USDA-ARS?s Scientific Manuscript database
Effective Salmonella control in broilers is important from the standpoint of both consumer protection and industry viability. We investigated associations between Salmonella recovery from different sample types collected at sequential stages of one grow-out from the broiler flock and production env...
Hoogendoorn, Iris; Reenalda, Jasper; Koopman, Bart F J M; Rietman, Johan S
2017-08-01
Pressure ulcers are a significant problem in health care, due to high costs and large impact on patients' life. In general, pressure ulcers develop as tissue viability decreases due to prolonged mechanical loading. The relation between load and tissue viability is highly influenced by individual characteristics. It is proposed that measurements of skin blood flow regulation could provide good assessment of the risk for pressure ulcer development, as skin blood flow is essential for tissue viability. . Therefore, the aim of this systematic review is to gain insight in the relation between mechanical load and the response of the skin and underlying tissue to this loading measured in-vivo with non-invasive techniques. A systematic literature search was performed to identify articles analysing the relation between mechanical load (pressure and/or shear) and tissue viability measured in-vivo. Two independent reviewers scored the methodological quality of the 22 included studies. Methodological information as well as tissue viability parameters during load application and after load removal were extracted from the included articles and used in a meta-analysis. Pressure results in a decrease in skin blood flow parameters, compared to baseline; showing a larger decrease with higher magnitudes of load. The steepness of the decrease is mostly dependent on the anatomical location. After load removal the magnitude of the post-reactive hyperaemic peak is related to the magnitude of pressure. Lastly, shear in addition to pressure, shows an additional negative effect, but the effect is less apparent than pressure on skin viability. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.
Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa
2018-04-01
Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.
Davis, Grace L.; Ray, Nashone A.; Lahiri, Ramanuj; Gillis, Thomas P.; Krahenbuhl, James L.; Williams, Diana L.; Adams, Linda B.
2013-01-01
Background The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. Methodology/Principle Findings Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. Conclusions hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and promising for clinical and field applications. PMID:24179562
Davis, Grace L; Ray, Nashone A; Lahiri, Ramanuj; Gillis, Thomas P; Krahenbuhl, James L; Williams, Diana L; Adams, Linda B
2013-01-01
The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and promising for clinical and field applications.
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-06-01
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Non-destructive monitoring of viability in an ex vivo organ culture model of osteochondral tissue.
Elson, K M; Fox, N; Tipper, J L; Kirkham, J; Hall, R M; Fisher, J; Ingham, E
2015-06-30
Organ culture is an increasingly important tool in research, with advantages over monolayer cell culture due to the inherent natural environment of tissues. Successful organ cultures must retain cell viability. The aim of this study was to produce viable and non-viable osteochondral organ cultures, to assess the accumulation of soluble markers in the conditioned medium for predicting tissue viability. Porcine femoral osteochondral plugs were cultured for 20 days, with the addition of Triton X-100 on day 6 (to induce necrosis), camptothecin (to induce apoptosis) or no toxic additives. Tissue viability was assessed by the tissue destructive XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide tetrazolium salt) assay method and LIVE/DEAD® staining of the cartilage at days 0, 6 and 20. Tissue structure was assessed by histological evaluation using haematoxylin & eosin and safranin O. Conditioned medium was assessed every 3-4 days for glucose depletion, and levels of lactate dehydrogenase (LDH), alkaline phosphatase (AP), glycosaminoglycans (GAGs), and matrix metalloproteinase (MMP)-2 and MMP-9. Necrotic cultures immediately showed a reduction in glucose consumption, and an immediate increase in LDH, GAG, MMP-2 and MMP-9 levels. Apoptotic cultures showed a delayed reduction in glucose consumption and delayed increase in LDH, a small rise in MMP-2 and MMP-9, but no significant effect on GAGs released into the conditioned medium. The data showed that tissue viability could be monitored by assessing the conditioned medium for the aforementioned markers, negating the need for tissue destructive assays. Physiologically relevant whole- or part-joint organ culture models, necessary for research and pre-clinical assessment of therapies, could be monitored this way, reducing the need to sacrifice tissues to determine viability, and hence reducing the sample numbers necessary.
2012-01-18
Vunjak- Novakovic G, Freed LE. Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun...2002;294(1):149–54. [35] Martin I, Suetterlin R, Baschong W, Heberer M, Vunjak- Novakovic G, Freed LE. Enhanced cartilage tissue engineering by sequential
Cytotoxicity Evaluation of Two Bis-Acryl Composite Resins Using Human Gingival Fibroblasts.
Gonçalves, Fabiano Palmeira; Alves, Gutemberg; Guimarães, Vladi Oliveira; Gallito, Marco Antônio; Oliveira, Felipe; Scelza, Míriam Zaccaro
2016-01-01
Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.
Bang, Jihyun; Kim, Haeyoung; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon
2011-09-01
We developed and validated a treatment to inactivate Escherichia coli O157:H7 on radish seeds without decreasing seed viability. Treatments with aqueous ClO(2) followed by drying and dry-heat treatments were evaluated for efficacy to inactivate the pathogen. Conditions to dry radish seeds after treatment with water (control) or ClO(2) were established. When treated seeds with high water activity (a(w)) (>0.99) were stored at 45°C and 23% relative humidity (RH), the a(w) decreased to <0.30 within 24 h. Drying high-a(w) seeds before exposing them to dry-heat treatment (≥60°C) was essential to preserve seed viability. The germination rate of radish seeds which had been immersed in water for 5 min, dried at 45°C and 23% RH for 24 h, and heated at 70°C for 48 h or at 80°C for 24 h was not significantly decreased (P ≤ 0.05) compared to that of untreated radish seeds. Sequential treatments with ClO(2) (500 μg/ml, 5 min), drying (45°C, 23% RH, 24 h), and dry heating (70°C, 23% RH, 48 h) eliminated E. coli O157:H7 (5.9 log CFU/g) on radish seeds and, consequently, sprouts produced from them without decreasing the germination rate. These sequential treatments are recommended for application to radish seeds intended for sprout production.
The involvement of immunoglobulin E isotype switch in scleroderma skin tissue.
Ohtsuka, Tsutomu; Yamazaki, Soji
2005-08-01
The involvement of mast cell, which is activated by immunoglobulin E (IgE), has been reported in the formation of systemic sclerosis (SSc) abnormality. IgE is generated with isotype switch. During isotype switch, switch circles resulting from direct mu to epsilon, or from sequential mu to gamma via epsilon switching will be created. We studied whether switching occurs in SSc. We used nested polymerase chain reaction to analyze the S fragments from switch circles. Fifty-two patients with SSc, and 62 healthy women were studied. Neither of 62 normal skin tissues showed direct switch, nor sequential switch. Neither of seven normal whole blood cells showed direct switch, nor sequential switch. In 52SSc skin tissues, three (5.8%) showed direct switch, and two (3.8%) showed sequential switch. As a result, five (9.6%) of SSc skin tissue showed immunogobulin E class switch. These results were confirmed by DNA sequencing. These results demonstrated that isotype switch to the epsilon locus achieved by direct and/or sequential switch are involved in SSc skin.
Equine ovarian tissue viability after cryopreservation and in vitro culture
USDA-ARS?s Scientific Manuscript database
The efficiency of several cryoprotective agents were compared using both slow-freezing and vitrification methods. Results indicate that the viability of ovarian tissue cells increases when DMSO (slow-freezing) and ethylene glycol (vitrification) are used....
Schroeteler, Juliane; Reeker, Ralf; Suero Molina, Eric; Brokinkel, Benjamin; Holling, Markus; Grauer, Oliver M; Senner, Volker; Stummer, Walter; Ewelt, Christian
2014-01-01
Ultrasonic aspiration is widely used in the resection of brain tumors. Nevertheless, tumor tissue fragments obtained by ultrasonic aspiration are usually discarded. In this study, we demonstrate that these fragments are possible sources of material for histopathological study and tissue culture and compare their microscopic features and viability in tissue culture of cavitron ultrasonic surgical aspirator tissue fragments. Brain tumor tissue collected by ultrasonic aspiration (CUSA EXcel®; Integra Radionics Inc.) in a simple sterile suction trap during resection was processed for primary cell culture. Cell viability and immunohistological markers were measured by the WST-1 test, microscopy and immunofluorescent evaluation. Six gliomas are presented to demonstrate that these tissue fragments show good preservation of histological detail and tissue viability in culture. Utilization of this material may facilitate pathological interpretation by providing a more representative sample of tumor histology as well as an adequate and sterile biosource of material for tissue culture studies.
Bastings, Lobke; Westphal, Johan R; Beerendonk, Catharina C M; Bekkers, Ruud L M; Zusterzeel, Petra L M; Hendriks, Jan C M; Braat, Didi D M; Peek, Ronald
2016-12-01
Different protocols are being used worldwide for the cryopreservation of human ovarian tissue for fertility preservation purposes. The efficiency and efficacy of the majority of these protocols has not been extensively evaluated, possibly resulting in sub-optimally cryopreserved ovarian tissue. To address the impact of this issue, we assessed the effects of two clinically successful human ovarian tissue slow-freezing cryopreservation procedures on the quality of the cryopreserved tissue. To differentiate between cryopreservation ( C ) versus thawing ( T ) related effects, four combinations of these two (A and B) very different cryopreservation/thawing protocols (A C A T , A C B T , B C A T , B C B T ) were studied. Before and after cryopreservation and thawing, the percentage of living and morphologically normal follicles, as well as the overall tissue viability, was assessed. Our experiments revealed that the choice of the cryopreservation protocol noticeably affected the overall tissue viability and percentage of living follicles, with a higher viability after protocol B C when compared to A C . No statistically significant differences in tissue viability were observed between the two thawing protocols, but thawing protocol B T required considerably more human effort and materials than thawing protocol A T . Tissue morphology was best retained using the B C A T combination. Our results indicate that extensive and systematical evaluation of clinically used protocols is warranted.
Viability of porcine nasal septal cartilage grafts following Nd:YAG (n=1.32μm) laser radiation
NASA Astrophysics Data System (ADS)
Chao, Kenneth K. H.; Wong, Brian J.; Kim, Hong K.; Milner, Thomas E.; Sung, Chung-Ho; Sobol, Emil N.; Nelson, J. Stuart
2000-06-01
Mechanically deformed morphologic cartilage grafts undergo a temperature dependent phase transformation during sustained laser irradiation that results in reshaping of the specimen. While thermal, optical, and mechanical properties of cartilage undergoing laser heating have been previously investigated, the viability of these irradiated grafts has yet to be examined closely until now. In this study, chondrocyte viability following laser irradiation was determined by measuring the incorporation of radiolabelled sulfate (Na 35SO4-2) into proteoglycan (PTG) macromolecules. Proteoglycans are highly sulfated and are the principal molecular constituents of cartilage matrix. Their synthesis directly reflects chondrocyte viability. By measuring the scintillation counts of 35SO4-2 uptake and normalizing the value by the total protein content of each specimen we can determine the level of PTG synthesis rates following laser reshaping. Regional baseline PTG synthesis rates as a function of location was determined by dividing each specimen into six regions. All regions except the most cephalic are demonstrated similar PTG synthesis rates. The most cephalic region exhibited a significantly greater PTG synthesis rates. In order to establish a positive control for this study, specimens were immersed in boiling saline water for approximately 40 minutes. The boiled specimens demonstrated a fivefold increase in normalized radioisotope uptake and suggest that the non-specific uptake of radioactive Na35SO4-2 is caused by structural alterations in the collagen matrix caused by extensive thermal exposure. To avoid this thermal artifact, another positive control was established using nitric oxide was to induce apoptosis of the chondrocytes, resulting in significantly lower PTG synthesis compared to untreated tissue. Cartilage specimens (25 X 10 X 2 mm) were irradiated with light emitted from an Nd:YAG laser (25 W/cm2, (lambda) equals 1.32 micrometer) while radiometric surface temperature, internal stress, and backscattered light were simultaneously recorded. Individual specimens underwent either one, two, or three sequential laser exposures with the duration of each exposure determined in real-time from observation of characteristic changes in integrated backscattered light intensity that correlate with thermal mediated stress relaxation. A five-minute time interval between each irradiation was given to allow the cartilage to return to thermal equilibrium. Average laser exposure for each irradiation sequence was recorded (5, 8.3, 12.2 sec). PTG synthesis decreased with increasing laser exposure, but was noted to remain above baseline levels for NO treated tissue. To further refine these results and minimize the effect of regional tissue variations, 7 mm diameter discs excised from the most cephalic portions and a middle region of the pig nasal septal cartilages were irradiated. A reduction of PTG synthesis rates was noted with each successive irradiation, suggesting that laser mediated cartilage reshaping acutely does not eliminate the population of viable chondrocytes. The degree of reduction in PTG synthesis is dependent upon the time-temperature dependent heating profile created during laser irradiation, and carefully monitored dosimetry is necessary to ensure chondrocyte viability.
Pianigiani, E; Tognetti, L; Ierardi, F; Mariotti, G; Rubegni, P; Cevenini, G; Perotti, R; Fimiani, M
2016-06-01
Skin allografts from cadaver donors are an important resource for treating extensive burns, slow-healing wounds and chronic ulcers. A high level of cell viability of cryopreserved allografts is often required, especially in burn surgery, in Italy. Thus, we aimed to determine which conditions enable procurement of highly viable skin in our Regional Skin Bank of Siena. For this purpose, we assessed cell viability of cryopreserved skin allografts procured between 2011 and 2013 from 127 consecutive skin donors, before and after freezing (at day 15, 180, and 365). For each skin donor, we collected data concerning clinical history (age, sex, smoking, phototype, dyslipidemia, diabetes, cause of death), donation process (multi-tissue or multi-organ) and timing of skin procurement (assessment of intervals such as death-harvesting, harvesting-banking, death-banking). All these variables were analysed in the whole case study (127 donors) and in different groups (e.g. multi-organ donors, non refrigerated multi-tissue donors, refrigerated multi-tissue donors) for correlations with cell viability. Our results indicated that cryopreserved skin allografts with higher cell viability were obtained from female, non smoker, heartbeating donors died of cerebral haemorrhage, and were harvested within 2 h of aortic clamping and banked within 12 h of harvesting (13-14 h from clamping). Age, cause of death and dyslipidaemia or diabetes did not appear to influence cell viability. To maintain acceptable cell viability, our skin bank needs to reduce the time interval between harvesting and banking, especially for refrigerated donors.
Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla
2016-03-15
The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Kanie, Takuya; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki
2018-02-01
We investigated a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation (StO2), and the scattering power b in the expression of musp=a(lambda)^-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, Monte Carlo simulation (MCS) for light transport in brain tissue is used to specify a relation among the RGB-values and the concentration of oxygenated hemoglobin (CHbO), that of deoxygenated hemoglobin (CHbR), and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed brain of rats while changing the fraction of inspired oxygen (FiO2), using a surgical microscope camera system. The time courses of CHbO, CHbR, CHbT, and StO2 indicated the well-known physiological responses in cerebral cortex. On the other hand, a fast decrease in the scattering power b was observed immediately after the respiratory arrest, which is similar to the negative deflection of the extracellular DC potential so-called anoxic depolarization. It is said that the DC shift coincident with a rise in extracellular potassium and can evoke cell deformation generated by water movement between intracellular and extracellular compartments, and hence the light scattering by tissue. Therefore, the decrease in the scattering power b after the respiratory arrest is indicative of changes in light scattering by tissue. The results in this study indicate potential of the method to evaluate the pathophysiological conditions and loss of tissue viability in brain tissue.
Poxvirus viability and signatures in historical relics.
McCollum, Andrea M; Li, Yu; Wilkins, Kimberly; Karem, Kevin L; Davidson, Whitni B; Paddock, Christopher D; Reynolds, Mary G; Damon, Inger K
2014-02-01
Although it has been >30 years since the eradication of smallpox, the unearthing of well-preserved tissue material in which the virus may reside has called into question the viability of variola virus decades or centuries after its original occurrence. Experimental data to address the long-term stability and viability of the virus are limited. There are several instances of well-preserved corpses and tissues that have been examined for poxvirus viability and viral DNA. These historical specimens cause concern for potential exposures, and each situation should be approached cautiously and independently with the available information. Nevertheless, these specimens provide information on the history of a major disease and vaccination against it.
Investigation of viability of plant tissue in the environmental scanning electron microscopy.
Zheng, Tao; Waldron, K W; Donald, Athene M
2009-11-01
The advantages of environmental scanning electron microscopy (ESEM) make it a suitable technique for studying plant tissue in its native state. There have been few studies on the effects of ESEM environment and beam damage on the viability of plant tissue. A simple plant tissue, Allium cepa (onion) upper epidermal tissue was taken as the model for study. The change of moisture content of samples was studied at different relative humidities. Working with the electron beam on, viability tests were conducted for samples after exposure in the ESEM under different operating conditions to investigate the effect of electron beam dose on the viability of samples. The results suggested that without the electron beam, the ESEM chamber itself can prevent the loss of initial moisture if its relative humidity is maintained above 90%. With the electron beam on, the viability of Allium cepa (onion) cells depends both on the beam accelerating voltage and the electron dose/unit area hitting the sample. The dose can be controlled by several of the ESEM instrumental parameters. The detailed process of beam damage on cuticle-down and cuticle-up samples was investigated and compared. The results indicate that cuticular adhesion to the cell wall is relatively weak, but highly resistant to electron beam damage. Systematic study on the effect of ESEM operation parameters has been done. Results qualitatively support the intuitive expectations, but demonstrate quantitatively that Allium cepa epidermal cells are able to be kept in a hydrated and viable state under relevant operation condition inside ESEM, providing a basis for further in situ experiments on plant tissues.
Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys
NASA Astrophysics Data System (ADS)
Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.
1988-11-01
Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.
SIMPLE: a sequential immunoperoxidase labeling and erasing method.
Glass, George; Papin, Jason A; Mandell, James W
2009-10-01
The ability to simultaneously visualize expression of multiple antigens in cells and tissues can provide powerful insights into cellular and organismal biology. However, standard methods are limited to the use of just two or three simultaneous probes and have not been widely adopted for routine use in paraffin-embedded tissue. We have developed a novel approach called sequential immunoperoxidase labeling and erasing (SIMPLE) that enables the simultaneous visualization of at least five markers within a single tissue section. Utilizing the alcohol-soluble peroxidase substrate 3-amino-9-ethylcarbazole, combined with a rapid non-destructive method for antibody-antigen dissociation, we demonstrate the ability to erase the results of a single immunohistochemical stain while preserving tissue antigenicity for repeated rounds of labeling. SIMPLE is greatly facilitated by the use of a whole-slide scanner, which can capture the results of each sequential stain without any information loss.
Bartlett, David C; Newsome, Philip N
2017-01-01
Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.
Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona
2015-01-01
We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.
Velasquez-Vottelerd, P.; Anton, Y.; Salazar-Lugo, R.
2015-01-01
The freshwater fish Ancistrus brevifilis, which is found in Venezuelan rivers, is considered a potential sentinel fish in ecotoxicological studies. The cadmium (Cd) effect on the mitochondrial viability (MV) and acid soluble thiols levels (AST) in A. brevifilis tissues (liver, kidney, heart, and gill) was evaluated. Forty-two fish with similar sizes and weights were randomly selected, of which 7 fish (with their respective replicate) were exposed for 7 and 30 days to a Cd sublethal concentration (0.1 mg.l-1). We determined the MV through a Janus Green B colorimetric assay and we obtained the concentration of AST by Ellman’s method. Mitochondrial viability decreased in fish exposed to Cd for 30 days with the liver being the most affected tissue. We also detected a significant decrease in AST levels was in fishes exposed to Cd for 7 days in liver and kidney tissues; these results suggests that AST levels are elevated in some tissues may act as cytoprotective and adaptive alternative mechanism related to the ROS detoxification, maintenance redox status and mitochondrial viability. Organ-specifics variations were observed in both assays. We conclude that the Cd exposure effect on AST levels and MV, vary across fish tissues and is related to the exposure duration, the molecule dynamics in different tissues, the organism and environmental conditions. PMID:26623384
Non-invasive terahertz imaging of tissue water content for flap viability assessment
Bajwa, Neha; Au, Joshua; Jarrahy, Reza; Sung, Shijun; Fishbein, Michael C.; Riopelle, David; Ennis, Daniel B.; Aghaloo, Tara; St. John, Maie A.; Grundfest, Warren S.; Taylor, Zachary D.
2016-01-01
Accurate and early prediction of tissue viability is the most significant determinant of tissue flap survival in reconstructive surgery. Perturbation in tissue water content (TWC) is a generic component of the tissue response to such surgeries, and, therefore, may be an important diagnostic target for assessing the extent of flap viability in vivo. We have previously shown that reflective terahertz (THz) imaging, a non-ionizing technique, can generate spatially resolved maps of TWC in superficial soft tissues, such as cornea and wounds, on the order of minutes. Herein, we report the first in vivo pilot study to investigate the utility of reflective THz TWC imaging for early assessment of skin flap viability. We obtained longitudinal visible and reflective THz imagery comparing 3 bipedicled flaps (i.e. survival model) and 3 fully excised flaps (i.e. failure model) in the dorsal skin of rats over a postoperative period of 7 days. While visual differences between both models manifested 48 hr after surgery, statistically significant (p < 0.05, independent t-test) local differences in TWC contrast were evident in THz flap image sets as early as 24 hr. Excised flaps, histologically confirmed as necrotic, demonstrated a significant, yet localized, reduction in TWC in the flap region compared to non-traumatized skin. In contrast, bipedicled flaps, histologically verified as viable, displayed mostly uniform, unperturbed TWC across the flap tissue. These results indicate the practical potential of THz TWC sensing to accurately predict flap failure 24 hours earlier than clinical examination. PMID:28101431
ERIC Educational Resources Information Center
Kellie, Jean; Henderson, Eileen; Milsom, Brian; Crawley, Hayley
2010-01-01
This account of practice reports on an action learning initiative designed and implemented in partnership between a regional NHS Acute Trust and a UK Business School. The central initiative was the implementation of an action learning programme entitled "Leading change in tissue viability best practice: a development programme for Link Nurse…
NASA Astrophysics Data System (ADS)
Lee, Seung Yup; Pakela, Julia M.; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann
2017-02-01
In reconstructive surgery, tissue perfusion/vessel patency is critical to the success of microvascular free tissue flaps. Early detection of flap failure secondary to compromise of vascular perfusion would significantly increase the chances of flap salvage. We have developed a compact, clinically-compatible monitoring system to enable automated, minimally-invasive, continuous, and quantitative assessment of flap viability/perfusion. We tested the system's continuous monitoring capability during extended non-recovery surgery using an in vivo porcine free flap model. Initial results indicated that the system could assess flap viability/perfusion in a quantitative and continuous manner. With proven performance, the compact form constructed with cost-effective components would make this system suitable for clinical translation.
Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering
Kessler, Lukas; Gehrke, Sandra; Winnefeld, Marc; Huber, Birgit; Hoch, Eva; Walter, Torsten; Wyrwa, Ralf; Schnabelrauch, Matthias; Schmidt, Malte; Kückelhaus, Maximilian; Lehnhardt, Marcus; Hirsch, Tobias; Jacobsen, Frank
2017-01-01
In vitro–generated soft tissue could provide alternate therapies for soft tissue defects. The aim of this study was to evaluate methacrylated gelatin/hyaluronan as scaffolds for soft tissue engineering and their interaction with human adipose–derived stem cells (hASCs). ASCs were incorporated into methacrylated gelatin/hyaluronan hydrogels. The gels were photocrosslinked with a lithium phenyl-2,4,6-trimethylbenzoylphosphinate photoinitiator and analyzed for cell viability and adipogenic differentiation of ASCs over a period of 30 days. Additionally, an angiogenesis assay was performed to assess their angiogenic potential. After 24 h, ASCs showed increased viability on composite hydrogels. These results were consistent over 21 days of culture. By induction of adipogenic differentiation, the mature adipocytes were observed after 7 days of culture, their number significantly increased until day 28 as well as expression of fatty acid binding protein 4 and adiponectin. Our scaffolds are promising as building blocks for adipose tissue engineering and allowed long viability, proliferation, and differentiation of ASCs. PMID:29318000
Klemuk, Sarah A; Jaiswal, Sanyukta; Titze, Ingo R
2008-10-01
Effects of vibration on human vocal fold extracellular matrix composition and the resultant tissue viscoelastic properties are difficult to study in vivo. Therefore, an in vitro bioreactor, simulating the in vivo physiological environment, was explored. A stress-controlled commercial rheometer was used to administer shear vibrations to living tissues at stresses and frequencies corresponding to male phonation, while simultaneously measuring tissue viscoelastic properties. Tissue environment was evaluated and adjustments made in order to sustain cell life for short term experimentation up to 6 h. Cell nutrient medium evaporation, osmolality, pH, and cell viability of cells cultured in three-dimensional synthetic scaffolds were quantified under comparably challenging environments to the rheometer bioreactor for 4 or 6 h. The functionality of the rheometer bioreactor was demonstrated by applying three vibration regimes to cell-seeded three-dimensional substrates for 2 h. Resulting strain was quantified throughout the test period. Rheologic data and cell viability are reported for each condition, and future improvements are discussed.
Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering.
Donegan, Gail C; Hunt, John A; Rhodes, Nicholas
2010-02-01
Esterified hyaluronan scaffolds offer significant advantages for tissue engineering. They are recognized by cellular receptors, interact with many other extracellular matrix proteins and their metabolism is mediated by intrinsic cellular pathways. In this study differences in the viability and structural integrity of vascular tissue models cultured on hyaluronan scaffolds under laminar flow conditions highlighted potential differences in the biodegradation kinetics, processes and end-products, depending on the culture environment. Critical factors are likely to include seeding densities and the duration and magnitude of applied biomechanical stress. Proteomic evaluation of the timing and amount of remodelling protein expression, the resulting biomechanical changes arising from this response and metabolic cell viability assay, together with examination of tissue morphology, were conducted in vascular tissue models cultured on esterified hyaluronan felt and PTFE mesh scaffolds. The vascular tissue models were derived using complete cell sheets derived from harvested and expanded umbilical cord vein cells. This seeding method utilizes high-density cell populations from the outset, while the cells are already supported by their own abundant extracellular matrix. Type I and type IV collagen expression in parallel with MMP-1 and MMP-2 expression were monitored in the tissue models over a 10 day culture period under laminar flow regimes using protein immobilization technologies. Uniaxial tensile testing and scanning electron microscopy were used to compare the resulting effects of hydrodynamic stimulation upon structural integrity, while viability assays were conducted to evaluate the effects of shear on metabolic function. The proteomic results showed that the hyaluronan felt-supported tissues expressed higher levels of all remodelling proteins than those cultured on PTFE mesh. Overall, a 21% greater expression of type I collagen, 24% higher levels of type IV collagen, 24% higher levels of MMP-1 and 34% more MMP-2 were observed during hydrodynamic stress. This was coupled with a loss of structural integrity in these models after the introduction of laminar flow, as compared to the increases in all mechanical properties observed in the PTFE mesh-supported tissues. However, under flow conditions, the hyaluronan-supported tissues showed some recovery of the viability originally lost during static culture conditions, in contrast to PTFE mesh-based models, where initial gains were followed by a decline in metabolic viability after applied shear stress. Proteomic, cell viability and mechanical testing data emphasized the need for extended in vitro evaluations to enable better understanding of multi-stage remodelling and reparative processes in tissues cultured on biodegradable scaffolds. This study also highlighted the possibility that in high-density tissue culture with a biodegradable component, dynamic conditions may be more conducive to optimal tissue development than the static environment because they facilitate the efficient removal of high concentrations of degradation end-products accumulating in the pericellular space.
Yuan, X-G; Zhang, X; Fu, Y-X; Tian, X-F; Liu, Y; Xiao, J; Li, T-W; Qiu, L
2016-05-01
To evaluate the efficacy of a "vacuum sealing drainage (VSD) - artificial dermis implantation (ADI) - thin partial thickness skin grafting (TSG)" sequential therapy for deep and infected wounds in children. Fifty-three pediatric patients with deep and infected wounds were treated with sequential VSD-ADI-TSG therapy. The efficacy of this treatment was compared with that of the surgical debridement-change dressings-thin partial thickness skin grafting previously performed on 20 patients. Survival of tissue grafts, color and flexibility, subcutaneous fullness and scar formation of the graft site were examined and compared. The sequential therapy combined the advantages of the VSD treatment, in reducing tissue necrosis and infection on the wound surfaces and promoting the growth of granulation tissue, with the enhancement of grafting by artificial dermis. Compared with the 20 controls, skin grafted on the artificial dermis was more smooth and glossy, while the textures of the region were more elastic, and the scars were significantly lighter in Vancouver scale. The sequential VSD-ADI-TSG therapy is a simple and effective treatment for children with deep and infected wounds. IV. Copyright © 2016. Published by Elsevier Masson SAS.
Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar
2018-03-01
This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.
Comparison of tissue viability imaging and colorimetry: skin blanching.
Zhai, Hongbo; Chan, Heidi P; Farahmand, Sara; Nilsson, Gert E; Maibach, Howard I
2009-02-01
Operator-independent assessment of skin blanching is important in the development and evaluation of topically applied steroids. Spectroscopic instruments based on hand-held probes, however, include elements of operator dependence such as difference in applied pressure and probe misalignment, while laser Doppler-based methods are better suited for demonstration of skin vasodilatation than for vasoconstriction. To demonstrate the potential of the emerging technology of Tissue Viability Imaging (TiVi) in the objective and operator-independent assessment of skin blanching. The WheelsBridge TiVi600 Tissue Viability Imager was used for quantification of human skin blanching with the Minolta chromameter CR 200 as an independent colorimeter reference method. Desoximetasone gel 0.05% was applied topically on the volar side of the forearm under occlusion for 6 h in four healthy adults. In a separate study, the induction of blanching in the occlusion phase was mapped using a transparent occlusion cover. The relative uncertainty in the blanching estimate produced by the Tissue Viability Imager was about 5% and similar to that of the chromameter operated by a single user and taking the a(*) parameter as a measure of blanching. Estimation of skin blanching could also be performed in the presence of a transient paradoxical erythema, using the integrated TiVi software. The successive induction of skin blanching during the occlusion phase could readily be mapped by the Tissue Viability Imager. TiVi seems to be suitable for operator-independent and remote mapping of human skin blanching, eliminating the main disadvantages of methods based on hand-held probes.
Salter-Venzon, Dawna; Kazlova, Valentina; Izzy Ford, Samantha; Intra, Janjira; Klosner, Allison E; Gellenbeck, Kevin W
2017-05-01
Despite the notable health benefits of carotenoids for human health, the majority of human diets worldwide are repeatedly shown to be inadequate in intake of carotenoid-rich fruits and vegetables, according to current health recommendations. To address this deficit, strategies designed to increase dietary intakes and subsequent plasma levels of carotenoids are warranted. When mixed carotenoids are delivered into the intestinal tract simultaneously, competition occurs for micelle formation and absorption, affecting carotenoid bioavailability. Previously, we tested the in vitro viability of a carotenoid mix designed to deliver individual carotenoids sequentially spaced from one another over the 6 hr transit time of the human upper gastrointestinal system. We hypothesized that temporally and spatially separating the individual carotenoids would reduce competition for micelle formation, improve uptake, and maximize efficacy. Here, we test this hypothesis in a double-blind, repeated-measure, cross-over human study with 12 subjects by comparing the change of plasma carotenoid levels for 8 hr after oral doses of a sequentially spaced carotenoid mix, to a matched mix without sequential spacing. We find the carotenoid change from baseline, measured as area under the curve, is increased following consumption of the sequentially spaced mix compared to concomitant carotenoids delivery. These results demonstrate reduced interaction and regulation between the sequentially spaced carotenoids, suggesting improved bioavailability from a novel sequentially spaced carotenoid mix.
Kawai, Akira; Umeda, Toru; Wada, Takuro; Ihara, Koichiro; Isu, Kazuo; Abe, Satoshi; Ishii, Takeshi; Sugiura, Hideshi; Araki, Nobuhito; Ozaki, Toshifumi; Yabe, Hiroo; Hasegawa, Tadashi; Tsugane, Shoichiro; Beppu, Yasuo
2005-05-01
Doxorubicin and ifosfamide are the two most active agents used to treat soft tissue sarcomas. However, because of their overlapping side effects, concurrent administration to achieve optimal doses of each agent is difficult. We therefore conducted a Phase II trial to investigate the efficacy and feasibility of a novel alternating sequential chemotherapy regimen consisting of high dose ifosfamide and doxorubicin/cyclophosphamide in advanced adult non-small round cell soft tissue sarcomas. Adult patients with non-small round cell soft tissue sarcomas were enrolled. The treatment consisted of four sequential courses of chemotherapy that was planned for every 3 weeks. Cycles 1 and 3 consisted of ifosfamide (14 g/m(2)), and cycles 2 and 4 consisted of doxorubicin (60 mg/m(2)) and cyclophosphamide (1200 mg/m(2)). Forty-two patients (median age 47 years) were enrolled. Of the 36 assessable patients, 1 complete response and 16 partial responses were observed, for a response rate of 47.2%. Responses were observed in 57% of patients who had received no previous chemotherapy and 13% of those who had previously undergone chemotherapy. Grade 3-4 neutropenia was observed during 70% of all cycles. Sequential administration of high-dose ifosfamide and doxorubicin/cyclophosphamide has promising activity with manageable side effects in patients with advanced adult non-small round cell soft tissue sarcomas.
Zhang, X-G; Li, H; Hu, J-H
2017-11-01
To investigate the effects of different concentrations of various cryoprotectants (CPs) on the cell viability as well as expression of spermatogenesis-related genes, such as CREM, Stra8 and HSP70-2 in frozen-thawed bovine calf testicular tissue, immature bovine (Qinchuan cattle) calf testicular tissue was collected and cryopreserved in the cryomedia containing different concentrations (5%, 10%, 15% and 20%) of the following three CPs: glycerol, ethylene glycol (EG) and dimethyl sulphoxide (DMSO) respectively. After 1 month cryopreservation in liquid nitrogen, cell viability was evaluated using Trypan blue exclusion under a bright-field microscope. The mRNA expression of the three genes was also evaluated using qRT-PCR. The results indicated that different concentrations of glycerol, EG and DMSO in cryomedia during cryopreservation could protect bovine calf testicular tissue in various ways to avoid freezing or cryopreservation-induced expression changes in spermatogenesis-related genes. The highest cell viability and the three spermatogenesis-related genes (CREM, Stra8 and HSP70-2) expression level came from the cryomedia containing glycerol, EG and DMSO at 10% concentration respectively (p < .05). Meanwhile, compared with the other CPs, the frozen-thawed bovine calf testicular tissue treated with 10% DMSO exhibited the highest cell viability and mRNA expression level of the spermatogenesis-related genes (CREM, Stra8 and HSP70-2). © 2017 Blackwell Verlag GmbH.
Laurent, Romain; Nallet, Aurélie; Obert, Laurent; Nicod, Laurence; Gindraux, Florelle
2014-06-01
Human amniotic membrane (hAM) is known to have good potential to help the regeneration of tissue. It has been used for over 100 years in many medical disciplines because of its properties, namely a scaffold containing stem cells and growth factors, with low immunogenicity and anti-microbial, anti-inflammatory, anti-fibrotic and analgesic properties. In order to use this "boosted membrane" as an advanced therapeutic medicinal product for bone repair, we aimed to observe the influence of tissue culture and/or cryopreservation on cell viability and tissue structure, and secondly, to adapt to a tissue bank, identify easy processes to store hAM containing viable cells and to verify the quality of the graft before its release for use. To this end, we tested different published culture or cryopreservation storage conditions and cell viability assays. Tissue structure was evaluated by Giemsa staining and was compared to histological analysis. Preliminary results show no dramatic decrease in cell viability in cultured hAM as compared to cryopreserved hAM, but tissue structure alterations were observed with both storage conditions. Histological and immunohistochemical data highlight that tissue damage was associated with significantly modified protein expression, which could lead to a possible loss of differentiation potential. Finally, we report that trypan blue and Giemsa staining could constitute controls that are "materially and easily transferable" to a tissue bank.
Sosna, A; Radonský, T; Pokorný, D; Veigl, D; Horák, Z; Jahoda, D
2003-01-01
The experience obtained during revision surgery and findings of polyethylene granulomas in surrounding tissues of replacement as well as marked differences in the viability of implants resulted in the study of polyethylene disease and its basic mechanisms producing the development of osteoaggressive granulomas. We investigated the morphology of particles and their number in tissues surrounding the implant. The aim of our study was to develop a method for the detection of polyethylene particles in tissues, to identify different types of wear and to assess factors that may influence the viability of joint arthroplasty in general. Every revizion of joint arthroplasty performed during the last five years was evaluated in terms of the presence of polyethylene granules and the viability state of articular polyethylene inserts. A total of 55 samples were taken from tissues around loosened endoprostheses. The location of each sample was exactly determined. A technique was developed to identify wear particles and to visualize them after all organic structures of a polyethylene granuloma were dissolved with nitrogenic acid. The viability of articular polyethylene implants showed extreme differences in relation to different periods of manufacture and probably also to different methods of sterilization. Articular inserts sterilized with formaldehyde (the method used at the beginning of arthroplasty in our country) showed the highest viability and the lowest wear. The polyethylene particles present in tissues surrounding the implant were characterized in terms of morphology and size. The comparison of literature data and our results has revealed that there are many unknown facts about the quality and structure of polyethylene. The method of sterilization also appears to play a role. Because the issue is complex, we were not able to identify all factors leading, in some cases, to an early and unexpected failure of the implant and we consider further investigation to be necessary. Polyethylene disease is an important factor limiting the viability of joint arthroplasty. It results from a complex interaction of polyethylene particles arising by wear with surrounding tissues. The particles, less than 0.5 micron in size, are phagocytized by macrophages and, by complex mechanism of expression of inflammation mediators, they result in the inhibition of osteogenesis and activation of osteoclastic processes. The previous methods of sterilization with formaldehyde vapors apparently reduced wear influenced the resistance of polyethylene to wear to a lesser degree. A method was developed to detect these particles and to characterize their morphology in the tissues of a polyethylene granuloma.
Tissues viability and blood flow sensing based on a new nanophotonics method
NASA Astrophysics Data System (ADS)
Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror
2018-02-01
Extracting optical parameters of turbid medium (e.g. tissue) by light reflectance signals is of great interest and has many applications in the medical world, life science, material analysis and biomedical optics. The reemitted light from an irradiated tissue is affected by the light's interaction with the tissue components and contains the information about the tissue structure and physiological state. In this research we present a novel noninvasive nanophotonics technique, i.e., iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements. The reflectance based IMOPE was applied for tissue viability examination, detection of gold nanorods (GNRs) within the blood circulation as well as blood flow detection using the GNRs presence within the blood vessels. The basics of the IMOPE combine a simple experimental setup for recording light intensity images with an iterative Gerchberg-Saxton (G-S) algorithm for reconstructing the reflected light phase and computing its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. This work presents reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).
Green, Charlotte J; Charlton, Catriona A; Wang, Lai-Mun; Silva, Michael; Morten, Karl J; Hodson, Leanne
2017-12-01
Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.
Tagboto, S; Griffiths, A Paul
2007-01-01
Background It is well recognised that there is often a disparity between the structural changes observed in the kidney following renal injury and the function of the organ. For this reason, we carried out studies to explore possible means of studying and quantifying the severity of renal ischaemic damage using a laboratory model. Methods To do this, freshly isolated rabbit kidney tissue was subjected to warm (37°C) or cold (1°C) ischaemia for 20 hours. Following this, the tissue was stained using Haematoxylin and Eosin (H+E), Periodic Schiff reagent (PAS) and the novel monoclonal antibody CD10 stain. Additionally, ischaemic damage to the kidneys was assessed by biochemical tests of tissue viability using formazan-based colorimetry. Results CD 10 antibody intensely stained the brush border of control kidney tissue with mild or no cytoplasmic staining. Cell injury was accompanied by a redistribution of CD10 into the lumen and cell cytoplasm. There was good correlation between a score of histological damage using the CD 10 monoclonal antibody stain and the biochemical assessment of viability. Similarly, a score of histological damage using traditional PAS staining correlated well with that using the CD10 antibody stain. In particular, the biochemical assay and the monoclonal antibody staining techniques were able to demonstrate the efficacy of Soltran (this solution is used cold to preserve freshly isolated human kidneys prior to transplantation) in preserving renal tissue at cold temperatures compared to other randomly selected solutions. Conclusion We conclude that the techniques described using the CD10 monoclonal antibody stain may be helpful in the diagnosis and assessment of ischaemic renal damage. In addition, biochemical tests of viability may have an important role in routine histopathological work by giving additional information about cellular viability which may have implications on the function of the organ. PMID:17531101
NASA Astrophysics Data System (ADS)
Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan
2014-12-01
Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.
Functional Tissue Analysis Reveals Successful Cryopreservation of Human Osteoarthritic Synovium
de Vries, Marieke; Bennink, Miranda B.; van Lent, Peter L. E. M.; van der Kraan, Peter M.; Koenders, Marije I.; Thurlings, Rogier M.; van de Loo, Fons A. J.
2016-01-01
Osteoarthritis (OA) is a degenerative joint disease affecting cartilage and is the most common form of arthritis worldwide. One third of OA patients have severe synovitis and less than 10% have no evidence of synovitis. Moreover, synovitis is predictive for more severe disease progression. This offers a target for therapy but more research on the pathophysiological processes in the synovial tissue of these patients is needed. Functional studies performed with synovial tissue will be more approachable when this material, that becomes available by joint replacement surgery, can be stored for later use. We set out to determine the consequences of slow-freezing of human OA synovial tissue. Therefore, we validated a method that can be applied in every routine laboratory and performed a comparative study of five cryoprotective agent (CPA) solutions. To determine possible deleterious cryopreservation-thaw effects on viability, the synovial tissue architecture, metabolic activity, RNA quality, expression of cryopreservation associated stress genes, and expression of OA characteristic disease genes was studied. Furthermore, the biological activity of the cryopreserved tissue was determined by measuring cytokine secretion induced by the TLR ligands lipopolysaccharides and Pam3Cys. Compared to non frozen synovium, no difference in cell and tissue morphology could be identified in the conditions using the CS10, standard and CryoSFM CPA solution for cryopreservation. However, we observed significantly lower preservation of tissue morphology with the Biofreeze and CS2 media. The other viability assays showed trends in the same direction but were not sensitive enough to detect significant differences between conditions. In all assays tested a clearly lower viability was detected in the condition in which synovium was frozen without CPA solution. This detailed analysis showed that OA synovial tissue explants can be cryopreserved while maintaining the morphology, viability and phenotypical response after thawing, offering enhanced opportunities for human in vitro studies. PMID:27870898
Microbiological Horticultural Internship Final Abstract
NASA Technical Reports Server (NTRS)
Palmer, Shane R.; Spencer, Lashelle (Editor)
2017-01-01
GMO dwarf plum (Prunus domestica) is being evaluated as a candidate food crop for long duration space flight missions. A project was undertaken to develop a protocol for transferring selected genetic lines of GMO plum (previously maintained in pots and propagated by cuttings at NASA's Kennedy Space Center in Florida) into in vitro tissue culture. In vitro culture may reduce the space, materials, and labor required to maintain the current lines of GMO plum and better preserve them for future study. Fresh plant material from three selected GMO plum lines (NASA-5, NASA-10, and NASA-11) and a non-modified control line (Control-5) were processed aseptically into in vitro culture on four separate occasions. The impact of multiple treatments on the successful growth of GMO plum tissue in vitro were tested: Parent explant tissue type (leaf petioles, stem nodes containing buds and internodes without buds), tissue sterilization method [soaking in 10 bleach only (5 min for petioles or 10 min for nodesinternodes), or soaking in 70 EtOH (30 sec) followed by 10 bleach (5 min for petioles and 10 min for nodesinternodes)], and media type [three Murashige and Skoog-based medias (SGM, SRM, and SRM+2,4-D) and one recipe containing woody plant media (WPM)]. 22.2 of the plates containing tissue sterilized with bleach alone developed microbial contamination after two weeks, while only 11.8 of plates containing tissue sterilized sequentially with EtOH and bleach developed contamination. Node bud tissue from all four genetic lines of plum produced leafy plantlets on SGM and SRM media after 4-6 weeks. The most numerous and well-developed plantlets were present on SGM. Upon reaching suitable size, plantlets were transferred to larger media containers for further growth. Some node bud growth occurred on SRM+2,4-D and WPM 2.5 weeks after plating, however as of yet no pieces on SRM+2,4-D have adequate development for transferring. Tissue pieces from NASA-5 plated on WPM are developing leaves and will be ready for transferring soon. Petioles and internode tissue lacking bud meristem failed to produce any plantlets on any plates, however petioles developed large masses of undifferentiated callus tissue on SRM+2,4-D media. These callused pieces were then transferred to SRM+TDZ media, which resulted in even larger callus growth but no differentiation. All four selected plum lines were successfully transitioned into in vitro culture. Nodes from NASA-5 and NASA-10 lines produced the most numerous and well-developed leafy plantlets in vitro, while those from NASA-11 and Control-5 were generally smaller, slower growing and less numerous. The best method overall was to use young stem node tissue with buds, surface sterilize the pieces sequentially with 70 EtOH and 10 bleach, and then plate them onto SGM media. Future areas of study will include introducing additional genetic lines of GMO plum into in vitro culture, attempting to induce shoot growth in petiole callus tissue, testing methods (such as cold storage) that extend the time interval between transferring explants into new media, and testing viability of plantlets transferred from in vitro culture back to traditional pot culture.
