralize elevated levels of ROS since there is also an increased energy demand and enhanced ATP consumption. Prolonged exposure to cold leads to ADS adaptation. Hibernators and freeze-tolerant species elevate their ADS before hibernation or freezing in order to prepare for and cope with re-awakening. The involvement of ROS and the role of the ADS in organisms subjected to low temperatures are features intercalated into physiological mechanisms of homestasis. The exact mechanisms for ADS regulation have not been fully defined and are the subject of many ongoing intriguing scientific investigations.

  16. Prediction of brain tissue temperature using near-infrared spectroscopy.

    PubMed

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-04-01

    Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications.

  17. Physical basics of endovenous laser treatment and potential of innovative developments

    NASA Astrophysics Data System (ADS)

    Sroka, R.; Esipova, A.; Schmedt, C. G.

    2017-04-01

    During the last decade, endoluminal laser treatment (ELT) has been rapidly developing. Protocols using radially emitting ELT fibres in combination with infrared laser light show clinical advantages over the bare-fibre technique and near infrared irradiation. Although the clinical response rate is high several side effects occurred. Innovative light application systems and feedback systems are therefore being under development to potentially improve the clinical situation. The irradiation patterns of bare fibres and radially emitting 1-ring and 2-ring fibres were measured using the goniometer technique. The device robustness, device handling and tissue effects were investigated using the established ox-foot-model. Furthermore, temperature measurements were performed either intraluminal within the irradiation field using a tiny temperature sensor and on the outer surface of the vessel wall by means of a thermocamera. All fibres showed sufficient mechanical and thermal robustness. The destruction threshold is far beyond the light powers employed during clinical application. The 1-ring fibre showed very high peak temperatures for a short time, while the 2-ring-fibre hold its somewhat lower maximum temperature for a longer time. Both forms of energy application resulted in the desired shrinkage and destruction effect. In this regard, the handling of the 2-ring fibre appears subjectively more convenient with reduced sticking-related problems. Acute tissue effects could be investigated to improve the understanding especially of the interaction between handling, maneuvers and tissue effects. The 2-ring radially emitting fibre in combination with IR laser light and specific application parameters showed improved handling and safety features.

  18. Accelerated cell-sheet recovery from a surface successively grafted with polyacrylamide and poly(N-isopropylacrylamide).

    PubMed

    Akiyama, Yoshikatsu; Kikuchi, Akihiko; Yamato, Masayuki; Okano, Teruo

    2014-08-01

    A double polymeric nanolayer consisting of poly(N-isopropylacrylamide) (PIPAAm) and hydrophilic polyacrylamide (PAAm) was deposited on tissue culture polystyrene (TCPS) surfaces using electron beam irradiation to form a new temperature-responsive cell culture surface in which the basal hydrophilic PAAm component in the double polymeric layer promotes the hydration of the upper PIPAAm layer and induces rapid cell detachment compared to a conventional temperature-responsive cell culture surface, PIPAAm-grafted TCPS (PIPAAm-TCPS). Take-off angle-dependent X-ray photoelectron spectroscopy spectral analysis demonstrated that the grafted PIPAAm and PAAm components were located in the upper and basal regions of the double polymeric layer, respectively, suggesting that the double polymeric layer forms an inter-penetrating-network-like structure with PAAm at the basal portion of the PIPAAm grafted chains. The wettability of the temperature-responsive cell culture surfaces with the double polymeric layer tended to be more hydrophilic, with an increase in the basal PAAm graft density at a constant PIPAAm graft density. However, when the graft densities of the upper PIPAAm and basal PAAm were optimized, the resulting temperature-responsive cell culture surface with the double polymeric layer exhibited rapid cell detachment while maintaining cell adhesive character comparable to that of PIPAAm-TCPS. The cell adhesive character was altered from cell-adhesive to cell-repellent with increasing PAAm or PIPAAm graft density. The cell adhesive character of the temperature-responsive cell culture surfaces was relatively consistent with their contact angles. These results strongly suggest that the basal PAAm surface properties affect the degree of hydration and dehydration of the subsequently grafted PIPAAm. In addition, the roles of the hydrophilic component in accelerating cell detachment are further discussed in terms of the mobility of the grafted PIPAAm chains. Applications of this insight might be useful for designing temperature-responsive cell culture surfaces for achieving efficient cell culture and quick target cell detachment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. [Analysis and comprehensive evaluation on cold resistance of six varieties of Michelia].

    PubMed

    Li, Rui Xue; Jin, Xiao Ling; Hu, Xi Jun; Chai, Yi Xia; Cai, Meng Ying; Luo, Feng; Zhang, Fang Jing

    2017-05-18

    Taking six varieties of Michelia as test materials, their responses under cold situation in the field were investigated and the semilethal low temperatures were calculated by fitting Logistic equation. The nine structure indexes of leaf tissue were observed by paraffin section, and a comprehensive evaluation on cold resistance of different varieties was given according to subordinate function value analysis. The results showed that the relative electrical conductivity of six varieties of Michelia was significantly positively correlated with the semilethal low temperature (LT 50 ) of 3 h 0-25 ℃ treatment. From high to low, the order of LT 50 , which ranged between -20.48 ℃and -8.67 ℃, was M. maudiae > M. maudiae var. rubicunda > M. wilsonii > M. 'liubanhanxiao' ♀× M. shiluensis ♂ > M. platypetala > M. 'liubanhanxiao'. The epidermal anticlinal walls of six varieties of Michelia leaves had 1-2 layers and showed slightly sinuated shape. The leaf had 1-3 layers of palisade tissue cells and the differences among the indexes of nine anatomical structures were extremely significant. The thickness of palisade tissue, ratio between palisade tissue and spongy tissue, and thickness of the vein were the key factors affecting cold resistance. The order of cold resistance of six varieties of Michelia, from the strong to the weak, was M. 'liubanhanxiao' > M. platypetala > M. 'liubanhanxiao' ♀× M. shiluensis ♂>M. wilsonii > M. maudiae var. rubicunda > M. maudiae, which was basically consistent with the result of field investigation.

  20. Visualizing and Measuring the Temperature Field Produced by Medical Diagnostic Ultrasound Using Thermography

    ERIC Educational Resources Information Center

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and…

  1. Ecophysiological responses of juvenile seabass (Dicentrarchus labrax) exposed to increased temperature and dietary methylmercury.

    PubMed

    Maulvault, Ana Luísa; Barbosa, Vera; Alves, Ricardo; Custódio, Ana; Anacleto, Patrícia; Repolho, Tiago; Pousão Ferreira, Pedro; Rosa, Rui; Marques, António; Diniz, Mário

    2017-05-15

    The ecotoxicological effects of methylmercury (MeHg) exposure have been intensively described in literature. Yet, it is still unclear how marine biota will respond to the presence of MeHg under climate change, namely ocean warming. The present study aimed to investigate, for the first time, fish condition [Fulton's K index (K), hepatosomatic index (HIS) and brain-to-body mass ratio (BB-ratio)] and several stress-related responses in an ecologically and commercially important fish species (Dicentrachus labrax) exposed for 28days to dietary MeHg (8.0mg kg-1 dw) and temperature increase (+4°C). Results showed significant impairments on fish condition, i.e. up to 34% decrease on K, >100% increase on HIS and 44% decrease on BB-ratio, compared to control conditions. Significant changes on tissue biochemical responses were observed in fish exposed to both stressors, acting alone or combined, evidencing the relevance of assessing possible interactions between different environmental stressors in ecotoxicological studies. For instance, muscle showed to be the least affected tissue, only revealing significant alterations in GST activity of MeHg-enriched fish. On the other hand, liver exhibited a significant induction of GST (>100%) and CAT (up to 74%) in MeHg-enriched fish, regardless of temperature exposure, as well as decreased SOD activity (19%) and increased HSP70/HSC70 content (87%) in fish exposed to warming alone. Brain showed to be affected by temperature (69% of GST inhibition and >100% of increased CAT activity), MeHg (>100% of increased CAT activity, 47% of SOD inhibition and 55% of AChE inhibition), as well as by the combination of both (GST, SOD and AChE inhibition, 17%, 48% and 53%, respectively). Hence, our data provides evidences that the toxicological aspects of MeHg ca be potentiated by warmer temperatures, thus, evidencing the need for further research combining contaminants exposure and climate change effects, to better forecast ecological impacts in the ocean of tomorrow. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Monitoring soft tissue coagulation by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Lihachev, A.; Lihacova, I.; Heinrichs, H.; Spigulis, J.; Trebst, T.; Wehner, M.

    2017-12-01

    Laser tissue welding (LTW) or laser tissue soldering (LTS) is investigated since many years for treatment of incisions, wound closure and anastomosis of vessels [1, 2]. Depending on the process, a certain temperature in the range between 65 °C to 85 °C must be reached and held for a few seconds. Care has to be taken not to overheat the tissue, otherwise necrosis or tissue carbonization may occur and will impair wound healing. Usually the temperature is monitored during the process to control the laser power [3]. This requires either bulky equipment or expensive and fragile infrared fibers to feed the temperature signal to an infrared detector. Alternatively, changes in tissue morphology can be directly observed by analysis of spectral reflectance. We investigate spectral changes in the range between 400 nm to 900 nm wavelength. Characteristic spectral changes occur when the temperature of tissue samples increase above 70 °C which is a typical setpoint value for temperature control of coagulation. We conclude that simple spectroscopy in the visible range can provide valuable information during LTS and LTW and probably replace the delicate measurement of temperature. A major advantage is that optical measurements can be performed using standard optical fibers and can be easily integrated into a surgical tool.

  3. Erwinia amylovora psychrotrophic adaptations: evidence of pathogenic potential and survival at temperate and low environmental temperatures.

    PubMed

    Santander, Ricardo D; Biosca, Elena G

    2017-01-01

    The fire blight pathogen Erwinia amylovora can be considered a psychrotrophic bacterial species since it can grow at temperatures ranging from 4 °C to 37 °C, with an optimum of 28 °C. In many plant pathogens the expression of virulence determinants is restricted to a certain range of temperatures. In the case of E. amylovora, temperatures above 18 °C are required for blossom blight epidemics under field conditions. Moreover, this bacterium is able to infect a variety of host tissues/organs apart from flowers, but it is still unknown how environmental temperatures, especially those below 18 °C, affect the pathogen ability to cause fire blight disease symptoms in such tissues/organs. There is also scarce information on how temperatures below 18 °C affect the E. amylovora starvation-survival responses, which might determine its persistence in the environment and probably contribute to the seasonal development of fire blight disease, as occurs in other pathogens. To characterize the virulence and survival of E. amylovora at temperate and low temperatures, we evaluated the effect of three temperatures (4 °C, 14 °C, 28 °C) on symptom development, and on different parameters linked to starvation and virulence. E. amylovora was pathogenic at the three assayed temperatures, with a slow-down of symptom development correlating with colder temperatures and slower growth rates. Siderophore secretion and motility also decreased in parallel to incubation temperatures. However, production of the exopolysaccharides amylovoran and levan was enhanced at 4 °C and 14 °C, respectively. Similarly, biofilm formation, and oxidative stress resistance were improved at 14 °C, with this temperature also favoring the maintenance of culturability, together with a reduction in cell size and the acquisition of rounded shapes in E. amylovora cells subjected to long-term starvation. However, starvation at 28 °C and 4 °C induced an enhanced viable but nonculturable (VBNC) response (to a lesser extent at 4 °C). This work reveals E. amylovora as a highly adaptable pathogen that retains its pathogenic potential even at the minimal growth temperatures, with an improved exopolysaccharide synthesis, biofilm formation or oxidative stress resistance at 14 °C, with respect to the optimal growth temperature (28 °C). Finally, our results also demonstrate the thermal modulation of starvation responses in E. amylovora, suggesting that the starvation-survival and the VBNC states are part of its life cycle. These results confirm the particular psychrotrophic adaptations of E. amylovora , revealing its pathogenic potential and survival at temperate and low environmental temperatures, which have probably contributed to its successful spread to countries with different climates. This knowledge might improve integrated control measures against fire blight.

  4. Erwinia amylovora psychrotrophic adaptations: evidence of pathogenic potential and survival at temperate and low environmental temperatures

    PubMed Central

    Santander, Ricardo D.

    2017-01-01

    The fire blight pathogen Erwinia amylovora can be considered a psychrotrophic bacterial species since it can grow at temperatures ranging from 4 °C to 37 °C, with an optimum of 28 °C. In many plant pathogens the expression of virulence determinants is restricted to a certain range of temperatures. In the case of E. amylovora, temperatures above 18 °C are required for blossom blight epidemics under field conditions. Moreover, this bacterium is able to infect a variety of host tissues/organs apart from flowers, but it is still unknown how environmental temperatures, especially those below 18 °C, affect the pathogen ability to cause fire blight disease symptoms in such tissues/organs. There is also scarce information on how temperatures below 18 °C affect the E. amylovora starvation-survival responses, which might determine its persistence in the environment and probably contribute to the seasonal development of fire blight disease, as occurs in other pathogens. To characterize the virulence and survival of E. amylovora at temperate and low temperatures, we evaluated the effect of three temperatures (4 °C, 14 °C, 28 °C) on symptom development, and on different parameters linked to starvation and virulence. E. amylovora was pathogenic at the three assayed temperatures, with a slow-down of symptom development correlating with colder temperatures and slower growth rates. Siderophore secretion and motility also decreased in parallel to incubation temperatures. However, production of the exopolysaccharides amylovoran and levan was enhanced at 4 °C and 14 °C, respectively. Similarly, biofilm formation, and oxidative stress resistance were improved at 14 °C, with this temperature also favoring the maintenance of culturability, together with a reduction in cell size and the acquisition of rounded shapes in E. amylovora cells subjected to long-term starvation. However, starvation at 28 °C and 4 °C induced an enhanced viable but nonculturable (VBNC) response (to a lesser extent at 4 °C). This work reveals E. amylovora as a highly adaptable pathogen that retains its pathogenic potential even at the minimal growth temperatures, with an improved exopolysaccharide synthesis, biofilm formation or oxidative stress resistance at 14 °C, with respect to the optimal growth temperature (28 °C). Finally, our results also demonstrate the thermal modulation of starvation responses in E. amylovora, suggesting that the starvation-survival and the VBNC states are part of its life cycle. These results confirm the particular psychrotrophic adaptations of E. amylovora, revealing its pathogenic potential and survival at temperate and low environmental temperatures, which have probably contributed to its successful spread to countries with different climates. This knowledge might improve integrated control measures against fire blight. PMID:29085749

  5. Increased temperature and entropy production in cancer: the role of anti-inflammatory drugs.

    PubMed

    Pitt, Michael A

    2015-02-01

    Some cancers have been shown to have a higher temperature than surrounding normal tissue. This higher temperature is due to heat generated internally in the cancer. The higher temperature of cancer (compared to surrounding tissue) enables a thermodynamic analysis to be carried out. Here I show that there is increased entropy production in cancer compared with surrounding tissue. This is termed excess entropy production. The excess entropy production is expressed in terms of heat flow from the cancer to surrounding tissue and enzymic reactions in the cancer and surrounding tissue. The excess entropy production in cancer drives it away from the stationary state that is characterised by minimum entropy production. Treatments that reduce inflammation (and therefore temperature) should drive a cancer towards the stationary state. Anti-inflammatory agents, such as aspirin, other non-steroidal anti-inflammatory drugs, corticosteroids and also thyroxine analogues have been shown (using various criteria) to reduce the progress of cancer.

  6. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.

    PubMed

    Bilyk, Kevin T; Cheng, C-H Christina

    2014-12-01

    Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation.

    PubMed

    Erez, A; Shitzer, A

    1980-02-01

    An analysis of the temperature fields developed in a biological tissue undergoing a monoactive electrical coagulating process is presented, including thermal recovery following prolonged heating. The analysis is performed for the passage of alternating current and assumes a homogeneous and isotropic tissue model which is uniformly perfused by blood at arterial temperature. Solution for the one-dimensional spherical geometry is obtained by a Laplace transform and numerical integrations. Results obtained indicate the major role which blood perfusion plays in determining the effects of the coagulating process; tissue temperatures and depth of destruction are drastically reduced as blood perfusion increases. Metabolic heat generation rate is found to have negligible effects on tissue temperatures whereas electrode thermal inertia affects temperature levels appreciably. However, electrodes employed in practice would have a low thermal inertia which might be regarded as zero for all practical purposes. It is also found that the depth of tissue destruction is almost directly proportional to the electrical power and duration of application. To avoid excessively high temperatures and charring, it would be advantageous to reduce power and increase the time of application. Results of this study should be regarded as a first approximation to the rather complex phenomena associated with electrocoagulation. They may, nevertheless, serve as preliminary guidelines to practicing surgeons applying this technique.

  8. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress.

    PubMed

    Huang, Wen; Ren, Chunhua; Li, Hongmei; Huo, Da; Wang, Yanhong; Jiang, Xiao; Tian, Yushun; Luo, Peng; Chen, Ting; Hu, Chaoqun

    2017-01-01

    The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.

  9. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress

    PubMed Central

    Huang, Wen; Ren, Chunhua; Li, Hongmei; Huo, Da; Wang, Yanhong; Jiang, Xiao; Tian, Yushun; Luo, Peng; Hu, Chaoqun

    2017-01-01

    The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress. PMID:28575089

  10. Temperature sensing of adipose tissue heating with the luminescent upconversion nanoparticles as nanothermometer: in vitro study

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Volkova, E. K.; Zaharevich, A. M.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.

    2017-03-01

    The luminescence spectra of upconversion nanoparticles (UCNPs) imbedded in fat tissue were measured in a wide temperature range, from room to human body and further to hyperthermic temperatures. The two types of synthesized UCNP [NaYF4:Yb3+, Er3+] specimens, namely, powdered as-is and embedded into polymer film, were used. The results show that the luminescence of UCNPs placed under the adipose tissue layer is reasonably good sensitive to temperature change and reflects phase transitions of lipids in tissue cells. The most likely, multiple phase transitions are associated with the different components of fat cells such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The phase transitions of lipids were observed as the changes of the slope of the temperature dependence of UCNP luminescence intensity. The obtained results confirm a high sensitivity of the luminescent UCNPs to the temperature variations within tissues and show a strong potential for providing a controllable tissue thermolysis.

  11. Optimal parameters for arterial repair using light-activated surgical adhesives.

    PubMed

    Soller, Eric C; Hoffman, Grant T; McNally-Heintzelman, Karen M

    2003-01-01

    The clinical acceptance of laser-tissue repair techniques is dependent on the reproducibility of viable repairs. Reproducibility is dependent on two factors: (i) the choice of materials to be used as the adhesive; and (ii) obtaining temperatures high enough to cause protein denaturation at the vital tissue interface without causing excessive thermal damage to the surrounding tissue. The use of a polymer scaffold as a carrier for the protein solder provides for uniform application of the solder to the tissue, thus allowing for pre-selection of optimal laser parameters. The scaffold also facilitates precise tissue alignment and ease of clinical application. In addition, the scaffold can be doped with various pharmaceuticals such as hemostatic and thrombogenic agents to aid wound healing. An ex vivo study was performed to correlate solder and tissue temperature with the tensile strength of arterial repairs formed using scaffold-enhanced light-activated surgical adhesives. Previous studies by our group using solid protein solder without the scaffold indicate that a solder/tissue, interface temperature of 65 degrees C is optimal. Using this parameter as a benchmark, laser irradiance was varied and temperatures were recorded at the surface and at the tissue interface of scaffold-enhanced protein solder using an infrared temperature monitoring system, designed by the researchers, and a type-K thermocouple, respectively.

  12. Tissue dissolution by sodium hypochlorite: effect of concentration, temperature, agitation, and surfactant.

    PubMed

    Stojicic, Sonja; Zivkovic, Slavoljub; Qian, Wei; Zhang, Hui; Haapasalo, Markus

    2010-09-01

    Sodium hypochlorite is the most commonly used endodontic irrigant because of its antimicrobial and tissue-dissolving activity. The aim of this study was to evaluate and compare the effects of concentration, temperature, and agitation on the tissue-dissolving ability of sodium hypochlorite. In addition, a hypochlorite product with added surface active agent was compared with conventional hypochlorite solutions. Three sodium hypochlorite solutions from two different manufacturers in concentrations of 1%, 2%, 4%, and 5.8% were tested at room temperature, 37 degrees C, and 45 degrees C with and without agitation by ultrasonic and sonic energy and pipetting. Distilled and sterilized tap water was used as controls. Pieces of bovine muscle tissue (68 +/- 3 mg) were placed in 10 mL of each solution for five minutes. In selected samples, agitation was performed for one, two, or four 15-second periods per each minute. The tissue specimens were weighed before and after treatment, and the percentage of weight loss was calculated. The contact angle on dentin of the three solutions at concentrations of 1% and 5.8% was measured. Weight loss (dissolution) of the tissue increased almost linearly with the concentration of sodium hypochlorite. Higher temperatures and agitation considerably enhanced the efficacy of sodium hypochlorite. The effect of agitation on tissue dissolution was greater than that of temperature; continuous agitation resulted in the fastest tissue dissolution. Hypochlorite with added surface active agent had the lowest contact angle on dentin and was most effective in tissue dissolution in all experimental situations. Optimizing the concentration, temperature, flow, and surface tension can improve the tissue-dissolving effectiveness of hypochlorite even 50-fold. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Integrative “omic” analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa ‘Korona’

    PubMed Central

    Koehler, Gage; Rohloff, Jens; Wilson, Robert C.; Kopka, Joachim; Erban, Alexander; Winge, Per; Bones, Atle M.; Davik, Jahn; Alsheikh, Muath K.; Randall, Stephen K.

    2015-01-01

    To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative “omic” approaches were applied to Fragaria × ananassa Duch. ‘Korona.’ Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1–10 days of cold (2°C) exposure. When leaves and roots were subjected to GC/TOF-MS-based metabolite profiling, about 160 compounds comprising mostly structurally annotated primary and secondary metabolites, were found. Overall, ‘Korona’ showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine), pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose). Distinctive responses were observed in roots and leaves. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold. Twenty-one proteins were identified, many of which were associated with general metabolism or photosynthesis. Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb) to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature-induced changes in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of ‘Korona’ are consistent with a moderately cold tolerant plant. PMID:26528299

  14. Geographic variation in thermal tolerance and strategies of heat shock protein expression in the land snail Theba pisana in relation to genetic structure.

    PubMed

    Mizrahi, Tal; Goldenberg, Shoshana; Heller, Joseph; Arad, Zeev

    2016-03-01

    Land snails are exposed to conditions of high ambient temperature and low humidity, and their survival depends on a suite of morphological, behavioral, physiological, and molecular adaptations to the specific microhabitat. We tested in six populations of the land snail Theba pisana whether adaptations to different habitats affect their ability to cope with thermal stress and their strategies of heat shock protein (HSP) expression. Levels of Hsp70 and Hsp90 in the foot tissue were measured in field-collected snails and after acclimation to laboratory conditions. Snails were also exposed to various temperatures (32 up to 54 °C) for 2 h and HSP messenger RNA (mRNA) levels were measured in the foot tissue and survival was determined. To test whether the physiological and molecular data are related to genetic parameters, we analyzed T. pisana populations using partial sequences of nuclear and mitochondrial DNA ribosomal RNA genes. We show that populations collected from warmer habitats were more thermotolerant and had higher constitutive levels of Hsp70 isoforms in the foot tissue. Quantitative real-time polymerase chain reaction (PCR) analysis indicated that hsp70 and hsp90 mRNA levels increased significantly in response to thermal stress, although the increase in hsp70 mRNA was larger compared to hsp90 and its induction continued up to higher temperatures. Generally, warm-adapted populations had higher temperatures of maximal induction of hsp70 mRNA synthesis and higher upper thermal limits to HSP mRNA synthesis. Our study suggests that Hsp70 in the foot tissue of T. pisana snails may have important roles in determining stress resistance, while Hsp90 is more likely implicated in signal transduction processes that are activated by stress. In the phylogenetic analysis, T. pisana haplotypes were principally divided into two major clades largely corresponding to the physiological ability to withstand stress, thus pointing to genetically fixed tolerance.

  15. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean.

    PubMed

    Shu, Yingjie; Tao, Yuan; Wang, Shuang; Huang, Liyan; Yu, Xingwang; Wang, Zhankui; Chen, Ming; Gu, Weihong; Ma, Hao

    2015-11-01

    GmSBH1 involves in response to high temperature and humidity stress. Homeobox transcription factors are key switches that control plant development processes. Glycine max H1 Sbh1 (GmSBH1) was the first homeobox gene isolated from soybean. In the present study, the full ORF of GmSBH1 was isolated, and the encoded protein was found to be a typical class I KNOX homeobox transcription factor. Subcellular localization and transcriptional activation assays showed that GmSBH1 is a nuclear protein and possesses transcriptional activation activity in the homeodomain. The KNOX1 domain was found to play a clear role in suppressing the transcriptional activation activity of GmSBH1. GmSBH1 showed different expression levels among different soybean tissues and was involved in response to high temperature and humidity (HTH) stress in developing soybean seeds. The overexpression of GmSBH1 in Arabidopsis altered leaf and stoma phenotypes and enhanced seed tolerance to HTH stress. Overall, our results indicated that GmSBH1 is involved in growth, development, and enhances tolerance to pre-harvest seed deterioration caused by HTH stress in soybean.

  16. Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level.

    PubMed

    Anttila, Katja; Dhillon, Rashpal S; Boulding, Elizabeth G; Farrell, Anthony P; Glebe, Brian D; Elliott, Jake A K; Wolters, William R; Schulte, Patricia M

    2013-04-01

    In fishes, performance failure at high temperature is thought to be due to a limitation on oxygen delivery (the theory of oxygen and capacity limited thermal tolerance, OCLTT), which suggests that thermal tolerance and hypoxia tolerance might be functionally associated. Here we examined variation in temperature and hypoxia tolerance among 41 families of Atlantic salmon (Salmo salar), which allowed us to evaluate the association between these two traits. Both temperature and hypoxia tolerance varied significantly among families and there was a significant positive correlation between critical maximum temperature (CTmax) and hypoxia tolerance, supporting the OCLTT concept. At the organ and cellular levels, we also discovered support for the OCLTT concept as relative ventricle mass (RVM) and cardiac myoglobin (Mb) levels both correlated positively with CTmax (R(2)=0.21, P<0.001 and R(2)=0.17, P=0.003, respectively). A large RVM has previously been shown to be associated with high cardiac output, which might facilitate tissue oxygen supply during elevated oxygen demand at high temperatures, while Mb facilitates the oxygen transfer from the blood to tissues, especially during hypoxia. The data presented here demonstrate for the first time that RVM and Mb are correlated with increased upper temperature tolerance in fish. High phenotypic variation between families and greater similarity among full- and half-siblings suggests that there is substantial standing genetic variation in thermal and hypoxia tolerance, which could respond to selection either in aquaculture or in response to anthropogenic stressors such as global climate change.

  17. Low-temperature tolerance and cold hardening of cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 300 m altitude in southern Wyoming, were quite cold tolerant. Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivitymore » accounted for the approx. = 600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species. A decrease from 50/sup 0//40/sup 0/ to 10/sup 0//0/sup 0/ lowered by 4/sup 0/ the temperature at which the fraction of the chlorenchyma cells taking up stain was reduced 50% for both D. rhodacantha and T. candicans, with a half-time for the shift of approx. = 3 d. The tolerance of subzero temperatures and the ability to cold harden allow cacti to range into regions with considerable wintertime freezing.« less

  18. Shelf-life of bioprosthetic heart valves: a structural and mechanical study.

    PubMed

    Julien, M; Létouneau, D R; Marois, Y; Cardou, A; King, M W; Guidoin, R; Chachra, D; Lee, J M

    1997-04-01

    This study was undertaken to evaluate the influence of storage conditions on the shelf-life of porcine bioprosthetic valves. Fifty-five unimplanted porcine bioprostheses have been evaluated. The valves were stored in 0.5% buffered glutaraldehyde solution for different periods of time (7, 23 and 32 months). Twenty-eight valves were refrigerated while the remaining valves were stored at room temperature. The pH of the glutaraldehyde solution at room temperature decreased with time of storage, while that kept in the refrigerator remained stable over the course of the study. Macroscopic observations showed that the valve tissues kept at room temperature, especially for the periods of 23 and 32 months, became darker and more yellow in colour, whereas the refrigerated specimens exhibited no such changes in appearance. Scanning electron microscopy analysis revealed no noticeable differences on the surfaces of the leaflets stored under different conditions. Mechanical tests, including stress-strain response, stress relaxation and fracture behaviour, were carried out. Analysis of variance showed that the storage temperature, but not the length of storage, had a significant effect on some mechanical properties. The stress relaxation at 1000 s (P = 0.05), the ultimate tensile strength (P = 0.01) and the strain at fracture (P = 0.04) were all higher after storage at room temperature compared to the results after refrigeration. No statistically significant changes in the denaturation temperature of the collagen were observed between the different storage conditions. In conclusion, the storage temperature appears to have some influence on the bioprosthetic tissue. The bioprostheses stored under ambient conditions experience changes which may influence their longterm in vivo performance.

  19. Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2014-05-01

    Mild hypothermia (HT) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C±1.1°C for the in vitro experiments and 0.5°C±1.6°C for the in vivo measurements.

  20. Prediction of brain tissue temperature using near-infrared spectroscopy

    PubMed Central

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-01-01

    Abstract. Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of R2=0.713±0.157 (animal dataset) and R2=0.798±0.087 (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of 0.436±0.283°C (animal dataset) and 0.162±0.149°C (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications. PMID:28630878

  1. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice.

    PubMed

    Pazos, Patricia; Lima, Luis; Tovar, Sulay; González-Touceda, David; Diéguez, Carlos; García, María C

    2015-12-10

    Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure.

  2. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice

    PubMed Central

    Pazos, Patricia; Lima, Luis; Tovar, Sulay; González-Touceda, David; Diéguez, Carlos; García, María C.

    2015-01-01

    Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure. PMID:26656097

  3. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress.

    PubMed

    Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  4. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress

    PubMed Central

    Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants. PMID:27253370

  5. Antarctic marine molluscs do have an HSP70 heat shock response.

    PubMed

    Clark, Melody S; Fraser, Keiron P P; Peck, Lloyd S

    2008-01-01

    The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat "stress" have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6-8 degrees C for L. elliptica and +8-10 degrees C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past.

  6. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus.

    PubMed

    Xu, Dongxue; Sun, Lina; Liu, Shilin; Zhang, Libin; Yang, Hongsheng

    2015-08-01

    The aquaculture industry for Apostichopus japonicus has suffered severe economic and resource losses due to high temperature in recent summers. There is increasing concern about the effect of high temperature on this species. Histological, ultrastructural and HSP70 responses to heat stress were investigated in the intestine of A. japonicus. Tissue degradation was observed in muscular, submucosal and mucosal layers, with significant decrease in plicae circulares of the mucosal layer. Ultrastructural damage intensified with increasing stress time, and indicators of cell apoptosis were evident after 192 h heat stress. Immunostaining showed HSP70 mainly in mucosa and serosa, with faint staining in non-stressed individuals (the control group) and denser staining under stress (the 6, 48 and 192 h groups). Western blot detection confirmed ocurrence of HSP70 in all groups and significant up-regulation under stress. The rapid and persistent response of HSP70 implies its critical role in the heat shock response of A. japonicus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units

    PubMed Central

    Khoshnevis, Sepideh; Craik, Natalie K.

    2015-01-01

    Purpose Localized cooling is widely used in treating soft tissue injuries by modulating swelling, pain, and inflammation. One of the primary outcomes of localized cooling is vasoconstriction within the underlying skin. It is thought that in some instances, cryotherapy may be causative of tissue necrosis and neuropathy via cold-induced ischaemia leading to nonfreezing cold injury (NFCI). The purpose of this study is to quantify the magnitude and persistence of vasoconstriction associated with cryotherapy. Methods Data are presented from testing with four different FDA approved cryotherapy devices. Blood perfusion and skin temperature were measured at multiple anatomical sites during baseline, active cooling, and passive rewarming periods. Results Local cutaneous blood perfusion was depressed in response to cooling the skin surface with all devices, including the DonJoy (DJO, p = 2.6 × 10−8), Polar Care 300 (PC300, p = 1.1 × 10−3), Polar Care 500 Lite (PC500L, p = 0.010), and DeRoyal T505 (DR505, p = 0.016). During the rewarming period, parasitic heat gain from the underlying tissues and the environment resulted in increased temperatures of the skin and pad for all devices, but blood perfusion did not change significantly, DJO (n.s.), PC300 (n.s.), PC500L (n.s.), and DR505 (n.s.). Conclusions The results demonstrate that cryotherapy can create a deep state of vasoconstriction in the local area of treatment. In the absence of independent stimulation, the condition of reduced blood flow persists long after cooling is stopped and local temperatures have rewarmed towards the normal range, indicating that the maintenance of vasoconstriction is not directly dependent on the continuing existence of a cold state. The depressed blood flow may dispose tissue to NFCI. PMID:24562697

  8. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units.

    PubMed

    Khoshnevis, Sepideh; Craik, Natalie K; Diller, Kenneth R

    2015-09-01

    Localized cooling is widely used in treating soft tissue injuries by modulating swelling, pain, and inflammation. One of the primary outcomes of localized cooling is vasoconstriction within the underlying skin. It is thought that in some instances, cryotherapy may be causative of tissue necrosis and neuropathy via cold-induced ischaemia leading to nonfreezing cold injury (NFCI). The purpose of this study is to quantify the magnitude and persistence of vasoconstriction associated with cryotherapy. Data are presented from testing with four different FDA approved cryotherapy devices. Blood perfusion and skin temperature were measured at multiple anatomical sites during baseline, active cooling, and passive rewarming periods. Local cutaneous blood perfusion was depressed in response to cooling the skin surface with all devices, including the DonJoy (DJO, p = 2.6 × 10(-8)), Polar Care 300 (PC300, p = 1.1 × 10(-3)), Polar Care 500 Lite (PC500L, p = 0.010), and DeRoyal T505 (DR505, p = 0.016). During the rewarming period, parasitic heat gain from the underlying tissues and the environment resulted in increased temperatures of the skin and pad for all devices, but blood perfusion did not change significantly, DJO (n.s.), PC300 (n.s.), PC500L (n.s.), and DR505 (n.s.). The results demonstrate that cryotherapy can create a deep state of vasoconstriction in the local area of treatment. In the absence of independent stimulation, the condition of reduced blood flow persists long after cooling is stopped and local temperatures have rewarmed towards the normal range, indicating that the maintenance of vasoconstriction is not directly dependent on the continuing existence of a cold state. The depressed blood flow may dispose tissue to NFCI.

  9. Diffuse near-infrared reflectance spectroscopy during heatstroke in a mouse model: pilot study.

    PubMed

    Abookasis, David; Zafrir, Elad; Nesher, Elimelech; Pinhasov, Albert; Sternklar, Shmuel; Mathews, Marlon S

    2012-10-01

    Heatstroke, a form of hyperthermia, is a life-threatening condition characterized by an elevated core body temperature that rises above 40°C (104°F) and central nervous system dysfunction that results in delirium, convulsions, or coma. Without emergency treatment, the victim lapses into a coma and death soon follows. The study presented was conducted with a diffuse reflectance spectroscopy (DRS) setup to assess the effects of brain dysfunction that occurred during heatstroke in mice model (n=6). It was hypothesized that DRS can be utilized in small animal studies to monitor change in internal brain tissue temperature during heatstroke injury since it induces a sequence of pathologic changes that change the tissue composition and structure. Heatstroke was induced by exposure of the mice body under general anesthesia, to a high ambient temperature. A type of DRS in which the brain tissue was illuminated through the intact scalp with a broadband light source and diffuse reflected spectra was employed, taking in the spectral region between 650 and 1000 nm and acquired at an angle of 90 deg at a position on the scalp ∼12  mm from the illumination site. The temperature at the onset of the experiment was ∼34°C (rectal temperature) with increasing intervals of 1°C until mouse death. The increase in temperature caused optical scattering signal changes consistent with a structural alteration of brain tissue, ultimately resulting in death. We have found that the peak absorbance intensity and its second derivative at specific wavelengths correlate well with temperature with an exponential dependence. Based on these findings, in order to estimate the influence of temperature on the internal brain tissue a reflectance-temperature index was established and was seen to correlate as well with measured temperature. Overall, results indicate variations in neural tissue properties during heatstroke and the feasibility to monitor and assess internal temperature variations using DRS. Although several approaches have described the rise in temperature and its impact on tissue, to the best of our knowledge no information is available describing the ability to monitor temperature during heatstroke with DRS. The motivation of this study was to successfully describe this ability.

  10. Glass transition temperature of dried lens tissue pretreated with trehalose, maltose, or cyclic tetrasaccharide.

    PubMed

    Kawata, Tetsuhiro; Matsuo, Toshihiko; Uchida, Tetsuya

    2014-01-01

    Glass transition temperature is a main indicator for amorphous polymers and biological macromolecules as materials, and would be a key for understanding the role of trehalose in protecting proteins and cells against desiccation. In this study, we measured the glass transition temperature by differential scanning calorimetry of dried lens tissues as a model of a whole biological tissue to know the effect of pretreatment by trehalose and other sugars. Isolated porcine lenses were incubated with saline, 100 or 1000 mM concentration of trehalose, maltose, or cyclic tetrasaccharide dissolved in saline at room temperature for 150 minutes. The solutions were removed and all samples were dried at room temperature in a desiccator until no weight change. The dried tissues were ground into powder and placed in a measuring pan for differential scanning calorimetry. The glass transition temperature of the dried lens tissues, as a mean and standard deviation, was 63.0 ± 6.4°C (n = 3) with saline pretreatment; 53.0 ± 0.8°C and 56.3 ± 2.7°C (n = 3), respectively, with 100 and 1000 mM trehalose pretreatment; 56.0 ± 1.6°C and 55.8 ± 1.1°C (n = 3), respectively, with 100 and 1000 mM maltose pretreatment; 60.0 ± 8.8°C and 59.2 ± 6.3°C (n = 3), respectively, with 100 and 1000 mM cyclic tetrasaccharide pretreatment. The glass transition temperature appeared lower, although not significantly, with trehalose and maltose pretreatments than with saline and cyclic tetrasaccharide pretreatments (P > 0.05, Kruskal-Wallis test). The glass transition temperature of the dried lens tissues with trehalose pretreatment appeared more noticeable on the thermogram, compared with other pretreatments. The glass transition temperature was measured for the first time in the dried lens tissues as an example of a whole biological tissue and might provide a basis for tissue preservation in the dried condition.

  11. Critical temperature: A quantitative method of assessing cold tolerance

    Treesearch

    D.H. DeHayes; M.W., Jr. Williams

    1989-01-01

    Critical temperature (Tc), defined as the highest temperature at which freezing injury to plant tissues can be detected, provides a biologically meaningful and statistically defined assessment of the relative cold tolerance of plant tissues. A method is described for calculating critical temperatures in laboratory freezing studies that use...

  12. Induction of wound-periderm-like tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels

    PubMed Central

    Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz

    2015-01-01

    Background and Aims UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Methods Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d–1). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Key Results Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. Conclusions This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. PMID:26346722

  13. Effects of thyroidal, gonadal and adrenal hormones on tissue respiration of streaked frog, Rana limnocharis, at low temperature.

    PubMed

    Gupta, B B; Chakrabarty, P

    1990-01-01

    In vivo and in vitro effects of thyroidal, gonadal and adrenal hormones were studied on the rate of liver and skeletal muscle respiration in both the sexes of R. limnocharis during active and inactive phases of the annual activity cycle. Triiodothyronine (L-T3) and thyroxine (L-T4) did not stimulate tissue (liver and muscle) respiration in any of the experiments irrespective of season, sex and temperature. Testosterone, estradiol and corticosterone stimulated O2 uptake significantly irrespective of season, sex and temperature. Adrenaline and nor-adrenaline also stimulated tissue respiration significantly during the winter month. Since the ambient temperature was low even during the active phase (max. temperature 21 degrees C), it seems that the frog might have developed tissue sensitivity for gonadal and adrenal hormones at low temperatures when thyroid hormones are calorigenically ineffective.

  14. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    PubMed Central

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-01-01

    Photoswitchable fluorescent proteins with controllable light–dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light–dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy. PMID:27824110

  15. Isoeugenol concentrations in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue after exposure to AQUI-S™ at different temperatures, durations, and concentrations

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Greseth, Shari L.; Schreier, Theresa M.; Bernardy, Jeffry A.; Gingerich, William H.

    2006-01-01

    At common water temperatures, the tissue concentration of isoeugenol in fillet tissue from fish exposed to 14-mg/L AQUI-S™ for 60 min was significantly greater than the isoeugenol concentration in fillet tissue from fish exposed to 34-mg/L AQUI-S™ for 10 min (P < 0.01). The isoeugenol concentration (78.8 μg/g) found in fillet tissue from fish exposed to 14-mg/L AQUI-S™ for 60 min at 17 °C was significantly greater than the isoeugenol tissue concentration (57.3 μg/g) generated at 7 °C (P < 0.01), but was not significantly greater than the isoeugenol tissue concentration (70.7 μg/g) generated at 12 °C (P = 0.22). AQUI-S™ exposure regimens and exposure temperatures can significantly impact drug residue concentrations in fillet tissue.

  16. Critical temperature transitions in laser-mediated cartilage reshaping

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  17. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    PubMed

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  18. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  19. Energy-Based Tissue Fusion for Sutureless Closure: Applications, Mechanisms, and Potential for Functional Recovery.

    PubMed

    Kramer, Eric A; Rentschler, Mark E

    2018-06-04

    As minimally invasive surgical techniques progress, the demand for efficient, reliable methods for vascular ligation and tissue closure becomes pronounced. The surgical advantages of energy-based vessel sealing exceed those of traditional, compression-based ligatures in procedures sensitive to duration, foreign bodies, and recovery time alike. Although the use of energy-based devices to seal or transect vasculature and connective tissue bundles is widespread, the breadth of heating strategies and energy dosimetry used across devices underscores an uncertainty as to the molecular nature of the sealing mechanism and induced tissue effect. Furthermore, energy-based techniques exhibit promise for the closure and functional repair of soft and connective tissues in the nervous, enteral, and dermal tissue domains. A constitutive theory of molecular bonding forces that arise in response to supraphysiological temperatures is required in order to optimize and progress the use of energy-based tissue fusion. While rapid tissue bonding has been suggested to arise from dehydration, dipole interactions, molecular cross-links, or the coagulation of cellular proteins, long-term functional tissue repair across fusion boundaries requires that the reaction to thermal damage be tailored to catalyze the onset of biological healing and remodeling. In this review, we compile and contrast findings from published thermal fusion research in an effort to encourage a molecular approach to characterization of the prevalent and promising energy-based tissue bond.

  20. Infrared thermal measurements of laser soft tissue ablation as a function of air/water coolant for Nd:YAG and diode lasers

    NASA Astrophysics Data System (ADS)

    Gekelman, Diana; Yamamoto, Andrew; Oto, Marvin G.; White, Joel M.

    2003-06-01

    The purpose of this investigation was to measure the maximum temperature at the Nd:YAG and Diode lasers fiberoptic tips as a function of air/water coolant, during soft tissue ablation in pig jaws. A pulsed Nd:YAG laser (1064nm) and a Diode laser (800-830 nm) were used varying parameters of power, conditioning or not of the fiber tip, under 4 settings of air/water coolant. The maximum temperature at the fiber tip was measured using an infra-red camera and the interaction of the fiber with the porcine soft tissue was evaluated. A two-factor ANOVA was used for statistical analysis (p<=0.05). Nd:YAG laser interaction with soft tissues produced temperatures levels directly proportional to power increase, but the conditioning of the fiber tip did not influence the temperature rise. On the other hand, conditioning of the fiber tip did influence the temperature rise for Diode laser. The addition of air/water coolant, for both lasers, did not promote temperature rise consistent with cutting and coagulation of porcine soft tissue. Laser parameters affect the fiberoptic surface temperature, and the addition of air/water coolant significantly lowered surface temperature on the fiberoptic tip for all lasers and parameters tested.

  1. Magnetic Microspheres and Tissue Model Studies for Therapeutical Applications

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Mazuruk, K.

    2003-01-01

    Hyperthermia is a well known cancer therapy and consists of heating a tumor region to the elevated temperatures in the range of 40-45 C for an extended period of time (2-8 hours). This leads to thermal inactivation of cell regulatory and growth processes with resulting widespread necrosis, carbonization and coagulation. Moreover, heat boosts the tumor response to other treatments such as radiation, chemotherapy or immunotherapy. Of particular importance is careful control of generated heat in the treated region and keeping it localized. Higher heating, to about 56 C can lead to tissue thermo-ablation. With accurate temperature control, hyperthermia has the advantage of having minimal side effects. Several heating techniques are utilized for this purpose, such as whole body hyperthermia, radio-frequency (RF) hyperthermia, ultrasound technique, inductive microwave antenna hyperthermia, inductive needles (thermoseeds), and magnetic fluid hyperthermia (MFH).MFH offers many advantages as targeting capability by applying magnets. However, this technology still suffers significant inefficiencies due to lack of thermal control. This paper will provide a review of the topic and outline the ongoing work in this area. The main emphasis is in devising ways to overcome the technical difficulty in hyperthermia breast therapy of achieving a uniform therapeutic temperature over the required region of the body and holding it steady for an extended period (2-3 hours). The basic shortcomings of the presently utilized heating methods stem from the non-uniform thermal properties of the tissue and the point heating characteristics of the techniques without any thermal control. Our approach is to develop a novel class of magnetic fluids, which have inherent thermoregulating properties. We have identified a few magnetic alloys which can serve as suitable nano to micron-size particle material. The objective is to synthesize, characterize and evaluate the efficacy of Thermo Regulating Magnetic Fluids (TRMF) for hyperthermia therapy. The development of a tissue model and testing the fluid dynamics of particle motion, settling, distribution in the tissue matrix and heat generation will be discussed.

  2. A novel amperometric biosensor based on banana peel (Musa cavendish) tissue homogenate for determination of phenolic compounds.

    PubMed

    Ozcan, Hakki Mevlut; Sagiroglu, Ayten

    2010-08-01

    In this study the biosensor was constructed by immobilizing tissue homogenate of banana peel onto a glassy carbon electrode surface. Effects of immobilization materials amounts, effects of pH, buffer concentration and temperature on biosensor response were studied. In addition, the detection ranges of 13 phenolic compounds were obtained with the help of the calibration graphs. Storage stability, repeatability of the biosensor, inhibitory effect and sample applications were also investigated. A typical calibration curve for the sensor revealed a linear range of 10-80 microM catechol. In reproducibility studies, variation coefficient and standard deviation were calculated as 2.69%, 1.44 x 10(-3) microM, respectively.

  3. Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations.

    PubMed

    Ai, Haiming; Wu, Shuicai; Gao, Hongjian; Zhao, Lei; Yang, Chunlan; Zeng, Yi

    2012-01-01

    The temperature distribution in the region near a microwave antenna is a critical factor that affects the entire temperature field during microwave ablation of tissue. It is challenging to predict this distribution precisely, because the temperature in the near-antenna region varies greatly. The effects of water vaporisation and subsequent tissue carbonisation in an ex vivo porcine liver were therefore studied experimentally and in simulations. The enthalpy and high-temperature specific absorption rate (SAR) of liver tissues were calculated and incorporated into the simulation process. The accuracy of predictions for near-field temperatures in our simulations has reached the level where the average maximum error is less than 5°C. In addition, a modified thermal model that accounts for water vaporisation and the change in the SAR distribution pattern is proposed and validated with experiment. The results from this study may be useful in the clinical practice of microwave ablation and can be applied to predict the temperature field in surgical planning.

  4. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.

    PubMed

    Salomir, Rares; Rata, Mihaela; Cadis, Daniela; Petrusca, Lorena; Auboiroux, Vincent; Cotton, François

    2009-10-01

    Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution of the bioheat transfer equation in 3D and considering temperature-dependent ultrasound absorption and blood perfusion. The intrinsic accuracy of the implemented controller was approximately 1% in ex vivo trials when providing correct estimates for energy deposition and heat diffusivity. Moreover, the feedback loop demonstrated excellent convergence and stability over a wide range of the controller's parameters, deliberately set to erroneous values. In the extreme case of strong underestimation of the ultrasound energy deposition in tissue, the temperature tracking curve alone, at the initial stage of the MR-controlled HICU treatment, was not a sufficient indicator for a globally stable behavior of the feedback loop. Our simulations predicted that the controller would be able to compensate for tissue perfusion and for temperature-dependent ultrasound absorption, although these effects were not included in the controller's equation. The explicit pattern of acoustic field was not required as input information for the controller, avoiding time-consuming numerical operations. The study demonstrated the potential advantages of PID-based automatic temperature control adapted to phased-array MR-guided HICU therapy. Further studies will address the integration of this ultrasound device with a miniature RF coil for high resolution MRI and, subsequently, the experimental behavior of the controller in vivo.

  5. Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.

    PubMed

    Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.

  6. Heat shock protein 60 expression in heart, liver and kidney of broilers exposed to high temperature.

    PubMed

    Yan, Jianyan; Bao, Endong; Yu, Jimian

    2009-06-01

    The objective of this study was to investigate the expression and localization of HSP60 in the heart, liver, and kidney of acutely heat-stressed broilers at various stressing times. The plasma creatine kinase (CK) and glutamic pyruvic transaminase (GPT) concentrations statistic increased following heat stress. After 2h of heat stress, the tissues showed histopathological changes. Hsp60 expressed mainly in the cytoplasm of parenchyma cells heat stress. The intensity of the cytoplasmic staining varied and exhibited an organ-specific distribution pattern. Hsp60 levels in the hearts of heat-stressed chickens gradually increased at 1h (p<0.05) and peaked (p<0.05) at 5h; Hsp60 levels in the liver gradually decreased at 3h (p<0.05); Hsp60 levels in the kidney had no fluctuation. It is suggested that Hsp60 expression is tissue-specific and this may be linked to tissue damage in response to heat stress. The Hsp60 level is distinct in diverse tissues, indicating that Hsp60 may exert its protective effect by a tissue- and time-specific mechanism.

  7. Evaluation of a novel high-intensity focused ultrasound device: preclinical studies in a porcine model.

    PubMed

    Jewell, Mark L; Desilets, Charles; Smoller, Bruce R

    2011-05-01

    High-intensity focused ultrasound (HIFU) has been applied clinically for the noninvasive treatment of pathological conditions in various organs for over 50 years; however, there are little data describing the use of thermal HIFU to ablate fat for body contouring and treatment of collagen-rich layers. A novel device under clinical investigation (LipoSonix; Medicis Technologies Corporation, Bothell, Washington) uses HIFU to eliminate unwanted adipose tissue. The authors describe the results of HIFU treatment in a series of preclinical studies performed in a validated porcine model. Preclinical research included in vivo treatment of the abdominal subcutaneous adipose tissue of swine with transcutaneous HIFU therapy. Endpoint analyses included thermocouple temperature data, full-body necropsy, local pathology and histology studies, clinical hematology, urinalysis, and blood chemistry parameters, including lipid panels. The application of HIFU energy levels of 166 to 372 J/cm(2) generated tissue temperature approaching 70°C, which was restricted to the focal area (n = seven). Application of 68 and 86 J/cm(2) did not produce clinically-significant changes in serum liver function tests, free fatty acids, or cholesterol (n = eight). Gross examination of tissue from various organs showed no evidence of fat emboli or accumulation (n = two). Histology demonstrated well-preserved vasculature and intact nerve fibers within the HIFU focal area (n = three). Following treatment with 85.3 to 270 J/cm(2), normal healing response included the migration of macrophages into the damaged tissue and removal of disrupted cellular debris and lipids (n = 8). In a preclinical swine model, the controlled thermal effect of HIFU appears to provide a safe and effective means for ablating subcutaneous adipose tissue.

  8. Combined Hyperbaric Oxygen Partial Pressure at 1.4 Bar with Infrared Radiation: A Useful Tool To Improve Tissue Hypoxemia?

    PubMed

    Dünnwald, Tobias; Held, Julia; Balan, Petru; Pecher, Otto; Zeiger, Thomas; Hartig, Frank; Mur, Erich; Weiss, Günter; Schobersberger, Wolfgang

    2018-06-13

    Tissue hypoxia contributes to the pathogenesis of several acute and chronic diseases. Hyperbaric oxygen therapy (HBO) and whole-body warming using low-temperature infrared technology (LIT) are techniques that might improve hypoxemia. Combining HBO and LIT as hyperbaric oxygen therapy combined with low-temperature infrared radiation (HBOIR) might be an approach that results in positive synergistic effects on oxygenation. LIT increases blood flow and could reduce HBO-induced vasoconstriction, and hyperoxia could compensate for the increased metabolic oxygen requirements mediated by LIT. Both LIT and HBO increase the oxygen diffusion distance in the tissues. HBOIR at 0.5 bar has been shown to be safe and feasible. However, physiological responses and the safety of HBOIR at an increased oxygen (O2) partial pressure of 1.4 bar or 2.4 atmospheres absolute (ATA) still need to be determined. The hope is that should HBOIR at an increased oxygen partial pressure of 1.4 bar be safe, future studies to examine its efficacy in patients with clinical conditions, which include peripheral arterial disease (PAD) or wound healing disorders, will follow. The results of pilot studies have shown that HBOIR at an overload pressure is safe and well tolerated in healthy participants but can generate moderate cardiovascular changes and an increase in body temperature. From the findings of this pilot study, due to its potential synergistic effects, HBOIR could be a promising tool for the treatment of human diseases associated with hypoxemia.