Skogman, Malena Elise; Vuorela, Pia Maarit; Fallarero, Adyary
2012-09-01
Despite that three types of assays (measuring biofilm viability, biomass, or matrix) are described to assess anti-biofilm activity, they are rarely used together. As infections can easily reappear if the matrix is not affected after antibiotic treatments, our goal was to explore the simultaneous effects of antibiotics on the viability, biomass and matrix of Staphylococcus aureus biofilms (ATCC 25923). Viability and biomass were quantified using resazurin and crystal violet staining sequentially in the same plate, while matrix staining was conducted with a wheat germ agglutinin-Alexa Fluor 488 fluorescent conjugate. Establishment of the detection limits and linearity ranges allowed concluding that all three methods were able to estimate biofilm formation in a similar fashion. In a susceptibility study with 18-h biofilms, two model compounds (penicillin G and ciprofloxacin) caused a reduction on the viability and biomass accompanied by an increase or not changed levels of the matrix, respectively. This response pattern was also proven for S. aureus Newman, S. epidermidis and E. coli biofilms. A classification of antibiotics based on five categories according to their effects on viability and matrix has been proposed earlier. Our data suggests a sixth group, represented by penicillin, causing decrease in bacterial viability but showing stimulatory effects on the matrix. Further, if effects on the matrix are not taken into account, the long-term chemotherapeutic effect of antibiotics can be jeopardized in spite of the positive effects on biofilms viability and biomass. Thus, measuring all these three endpoints simultaneously provide a more complete and accurate picture.
NASA Astrophysics Data System (ADS)
Elahi, Sakib F.; Lee, Seung Y.; Lloyd, William R.; Chen, Leng-Chun; Kuo, Shiuhyang; Zhou, Ying; Kim, Hyungjin M.; Kennedy, Robert; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann
2018-02-01
Clinical translation of engineered tissue constructs requires noninvasive methods to assess construct health and viability after implantation in patients. However, current practices to monitor post-implantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). As label-free fluorescence lifetime sensing can noninvasively characterize pre-implantation construct viability, we employed a handheld fluorescence lifetime spectroscopy probe to quantitatively and noninvasively assess tissue constructs that were implanted in a murine model. We designed the system to be suitable for intravital measurements: portability, localization with precise maneuverability, and rapid data acquisition. Our model tissue constructs were manufactured from primary human cells to simulate patient variability and were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess pre-implantation construct health. In vivo optical sensing assessed tissue integration of constructs at one-week and three-weeks post-implantation. At one-week post-implantation, optical parameters correlated with in vitro pre-implantation secretion levels of all three cytokines (p < 0.05). This relationship was no longer seen at three-weeks post-implantation, suggesting comparable tissue integration independent of preimplantation health. Histology confirmed re-epithelialization of these constructs independent of pre-implantation health state, supporting the lack of a correlation. These results suggest that clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor post-implantation integration of engineered tissues.
Fluorescein diacetate for determination of cell viability in 3D fibroblast-collagen-GAG constructs.
Powell, Heather M; Armour, Alexis D; Boyce, Steven T
2011-01-01
Quantification of cell viability and distribution within engineered tissues currently relies on representative histology, phenotypic assays, and destructive assays of viability. To evaluate uniformity of cell density throughout 3D collagen scaffolds prior to in vivo use, a nondestructive, field assessment of cell viability is advantageous. Here, we describe a field measure of cell viability in lyophilized collagen-glycosaminoglycan (C-GAG) scaffolds in vitro using fluorescein diacetate (FdA). Fibroblast-C-GAG constructs are stained 1 day after cellular inoculation using 0.04 mg/ml FdA followed by exposure to 366 nm UV light. Construct fluorescence quantified using Metamorph image analysis is correlated with inoculation density, MTT values, and histology of corresponding biopsies. Construct fluorescence correlates significantly with inoculation density (p < 0.001) and MTT values (p < 0.001) of biopsies collected immediately after FdA staining. No toxicity is detected in the constructs, as measured by MTT assay before and after the FdA assay at different time points; normal in vitro histology is demonstrated for the FdA-exposed constructs. In conclusion, measurement of intracellular fluorescence with FdA allows for the early, comprehensive measurement of cellular distributions and viability in engineered tissue.
Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs
Costa, Pedro F.; Dias, Ana F.; Reis, Rui L.
2012-01-01
The aim of this work was to study the effect of cryopreservation over the functionality of tissue-engineered constructs, analyzing the survival and viability of cells seeded, cultured, and cryopreserved onto 3D scaffolds. Further, it also evaluated the effect of cryopreservation over the properties of the scaffold material itself since these are critical for the engineering of most tissues and in particular, tissues such as bone. For this purpose, porous scaffolds, namely fiber meshes based on a starch and poly(caprolactone) blend were seeded with goat bone marrow stem cells (GBMSCs) and cryopreserved for 7 days. Discs of the same material seeded with GBMSCs were also used as controls. After this period, these samples were analyzed and compared to samples collected before the cryopreservation process. The obtained results demonstrate that it is possible to maintain cell viability and scaffolds properties upon cryopreservation of tissue-engineered constructs based on starch scaffolds and goat bone marrow mesenchymal cells using standard cryopreservation methods. In addition, the outcomes of this study suggest that the greater porosity and interconnectivity of scaffolds favor the retention of cellular content and cellular viability during cryopreservation processes, when compared with nonporous discs. These findings indicate that it might be possible to prepare off-the-shelf engineered tissue substitutes and preserve them to be immediately available upon request for patients' needs. PMID:22676448
Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.
Lee, Jung-Seob; Kim, Byoung Soo; Seo, Donghwan; Park, Jeong Hun; Cho, Dong-Woo
2017-03-01
The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: Factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, a humidifier, and a Peltier system, which provides a suitable printing environment for the production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.
Ovarian fragment sizes affect viability and morphology of preantral follicles during storage at 4°C
USDA-ARS?s Scientific Manuscript database
The efficient transportation of ovarian tissues is affected b various factors compromising their viability. We tested various ovarian sample sizes (whole ovary, biopsy, and transplantation size) during various transportation times....
3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.
Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P
2016-12-01
There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.
3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor
Ball, Owen; Nguyen, Bao-Ngoc B.; Placone, Jesse K.; Fisher, John P.
2016-01-01
There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state. PMID:27272210
NASA Astrophysics Data System (ADS)
Luthra, Rajiv; Caruso, Joseph D.; Radowsky, Jason S.; Rodriguez, Maricela; Forsberg, Jonathan; Elster, Eric A.; Crane, Nicole J.
2013-03-01
Over 70% of military casualties resulting from the current conflicts sustain major extremity injuries. Of these the majority are caused by blasts from improvised explosive devices. The resulting injuries include traumatic amputations, open fractures, crush injuries, and acute vascular disruption. Critical tissue ischemia—the point at which ischemic tissues lose the capacity to recover—is therefore a major concern, as lack of blood flow to tissues rapidly leads to tissue deoxygenation and necrosis. If left undetected or unaddressed, a potentially salvageable limb may require more extensive debridement or, more commonly, amputation. Predicting wound outcome during the initial management of blast wounds remains a significant challenge, as wounds continue to "evolve" during the debridement process and our ability to assess wound viability remains subjectively based. Better means of identifying critical ischemia are needed. We developed a swine limb ischemia model in which two imaging modalities were combined to produce an objective and quantitative assessment of wound perfusion and tissue viability. By using 3 Charge-Coupled Device (3CCD) and Infrared (IR) cameras, both surface tissue oxygenation as well as overall limb perfusion could be depicted. We observed a change in mean 3CCD and IR values at peak ischemia and during reperfusion correlate well with clinically observed indicators for limb function and vitality. After correcting for baseline mean R-B values, the 3CCD values correlate with surface tissue oxygenation and the IR values with changes in perfusion. This study aims to not only increase fundamental understanding of the processes involved with limb ischemia and reperfusion, but also to develop tools to monitor overall limb perfusion and tissue oxygenation in a clinical setting. A rapid and objective diagnostic for extent of ischemic damage and overall limb viability could provide surgeons with a more accurate indication of tissue viability. This may help reducing the number of surgical interventions required, by aiding surgeons in identifying and demarcating areas of critical tissue ischemia, so that a more adequate debridement may be performed. This would have obvious benefits of reducing patient distress and decreasing both the overall recovery time and cost of rehabilitation.
Chung, Michael T; Paik, Kevin J; Atashroo, David A; Hyun, Jeong S; McArdle, Adrian; Senarath-Yapa, Kshemendra; Zielins, Elizabeth R; Tevlin, Ruth; Duldulao, Chris; Hu, Michael S; Walmsley, Graham G; Parisi-Amon, Andreina; Momeni, Arash; Rimsa, Joe R; Commons, George W; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T
2014-07-01
Fat grafting has become increasingly popular for the correction of soft-tissue deficits at many sites throughout the body. Long-term outcomes, however, depend on delivery of fat in the least traumatic fashion to optimize viability of the transplanted tissue. In this study, the authors compare the biological properties of fat following injection using two methods. Lipoaspiration samples were obtained from five female donors, and cellular viability, proliferation, and lipolysis were evaluated following injection using either a modified Coleman technique or an automated, low-shear device. Comparisons were made to minimally processed, uninjected fat. Volume retention was also measured over 12 weeks after injection of fat under the scalp of immunodeficient mice using either the modified Coleman technique or the Adipose Tissue Injector. Finally, fat grafts were analyzed histologically. Fat viability and cellular proliferation were both significantly greater with the Adipose Tissue Injector relative to injection with the modified Coleman technique. In contrast, significantly less lipolysis was noted using the automated device. In vivo fat volume retention was significantly greater than with the modified Coleman technique at the 4-, 6-, 8-, and 12-week time points. This corresponded to significantly greater histologic scores for healthy fat and lower scores for injury following injection with the device. Biological properties of injected tissues reflect how disruptive and harmful techniques for placement of fat may be, and the authors' in vitro and in vivo data both support the use of the automated, low-shear devices compared with the modified Coleman technique.
Chung, Michael T.; Paik, Kevin J.; Atashroo, David A.; Hyun, Jeong S.; McArdle, Adrian; Senarath-Yapa, Kshemendra; Zielins, Elizabeth R.; Tevlin, Ruth; Duldulao, Chris; Hu, Michael S.; Walmsley, Graham G.; Parisi-Amon, Andreina; Momeni, Arash; Rimsa, Joe R.; Commons, George W.; Gurtner, Geoffrey C.; Wan, Derrick C.; Longaker, Michael T.
2014-01-01
Background Fat grafting has become increasingly popular for the correction of soft tissue deficits at many sites throughout the body. Long-term outcomes, however, depend on delivery of fat in the least traumatic fashion to optimize viability of the transplanted tissue. In this study, we compare the biologic properties of fat following injection using two methods. Methods Lipoaspiration samples were obtained from five female donors and cellular viability, proliferation, and lipolysis were evaluated following injection using either a modified Coleman technique or an automated, low shear device. Comparisons were made to minimally processed, uninjected fat. Volume retention was also measured over twelve weeks following injection of fat under the scalp of immunodeficient mice using either the modified Coleman technique or the Adipose Tissue Injector. Finally, fat grafts were analyzed histologically. Results Fat viability and cellular proliferation were both significantly greater with the Adipose Tissue Injector relative to injection with the modified Coleman technique. In contrast, significantly less lipolysis was noted using the automated device. In vivo fat volume retention was significantly greater than with the modified Coleman technique at 4, 6, 8, and 12 week time points. This corresponded with significantly greater histological scores for healthy fat and lower scores for injury following injection with the device. Conclusions Biological properties of injected tissues reflect how disruptive and harmful techniques for placement of fat may be, and our in vitro and in vivo data both support the use of the automated, low shear devices compared to the modified Coleman technique. PMID:24622574
Buchanan, W. M.
1971-01-01
This paper describes an attempt to measure in vitro iron uptake from serum by human thyroid slices and to relate the uptake to tissue iron stores, folic acid status, and tissue viability. It is an extension of work previously reported (Buchanan, 1969). Thyroids were obtained from patients undergoing partial thyroidectomy for colloid goitre and serum from clinically normal healthy adults. The haemoglobin, serum iron, and folic acid levels of both thyroid and serum donors were measured and thyroids examined histologically for the presence of stainable iron. Viable and non-viable tissue slices were incubated in sera treated with radioactive iron so as to produce high and normal levels of transferrin saturation. Iron was taken up both from sera with normal and high transferrin saturation but the amount was, in almost all cases, greater from the more highly saturated. The uptake by non-viable tissue was appreciable but did not vary to any great extent from one serum to the next, and was attributed to simple diffusion of ionic iron into the tissue. There was, however, marked variation in uptake from different sera by viable tissue. It was concluded therefore that viability is a factor affecting the uptake. As the variation in uptake by viable tissue incubated in a single serum was significantly less than tissue incubated in a number of different sera it was further concluded that there was also a factor in the serum itself affecting iron uptake. The nature of the factor was not elucidated but neither folic acid nor levels of iron stores appeared to influence uptake because no correlation was found between iron uptake and iron stores or folic acid. Images PMID:5556118
Ovarian tissue cryopreservation by stepped vitrification and monitored by X-ray computed tomography.
Corral, Ariadna; Clavero, Macarena; Gallardo, Miguel; Balcerzyk, Marcin; Amorim, Christiani A; Parrado-Gallego, Ángel; Dolmans, Marie-Madeleine; Paulini, Fernanda; Morris, John; Risco, Ramón
2018-04-01
Ovarian tissue cryopreservation is, in most cases, the only fertility preservation option available for female patients soon to undergo gonadotoxic treatment. To date, cryopreservation of ovarian tissue has been carried out by both traditional slow freezing method and vitrification, but even with the best techniques, there is still a considerable loss of follicle viability. In this report, we investigated a stepped cryopreservation procedure which combines features of slow cooling and vitrification (hereafter called stepped vitrification). Bovine ovarian tissue was used as a tissue model. Stepwise increments of the Me 2 SO concentration coupled with stepwise drops-in temperature in a device specifically designed for this purpose and X-ray computed tomography were combined to investigate loading times at each step, by monitoring the attenuation of the radiation proportional to Me 2 SO permeation. Viability analysis was performed in warmed tissues by immunohistochemistry. Although further viability tests should be conducted after transplantation, preliminary results are very promising. Four protocols were explored. Two of them showed a poor permeation of the vitrification solution (P1 and P2). The other two (P3 and P4), with higher permeation, were studied in deeper detail. Out of these two protocols, P4, with a longer permeation time at -40 °C, showed the same histological integrity after warming as fresh controls. Copyright © 2018 Elsevier Inc. All rights reserved.
Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2010-02-01
Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.
Hardway, D; Weatherly, K S; Bonheur, B
1993-01-01
Diabetes education programs remain underdeveloped in the pediatric setting, resulting in increased consumer complaints and financial liability for hospitals. The Diabetes Education on Wheels program was designed to provide comprehensive, outcome-oriented education for patients with juvenile diabetes. The primary goal of the program was to enhance patients' and family members' ability to achieve self-care in the home setting. The program facilitated sequential learning, improved consumer satisfaction, and promoted financial viability for the hospital.
Effect of irradiation on the viability of Toxoplasma gondii cysts in tissues of mice and pigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, J.P.; Brake, R.J.; Murrell, K.D.
1986-03-01
Muscles from tongue, heart, and limbs of 14 pigs inoculated orally with Toxoplasma gondii oocysts were irradiated with 10, 20, 25, and 30 krad of gamma (cesium-137 and cobalt-60) irradiation. Viability of T gondii cysts was assayed by feeding porcine muscles to T gondii-free cats and/or by inoculation of sediment from acid-pepsin digested porcine muscle into mice. Cats fed 500-g samples of muscles irradiated with up to 20 krad shed T gondii oocysts. Cats fed muscles irradiated with 25 or 30 krad did not shed oocysts. Mice were inoculated with 8 isolates of T gondii, and tissue cysts in theirmore » brains irradiated with up to 40 krad were infective to mice; however, there was a 10,000-fold reduction in the viability of organisms in tissue cysts irradiated with 40 krad, compared with that in nonirradiated cysts. At 50 krad of gamma irradiation, there were no detectable infective organisms in infected mouse brains.« less
Efficacy of platelet-rich fibrin matrix on viability of diced cartilage grafts in a rabbit model.
Güler, İsmail; Billur, Deniz; Aydin, Sevim; Kocatürk, Sinan
2015-03-01
The objective of this study was to compare the viability of cartilage grafts embedded in platelet-rich fibrin matrix (PRFM) wrapped with no material (bare diced cartilage grafts), oxidized methylcellulose (Surgicel), or acellular dermal tissue (AlloDerm). Experimental study. In this study, six New Zealand rabbits were used. Cartilage grafts including perichondrium were excised from each ear and diced into 2-mm-by 2-mm pieces. There were four comparison groups: 1) group A, diced cartilage (not wrapped with any material); 2) group B, diced cartilage wrapped with AlloDerm; 3) group C, diced cartilage grafts wrapped with Surgicel; and 4) group D, diced cartilage wrapped with PRFM. Four cartilage grafts were implanted under the skin at the back of each rabbit. All rabbits were sacrificed at the end of 10 weeks. The cartilages were stained with hematoxylin-eosin, Masson's Trichrome, and Orcein. After that, they were evaluated for the viability of chondrocytes, collagen content, fibrillar structure of matrix, and changes in peripheral tissues. When the viability of chondrocytes, the content of fiber in matrix, and changes in peripheral tissues were compared, the cartilage embedded in the PRFM group was statistically significantly higher than in the other groups (P < 0.05). We concluded that PRFM has significant advantages in ensuring the chondrocyte viability of diced cartilage grafts. It is also biocompatible, with relatively lesser inflammation and fibrosis. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L
2016-01-01
To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.
Histologic analysis of rabbit liver cancer treated by bulk ultrasound ablation
NASA Astrophysics Data System (ADS)
Karunakaran, Chandra Priya; Rudich, Steven M.; Alqadah, Amel; Burgess, Mark T.; Narmoneva, Daria A.; Mast, T. Douglas
2012-10-01
VX2 rabbit liver cancer, treated in vivo using bulk ultrasound ablation by miniaturized image-ablate arrays, was histologically analyzed using TTC vital stain and DAPI nucleic acid stain. VX2 cells were implanted into rabbit liver lobes and allowed to grow for 11-21 days. Liver lobes containing solid VX2 tumors were then treated with 4.8 MHz, 22.5-38.5 W/cm2 in situ intensity, unfocused ultrasound for exposure times of 20-120 s. After animal sacrifice, thermal lesions were bisected along the imaging/treatment plane, one face stained with TTC, and the other with DAPI. Levels of TTC uptake (no uptake, partial uptake, and complete uptake) in liver parenchyma corresponded to three discrete regions of tan, pink and red color. By processing images of DAPI-stained parenchymal tissue from these three regions, cellular damage was quantified. A viability index parameter incorporating the size and shape of DAPI-stained nuclei correlated significantly with levels of TTC uptake, and thus with local tissue viability. For ablation of normal liver, viability indices for parenchymal regions of no TTC uptake and partial TTC uptake were significantly different from those for viable tissue. For ablation of VX2 tumor, differences in viability index between regions of no TTC uptake and complete TTC uptake were smaller, but significant overall.
Experience of nurses in the process of donation of organs and tissues for transplant.
de Moraes, Edvaldo Leal; dos Santos, Marcelo José; Merighi, Miriam Aparecida Barbosa; Massarollo, Maria Cristina Komatsu Braga
2014-01-01
to investigate the meaning of the action of nurses in the donation process to maintain the viability of organs and tissues for transplantation. this qualitative study with a social phenomenological approach was conducted through individual interviews with ten nurses of three Organ and Tissue Procurement Services of the city of São Paulo. the experience of the nurses in the donation process was represented by the categories: obstacles experienced in the donation process, and interventions performed. The meaning of the action to maintain the viability of organs and tissues for transplantation was described by the categories: to change paradigms, to humanize the donation process, to expand the donation, and to save lives. knowledge of the experience of the nurses in this process is important for healthcare professionals who work in different realities, indicating strategies to optimize the procurement of organs and tissues for transplantation.
The effects of optical sensor-tissue separation in endocavitary photoplethysmography.
Patel, Zaibaa; Thaha, Mohamed A; Kyriacou, Panayiotis A
2018-06-12
<i>Objective:</i> Intestinal anastomotic failure that occurs mainly due to ischaemia is a serious risk in colorectal cancer patients undergoing surgery. Surgeons continue to rely on subjective methods such as visual inspection to assess intestinal viability during surgery and there are no clinical tools to directly monitor viability postoperatively. A dual wavelength, reflectance optical sensor has been developed for continuous and dynamic monitoring of intestinal viability via the intestinal lumen. Maintaining direct contact between the sensor and the inner intestinal wall can be difficult in an intraluminal design, therefore impacting on signal acquisition and quality. This paper investigates the effect of direct contact versus variable distances between the sensor and the tissue surface of the buccal mucosa as a surrogate. <i>Approach:</i> The <i>in-vivo</i> study involved 20 healthy volunteers to measure the effect of optical sensor-tissue distances on the ability to acquire photoplethysmography signals and their quality. Signals were acquired from the buccal mucosa at five optical sensor-tissue distances. <i>Main results:</i> Distances between 0 mm (contact) to 5 mm were the most optimal, producing signals of high quality and signal-to-noise ratio, resulting in reliable estimations of the blood oxygen saturation. Distances exceeding 5 mm compromised the acquired signals, and were of poor quality, thereby unreliably estimating the blood oxygen saturation. <i>Significance:</i> The developed optical sensor proved to be reliable for acquiring photoplethysmography signals for cases where distances between the optical sensor-tissue may arise during the assessment of intraluminal intestinal viability. © 2018 Institute of Physics and Engineering in Medicine.