  9. Measuring surface temperature and grading pathological changes of airway tissue in a canine model of inhalational thermal injury.

    PubMed

    Zhao, Ran; Di, La-na; Zhao, Xiao-zhuo; Wang, Cheng; Zhang, Guo-an

    2013-06-01

    Airway tissue shows unexpected invulnerability to heated air. The mechanisms of this phenomenon are open to debate. This study was designed to measure the surface temperatures at different locations of the airway, and to explore the relationship between the tissue's surface temperature and injury severity. Twenty dogs were randomly divided into four groups, including three experimental groups (six dogs in each) to inhale heated air at 70-80 °C (group I), 150-160 °C (group II) and 310-320 °C (group III) and a control group (two dogs, only for histological observation). Injury time was 20 min. Mucosal surface temperatures of the epiglottis (point A), cricoid cartilage (point B) and lower trachea (point C) were measured. Dogs in group I-III were divided into three subgroups (two in each), to be assayed at 12, 24 and 36 h after injury, respectively. For each dog, four tissue parts (epiglottis, larynx, lower trachea and terminal bronchiole) were microscopically observed and graded according to an original pathological scoring system (score range: 0-27). Surface temperatures of the airway mucosa increased slowly to 40.60±3.29 °C, and the highest peak temperature was 48.3 °C (group III, point A). The pathological score of burned tissues was 4.12±4.94 (0.0-18.0), suggesting slight to moderate injuries. Air temperature and airway location both influenced mucosal temperature and pathological scores very significantly, and there was a very significant positive correlation between tissue temperature and injury severity. Compared to the inhalational air hyperthermia, airway surface temperature was much lower, but was still positively correlated with thermal injury severity. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  10. Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Chao, Tony; Porter, Craig; Annamalai, Palam; Yfanti, Christina; Labbe, Sebastien M.; Hurren, Nicholas M.; Malagaris, Ioannis; Cesani, Fernardo; Sidossis, Labros S.

    2016-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT−) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT− group only (−0.34°C, 95% CI: −0.6 to −0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT− subjects (BAT+ vs. BAT−, 0.43°C, 95% CI: 0.20–0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT− group, BAT+ subjects tolerated a lower ambient temperature (BAT−: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114). PMID:27148068

  11. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    PubMed

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p < 0.05). Highest temperature increase could be observed in the 1-mm thickness group for enamel. Evaluating the 1-mm group for dentine, a significantly lower temperature increase could be measured (p < 0.05) with lowest values in the 3-mm group (p < 0.05). A time delay for temperature increase during the ablation process depending on the material thickness was observed for both hard tissues (p < 0.05). Employing the USPL system to remove dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  12. Temperature-controlled radiofrequency ablation of different tissues using two-compartment models.

    PubMed

    Singh, Sundeep; Repaka, Ramjee

    2016-08-30

    This study aims to analyse the efficacy of temperature-controlled radiofrequency ablation (RFA) in different tissues. A three-dimensional, 12 cm cubical model representing the healthy tissue has been studied in which spherical tumour of 2.5 cm has been embedded. Different body sites considered in the study are liver, kidney, lung and breast. The thermo-electric analysis has been performed to estimate the temperature distribution and ablation volume. A programmable temperature-controlled RFA has been employed by incorporating the closed-loop feedback PID controller. The model fidelity and integrity have been evaluated by comparing the numerical results with the experimental in vitro results obtained during RFA of polyacrylamide tissue-mimicking phantom gel. The results revealed that significant variations persist among the input voltage requirements and the temperature distributions within different tissues of interest. The highest ablation volume has been produced in hypovascular lungs whereas least ablation volume has been produced in kidney being a highly perfused tissue. The variation in optimal treatment time for complete necrosis of tumour along with quantification of damage to the surrounding healthy tissue has also been reported. The results show that the surrounding tissue environment significantly affects the ablation volume produced during RFA. The optimal treatment time for complete tumour ablation can play a critical role in minimising the damage to the surrounding healthy tissue and ensuring safe and risk free application of RFA. The obtained results emphasise the need for developing organ-specific clinical protocols and systems during RFA of tumour.

  13. Comparison of temperature sensing of the luminescent upconversion and ZnCdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Volkova, E. K.; Sagaidachnaya, E. A.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.

    2018-02-01

    The luminescence spectra of upconversion nanoparticles (UCNPs) and ZnCdS nanoparticles (ZnCdSNPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the luminescence signal of UCNPs and ZnCdSNPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. The most likely that the multiple phase transitions are associated with the different components of fat cells, such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The results of phase transitions of lipids were observed as the changes in the slope of the temperature dependence of the intensity of luminescence of the film with nanoparticles embedded into tissue. The obtained results confirm a high sensitivity of the luminescent UCNPs and ZnCdSNPs to the temperature variations within thin tissue samples and show a strong potential for the controllable tissue thermolysis.

  14. Effect of warm compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.

  15. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato.

    PubMed

    Feng, Chao-Yang; Han, Jia-Xuan; Han, Xiao-Xue; Jiang, Jing

    2015-12-01

    The SWEET (Sugars Will Eventually Be Exported Transporters) gene family encodes membrane-embedded sugar transporters containing seven transmembrane helices harboring two MtN3 and saliva domain. SWEETs play important roles in diverse biological processes, including plant growth, development, and response to environmental stimuli. Here, we conducted an exhaustive search of the tomato genome, leading to the identification of 29 SWEET genes. We analyzed the structures, conserved domains, and phylogenetic relationships of these protein-coding genes in detail. We also analyzed the transcript levels of SWEET genes in various tissues, organs, and developmental stages to obtain information about their functions. Furthermore, we investigated the expression patterns of the SWEET genes in response to exogenous sugar and adverse environmental stress (high and low temperatures). Some family members exhibited tissue-specific expression, whereas others were more ubiquitously expressed. Numerous stress-responsive candidate genes were obtained. The results of this study provide insights into the characteristics of the SWEET genes in tomato and may serve as a basis for further functional studies of such genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Evaluating Temperature Changes of Brain Tissue Due to Induced Heating of Cell Phone Waves.

    PubMed

    Forouharmajd, Farhad; Pourabdian, Siamak; Ebrahimi, Hossein

    2018-01-01

    Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones). This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg) on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917) with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation.

  17. Evaluating Temperature Changes of Brain Tissue Due to Induced Heating of Cell Phone Waves

    PubMed Central

    Forouharmajd, Farhad; Pourabdian, Siamak; Ebrahimi, Hossein

    2018-01-01

    Background: Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones). This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. Methods: This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg) on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917) with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. Results: In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Conclusions: Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation. PMID:29861880

  18. Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of zooxanthellae in coral tissues

    NASA Astrophysics Data System (ADS)

    Kuanui, Pataporn; Chavanich, Suchana; Viyakarn, Voranop; Omori, Makoto; Lin, Chiahsin

    2015-06-01

    This study investigated the effects of temperature and salinity on growth, survival, and photosynthetic efficiency of three coral species, namely, Pocillopora damicornis, Acropora millepora and Platygyra sinensis of different ages (6 and 18 months old). The experimental corals were cultivated via sexual propagation. Colonies were exposed to 5 different temperatures (18, 23, 28, 33, and 38°C) and 5 different salinities (22, 27, 32, 37, and 42 psu). Results showed that temperature significantly affected photosynthetic efficiency (Fv/Fm) (p < 0.05) compared to salinity. The maximum quantum yield of corals decreased ranging from 5% to 100% when these corals were exposed to different temperatures and salinities. Temperature also significantly affected coral growth and survival. However, corals exposed to changes in salinity showed higher survivorship than those exposed to changes in temperature. Results in this study also showed that corals of different ages and of different species did not display the same physiological responses to changes in environmental conditions. Thus, the ability of corals to tolerate salinity and temperature stresses depends on several factors.

  19. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  20. Subsurface thermal behaviour of tissue mimics embedded with large blood vessels during plasmonic photo-thermal therapy.

    PubMed

    Paul, Anup; Narasimhan, Arunn; Das, Sarit K; Sengupta, Soujit; Pradeep, Thalappil

    2016-11-01

    The purpose of this study was to understand the subsurface thermal behaviour of a tissue phantom embedded with large blood vessels (LBVs) when exposed to near-infrared (NIR) radiation. The effect of the addition of nanoparticles to irradiated tissue on the thermal sink behaviour of LBVs was also studied. Experiments were performed on a tissue phantom embedded with a simulated blood vessel of 2.2 mm outer diameter (OD)/1.6 mm inner diameter (ID) with a blood flow rate of 10 mL/min. Type I collagen from bovine tendon and agar gel were used as tissue. Two different nanoparticles, gold mesoflowers (AuMS) and graphene nanostructures, were synthesised and characterised. Energy equations incorporating a laser source term based on multiple scattering theories were solved using finite element-based commercial software. The rise in temperature upon NIR irradiation was seen to vary according to the position of the blood vessel and presence of nanoparticles. While the maximum rise in temperature was about 10 °C for bare tissue, it was 19 °C for tissue embedded with gold nanostructures and 38 °C for graphene-embedded tissues. The axial temperature distribution predicted by computational simulation matched the experimental observations. A different subsurface temperature distribution has been obtained for different tissue vascular network models. The position of LBVs must be known in order to achieve optimal tissue necrosis. The simulation described here helps in predicting subsurface temperature distributions within tissues during plasmonic photo-thermal therapy so that the risks of damage and complications associated with in vivo experiments and therapy may be avoided.

  1. Residual heat of laparoscopic energy devices: how long must the surgeon wait to touch additional tissue?

    PubMed

    Govekar, Henry R; Robinson, Thomas N; Stiegmann, Greg V; McGreevy, Francis T

    2011-11-01

    Energy devices are essential laparoscopic tools. Residual heat is defined as the increased instrument temperature after energy activation is completed. This study aimed to determine the length of time a surgeon needs to wait before touching other tissue using four common laparoscopic energy sources. Thermal imaging quantified instrument and tissue temperature ex vivo using monopolar coagulation, argon beam coagulation, ultrasonic dissection, and bipolar tissue fusion devices. To simulate realistic operative usage, each instrument was activated for 5 s four consecutive times with 5 s pauses between fires. Thermal conductivity to bovine liver tissue was measured 2.5, 5, 10, and 20 s after final activation. The maximum increase in instrument tip temperature was 172 ± 63°C for the ultrasonic dissection, 81 ± 18°C for the monopolar coagulation, 46 ± 19°C for the bipolar tissue fusion, and 1 ± 1°C for the argon beam coagulation (P < 0.05 for all comparisons). Touching the instrument tip to tissue at four intervals after the final activation (2.5, 5, 10, and 20 s) found that ultrasonic energy raised the tissue temperature higher (maximum change, 58°C) than the other three energy devices at all four time points (P < 0.05). Ultrasonic energy instruments have greater residual heat than monopolar electrosurgery, bipolar tissue fusion, and argon beam. The ultrasonic energy instrument tips heated tissue more than 20°C from baseline even 20 s after activation; whereas all the other energy sources raised the tissue temperature less than 20°C by 5 s. These practical findings may alter a surgeon's usage of these common energy devices.

  2. Method of constructing a microwave antenna

    NASA Technical Reports Server (NTRS)

    Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Carl, James (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  3. Method of Constructing a Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  4. Method for selective thermal ablation

    NASA Technical Reports Server (NTRS)

    Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Raffoul, George W. (Inventor); Carl, James (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  5. Method for Selective Thermal Ablation

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  6. Transcatheter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  7. Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2017-07-01

    Ablation and photothermal therapy are widely employed medical protocols where the selective destruction of tissue is a necessity as in cancerous tissue removal or vascular and brain abnormalities. Tissue denaturation takes place when the temperature reaches a threshold value while the time of exposure determines the lesion size. Therefore, the spatio-temporal distribution of temperature plays a crucial role in the outcome of these clinical interventions. We demonstrate fast volumetric temperature mapping with optoacoustic tomography based on real-time optoacoustic readings from the treated region. The performance of the method was investigated in tissue-mimicking phantom experiments. The new ability to non-invasively measure temperature volumetrically in an entire treated region with high spatial and temporal resolutions holds potential for improving safety and efficacy of thermal ablation and to advance the general applicability of laser-based therapy.

  8. Plant developmental responses to climate change.

    PubMed

    Gray, Sharon B; Brady, Siobhan M

    2016-11-01

    Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO 2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO 2 , most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO 2 vary by cell type and by species. Variability also exists between C 3 and C 4 species in response to elevated CO 2 , especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO 2 . Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this lack of data is particularly prevalent in the case of interactive effects of multiple climate change factors. As future growing conditions will likely expose plants to multiple climate change factors simultaneously, with a sum negative influence on global agriculture, further research in this area is critical. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomy comparing with nontransplantation models.

    PubMed

    Arauchi, Ayumi; Shimizu, Tatsuya; Yamato, Masayuki; Obara, Takao; Okano, Teruo

    2009-12-01

    For hormonal deficiency caused by endocrine organ diseases, continuous oral hormone administration is indispensable to supplement the shortage of hormones. In this study, as a more effective therapy, we have tried to reconstruct the three-dimensional thyroid tissue by the cell sheet technology, a novel tissue engineering approach. The cell suspension obtained from rat thyroid gland was cultured on temperature-responsive culture dishes, from which confluent cells detach as a cell sheet simply by reducing temperature without any enzymatic treatment. The 8-week-old Lewis rats were exposed to total thyroidectomy as hypothyroidism models and received thyroid cell sheet transplantation 1 week after total thyroidectomy. Serum levels of free triiodothyronine (fT(3)) and free thyroxine (fT(4)) significantly decreased 1 week after total thyroidectomy. On the other hand, transplantation of the thyroid cell sheets was able to restore the thyroid function 1 week after the cell sheet transplantation, and improvement was maintained for 4 weeks. Moreover, morphological analyses showed typical thyroid follicle organization, and anti-thyroid-transcription-factor-1 antibody staining demonstrated the presence of follicle epithelial cells. The presence of functional microvessels was also detected within the engineered thyroid tissues. In conclusion, our results indicate that thyroid cell sheets transplanted in a model of total thyroidectomy can reorganize histologically to resemble a typical thyroid gland and restore thyroid function in vivo. In this study, we are the first to confirm that engineered thyroid tissue can repair hypothyroidism models in rats and, therefore, cell sheet transplantation of endocrine organs may be suitable for the therapy of hormonal deficiency.

  10. Historical Temperature Variability Affects Coral Response to Heat Stress

    PubMed Central

    Carilli, Jessica; Donner, Simon D.; Hartmann, Aaron C.

    2012-01-01

    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions. PMID:22479626

  11. Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells.

    PubMed

    Aluri, Rajendra; Saxena, Sonashree; Joshi, Dheeraj Chandra; Jayakannan, Manickam

    2018-06-11

    Multistimuli-responsive l-tyrosine-based amphiphilic poly(ester-urethane) nanocarriers were designed and developed for the first time to administer anticancer drugs in cancer tissue environments via thermoresponsiveness and lysosomal enzymatic biodegradation from a single polymer platform. For this purpose, multifunctional l-tyrosine monomer was tailor-made with a PEGylated side chain at the phenolic position along with urethane and carboxylic ester functionalities. Under melt dual ester-urethane polycondensation, the tyrosine monomer reacted with diols to produce high molecular weight amphiphilic poly(ester-urethane)s. The polymers produced 100 ± 10 nm spherical nanoparticles in aqueous medium, and they exhibited thermoresponsiveness followed by phase transition from clear solution into a turbid solution in heating/cooling cycles. Variable temperature transmittance, dynamic light scattering, and 1 H NMR studies revealed that the polymer chains underwent reversible phase transition from coil-to-expanded chain conformation for exhibiting the thermoresponsive behavior. The lower critical solution temperature of the nanocarriers was found to correspond to cancer tissue temperature (at 42-44 °C), which was explored as an extracellular trigger (stimuli-1) for drug delivery through the disassembly process. The ester bond in the poly(ester-urethane) backbones readily underwent enzymatic biodegradation in the lysosomal compartments that served as intracellular stimuli (stimuli-2) to deliver drugs. Doxorubicin (DOX) and camptothecin (CPT) drug-loaded polymer nanocarriers were tested for cellular uptake and cytotoxicity studies in the normal WT-MEF cell line and cervical (HeLa) and breast (MCF7) cancer cell lines. In vitro drug release studies revealed that the polymer nanoparticles were stable under physiological conditions (37 °C, pH 7.4) and they exclusively underwent disassembly at cancer tissue temperature (at 42 °C) and biodegradation by lysosomal-esterase enzyme to deliver 90% of DOX and CPT. Drug-loaded polymer nanoparticles exhibited better cytotoxic effects than their corresponding free drugs. Live cell confocal microscopy imaging experiments with lysosomal tracker confirmed the endocytosis of the polymer nanoparticles and their biodegradation in the lysosomal compartments in cancer cells. The increment in the drug content in the cells incubated at 42 °C compared to 37 °C supported the enhanced drug uptake by the cancer cells under thermoresponsive stimuli. The present work creates a new platform for the l-amino acid multiple-responsive polymer nanocarrier platform for drug delivery, and the proof-of-concept was successfully demonstrated for l-tyrosine polymers in cervical and breast cancer cells.

  12. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    PubMed

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. © 2016 John Wiley & Sons Ltd.

  13. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.

    PubMed

    Lobo, S M; Liu, Z-J; Yu, N C; Humphries, S; Ahmed, M; Cosman, E R; Lenkinski, R E; Goldberg, W; Goldberg, S N

    2005-05-01

    This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result, the non-linear temperature response of RF induced heating can be adequately expressed mathematically as a function of electrical conductivity, radius and thermal conductivity. Hence, thermal conductivity accounts for some of the previously unexplained variance. Furthermore, the addition of this variable into the mathematical model substantially simplifies the equations and, as such, it is expected that this will permit improved prediction of RF ablation induced temperatures in clinical practice.

  14. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    PubMed Central

    Cahon, Thomas; Caillon, Robin

    2018-01-01

    Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342

  15. Nutrition, feeding, and behavior of fish.

    PubMed

    Lall, Santosh P; Tibbetts, Sean M

    2009-05-01

    Nutrition and feeding influence growth, reproduction, and health of fish and their response to physiologic and environmental stressors and pathogens. The basics of fish metabolism are similar to those of warm-blooded animals in that they involve food intake, digestion, absorption, and transport of nutrients to the various tissues. Fish, however, being the most primitive form of vertebrates, possess some distinguishing features which will be discussed. Unlike warm-blooded animals, which are homoeothermic, fish are poikilothermic, so their body temperature and metabolic rate depends on the water temperature and this has practical implications for the nutrition, feeding and health of fish. Several behavioral responses have been linked to methods of feeding, feeding habits, frequency of feeding, mechanisms of food detection, and food preferences. Fish are also unique among vertebrates in their ability to absorb minerals not only from their diets but also from water through their gills and skin.

  16. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid.

    PubMed

    Xiao, Huogen; Siddiqua, Mahbuba; Braybrook, Siobhan; Nassuth, Annette

    2006-07-01

    The C-repeat (CRT)-binding factor/dehydration-responsive element (DRE) binding protein 1 (CBF/ DREB1) transcription factors control an important pathway for increased freezing and drought tolerance in plants. Three CBF/DREB1-like genes, CBF 1-3, were isolated from both freezing-tolerant wild grape (Vitis riparia) and freezing-sensitive cultivated grape (Vitis vinifera). The deduced proteins in V. riparia are 63-70% identical to each other and 96-98% identical to the corresponding proteins in V. vinifera. All Vitis CBF proteins are 42-51% identical to AtCBF1 and contain CBF-specific amino acid motifs, supporting their identification as CBF proteins. Grape CBF sequences are unique in that they contain 20-29 additional amino acids and three serine stretches. Agro-infiltration experiments revealed that VrCBF1b localizes to the nucleus. VrCBF1a, VrCBF1b and VvCBF1 activated a green fluorescent protein (GFP) or glucuronidase (GUS) reporter gene behind CRT-containing promoters. Expression of the endogenous CBF genes was low at ambient temperature and enhanced upon low temperature (4 degrees C) treatment, first for CBF1, followed by CBF2, and about 2 d later by CBF3. No obvious significant difference was observed between V. riparia and V. vinifera genes. The expression levels of all three CBF genes were higher in young tissues than in older tissues. CBF1, 2 and 3 transcripts also accumulated in response to drought and exogenous abscisic acid (ABA) treatment, indicating that grape contains unique CBF genes.

  17. Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats

    PubMed Central

    Chen, Xiao-Ming; Hosono, Takayoshi; Yoda, Tamae; Fukuda, Yutaka; Kanosue, Kazuyuki

    1998-01-01

    To investigate the characteristics of efferent projections from the preoptic area for the control of non-shivering thermogenesis, we tested the effects of thermal or chemical stimulation, and transections of the preoptic area on the activity of interscapular brown adipose tissue in cold-acclimated and non-acclimated anaesthetized rats.Electrical stimulation of the ventromedial hypothalamic nucleus (VMH) elicited non-shivering thermogenesis in the brown adipose tissue (BAT); warming the preoptic area to 41.5 °C completely suppressed the thermogenic response.Injections of d,l-homocysteic acid (DLH; 0.5 mm, 0.3 μl) into the preoptic area also significantly attenuated BAT thermogenesis, whereas injections of control vehicle had no effect.Transections of the whole hypothalamus in the coronal plane at the level of the paraventricular nucleus induced rapid and large rises in BAT and rectal temperatures. This response was not blocked by pretreatment with indomethacin. The high rectal and BAT temperatures were sustained more than 1 h, till the end of the experiment. Bilateral knife cuts that included the medial forebrain bundle but not the paraventricular nuclei elicited similar rises in BAT and rectal temperatures. Medial knife cuts had no effect.These results suggest that warm-sensitive neurones in the preoptic area contribute a larger efferent signal for non-shivering thermogenesis than do cold-sensitive neurones, and that the preoptic area contributes a tonic inhibitory input to loci involved with non-shivering thermogenesis. This efferent inhibitory signal passes via lateral, but not medial, hypothalamic pathways. PMID:9769429

  18. Hsp-72, a candidate prognostic indicator of heatstroke.

    PubMed

    Dehbi, Mohammed; Baturcam, Engin; Eldali, Abdelmoneim; Ahmed, Maqbool; Kwaasi, Aaron; Chishti, Muhammad Azhar; Bouchama, Abderrezak

    2010-09-01

    Exposure of rats to environmental heat enhances the expression of heat shock protein-72 (Hsp-72) in most of their organs proportionally to heat stress severity. Pre-induction or over-expression of Hsp-72 prevents organ damage and lethality, suggesting that heat shock proteins (Hsps) may have a pathogenic role in this condition. We investigated the expression profile of Hsps in baboons subjected to environmental heat stress until the core temperature attained 42.5 degrees C (moderate heatstroke) or occurrence of hypotension associated with core temperature > or = 43.5 degrees C (severe heatstroke). Western blot analysis demonstrated a differential induction of Hsp-72 among organs of heat-stressed animals with the highest induction in the liver and the lowest in lung. Hsp-60 and Hsc-70 expression was similar between control and heat-stressed animals. ELISA studies indicated a marked release of Hsp-72 into the circulation of baboons with severe heatstroke with a peak at 24 h post-heatstroke onset and remained sustained up to 72 h. Hsp-72 release was not associated with core temperature or systolic blood pressure, but correlated with markers of liver, myocardium, and skeletal muscle tissue necrosis. Non-survivors displayed significantly higher Hsp-72 levels than survivors. No Hsp-60 was detected in the circulation. These findings add further evidence that increased expression of Hsp-72 may be an important component of the host response to severe heatstroke. They also suggest that extracellular Hsp-72 is a marker of multiple organs tissue damage. Whether extracellular Hsp-72 plays a role in the host immune response to heat stress merits further studies.

  19. Pyroelectricity in globular protein lysozyme films

    NASA Astrophysics Data System (ADS)

    Stapleton, A.; Noor, M. R.; Haq, E. U.; Silien, C.; Soulimane, T.; Tofail, S. A. M.

    2018-03-01

    Pyroelectricity is the ability of certain non-centrosymmetric materials to generate an electric charge in response to a change in temperature and finds use in a range of applications from burglar alarms to thermal imaging. Some biological materials also exhibit pyroelectricity but the examples of the effect are limited to fibrous proteins, polypeptides, and tissues and organs of animals and plants. Here, we report pyroelectricity in polycrystalline aggregate films of lysozyme, a globular protein.

  20. A Comprehensive Modeling Approach Towards Understanding and Prediction of the Alaskan Coastal System Response to Changes in an Ice-diminished Arctic

    DTIC Science & Technology

    2008-01-01

    signature of an apparent increased contribution of diazotrophs to Arctic primary production was also recorded in muscle tissue of bowheads, harvested from...Arctic temperatures of the Beaufort Sea need not be invoked. Instead, the diazotrophic marker of particulate nitrogen within bowhead whale baleen...dinoflagellates, microflagellates, and diazotrophs from downstream boreal and subtropical ecosystems. Furthermore, at lower latitudes, Saharan dust plumes in

  1. Co-micellized Pluronic mixture with thermo-sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel.

    PubMed

    Oh, Se Heang; Kang, Jun Goo; Lee, Jin Ho

    2018-01-01

    Although the tissue adhesion which leads to various complications frequently occurs after surgery, the development of an ideal tissue adhesion barrier is still a challenge. In this study, a thermo-sensitive hydrogel, which can fulfill the essential requirements of tissue adhesion barrier (that is, ease of handling for surgeon, flowing down prevention after application, stable residence on the injury during wound healing, and no use of toxic additives), was developed using biocompatible polyethylene glycol-polypropylene glycol copolymers (Pluronic F127/F68/P123 mixture). From the in vitro cell culture and in vivo animal study, it was observed that the Pluronic mixtures showed sol-gel transition at approximately body temperature (for easy injection or coating on the injury site and flowing down prevention after application) and prolonged residence stability in aqueous environment (> ∼7 days for stable protection of injury tissues/organs during wound healing), and thus was highly effective for the prevention of tissue adhesion without adverse tissue responses. Based on these results, the Pluronic F127/F68/P123 mixture itself (without any additives) can be a good candidate as an injectable or coatable tissue adhesion barrier hydrogel applicable to various injury tissues in terms of ease of use, effectiveness, and safety. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 172-182, 2018. © 2016 Wiley Periodicals, Inc.

  2. On the temperature control in self-controlling hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mahyar

    2016-10-01

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination.

  3. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles.

    PubMed

    Seebacher, Frank; Murray, Shauna A

    2007-03-14

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response.

  4. Pulpal thermal responses to an erbium,chromium: YSGG pulsed laser hydrokinetic system.

    PubMed

    Rizoiu, I; Kohanghadosh, F; Kimmel, A I; Eversole, L R

    1998-08-01

    Laser systems are known to raise pulpal temperatures when applied to tooth surfaces. Dental biocalcified tissues can be cut with an erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system. This device is effective for caries removal and cavity preparation in vitro. Pulpal monitoring of temperature changes during hard tissue cutting by a hydrokinetic system have not been reported. This study compared the effects of hydrokinetic system, dry bur, and wet bur tooth cutting on pulpal temperature. In vivo thermocouple intrapulpal measurements were made on cuspid teeth in anesthetized beagle dogs. In vitro measurements were made on extracted human molar teeth preserved in high-salt solution and later rinsed in phosphate-buffered saline (pH 7.4) to simulate in vivo conditions. The hydrokinetic system was compared with conventional air-turbine-powered bur cutting. The hydrokinetic system cuts and bur preparations were randomly made on the buccal surfaces at the cervical one third of the crown and extended until exposure of the pulp was confirmed clinically. Pulpal temperatures associated with the hydrokinetic system either showed no change or decreased by up to 2 degrees C. Wet bur preparations resulted in a 3 degrees to 4 degrees C rise. With dry bur preparations, a 14 degrees C rise in temperature was recorded. Under the conditions of this study, the erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system, when used for cavity preparation, had no apparent adverse thermal effect as measured in the pulp space.

  5. Cancer hyperthermia using magnetic nanoparticles.

    PubMed

    Kobayashi, Takeshi

    2011-11-01

    Magnetic-nanoparticle-mediated intracellular hyperthermia has the potential to achieve localized tumor heating without any side effects. The technique consists of targeting magnetic nanoparticles to tumor tissue followed by application of an external alternating magnetic field that induces heat through Néel relaxation loss of the magnetic nanoparticles. The temperature in tumor tissue is increased to above 43°C, which causes necrosis of cancer cells, but does not damage surrounding normal tissue. Among magnetic nanoparticles available, magnetite has been extensively studied. Recent years have seen remarkable advances in magnetite-nanoparticle-mediated hyperthermia; both functional magnetite nanoparticles and alternating-magnetic-field generators have been developed. In addition to the expected tumor cell death, hyperthermia treatment has also induced unexpected biological responses, such as tumor-specific immune responses as a result of heat-shock protein expression. These results suggest that hyperthermia is able to kill not only local tumors exposed to heat treatment, but also tumors at distant sites, including metastatic cancer cells. Currently, several research centers have begun clinical trials with promising results, suggesting that the time may have come for clinical applications. This review describes recent advances in magnetite nanoparticle-mediated hyperthermia. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue.

    PubMed

    Sun, Wuping; Uchida, Kunitoshi; Suzuki, Yoshiro; Zhou, Yiming; Kim, Minji; Takayama, Yasunori; Takahashi, Nobuyuki; Goto, Tsuyoshi; Wakabayashi, Shigeo; Kawada, Teruo; Iwata, Yuko; Tominaga, Makoto

    2016-03-01

    Brown adipose tissue (BAT), a major site for mammalian non-shivering thermogenesis, could be a target for prevention and treatment of human obesity. Transient receptor potential vanilloid 2 (TRPV2), a Ca(2+)-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. Here, we show that TRPV2 is expressed in brown adipocytes and that mRNA levels of thermogenic genes are reduced in both cultured brown adipocytes and BAT from TRPV2 knockout (TRPV2KO) mice. The induction of thermogenic genes in response to β-adrenergic receptor stimulation is also decreased in TRPV2KO brown adipocytes and suppressed by reduced intracellular Ca(2+) concentrations in wild-type brown adipocytes. In addition, TRPV2KO mice have more white adipose tissue and larger brown adipocytes and show cold intolerance, and lower BAT temperature increases in response to β-adrenergic receptor stimulation. Furthermore, TRPV2KO mice have increased body weight and fat upon high-fat-diet treatment. Based on these findings, we conclude that TRPV2 has a role in BAT thermogenesis and could be a target for human obesity therapy. © 2016 The Authors.

  7. Meat Science and Muscle Biology Symposium: manipulating meat tenderness by increasing the turnover of intramuscular connective tissue.

    PubMed

    Purslow, P P; Archile-Contreras, A C; Cha, M C

    2012-03-01

    Controlled reduction of the connective tissue contribution to cooked meat toughness is an objective that would have considerable financial impact in terms of added product value. The amount of intramuscular connective tissue in a muscle appears connected to its in vivo function, so reduction of the overall connective tissue content is not thought to be a viable target. However, manipulation of the state of maturity of the collagenous component is a biologically viable target; by increasing connective tissue turnover, less mature structures can be produced that are functional in vivo but more easily broken down on cooking at temperatures above 60°C, thus improving cooked meat tenderness. Recent work using cell culture models of fibroblasts derived from muscle and myoblasts has identified a range of factors that alter the activity of the principal enzymes responsible for connective tissue turnover, the matrix metalloproteinases (MMP). Fibroblasts cultured from 3 different skeletal muscles from the same animal show different cell proliferation and MMP activity, which may relate to the different connective tissue content and architecture in functionally different muscles. Expression of MMP by fibroblasts is increased by vitamins that can counter the negative effects of oxidative stress on new collagen synthesis. Preliminary work using in situ zymography of myotubes in culture also indicates increased MMP activity in the presence of epinephrine and reactive oxidative species. Comparison of the relative changes in MMP expression from muscle cells vs. fibroblasts shows that myoblasts are more responsive to a range of stimuli. Muscle cells are likely to produce more of the total MMP in muscle tissue as a whole, and the expression of latent forms of the enzymes (i.e., pro-MMP) may vary between oxidative and glycolytic muscle fibers within the same muscle. The implication is that the different muscle fiber composition of different muscles eaten as meat may influence the potential for manipulation of their connective tissue turnover.

  8. Crassulacean Acid Metabolism in the Epiphyte Tillandsia usneoides L. (Spanish Moss) : RESPONSES OF CO(2) EXCHANGE TO CONTROLLED ENVIRONMENTAL CONDITIONS.

    PubMed

    Martin, C E; Siedow, J N

    1981-08-01

    Patterns of CO(2) exchange in Spanish moss under various experimental conditions were measured using an infrared gas analysis system. Plants were collected from a study site in North Carolina and placed in a gas exchange chamber for several days of continuous measurements. No substantial seasonal effects on CO(2) exchange were observed. High rates of nocturnal CO(2) uptake were observed under day/night temperature regimes of 25/10, 25/15, 25/20, 30/20, and 35/20 C; however, daytime temperatures of 40 C eliminated nighttime CO(2) uptake and a nighttime temperature of 5 C eliminated nocturnal CO(2) uptake, regardless of day temperature. Constant chamber conditions also inhibited nocturnal CO(2) uptake. Constant high relative humidity (RH) slightly stimulated CO(2) uptake while low nighttime RH reduced nocturnal CO(2) uptake.Reductions in daytime irradiance to approximately 25% full sunlight had no effect on CO(2) exchange. Continuous darkness resulted in continuous CO(2) loss by the plants, but a CO(2) exchange pattern similar to normal day/night conditions was observed under constant illumination. High tissue water content inhibited CO(2) uptake. Wetting of the tissue at any time of day or night resulted in net CO(2) loss. Abrupt increases in temperature or decreases in RH resulted in sharp decreases in net CO(2) uptake.The results indicate that Spanish moss is tolerant of a wide range of temperatures, irradiances, and water contents. They also indicate that high nighttime RH is a prerequisite for high rates of CO(2) uptake.

  9. Growth and Development Temperature Influences Level of Tolerance to High Light Stress 1

    PubMed Central

    Steffen, Kenneth L.; Palta, Jiwan P.

    1989-01-01

    The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24°C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1°C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1°C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12°C, was much more tolerant to high light and low temperature stress than tissue developed under 24°C conditions. Following the high light treatment, 24°C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12°C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24°C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling temperature than does S. tuberosum cv Red Pontiac, a frost-sensitive cultivated species. PMID:16667216

  10. Overview of the physiological ecology of carbon metabolism in seagrasses.

    PubMed

    Touchette; Burkholder

    2000-07-30

    The small but diverse group of angiosperms known as seagrasses form submersed meadow communities that are among the most productive on earth. Seagrasses are frequently light-limited and, despite access to carbon-rich seawaters, they may also sustain periodic internal carbon limitation. They have been regarded as C3 plants, but many species appear to be C3-C4 intermediates and/or have various carbon-concentrating mechanisms to aid the Rubisco enzyme in carbon acquisition. Photorespiration can occur as a C loss process that may protect photosynthetic electron transport during periods of low CO(2) availability and high light intensity. Seagrasses can also become photoinhibited in high light (generally>1000 µE m(-2) s(-1)) as a protective mechanism that allows excessive light energy to be dissipated as heat. Many photosynthesis-irradiance curves have been developed to assess light levels needed for seagrass growth. However, most available data (e.g. compensation irradiance I(c)) do not account for belowground tissue respiration and, thus, are of limited use in assessing the whole-plant carbon balance across light gradients. Caution is recommended in use of I(k) (saturating irradiance for photosynthesis), since seagrass photosynthesis commonly increases under higher light intensities than I(k); and in estimating seagrass productivity from H(sat) (duration of daily light period when light equals or exceeds I(k)) which varies considerably among species and sites, and which fails to account for light-limited photosynthesis at light levels less than I(k). The dominant storage carbohydrate in seagrasses is sucrose (primarily stored in rhizomes), which generally forms more than 90% of the total soluble carbohydrate pool. Seagrasses with high I(c) levels (suggesting lower efficiency in C acquisition) have relatively low levels of leaf carbohydrates. Sucrose-P synthase (SPS, involved in sucrose synthesis) activity increases with leaf age, consistent with leaf maturation from carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40 degrees C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic 'strategy' that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism - controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy - remain to be resolved as directions in future research. Such research will strengthen the understanding needed to improve management and protection of these environmentally important marine angiosperms.

  11. An Approach for the Visualization of Temperature Distribution in Tissues According to Changes in Ultrasonic Backscattered Energy

    PubMed Central

    Li, Qiang; Liu, Hao-Li; Chen, Wen-Shiang

    2013-01-01

    Previous studies developed ultrasound temperature-imaging methods based on changes in backscattered energy (CBE) to monitor variations in temperature during hyperthermia. In conventional CBE imaging, tracking and compensation of the echo shift due to temperature increase need to be done. Moreover, the CBE image does not enable visualization of the temperature distribution in tissues during nonuniform heating, which limits its clinical application in guidance of tissue ablation treatment. In this study, we investigated a CBE imaging method based on the sliding window technique and the polynomial approximation of the integrated CBE (ICBEpa image) to overcome the difficulties of conventional CBE imaging. We conducted experiments with tissue samples of pork tenderloin ablated by microwave irradiation to validate the feasibility of the proposed method. During ablation, the raw backscattered signals were acquired using an ultrasound scanner for B-mode and ICBEpa imaging. The experimental results showed that the proposed ICBEpa image can visualize the temperature distribution in a tissue with a very good contrast. Moreover, tracking and compensation of the echo shift were not necessary when using the ICBEpa image to visualize the temperature profile. The experimental findings suggested that the ICBEpa image, a new CBE imaging method, has a great potential in CBE-based imaging of hyperthermia and other thermal therapies. PMID:24260041

  12. Association Between Fungal Contamination and Eye Bank-Prepared Endothelial Keratoplasty Tissue: Temperature-Dependent Risk Factors and Antifungal Supplementation of Optisol-Gentamicin and Streptomycin.

    PubMed

    Brothers, Kimberly M; Shanks, Robert M Q; Hurlbert, Susan; Kowalski, Regis P; Tu, Elmer Y

    2017-11-01

    Fungal contamination and infection from donor tissues processed for endothelial keratoplasty is a growing concern, prompting analysis of donor tissues after processing. To determine whether eyebank-processed endothelial keratoplasty tissue is at higher risk of contamination than unprocessed tissue and to model eyebank processing with regard to room temperature exposure on Candida growth in optisol-gentamicin and streptomycin (GS) with and without antifungal supplementation. An examination of the 2013 Eversight Eyebank Study follow-up database for risk factors associated with post-keratoplasty infection identified an increased risk of positive fungal rim culture results in tissue processed for endothelial keratoplasty vs unprocessed tissue. Processing steps at room temperature were hypothesized as a potential risk factor for promotion of fungal growth between these 2 processes. Candida albicans, Candida glabrata, and Candida parapsilosis endophthalmitis isolates were each inoculated into optisol-GS and subjected to 2 different room temperature incubation regimens reflective of current corneal tissue handling protocols. Eversight Eyebank Study outcomes and measures were follow-up inquiries from 6592 corneal transplants. Efficacy study outcomes and measures were fungal colony-forming units from inoculated vials of optisol-GS taken at 2 different processing temperatures. Donor rim culture results were 3 times more likely to be positive for fungi in endothelial keratoplasty-processed eyes (1.14%) than for other uses (0.37%) (difference, 0.77%; 95% CI, 0.17-.1.37) (P = .009). In vitro, increased room temperature incubation of optisol-GS increased growth of Candida species over time. The addition of caspofungin and voriconazole decreased growth of Candida in a species-dependent manner. Detectable Candida growth in donor rim cultures, associated with a higher rate of post keratoplasty infection, is seen in endothelial keratoplasty tissue vs other uses at the time of transplantation, likely owing in part to eyebank preparation processes extending the time of tissue warming. Reduced room temperature incubation and the addition of antifungal agents decreased growth of Candida species in optisol-GS and should be further explored to reduce the risk of infection.

  13. Temperature Modulation of Electric Fields in Biological Matter

    PubMed Central

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments. PMID:21695144

  14. Calcium phosphate compatible bone cement: Characterization, bonding properties and tissue response

    NASA Astrophysics Data System (ADS)

    Roemhildt, Maria Lynn

    A novel, inorganic, bone cement, containing calcium phosphate, developed for implant fixation was evaluated. Setting properties were determined over a range of temperatures. The flow of the cement was greatly increased by application of vibration. Changes in the cement during hydration and aging were evaluated. Compressive strength of the cement over time was studied under simulated physiological conditions from 1 hour to 1 year after setting. After 1 day, this cement had equivalent compressive strength to commercially used PMMA cement. The strength was found to increase over 1 month and high strength was maintained up to 1 year. The shear strength of the cement-metal interface was studied in vitro using a pull-out test. Prepared specimens were stored under physiological conditions and tested at 4 hours, 24 hours, and 60 days. Comparable interfacial shear strength values were found at 4 hours, 24 hours and 60 days for the experimental cement and were not significantly different from values obtained for PMMA cement. In vivo tissue response was evaluated after cement implantation in the femoral medullary canal in canines. Tissue response and bonding at the cement-bone interface were evaluated at 2, 6, and 12 weeks. Cortical bone was found in direct contact with the OC-cement and was healthy. The strength of the cement-bone interface, measured using a push-out test, was significantly higher for the experimental cement than for commercial PMMA bone cement.

  15. Advances in polymeric systems for tissue engineering and biomedical applications.

    PubMed

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Microwave Medical Treatment Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); George, W. Rflfoul (Inventor)

    2005-01-01

    Methods, simulations, and apparatus are provided that may be utilized for medical treatments which are especially suitable for treatment of benign prostatic hyperplasia (BPH). In a preferred embodiment, a plurality of separate microwave antennas are utilized to heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. By utilizing constructive and destructive interference of the microwave transmission, the energy can be deposited on the tissues to be necrosed while protecting other tissues such as the urethra. Saline injections to alter the conductivity of the tissues may also be used to further focus the energy deposits. A computer simulation is Provided that can be used to Predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of one or more catheters and the methods of applying microwave energy, a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  17. Interaction between intra-oral cinnamaldehyde and nicotine assessed by psychophysical and physiological responses.

    PubMed

    Jensen, Tanja K; Andersen, Michelle V; Nielsen, Kent A; Arendt-Nielsen, Lars; Boudreau, Shellie A

    2016-08-01

    Cinnamaldehyde and nicotine activate the transient receptor potential subtype A1 (TRPA1) channel, which may cause burning sensations. This study investigated whether cinnamaldehyde modulates nicotine-induced psychophysical and physiological responses in oral tissues. Healthy non-smokers (n = 22) received, in a randomized, double-blind, crossover design, three different gums containing 4 mg of nicotine, 20 mg of cinnamaldehyde, or a combination thereof. Assessments of orofacial temperature and blood flow, blood pressure, heart rate, taste experience, and intra-oral pain/irritation area and intensity were performed before, during, and after a 10-min chewing regime. Cinnamaldehyde increased the temperature of the tongue and blood flow of the lip, and was associated with pain/irritation, especially in the mouth. Nicotine increased the temperature of the tongue and blood flow of the cheek, and produced pain/irritation in the mouth and throat. The combination of cinnamaldehyde and nicotine did not overtly change the psychophysical or physiological responses. Interestingly, half of the subjects responded to cinnamaldehyde as an irritant, and these cinnamaldehyde responders reported greater nicotine-induced pain/irritation areas in the throat. Whether sensitivity to cinnamaldehyde can predict the response to nicotine-induced oral irritation remains to be determined. A better understanding of the sensory properties of nicotine in the oral mucosa has important therapeutic implications because pain and irritation represent compliance issues for nicotine replacement products. © 2016 Eur J Oral Sci.

  18. Optimal temperature control of tissue embedded with gold nanoparticles for enhanced thermal therapy based on two-energy equation model.

    PubMed

    Wang, Shen-Ling; Qi, Hong; Ren, Ya-Tao; Chen, Qin; Ruan, Li-Ming

    2018-05-01

    Thermal therapy is a very promising method for cancer treatment, which can be combined with chemotherapy, radiotherapy and other programs for enhanced cancer treatment. In order to get a better effect of thermal therapy in clinical applications, optimal internal temperature distribution of the tissue embedded with gold nanoparticles (GNPs) for enhanced thermal therapy was investigated in present research. The Monte Carlo method was applied to calculate the heat generation of the tissue embedded with GNPs irradiated by continuous laser. To have a better insight into the physical problem of heat transfer in tissues, the two-energy equation was employed to calculate the temperature distribution of the tissue in the process of GNPs enhanced therapy. The Arrhenius equation was applied to evaluate the degree of permanent thermal damage. A parametric study was performed to investigate the influence factors on the tissue internal temperature distribution, such as incident light intensity, the GNPs volume fraction, the periodic heating and cooling time, and the incident light position. It was found that period heating and cooling strategy can effectively avoid overheating of skin surface and heat damage of healthy tissue. Lower GNPs volume fraction will be better for the heat source distribution. Furthermore, the ring heating strategy is superior to the central heating strategy in the treatment effect. All the analysis provides theoretical guidance for optimal temperature control of tissue embedded with GNP for enhanced thermal therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Direct effects of endogenous pyrogen on medullary temperature-responsive neurons in rabbits.

    PubMed

    Sakata, Y; Morimoto, A; Takase, Y; Murakami, N

    1981-01-01

    The effect of endogenous pyrogen (E.P.) injected directly into the tissue near the recording site were examined on the activities of the medullary temperature-responsive (TR) neurons in rabbits anesthetized with urethane. Endogenous pyrogen prepared from rabbit's whole blood was administered by a fine glass cannula (100-200 micrometer in diameter) in a fluid volume of 1 to 4 microliter. The cannula was fixed to the manipulator in parallel with a microelectrode and their tips were less than 0.05 mm apart. In rabbits with the intact preoptic/anterior hypothalamic (PO/AH) region, 4 warm-responsive neurons out of 7 were inhibited and 6 cold-responsive neuron out of 7 were excited by the direct administration of the E.P. In rabbits with lesions of the PO/AH, 5 warm-responsive neurons out of 9 were inhibited and 6 cold-responsive neurons out of 8 were facilitated by E.P. Antipyretics administered locally after the E.P. antagonized the pyretic effect, causing a return of the discharge of TR neuron to the control rate within 2.4 +/- 1.2 (mean +/- S.D.) min. The medullary TR neuron itself has the ability to respond to the E.P. and contributes to the development of fever.

  20. Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain.

    PubMed

    Tunc, Burcu; Gulsoy, Murat

    2013-01-01

    The thermal damage of the surrounding tissue can be an unwanted result of continuous-wave laser irradiations. In order to propose an effective alternative to conventional surgical techniques, photothermal damage must be taken under control by a detailed dose study. Real-time temperature monitoring can be also an effective way to get rid of these negative effects. The aim of the present study is to investigate the potential of a new laser-thermoprobe, which consists of a continuous-wave 1,940-nm Tm:fiber laser and a thermocouple measurement system for brain surgery in an ex vivo study. A laser-thermoprobe was designed for using the near-by tissue temperature as a real-time reference for the applicator. Fresh lamb brain tissues were used for experiments. 320 laser shots were performed on both cortical and subcortical tissue. The relationship between laser parameters, temperature changes, and ablation (removal of tissue) efficiency was determined. The correlation between rate of temperature change and ablation efficiency was calculated. Laser-thermoprobe leads us to understand the basic laser-tissue interaction mechanism in a very cheap and easy way, without making a change in the experimental design. It was also shown that the ablation and coagulation (thermally irreversible damage) diameters could be predicted, and carbonization can be avoided by temperature monitoring. Copyright © 2013 Wiley Periodicals, Inc.

  1. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts

    PubMed Central

    Crozier, Louise; Hedley, Pete E.; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C.; Toth, Ian; Jackson, Robert W.; Holden, Nicola J.

    2016-01-01

    Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai,’ to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant–microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai. PMID:27462311

  2. Histologic effects of a high-repetition pulsed Nd:YAG laser on intraoral soft tissue

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Goodis, Harold E.; Yessik, Michael J.; Myers, Terry D.

    1995-05-01

    High-repetition rate, fiberoptic-delivered Nd:YAG lasers have increased oral soft tissue laser applications. This study focused on three parameters: the temperature rise occurring in deeper tissue during excision, the histology of thermal coagulation during excision of oral tissue, and effects of accidental exposure to adjacent hard tissue. Thermocouples were placed 5.0 +/- 0.5 mm in bone below fresh bovine gingiva and at the same depth in tongue; temperatures in the underlying tissue were measured during laser excision. An Nd:YAG laser with 100 microsecond(s) pulse duration was used to excise the tissue using a 200 or 300 micrometers diameter fiber in contact with the tissue. The soft tissue was excised using constant force and rate with laser powers of 1.5, 3, 5, and 10 W, and a variety of pulse rates. The tissue was bioprepared, sectioned and stained with hematoxylin and eosin. The width and depth of the tissue removed as well as lateral and deep thermal coagulation were measured in histologic sections with a measuring microscope (10x). Multifactor randomized ANOVA showed that probe diameter and repetition rates were not significant variables (p

  3. Temperature-controlled two-wavelength laser soldering of tissues.

    PubMed

    Gabay, Ilan; Abergel, Avraham; Vasilyev, Tamar; Rabi, Yaron; Fliss, Dan M; Katzir, Abraham

    2011-11-01

    Laser tissue soldering is a method for bonding of incisions in tissues. A biological solder is spread over the cut, laser radiation heats the solder and the underlying cut edges and the incision is bonded. This method offers many advantages over conventional techniques (e.g., sutures). Past researches have shown that laser soldering, using a single laser, does not provide sufficient strength for bonding of cuts in thick (>1 mm) tissues. This study introduces a novel method for laser soldering of thick tissues, under temperature control, using two lasers, emitting two different wavelengths. An experimental system was built, using two lasers: (i) a CO(2) laser, whose radiation heated the upper surface of the tissue and (ii) a GaAs laser that heated an albumin layer under the tissue. An infrared fiber-optic radiometer monitored the temperature of the tissue. All three devices were connected to a computer that controlled the process. A computer simulation was written to optimize the system parameters. The system was tested on tissue phantoms, to validate the simulation and ensure that both the upper and lower sides of the cut were heated, and that the temperature could be controlled on both sides. The system was then used ex vivo to bond longitudinal cuts of lengths ∼12 mm in the esophagi of large farm pigs. The theoretical simulations showed a good stabilization of the temperatures at the upper and lower tissue surfaces at the target values. Experiments on tissue phantom showed a good agreement with these simulations. Incisions in esophagi, removed from large farm pigs, were then successfully bonded. The mean burst pressure was ∼3.6 m of water. This study demonstrated the capability of soldering cuts in thick tissues, paving the way for new types of surgical applications. Copyright © 2010 Wiley Periodicals, Inc.

  4. Cellular Responses in Sea Fan Corals: Granular Amoebocytes React to Pathogen and Climate Stressors

    PubMed Central

    Mydlarz, Laura D.; Holthouse, Sally F.; Peters, Esther C.; Harvell, C. Drew

    2008-01-01

    Background Climate warming is causing environmental change making both marine and terrestrial organisms, and even humans, more susceptible to emerging diseases. Coral reefs are among the most impacted ecosystems by climate stress, and immunity of corals, the most ancient of metazoans, is poorly known. Although coral mortality due to infectious diseases and temperature-related stress is on the rise, the immune effector mechanisms that contribute to the resistance of corals to such events remain elusive. In the Caribbean sea fan corals (Anthozoa, Alcyonacea: Gorgoniidae), the cell-based immune defenses are granular acidophilic amoebocytes, which are known to be involved in wound repair and histocompatibility. Methodology/Principal Findings We demonstrate for the first time in corals that these cells are involved in the organismal response to pathogenic and temperature stress. In sea fans with both naturally occurring infections and experimental inoculations with the fungal pathogen Aspergillus sydowii, an inflammatory response, characterized by a massive increase of amoebocytes, was evident near infections. Melanosomes were detected in amoebocytes adjacent to protective melanin bands in infected sea fans; neither was present in uninfected fans. In naturally infected sea fans a concurrent increase in prophenoloxidase activity was detected in infected tissues with dense amoebocytes. Sea fans sampled in the field during the 2005 Caribbean Bleaching Event (a once-in-hundred-year climate event) responded to heat stress with a systemic increase in amoebocytes and amoebocyte densities were also increased by elevated temperature stress in lab experiments. Conclusions/Significance The observed amoebocyte responses indicate that sea fan corals use cellular defenses to combat fungal infection and temperature stress. The ability to mount an inflammatory response may be a contributing factor that allowed the survival of even infected sea fan corals during a stressful climate event. PMID:18364996

  5. Antarctic marine molluscs do have an HSP70 heat shock response

    PubMed Central

    Fraser, Keiron P. P.; Peck, Lloyd S.

    2008-01-01

    The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat “stress” have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6–8°C for L. elliptica and +8–10°C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past. PMID:18347940

  6. Photothermal effects of laser tissue soldering.

    PubMed

    McNally, K M; Sorg, B S; Welch, A J; Dawes, J M; Owen, E R

    1999-04-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5 mg ml(-1) to 0.25 mg ml(-1) was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4 W cm(-2) using a solid protein solder composed of 60% BSA and 0.25 mg ml(-1) ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85+/-5 degrees C with a maximum temperature difference through the 150 microm thick solder strips of about 15 degrees C. Histological examination of the repairs formed using these parameters showed negligible evidence of collateral thermal damage to the underlying tissue. Scanning electron microscopy suggested albumin intertwining within the tissue collagen matrix and subsequent fusion with the collagen as the mechanism for laser tissue soldering. The laser tissue soldering technique is shown to be an effective method for producing repairs with improved tensile strength and minimal collateral thermal damage over conventional laser tissue welding techniques.