Molinari, Ana J; Pozzi, Emiliano C C; Monti Hughes, Andrea; Heber, Elisa M; Garabalino, Marcela A; Thorp, Silvia I; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Quintana, Jorge; Santa Cruz, Gustavo A; Trivillin, Verónica A; Schwint, Amanda E
2011-04-01
In the present study the therapeutic effect and potential toxicity of the novel "Sequential" boron neutron capture therapy (Seq-BNCT) for the treatment of oral cancer was evaluated in the hamster cheek pouch model at the RA-3 Nuclear Reactor. Two groups of animals were treated with "Sequential" BNCT, i.e., BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (Seq-24h-BNCT) or 48 h (Seq-48h-BNCT) later. In an additional group of animals, BPA and GB-10 were administered concomitantly [(BPA + GB-10)-BNCT]. The single-application BNCT was to the same total physical tumor dose as the "Sequential" BNCT treatments. At 28 days post-treatment, Seq-24h-BNCT and Seq-48h-BNCT induced, respectively, overall tumor responses of 95 ± 2% and 91 ± 3%, with no statistically significant differences between protocols. Overall response for the single treatment with (BPA + GB-10)-BNCT was 75 ± 5%, significantly lower than for Seq-BNCT. Both Seq-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in the dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47 ± 12% and 60 ± 22% of the animals, respectively. No normal tissue toxicity was associated with tumor response for any of the protocols. "Sequential" BNCT enhanced tumor response without an increase in mucositis in dose-limiting precancerous tissue. © 2011 by Radiation Research Society
Wu, Gary A; Bogie, Kath M
2013-08-01
Some individuals with spinal cord injury (SCI) remain pressure ulcer (PU) free whilst others experience a recurring cycle of tissue breakdown. Detailed analysis of gluteal muscle characteristics may provide insights to local tissue viability variability. The study hypothesis was that SCI individuals have altered muscle composition compared to able-bodied (AB). Ten AB and ten SCI received a supine pelvic CT scan, with contrast. Cross-sectional area (CSA) and overall muscle volume were derived using image analysis. Gluteal muscle tissue type was classified at the S2/S3 sacral vertebrae midpoint, the superior greater trochanters margin (GT) and the inferior ischial tuberosities margin (IT) using the linear transformation Hounsfield Unit scale. SCI gluteal CSA was less than for AB throughout the muscle, with the greatest relative atrophy at the IT (48%). Average AB gluteal volume was nearly double SCI. Eight SCI had over 20% infiltrative adipose tissue, three with over 50%. SCI gluteal CSA and intramuscular fat infiltration were significantly negatively correlated (p < 0.05). SCI IT axial slices showed less lean muscle and higher intramuscular fat infiltration than more proximally (p < 0.05). SCI gluteal muscle characteristics were indicative of impaired tissue viability. SCI disuse muscle atrophy was anticipated; the analytic approach further indicated that intramuscular atrophy was not uniform. SCI muscle composition showed increased proportions of both low density muscle and adipose tissue. CT scan with contrast is effective for gluteal muscle characterization. This assessment technique may contribute to determination of personalized risk for PU development and other secondary complications. Published by Elsevier Ltd.
Oxygen consumption rate of early pre-antral follicles from vitrified human ovarian cortical tissue
ISHIKAWA, Takayuki; KYOYA, Toshihiko; NAKAMURA, Yusuke; SATO, Eimei; TOMIYAMA, Tatsuhiro; KYONO, Koichi
2014-01-01
The study of human ovarian tissue transplantation and cryopreservation has advanced significantly. Autotransplantation of human pre-antral follicles isolated from cryopreserved cortical tissue is a promising option for the preservation of fertility in young cancer patients. The purpose of the present study was to reveal the effect of vitrification after low-temperature transportation of human pre-antral follicles by using the oxygen consumption rate (OCR). Cortical tissues from 9 ovaries of female-to-male transsexuals were vitrified after transportation (6 or 18 h). The follicles were enzymatically isolated from nonvitrified tissue (group I, 18 h of transportation), vitrified-warmed tissue (group II, 6 and 18 h of transportation) and vitrified-warmed tissue that had been incubated for 24 h (group III, 6 and 18 h of transportation). OCR measurement and the LIVE/DEAD viability assay were performed. Despite the ischemic condition, the isolated pre-antral follicles in group I consumed oxygen, and the mean OCRs increased with developmental stage. Neither the transportation time nor patient age seemed to affect the OCR in this group. Meanwhile, the mean OCR was significantly lower (P < 0.05) in group II but was comparable to that of group I after 24 h of incubation. The integrity of vitrified-warmed primordial and primary follicles was clearly corroborated by the LIVE/DEAD viability assay. These results demonstrate that the OCR can be used to directly estimate the effect of vitrification on the viability of primordial and primary follicles and to select the viable primordial and primary follicles from vitrified-warmed follicles. PMID:25262776
Harari, Colin M.; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T.; Lubner, Meghan G.; Hinshaw, J. Louis; Ziemlewicz, Timothy
2016-01-01
Purpose To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. Materials and Methods All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. Results On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. Conclusion The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015 PMID:26133361
Volovitz, Ilan; Shapira, Netanel; Ezer, Haim; Gafni, Aviv; Lustgarten, Merav; Alter, Tal; Ben-Horin, Idan; Barzilai, Ori; Shahar, Tal; Kanner, Andrew; Fried, Itzhak; Veshchev, Igor; Grossman, Rachel; Ram, Zvi
2016-06-01
Conducting research on the molecular biology, immunology, and physiology of brain tumors (BTs) and primary brain tissues requires the use of viably dissociated single cells. Inadequate methods for tissue dissociation generate considerable loss in the quantity of single cells produced and in the produced cells' viability. Improper dissociation may also demote the quality of data attained in functional and molecular assays due to the presence of large quantities cellular debris containing immune-activatory danger associated molecular patterns, and due to the increased quantities of degraded proteins and RNA. Over 40 resected BTs and non-tumorous brain tissue samples were dissociated into single cells by mechanical dissociation or by mechanical and enzymatic dissociation. The quality of dissociation was compared for all frequently used dissociation enzymes (collagenase, DNase, hyaluronidase, papain, dispase) and for neutral protease (NP) from Clostridium histolyticum. Single-cell-dissociated cell mixtures were evaluated for cellular viability and for the cell-mixture dissociation quality. Dissociation quality was graded by the quantity of subcellular debris, non-dissociated cell clumps, and DNA released from dead cells. Of all enzymes or enzyme combinations examined, NP (an enzyme previously not evaluated on brain tissues) produced dissociated cell mixtures with the highest mean cellular viability: 93 % in gliomas, 85 % in brain metastases, and 89 % in non-tumorous brain tissue. NP also produced cell mixtures with significantly less cellular debris than other enzymes tested. Dissociation using NP was non-aggressive over time-no changes in cell viability or dissociation quality were found when comparing 2-h dissociation at 37 °C to overnight dissociation at ambient temperature. The use of NP allows for the most effective dissociation of viable single cells from human BTs or brain tissue. Its non-aggressive dissociative capacity may enable ambient-temperature shipping of tumor pieces in multi-center clinical trials, meanwhile being dissociated. As clinical grade NP is commercially available it can be easily integrated into cell-therapy clinical trials in neuro-oncology. The high quality viable cells produced may enable investigators to conduct more consistent research by avoiding the experimental artifacts associated with the presence dead cells or cellular debris.
Schussler, O; Coirault, C; Louis-Tisserand, M; Al-Chare, W; Oliviero, P; Menard, C; Michelot, R; Bochet, P; Salomon, D R; Chachques, J C; Carpentier, A; Lecarpentier, Y
2009-03-01
Cardiac tissue engineering might be useful in treatment of diseased myocardium or cardiac malformations. The creation of functional, biocompatible contractile tissues, however, remains challenging. We hypothesized that coupling of arginine-glycine-aspartic acid-serine (RGD+) adhesion peptides would improve cardiomyocyte viability and differentiation and contractile performance of collagen-cell scaffolds. Clinically approved collagen scaffolds were functionalized with RGD+ cells and seeded with cardiomyocytes. Contractile performance, cardiomyocyte viability and differentiation were analyzed at days 1 and 8 and/or after culture for 1 month. The method used for the RGD+ cell-collagen scaffold coupling enabled the following features: high coupling yields and complete washout of excess reagent and by-products with no need for chromatography; spectroscopic quantification of RGD+ coupling; a spacer arm of 36 A, a length reported as optimal for RGD+-peptide presentation and favorable for integrin-receptor clustering and subsequent activation. Isotonic and isometric mechanical parameters, either spontaneous or electrostimulated, exhibited good performance in RGD+ constructs. Cell number and viability was increased in RGD+ scaffolds, and we saw good organization of cell contractile apparatus with occurrence of cross-striation. We report a novel method of engineering a highly effective collagen-cell scaffold based on RGD+ peptides cross-linked to a clinically approved collagen matrix. The main advantages were cell contractile performance, cardiomyocyte viability and differentiation.
Toward Contactless Biology: Acoustophoretic DNA Transfection
NASA Astrophysics Data System (ADS)
Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo
2016-02-01
Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors.
Toward Contactless Biology: Acoustophoretic DNA Transfection.
Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo
2016-02-01
Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors.
Toward Contactless Biology: Acoustophoretic DNA Transfection
Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo
2016-01-01
Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors. PMID:26828312
Kearn, James; Lilley, Catherine; Urwin, Peter; O'Connor, Vincent; Holden-Dye, Lindy
2017-10-01
Fluensulfone is a new nematicide with an excellent profile of selective toxicity against plant parasitic nematodes. Here, its effects on the physiology and biochemistry of the potato cyst nematode Globodera pallida have been investigated and comparisons made with its effect on the life-span of the free-living nematode Caenorhabditis elegans to provide insight into its mode of action and its selective toxicity. Fluensulfone exerts acute effects (≤1h; ≥100μM) on stylet thrusting and motility of hatched second stage G. pallida juveniles (J2s). Chronic exposure to lower concentrations of fluensulfone (≥3days; ≤30μM), reveals a slowly developing metabolic insult in which G. pallida J2s sequentially exhibit a reduction in motility, loss of a metabolic marker for cell viability, high lipid content and tissue degeneration prior to death. These effects are absent in adults and dauers of the model genetic nematode Caenorhabditis elegans. The nematicidal action of fluensulfone follows a time-course which progresses from an early impact on motility through to an accumulating metabolic impairment, an inability to access lipid stores and death. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Measuring tendon properties in mdx mice: cell viability and viscoelastic characteristics.
Rizzuto, E; Musarò, A; Catizone, A; Del Prete, Z
2009-10-16
Muscular dystrophy is a genetic disorder of skeletal muscle characterized by progressive muscle weakness. Here we assessed whether muscle wasting affects cell viability and mechanical properties of extensor digitorum longus (EDL) and of tibialis anterior (TA) tendons from mdx dystrophic mice compared to wild type (WT) mice. mdx mice represent the classical animal model for human Duchenne muscular dystrophy, and show several signs of the pathology, including a decrease in specific force and an increase of fibrotic index. Cell viability of tendons was evaluated by histological analysis, and viscoelastic properties have been assessed by a rapid measurement protocol that allowed us to compute, at the same time, tissue complex compliance for all the frequencies of interest. Confocal microscopy and mechanical properties measurements revealed that mdx tendons, compared to WT ones, have an increase in the number of dead cells and a significant reduction in tissue elasticity for all the frequencies that were tested. These findings indicate a reduced quality of the tissue. Moreover, mdx tendons have an increase in the viscous response, indicating that during dynamic loading, they dissipate more energy compared to WT. Our results demonstrate that muscular dystrophy involves not only muscle wasting, but also alteration in the viscoelastic properties of tendons, suggesting a paracrine effect of altered skeletal muscle on tendinous tissue.
Supercooling as a Viable Non-Freezing Cell Preservation Method of Rat Hepatocytes
Usta, O. Berk; Kim, Yeonhee; Ozer, Sinan; Bruinsma, Bote G.; Lee, Jungwoo; Demir, Esin; Berendsen, Tim A.; Puts, Catheleyne F.; Izamis, Maria-Louisa; Uygun, Korkut; Uygun, Basak E.; Yarmush, Martin L.
2013-01-01
Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4oC) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4oC) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 oC). We find that there exists an optimum temperature (-4oC) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials. PMID:23874947
Madanat, Rami; Hussey, Daniel K; Donahue, Gabrielle S; Potter, Hollis G; Wallace, Robert; Bragdon, Charles R; Muratoglu, Orhun K; Malchau, Henrik
2015-10-01
The purpose of this study was to evaluate whether patients with bilateral metal-on-metal (MoM) hip replacements have symmetric adverse local tissue reactions (ALTRs) at follow-up. An MRI of both hips was performed at a mean time of six years after surgery in 43 patients. The prevalence and severity of ALTRs were found to be similar in simultaneous hips but differences were observed in sequential hips. The order and timing of sequential hip arthroplasties did not affect the severity of ALTRs. Thus, in addition to metal ion exposure from an earlier MoM implant other factors may also play a role in the progression of ALTRs. Bilateral implants should be given special consideration in risk stratification algorithms for management of patients with MoM hip arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.
Patterns and Sequences: Interactive Exploration of Clickstreams to Understand Common Visitor Paths.
Liu, Zhicheng; Wang, Yang; Dontcheva, Mira; Hoffman, Matthew; Walker, Seth; Wilson, Alan
2017-01-01
Modern web clickstream data consists of long, high-dimensional sequences of multivariate events, making it difficult to analyze. Following the overarching principle that the visual interface should provide information about the dataset at multiple levels of granularity and allow users to easily navigate across these levels, we identify four levels of granularity in clickstream analysis: patterns, segments, sequences and events. We present an analytic pipeline consisting of three stages: pattern mining, pattern pruning and coordinated exploration between patterns and sequences. Based on this approach, we discuss properties of maximal sequential patterns, propose methods to reduce the number of patterns and describe design considerations for visualizing the extracted sequential patterns and the corresponding raw sequences. We demonstrate the viability of our approach through an analysis scenario and discuss the strengths and limitations of the methods based on user feedback.
Kitzmann, J P; Karatzas, T; Mueller, K R; Avgoustiniatos, E S; Gruessner, A C; Balamurugan, A N; Bellin, M D; Hering, B J; Papas, K K
2014-01-01
Replacement of β-cells with the use of isolated islet allotransplantation (IT) is an emerging therapy for type 1 diabetics with hypoglycemia unawareness. The current standard protocol calls for a 36-72-hour culture period before IT. We examined 13 clinical islet preparations with ≥2 purity fractions to determine the effect of culture on viability. After standard islet isolation and purification, pure islet fractions were placed at 37°C with 5% CO2 for 12-24 hours and subsequently moved to 22°C, whereas less pure fractions were cultured at 22°C for the entire duration. Culture density was targeted at a range of 100-200 islet equivalents (IEQ)/cm(2) adjusted for purity. Islets were assessed for purity (dithizone staining), quantity (pellet volume and DNA), and viability (oxygen consumption rate normalized to DNA content [OCR/DNA] and membrane integrity). Results indicated that purity was overestimated, especially in less pure fractions. This was evidenced by significantly larger observed pellet sizes than expected and tissue amount as quantified with the use of a dsDNA assay when available. Less pure fractions showed significantly lower OCR/DNA and membrane integrity compared with pure. The difference in viability between the 2 purity fractions may be due to a variety of reasons, including hypoxia, nutrient deficiency, toxic metabolite accumulation, and/or proteolytic enzymes released by acinar tissue impurities that are not neutralized by human serum albumin in the culture media. Current clinical islet culture protocols should be examined further, especially for less pure fractions, to ensure the maintenance of viability before transplantation. Even though relatively small, the difference in viability is important because the amount of dead or dying tissue introduced into recipients may be dramatically increased, especially with less pure preparations. Copyright © 2014 Elsevier Inc. All rights reserved.
MO-F-CAMPUS-I-04: Magnetic Resonance Imaging of An in Vitro 3D Tumor Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veiga, C; Long, T; Siow, B
Purpose: To investigate the use of an in vitro 3D tumor model (tumoroid) as a bio-phantom for repetitive and sequential magnetic resonance imaging (MRI) studies. Methods: The tissue engineered tumoroid comprised an artificial cancer mass (ACM) containing 30 million HT29 cancer cells seeded in a collagen type I matrix, whose density was increased by plastic compression (dry/wet weight=40%). The ACM was embedded in an uncompressed collagen gel that mimicked the tumor stroma, and the tumoroid was incubated for 24h before imaging. Images were acquired using the 1T ICON™ (Bruker Corporation, Billerica, MA) MRI scanner. T1 maps were calculated using anmore » IR-RARE sequence (TE=12ms, TR=10000ms, 7 inversion times), while for T2 maps a MSME technique (TR=6000ms, 16 echoes) was used. T1 and T2 fittings were performed using a pixel-wise approach to produce relaxometric parametric maps. Results: The images acquired and corresponding T1 and T2 maps indicate contrast between the ACM and the stroma. T1 was 2500 and 2800ms, while T2 was 520 and 760ms, for the ACM and stroma respectively. The ACM construct was not homogenous and internal features were visible, which can be explained by local gradients of cell and/or collagen density. The viability of the cells was confirmed via confocal microscopy for several days after the imaging session, demonstrating the suitability of the tumoroid for sequential imaging studies. Conclusions: We have engineered a tumor model compatible with repetitive and sequential MRI. We found T1 and T2 contrast between the ACM and stroma using a pre-clinical MRI scanner. The model, which enables controllable cell and matrix densities, has potential for a wide range of applications in radiotherapy, such as to study tumor progression and to validate imaging biomarkers. Further work is necessary to understand the mechanisms behind the contrast achieved, and to correlate findings with biology and histology data.« less
Thermomechanical analysis of freezing-induced cell-fluid-matrix interactions in engineered tissues
Han, Bumsoo; Teo, Ka Yaw; Ghosh, Soham; Dutton, J. Craig; Grinnell, Frederick
2012-01-01
Successful cryopreservation of functional engineered tissues (ETs) is significant to tissue engineering and regenerative medicine, but it is extremely challenging to develop a successful protocol because the effects of cryopreservation parameters on the post-thaw functionality of ETs are not well understood. Particularly, the effects on the microstructure of their extracellular matrix (ECM) have not been well studied, which determines many functional properties of the ETs. In this study, we investigated the effects of two key cryopreservation parameters – i) freezing temperature and corresponding cooling rate; and ii) the concentration of cryoprotective agent (CPA) on the ECM microstructure as well as the cellular viability. Using dermal equivalent as a model ET and DMSO as a model CPA, freezing-induced spatiotemporal deformation and post-thaw ECM microstructure of ETs was characterized while varying the freezing temperature and DMSO concentrations. The spatial distribution of cellular viability and the cellular actin cytoskeleton was also examined. The results showed that the tissue dilatation increased significantly with reduced freezing temperature (i.e., rapid freezing). A maximum limit of tissue deformation was observed for preservation of ECM microstructure, cell viability and cell-matrix adhesion. The dilatation decreased with the use of DMSO, and a freezing temperature dependent threshold concentration of DMSO was observed. The threshold DMSO concentration increased with lowering freezing temperature. In addition, an analysis was performed to delineate thermodynamic and mechanical components of freezing-induced tissue deformation. The results are discussed to establish a mechanistic understanding of freezing-induced cell-fluid-matrix interaction and phase change behavior within ETs in order to improve cryopreservation of ETs. PMID:23246556
Effects of cold atmospheric plasma on mucosal tissue culture
NASA Astrophysics Data System (ADS)
Welz, Christian; Becker, Sven; Li, Yang-Fang; Shimizu, Tetsuji; Jeon, Jin; Schwenk-Zieger, Sabina; Thomas, Hubertus M.; Isbary, Georg; Morfill, Gregor E.; Harréus, Ulrich; Zimmermann, Julia L.
2013-01-01
Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level. To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s p < 0.05), but only a treatment time of 120 s showed a cytotoxic effect as the viability dropped below 90%. Annexin-V/PI staining revealed a significant increase in necrosis in CAP treated pharyngeal tissue cultures for treatment times of 60 and 120 s (p < 0.05). For nasal tissue this effect was already detected for a 30 s treatment (p < 0.05). Comet assay analysis showed no mutagenic effects after exposure to CAP.
Herraiz, Sonia; Novella-Maestre, Edurne; Rodríguez, Beatriz; Díaz, César; Sánchez-Serrano, María; Mirabet, Vicente; Pellicer, Antonio
2014-03-01
To compare slow freezing (SF) with four vitrification techniques (VT) for cryopreservation of ovarian tissue (OT) and to evaluate the best protocol for human OT in a xenograft model. Experimental study. University hospital. Patients undergoing fertility preservation. Ovariectomized nude mice. Cryopreservation of bovine OT after SF and four VTs (VT1, VT2, VT3, and VT4) by combining two cryoprotectant vitrification solutions (VS1 and VS2) and two devices (metallic grid and ethyl vinyl acetate bag), after which the cryopreservation of human OT by SF and VT1 and xenograft into nude mice. Follicular densities, proliferation, vascularization, fibrosis, apoptosis, tissue viability. The in vitro study in bovine OT showed a lower percentage of quiescent follicles in the SF group but not in the vitrification groups (VT1-VT4). Apoptosis increased and cell proliferation decreased in all the experimental groups except VT1 (20% ethylene glycol, 20% dimethyl sulfoxide, 0.5 M sucrose, and 20% synthetic serum substitute in HEPES-buffered M199 culture media with Cryotissue metallic grids). Tissue viability was diminished in VT3, and the SF-xenografted human samples showed reduced primordial and secondary densities and unbalanced follicular populations when compared with fresh and VT1 tissue. VT1 offers similar conditions to fresh tissue for follicular density, proliferation, viability, and cell death and preserves a larger population of quiescent follicles than SF after transplantation, thus ensuring the maintenance of graft potential fertility. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Wright, Bernice; Cave, Richard A; Cook, Joseph P; Khutoryanskiy, Vitaliy V; Mi, Shengli; Chen, Bo; Leyland, Martin; Connon, Che J
2012-05-01
Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.