  7. A microRNA regulates the response of corals to thermal stress.

    PubMed

    Gajigan, Andrian P; Conaco, Cecilia

    2017-07-01

    Coral reefs are diverse ecosystems of great ecological and economic importance. However, corals are vulnerable to a variety of stressors, including rising seawater temperatures, and yet little is known about the genetic mechanisms underlying their survival and adaptation to stress. Like other animals, corals possess genes for key members of the microRNA (miRNA) machinery. miRNAs are short RNAs that regulate diverse cellular processes, including organismal stress response, through post-transcriptional repression of gene transcripts. Through small RNA sequencing, we identified 26 miRNAs in the coral, Acropora digitifera. Many of the identified miRNAs are novel, while eight are conserved with miRNAs previously identified in other cnidarians. One of the identified miRNAs is differentially expressed in coral tissues exposed to acute thermal stress. This thermally responsive miRNA putatively regulates multiple pathways of the organismal stress response, DNA/RNA expression regulation, repair mechanisms, tissue morphogenesis, and signalling. We propose a model by which miRNA regulation allows the coral to mount a robust stress response through sequestration of a pool of nontranslated transcripts encoding stress response proteins. Release of miRNA-mediated repression under stress conditions may result in rapid and abundant translation of proteins that help the coral maintain cellular homoeostasis. These findings highlight the potential importance of miRNAs in the thermal resilience of corals. © 2017 John Wiley & Sons Ltd.

  8. The mechanism of tissue welding using a green laser: revisited

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Bellam, R.; Hezarkhani, E.; Fiebig, T.

    2017-02-01

    A "green" laser (e.g. Nd:YAG, λ = 532 nm) together with the red dye Rose Bengal (RB) have been used for photochemical tissue bonding (PTB). It has been reported that irradiation of RB with light at 532 nm produces free radicals. For tissue bonding with a Nd:YAG laser it has been proposed that the free radicals than crosslink the tissue collagen and lead to the closing of the surgical incisions. RB is also a red solution and it is possible that RB absorbs the photons delivered from the laser and converts them into heat with a measurable local temperature increase. It is possible that the mechanism for PTB is not only caused by free radical formation but also by a temperature increase in the tissue. In the present study we measured the local tissue temperature with a micro thermometer during irradiation with a Nd:YAG laser before and after RB was applied. For the present laser settings "tissue painting" with RB lead to a temperature increase resulting in tissue coagulation and charring. PTB was also studied for RB with a free radical scavenger, vitamin C. No significant difference in bonding strength was found for RB alone and for RB together with a free radical scavenger. In case no RB was applied no tissue bonding occurred. Bonding strength was quantified using the leakage seal test

  9. Plant response to polluted air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendrick, J.B. Jr.; Darley, E.F.; Middleton, J.T.

    Field observations and controlled fumigation experiments have shown that plants differ in their response to atmospheric contamination by ethylene, herbicides, fluorides, sulfur dioxide, and smog, or oxidized hydrocarbons. Controlled experiments have also shown that plant response to air pollution varies with species and variety of plant, age of plant tissue, soil fertility levels, soil moisture, air temperatures during the prefumigation growth period, and presence of certain agricultural chemicals on leaves. The leaves of many plants; such as tomato, African marigold, fuchsia, pepper, and potato, become curved and malformed in the presence of ethylene, while those of cantaloupe, China aster, gardenia,more » Cattleya orchid, and snapdragon do not. Ethylene may cause serious damage to the sepals of orchids without injury to the petals or leaves.« less

  10. Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient

    PubMed Central

    Wood, A. J.; Cozad, M. J.; Grant, D. A.; Ostdiek, A. M.; Bachman, S. L.

    2014-01-01

    During its tenure in vivo, synthetic mesh materials are exposed to foreign body responses, which can alter physicochemical properties of the material. Three different synthetic meshes comprised of polypropylene, expanded polytetrafluoroethylene (ePTFE), and polyethylene terephthalate (PET) materials were explanted from a single patient providing an opportunity to compare physicochemical changes between three different mesh materials in the same host. Results from infrared spectroscopy demonstrated significant oxidation in polypropylene mesh while ePTFE and PET showed slight chemical changes that may be caused by adherent scar tissue. Differential scanning calorimetry results showed a significant decrease in the heat of enthalpy and melt temperature in the polypropylene mesh while the ePTFE and PET showed little change. The presence of giant cells and plasma cells surrounding the ePTFE and PET were indicative of an active foreign body response. Scanning electron micrographs and photo micrographs displayed tissue entrapment and distortion of all three mesh materials. PMID:23371769

  11. Role of thyroidal and testicular hormones in regulation of tissue respiration in male air-breathing fish, Clarias batrachus (Linn.).

    PubMed

    Lynshiang, D S; Gupta, B B

    2000-07-01

    In vivo and in vitro effects of thyroidal hormones (MIT, DIT, T3, T4), propyl thiouracil (PTU), testosterone and cyproterone acetate were studied on the rate of tissue (liver, muscle, kidney and brain) respiration of adult male C. batrachus during winter and summer/rainy seasons. Monoiodotyrosine (MIT) and diiodothyrosine (DIT) increased the respiratory rate in a dose-dependent and temperature-independent manner. Triiodothyronine (T3) and thyroxine (T4) stimulated tissue respiration during summer/rainy months but not during winter. PTU decreased tissue respiration during summer/rainy season and also at simulated low temperature. Testosterone invariably stimulated the rate of respiration of the tissues, while in vivo treatment with cyproterone acetate significantly decreased the metabolic rate of all the tissues. The findings suggest that in C. batrachus MIT and DIT may be more important than T3 and T4 at low temperature, endogenous thyroid hormones are involved indirectly in energy metabolism even during winter/at low temperature and testicular hormones are actively involved in the respiration.

  12. Temperature dynamics of soft tissues during diode laser cutting by different types of fiber opto-thermal converters

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Smirnov, Sergey N.; Semyashkina, Yulia V.

    2017-03-01

    The results of in vitro study of the soft tissue temperature dynamics during 980 nm diode laser cutting by different types (CLEAR, FILM, VOLUMETRIC) of fiber opto-thermal converters (FOTC) are presented. It was found that the use of CLEAR fiber end (tip) at the laser power below 8.5 W doesn't lead to the soft tissue (chicken meat) destruction. The chicken meat destruction (cutting) begins when irradiated by 8.5 W laser radiation for approximately 9.0 s. At the power of 9.0 W this time decreases up to 7.0 s, at 9.5 W - to 6.0 s, at 10.0 W - to 3.5 s. The moment of soft tissue cutting start correlates with the moment of black layer (absorber) formation at the fiber end and appearance of visually identifiable laser cut walls on the photos; the temperature in this case rapidly increases up to 850 °C. It was determined that the FILM FOTC begins to cut the soft tissue immediately after exposure of laser radiation with power of 4.0 W, the temperature in this case reaches 900 °C. It was determined that the VOLUMETRIC FOTC begins to cut the tissue immediately after exposure at the power of 1.0 W, the temperature in this case reaches 600 °C. VOLUMETRIC FOTC can produce more effective cuts of the soft tissue at the laser power of 4.0 W, in this case, the temperature is above 1200 °C.

  13. CT-based investigation of the contraction of ex vivo tissue undergoing microwave thermal ablation

    NASA Astrophysics Data System (ADS)

    Lopresto, Vanni; Strigari, Lidia; Farina, Laura; Minosse, Silvia; Pinto, Rosanna; D'Alessio, Daniela; Cassano, Bartolomeo; Cavagnaro, Marta

    2018-03-01

    Treatment planning in microwave thermal ablation (MTA) requires the capability to predict and estimate the shape and dimension of the thermally coagulated zone obtainable following a clinical protocol. The ultimate result relies on the knowledge of the performance of the ablation device, as well as of the temperature-dependent structural modifications that the tissue undergoes during the treatment, because of the very high temperatures reached (up to 100 °C or higher). In this respect, tissue shrinkage plays an important role, since the dimension of the ablated tissue evaluated at the end of the MTA procedure (e.g. by way of CT imaging) could underestimate the actual treated tissue, leading to inaccurate assessment of the treatment outcome. In this study, CT imaging was used for real-time monitoring of tissue contraction during MTA experiments carried out in ex vivo bovine liver. Fiducial lead markers were positioned into the tissue in a 3D spatial grid around the MTA applicator. The spatial and temporal evolution of tissue contraction was imaged during the experiments, and analysed in terms of displacements of clusters of fiducial markers. The results obtained indicated that contraction is highly heterogeneous in the zone of ablation, depending both on the heating and on interactions with nearby tissue. In particular, tissue shrinkage appeared asymmetric with respect to the direction of insertion of the microwave applicator in the central area of carbonised tissue (about 30% and 19% along the radial and longitudinal directions, respectively), and isotropic in the region of coagulated (but not carbonised) tissue (about 11%). The total ablated volume was reduced by approximately 43% with respect to its pre-ablation value. Finally, temperature measurements displayed a correlation between temperature increment and temporal evolution of tissue contraction in the zone of ablation.

  14. Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females.

    PubMed

    Robinson, Lindsay J; Law, James M; Symonds, Michael E; Budge, Helen

    2016-04-01

    What is the central question of this study? Does psychological stress, which is known to promote cortisol secretion, simultaneously activate brown adipose tissue function in healthy adult females? What is the main finding and its importance? One explanation for the pronounced differences in brown adipose tissue function between individuals lies in their responsiveness to psychological stress and, as such, should be taken into account when examining its in vivo stimulation. Brown adipose tissue (BAT) has been implicated in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and is a potential therapeutic target. Brown adipose tissue can have a significant impact on energy balance and glucose homeostasis through the action of uncoupling protein 1, dissipating chemical energy as heat following neuroendocrine stimulation. We hypothesized that psychological stress, which is known to promote cortisol secretion, would simultaneously activate BAT at thermoneutrality. Brown adipose tissue activity was measured using infrared thermography to determine changes in the temperature of the skin overlying supraclavicular BAT (TSCR ). A mild psychological stress was induced in five healthy, lean, female, Caucasian volunteers using a short mental arithmetic (MA) test. The TSCR was compared with a repeated assessment, in which the MA test was replaced with a period of relaxation. Although MA did not elicit an acute stress response, anticipation of MA testing led to an increase in salivary cortisol, indicative of an anticipatory stress response, that was associated with a trend towards higher absolute and relative TSCR . A positive correlation between TSCR and cortisol was found during the anticipatory phase, a relationship that was enhanced by increased cortisol linked to MA. Our findings suggest that subtle changes in the level of psychological stress can stimulate BAT, findings that may account for the high variability and inconsistency in reported BAT prevalence and activity measured by other modalities. Consistent assessment of this uniquely metabolic tissue is fundamental to the discovery of potential therapeutic strategies against metabolic disease. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  15. Dietary fatty acid composition influences tissue lipid profiles and regulation of body temperature in Japanese quail.

    PubMed

    Ben-Hamo, Miriam; McCue, Marshall D; McWilliams, Scott R; Pinshow, Berry

    2011-08-01

    Many avian species reduce their body temperature (T(b)) to conserve energy during periods of inactivity, and we recently characterized how ambient temperature (T(a)) and nutritional stress interact with one another to influence physiologically controlled hypothermic responses in Japanese quail (Coturnix japonica). In the present study, we examined how the fatty acid (FA) composition of the diet influences the FA composition of phospholipids in major organs and how these affect controlled hypothermic responses and metabolic rates in fasted birds. For 5 weeks prior to fasting, quail were fed a standard diet and gavaged each morning with 0.7 ml of water (control), or a vegetable oil comprising saturated fatty acids (SFA; coconut oil), or unsaturated fatty acids (UFA; canola oil). Birds were then fasted for 4 days at a T(a) of 15°C. We found that, while fasting, both photophase and scotophase T(b) decreased significantly more in the SFA treatment group than in the control group; apparently the former down-regulated their T(b) set point. This deeper hypothermic response was correlated with changes in the phospholipid composition of the skeletal muscle and liver, which contained significantly more oleic acid (18:1) and less arachidonic acid (20:4), respectively. Our data imply that these two FAs may be associated with thermoregulation.

  16. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes.

    PubMed

    Ronges, Daria; Walsh, Jillian P; Sinclair, Brent J; Stillman, Jonathon H

    2012-06-01

    Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene-expression-related changes in homeostasis begin within 12 h, the length of a tidal cycle.

  17. Characterization of the rubber tree metallothionein family reveals a role in mitigating the effects of reactive oxygen species associated with physiological stress.

    PubMed

    Huang, Yacheng; Fang, Yongjun; Long, Xiangyu; Liu, Linya; Wang, Jia; Zhu, Jinheng; Ma, Yanyan; Qin, Yunxia; Qi, Jiyan; Hu, Xinwen; Tang, Chaorong

    2018-06-01

    Metallothioneins (MTs) as reactive oxygen species (ROS) scavengers play important roles in stress response and heavy metal homeostasis. In Hevea brasiliensis (the para rubber tree that is the source of commercial natural rubber) and in other trees, the functions of MTs are not well understood. Latex exudes when the rubber tree is tapped. The flow of latex and its regeneration can be enhanced by tapping, wounding and ethylene treatment, all of which produce ROS as a by-product. Here, we show the presence of four MT genes in H. brasiliensis, comprising three Type 2 (HbMT2, -2a and -2b) and one Type 3 (HbMT3L) isoforms, representing one of the smallest MT gene families among angiosperms. The four HbMTs exhibited distinct tissue expression patterns: HbMT2 and HbMT3L mainly in leaves, HbMT2a specifically in flowers and HbMT2b in diverse tissues. The expression of HbMT2b, an isoform present in latex, decreased significantly in the latex following the stress-inducing treatments of tapping, wounding and ethephon (an ethylene generator). The expressions of the leaf-abundant isoforms, HbMT2 and -3L were up-regulated following pathogenic fungus infection and high-temperature stress, but down-regulated by low-temperature stress. These reactions were consistent with multiple defense- and hormone-responsive cis-acting elements in the HbMT promoters. Nine transcription factors were shown to implicate in the high-temperature responsiveness of HbMT2 and -3L in leaves. Overexpression of HbMT2 in Escherichia coli enhanced the bacterium's tolerance to heavy metals and ROS, consistent with its predicted role as an ROS scavenger. Taken together, our results, along with other relevant studies, suggest an important role of HbMTs in latex regeneration as well as species adaptation via the regulation of ROS homeostasis.

  18. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    PubMed

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health and structuring of tropical coastal communities (e.g. coral reefs). © 2014 John Wiley & Sons Ltd.

  19. Tetherless thermobiochemically actuated microgrippers.

    PubMed

    Leong, Timothy G; Randall, Christina L; Benson, Bryan R; Bassik, Noy; Stern, George M; Gracias, David H

    2009-01-20

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy).

  20. Determining the critical effective temperature and heat dispersal pattern in monopolar radiofrequency ablation using temperature-time integration

    PubMed Central

    TSENG, HOW; LIN, SEY-EN; CHANG, YEN-LIANG; CHEN, MING-HSU; HUNG, SHIH-HAN

    2016-01-01

    The radiofrequency ablation (RFA) lesion size is posited to be disproportionate to the total delivered energy, and temperature-time integration (TTI) may have a more critical effect on lesion size. The present study aimed to evaluate this hypothesis by determining the temperature threshold and temperature distribution over tissues during the RFA lesioning process. Using an ex vivo chicken tissue model and an in vivo rabbit model with RFA applied for 2 min under various target temperature settings, the resultant lesions were evaluated histologically using Masson's trichrome stain. The temperature distribution over the tissue during the RFA lesioning process was also determined using a VT02 Visual IR Thermometer. It was revealed that the thermal injury threshold for RFA in the chicken tissues was ~65°C, but that it ranged from 55–65°C in mammals. Using infra-red thermal imaging, the temperature gradient (from the center to the periphery) during the RFA lesioning process demonstrated a uniform heat diffusion pattern. This data supports the proposed hypothesis that TTI is a critical parameter in determining RFA lesion size and can be applied clinically using the following equation: [Target temperature − 55 (°C)] × time (sec) is proportional to RFA lesion size. PMID:26997990

  1. Temperature Changes During Therapeutic Ultrasound in the Precooled Human Gastrocnemius Muscle

    PubMed Central

    Rimington, Stephanie J.; Draper, David O.; Durrant, Earlene; Fellingham, Gilbert

    1994-01-01

    Therapeutic ultrasound is frequently employed as a deep heating rehabilitation modality. It is administered in one of three ways: a) ultrasound with no preceding treatment, b) ultrasound on preheated tissues, or c) ultrasound on precooled tissues. The purpose of this study was to investigate the effect of ultrasound treatments on the tissue temperature rise of precooled human gastrocnemius muscle. Sixteen male subjects had a 23-gauge hypodermic needle microprobe inserted 3 cm deep into the medial aspect of their anesthetized gastrocnemius muscles. Data were gathered on each subject for one of two randomly assigned treatments: a) ultrasound treatment on precooled tissue, or b) ultrasound with no preceding treatment. Each treatment consisted of ultrasound delivered topically at 1.5 watts/cm2 in a continuous mode for 10 minutes. Ultrasound was applied in an overlapping longitudinal motion at 4 cm/s, with temperature readings recorded at 30-second intervals. We discovered a difference between the two treatment methods [t(14) = 16.26, p < .0001]. Ultrasound alone increased tissue temperature an average of 2°C, whereas ultrasound preceded by 15 minutes of ice did not increase tissue temperature even to the original baseline level. We concluded that, at a depth of 3 cm, ultrasound alone provided a greater heating effect than ultrasound preceded by an ice treatment. PMID:16558295

  2. Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum.

    PubMed

    Miyazaki, S; Koga, R; Bohnert, H J; Fukuhara, T

    1999-03-01

    Ten transcripts (Mpc1-10) homologous to protein phosphatases of the 2C family have been isolated from the halophyte Mesembryanthemum crystallinum (common ice plant). Transcripts range in size from 1.6 to 2.6 kb, and encode proteins whose catalytic domains are between 24% and 62% identical to that of the Arabidopsis PP2C, ABI1. Transcript expression is tissue specific. Two isoforms are present only in roots (Mpc1 and Mpc5), three in young leaves (Mpc6, 8 and 9), two in old leaves (Mpc6 and Mpc8), and two in post-flowering leaves (Mpc8 and Mpc9). Mpc2 is strongly expressed in roots and also in seeds, meristematic tissues and mature flowers. Mpc3 is specific for leaf meristems, and Mpc4 is found in root and leaf meristems. Mpc7 is restricted to meristematic tissues. Mpc10 is only present in mature flowers. Mpc2 (in roots and leaves), Mpc5 (in roots) and Mpc8 (weakly in leaves) are induced by salinity stress and drought conditions with different kinetics in different tissues, but other Mpcs are downregulated by stress. Cold stress (4 degrees C) leads to a decline in Mpc5 and Mp6, but low temperature provoked a long-term (days) increase in Mpc2 levels in leaves and a transient increase (less than 24 h) in roots. Four full-length transcripts have been obtained. In each case, after over-expression in E. coli, the isolated proteins exhibited (Mg2+-dependent, okadeic acid-insensitive) protein phosphatase activity, although activity against 32P-phosphocasein varied among different PP2Cs. Determination of tissue developmental and stress response specificity of PP2C will facilitate functional studies of signal-transducing enzymes in this halophytic organism.

  3. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature

    PubMed Central

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-01-01

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42–45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy. PMID:26842674

  4. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature.

    PubMed

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-02-04

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.

  5. Interaction of 1.319 μm laser with skin: an optical-thermal-damage model and experimental validation

    NASA Astrophysics Data System (ADS)

    Jiao, Luguang; Yang, Zaifu; Wang, Jiarui

    2014-09-01

    With the widespread use of high-power laser systems operating within the wavelength region of approximately 1.3 to 1.4 μm, it becomes very necessary to refine the laser safety guidelines setting the exposure limits for the eye and skin. In this paper, an optical-thermal-damage model was developed to simulate laser propagation, energy deposition, heat transfer and thermal damage in the skin for 1.319 μm laser irradiation. Meanwhile, an experiment was also conducted in vitro to measure the tempreture history of a porcine skin specimen irradiated by a 1.319 μm laser. Predictions from the model included light distribution in the skin, temperature response and thermal damge level of the tissue. It was shown that the light distribution region was much larger than that of the incident laser at the wavelength of 1.319 μm, and the maximum value of the fluence rate located on the interior region of the skin, not on the surface. By comparing the calculated temperature curve with the experimentally recorded temperautre data, good agreement was shown betweeen them, which validated the numerical model. The model also indicated that the damage integral changed little when the temperature of skin tissue was lower than about 55 °C, after that, the integral increased rapidly and denatunation of the tissue would occur. Based on this model, we can further explore the damage mechanisms and trends for the skin and eye within the wavelength region of 1.3 μm to 1.4 μm, incorporating with in vivo experimental investigations.

  6. Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation

    NASA Astrophysics Data System (ADS)

    Olsrud, Johan Karl Otto

    1998-12-01

    Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was investigated as a method of non-invasive temperature monitoring, and an optically tissue-like phantom material, suitable for MRI, was developed. MRI thermometry in this material was shown to be an excellent method for characterization of laser applicators and for verification of numerical calculations. Finally, a water-cooled laser applicator for the treatment of benign prostatic hyperplasia, allowing anatomically correct heating, was developed and evaluated ex-vivo. An increased understanding of the physical aspects of thermotherapy, aided by the methods and results presented in this thesis, constitutes a significant contribution to the performance of safe and efficacious treatment.

  7. Ablation of PGC-1β Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance

    PubMed Central

    Petrovic, Natasa; Kis, Adrienn; Feldmann, Helena M; Bjursell, Mikael; Parker, Nadeene; Curtis, Keira; Campbell, Mark; Hu, Ping; Zhang, Dongfang; Litwin, Sheldon E; Zaha, Vlad G; Fountain, Kimberly T; Boudina, Sihem; Jimenez-Linan, Mercedes; Blount, Margaret; Lopez, Miguel; Meirhaeghe, Aline; Bohlooly-Y, Mohammad; Storlien, Leonard; Strömstedt, Maria; Snaith, Michael; Orešič, Matej; Abel, E. Dale; Cannon, Barbara; Vidal-Puig, Antonio

    2006-01-01

    The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress. PMID:17090215

  8. The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues.

    PubMed

    Ji, Xiaoli; Wang, Min; Li, Lingling; Chen, Fang; Zhang, Yanyang; Li, Qian; Zhou, Junmei

    2017-10-01

    High-quality biosamples are valuable resources for biomedical research. However, some tissues are stored without being sectioned into small aliquots and have to undergo repeated freeze-thaw cycles throughout prolonged experimentation. Little is known regarding the effects of repeated freeze-thaw cycles on the quality of biomolecules in tissues. The aim of this study was to evaluate the impact of repeated freeze-thaw (at room temperature or on ice) cycles on biomolecules and gene expression in four different types of tissues. Each fresh tissue was sectioned into seven aliquots and snap-frozen before undergoing repeated freeze-thaw cycles at room temperature or on ice. Biomolecules were extracted and analyzed. Both relative and absolute quantification were used to detect the changes in gene expression. The results indicated that the impact of repeated freeze-thaw cycles on RNA integrity varied by tissue type. Gene expression, including the housekeeping gene, was affected in RNA-degraded samples according to absolute quantification rather than relative quantification. Furthermore, our results suggest that thawing on ice could protect RNA integrity compared with thawing at room temperature. No obvious degradation of protein or DNA was observed with repeated freeze-thaw cycles either at room temperature or on ice. This research provides ample evidence for the necessity of sectioning fresh tissues into small aliquots before snap-freezing, thus avoiding degradation of RNA and alteration of gene expression resulting from repeated freeze-thaw cycles. For frozen tissue samples that were already in storage and had to be used repeatedly during their lifecycle, thawing on ice or sectioned at ultralow temperature is recommended.

  9. An Individualized, Perception-Based Protocol to Investigate Human Physiological Responses to Cooling

    PubMed Central

    Coolbaugh, Crystal L.; Bush, Emily C.; Galenti, Elizabeth S.; Welch, E. Brian; Towse, Theodore F.

    2018-01-01

    Cold exposure, a known stimulant of the thermogenic effects of brown adipose tissue (BAT), is the most widely used method to study BAT physiology in adult humans. Recently, individualized cooling has been recommended to standardize the physiological cold stress applied across participants, but critical experimental details remain unclear. The purpose of this work was to develop a detailed methodology for an individualized, perception-based protocol to investigate human physiological responses to cooling. Participants were wrapped in two water-circulating blankets and fitted with skin temperature probes to estimate BAT activity and peripheral vasoconstriction. We created a thermoesthesia graphical user interface (tGUI) to continuously record the subject's perception of cooling and shivering status during the cooling protocol. The protocol began with a 15 min thermoneutral phase followed by a series of 10 min cooling phases and concluded when sustained shivering (>1 min duration) occurred. Researchers used perception of cooling feedback (tGUI ratings) to manually adjust and personalize the water temperature at each cooling phase. Blanket water temperatures were recorded continuously during the protocol. Twelve volunteers (ages: 26.2 ± 1.4 years; 25% female) completed a feasibility study to evaluate the proposed protocol. Water temperature, perception of cooling, and shivering varied considerably across participants in response to cooling. Mean clavicle skin temperature, a surrogate measure of BAT activity, decreased (−0.99°C, 95% CI: −1.7 to −0.25°C, P = 0.16) after the cooling protocol, but an increase in supraclavicular skin temperature was observed in 4 participants. A strong positive correlation was also found between thermoesthesia and peripheral vasoconstriction (ρ = 0.84, P < 0.001). The proposed individualized, perception-based protocol therefore has potential to investigate the physiological responses to cold stress applied across populations with varying age, sex, body composition, and cold sensitivity characteristics. PMID:29593558

  10. Effects of sunlight exposure on grapevine powdery mildew development.

    PubMed

    Austin, Craig N; Wilcox, Wayne F

    2012-09-01

    Natural and artificially induced shade increased grapevine powdery mildew (Erysiphe necator) severity in the vineyard, with foliar disease severity 49 to 75% higher relative to leaves in full sun, depending on the level of natural shading experienced and the individual experiment. Cluster disease severities increased by 20 to 40% relative to those on check vines when ultraviolet (UV) radiation was filtered from sunlight reaching vines in artificial shading experiments. Surface temperatures of leaves in full sunlight averaged 5 to 8°C higher than those in natural shade, and in one experiment, filtering 80% of all wavelengths of solar radiation, including longer wavelengths responsible for heating irradiated tissues, increased disease more than filtering UV alone. In controlled environment experiments, UV-B radiation reduced germination of E. necator conidia and inhibited both colony establishment (hyphal formation and elongation) and maturity (latent period). Inhibitory effects of UV-B radiation were significantly greater at 30°C than at 20 or 25°C. Thus, sunlight appears to inhibit powdery mildew development through at least two mechanisms, i.e., (i) UV radiation's damaging effects on exposed conidia and thalli of the pathogen; and (ii) elevating temperatures of irradiated tissues to a level supraoptimal or inhibitory for pathogen development. Furthermore, these effects are synergistic at temperatures near the upper threshold for disease development.

  11. Optimizing heat shock protein expression induced by prostate cancer laser therapy through predictive computational models

    NASA Astrophysics Data System (ADS)

    Rylander, Marissa N.; Feng, Yusheng; Zhang, Yongjie; Bass, Jon; Stafford, Roger J.; Hazle, John D.; Diller, Kenneth R.

    2006-07-01

    Thermal therapy efficacy can be diminished due to heat shock protein (HSP) induction in regions of a tumor where temperatures are insufficient to coagulate proteins. HSP expression enhances tumor cell viability and imparts resistance to chemotherapy and radiation treatments, which are generally employed in conjunction with hyperthermia. Therefore, an understanding of the thermally induced HSP expression within the targeted tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of the overall tissue response. A treatment planning computational model capable of predicting the temperature, HSP27 and HSP70 expression, and damage fraction distributions associated with laser heating in healthy prostate tissue and tumors is presented. Measured thermally induced HSP27 and HSP70 expression kinetics and injury data for normal and cancerous prostate cells and prostate tumors are employed to create the first HSP expression predictive model and formulate an Arrhenius damage model. The correlation coefficients between measured and model predicted temperature, HSP27, and HSP70 were 0.98, 0.99, and 0.99, respectively, confirming the accuracy of the model. Utilization of the treatment planning model in the design of prostate cancer thermal therapies can enable optimization of the treatment outcome by controlling HSP expression and injury.

  12. Thermoresponsive PNIPAM Coatings on Nanostructured Gratings for Cell Alignment and Release

    DOE PAGES

    Zhernenkov, Mikhail; Ashkar, Rana; Feng, Hao; ...

    2015-05-20

    Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) has been widely used as a surface coating to thermally control the detachment of adsorbed cells without the need for extreme stimuli such as enzyme treatment. Recently, the use of 2D and 3D scaffolds in controlling cell positioning, growth, spreading, and migration has been of a great interest in tissue engineering and cell biology. We use a PNIPAM polymer surface coating atop a nanostructured linear diffraction grating to controllably change the surface topography of 2D linear structures using temperature stimuli. Neutron reflectometry and surface diffraction are utilized to examine the conformity of the polymer coating to themore » grating surface, its hydration profile, and its evolution in response to temperature variations. Our results show that, in the collapsed state, the PNIPAM coating conforms to the grating structures and retains a uniform hydration of 63%. In the swollen state, the polymer expands beyond the grating channels and absorbs up to 87% water. Such properties are particularly desirable for 2D cell growth scaffolds with a built-in nonextreme tissue-release mechanism. Indeed, the current system demonstrates advanced performance in the effective alignment of cultured fibroblast cells and the easy release of the cells upon temperature change.« less

  13. Thermoresponsive PNIPAM Coatings on Nanostructured Gratings for Cell Alignment and Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhernenkov, Mikhail; Ashkar, Rana; Feng, Hao

    Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) has been widely used as a surface coating to thermally control the detachment of adsorbed cells without the need for extreme stimuli such as enzyme treatment. Recently, the use of 2D and 3D scaffolds in controlling cell positioning, growth, spreading, and migration has been of a great interest in tissue engineering and cell biology. We use a PNIPAM polymer surface coating atop a nanostructured linear diffraction grating to controllably change the surface topography of 2D linear structures using temperature stimuli. Neutron reflectometry and surface diffraction are utilized to examine the conformity of the polymer coating to themore » grating surface, its hydration profile, and its evolution in response to temperature variations. Our results show that, in the collapsed state, the PNIPAM coating conforms to the grating structures and retains a uniform hydration of 63%. In the swollen state, the polymer expands beyond the grating channels and absorbs up to 87% water. Such properties are particularly desirable for 2D cell growth scaffolds with a built-in nonextreme tissue-release mechanism. Indeed, the current system demonstrates advanced performance in the effective alignment of cultured fibroblast cells and the easy release of the cells upon temperature change.« less

  14. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    PubMed

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.

  15. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-08-11

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks.

  16. Raman microspectroscopy of noncancerous and cancerous human breast tissues. Identification and phase transitions of linoleic and oleic acids by Raman low-temperature studies.

    PubMed

    Brozek-Pluska, Beata; Kopec, Monika; Surmacki, Jakub; Abramczyk, Halina

    2015-04-07

    We present the results of Raman studies in the temperature range of 293-77 K on vibrational properties of linoleic and oleic acids and Raman microspectroscopy of human breast tissues at room temperature. Our results confirmed the significant role of unsaturated fatty acids in differentiation of noncancerous and cancerous breast tissues and the role of vibrational spectroscopy in phase transition identification. We have found that vibrational properties are very sensitive indicators to specify phases and phase transitions typical of unsaturated fatty acids at the molecular level. Using Raman spectroscopy we have identified high-temperature, middle-temperature and low-temperature phases of linoleic acid. Results obtained for linoleic acid were compared with parameters characteristic of α and γ phases of oleic acid - the parent compound of polyunsaturated fatty acids.

  17. Photochemical mechanisms of ocular photic injury (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Stuck, Bruce E.; Lund, David J.; Zuclich, Joseph A.

    2000-03-01

    Mechanisms of photic injury to the eye can be categorized as photochemical, photothermal or photodistruptive. Exposure wavelength, exposure duration, ocular tissue characteristics and response criteria are key factors in the delineation of the ocular injury mechanisms. Depending on the exposure condition, one or all of the laser-tissue interaction mechanisms can be involved. Although photic injury to the eye was initially assumed to involve thermal mechanisms, more recent research has demonstrated that ocular effects can be produced by light exposure without a significant retinal temperature rise. Photochemical mechanisms are also implicated in UV photic injury to the cornea and lens. Exposure of the retina to short visible wavelengths for prolonged durations results in photochemical retinal damage with negligible localized retinal temperature elevation. For exposure conditions where photochemical mechanisms are dominate, the reciprocity of irradiance and exposure duration is apparent. The latency until observation of a photochemical lesion is often 24-48 hours whereas a thermal lesion is observed immediately or within a few hours after the exposure. Action spectra for photochemical injury to the eye are discussed in the context of ocular injury thresholds and current permissible exposure limits.

  18. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  19. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures.

    PubMed

    Krause, G Heinrich; Cheesman, Alexander W; Winter, Klaus; Krause, Barbara; Virgo, Aurelio

    2013-06-15

    Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations

    DOEpatents

    Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.

    1999-01-01

    Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

  1. Central circuitries for body temperature regulation and fever.

    PubMed

    Nakamura, Kazuhiro

    2011-11-01

    Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.

  2. Interaction of temperature and salinity on the expression of immunity factors in different tissues of juvenile turbot Scophthalmus maximus based on response surface methodology

    NASA Astrophysics Data System (ADS)

    Huang, Zhihui; Ma, Aijun; Wang, Xin'an; Lei, Jilin; Li, Weiye; Wang, Ting; Yang, Zhi; Qu, Jiangbo

    2015-01-01

    Central Composite Design (CCD) and response surface methodology were used in the experiment to examine the combined effect of temperature (16-28°C) and salinity (18-42) on Hsp70 and IgM genes expression levels in turbot ( Scophthalmus maximus) liver and kidney. The results showed that the coefficients of determination ( R 2 =0.965 2 for liver Hsp70, 0.972 9 for kidney Hsp70, 0.921 for liver IgM and 0.962 1 for kidney IgM) and probability values ( P<0.01) were significant for the regression model. The interactive effect between temperature and salinity on liver Hsp70, kidney Hsp70 and liver IgM were not significant ( P>0.05), while the interactive effect between temperature and salinity on kidney IgM was significant ( P<0.01). The model equation could be used in practice for forecasting Hsp70 and IgM genes expression levels in the liver and kidney of juvenile turbot via applying statistical optimization of the response of interest, at which the maximum liver Hsp70, kidney Hsp70, liver IgM and kidney IgM of 1.48, 1.49, 2.48, and 1.38, respectively, were reached. The present model may be valuable in assessing the feasibility of turbot farming at different geographic locations and, furthermore, could be a useful reference for scientists studying the immunity of turbot.

  3. Housing temperature influences the pattern of heat shock protein induction in mice following mild whole body hyperthermia.

    PubMed

    Eng, Jason W-L; Reed, Chelsey B; Kokolus, Kathleen M; Repasky, Elizabeth A

    2014-12-01

    Researchers studying the murine response to stress generally use mice housed under standard, nationally mandated conditions as controls. Few investigators are concerned whether basic physical aspects of mouse housing could be an additional source of stress, capable of influencing the subsequent impact of an experimentally applied stressor. We have recently become aware of the potential for housing conditions to impact important physiological and immunological properties in mice. Here we sought to determine whether housing mice at standard temperature (ST; 22 °C) vs. thermoneutral temperature (TT; 30 °C) influences baseline expression of heat shock proteins (HSPs) and their typical induction following a whole body heating. There were no significant differences in baseline expression of HSPs at ST and TT. However, in several cases, the induction of Hsp70, Hsp110 and Hsp90 in tissues of mice maintained at ST was greater than at TT following 6 h of heating (which elevated core body temperature to 39.5 °C). This loss of HSP induction was also seen when mice housed at ST were treated with propranolol, a β-adrenergic receptor antagonist, used clinically to treat hypertension and stress. Taken together, these data show that housing temperature significantly influences the expression of HSPs in mice after whole body heating and thus should be considered when stress responses are studied in mice.

  4. Low Temperature Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  5. Research on acupuncture points and cortical functional activation position in cats by infrared imaging detection

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Sha, Zhanyou; Wang, Shuhai; Wen, Huanming

    2007-12-01

    The research of the brain cognition is mainly to find out the activation position in brain according to the stimulation at present in the world. The research regards the animals as the experimental objects and explores the stimulation response on the cerebral cortex of acupuncture. It provides a new method, which can detect the activation position on the creatural cerebral cortex directly by middle-far infrared imaging. According to the theory of local temperature situation, the difference of cortical temperature maybe associate with the excitement of cortical nerve cells, the metabolism of local tissue and the local hemal circulation. Direct naked detection of temperature variety on cerebral cortex is applied by middle and far infrared imaging technology. So the activation position is ascertained. The effect of stimulation response is superior to other indirect methods. After removing the skulls on the head, full of cerebral cortex of a cat are exposed. By observing the infrared images and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing, the points are used to judge the activation position. The variety in the cortical functional sections is corresponding to the result of the acupuncture points in terms of infrared images and temperatures. According to experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture point exactly.

  6. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites.

    PubMed

    Mushaben, Madaline; Urie, Russell; Flake, Tanner; Jaffe, Michael; Rege, Kaushal; Heys, Jeffrey

    2018-02-01

    Laser tissue soldering using photothermal solders is a technology that facilitates rapid sealing using heat-induced changes in the tissue and the solder material. The solder material is made of gold nanorods embedded in a protein matrix patch that can be placed over the tissue rupture site and heated with a laser. Although laser tissue soldering is an attractive approach for surgical repair, potential photothermal damage can limit the success of this approach. Development of predictive mathematical models of photothermal effects including cell death, can lead to more efficient approaches in laser-based tissue repair. We describe an experimental and modeling investigation into photothermal solder patches for sealing porcine and mouse cadaver intestine sections using near-infrared laser irradiation. Spatiotemporal changes in temperature were determined at the surface as well as various depths below the patch. A mathematical model, based on the finite element method, predicts the spatiotemporal temperature distribution in the patch and surrounding tissue, as well as concomitant cell death in the tissue is described. For both the porcine and mouse intestine systems, the model predicts temperatures that are quantitatively similar to the experimental measurements with the model predictions of temperature increase often being within a just a few degrees of experimental measurements. This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser soldering. Lasers Surg. Med. 50:143-152, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended to model thermal ablation, including the addition of temperature dependent attenuation, perfusion, and tissue damage. Pilot point control at the target boundaries was implemented to control power delivery to each transducer section, simulating an approach feasible for MR guided procedures. The computer model of thermal ablation was evaluated on representative patient anatomies to demonstrate the feasibility of using catheter-based ultrasound thermal ablation for treatment of benign prostate hyperplasia (BPH) and prostate cancer, and to assist in designing applicators and treatment delivery strategies.

  8. Effect of Temperature and Nutrient Manipulations on eelgrass ...

    EPA Pesticide Factsheets

    Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur

  9. Consideration of the effects of intense tissue heating on the RF electromagnetic fields during MRI: simulations for MRgFUS in the hip

    NASA Astrophysics Data System (ADS)

    Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.

    2015-01-01

    Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.

  10. Thermally induced changes of optical and vital parameters in human cancer cells

    NASA Astrophysics Data System (ADS)

    Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.

    2010-11-01

    Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.

  11. Human Brown Adipose Tissue Temperature and Fat Fraction Are Related to Its Metabolic Activity.

    PubMed

    Koskensalo, Kalle; Raiko, Juho; Saari, Teemu; Saunavaara, Virva; Eskola, Olli; Nuutila, Pirjo; Saunavaara, Jani; Parkkola, Riitta; Virtanen, Kirsi A

    2017-04-01

    The metabolic activity of human brown adipose tissue (BAT) has been previously examined using positron emission tomography (PET). The aim of this study was to use proton magnetic resonance spectroscopy (1H MRS) to investigate whether the temperature and the fat fraction (FF) of BAT and white adipose tissue (WAT) are associated with BAT metabolic activity determined by deoxy-2-18F-fluoro-d-glucose (18F-FDG)-PET. Ten healthy subjects (four women, six men; 25 to 45 years of age) were studied using PET-magnetic resonance imaging during acute cold exposure and at ambient room temperature. BAT and subcutaneous WAT 1H MRS were measured. The tissue temperature and the FF were derived from the spectra. Tissue metabolic activity was studied through glucose uptake using dynamic FDG PET scanning during cold exposure. A 2-hour hyperinsulinemic euglycemic clamp was performed on eight subjects. The metabolic activity of BAT associated directly with the heat production capacity and inversely with the FF of the tissue. In addition, the lipid-burning capacity of BAT associated with whole-body insulin sensitivity. During cold exposure, the FF of BAT was lower than at room temperature, and cold-induced FF of BAT associated inversely with high-density lipoprotein and directly with low-density lipoprotein cholesterol. Both 1H MRS-derived temperature and FF are promising methods to study BAT activity noninvasively. The association between the lipid-burning capacity of BAT and whole-body insulin sensitivity emphasizes the role of BAT in glucose handling. Furthermore, the relation of FF to high-density lipoprotein and low-density lipoprotein cholesterol suggests that BAT has a role in lipid clearance, thus protecting tissues from excess lipid load. Copyright © 2017 Endocrine Society

  12. Temperature and frequency dependence of ultrasonic attenuation in selected tissues

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croissette, D. H. L.; Heyser, R. C.

    1979-01-01

    Ultrasonic attenuation over the frequency range of 1.5-10 MHz has been measured as a function of temperature for porcine liver, backfat, kidney and spleen as well as for a single specimen of human liver. The attenuation in these excised specimens increases nearly linearly with frequency. Over the temperature range of approximately 4-37 C the attenuation decreases with increasing temperature for most soft tissue studied.

  13. Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    PubMed Central

    Seebacher, Frank; Murray, Shauna A.

    2007-01-01

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

  14. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery.

    PubMed

    Li, Junjie; Chen, Qixian; Zha, Zengshi; Li, Hui; Toh, Kazuko; Dirisala, Anjaneyulu; Matsumoto, Yu; Osada, Kensuke; Kataoka, Kazunori; Ge, Zhishen

    2015-07-10

    Simultaneous achievement of prolonged retention in blood circulation and efficient gene transfection activity in target tissues has always been a major challenge hindering in vivo applications of nonviral gene vectors via systemic administration. Herein, we constructed novel rod-shaped ternary polyplex micelles (TPMs) via complexation between the mixed block copolymers of poly(ethylene glycol)-b-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) and poly(N-isopropylacrylamide)-b-PAsp(DET) (PNIPAM-b-PAsp(DET)) and plasmid DNA (pDNA) at room temperature, exhibiting distinct temperature-responsive formation of a hydrophobic intermediate layer between PEG shells and pDNA cores through facile temperature increase from room temperature to body temperature (~37 °C). As compared with binary polyplex micelles of PEG-b-PAsp(DET) (BPMs), TPMs were confirmed to condense pDNA into a more compact structure, which achieved enhanced tolerability to nuclease digestion and strong counter polyanion exchange. In vitro gene transfection results demonstrated TPMs exhibiting enhanced gene transfection efficiency due to efficient cellular uptake and endosomal escape. Moreover, in vivo performance evaluation after intravenous injection confirmed that TPMs achieved significantly prolonged blood circulation, high tumor accumulation, and promoted gene expression in tumor tissue. Moreover, TPMs loading therapeutic pDNA encoding an anti-angiogenic protein remarkably suppressed tumor growth following intravenous injection into H22 tumor-bearing mice. These results suggest TPMs with PEG shells and facilely engineered intermediate barrier to inner complexed pDNA have great potentials as systemic nonviral gene vectors for cancer gene therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. In vitro exposure to 0.57-MHz electric currents exerts cytostatic effects in HepG2 human hepatocarcinoma cells.

    PubMed

    Hernández-Bule, María Luisa; Trillo, María Angeles; Cid, María Antonia; Leal, Jocelyne; Ubeda, Alejandro

    2007-03-01

    Capacitive-resistive electric transfer (CRET) therapy is a non-invasive technique currently applied to the treatment of skin, muscle and tendon injuries that uses 0.45-0.6 MHz electric currents to transdermically and focally increase the internal temperature of targeted tissues. Because CRET electrothermal treatment has been reported to be more effective than other thermal therapies, it has been proposed that the electric stimulus could induce responses in exposed tissues that are cooperative or synergic with the thermal effects of the treatment. Previous studies by our group, investigating the nature of the alleged electric response, have shown that short, repeated stimuli with 0.57-MHz currents at subthermal levels could provoke partial, cytotoxic effects on human neuroblastoma cells in vitro. The aim of the present study was to investigate the response from another human cell type, the human hepatocarcinoma HepG2 line, during and after the exposure to 0.57-MHz CRET currents at subthermal densities. The electric stimuli provoked a decrease in the proliferation rate of the cultures, possibly due to an electrically-induced blocking of the cell cycle in a fraction of the cellular population.

  16. Thermoacoustic and photoacoustic sensing of temperature.

    PubMed

    Pramanik, Manojit; Wang, Lihong V

    2009-01-01

    We present a novel temperature-sensing technique using thermoacoustic and photoacoustic measurements. This noninvasive method has been demonstrated using a tissue phantom to have high temporal resolution and temperature sensitivity. Because both photoacoustic and thermoacoustic signal amplitudes depend on the temperature of the source object, the signal amplitudes can be used to monitor the temperature. A temperature sensitivity of 0.15 degrees C was obtained at a temporal resolution as short as 2 s, taking the average of 20 signals. The deep-tissue imaging capability of this technique can potentially lead us to in vivo temperature monitoring in thermal or cryogenic applications.

  17. Effect of low temperature on metabolism of rat liver slices and epididymal fat pads.

    NASA Technical Reports Server (NTRS)

    Hillyard, L. A.; Entenman, C.

    1973-01-01

    Study of low temperature effects on the metabolism of radioisotope-tagged glucose and palmitate in rat liver slices and epididymal fat pads. The obtained data suggest that the oxidative capacity of rat liver and adipose tissue is maintained at low temperatures to a greater degree than the synthetic capacity. It was concluded that sufficient energy can be produced at 17 C for maintenance of essential tissue functions by these two tissues but that the energy requirements may not be met at 7 C.

  18. [Scanning electron microscopy of heat-damaged bone tissue].

    PubMed

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  19. Expression of Heat Shock Protein Genes in Different Developmental Stages and After Temperature Stress in the Maize Weevil (Coleoptera: Curculionidae).

    PubMed

    Tungjitwitayakul, Jatuporn; Tatun, Nujira; Vajarasathira, Boongeua; Sakurai, Sho

    2015-06-01

    The maize weevil, Sitophilus zeamais Motschulsky, is a major pest of rice and other postharvest grain stocks in tropical countries. Heating and cooling treatments have been adopted to control this pest. Because heat shock protein (hsp) genes respond to temperature stress, we examined the association of hsp genes with development and thermal stress in S. zeamais. The temperature response of the insect to heat and cold treatments was assessed at four developmental stages: egg, larva, pupa, and adult. LT50 values at high temperatures were similar among the four developmental stages, while adults were the most tolerant to low temperatures, and eggs, larvae, and pupae exhibited similar LT50 values. Expression levels of three hsps--Szhsp70, Szhsc70, and Szhsp90--fluctuated substantially throughout the four stages at a rearing temperature of 28°C. Heat shock and cold shock increased the expression of all three hsps, and the highest upregulation was observed at 40°C, although the intensity of upregulation varied among the three genes: strongly in Szhsp70, moderately in Szhsp90, and slightly in Szhsc70. Basal expression of the three hsps at 28°C and gene responses to heat and cold shock also varied significantly at the tissue level. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: a comparison of CT and CT-MRI based tissue segmentation on simulated temperature.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-12-01

    In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI (Tmax: 38.1 °C) result in similar simulated temperatures, while CT and MRIdb (Tmax: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.

  1. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    NASA Astrophysics Data System (ADS)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  2. Analytical prediction of sub-surface thermal history in translucent tissue phantoms during plasmonic photo-thermotherapy (PPTT).

    PubMed

    Dhar, Purbarun; Paul, Anup; Narasimhan, Arunn; Das, Sarit K

    2016-12-01

    Knowledge of thermal history and/or distribution in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour/carcinoma cells. A semi-analytical model to predict sub-surface thermal distribution in translucent, soft, tissue mimics has been proposed. The model can accurately predict the spatio-temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub-surface temperature peaks. Based on optical and thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorption coefficient of nano-graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and computations. The model shows promise in predicting thermal distribution induced by lasers in tissues and deduction of therapeutic hyperthermia parameters, thereby assisting clinical procedures by providing a priori estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pre-Operative Diet Impacts the Adipose Tissue Response to Surgical Trauma

    PubMed Central

    Nguyen, Binh; Tao, Ming; Yu, Peng; Mauro, Christine; Seidman, Michael A.; Wang, Yaoyu E.; Mitchell, James; Ozaki, C. Keith

    2012-01-01

    Background Short-term changes in pre-operative nutrition can have profound effects on surgery related outcomes such as ischemia reperfusions injury in pre-clinical models. Dietary interventions that lend protection against stress in animal models (e.g. fasting, dietary restriction [DR]) impact adipose tissue quality/quantity. Adipose tissue holds high surgical relevance due to its anatomic location and high tissue volume, and it is ubiquitously traumatized during surgery. Yet the response of adipose tissue to trauma under clinically relevant circumstances including dietary status remains poorly defined. We hypothesized that pre-operative diet alters the adipose tissue response to surgical trauma. Methods A novel mouse model of adipose tissue surgical trauma was employed. Dietary conditions (diet induced obesity [DIO], pre-operative DR) were modulated prior to application of surgical adipose tissue trauma in the context of clinically common scenarios (different ages, simulated bacterial wound contamination). Local/distant adipose tissue phenotypic responses were measured as represented by gene expression of inflammatory, tissue remodeling/growth, and metabolic markers. Results Surgical trauma had a profound effect on adipose tissue phenotype at the site of trauma. Milder but significant distal effects on non-traumatized adipose tissue were also observed. DIO exacerbated the inflammatory aspects of this response, and pre-operative DR tended to reverse these changes. Age and LPS-simulated bacterial contamination also impacted the adipose tissue response to trauma, with young adult animals and LPS treatment exacerbating the proinflammatory response. Conclusions Surgical trauma dramatically impacts both local and distal adipose tissue biology. Short-term pre-operative DR may offer a strategy to attenuate this response. PMID:23274098

  4. 2008 Report for the Project Entitled: A Comprehensive Modeling Approach Towards Understanding and Prediction of the Alaskan Coastal System Response to Changes in an Ice-diminished Arctic

    DTIC Science & Technology

    2008-01-01

    apparent increased contribution of diazotrophs to Arctic primary production was also recorded in muscle tissue of bowheads, harvested from the Beaufort...temperatures of the Beaufort Sea need not be invoked. Instead, the diazotrophic marker of particulate nitrogen within bowhead whale baleen and muscle...microflagellates, and diazotrophs from downstream boreal and subtropical ecosystems. Furthermore, at lower latitudes, Saharan dust plumes in the Gulf of

  5. Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures.

    PubMed

    Paula-Lopes, F F; Chase, C C; Al-Katanani, Y M; Krininger, C E; Rivera, R M; Tekin, S; Majewski, A C; Ocon, O M; Olson, T A; Hansen, P J

    2003-02-01

    The detrimental effects of heat stress on fertility in cattle are less pronounced in heat-tolerant breeds. Although these genetic differences reflect differences in thermoregulation, cells from heat-tolerant breeds are less adversely compromised by increased temperature (that is, heat shock) than cells from heat-sensitive breeds. Experiments were performed to test the hypothesis that cells and tissues from two thermotolerant breeds (Brahman and Senepol) are better able to survive and function after exposure to increased temperature than cells and tissues from two thermosensitive breeds (Holstein and Angus). Exposure of embryos at>eight-cell stage at day 5 after insemination to heat shock of 41.0 degrees C for 6 h decreased development to the blastocyst stage and the number of cells per embryo. However, the deleterious effect of heat shock on blastocyst formation and the number of cells per embryo was less pronounced for Brahman than for Holstein and Angus breeds. Embryos from Senepol cows had very low development and it was not possible to determine heat shock effects in this breed. In contrast to the sensitivity of embryos to heat shock, there was no effect of a 41.0 degrees C heat shock on [(3)H]leucine incorporation into proteins secreted by oviductal or endometrial explants. Lymphocytes from Brahman and Senepol cows were more resistant to heat-induced apoptosis than lymphocytes from other breeds. Heat shock reduced lymphocyte glutathione content but the magnitude of the decrease was not affected by breed. In conclusion, embryos from Brahman cows are more resistant to heat shock than embryos from Holstein or Angus cows. Genetic differences are also present in thermotolerance for apoptosis response in lymphocytes, with Brahman and Senepol cattle being more resistant to heat shock than Angus and Holstein breeds. It is likely that the evolutionary forces that led to the Brahman and Senepol breeds being adapted to hot climates resulted in the selection of genes controlling resistance to cellular heat shock.

  6. Seasonal influence on stimulated BAT activity in prospective trials: a retrospective analysis of BAT visualized on 18F-FDG PET-CTs and 123I-mIBG SPECT-CTs.