Precision-cut tissue chips as an in vitro toxicology system
Catania, J. M.; Pershing, A. M.; Gandolfi, A. J.
2007-01-01
Precision-cut tissue slices mimic specific organ toxicity because normal cellular heterogeneity and organ architecture are retained. To optimize the use of the smaller tissues of the mouse and to establish easy assays for tissue viability, a tissue chip based system was used to generate large numbers of samples from a single organ. Iodoacetamide (IAM), was used as a model toxicant, and assays for intracellular potassium (normalized to DNA content) were used to establish viability and toxicant susceptibility. Thereafter, assays that were more rapid and specific were pursued. Lysates from tissues incubated in 6-carboxyfluorescein fluoresced proportionately to concentrations of IAM, indicating disruption of cellular membranes. Similarly, FURA-2, a probe applied to lysates to measure calcium levels, fluoresced proportionately to IAM dosage. Monobromobimane, a fluorescent sulfhydryl probe, displayed a decrease in fluorescent intensity at higher IAM challenge; a finding confirmed with an absorbance assay with Ellman’s reagent. Importantly, the number of samples per organ/mouse was increased at least 3-fold and a significant time reduction per analysis was realized. PMID:17376647
Effect of newborn bovine serum on cryopreservation of adult bovine testicular tissue.
Wu, J Y; Sun, Y X; Wang, A B; Che, G Y; Hu, T J; Zhang, X M
2014-04-01
Bovine serum is widely used for cryopreservation of various cells and tissues. However, its cryoprotective effects on the cells and tissues are ambiguous and controversial. To test the effects of newborn calf serum (NCS) on cryopreservation of bovine testis tissue, NCS of 0%, 5%, 10% and 20% (v/v) was added into minimum essential medium + 10% dimethyl sulphoxide (DMSO)-based medium according to our previous report. Interestingly, the testicular cell viabilities and spermatogonia percentages from four groups were very close. The results indicated that an increase in the concentration of NCS in freezing medium to 20% has no significant effect on survival of both testicular cells and spermatogonia, and 10% DMSO-based freezing medium can maintain the testicular cell viability and spermatogonia percentage at a relatively high level (83.4 ± 0.7 and 56.5 ± 2.2 respectively). Taken together, NCS is dispensable for cryopreservation of adult bovine testis tissue. Our results provide an evidence for cutting down the costs in cryopreservation research of bovine testis tissue by reducing or giving up the use of serum. © 2013 Blackwell Verlag GmbH.
Wistar rats immature testicular tissue vitrification and heterotopic grafting.
Benvenutti, Larissa; Salvador, Rafael Alonso; Til, David; Senn, Alfred Paul; Tames, David Rivero; Amaral, Nicole Louise Lângaro; Amaral, Vera Lúcia Lângaro
2018-04-25
To evaluate the efficiency of two vitrification protocols for rat immature testicular tissue and heterotopic transplantation. Twenty-four pre-pubertal Wistar rats were divided into three groups (n=8). After orchiectomy, testicular fragments (3mm) from Groups 1 and 2 were vitrified with different cryoprotectant concentration solutions, using sterile inoculation loops as support. After warming up, the fragments were submitted to cell viability assessment by Trypan blue and histological evaluation. Vitrified (Groups 1 and 2) and fresh (Group 3) fragments were grafted to the animals periauricular region. After 8 weeks of grafting, the implant site was histologically analyzed. The viability recovery rate from Group 1 (72.09%) was higher (p=0.02) than that from Group 2 (59.19%). Histological analysis showed similar tubular integrity between fresh fragments from Groups 1 and 3. Group 2 samples presented lower tubular integrity. We ran histological analyses in the grafts from the Groups. In all groups, it was possible to see the implant site, however, no fragment of testicular tissue or signs of inflammation were histologically found in most samples from Groups 1 and 3. In one sample from Group 2, we found degenerated seminiferous tubules with necrosis and signs of an inflammatory process. In another sample from Group 2, we found seminiferous tubules in the implant site. The vitrification of pre-pubertal testicular tissue of rats showed little damage to cell viability through histological analysis when we used cryoprotectants in a lower concentration. Heterotopic transplantation could not preserve the structural organization of the testicular tissue.
Li, Mengying; Feng, Cheng; Gu, Xiuge; He, Qin; Wei, Fulan
2017-04-17
Cryopreservation has been extensively applied to the long-term storage of a diverse range of biological materials. However, no comprehensive study is currently available on the cryopreservation of periodontal ligament stem cell (PDLSC) sheets which have been suggested as excellent transplant materials for periodontal tissue regeneration. The aim of this study is to investigate the effect of cryopreservation on the structural integrity and functional viability of PDLSC sheets. PDLSC sheets prepared from extracted human molars were divided into two groups: the cryopreservation group (cPDLSC sheets) and the freshly prepared control group (fPDLSC sheets). The cPDLSC sheets were cryopreserved in a solution consisting of 90% fetal bovine serum and 10% dimethyl sulfoxide for 3 months. Cell viability and cell proliferation rates of PDLSCs in both groups were evaluated by cell viability assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. The multilineage differentiation potentials of the cells were assessed by von Kossa staining and Oil Red O staining. The chromosomal stability was examined by karyotype analysis. Moreover, the cell sheets in each group were transplanted subcutaneously into the dorsal site of nude mice, after which Sirius Red staining was performed to analyze the efficiency of tissue regeneration. The PDLSCs derived from both groups of cell sheets showed no significant difference in their viability, proliferative capacities, and multilineage differentiation potentials, as well as chromosomal stability. Furthermore, transplantation experiments based on a mouse model demonstrated that the cPDLSC sheets were equally effective in generating viable osteoid tissues in vivo as their freshly prepared counterparts. In both cases, the regenerated tissues showed similar network patterns of bone-like matrix. Our results offer convincing evidence that cryopreservation does not alter the biological properties of PDLSC sheets and could enhance their clinical utility in tissue regeneration.
Cleland, Heather; Wasiak, Jason; Dobson, Hannah; Paul, Michelle; Pratt, George; Paul, Eldho; Herson, Marisa; Akbarzadeh, Shiva
2014-02-01
Cadaveric cutaneous allografts are used in burns surgery both as a temporary bio-dressing and occasionally as definitive management of partial thickness burns. Nonetheless, limitations in the understanding of the biology of these grafts have meant that their role in burns surgery continues to be controversial. A review of all patients suffering 20% or greater total body surface area (TBSA) burns over an eight year period that received cadaveric allografts were identified. To investigate whether tissue viability plays a role in engraftment success, five samples of cryopreserved cadaveric cutaneous allograft processed at the Donor Tissue Bank of Victoria (DTBV) were submitted to our laboratory for viability analysis using two methods of Trypan Blue Exclusion and tetrazolium salt (MTT) assays. During the study period, 36 patients received cadaveric allograft at our institution. The average total burn surface area (TBSA) for this group of patients was 40% and all patients received cadaveric skin as a temporizing measure prior to definitive grafting. Cadaveric allograft was used in complicated cases such as wound contamination, where synthetic dressings had failed. Viability tests showed fewer than 30% viability in processed allografts when compared to fresh skin following the thawing process. However, the skin structure in the frozen allografts was histologically well preserved. Cryopreserved cutaneous cadaveric allograft has a positive and definite role as an adjunct to conventional dressing and grafting where available, particularly in patients with large TBSA burns. The low viability of cryopreserved specimens processed at DTBV suggests that cell viability in cadaveric allograft may not be essential for its clinical function as a wound dressing or even as permanent dermal substitute. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Importance of Donor Chondrocyte Viability for Osteochondral Allografts.
Cook, James L; Stannard, James P; Stoker, Aaron M; Bozynski, Chantelle C; Kuroki, Keiichi; Cook, Cristi R; Pfeiffer, Ferris M
2016-05-01
Osteochondral allograft (OCA) transplantation provides a biological treatment option for functional restoration of large articular cartilage defects in multiple joints. While successful outcomes after OCA transplantation have been linked to viable donor chondrocytes, the importance of donor cell viability has not been comprehensively validated. To use a canine model to determine the importance of donor chondrocyte viability at the time of implantation with respect to functional success of femoral condylar OCAs based on radiographic, gross, cell viability, histologic, biochemical, and biomechanical outcome measures. Controlled laboratory study. After approval was obtained from the institutional animal care and use committee, adult female dogs (N = 16) were implanted with 8-mm cylindrical OCAs from male dogs in the lateral and medial femoral condyles of 1 knee. OCAs were preserved for 28 or 60 days after procurement, and chondrocyte viability was quantified before implantation. Two different storage media, temperatures, and time points were used to obtain a spectrum of percentage chondrocyte viability at the time of implantation. A successful outcome was defined as an OCA that was associated with graft integration, maintenance of hyaline cartilage, lack of associated cartilage disorder, and lack of fibrillation, fissuring, or fibrous tissue infiltration of the allograft based on subjective radiographic, gross, and histologic assessments at 6 months after implantation. Chondrocyte viability ranged from 23% to 99% at the time of implantation. All successful grafts had >70% chondrocyte viability at the time of implantation, and no graft with chondrocyte viability <70% was associated with a successful outcome. Live-dead stained sections and histologic findings with respect to cell morphological features suggested that successful grafts were consistently composed of viable chondrocytes in lacunae, while grafts that were not successful were composed of nonviable chondrocytes with infiltration of fibroblasts from the surrounding recipient tissues. In situ polymerase chain reaction (fluorescence in situ hybridization [FISH]) assays were performed in an attempt to distinguish donor (male) cells from recipient (female) cells. Unfortunately, this technique was exceptionally difficult to perform on intact articular cartilage sections, and consistent, repeatable data could not be obtained from this testing. However, the data did support histologic and live-dead data, which strongly suggested that successful grafts retained viable donor (male) chondrocytes and unsuccessful grafts degraded and were replaced by fibrous tissue populated with recipient (female) fibroblasts. Viable chondrocytes in OCAs at the time of transplantation are primarily responsible for maintenance of donor articular cartilage health in the long term. Optimizing chondrocyte viability in all aspects of OCA transplantation-including procurement, processing, storage, transportation, and surgical implantation-needs to be a primary focus for OCA clinical use. © 2016 The Author(s).
Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs.
Mekhileri, N V; Lim, K S; Brown, G C J; Mutreja, I; Schon, B S; Hooper, G J; Woodfield, T B F
2018-01-12
Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ± 5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was observed. Bioassembly of pre-differentiated micro-tissues as well as chondrocyte-laden hydrogel micro-spheres demonstrated the flexibility of the platform while supporting tissue fusion, long-term cell viability, and deposition of cartilage-specific extracellular matrix proteins. This technology provides an automated and scalable pathway for bioassembly of both simple and complex 3D tissue constructs of clinically relevant shape and size, with demonstrated capability to facilitate direct spatial organisation and hierarchical 3D assembly of micro-tissue modules, ranging from biomaterial free cell pellets to cell-laden hydrogel formulations.
Robert L. Heath; Allen S. Lefohn; Robert C. Musselman
2009-01-01
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 hat (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant...
Characterization of printable cellular micro-fluidic channels for tissue engineering.
Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T
2013-06-01
Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function.
Bio-electrospraying of human mesenchymal stem cells: An alternative for tissue engineering
Braghirolli, D. I.; Zamboni, F.; Chagastelles, P. C.; Moura, D. J.; Saffi, J.; Henriques, J. A. P.; Pilger, D. A.; Pranke, P.
2013-01-01
Bio-electrospraying (BES) is a technique used for the processing of cells and can be applied to tissue engineering. The association of BES with scaffold production techniques has been shown to be an interesting strategy for the production of biomaterials with cells homogeneously distributed in the entire structure. Various studies have evaluated the effects of BES on different cell types. However, until the present moment, no studies have evaluated the impact of BES time on mesenchymal stem cells (MSC). Therefore, the aim of this work was to standardise the different parameters of BES (voltage, flow rate, and distance of the needle from the collecting plate) in relation to cell viability and then to evaluate the impact of BES time in relation to viability, proliferation, DNA damage, maintenance of plasticity and the immunophenotypic profile of MSC. Using 15 kV voltage, 0.46 ml/h flow rate and 4 cm distance, it was possible to form a stable and continuous jet of BES without causing a significant reduction in cell viability. Time periods between 15 and 60 min of BES did not cause alterations of viability, proliferation, plasticity, and immunophenotypic profile of the MSC. Time periods above 30 min of BES resulted in DNA damage; however, the DNA was able to repair itself within five hours. These results indicate that bio-electrospraying is an adequate technique for processing MSC which can be safely applied to tissue engineering and regenerative medicine. PMID:24404063
Characterization of Printable Cellular Micro-fluidic Channels for Tissue Engineering
Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T.
2014-01-01
Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. PMID:23458889
Sun, Wei; Incitti, Tania; Migliaresi, Claudio; Quattrone, Alessandro; Casarosa, Simona; Motta, Antonella
2017-05-01
Three-dimensional (3D) porous scaffolds combined with therapeutic stem cells play vital roles in tissue engineering. The adult brain has very limited regeneration ability after injuries such as trauma and stroke. In this study, injectable 3D silk fibroin-based hydrogel scaffolds with encapsulated neural stem cells were developed, aiming at supporting brain regeneration. To improve the function of the hydrogel towards neural stem cells, silk fibroin was modified by an IKVAV peptide through covalent binding. Both unmodified and modified silk fibroin hydrogels were obtained, through sonication, with mechanical stiffness comparable to that of brain tissue. Human neural stem cells were encapsulated in both hydrogels and the effects of IKVAV peptide conjugation on cell viability and neural differentiation were assessed. The silk fibroin hydrogel modified by IKVAV peptide showed increased cell viability and an enhanced neuronal differentiation capability, which contributed to understanding the effects of IKVAV peptide on the behaviour of neural stem cells. For these reasons, IKVAV-modified silk fibroin is a promising material for brain tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Mammalian cell delivery via aerosol deposition.
Veazey, William S; Anusavice, Kenneth J; Moore, Karen
2005-02-15
The objective of this study was to test the hypothesis that bovine dermal fibroblasts can survive aerosol delivery via an airbrush with mean cell survival rates greater than 50%. This technology has great implications for burn and other wound therapies, for delivery of genetically altered cells in gene therapies, and for tissue engineering with tissue scaffolds. Bovine dermal fibroblasts were suspended at a concentration of 200,000 cells/mL in Hank's Balanced Salt Solution, and delivered into six-well tissue culture plates using a Badger 100G airbrush. Cells were delivered through three nozzle diameters (312, 484, and 746 microm) at five different air pressures (41, 55, 69, 96, and 124 kPa). Nine repetitions were performed for each treatment group, and cell viability was measured using trypan blue exclusion assay. Mean cell viability ranged from 37 to 94%, and depended on the combination of nozzle diameter and delivery pressure (p < 0.0001). Linear regression analysis was used to develop a stochastic model of cell delivery viability as a function of nozzle diameter and delivery air pressure. This study demonstrates the feasibility of using an airbrush to deliver viable cells in an aerosol to a substrate.
Fonseca-García, Abril; Mota-Morales, Josué D; Quintero-Ortega, Iraís A; García-Carvajal, Zaira Y; Martínez-López, V; Ruvalcaba, Erika; Landa-Solís, Carlos; Solis, Lilia; Ibarra, Clemente; Gutiérrez, María C; Terrones, Mauricio; Sanchez, Isaac C; del Monte, Francisco; Velasquillo, María C; Luna-Bárcenas, G
2014-10-01
This work describes the preparation and characterization of biomimetic chitosan/multiwall carbon nanotubes/nano-hydroxyapatite (CTS/MWCNT/nHAp) scaffolds and their viability for bone tissue engineering applications. The cryogenic process ice segregation-induced self-assembly (ISISA) was used to fabricate 3D biomimetic CTS scaffolds. Proper combination of cryogenics, freeze-drying, nature and molecular ratio of solutes give rise to 3D porous interconnected scaffolds with clusters of nHAp distributed along the scaffold surface. The effect of doping in CNT (e.g. with oxygen and nitrogen atoms) on cell viability was tested. Under the same processing conditions, pore size was in the range of 20-150 μm and irrespective on the type of CNT. Studies on cell viability with scaffolds were carried out using human cells from periosteum biopsy. Prior to cell seeding, the immunophenotype of mesenchymal periosteum or periosteum-derived stem cells (MSCs-PCs) was characterized by flow cytometric analysis using fluorescence-activated and characteristic cell surface markers for MSCs-PCs. The characterized MSCs-PCs maintained their periosteal potential in cell cultures until the 2nd passage from primary cell culture. Thus, the biomimetic CTS/MWCNT/nHAp scaffolds demonstrated good biocompatibility and cell viability in all cases such that it can be considered as promising biomaterials for bone tissue engineering. © 2013 Wiley Periodicals, Inc.
Einstein, Samuel A; Weegman, Bradley P; Kitzmann, Jennifer P; Papas, Klearchos K; Garwood, Michael
2017-05-01
Transplantation of macroencapsulated tissue-engineered grafts (TEGs) is being investigated as a treatment for type 1 diabetes, but there is a critical need to measure TEG viability both in vitro and in vivo. Oxygen deficiency is the most critical issue preventing widespread implementation of TEG transplantation and delivery of supplemental oxygen (DSO) has been shown to enhance TEG survival and function in vivo. In this study, we demonstrate the first use of oxygen-17 magnetic resonance spectroscopy ( 17 O-MRS) to measure the oxygen consumption rate (OCR) of TEGs and show that in addition to providing therapeutic benefits to TEGs, DSO with 17 O 2 can also enable measurements of TEG viability. Macroencapsulated TEGs containing βTC3 murine insulinoma cells were prepared with three fractional viabilities and provided with 17 O 2 . Cellular metabolism of 17 O 2 into nascent mitochondrial water (H 2 17 O) was monitored by 17 O-MRS and, from the measured data, OCR was calculated. For comparison, OCR was simultaneously measured on a separate, but equivalent sample of cells with a well-established stirred microchamber technique. OCR measured by 17 O-MRS agreed well with measurements made in the stirred microchamber device. These studies confirm that 17 O-MRS can quantify TEG viability noninvasively. Biotechnol. Bioeng. 2017;114: 1118-1121. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María Del Carmen; Alaminos, Miguel
2012-01-01
Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.
MacIsaac, Rachael L; Khatri, Pooja; Bendszus, Martin; Bracard, Serge; Broderick, Joseph; Campbell, Bruce; Ciccone, Alfonso; Dávalos, Antoni; Davis, Stephen M; Demchuk, Andrew; Diener, Hans-Christoph; Dippel, Diederik; Donnan, Geoffrey A; Fiehler, Jens; Fiorella, David; Goyal, Mayank; Hacke, Werner; Hill, Michael D; Jahan, Reza; Jauch, Edward; Jovin, Tudor; Kidwell, Chelsea S; Liebeskind, David; Majoie, Charles B; Martins, Sheila Cristina Ouriques; Mitchell, Peter; Mocco, J; Muir, Keith W; Nogueira, Raul; Saver, Jeffrey L; Schonewille, Wouter J; Siddiqui, Adnan H; Thomalla, Götz; Tomsick, Thomas A; Turk, Aquilla S; White, Philip; Zaidat, Osama; Lees, Kennedy R
2015-10-01
Endovascular treatment has been shown to restore blood flow effectively. Second-generation medical devices such as stent retrievers are now showing overwhelming efficacy in clinical trials, particularly in conjunction with intravenous recombinant tissue plasminogen activator. This statistical analysis plan utilizing a novel, sequential approach describes a prospective, individual patient data analysis of endovascular therapy in conjunction with intravenous recombinant tissue plasminogen activator agreed upon by the Thrombectomy and Tissue Plasminogen Activator Collaborative Group. This protocol will specify the primary outcome for efficacy, as 'favorable' outcome defined by the ordinal distribution of the modified Rankin Scale measured at three-months poststroke, but with modified Rankin Scales 5 and 6 collapsed into a single category. The primary analysis will aim to answer the questions: 'what is the treatment effect of endovascular therapy with intravenous recombinant tissue plasminogen activator compared to intravenous tissue plasminogen activator alone on full scale modified Rankin Scale at 3 months?' and 'to what extent do key patient characteristics influence the treatment effect of endovascular therapy?'. Key secondary outcomes include effect of endovascular therapy on death within 90 days; analyses of modified Rankin Scale using dichotomized methods; and effects of endovascular therapy on symptomatic intracranial hemorrhage. Several secondary analyses will be considered as well as expanding patient cohorts to intravenous recombinant tissue plasminogen activator-ineligible patients, should data allow. This collaborative meta-analysis of individual participant data from randomized trials of endovascular therapy vs. control in conjunction with intravenous thrombolysis will demonstrate the efficacy and generalizability of endovascular therapy with intravenous thrombolysis as a concomitant medication. © 2015 World Stroke Organization.
In situ monitoring of surgical flap viability using THz imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bajwa, Neha; Sung, Shijun; Grundfest, Warren; Taylor, Zachary
2016-03-01
This paper explores the utility of reflective THz imaging to assess the viability of surgical flaps. Flap surgery is a technique where tissue is harvested from a donor site and moved to a recipient while keeping the blood supply intact. This technique is common in head and neck tumor resection surgery where the reconstruction of complex and sensitive anatomic structures is routine following the resection of large and/or invasive tumors. Successful flap surgery results in tissue that is sufficiently perfused with both blood and extracellular water. If insufficient fluid levels are maintained, the flap tissue becomes necrotic and must be excised immediately to prevent infection developing and spreading to the surrounding areas. The goal of this work is to investigate the hydration of surgical flaps and correlate image features to successful graft outcomes. Advancement flaps were created on the abdomens of rat models. One rat model was labeled control and care was taken to ensure a successful flap outcome. The flap on the second rat was compromised with restricted blood flow and allowed to fail. The flaps of both rats were imaged once a day over the course of a week at which point the compromised flap had begun to show signs of necrosis. Significant differences in tissue water content were observed between rats over the experimental period. The results suggest that THz imaging may enable early assessment of flap viability.
Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira
2016-01-01
Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.
Feng, Xiuli; Zhang, Yan; Li, Tao; Li, Yu
2017-01-01
Combination of chemotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved to be a potent anti-drug for the treatment of tumors. However, survival time was not extended for the patients with lung adenocarcinoma (AdC) compared with first-line chemotherapy. In the present study, we attempt to assess the optimal schedule of the combined administration of pemetrexed and icotinib/erlotinib in AdC cell lines. Human lung AdC cell lines with wild-type (A549), EGFR T790M (H1975) and activating EGFR mutation (HCC827) were applied in vitro to assess the differential efficacy of various sequential regimens on cell viability, cell apoptosis and cell cycle distribution. The results suggested that the antiproliferative effect of the sequence of pemetrexed followed by icotinib/erlotinib was more effective than that of icotinib/erlotinib followed by pemetrexed. Additionally, a reduction of G1 phase and increased S phase in sequence of pemetrexed followed by icotinib/erlotinib was also observed, promoting cell apoptosis. Thus, the sequential administration of pemetrexed followed by icotinib/erlotinib exerted a synergistic effect on HCC827 and H1975 cell lines compared with the reverse sequence. The sequential treatment of pemetrexed followed by icotinib/erlotinib has been demonstrated promising results. This treatment strategy warrants further confirmation in patients with advanced lung AdC. PMID:29371987
Feng, Xiuli; Zhang, Yan; Li, Tao; Li, Yu
2017-12-26
Combination of chemotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved to be a potent anti-drug for the treatment of tumors. However, survival time was not extended for the patients with lung adenocarcinoma (AdC) compared with first-line chemotherapy. In the present study, we attempt to assess the optimal schedule of the combined administration of pemetrexed and icotinib/erlotinib in AdC cell lines. Human lung AdC cell lines with wild-type (A549), EGFR T790M (H1975) and activating EGFR mutation (HCC827) were applied in vitro to assess the differential efficacy of various sequential regimens on cell viability, cell apoptosis and cell cycle distribution. The results suggested that the antiproliferative effect of the sequence of pemetrexed followed by icotinib/erlotinib was more effective than that of icotinib/erlotinib followed by pemetrexed. Additionally, a reduction of G1 phase and increased S phase in sequence of pemetrexed followed by icotinib/erlotinib was also observed, promoting cell apoptosis. Thus, the sequential administration of pemetrexed followed by icotinib/erlotinib exerted a synergistic effect on HCC827 and H1975 cell lines compared with the reverse sequence. The sequential treatment of pemetrexed followed by icotinib/erlotinib has been demonstrated promising results. This treatment strategy warrants further confirmation in patients with advanced lung AdC.
Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter
2014-01-01
In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wijlemans, Joost W; de Greef, Martijn; Schubert, Gerald; Bartels, Lambertus W; Moonen, Chrit T W; van den Bosch, Maurice A A J; Ries, Mario
2015-01-01
Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) allows for noninvasive thermal ablation under real-time temperature imaging guidance. The purpose of this study was to assess the feasibility and safety of MR-HIFU ablation of liver tissue in a clinically acceptable setting. The experimental protocol was designed with a clinical ablation procedure of a small malignant tumor in mind; the procedures were performed within a clinically feasible time frame and care was taken to avoid adverse events. The main outcome was the size and quality of the ablated liver tissue volume on imaging and histology. Secondary outcomes were safety and treatment time. Healthy pigs (n = 10) under general anesthesia were positioned on a clinical MR-HIFU system, which consisted of an HIFU tabletop with a skin cooling system integrated into a 1.5-T MR scanner. A liver tissue volume was ablated with multiple sonication cells (4 × 4 × 10 mm, 450 W). Both MR thermometry and sonication were respiratory-gated using a pencil beam navigator on the diaphragm. Contrast-enhanced T1-weighted (CE-T1w) imaging was performed for treatment evaluation. Targeted total treatment time was 3 hours. The abdominal wall, liver, and adjacent organs were inspected postmortem for thermal damage. Ablated tissue volumes were processed for cell viability staining. The ablated volumes were analyzed using MR imaging, MR thermometry, and cell viability histology. Eleven volume ablations were performed in 10 animals, resulting in a median nonperfused volume (NPV) on CE-T1w imaging of 1.6 mL (interquartile range [IQR], 0.8-2.3; range, 0.7-3.0). Cell viability histology showed a damaged volume of 1.5 mL (IQR, 1.1-1.8; range, 0.7-2.3). The NPV was confluent in 10 of the 11 cases. The ablated tissue volume on cell viability histology was confluent in all 9 available cases. In all cases, there was a good correspondence between the aspects of the NPV on CE-T1w and the ablated volume on cell viability histology. Two treatment-related adverse events occurred: 1 animal had a 7-mm skin burn and 1 animal showed evidence of thermal damage on the surface of the spleen. Median ablation time was 108 minutes (IQR, 101-120; range, 96-181 minutes) and median total treatment time was 180 minutes (IQR, 165-224; 130-250 minutes). Our results demonstrate the feasibility and safety of MR-HIFU ablation of liver tissue volumes. The imaging data and cell viability histology show, for the first time, that confluent ablation volumes can be achieved with motion-gated ablation and MR guidance. These results were obtained using a readily available MR-HIFU system with only minor modifications, within a clinically acceptable time frame, and with only minor adverse events. This shows that this technique is sufficiently reliable and safe to initiate a clinical trial.
Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue
Morley, John W.; Tapson, Jonathan; Breen, Paul P.; van Schaik, André
2016-01-01
Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45–150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6–8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals. PMID:27183102
Is oxygen availability a limiting factor for in vitro folliculogenesis?
Sudhakaran, Sam; Barbato, Vincenza; Merolla, Anna; Braun, Sabrina; Di Nardo, Maddalena; Costanzo, Valentina; Ferraro, Raffaele; Iannantuoni, Nicola
2018-01-01
Transplantation of ovarian tissue for the preservation of fertility in oncological patients is becoming an accepted clinical practice. However, the risk of re-introducing tumour cells at transplantation has stirred an increased interest for complete in vitro folliculogenesis. This has not yet been achieved in humans possibly for the lack of knowledge on the environmental milieu that orchestrates folliculogenesis in vivo. The main aim of this study was to investigate the effect of oxygen availability on follicle health and growth during in vitro culture of ovarian tissue strips. To this end, a model was developed to predict the dissolved oxygen concentration in tissue under varying culture conditions. Ovarian cortical strips of bovine, adopted as an animal model, and human tissue were cultured in conventional (CD) and gas permeable (PD) dishes under different media column heights and gaseous oxygen tensions for 3, 6 and 9 days. Follicle quality, activation of primordial follicles to the primary stage, and progression to the secondary stage were analysed through histology. Follicle viability was assessed through a live-dead assay at the confocal scanning laser microscope. Findings showed a higher follicle quality and viability after culture of bovine ovarian strips in PD in adequate medium height and oxygen tensions. The best culture conditions found in the bovine were adopted for human ovarian strip culture and promoted a higher follicle quality, viability and progression. Overall, data demonstrated that modulation of oxygen availability in tissue plays a key role in maintaining follicles’ health and their ability to survive and progress to the secondary stage during ovarian tissue in vitro culture. Such culture conditions could increase the yield of healthy secondary follicles for subsequent dissection and individual culture to obtain competent oocytes. PMID:29425251
Development of an in vitro alternative assay method for vaginal irritation.
Ayehunie, Seyoum; Cannon, Chris; Larosa, Karen; Pudney, Jeffrey; Anderson, Deborah J; Klausner, Mitchell
2011-01-11
The vaginal mucosa is commonly exposed to chemicals and therapeutic agents that may result in irritation and/or inflammation. In addition to acute effects, vaginal irritation and inflammation can make women more susceptible to infections such as HIV-1 and herpes simplex virus 2 (HSV-2). Hence, the vaginal irritation potential of feminine care formulations and vaginally administered therapeutic agents is a significant public health concern. Traditionally, testing of such materials has been performed using the rabbit vaginal irritation (RVI) assay. In the current study, we investigated whether the organotypic, highly differentiated EpiVaginal™ tissue could be used as a non-animal alternative to the RVI test. The EpiVaginal tissue was exposed to a single application of ingredients commonly found in feminine hygiene products and the effects on tissue viability (MTT assay), barrier disruption (measured by transepithelial electrical resistance, TEER and sodium fluorescein (NaFl) leakage), and inflammatory cytokine release (interleukin (IL)-1α, IL-1β, IL-6, and IL-8) patterns were examined. When compared to untreated controls, two irritating ingredients, nonoxynol 9 and benzalkonium chloride, reduced tissue viability to <40% and TEER to <60% while increasing NaFl leakage by 11-24% and IL-1α and IL-1β release by >100%. Four other non-irritating materials had minimal effects on these parameters. Assay reproducibility was confirmed by testing the chemicals using three different tissue production lots and by using tissues reconstructed from cells obtained from three different donors. Coefficients of variation between tissue lots reconstructed with cells obtained from the same donor or lots reconstructed with cells obtained from different donors were less than 10% and 12%, respectively. In conclusion, decreases in tissue viability and barrier function and increases in IL-1α and IL-1β release appear to be useful endpoints for preclinical screening of topically applied chemicals and formulations for their vaginal irritation potential. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.
Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet
2015-07-03
Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.
A practical model for economic evaluation of tissue-engineered therapies.
Tan, Tien-En; Peh, Gary S L; Finkelstein, Eric A; Mehta, Jodhbir S
2015-01-01
Tissue-engineered therapies are being developed across virtually all fields of medicine. Some of these therapies are already in clinical use, while others are still in clinical trials or the experimental phase. Most initial studies in the evaluation of new therapies focus on demonstration of clinical efficacy. However, cost considerations or economic viability are just as important. Many tissue-engineered therapies have failed to be impactful because of shortcomings in economic competitiveness, rather than clinical efficacy. Furthermore, such economic viability studies should be performed early in the process of development, before significant investment has been made. Cost-minimization analysis combined with sensitivity analysis is a useful model for the economic evaluation of new tissue-engineered therapies. The analysis can be performed early in the development process, and can provide valuable information to guide further investment and research. The utility of the model is illustrated with the practical real-world example of tissue-engineered constructs for corneal endothelial transplantation. The authors have declared no conflicts of interest for this article. © 2015 Wiley Periodicals, Inc.
Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions
Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji
2016-01-01
Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation. PMID:27966584
Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.
Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji
2016-12-14
Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.
NASA Astrophysics Data System (ADS)
St-Georges-Robillard, A.; Masse, M.; Kendall-Dupont, J.; Strupler, M.; Patra, B.; Jermyn, M.; Mes-Masson, A.-M.; Leblond, F.; Gervais, T.
2016-02-01
There is a growing effort in the biomicrosystems community to develop a personalized treatment response assay for cancer patients using primary cells, patient-derived spheroids, or live tissues on-chip. Recently, our group has developed a technique to cut tumors in 350 μm diameter microtissues and keep them alive on-chip, enabling multiplexed in vitro drug assays on primary tumor tissue. Two-photon microscopy, confocal microscopy and flow cytometry are the current standard to assay tissue chemosensitivity on-chip. While these techniques provide microscopic and molecular information, they are not adapted for high-throughput analysis of microtissues. We present a spectroscopic imaging system that allows rapid quantitative measurements of multiple fluorescent viability markers simultaneously by using a liquid crystal tunable filter to record fluorescence and transmittance spectra. As a proof of concept, 24 spheroids composed of ovarian cancer cell line OV90 were formed in a microfluidic chip, stained with two live cell markers (CellTrackerTM Green and Orange), and imaged. Fluorescence images acquired were normalized to the acquisition time and gain of the camera, dark noise was removed, spectral calibration was applied, and spatial uniformity was corrected. Spectral un-mixing was applied to separate each fluorophore's contribution. We have demonstrated that rapid and simultaneous viability measurements on multiple spheroids can be achieved, which will have a significant impact on the prediction of a tumor's response to multiple treatment options. This technique may be applied as well in drug discovery to assess the potential of a drug candidate directly on human primary tissue.
Assessment of eye bank-prepared posterior lamellar corneal tissue for endothelial keratoplasty.
Rose, Linda; Briceño, César A; Stark, Walter J; Gloria, Dante G; Jun, Albert S
2008-02-01
To evaluate eye bank-prepared tissue for Descemet's stripping automated endothelial keratoplasty (DSAEK). Experimental study and retrospective case series. Seventeen human donor corneas and 4 recipient patients undergoing DSAEK surgery. Corneal-scleral discs were obtained. Specular microscopy and pachymetry were performed. A designated Tissue Banks International technician used a microkeratome to prepare a flap. Posterior bed thickness was measured. The sectioned tissue was stored, and at 24 and 48 hours, pachymetry was repeated. At 48 hours, specular microscopy was repeated, and endothelial cell viability was assessed with trypan blue. Descemet's stripping automated endothelial keratoplasty was performed in 4 patients using eye bank-prepared posterior lamellar tissue. Corneal tissue was assessed with the following parameters: corneal thickness measured with ultrasonic pachymetry, cell density counts measured with a keratoanalyzer, and cell viability as observed with trypan blue exclusion. Patient outcomes were measured by changes in visual acuity (VA) and the presence of a clear graft. Donor corneal pachymetry before sectioning averaged 599+/-52 microm. Immediately after sectioning with a microkeratome set at a depth of 300 microm, mean posterior bed thickness was 328+/-95 microm. Thus, the mean cutting depth achieved by the microkeratome when set at 300 micrometers averaged 271+/-83 microm. After storage for 24 hours, the posterior beds measured 352 microm, an average swelling of 24 (7%) microm (P = 0.14). After 48 hours, the posterior beds measured 382 microm, an average swelling of 54 (16%) microm (P = 0.02). Cell counts 48 hours after sectioning decreased by an average of 11% (P = 0.10). Endothelial cell staining confirmed improvement in postsectioning morphology and survival with increased technician experience. All 4 patients receiving eye bank-prepared DSAEK tissue showed uncomplicated postoperative results, with improvement in VA. The microkeratome cutting depth was moderately accurate. Pachymetry, cell density, and cell viability of sectioned tissue after 48 hours in storage were encouraging overall. Initial clinical results of eye bank-prepared DSAEK tissue showed uncomplicated postoperative courses and improved VA. Additional studies are needed to follow the long-term outcomes in the recipients of these tissues.
NASA Astrophysics Data System (ADS)
Zemp, Roger J.; Paproski, Robert J.
2017-03-01
For emerging tissue-engineering applications, transplants, and cell-based therapies it is important to assess cell viability and function in vivo in deep tissues. Bioluminescence and fluorescence methods are poorly suited to deep monitoring applications with high resolution and require genetically-engineered reporters which are not always feasible. We report on a method for imaging cell viability using deep, high-resolution photoacoustic imaging. We use an exogenous dye, Resazurin, itself weakly fluorescent until it is reduced from blue to a pink color with bright red fluorescence. Upon cell death fluorescence is lost and an absorption shift is observed. The irreversible reaction of resazurin to resorufin is proportional to aerobic respiration. We detect colorimetric absorption shifts using multispectral photoacoustic imaging and quantify the fraction of viable cells. SKOV-3 cells with and without ±80oC heat treatment were imaged after Resazurin treatment. High 575nm:620nm ratiometric absorption and photoacoustic signals in viable cells were observed with a much lower ratio in low-viability populations.
A controlled double-duration inducible gene expression system for cartilage tissue engineering.
Ma, Ying; Li, Junxiang; Yao, Yi; Wei, Daixu; Wang, Rui; Wu, Qiong
2016-05-25
Cartilage engineering that combines competent seeding cells and a compatible scaffold is increasingly gaining popularity and is potentially useful for the treatment of various bone and cartilage diseases. Intensive efforts have been made by researchers to improve the viability and functionality of seeding cells of engineered constructs that are implanted into damaged cartilage. Here, we designed an integrative system combining gene engineering and the controlled-release concept to solve the problems of both seeding cell viability and functionality through precisely regulating the anti-apoptotic gene bcl-2 in the short-term and the chondrogenic master regulator Sox9 in the long-term. Both in vitro and in vivo experiments demonstrated that our system enhances the cell viability and chondrogenic effects of the engineered scaffold after introduction of the system while restricting anti-apoptotic gene expression to only the early stage, thereby preventing potential oncogenic and overdose effects. Our system was designed to be modular and can also be readily adapted to other tissue engineering applications with minor modification.
Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile
Wang, Huaishan; Yang, Jia; Yang, Qi; Fu, Yi; Hu, Yu; Liu, Fang; Wang, Weiqing; Cui, Lianxian; Chen, Hui; Zhang, Jianmin; He, Wei
2016-01-01
Translocator Protein (18kDa, TSPO) is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO) mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het) x Het or KO x KO breeding were consistent with Mendel’s Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj’s findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis. PMID:27907096
Tomlinson, David R; Becher, Harald; Selvanayagam, Joseph B
2008-06-01
Detecting viable myocardium, whether hibernating or stunned, is of clinical significance in patients with coronary artery disease and left ventricular dysfunction. Echocardiographic assessments of myocardial thickening and endocardial excursion during dobutamine infusion provide a highly specific marker for myocardial viability, but with relatively less sensitivity. The additional modalities of myocardial contrast echocardiography and tissue Doppler have recently been proposed to provide further, quantitative measures of myocardial viability assessment. Cardiac magnetic resonance (CMR) has become popular for the assessment of myocardial viability as it can assess cardiac function, volumes, myocardial scar, and perfusion with high-spatial resolution. Both 'delayed enhancement' CMR and dobutamine stress CMR have important roles in the assessment of patients with ischaemic cardiomyopathy. This article reviews the recent advances in both echocardiography and CMR for the clinical assessment of myocardial viability. It attempts to provide a pragmatic approach toward the patient-specific assessment of this important clinical problem.
Sequential pattern formation governed by signaling gradients
NASA Astrophysics Data System (ADS)
Jörg, David J.; Oates, Andrew C.; Jülicher, Frank
2016-10-01
Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.
Bhogal, Maninder; Lwin, Chan N.; Seah, Xin-Yi; Murugan, Elavazhagan; Adnan, Khadijah; Lin, Shu-Jun; Mehta, Jodhbir S.
2017-01-01
Purpose To establish a method for assessing graft viability, in-vivo, following corneal transplantation. Methods Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model. Global, macroscopic images of the entire graft and individual cell resolution could be attained by altering the magnification of a clinical confocal scanning laser microscope. Patterns of cell loss observed in situ were compared to those seen using standard ex-vivo techniques. Results Calcein AM showed a positive dose-fluorescence relationship. A dose of 2.67μmol was sufficient to allow clear discrimination between viable and non-viable areas (sensitivity of 96.6% with a specificity of 96.1%) and was not toxic to cultured endothelial cells or ex-vivo corneal tissue. Patterns of cell loss seen in-situ closely matched those seen on ex-vivo assessment with fluorescence viability imaging, trypan blue/alizarin red staining or scanning electron microscopy. Iatrogenic graft damage from preparation and insertion varied between 7–35% and incarceration of the graft tissue within surgical wounds was identified as a significant cause of endothelial damage. Conclusions In-situ graft viability assessment using clinical imaging devices provides comparable information to ex-vivo methods. This method shows high sensitivity and specificity, is non-toxic and can be used to evaluate immediate cell viability in new grafting techniques in-vivo. PMID:28977017
Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs
Bertassoni, Luiz E.; Cecconi, Martina; Manoharan, Vijayan; Nikkhah, Mehdi; Hjortnaes, Jesper; Cristino, Ana Luiza; Barabaschi, Giada; Demarchi, Danilo; Dokmeci, Mehmet R.; Yang, Yunzhi; Khademhosseini, Ali
2014-01-01
Vascularization remains a critical challenge in tissue engineering. The development of vascular networks within densely populated and metabolically functional tissues facilitate transport of nutrients and removal of waste products, thus preserving cellular viability over a long period of time. Despite tremendous progress in fabricating complex tissue constructs in the past few years, approaches for controlled vascularization within hydrogel based engineered tissue constructs have remained limited. Here, we report a three dimensional (3D) micromolding technique utilizing bioprinted agarose template fibers to fabricate microchannel networks with various architectural features within photo cross linkable hydrogel constructs. Using the proposed approach, we were able to successfully embed functional and perfusable microchannels inside methacrylated gelatin (GelMA), star poly (ethylene glycol-co-lactide) acrylate (SPELA), poly (ethylene glycol) dimethacrylate (PEGDMA) and poly (ethylene glycol) diacrylate (PEGDA) hydrogels at different concentrations. In particular, GelMA hydrogels were used as a model to demonstrate the functionality of the fabricated vascular networks in improving mass transport, cellular viability and differentiation within the cell-laden tissue constructs. In addition, successful formation of endothelial monolayers within the fabricated channels was confirmed. Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip. PMID:24860845
NASA Astrophysics Data System (ADS)
Lee, Han Sang; Kim, Hyeun A.; Kim, Hyeonjin; Hong, Helen; Yoon, Young Cheol; Kim, Junmo
2016-03-01
In spite of its clinical importance in diagnosis of osteoarthritis, segmentation of cartilage in knee MRI remains a challenging task due to its shape variability and low contrast with surrounding soft tissues and synovial fluid. In this paper, we propose a multi-atlas segmentation of cartilage in knee MRI with sequential atlas registrations and locallyweighted voting (LWV). First, bone is segmented by sequential volume- and object-based registrations and LWV. Second, to overcome the shape variability of cartilage, cartilage is segmented by bone-mask-based registration and LWV. In experiments, the proposed method improved the bone segmentation by reducing misclassified bone region, and enhanced the cartilage segmentation by preventing cartilage leakage into surrounding similar intensity region, with the help of sequential registrations and LWV.
Fan, Tingbo; Liu, Zhenbo; Zhang, Dong; Tang, Mengxing
2013-03-01
Lesion formation and temperature distribution induced by high-intensity focused ultrasound (HIFU) were investigated both numerically and experimentally via two energy-delivering strategies, i.e., sequential discrete and continuous scanning modes. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and bioheat equation. Measurements were performed on tissue-mimicking phantoms sonicated by a 1.12-MHz single-element focused transducer working at an acoustic power of 75 W. Both the simulated and experimental results show that, in the sequential discrete mode, obvious saw-tooth-like contours could be observed for the peak temperature distribution and the lesion boundaries, with the increasing interval space between two adjacent exposure points. In the continuous scanning mode, more uniform peak temperature distributions and lesion boundaries would be produced, and the peak temperature values would decrease significantly with the increasing scanning speed. In addition, compared to the sequential discrete mode, the continuous scanning mode could achieve higher treatment efficiency (lesion area generated per second) with a lower peak temperature. The present studies suggest that the peak temperature and tissue lesion resulting from the HIFU exposure could be controlled by adjusting the transducer scanning speed, which is important for improving the HIFU treatment efficiency.