    PubMed

    Bahler, Lonneke; Deelen, Jan W; Hoekstra, Joost B; Holleman, Frits; Verberne, Hein J

    2016-06-15

    Retrospective studies have shown that outdoor temperature influences the prevalence of detectable brown adipose tissue (BAT). Prospective studies use acute cold exposure to activate BAT. In prospective studies, BAT might be preconditioned in winter months leading to an increased BAT response to various stimuli. Therefore the aim of this study was to assess whether outdoor temperatures and other weather characteristics modulate the response of BAT to acute cold. To assess metabolic BAT activity and sympathetic outflow to BAT, 64 (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) and 56 additional (123)I-meta-iodobenzylguanidine ((123)I-mIBG) single-photon emission computed tomography-CT (SPECT-CT) scans, respectively, of subjects participating in previously executed trials were retrospectively included. BAT activity was measured in subjects after an overnight fast, following 2 h of cold exposure (∼17°C). The average daytime outdoor temperatures and other weather characteristics were obtained from the Dutch Royal Weather Institute. Forty-nine subjects were BAT positive. One week prior to the scan, outdoor temperature was significantly lower in the BAT-positive group compared with the BAT-negative group. Higher outdoor temperatures on preceding days resulted in lower stimulated metabolic BAT activity and volume (all P < 0.01). Outdoor temperatures did not correlate with sympathetic outflow to BAT. In conclusion, outdoor temperatures influence metabolic BAT activity and volume, but not sympathetic outflow to BAT, in subjects exposed to acute cold. To improve the consistency of the findings of future BAT studies in humans and to exclude bias introduced by outdoor temperatures, these studies should be planned in periods of similar outdoor temperatures. Copyright © 2016 the American Physiological Society.

  7. Effects of temperature on feed intake and plasma chemistry after exhaustive exercise in triploid brown trout (Salmo trutta L).

    PubMed

    Preston, Andrew C; Taylor, John F; Fjelldal, Per Gunnar; Hansen, Tom; Migaud, Hervé

    2017-04-01

    The physiological effect of temperature on feed intake and haematological parameters after exhaustive swimming in diploid and triploid brown trout (Salmo trutta) was investigated. Trout were exposed to an incremental temperature challenge (2 °C/day) from ambient (6 °C) to either 10 or 19 °C. Feed intake profiles did not differ between ploidy at 10 °C; however, triploids had a significantly higher total feed intake at 19 °C. After 24 days, each temperature-ploidy group was exposed to exhaustive swimming for 10 min. The haematological response differed between ploidy, with the magnitude of the response affected by temperature and ploidy. Post-exercise, acid-base and ionic differences were observed. Plasma lactate increased significantly from rest for both temperature and ploidy groups, but glucose increased significantly at higher temperature. Post-exercise, triploids at 19 °C had significantly higher osmolality and cholesterol than diploids, but differences were resumed within 4 h. Elevated alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in fish at higher temperature suggested greater tissue damage; however, both ploidy responded similarly. Despite no significant differences in deformity prevalence, the type and location of deformities observed differed between ploidy (decreased intervertebral space with higher prevalence in tail area and fin regions for diploids, while vertebral compression, fusion in cranial and caudal trunks for triploids). These results suggest triploids have greater appetite than diploids at elevated temperature and that triploids suffer similar blood disturbances after exercise as diploids. These findings have implications for the management of freshwater ecosystems and suggest that stocking triploid brown trout may offer an alternative to diploid brown trout.

  8. Catalase characterization and implication in bleaching of a symbiotic sea anemone.

    PubMed

    Merle, Pierre-Laurent; Sabourault, Cécile; Richier, Sophie; Allemand, Denis; Furla, Paola

    2007-01-15

    Symbiotic cnidarians are marine invertebrates harboring photosynthesizing microalgae (named zooxanthellae), which produce great amounts of oxygen and free radicals upon illumination. Studying antioxidative balance is then crucial to understanding how symbiotic cnidarians cope with ROS production. In particular, it is suspected that oxidative stress triggers cnidarian bleaching, i.e., the expulsion of zooxanthellae from the animal host, responsible for symbiotic cnidarian mass mortality worldwide. This study therefore investigates catalase antioxidant enzymes and their role in bleaching of the temperate symbiotic sea anemone Anemonia viridis. Using specific separation of animal tissues (ectoderm and endoderm) from the symbionts (zooxanthellae), spectrophotometric assays and native PAGE revealed both tissue-specific and activity pattern distribution of two catalase electrophoretypes, E1 and E2. E1, expressed in all three tissues, presents high sensitivity to the catalase inhibitor aminotriazole (ATZ) and elevated temperatures. The ectodermal E1 form is responsible for 67% of total catalase activity. The E2 form, expressed only within zooxanthellae and their host endodermal cells, displays low sensitivity to ATZ and relative thermostability. We further cloned an ectodermal catalase, which shares 68% identity with mammalian monofunctional catalases. Last, 6 days of exposure of whole sea anemones to ATZ (0.5 mM) led to effective catalase inhibition and initiated symbiont expulsion. This demonstrates the crucial role of this enzyme in cnidarian bleaching, a phenomenon responsible for worldwide climate-change-induced mass mortalities, with catastrophic consequences for marine biodiversity.

  9. Induction of wound-periderm-like tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels.

    PubMed

    Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz

    2015-10-01

    UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d(-1)). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.

    PubMed

    Stephens, J S; Cooper, J A; Phelan, F R; Dunkers, J P

    2007-07-01

    The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. (c) 2006 Wiley Periodicals, Inc.

  11. Central Control of Brown Adipose Tissue Thermogenesis

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.; Tupone, Domenico

    2011-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described. PMID:22389645

  12. Central control of thermogenesis in mammals

    PubMed Central

    Morrison, Shaun F.; Nakamura, Kazuhiro; Madden, Christopher J.

    2008-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis. PMID:18469069

  13. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster, Crassostrea gigas

    PubMed Central

    Clark, Melody S; Thorne, Michael A S; Amaral, Ana; Vieira, Florbela; Batista, Frederico M; Reis, João; Power, Deborah M

    2013-01-01

    Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical “stress” genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future. PMID:24223268

  14. Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress

    NASA Astrophysics Data System (ADS)

    Kneeland, J.; Hughen, K.; Cervino, J.; Hauff, B.; Eglinton, T.

    2013-12-01

    Lipid content and fatty acid profiles of corals and their dinoflagellate endosymbionts are known to vary in response to high-temperature stress. To better understand the heat-stress response in these symbionts, we investigated cultures of Symbiodinium goreauii type C1 and Symbiodinium sp. clade subtype D1 grown under a range of temperatures and durations. The predominant lipids produced by Symbiodinium are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs, the polyunsaturated fatty acid docosahexaenoic acid (C22:6, n-3; DHA), and a variety of sterols. Prolonged exposure to high temperature causes the relative amount of unsaturated acids within the C18 fatty acids in Symbiodinium tissue to decrease. Thermal stress also causes a decrease in abundance of fatty acids relative to sterols, as well as the more specific ratio of DHA to an algal 4-methyl sterol. These shifts in fatty acid unsaturation and fatty acid-to-sterol ratios are common to both types C1 and D1, but the apparent thermal threshold of lipid changes is lower for type C1. This work indicates that ratios among free fatty acids and sterols in Symbiodinium can be used as sensitive indicators of thermal stress. If the Symbiodinium lipid stress response is unchanged in hospite, the algal heat-stress biomarkers we have identified could be measured to detect thermal stress within the coral holobiont. These results provide new insights into the potential role of lipids in the overall Symbiodinium thermal stress response.

  15. Smart drug release systems based on stimuli-responsive polymers.

    PubMed

    Qing, Guangyan; Li, Minmin; Deng, Lijing; Lv, Ziyu; Ding, Peng; Sun, Taolei

    2013-07-01

    Stimuli-responsive polymers could respond to external stimuli, such as temperature, pH, photo-irradiation, electric field, biomolecules in solution, etc., which further induce reversible transformations in the structures and conformations of polymers, providing an excellent platform for controllable drug release, while the accuracy of drug delivery could obtain obvious improvement in this system. In this review, recent progresses in the drug release systems based on stimuli-responsive polymers are summarized, in which drugs can be released in an intelligent mode with high accuracy and efficiency, while potential damages to normal cells and tissues can also be effectively prevented owing to the unique characteristics of materials. Moreover, we introduce some smart nanoparticles-polymers conjugates and drug release devices, which are especially suitable for the long-term sustained drug release.

  16. Thermal gelation and tissue adhesion of biomimetic hydrogels

    PubMed Central

    Burke, Sean A; Ritter-Jones, Marsha; Lee, Bruce P; Messersmith, Phillip B

    2008-01-01

    Marine and freshwater mussels are notorious foulers of natural and manmade surfaces, secreting specialized protein adhesives for rapid and durable attachment to wet substrates. Given the strong and water-resistant nature of mussel adhesive proteins, significant potential exists for mimicking their adhesive characteristics in bioinspired synthetic polymer materials. An important component of these proteins is L-3,4-dihydroxylphenylalanine (DOPA), an amino acid believed to contribute to mussel glue solidification through oxidation and crosslinking reactions. Synthetic polymers containing DOPA residues have previously been shown to crosslink into hydrogels upon the introduction of oxidizing reagents. Here we introduce a strategy for stimuli responsive gel formation of mussel adhesive protein mimetic polymers. Lipid vesicles with a bilayer melting transition of 37 °C were designed from a mixture of dipalmitoyl and dimyristoyl phosphatidylcholines and exploited for the release of a sequestered oxidizing reagent upon heating from ambient to physiologic temperature. Colorimetric studies indicated that sodium-periodate-loaded liposomes released their cargo at the phase transition temperature, and when used in conjunction with a DOPA-functionalized poly(ethylene glycol) polymer gave rise to rapid solidification of a crosslinked polymer hydrogel. The tissue adhesive properties of this biomimetic system were determined by in situ thermal gelation of liposome/polymer hydrogel between two porcine dermal tissue surfaces. Bond strength measurements showed that the bond formed by the adhesive hydrogel (mean = 35.1 kPa, SD = 12.5 kPa, n = 11) was several times stronger than a fibrin glue control tested under the same conditions. The results suggest a possible use of this biomimetic strategy for repair of soft tissues. PMID:18458476

  17. On the characterization of the heterogeneous mechanical response of human brain tissue.

    PubMed

    Forte, Antonio E; Gentleman, Stephen M; Dini, Daniele

    2017-06-01

    The mechanical characterization of brain tissue is a complex task that scientists have tried to accomplish for over 50 years. The results in the literature often differ by orders of magnitude because of the lack of a standard testing protocol. Different testing conditions (including humidity, temperature, strain rate), the methodology adopted, and the variety of the species analysed are all potential sources of discrepancies in the measurements. In this work, we present a rigorous experimental investigation on the mechanical properties of human brain, covering both grey and white matter. The influence of testing conditions is also shown and thoroughly discussed. The material characterization performed is finally adopted to provide inputs to a mathematical formulation suitable for numerical simulations of brain deformation during surgical procedures.

  18. Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum.

    PubMed

    Granath, Gustaf; Wiedermann, Magdalena M; Strengbom, Joachim

    2009-09-01

    Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NP(max)), maximum efficiency of photosystem II [variable fluorescence (F (v))/maximum fluorescence yield (F (m))] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NP(max) did not differ between control (0.2 g N m(-2) year(-1)) and high N (3.0 g N m(-2) year(-1)), but was higher in the mid N treatment (1.5 g N m(-2) year(-1)). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F (v)/F (m) did not differ between N treatments. Increased temperature (+3.6 degrees C) had a small negative effect on N concentration, but had no significant effect on NP(max) or F (v)/F (m). Addition of 2 g S m(-2) year(-1) showed a weak negative effect on NP(max) and F (v)/F (m). Our results suggest a unimodal response of NP(max) to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g(-1). In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.

  19. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain.

    PubMed

    Fadhlaoui, Mariem; Pierron, Fabien; Couture, Patrice

    2018-02-01

    In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The role of monoamines in the changes in body temperature induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and its derivatives

    PubMed Central

    Docherty, JR; Green, AR

    2010-01-01

    Hyperthermia is probably the most widely known acute adverse event that can follow ingestion of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) by recreational users. The effect of MDMA on body temperature is complex because the drug has actions on all three major monoamine neurotransmitters [5-hydroxytryptamine (5-HT), dopamine and noradrenaline], both by amine release and by direct receptor activation. Hyperthermia and hypothermia can be induced in laboratory animals by MDMA, depending on the ambient temperature, and involve both central thermoregulation and peripheral changes in blood flow and thermogenesis. Acute 5-HT release is not directly responsible for hyperthermia, but 5-HT receptors are involved in modulating the hyperthermic response. Impairing 5-HT function with a neurotoxic dose of MDMA or p-chlorophenylalanine alters the subsequent MDMA-induced hyperthermic response. MDMA also releases dopamine, and evidence suggests that this transmitter is involved in both the hyperthermic and hypothermic effects of MDMA in rats. The noradrenergic system is also involved in the hyperthermic response to MDMA. MDMA activates central α2A-adrenoceptors and peripheral α1-adrenoceptors to produce cutaneous vasoconstriction to restrict heat loss, and β3-adrenoceptors in brown adipose tissue to increase heat generation. The hyperthermia occurring in recreational users of MDMA can be fatal, but data reviewed here indicate that it is unlikely that any single pharmaceutical agent will be effective in reversing the hyperthermia, so careful body cooling remains the principal clinical approach. Crucially, educating recreational users about the potential dangers of hyperthermia and the control of ambient temperature should remain key approaches to prevent this potentially fatal problem. PMID:20590597

  1. Critical roles of nardilysin in the maintenance of body temperature homoeostasis.

    PubMed

    Hiraoka, Yoshinori; Matsuoka, Tatsuhiko; Ohno, Mikiko; Nakamura, Kazuhiro; Saijo, Sayaka; Matsumura, Shigenobu; Nishi, Kiyoto; Sakamoto, Jiro; Chen, Po-Min; Inoue, Kazuo; Fushiki, Tohru; Kita, Toru; Kimura, Takeshi; Nishi, Eiichiro

    2014-01-01

    Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1(-/-) mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1(-/-) mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation.

  2. Low Incubation Temperature Induces DNA Hypomethylation in Lizard Brains.

    PubMed

    Paredes, Ursula; Radersma, Reinder; Cannell, Naomi; While, Geoffrey M; Uller, Tobias

    2016-07-01

    Developmental stress can have organizational effects on suites of physiological, morphological, and behavioral characteristics. In lizards, incubation temperature is perhaps the most significant environmental variable affecting embryonic development. Wall lizards (Podarcis muralis) recently introduced by humans from Italy to England experience stressfully cool incubation conditions, which we here show reduce growth and increase the incidence of scale malformations. Using a methylation-sensitive AFLP protocol optimized for vertebrates, we demonstrate that this low incubation temperature also causes hypomethylation of DNA in brain tissue. A consistent pattern across methylation-susceptible AFLP loci suggests that hypomethylation is a general response and not limited to certain CpG sites. The functional consequences of hypomethylation are unknown, but it could contribute to genome stability and regulation of gene expression. Further studies of the effects of incubation temperature on DNA methylation in ectotherm vertebrates may reveal mechanisms that explain why the embryonic thermal environment often has physiological and behavioral consequences for offspring. © 2016 Wiley Periodicals, Inc.

  3. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    PubMed

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the final HIFU treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Krasnikov, I. V.; Seteikin, A. Yu.; Drakaki, E.; Makropoulou, M.

    2012-03-01

    Laser induced fluorescence spectroscopy and photodynamic therapy (PDT) are techniques currently introduced in clinical applications for visualization and local destruction of malignant tumours as well as premalignant lesions. During the laser irradiation of tissues for the diagnostic and therapeutic purposes, the absorbed optical energy generates heat, although the power density of the treatment light for surface illumination is normally low enough not to cause any significantly increased tissue temperature. In this work we tried to evaluate the utility of Monte Carlo modeling for simulating the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed UV laser and a continuous wave visible laser beam. The analysis of the results showed that heat is not localized on the surface, but it is collected inside the tissue. By varying the boundary conditions on the surface and the type of the laser radiation (continuous or pulsed) we can reach higher than normal temperature inside the tissue without simultaneous formation of thermally damaged tissue (e.g. coagulation or necrosis zone).

  5. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    PubMed Central

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  6. Effect of local cooling on pro-inflammatory cytokines and blood flow of the skin under surface pressure in rats: feasibility study.

    PubMed

    Lee, Bernard; Benyajati, Siribhinya; Woods, Jeffrey A; Jan, Yih-Kuen

    2014-05-01

    The primary purpose of this feasibility study was to establish a correlation between pro-inflammatory cytokine accumulation and severity of tissue damage during local pressure with various temperatures. The secondary purpose was to compare skin blood flow patterns for assessing the efficacy of local cooling on reducing skin ischemia under surface pressure. Eight Sprague-Dawley rats were assigned to two protocols, including pressure with local cooling (Δt = -10 °C) and pressure with local heating (Δt = 10 °C). Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin perfusion quantified by laser Doppler flowmetry and TNF-∗ and IL-1β levels were measured. Our results showed that TNF-α concentrations were increased more significantly with local heating than with local cooling under pressure whereas IL-1β did not change. Our results support the notion that weight bearing soft tissue damage may be reduced through temperature modulation and that non-invasive perfusion measurements using laser Doppler flowmetry may be capable of assessing viability. Furthermore, these results show that perfusion response to loading pressure may be correlated with changes in local pro-inflammatory cytokines. These relationships may be relevant for the development of cooling technologies for reducing risk of pressure ulcers. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  7. Fabrication of porous calcite using chopped nylon fiber and its evaluation using rats.

    PubMed

    Ishikawa, Kunio; Tram, Nguyen Xuan Thanh; Tsuru, Kanji; Toita, Riki

    2015-02-01

    Although porous calcite has attracted attention as bone substitutes, limited studies have been made so far. In the present study, porous calcite block was fabricated by introducing chopped nylon fiber as porogen. Ca(OH)2 powder containing 10 wt% chopped nylon fiber was compacted at 150 MPa, and sintered to burn out the fiber and to carbonate the Ca(OH)2 under stream of 1:2 O2-CO2. Sintering of Ca(OH)2 at 750 °C or lower temperature resulted in incomplete burning out of the fiber whereas sintering at 800 °C or higher temperature resulted in the formation of CaO due to the thermal decomposition of Ca(OH)2. However, sintering at 770 °C resulted in complete burning out of the fiber and complete carbonation of Ca(OH)2 to calcite without forming CaO. Macro- and micro-porosities of the porous calcite were approximately 23 and 16%, respectively. Diameter of the macropores was approximately 100 μm which is suitable for bone tissue penetration. Porous calcite block fabricated by this method exhibited good tissue response when implanted in the bone defect in femur of 12-weeks-old rat. Four weeks after implantation, bone bonded on the surface of calcite. Furthermore, bone tissue penetrated interior to the macropore at 8 weeks. These results demonstrated the good potential value of porous calcite as artificial bone substitutes.

  8. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    NASA Astrophysics Data System (ADS)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  9. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    PubMed

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  10. Physiology of transgenic mice with brown fat ablation: obesity is due to lowered body temperature.

    PubMed

    Klaus, S; Münzberg, H; Trüloff, C; Heldmaier, G

    1998-02-01

    We investigated the physiological basis for development of obesity in uncoupling protein-diphtheria toxin A chain (UCP-DTA) transgenic mice. In these mice the promoter of the brown adipose tissue (BAT)-specific UCP was used to drive expression of DTA, resulting in decreased BAT function and development of obesity and insulin resistance (Lowell, B. B., S. V. Susulic, A. Hamann, J. A. Lawitts, J. Himms-Hagen, B. B. Boyer, L. Kozak, and J. S. Flier. Nature 366: 740-742, 1994). In adult UCP-DTA mice, we measured food intake and food assimilation, locomotor activity, metabolic rate, and body temperature in comparison to control animals. No differences could be observed in food intake or assimilation and locomotor activity. Weight-specific metabolic rates at temperatures between 20 and 37 degrees C, however, were consistently lower in transgenic mice. Continuous telemetric recording of core body temperature showed that transgenic mice displayed a downshift in body temperature levels of approximately 0.9 degree C. In summary, we provide evidence that attenuated body temperature levels alone can be responsible for development of obesity and that BAT thermogenesis is a major determinant of body temperature levels in rodents.

  11. Molecular Thermometry

    PubMed Central

    McCabe, Kevin M.; Hernandez, Mark

    2010-01-01

    Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients’ temperatures could be measured, recorded and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nano-scale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even sub-cellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry moved into the clinic, so too will these molecular thermometers. PMID:20139796

  12. The Hit and Away technique: optimal usage of the ultrasonic scalpel in laparoscopic gastrectomy.

    PubMed

    Irino, Tomoyuki; Hiki, Naoki; Ohashi, Manabu; Nunobe, Souya; Sano, Takeshi; Yamaguchi, Toshiharu

    2016-01-01

    Thermal injury and unexpected bleeding caused by ultrasonic scalpels can lead to fatal complications in laparoscopic gastrectomy (LG), such as postoperative pancreatic fistulas (POPF). In this study, we developed the "Hit and Away" protocol for optimal usage of the ultrasonic scalpel, which in essence involves dividing tissues and vessels in batches using the tip of the scalpel to control tissue temperature. To assess the effectiveness of the technique, the surface temperature of the mesocolon of female swine after ultrasonic scalpel activations was measured, and tissue samples were collected to evaluate microscopic thermal injury to the pancreas. In parallel, we retrospectively surveyed 216 patients who had undergone LG before or after the introduction of this technique and assessed the ability of this technique to reduce POPF. The tissue temperature of the swine mesocolon reached 43 °C, a temperature at which adipose tissue melted but fibrous tissue, including vessels, remained intact. The temperature returned to baseline within 3 s of turning off the ultrasonic scalpel, demonstrating the advantage of using ultrasonic scalpel in a pulsatile manner. Tissue samples from the pancreas demonstrated that the extent of thermal injury post-procedure was limited to the capsule of the pancreas. Moreover, with respect to the clinical outcomes before and after the introduction of this technique, POPF incidence decreased significantly from 7.8 to 1.0% (p = 0.021). The "Hit and Away" technique can reduce blood loss and thermal injury to the pancreas and help to ensure the safety of lymph node dissection in LG.

  13. Uncovering dental implants using a new thermo-optically powered (TOP) technology with tissue air-cooling.

    PubMed

    Romanos, Georgios E; Belikov, Andrey V; Skrypnik, Alexei V; Feldchtein, Felix I; Smirnov, Michael Z; Altshuler, Gregory B

    2015-07-01

    Uncovering implants with lasers, while bloodless, has been associated with a risk of implant and bone overheating. The present study evaluated the effect of using a new generation of high-power diode lasers on the temperature of a dental implant and the surrounding tissues using an in vitro model. The implant temperature was measured at three locations using micro thermocouples. Collateral thermal damage of uncovered soft tissues was evaluated using NTBC stain. Implant temperature rise during and collateral thermal soft-tissue damage following implant uncovering with and without tissue air-cooling was studied using both the classic operational mode and the new thermo-optically powered (TOP) technology. For the classic surgical mode using a cork-initiated tip and constant laser power set at 3.4 W, the maximum temperature rise in the coronal and apical parts of the implant was 23.2 ± 4.1°С and 9.5 ± 1.8°С, respectively, while 1.5 ± 0.5 mm of collateral thermal damage of the soft tissue surrounding the implant model occurred. Using the TOP surgical tip with constant laser power reduced implant overheating by 30%; collateral thermal soft-tissue damage was 0.8 ± 0.2 mm. Using the TOP surgical mode with a tip temperature setting of 800°C and air-cooling reduced the implant temperature rise by more than 300%, and only 0.2 ± 0.1 mm of collateral thermal soft-tissue damage occurred, typical for optimized CO2 laser surgery. Furthermore, use of the new generation diode technology (TOP surgical mode) appeared to reduce the time required for implant uncovering by a factor of two, compared to the standard surgical mode. Use of the new generation diode technology (TOP surgical mode) may significantly reduce overheating of dental implants during uncovering and seems to be safer for the adjacent soft and hard tissues. Use of such diode lasers with air-cooling can radically reduce the rise in implant temperatures (by more than three times), potentially making this technology safe and effective for implant uncovering. © 2015 Wiley Periodicals, Inc.

  14. Functional and anatomical characteristics of the nerve-brown adipose interaction in the rat

    NASA Technical Reports Server (NTRS)

    Flaim, K. E.; Horowitz, J. M.; Horwitz, B. A.

    1976-01-01

    Experiments were conducted on 12 male rats to study the coupling of signals from the sympathetic nervous system to the brown adipose tissue. Analysis of electron photomicrographs revealed considerable morphological heterogeneity among the nerves entering and leaving the interscapular fat pad. In response to electrical simulation of the nerves, the temperature of the brown fat increased following a rapid but transient temperature drop. Such changes were observed only on the ipsilateral side, indicating that the innervation to the interscapular brown fat of the rat is functionally bilateral rather than diffuse. The finding that brown fat is capable of responding in a graded fashion correlates well with observations suggesting that clusters of brown adipocytes may be electrically coupled.

  15. Biphasic Effect of Melanocortin Agonists on Metabolic Rate and Body Temperature

    PubMed Central

    Lute, Beth; Jou, William; Lateef, Dalya M.; Goldgof, Margalit; Xiao, Cuiying; Piñol, Ramón A.; Kravitz, Alexxai V.; Miller, Nicole R.; Huang, Yuning George; Girardet, Clemence; Butler, Andrew A.; Gavrilova, Oksana; Reitman, Marc L.

    2014-01-01

    Summary The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r) mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists and MTII selectively activated arcuate nucleus dopaminergic neurons; these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress. PMID:24981835

  16. Transient Shifts of Incubation Temperature Reveal Immediate and Long-Term Transcriptional Response in Chicken Breast Muscle Underpinning Resilience and Phenotypic Plasticity.

    PubMed

    Naraballobh, Watcharapong; Trakooljul, Nares; Murani, Eduard; Brunner, Ronald; Krischek, Carsten; Janisch, Sabine; Wicke, Michael; Ponsuksili, Siriluck; Wimmers, Klaus

    2016-01-01

    Variations in egg incubation temperatures can have acute or long-term effects on gene transcription in avian species. Altered gene expression may, in turn, affect muscle traits in poultry and indirectly influence commercial production. To determine how changes in eggshell temperature affect gene expression, incubation temperatures were varied [36.8°C (low), 37.8°C (control), 38.8°C (high)] at specific time periods reflecting two stages of myogenesis [embryonic days (ED) 7-10 and 10-13]. Gene expression was compared between interventions and matching controls by microarrays in broiler breast muscle at ED10 or ED13 and post-hatch at day 35. Early (ED7-10) high incubation temperature (H10ΔC) resulted in 1370 differentially expressed genes (DEGs) in embryos. Ingenuity pathway analysis revealed temporary activation of cell maintenance, organismal development, and survival ability genes, but these effects were not maintained in adults. Late high incubation temperature (ED10-13) (H13ΔC) had slightly negative impacts on development of cellular components in embryos, but a cumulative effect was observed in adults, in which tissue development and nutrition metabolism were affected. Early low incubation temperature (L10ΔC) produced 368 DEGs, most of which were down-regulated and involved in differentiation and formation of muscle cells. In adults, this treatment down-regulated pathways of transcriptional processes, but up-regulated cell proliferation. Late low temperature incubation (L13ΔC) produced 795 DEGs in embryos, and activated organismal survival and post-transcriptional regulation pathways. In adults this treatment activated cellular and organ development, nutrition and small molecule activity, and survival rate, but deactivated size of body and muscle cells. Thermal interventions during incubation initiate immediate and delayed transcriptional responses that are specific for timing and direction of treatment. Interestingly, the transcriptional response to transiently decreased incubation temperature, which did not affect the phenotypes, prompts compensatory effects reflecting resilience. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype. These mechanisms of considerable phenotypic plasticity contribute to the biodiversity and broaden the basis for managing poultry populations.

  17. [Comparison of shaft temperature related treatment efficacy between "air-cooled" microwave coagulation and traditional microwave coagulation].

    PubMed

    Zheng, Yun; Li, Jin-Qing; Chen, Min-Shan; Zhang, Yao-Jun; Zhang, Ya-Qi

    2004-11-01

    The application and development of traditional percutaneous microwave coagulation therapy (PMCT) has been limited by high shaft temperature. The "air-cooled" PMCT is the newest advancement. This study was to compare shaft temperature related treatment efficacy between "air-cooled" PMCT and traditional PMCT. Two pigs underwent traditional PMCT, and "air-cooled" PMCT at 80 W for 10 min separately. Skin injury, surface temperature of guide-needle, charring tissue sticking to the shaft, and lesion shape in 2 pigs were compared. Five patients with liver tumor received traditional PMCT, and 8 patients with liver tumor received "air-cooled" PMCT. Feeling of pain, skin injury, charring tissue sticking to the shaft, local therapeutic efficacy, and recurrence of these 2 groups of patients were compared. In the pig underwent traditional PMCT, surface temperature of guide-needle reached 119-160 Centigrade; skin burn around puncture points was serious; charring tissue stuck to the front of electrodes; a trail sign was observed in coagulated lesion. In the pig underwent "air-cooled" PMCT, surface temperature of guide-needle was 28.8-39.9 Centigrade; no skin injury was found around puncture points; no charring tissue stuck to the front of electrodes; no obvious trail sign was observed in coagulated lesion. In 5 patients received traditional PMCT, 3 had skin injury; 2 had charring tissue stuck to the front of electrode; all felt moderate or serious epigastric pain lasted for 1-8 weeks; 4 had complete coagulation; 1 had local recurrence. In 8 patients received "air-cooled" PMCT, no one had skin injury, and charring tissue stuck to "air-cooled" electrode; 4 felt slight epigastric pain within 1 week; all had complete coagulation; no local recurrence was found. The technique of "air-cooled" electrode may decrease temperature of shaft safely and reliably, and eliminate side effects arose from high temperature of shaft. Treatment efficacy of "air-cooled" PMCT is better than that of traditional PMCT.

  18. Thermal measurement of root surface temperatures during application of intracanal laser energy in vitro

    NASA Astrophysics Data System (ADS)

    Goodis, Harold E.; White, Joel M.; Neev, Joseph

    1993-07-01

    The use of laser energy to clean, shape, and sterilize a root canal system space involves the generation of heat due to the thermal effect of the laser on the organic tissue contents and dentin walls of that space. If heat generation is above physiologic levels, irreparable damage may occur to the periodontal ligament and surrounding bone. This study measured temperature rise on the outer root surfaces of extracted teeth during intracanal laser exposure. Thirty single rooted, recently extracted teeth free of caries and restorations were accessed pulps extirpated and divided into three groups. Each root canal system was treated with a 1.06 micrometers pulsed Nd:YAG laser with quartz contact probes. Temperatures were recorded for all surfaces (mesial distal, buccal, lingual, apical) with infrared thermography utilizing a detector response time of 1 (mu) sec, sensitivity range (infrared) of 8 to 12 micrometers and a scan rate of 30 frames/sec.

  19. A Method to Convert MRI Images of Temperature Change Into Images of Absolute Temperature in Solid Tumors

    PubMed Central

    Davis, Ryan M.; Viglianti, Benjamin L.; Yarmolenko, Pavel; Park, Ji-Young; Stauffer, Paul; Needham, David; Dewhirst, Mark W.

    2013-01-01

    Purpose During hyperthermia (HT), the therapeutic response of tumors varies substantially within the target temperature range (39–43°C). Current thermometry methods are either invasive or measure only temperature change, which limits the ability to study tissue responses to HT. This study combines manganese-containing low-temperature sensitive liposomes (Mn-LTSL) with proton resonance frequency shift (PRFS) thermometry to measure absolute temperature in tumors with high spatial and temporal resolution using MRI. Methods Liposomes were loaded with 300mM MnSO4. The phase transition temperature (Tm) of Mn-LTSL samples was measured by differential scanning calorimetry (DSC). The release of manganese from Mn-LTSL in saline was characterized with inductively-coupled plasma atomic emission spectroscopy. A 2T GE small animal scanner was used to acquire dynamic T1-weighted images and temperature change images of Mn-LTSL in saline phantoms and fibrosarcoma-bearing Fisher 344 rats receiving hyperthermia after Mn-LTSL injection. Results The Tm of Mn-LTSL in rat blood was 42.9 ± 0.2 °C (DSC). For Mn-LTSL samples (0.06mM – 0.5mM Mn2+ in saline) heated monotonically from 30°C to 50°C, a peak in the rate of MRI signal enhancement occurred at 43.1 ± 0.3 °C. The same peak in signal enhancement rate was observed during heating of fibrosarcoma tumors (N=3) after injection of Mn-LTSL, and the peak was used to convert temperature change images into absolute temperature. Accuracies of calibrated temperature measurements were in the range 0.9 – 1.8°C. Conclusion The release of Mn2+ from Mn-LTSL affects the rate of MR signal enhancement which enables conversion of MRI-based temperature change images to absolute temperature. PMID:23957326

  20. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies

    PubMed Central

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J.; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I.

    2015-01-01

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020

  1. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    PubMed

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-03-04

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.

  2. Noninvasive optical monitoring multiple physiological parameters response to cytokine storm

    NASA Astrophysics Data System (ADS)

    Li, Zebin; Li, Ting

    2018-02-01

    Cancer and other disease originated by immune or genetic problems have become a main cause of death. Gene/cell therapy is a highlighted potential method for the treatment of these diseases. However, during the treatment, it always causes cytokine storm, which probably trigger acute respiratory distress syndrome and multiple organ failure. Here we developed a point-of-care device for noninvasive monitoring cytokine storm induced multiple physiological parameters simultaneously. Oxy-hemoglobin, deoxy-hemoglobin, water concentration and deep-tissue/tumor temperature variations were simultaneously measured by extended near infrared spectroscopy. Detection algorithms of symptoms such as shock, edema, deep-tissue fever and tissue fibrosis were developed and included. Based on these measurements, modeling of patient tolerance and cytokine storm intensity were carried out. This custom device was tested on patients experiencing cytokine storm in intensive care unit. The preliminary data indicated the potential of our device in popular and milestone gene/cell therapy, especially, chimeric antigen receptor T-cell immunotherapy (CAR-T).

  3. Radiometric Thermometry for Wearable Deep Tissue Monitoring

    NASA Astrophysics Data System (ADS)

    Momenroodaki, Parisa

    Microwave thermometry is an attractive non-invasive method for measuring internal body temperature. This approach has the potential of enabling a wearable device that can continuously monitor core body temperature. There are a number of health-related applications in both diagnostics and therapy, which can benefit from the knowledge of core body temperature. However,there are a limited number of device solutions, which are usually not wearable or cannot continuously monitor internal body temperature non-invasively. In this thesis, a possible path toward implementing such a thermometer is presented. The device operates in the "quiet" frequency band of 1.4 GHz which is chosen as a compromise between sensing depth and radio frequency interference (RFI). A major challenge in microwave thermometry is detecting small temperature variations of deep tissue layers from surface (skin) measurements. The type and thickness of tissue materials significantly affect the design of the probe, which has the function of receiving black-body radiation from tissues beneath it and coupling the power to a sensitive radiometric receiver. High dielectric constant contrast between skin, fat (/bone), and muscle layers suggests structures with dominant tangential component of the electric field, such as a patch or slot. Adding a layer of low-loss,low-dielectric constant superstrate can further reduce the contribution of superficial tissue layers in the received thermal noise. Several probe types are designed using a full-wave electromagnetic simulator, with a goal of maximizing the power reception from deep tissue layers. The designs are validated with a second software tool and various measurements. A stable, narrow-band, and highly sensitive radiometer is developed, enabling the device to operate in a non-shielded RF environment.To use the microwave thermometer in a RF congested environment, not only narrow-band probe and radiometers are used but an additional probe is introduced for observing the environmental interference. By applying an adaptive filter, the effect of RFI is mitigated in long-term measurements. Several solid and liquid tissue phantoms, required for accurate modeling of the probe and human body interaction, are also developed. The concept of human body microwave thermometry is validated through several measurements on the single-layer and multiple-layer tissue phantoms as well as on the surface of the human body, specifically on the cheek where the internal temperature can easily be changed and independently measured with a thermocouple. Measurement results prove the capability of the device in tracking the temperature of buried tissue layer phantoms to within 0.2K, as well as monitoring internal human body temperature.

  4. Molecular processes of transgenerational acclimation to a warming ocean

    NASA Astrophysics Data System (ADS)

    Veilleux, Heather D.; Ryu, Taewoo; Donelson, Jennifer M.; van Herwerden, Lynne; Seridi, Loqmane; Ghosheh, Yanal; Berumen, Michael L.; Leggat, William; Ravasi, Timothy; Munday, Philip L.

    2015-12-01

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  5. Tailoring the degradation rates of thermally responsive hydrogels designed for soft tissue injection by varying the autocatalytic potential.

    PubMed

    Zhu, Yang; Jiang, Hongbin; Ye, Sang-Ho; Yoshizumi, Tomo; Wagner, William R

    2015-01-01

    The ability to modulate the degradation properties of biomaterials such as thermally responsive hydrogels is desirable when exploring new therapeutic strategies that rely on the temporary presence of a placed scaffold or gel. Here we report a method of manipulating the absorption rate of a poly(N-isopropylacrylamide) ((poly(NIPAAm)) based hydrogel across a wide range (from 1 d to 5 mo) by small alterations in the composition. Relying upon the autocatalytic effect, the degradation of poly(NIPAAm-co-HEMA-co-MAPLA), (HEMA = 2-hydroxyethyl methacrylate; MAPLA = methacrylate-polylactide) was greatly accelerated by adding a fourth monomer methacrylic acid (MAA) at no more than 2 mol% to obtain poly(NIPAAm-co-HEMA-co-MAPLA-co-MAA) (pNHMMj) where j reflects the MAA molar % in the reactant mixture. MAA residue introduction decreased the pH inside the hydrogels and in surrounding buffered solutions. Accelerated degradation positively correlated with MAA content in pNHMMj polymers, putatively by the accelerated cleavage of MAPLA residues to raise the transition temperature of the polymer above body temperature. Physical properties including thermal transition behavior and initial mechanical strength did not vary significantly with MAA content. A rat hindlimb injection model generally reflected the in vitro observation that higher MAA content resulted in more rapid degradation and cellular infiltration. The strategy of tuning the degradation of thermally responsive hydrogels where degradation or solubilization is determined by their polyester components might be applied to other tissue engineering and regenerative medicine applications where designed biomaterial degradation behavior is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture

    PubMed Central

    Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T.; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A.; Valdez-Cruz, Norma A.

    2016-01-01

    Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28–34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system. PMID:26991106

  7. Heat shock protein 70 in the rat nasal cavity: localisation and response to hyperthermia.

    PubMed

    Simpson, Sharon A; Alexander, David J; Reed, Celia J

    2004-06-01

    Heat shock proteins (HSPs) are a group of proteins that are rapidly induced in response to physiological stress, including hyperthermia and exposure to toxicants. Thus they may provide a useful index of toxicity in in vitro systems for screening for toxicity. We have recently developed a rat nasal explant system for investigating upper respiratory tract toxicity, and the aims of this study were to localise HSP70 within the rat nasal cavity and to characterise its response to hyperthermia. Constitutively, HSP70 was found to be predominantly localised to the sustentacular cells, basal cells and Bowman's glands of the olfactory epithelium (OE), with the most intense immunohistochemical staining at levels 3 and 4 of the posterior of the rat nasal cavity. Ethmoturbinates (ETs) and liver slices were exposed to heat shock (37 degrees and 43 degrees C, respectively) for 45 min and then returned to normal culture temperatures (31 degrees and 37 degrees C, respectively) for 24 h. In ETs, HSP72 was maximally induced 4-fold at 4 h after heat shock, and levels then returned to those of control tissue. ATP concentrations were markedly decreased up to 4 h after heat shock and then returned to control levels. In contrast, HSP72 levels in liver slices increased and ATP levels decreased steadily throughout the 24 h culture period. ETs were also able to withstand a 45-min heat shock at 43 degrees C, that is 12 degrees C above normal culture temperature. Incubation of ETs with cycloheximide prior to heat shock reduced the ability of the OE to recover from heat shock at 37 degrees C. Thus the OE of the rat nasal cavity expresses HSP72, and this protein appears to play an important role in the ability of the tissue to withstand hyperthermia.

  8. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  9. Contrasting impacts of ocean acidification and warming on the molecular responses of CO2-resilient oysters.

    PubMed

    Goncalves, Priscila; Thompson, Emma L; Raftos, David A

    2017-06-02

    This study characterises the molecular processes altered by both elevated CO 2 and increasing temperature in oysters. Differences in resilience of marine organisms against the environmental stressors associated with climate change will have significant implications for the sustainability of coastal ecosystems worldwide. Some evidence suggests that climate change resilience can differ between populations within a species. B2 oysters represent a unique genetic resource because of their capacity to better withstand the impacts of elevated CO 2 at the physiological level, compared to non-selected oysters from the same species (Saccostrea glomerata). Here, we used proteomic and transcriptomic analysis of gill tissue to evaluate whether the differential response of B2 oysters to elevated CO 2 also extends to increased temperature. Substantial and distinctive effects on protein concentrations and gene expression were evident among B2 oysters responding to elevated CO 2 or elevated temperature. The combination of both stressors also altered oyster gill proteomes and gene expression. However, the impacts of elevated CO 2 and temperature were not additive or synergistic, and may be antagonistic. The data suggest that the simultaneous exposure of CO 2 -resilient oysters to near-future projected ocean pH and temperature results in complex changes in molecular processes in order to prevent stress-induced cellular damage. The differential response of B2 oysters to the combined stressors also indicates that the addition of thermal stress may impair the resilience of these oysters to decreased pH. Overall, this study reveals the intracellular mechanisms that might enable marine calcifiers to endure the emergent, adverse seawater conditions resulting from climate change.

  10. Hypothermia and Rewarming Induce Gene Expression and Multiplication of Cells in Healthy Rat Prostate Tissue

    PubMed Central

    Kaija, Helena; Pakanen, Lasse; Kortelainen, Marja-Leena; Porvari, Katja

    2015-01-01

    Prostate cancer has been extensively studied, but cellular stress responses in healthy prostate tissue are rarely investigated. Hypothermia is known to cause alterations in mRNA and protein expressions and stability. The aim of this study was to use normal rat prostate as a model in order to find out consequences of cold exposure and rewarming on the expressions of genes which are either members or functionally/structurally related to erythroblastic leukemia viral oncogene B (ErbB) signaling pathway. Relative mRNA expressions of amphiregulin (AMR), cyclin D1 (CyD1), cyclin-dependent kinase inhibitor 1A (p21), transmembrane form of the prostatic acid phosphatase (PAcP), thrombomodulin (TM) and heat shock transcription factor 1 (HSF1) in rat ventral prostate were quantified in mild (2 or 4.5 h at room temperature) and severe (2 or 4.5 h at +10°C) hypothermia and in rewarming after cold exposure (2 h at +10°C followed by 2 h at room temperature or 3 h at +28°C). AMR protein level, apoptotic Bcl-2 associated X protein to B-cell CLL/lymphoma 2 (Bax/Bcl-2) mRNA ratio and proliferative index Ki-67 were determined. 4.5-h mild hypothermia, 2-h severe hypothermia and rewarming increased expression of all these genes. Elevated proliferation index Ki-67 could be seen in 2-h severe hypothermia, and the proliferation index had its highest value in longer rewarming with totally recovered normal body temperature. Pro-apoptotic tendency could be seen in 2-h mild hypothermia while anti-apoptosis was predominant in 4.5-h mild hypothermia and in shorter rewarming with only partly recovered body temperature. Hypothermia and following rewarming promote the proliferation of cells in healthy rat prostate tissue possibly via ErbB signaling pathway. PMID:25996932

  11. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  12. Recent advances in thermoregulation.

    PubMed

    Tansey, Etain A; Johnson, Christopher D

    2015-09-01

    Thermoregulation is the maintenance of a relatively constant core body temperature. Humans normally maintain a body temperature at 37°C, and maintenance of this relatively high temperature is critical to human survival. This concept is so important that control of thermoregulation is often the principal example cited when teaching physiological homeostasis. A basic understanding of the processes underpinning temperature regulation is necessary for all undergraduate students studying biology and biology-related disciplines, and a thorough understanding is necessary for those students in clinical training. Our aim in this review is to broadly present the thermoregulatory process taking into account current advances in this area. First, we summarize the basic concepts of thermoregulation and subsequently assess the physiological responses to heat and cold stress, including vasodilation and vasoconstriction, sweating, nonshivering thermogenesis, piloerection, shivering, and altered behavior. Current research is presented concerning the body's detection of thermal challenge, peripheral and central thermoregulatory control mechanisms, including brown adipose tissue in adult humans and temperature transduction by the relatively recently discovered transient receptor potential channels. Finally, we present an updated understanding of the neuroanatomic circuitry supporting thermoregulation. Copyright © 2015 The American Physiological Society.

  13. A new fundamental bioheat equation for muscle tissue--part II: Temperature of SAV vessels.

    PubMed

    Zhu, Liang; Xu, Lisa X; He, Qinghong; Weinbaum, Sheldon

    2002-02-01

    In this study, a new theoretical framework was developed to investigate temperature variations along countercurrent SAV blood vessels from 300 to 1000 microm diameter in skeletal muscle. Vessels of this size lie outside the range of validity of the Weinbaum-Jiji bioheat equation and, heretofore, have been treated using discrete numerical methods. A new tissue cylinder surrounding these vessel pairs is defined based on vascular anatomy, Murray's law, and the assumption of uniform perfusion. The thermal interaction between the blood vessel pair and surrounding tissue is investigated for two vascular branching patterns, pure branching and pure perfusion. It is shown that temperature variations along these large vessel pairs strongly depend on the branching pattern and the local blood perfusion rate. The arterial supply temperature in different vessel generations was evaluated to estimate the arterial inlet temperature in the modified perfusion source term for the s vessels in Part I of this study. In addition, results from the current research enable one to explore the relative contribution of the SAV vessels and the s vessels to the overall thermal equilibration between blood and tissue.

  14. Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event.

    PubMed

    Mydlarz, Laura D; Couch, Courtney S; Weil, Ernesto; Smith, Garriet; Harvell, C Drew

    2009-11-16

    One prominent hypothesis regarding climate change and scleractinian corals is that thermal stress compromises immune competence. To test this hypothesis we tracked how the immune defenses of bleached, apparently healthy and yellow band disease (YBD) diseased Montastraea faveolata colonies varied with natural thermal stress in southwestern Puerto Rico. Colonies were monitored for 21 mo from the peak of the bleaching event in October 2005 to August 2007. Since sea surface temperature was significantly higher in summer and fall 2005 than 2006, year of collection was used as a proxy for temperature stress, and colony fragments collected in 2005 were compared with those collected in 2006. Mortality rate was high (43% overall) and all colonies (except one) either died or became infected with YBD by August 2007. YBD-infected tissue did not bleach (i.e. expel zooxanthellae) during the 2005 bleaching event, even when healthy tissue of these colonies bleached. Immune activity was assayed by measuring prophenoloxidase (PPO), peroxidase (POX), lysozyme-like (LYS) and antibacterial (AB) activity. Immune activity was variable between all coral samples, but there was a significant elevation of PPO activity in bleached colonies collected in 2005 relative to apparently healthy and YBD-diseased corals in 2006. In YBD-diseased colonies, LYS and AB activity were elevated in both healthy and infected tissue, indicating a systemic response; activity levels in these colonies were higher compared to those that appeared healthy. In both these immune parameters, there was a trend for suppression of activity in corals that were bleached in 2005. These data, while complicated by between-genet variability, illustrate the complex interaction between disease and temperature stress on immune function.

  15. Monitoring high-intensity focused ultrasound (HIFU) therapy using radio frequency ultrasound backscatter to quantify heating

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay

    2005-09-01

    The spatial distribution and temporal history of tissue temperature is an essential indicator of thermal therapy progress, and treatment safety and efficacy. Magnetic resonance methods provide the gold standard noninvasive measurement of temperature but are costly and cumbersome compared to the therapy itself. We have been developing the use of ultrasound backscattering for real-time temperature estimation; ultrasonic methods have been limited to relatively low temperature rise, primarily due to lack of sensitivity at protein denaturation temperatures (50-70°C). Through validation experiments on gel phantoms and ex vivo tissue we show that temperature rise can be accurately mapped throughout the therapeutic temperature range using a new BioHeat Transfer Equation (BHTE) model-constrained inverse approach. Speckle-free temperature and thermal dose maps are generated using the ultrasound calibrated model over the imaged region throughout therapy delivery and post-treatment cooling periods. Results of turkey breast tissue experiments are presented for static HIFU exposures, in which the ultrasound calibrated BHTE temperature maps are shown to be very accurate (within a degree) using independent thermocouple measurements. This new temperature monitoring method may speed clinical adoption of ultrasound-guided HIFU therapy. [Work supported by Army MRMC.

  16. Non-Invasive In Vivo Ultrasound Temperature Estimation

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi

    New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which could result in significant artifacts. The first part of this thesis addresses the first limitation by introducing the Recursive Echo Strain Filter (RESF) as a new temperature reconstruction model which largely corrects for the spatial inconsistencies resulting from the infinitesimal model. The performance of this model is validated using the data collected during sub therapeutic temperature changes in the tissue mimicking phantom as well as ex vivo tissue blocks. The second part of this thesis deals with in vivo ultrasound thermography. Tissue deformations caused by natural motions (e.g. respiration, gasping, blood pulsation etc) can create non-thermal changes to the ultrasound echoes which are not accounted for in the derivation of physical model for temperature estimation. These fluctuations can create severe artifacts in the estimated temperature field. Using statistical signal processing techniques an adaptive method is presented which takes advantage of the localized and global availability of these interference patterns and use this data to enhance the estimated temperature in the region of interest. We then propose a model based technique for continuous tracking of temperature in the presence of natural motion and deformation. The method uses the direct discretization of the transient bioheat equation to derive a state space model of temperature change. This model is then used to build a linear estimator based on the Kalman filtering capable of robust estimation of temperature change in the presence of tissue motion and deformation. The robustness of the adaptive and model-based models in removing motion and deformation artifacts is demonstrated using data from in vivo experiments. Both methods are shown to provide effective cancellation of the artifacts with minimal effect on the expected temperature dynamics.

  17. A measurement and modeling study of temperature in living and fixed tissue during and after radiofrequency exposure.

    PubMed

    Bermingham, Jacqueline F; Chen, Yuen Y; McIntosh, Robert L; Wood, Andrew W

    2014-04-01

    Fluorescent intensity of the dye Rhodamine-B (Rho-B) decreases with increasing temperature. We show that in fresh rat brain tissue samples in a custom-made radiofrequency (RF) tissue exposure device, temperature rise due to RF radiation as measured by absorbed dye correlates well with temperature measured nearby by fiber optic probes. Estimates of rate of initial temperature rise (using both probe measurement and the dye method) accord well with estimates of local specific energy absorption rate (SAR). We also modeled the temperature characteristics of the exposure device using combined electromagnetic and finite-difference thermal modeling. Although there are some differences in the rate of cooling following cessation of RF exposure, there is reasonable agreement between modeling and both probe measurement and dye estimation of temperature. The dye method also permits measurement of regional temperature rise (due to RF). There is no clear evidence of local differential RF absorption, but further refinement of the method may be needed to fully clarify this issue. © 2014 Wiley Periodicals, Inc.

  18. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  19. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M.; Fortunati, Valerio

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreousmore » humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (T{sub max}: 38.0 °C) and CT and MRI (T{sub max}: 38.1 °C) result in similar simulated temperatures, while CT and MRI{sub db} (T{sub max}: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Conclusions: Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.« less

  20. Fiberoptic microneedles: novel optical diffusers for interstitial delivery of therapeutic light.

    PubMed

    Kosoglu, Mehmet A; Hood, Robert L; Rossmeisl, John H; Grant, David C; Xu, Yong; Robertson, John L; Rylander, Marissa Nichole; Rylander, Christopher G

    2011-11-01

    Photothermal therapies have limited efficacy and application due to the poor penetration depth of light inside tissue. In earlier work, we described the development of novel fiberoptic microneedles to provide a means to mechanically penetrate dermal tissue and deliver light directly into a localized target area.This paper presents an alternate fiberoptic microneedle design with the capability of delivering more diffuse, but therapeutically useful photothermal energy. Laser lipolysis is envisioned as a future clinical application for this design. A novel fiberoptic microneedle was developed using hydrofluoric acid etching of optical fiber to permit diffuse optical delivery. Microneedles etched for 10, 30, and 50 minutes, and an optical fiber control were compared with three techniques. First, red light delivery from the microneedles was evaluated by imaging the reflectance of the light from a white paper.Second, spatial temperature distribution of the paper in response to near-IR light (1,064 nm, 1 W CW) was recorded using infrared thermography. Third, ex vivo adipose tissue response during 1,064 nm, (5 W CW)irradiation was recorded with bright field microscopy. Acid etching exposed a 3 mm length of the fiber core, allowing circumferential delivery of light along this length. Increasing etching time decreased microneedle diameter, resulting in increased uniformity of red and 1,064 nm light delivery along the microneedle axis. For equivalent total energy delivery, thinner microneedles reduced carbonization in the adipose tissue experiments. We developed novel microscale optical diffusers that provided a more homogeneous light distribution from their surfaces, and compared performance to a flat-cleaved fiber, a device currently utilized in clinical practice. These fiberoptic microneedles can potentially enhance clinical laser procedures by providing direct delivery of diffuse light to target chromophores, while minimizing undesirable photothermal damage in adjacent, non-target tissue. Copyright © 2011 Wiley Periodicals, Inc.

Top