Storage effect on viability and biofunctionality of human adipose tissue-derived stromal cells.
Falah, Mizied; Rayan, Anwar; Srouji, Samer
2015-09-01
In our recent studies, the transplantation of human adipose tissue-derived stromal cells (ASCs) has shown promise for treatment of diseases related to bone and joint disorders. For the current clinical applications, ASCs were formulated and suspended in PlasmaLyte A supplemented with heparin, glucose and human serum albumin, balanced to pH 7.4 with sodium bicarbonate. This cell solution constitutes 20% of the overall transplanted mixture and is supplemented with hyaluronic acid (60%) and OraGraft particles (20%). We intended to investigate the effect of this transplantation mixture on the viability and biofunctionality of ASCs in bone formation. Freshly harvested cells were resuspended and incubated in the indicated mixture for up to 48 h at 4°C. Cell viability was assessed using trypan blue and AlamarBlue, and cell functionality was determined by quantifying their adhesion rate in vitro and bone formation in an ectopic mouse model. More than 80% of the ASCs stored in the transplantation mixture were viable for up to 24 h. Cell viability beyond 24 h in storage decreased to approximately 50%. In addition, an equal degree of bone formation was observed between the cells transplanted following incubation in transplantation mixture for up to 24 h and zero-time non-incubated cells (control). The viability and functionality of ASCs stored in the presented formulation will make such cell therapy accessible to larger and more remote populations. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Lee, GeonHui; Jun, Yesl; Jang, HeeYeong; Yoon, Junghyo; Lee, JaeSeo; Hong, MinHyung; Chung, Seok; Kim, Dong-Hwee; Lee, SangHoon
2018-01-01
Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo-mimicking customised 3-D tissue culture systems. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chai, C Y; Sadou, O; Worsley, P R; Bader, D L
2017-08-01
Prolonged mechanical loading can lead to the breakdown of skin and underlying tissues which can, in turn, develop into a pressure ulcer. The benefits of pressure relief and/or redistribution to minimise risk have been well documented. Manufacturers have developed alternating air pressure mattresses (APAMs) to provide periodic relief for individuals on prolonged bed-rest. The present study describes the development of a control system, termed Pneumatic Manager which can vary the signature of an APAM, namely its pressure amplitude, cell profile and cycle period. An experimental array was designed to investigate the effects of varying these parameters, particularly with respect to its ability to maintain skin viability in a group of five healthy volunteers lying in a supine position. Transcutaneous gas (T c PO 2 /T c PCO 2 ) tensions at the sacrum were monitored. In addition, pressures and microclimate parameters at the loaded support interface were also measured. In the majority of test conditions the alternating support produced sacral T c PO 2 values, which either remained relatively high or fluctuated in concert with cycle period providing adequate viability. However, in 46% of cases at the extreme pressure amplitude of 100/0 mmHg, there was compromise to the skin viability at the sacrum, as reflected in depressed T c PO 2 levels associated with an elevation of T c PCO 2 levels above the normal range. In all cases, both the humidity and temperature levels increased during the test period. It is interesting to note that interface pressures at the sacrum rarely exceeded 60 mmHg. Although such studies need to be extended to involve bed-bound individuals, the results provide a design template for the optimum pressure signatures of APAM systems to ensure maintenance of skin viability during pronged loading. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Romo-Uribe, Angel; Meneses-Acosta, Angelica; Domínguez-Díaz, Maraolina
2017-12-01
Sterilization, cytotoxicity and cell viability are essential properties defining a material for medical applications and these characteristics were investigated for poly(β-hydroxybutyrate) (PHB) of 230kDa obtained by bacterial synthesis from a mutant strain of Azotobacter vinelandii. Cell viability was investigated for two types of PHB scaffolds, solution cast films and non-woven electrospun fibrous membranes, and the efficiency was compared against a culture dish. The biosynthesized PHB was sterilized by ultraviolet radiation and autoclave, it was found that the thermal properties and intrinsic viscosity remained unchanged indicating that the sterilization methods did not degrade the polymer. Sterilized scaffolds were then seeded with human embryonic kidney 293 (HEK 293) cells to evaluate the cytotoxic response. The cell viability of these cells was evaluated for up to six days, and the results showed that the cell morphology was normal, with no cytotoxic effects. The films and electrospun membranes exhibited over 95% cell viability whereas the viability in culture dishes reached only ca. 90%. The electrospun membrane, however, exhibited significantly higher cell density than the cast film suggesting that the fibrous morphology enables better nutrients transfer. The results indicate that the biosynthesized PHB stands UV and autoclave sterilization methods, it is biocompatible and non-toxic for cell growth of human cell lines. Furthermore, cell culture for up to 18 days showed that 62% and 90% of mass was lost for the film and fibrous electrospun scaffold, respectively. This is a favorable outcome for use in tissue engineering where material degradation, as tissue regenerates, is desirable. Copyright © 2017 Elsevier B.V. All rights reserved.
Hosgood, Sarah A; Shah, K; Patel, M; Nicholson, M L
2015-06-30
Donation after circulatory death (DCD) kidney transplants inevitably sustain a degree of warm ischaemic injury, which is manifested clinically as delayed graft function. The aim of this study was to define the effects of prolonged periods of warm ischaemic injury on renal function in a normothermic haemoperfused kidney model. Porcine kidneys were subjected to 15, 60, 90 (n = 6 per group) and 120 min (n = 4) of in situ warm ischaemia (WI) and then retrieved, flushed with cold preservation fluid and stored in ice for 2 h. Kidneys then underwent 3 h of normothermic reperfusion with a whole blood-based perfusate using an ex vivo circuit developed from clinical grade cardiopulmonary bypass technology. Creatinine clearance, urine output and fractional excretion of sodium deteriorated sequentially with increasing warm time. Renal function was severely compromised after 90 or 120 min of WI but haemodynamic, metabolic and histological parameters demonstrated the viability of kidneys subjected to prolonged warm ischaemia. Isolated kidney perfusion using a warm, oxygenated, red cell-based perfusate allows an accurate ex vivo assessment of the potential for recovery from warm ischaemic injury. Prolonged renal warm ischaemic injury caused a severe decrement in renal function but was not associated with tissue necrosis.
Fichter, Andreas M; Ritschl, Lucas M; Robitzky, Luisa K; Wagenpfeil, Stefan; Mitchell, David A; Wolff, Klaus-Dietrich; Mücke, Thomas
2016-10-21
The effects of antithrombotic drugs on random and free flap survival have been investigated in the past, but the experimental and clinical results are not in agreement. A perforator-based critical ischaemia model was used to evaluate the effects of different perioperatively administered pharmaceutical agents on tissue ischaemia and to assess the potential additional haemorheological or vasodilative effects of antithrombotics on flap microcirculation. Combined laser Doppler flowmetry and remission spectroscopy revealed an increase in certain microcirculation parameters in most groups in comparison with saline controls, and these changes correlated with flap survival. Clopidogrel and hirudin significantly improved the amount of viable flap tissue in comparison with controls, while unfractioned heparin had a negative effect on flap survival. Low molecular weight heparin, aspirin, pentoxifylline, and hydroxyethyl starch had no impact on the amount of viable flap tissue. A higher complication rate was observed in all experimental groups, but only clopidogrel had a negative impact on the flap viability. Our results add to the body of evidence supporting the conclusion that perioperative antithrombotic treatment improves flap survival. Clopidogrel and hirudin are effective pharmacological agents that significantly increased the viability of perforator-based skin flaps in rats, but at a higher risk of postoperative bleeding.
Use of novel chitosan hydrogels for chemical tissue bonding of autologous chondral transplants.
Gittens, Jamila; Haleem, Amgad M; Grenier, Stephanie; Smyth, Niall A; Hannon, Charles P; Ross, Keir A; Torzilli, Peter A; Kennedy, John G
2016-07-01
The objective of this study was to evaluate the effect of chemical tissue bonding (CTB) on adhesion strength, fluid permeability, and cell viability across a cartilaginous graft-host interface in an in vitro autologous chondral transplant (ACT) model. Chitosan-based cross-linkers; Chitosan-Rose Bengal [Chi-RB (Ch-ABC)], Chitosan-Genipin [Chi-GP (Ch-ABC)], and Chitosan-Rose Bengal-Genipin [Chi-RB-GP (Ch-ABC)] were applied to bovine immature cartilage explants after pre-treatment with surface degrading enzyme, Chondroitinase-ABC (Ch-ABC). Adhesion strength, fluid permeability and cell viability were assessed via mechanical push-out shear testing, fluid transport and live/dead cell staining, respectively. All three chitosan-based cross-linkers significantly increased the adhesion strength at the graft-host interface, however, only a statistically significant decrease in fluid permeability was noted in Chi-GP (Ch-ABC) specimen compared to untreated controls. Cell viability was maintained for 7 days of culture across all three treatment groups. These results show the potential clinical relevance of novel chitosan-based hydrogels in enhancing tissue integration and reducing synovial fluid penetration after ACT procedures in diarthoidal joints such as the knee and ankle. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1139-1146, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal
2017-04-01
Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev
2012-04-01
Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in hepatocytes from non-heart-beating donors offer opportunities for improving donor cell viability, which will advance the utility of non-heart-beating donor organs for cell therapy or other applications. Copyright © 2012 American Association for the Study of Liver Diseases.
Miller, Sean J; Rothstein, Jeffrey D
2017-01-01
Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.
NASA Astrophysics Data System (ADS)
Stegehuis, Paulien L.; Peters, Inge T. A.; Eggermont, Jeroen; Kuppen, Peter J. K.; Trimbos, J. Baptist; Lelieveldt, Boudewijn P. F.; van de Velde, Cornelis J. H.; Bosse, Tjalling; Dijkstra, Jouke; Vahrmeijer, Alexander L.
2016-02-01
Premature ovarian failure is a major concern in women of reproductive age who undergo gonadotoxic cancer treatment. Autotransplantation of frozen-thawed cortical ovarian tissue allows the immediate start of cancer treatment, but risks reintroduction of cancer. Current tumor detection methods compromise the ovarian tissue's viability and can therefore only be used to exclude the presence of metastases in the cortical ovarian strips that are not transplanted. A non-invasive method is needed that can be used to exclude metastases in the actual ovarian autografts without affecting the tissue's viability. In this study we applied FFOCT - a non-fixative technique that uses white light interferometry to make highresolution images (1μm isotropic) of fresh tissue - to study healthy and malignant ovarian tissue. We created an image atlas of healthy ovarian tissues from premenopausal patients and ovarian tissues with breast cancer metastases. To get the best possible match between hematoxylin-and-eosin stained slides and FFOCT images formalinfixed paraffin-embedded tissue samples were deparaffinized and FFOCT images were acquired within a few minutes. FFOCT images were compared with histology images. All normal structures such as follicles in all phases, inclusion cysts, blood vessels, corpora lutea, and corpora albicantia were clearly recognizable. Ovarian metastases could be well distinguished from normal ovarian tissue. FFOCT is a promising technique in the field of fertility preservation: metastases can be detected and additionally cortical ovarian strips can be selected on the basis of high follicle density.
A simple cell transport device keeps culture alive and functional during shipping.
Miller, Paula G; Wang, Ying I; Swan, Glen; Shuler, Michael L
2017-09-01
Transporting living complex cellular constructs through the mail while retaining their full viability and functionality is challenging. During this process, cells often suffer from exposure to suboptimal life-sustaining conditions (e.g. temperature, pH), as well as damage due to shear stress. We have developed a transport device for shipping intact cell/tissue constructs from one facility to another that overcomes these obstacles. Our transport device maintained three different cell lines (Caco2, A549, and HepG2 C3A) individually on transwell membranes with high viability (above 97%) for 48 h under simulated shipping conditions without an incubator. The device was also tested by actual overnight shipping of blood brain barrier constructs consisting of human induced pluripotent brain microvascular endothelial cells and rat astrocytes on transwell membranes to a remote facility (approximately 1200 miles away). The blood brain barrier constructs arrived with high cell viability and were able to regain full barrier integrity after equilibrating in the incubator for 24 h; this was assessed by the presence of continuous tight junction networks and in vivo-like values for trans-endothelial electrical resistance (TEER). These results demonstrated that our cell transport device could be a useful tool for long-distance transport of membrane-bound cell cultures and functional tissue constructs. Studies that involve various cell and tissue constructs, such as the "Multi-Organ-on-Chip" devices (where multiple microscale tissue constructs are integrated on a single microfluidic device) and studies that involve microenvironments where multiple tissue interactions are of interest, would benefit from the ability to transport or receive these constructs. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1257-1266, 2017. © 2017 American Institute of Chemical Engineers.
Equine ovarian tissue viability after cryopreservation and in vitro culture.
Gastal, G D A; Aguiar, F L N; Alves, B G; Alves, K A; de Tarso, S G S; Ishak, G M; Cavinder, C A; Feugang, J M; Gastal, E L
2017-07-15
Ovarian tissue cryopreservation allows the preservation of the female fertility potential for an undetermined period. The objectives of this study were to compare the efficiency of cryoprotective agents (CPAs; dimethyl sulfoxide, DMSO; ethylene glycol, EG; and propylene glycol, PROH) using slow-freezing and vitrification methods, and evaluate the viability of cryopreserved equine ovarian tissue after 7 days of culture. Fresh and cryopreserved ovarian fragments were evaluated for preantral follicle morphology, stromal cell density, EGFR, Ki-67, Bax, and Bcl-2 protein expression, and DNA fragmentation. Vitrification with EG had the highest rate of morphologically normal preantral follicles, while DMSO had the lowest (76.1 ± 6.1% and 40.9 ± 14.8%, respectively; P < 0.05). In slow-freezing, despite that DMSO had the highest percentage of morphologically normal follicles (77.7 ± 5.8%), no difference among the CPAs was observed. Fluorescence intensity of EGFR and Ki-67 was greater when vitrification with EG was used. Regardless of the cryopreservation treatment, DMSO had the highest (P < 0.05) Bax/Bcl-2 ratio; however, DNA fragmentation was similar (P > 0.05) among treatments after thawing. After in vitro culture, the percentage of normal follicles was similar (P > 0.05) between slow-freezing and vitrification methods; however, vitrification had greater (P < 0.05) stromal cell density than slow-freezing. In summary, equine ovarian tissue was successfully cryopreserved, increasing the viability of the cells in the ovarian tissue after thawing when using DMSO and EG for slow-freezing and vitrification methods, respectively. Therefore, these results are relevant for fertility preservation programs. Copyright © 2017 Elsevier Inc. All rights reserved.
The addition of albumin improves Schwann cells viability in nerve cryopreservation.
González Porto, Sara Alicia; Domenech, Nieves; González Rodríguez, Alba; Avellaneda Oviedo, Edgar Mauricio; Blanco, Francisco J; Arufe Gonda, María C; Álvarez Jorge, Ángel; Sánchez Ibañez, Jacinto; Rendal Vázquez, Esther
2018-04-26
The purpose of the current study was to establish a valid protocol for nerve cryopreservation, and to evaluate if the addition of albumin supposed any advantage in the procedure. We compared a traditional cryopreservation method that uses dimethyl sulfoxide (DMSO) as cryoprotectant, to an alternative method that uses DMSO and albumin. Six Wistar Lewis rats were used to obtain twelve 20 mm fragments of sciatic nerve. In the first group, six fragments were cryopreserved in 199 media with 10% DMSO, with a temperature decreasing rate of 1 °C per minute. In the second group, six fragments were cryopreserved adding 4% human albumin. The unfreezing process consisted of sequential washings with saline in the first group, and saline and 20% albumin in the second group at 37 °C until the crioprotectant was removed. Structural evaluation was performed through histological analysis and electronic microscopy. The viability was assessed with the calcein-AM (CAM) and 4',6-diamino-2-fenilindol (DAPI) staining. Histological results showed a correct preservation of peripheral nerve architecture and no significant differences were found between the two groups. However, Schwann cells viability showed in the CAM-DAPI staining was significantly superior in the albumin group. The viability of Schwann cells was significantly increased when albumin was added to the nerve cryopreservation protocol. However, no significant structural differences were found between groups. Further studies need to be performed to assess the cryopreserved nerve functionality using this new method.
Ishmael, D Richard; Chen, Wei R; Nordquist, John A; Liu, Hong; Nordquist, Robert E
2003-04-01
Modulation of cancer chemotherapeutic drugs has been attempted to increase efficacy and overcome resistance to the chemotherapeutic agent. Studies have shown schedule-dependent interactions in combined use of chemotherapeutic drugs. Mitoguazone (MGBG), an old drug with possible modulating activity, was used in combination with gemcitabine, a relatively new cancer drug, in treating tissue cultured human breast cancer cells and mammary rat tumors. Tissue cultured BOT-2 cancer cells were first treated with varying concentrations of gemcitabine and MGBG, independently. Combinations of the two drugs were then used with different scheduled administrations. Marked synergistic activity was found between gemcitabine and MGBG when the MGBG was given first, followed by gemcitabine 24 hours later. A non-toxic dose of MGBG enhanced the toxicity of gemcitabine by eight orders of magnitude using MTT assays in the tissue cultured human breast cancer cell study. The sequential administration of MGBG and gemcitabine also increased the survival rate of rats bearing mammary tumors in our pilot animal study.
Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei
2016-09-16
3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and acceptable viability ranges, a combined parameters region was obtained. This study provides guidance for parameter optimization and the fine-tuning of 3D cell printing processes regarding both bioink printability and cell viability after bioplotting, especially for easily damaged cells, like ESCs.
Hydrogen Supplementation of Preservation Solution Improves Viability of Osteochondral Grafts
Yamada, Takuya; Onuma, Kenji; Kuzuno, Jun; Ujihira, Masanobu; Kurokawa, Ryosuke; Sakai, Rina; Takaso, Masashi
2014-01-01
Allogenic osteochondral tissue (OCT) is used for the treatment of large cartilage defects. Typically, OCTs collected during the disease-screening period are preserved at 4°C; however, the gradual reduction in cell viability during cold preservation adversely affects transplantation outcomes. Therefore, improved storage methods that maintain the cell viability of OCTs are needed to increase the availability of high-quality OCTs and improve treatment outcomes. Here, we evaluated whether long-term hydrogen delivery to preservation solution improved the viability of rat OCTs during cold preservation. Hydrogen-supplemented Dulbecco's Modified Eagles Medium (DMEM) and University of Wisconsin (UW) solution both significantly improved the cell viability of OCTs during preservation at 4°C for 21 days compared to nonsupplemented media. However, the long-term cold preservation of OCTs in DMEM containing hydrogen was associated with the most optimal maintenance of chondrocytes with respect to viability and morphology. Our findings demonstrate that OCTs preserved in DMEM supplemented with hydrogen are a promising material for the repair of large cartilage defects in the clinical setting. PMID:25506061
Application of NIR spectroscopy in the assessment of diabetic foot disorders
NASA Astrophysics Data System (ADS)
Schleicher, Eckhard; Hampel, Uwe; Freyer, Richard
2001-10-01
Diabetic foot syndrome (DFS) is a common sequel of long-term diabetes mellitus. There is a urgent need of noninvasive, objective and quantitative diagnostic tools to assess tissue viability and perfusion for a successful therapy. NIR spectroscopy seems to be qualified to measure local capillary hemoglobin saturation of the outer extremities in patients with progressive diabetic disorders. We investigate how NIR spectroscopy can be applied to the assessment of diabetic foot problems such as neuropathy and angiopathy. Thereby we use spatially resolved spectroscopy in conjunction with a specially developed continuous-wave laser spectrometer. Comparison of intra- and interindividual measurements is expected to yield quantitative measures of local tissue viability which is a prerequisite for a successful therapy.
2013-06-01
start of tissue 2D culture , and 3 and 20 hours post culturing of the TSC’s in the 3D bioreactor (left) and corresponding representative tissue... culture tissue slice 13P spectrum obtained after 20 hours in the 5mm 3D MR compatible tissue culture bioreactor . 5 TSC’s with ≈ 90% viability...hours (≈98%) of being in 3D culture within the MR compatible bioreactor . • We demonstrated that the increased flux from pyruvate to lactate in the
Assessment of tissue viability by polarization spectroscopy
NASA Astrophysics Data System (ADS)
Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.
2008-09-01
A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.
Who is most affected by prenatal alcohol exposure: Boys or girls?
May, Philip A; Tabachnick, Barbara; Hasken, Julie M; Marais, Anna-Susan; de Vries, Marlene M; Barnard, Ronel; Joubert, Belinda; Cloete, Marise; Botha, Isobel; Kalberg, Wendy O; Buckley, David; Burroughs, Zachary R; Bezuidenhout, Heidre; Robinson, Luther K; Manning, Melanie A; Adnams, Colleen M; Seedat, Soraya; Parry, Charles D H; Hoyme, H Eugene
2017-08-01
To examine outcomes among boys and girls that are associated with prenatal alcohol exposure. Boys and girls with fetal alcohol spectrum disorders (FASD) and randomly-selected controls were compared on a variety of physical and neurobehavioral traits. Sex ratios indicated that heavy maternal binge drinking may have significantly diminished viability to birth and survival of boys postpartum more than girls by age seven. Case control comparisons of a variety of physical and neurobehavioral traits at age seven indicate that both sexes were affected similarly for a majority of variables. However, alcohol-exposed girls had significantly more dysmorphology overall than boys and performed significantly worse on non-verbal IQ tests than males. A three-step sequential regression analysis, controlling for multiple covariates, further indicated that dysmorphology among girls was significantly more associated with five maternal drinking variables and three distal maternal risk factors. However, the overall model, which included five associated neurobehavioral measures at step three, was not significant (p=0.09, two-tailed test). A separate sequential logistic regression analysis of predictors of a FASD diagnosis, however, indicated significantly more negative outcomes overall for girls than boys (Nagelkerke R 2 =0.42 for boys and 0.54 for girls, z=-2.9, p=0.004). Boys and girls had mostly similar outcomes when prenatal alcohol exposure was linked to poor physical and neurocognitive development. Nevertheless, sex ratios implicate lower viability and survival of males by first grade, and girls have more dysmorphology and neurocognitive impairment than boys resulting in a higher probability of a FASD diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Mellor, Liliana F.; Huebner, Pedro; Cai, Shaobo; Taylor, Michael A.; Spang, Jeffrey
2017-01-01
Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their ability to support viability and proliferation of human adipose derived stem cells (hASC). Cells had increased proliferation and high viability over 21 days on all scaffolds. We further tested implantation of stacked-electrospun scaffold versus combined electrospun/3D scaffold on a cadaveric pig knee model and found that stacked-electrospun scaffold easily delaminated during implantation while the combined scaffold was easier to implant. Our approach combining these two commonly used scaffold fabrication technologies allows for the creation of a scaffold with more close resemblance to heterogeneous tissue architecture, holding great potential for tissue engineering and regenerative medicine applications of osteochondral tissue and other heterogeneous tissues. PMID:28536700
Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M
2017-01-01
The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.
The effect of Aloe vera gel on viability of dental pulp stem cells.
Sholehvar, Fatemeh; Mehrabani, Davood; Yaghmaei, Parichehr; Vahdati, Akbar
2016-10-01
Dental pulp stem cells (DPSCs) can play a prominent role in tissue regeneration. Aloe vera L. (Liliaceae) contains the polysaccharide of acemannan that was shown to be a trigger factor for cell proliferation, differentiation, mineralization, and dentin formation. This study sought to determine the viability of DPSCs in Aloe vera in comparison with Hank's balanced salt solution (HBSS). Twelve rabbits underwent anesthesia, and their incisor teeth were extracted; the pulp tissue was removed, chopped, treated with collagenase and plated in culture flasks. DPSCs from passage 3 were cultured in 24-well plates, and after 3 days, the culture media changed to 10, 25, 50, and 100% concentrations of Aloe vera at intervals of 45 and 90 min and 3 and 6 h. Distilled water was used as negative and HBSS as positive control for comparison. The cell morphology, viability, population doubling time (PDT), and growth kinetics were evaluated. RT-PCR was carried out for characterization and karyotyping for chromosomal stability. Aloe vera showed a significant higher viability than HBSS (74.74%). The 50% Aloe vera showed higher viability (97.73%) than other concentrations. PDT in 50% concentration was 35.1 h and for HBSS was 49.5 h. DPSCs were spindle shaped and were positive for CD73 and negative for CD34 and CD45. Karyotyping was normal. Aloe vera as an inexpensive and available herb can improve survival of avulsed or broken teeth in emergency cases as a transfer media. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Comparison of Three Methods for the Analysis of Skin Flap Viability: Reliability and Validity.
Tim, Carla Roberta; Martignago, Cintia Cristina Santi; da Silva, Viviane Ribeiro; Dos Santos, Estefany Camila Bonfim; Vieira, Fabiana Nascimento; Parizotto, Nivaldo Antonio; Liebano, Richard Eloin
2018-05-01
Objective: Technological advances have provided new alternatives to the analysis of skin flap viability in animal models; however, the interrater validity and reliability of these techniques have yet to be analyzed. The present study aimed to evaluate the interrater validity and reliability of three different methods: weight of paper template (WPT), paper template area (PTA), and photographic analysis. Approach: Sixteen male Wistar rats had their cranially based dorsal skin flap elevated. On the seventh postoperative day, the viable tissue area and the necrotic area of the skin flap were recorded using the paper template method and photo image. The evaluation of the percentage of viable tissue was performed using three methods, simultaneously and independently by two raters. The analysis of interrater reliability and viability was performed using the intraclass correlation coefficient and Bland Altman Plot Analysis was used to visualize the presence or absence of systematic bias in the evaluations of data validity. Results: The results showed that interrater reliability for WPT, measurement of PTA, and photographic analysis were 0.995, 0.990, and 0.982, respectively. For data validity, a correlation >0.90 was observed for all comparisons made between the three methods. In addition, Bland Altman Plot Analysis showed agreement between the comparisons of the methods and the presence of systematic bias was not observed. Innovation: Digital methods are an excellent choice for assessing skin flap viability; moreover, they make data use and storage easier. Conclusion: Independently from the method used, the interrater reliability and validity proved to be excellent for the analysis of skin flaps' viability.
Gugerell, Alfred; Neumann, Anne; Kober, Johanna; Tammaro, Loredana; Hoch, Eva; Schnabelrauch, Matthias; Kamolz, Lars; Kasper, Cornelia; Keck, Maike
2015-02-01
Generation of adipose tissue for burn patients that suffer from an irreversible loss of the hypodermis is still one of the most complex challenges in tissue engineering. Electrospun materials with their micro- and nanostructures are already well established for their use as extracellular matrix substitutes. Gelatin is widely used in tissue engineering to gain thickness and volume. Under conventional static cultivation methods the supply of nutrients and transport of toxic metabolites is controlled by diffusion and therefore highly dependent on size and porosity of the biomaterial. A widely used method in order to overcome these limitations is the medium perfusion of 3D biomaterial-cell-constructs. In this study we combined perfusion bioreactor cultivation techniques with electrospun poly(l-lactide-co-glycolide) (P(LLG)) and gelatin hydrogels together with adipose-derived stem cells (ASCs) for a new approach in soft tissue engineering. ASCs were seeded on P(LLG) scaffolds and in gelatin hydrogels and cultivated for 24 hours under static conditions. Thereafter, biomaterials were cultivated under static conditions or in a bioreactor system for three, nine or twelve days with a medium flow of 0.3ml/min. Viability, morphology and differentiation of cells was monitored. ASCs seeded on P(LLG) scaffolds had a physiological morphology and good viability and were able to migrate from one electrospun scaffold to another under flow conditions but not migrate through the mesh. Differentiated ASCs showed lipid droplet formations after 21 days. Cells in hydrogels were viable but showed rounded morphology. Under flow conditions, morphology of cells was more diffuse. ASCs could be cultivated on P(LLG) scaffolds and in gelatin hydrogels under flow conditions and showed good cell viability as well as the potential to differentiate. These results should be a next step to a physiological three-dimensional construct for soft tissue engineering and regeneration. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Lee, Chang-Hyung; Derby, Richard; Choi, Hyun-Seok; Lee, Sang-Heon; Kim, Se Hoon; Kang, Yoon Kyu
2010-01-01
One technique in radiofrequency neurotomies uses 2 electrodes that are simultaneously placed to lie parallel to one another. Comparing lesions on cadaveric interspinous ligament tissue and measuring the temperature change in egg white allows us to accurately measure quantitatively the area of the lesion. Fresh cadaver spinal tissue and egg white tissue were used. A series of samples were prepared with the electrodes placed 1 to 7 mm apart. Using radiofrequency, the needle electrodes were heated in sequential or simultaneous order and the distance of the escaped lesion area and temperature were measured. Samples of cadaver interspinous ligament showed sequential heating of the needles limits the placement of the needle electrodes up to 2 mm apart from each other and up to 4 mm apart when heated simultaneously. The temperature at the escaped lesion area decreased according to the distance for egg white. There was a significant difference in temperature at the escaped lesion area up to 6 mm apart and the temperature was above 50 degrees celsius up to 5 mm in simultaneous lesion and 3 mm in the sequential lesion. The limitations of this study include cadaveric experimentation and use of intraspinous ligament rather than medial branch of the dorsal ramus which is difficult to identify. Heating the 2 electrodes simultaneously appears to coagulate a wider area and potentially produce better results in less time.
Improved two-photon imaging of living neurons in brain tissue through temporal gating
Gautam, Vini; Drury, Jack; Choy, Julian M. C.; Stricker, Christian; Bachor, Hans-A.; Daria, Vincent R.
2015-01-01
We optimize two-photon imaging of living neurons in brain tissue by temporally gating an incident laser to reduce the photon flux while optimizing the maximum fluorescence signal from the acquired images. Temporal gating produces a bunch of ~10 femtosecond pulses and the fluorescence signal is improved by increasing the bunch-pulse energy. Gating is achieved using an acousto-optic modulator with a variable gating frequency determined as integral multiples of the imaging sampling frequency. We hypothesize that reducing the photon flux minimizes the photo-damage to the cells. Our results, however, show that despite producing a high fluorescence signal, cell viability is compromised when the gating and sampling frequencies are equal (or effectively one bunch-pulse per pixel). We found an optimum gating frequency range that maintains the viability of the cells while preserving a pre-set fluorescence signal of the acquired two-photon images. The neurons are imaged while under whole-cell patch, and the cell viability is monitored as a change in the membrane’s input resistance. PMID:26504651
Biological Function of Ribosomal Protein L10 on Cell Behavior in Human Epithelial Ovarian Cancer
Shi, Jimin; Zhang, Lingyun; Zhou, Daibing; Zhang, Jinguo; Lin, Qunbo; Guan, Wencai; Zhang, Jihong; Ren, Weimin; Xu, Guoxiong
2018-01-01
Ribosomal protein L10 (RPL10) is one of large ribosomal proteins and plays a role in Wilms' tumor and premature ovarian failure. However, the function of RPL10 in human epithelial ovarian cancer (EOC) remains unknown. The purpose of this study was to examine the expression level and function of RPL10 in EOC. RPL10 protein expression was detected by immunohistochemistry and Western blot. The association RPL10 expression with clinical features was analyzed. Loss-of-function and gain-of-function approaches were applied in cellular assays, including cell viability, migration, invasion, and apoptosis. Our study demonstrated for the first time that RPL10 was upregulated in human EOC compared with normal ovarian tissues. Knockdown of RPL10 inhibited cell viability, migration, and invasion, and increased cell apoptosis. On the contrary, upregulation of RPL10 increased cell viability, migration, invasion, and decreased cell apoptosis. Furthermore, miR-143-3p regulated RPL10 expression. Our data indicate that RPL10 is a potential tissue biomarker of patients with EOC and may be a therapeutic target of ovarian cancer. PMID:29556332
Mir-Tutusaus, J A; Sarrà, M; Caminal, G
2016-11-15
Hospital wastewaters have a high load of pharmaceutical active compounds (PhACs). Fungal treatments could be appropriate for source treatment of such effluents but the transition to non-sterile conditions proved to be difficult due to competition with indigenous microorganisms, resulting in very short-duration operations. In this article, coagulation-flocculation and UV-radiation processes were studied as pretreatments to a fungal reactor treating non-sterile hospital wastewater in sequential batch operation and continuous operation modes. The influent was spiked with ibuprofen and ketoprofen, and both compounds were successfully degraded by over 80%. UV pretreatment did not extent the fungal activity after coagulation-flocculation measured as laccase production and pellet integrity. Sequential batch operation did not reduce bacteria competition during fungal treatment. The best strategy was the addition of a coagulation-flocculation pretreatment to a continuous reactor, which led to an operation of 28days without biomass renovation. Copyright © 2016 Elsevier B.V. All rights reserved.
Improved osteochondral allograft preservation using serum-free media at body temperature.
Garrity, Joseph T; Stoker, Aaron M; Sims, Hannah J; Cook, James L
2012-11-01
Osteochondral allografts (OCAs) are currently preserved at 4°C and used within 28 days of donor harvest. The window of opportunity for implantation is limited to 14 days due to a 2-week disease testing protocol. Osteochondral allograft tissues stored at 37°C will have significantly higher chondrocyte viability, as well as superior biochemical and biomechanical properties, than those stored at 4°C. Controlled laboratory study. Osteochondral allografts from 15 adult canine cadavers were aseptically harvested within 4 hours of death. Medial and lateral femoral condyles were stored in Media 1, similar to the current standard, or Media 2, an anti-inflammatory and chondrogenic media containing dexamethasone and transforming growth factor-β3, at 4°C or 37°C for up to 56 days. Chondrocyte viability, glycosaminoglycan (GAG) and collagen (hydroxyproline [HP]) content, biomechanical properties, and collagen II and aggrecan content were assessed at days 28 and 56. Five femoral condyles were stored overnight and assessed the next day to serve as controls. Storage in Media 1 at 37°C maintained chondrocyte viability at significantly higher levels than in any other media-temperature combination and at levels not significantly different from controls. Osteochondral allografts stored in either media at 4°C showed a significant decrease in chondrocyte viability throughout storage. Glycosaminoglycan and HP content were maintained through 56 days of storage in OCAs in Media 1 at 37°C. There were no significant differences in elastic or dynamic moduli among groups at day 56. Qualitative immunohistochemistry demonstrated the presence of collagen II and aggrecan throughout all layers of cartilage. Osteochondral allograft viability, matrix content and composition, and biomechanical properties were maintained at "fresh" levels through 56 days of storage in Media 1 at 37°C. Osteochondral allografts stored at 4°C were unable to maintain viability or matrix integrity through 28 days of storage. These findings suggest that storage of OCAs in a defined media at 37°C is superior to current protocols (4°C) for tissue preservation prior to transplantation. Storage of OCAs in serum-free chemically defined media at 37°C can increase the "window of opportunity" for implantation of optimal tissue from 14 days to 42 days after disease testing clearance.
Minor, T; Hachenberg, A; Tolba, R; Pauleit, D; Akbar, S
2001-06-27
Our objective was to evaluate graft equilibration with high viscosity (University of Wisconsin solution [UW]) or low viscosity (Bretschneider's histidine-tryptophan-ketoglutarate [HTK]) during liver procurement from non-heart beating donors (NHBD) and the potential impact of a preceding fibrinolysis with streptokinase on postpreservation viability. After 60 min of cardiac arrest, rat livers were perfused by gravity (60 cm H2O) via the portal vein with either 60 ml of HTK, 20 ml of UW, or 20 ml of Ringer's solution (22 degrees C including 7500U of streptokinase) and, subsequently, 20 ml of UW. After 24 h of storage at 4 degrees C, viability of the livers was assessed upon isolated reperfusion in vitro. Magnetic resonance imaging revealed severe perfusion deficits, which were mildly attenuated with HTK, upon flush-out with UW. After preflush with streptokinase, a mostly homogenous distribution of the preservation solution was observed throughout the liver tissue. The choice of the flush-out solution (UW or HTK) had no influence on parenchymal enzyme leakage, hepatic bile production, or tissue levels of ATP after reperfusion of the livers. Fibrinolytic preflush, however, resulted in a relevant and significant improvement of structural integrity as well as functional and metabolic recovery. Compromised vascular tissue perfusion upon organ harvest in NHBD triggers graft dysfunction after cold storage and can easily be circumvented by temporary fibrinolysis before graft retrieval.
Zhang, Jing; Zhou, Aimei; Deng, Aipeng; Yang, Yang; Gao, Lihu; Zhong, Zhaocai; Yang, Shulin
2015-04-01
Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide-chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (Tf) and cooling rates was applied to obtain scaffolds with pore size ranging from 100μm to 120μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of Tf at a slow cooling rate of 0.7°C/min; a more rapid cooling rate under 5°C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC-chitosan scaffolds with appropriate pores for potential tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Ingavle, Ganesh C.; Frei, Anthony W.; Gehrke, Stevin H.
2013-01-01
Interpenetrating network (IPN) hydrogels were recently introduced to the cartilage tissue engineering literature, with the approach of encapsulating cells in thermally gelling agarose that is then soaked in a poly(ethylene glycol) diacrylate (PEGDA) solution, which is then photopolymerized. These IPNs possess significantly enhanced mechanical performance desirable for cartilage regeneration, potentially allowing patients to return to weight-bearing activities quickly after surgical implantation. In an effort to improve cell viability and performance, inspiration was drawn from previous studies that have elicited positive chondrogenic responses to aggrecan, the proteoglycan largely responsible for the compressive stiffness of cartilage. Aggrecan was incorporated into the IPNs in conservative concentrations (40 μg/mL), and its effect was contrasted with the incorporation of chondroitin sulfate (CS), the primary glycosaminoglycan associated with aggrecan. Aggrecan was incorporated by physical entrapment within agarose and methacrylated CS was incorporated by copolymerization with PEGDA. The IPNs incorporating aggrecan or CS exhibited over 50% viability with encapsulated chondrocytes after 6 weeks. Both aggrecan and CS improved cell viability by 15.6% and 20%, respectively, relative to pure IPNs at 6 weeks culture time. In summary, we have introduced the novel approach of including a raw material from cartilage, namely aggrecan, to serve as a bioactive signal to cells encapsulated in IPN hydrogels for cartilage tissue engineering, which led to improved performance of encapsulated chondrocytes. PMID:23379843
The development of accurate and high quality radiotherapy treatment delivery
NASA Astrophysics Data System (ADS)
Griffiths, Susan E.
Accurate radiotherapy delivery is required for curing cancer. Historical radiotherapy accuracy studies at Leeds (1983-1991) are discussed in context of when radiographers were not involved in practice design. The seminal research was unique in being led by a radiographer practitioner, and in prospectively studying the accuracy of different techniques within one department. The viability of alignment of treatment beams with marks painted on a patient's skin varied daily, and, using film I showed that the alignment of treatment on anatomy varied. I then led 6 sequential studies with collaborating oncologists. Unique outcomes were in identifying the origins of treatment inaccuracies, implementing and evidencing changes in multi-disciplinary practice, thus improving accuracy and reproducibility generally and achieving accuracy for the pelvis to within current norms. Innovations included: discontinuation of painted skin marks and developing whole-body patient positioning using lasers, tattoos, and standardised supports; unification of set-up conditions through planning and treatment; planning normal tissue margins round target tissue to allow for inaccuracies (1985); improved manual shielding methods, changed equipment usage, its quality assurance and design; influenced the development of portal imaging and image analysis. Consequences and current implications. The research, still cited internationally, contributed to clinical management of lymphoma, and critically underpins contemporary practice. It led to my becoming the first radiographer invited into multi-disciplinary collaborative work, to advise in the first multi-centre clinical trials to consider treatment delivery accuracy, contribute to books written from within other disciplines and inform guidelines for good practice so helping to improve practices, with recent publications. I thus led my profession into research activity. Later work included development of a national staffing formula for radiotherapy Centres, and contributing to the evidence-base for improved National radiotherapy resourcing. I recently researched and developed a textbook (second edition) on quality in treatment delivery.
Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink
Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony
2016-01-01
Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839
Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.
Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony
2016-04-21
Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.
Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole
2018-01-01
Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Sato, Manabu; Nishidate, Izumi
2014-05-01
We investigated the feasibility of OCT in monitoring the viability of the brain. It was confirmed that after an overdose of pentobarbital sodium salt for an euthanasia, the OCT signal intensity increased before cardiac arrest and finally became 2.7 times, and by periodically changing the tissue temperature from 20 to 32 °C in vivo, average correlation coefficients between the ratio of signal intensity (RSI) and temperature were determined to be -0:42 to -0:50. RSI reversibly changed with subsequent variations of temperatures and finally increased rapidly just before cardiac arrest. These results indicate that RSI could correspond to decreases in viability.
NASA Astrophysics Data System (ADS)
Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.
2012-04-01
Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications. Electronic supplementary information (ESI) available: Supporting methods and data about CD spectral analysis of SAPeptide solutions (Fig. S1), neural differentiation of murine and human NSCs (Fig. S2) on SAPeptide scaffolds, and their statistical analysis (Table S1). See DOI: 10.1039/c2nr30220a
NASA Astrophysics Data System (ADS)
Žáková, Pavlína; Slepičková Kasálková, Nikola; Slepička, Petr; Kolská, Zdeňka; Karpíšková, Jana; Stibor, Ivan; Švorčík, Václav
2017-11-01
Various carbon nanostructures are widely researched as scaffolds for tissue engineering. We evaluated the surface properties and cell-substrate interactions of carbon nanoparticles functionalized with triethylenetetramine (CNPs) grafted polymer film. Two forms of polyethylene (HDPE, LDPE) were treated in an inert argon plasma discharge and, subsequently, grafted with CNPs. The surface properties were studied using multiple methods, including Raman spectroscopy, goniometry, atomic force microscopy, X-ray photoelectron spectroscopy and electrokinetic analysis. Cell-substrate interactions were determined in vitro by studying adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs) from the aorta of a rat. Cell-substrate interactions on pristine and modified substrates were compared to standard tissue culture polystyrene. Our results show that CNPs affect surface morphology and wettability and therefore adhesion, proliferation and viability of cultured muscle cells.
Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D
2010-10-01
Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.
Chimeric autologous/allogeneic constructs for skin regeneration.
Rasmussen, Cathy Ann; Tam, Joshua; Steiglitz, Barry M; Bauer, Rebecca L; Peters, Noel R; Wang, Ying; Anderson, R Rox; Allen-Hoffmann, B Lynn
2014-08-01
The ideal treatment for severe cutaneous injuries would eliminate the need for autografts and promote fully functional, aesthetically pleasing autologous skin regeneration. NIKS progenitor cell-based skin tissues have been developed to promote healing by providing barrier function and delivering wound healing factors. Independently, a device has recently been created to "copy" skin by harvesting full-thickness microscopic tissue columns (MTCs) in lieu of autografts traditionally harvested as sheets. We evaluated the feasibility of combining these two technologies by embedding MTCs in NIKS-based skin tissues to generate chimeric autologous/allogeneic constructs. Chimeric constructs have the potential to provide immediate wound coverage, eliminate painful donor site wounds, and promote restoration of a pigmented skin tissue possessing hair follicles, sweat glands, and sebaceous glands. After MTC insertion, chimeric constructs and controls were reintroduced into air-interface culture and maintained in vitro for several weeks. Tissue viability, proliferative capacity, and morphology were evaluated after long-term culture. Our results confirmed successful MTC insertion and integration, and demonstrated the feasibility of generating chimeric autologous/allogeneic constructs that preserved the viability, proliferative capacity, and structure of autologous pigmented skin. These feasibility studies established the proof-of-principle necessary to further develop chimeric autologous/allogeneic constructs for the treatment of complex skin defects. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Huan, Zhijie; Chu, Henry K; Yang, Jie; Sun, Dong
2017-04-01
Seeding and patterning of cells with an engineered scaffold is a critical process in artificial tissue construction and regeneration. To date, many engineered scaffolds exhibit simple intrinsic designs, which fail to mimic the geometrical complexity of native tissues. In this study, a novel scaffold that can automatically seed cells into multilayer honeycomb patterns for bone tissue engineering application was designed and examined. The scaffold incorporated dielectrophoresis for noncontact manipulation of cells and intrinsic honeycomb architectures were integrated in each scaffold layer. When a voltage was supplied to the stacked scaffold layers, three-dimensional electric fields were generated, thereby manipulating cells to form into honeycomb-like cellular patterns for subsequent culture. The biocompatibility of the scaffold material was confirmed through the cell viability test. Experiments were conducted to evaluate the cell viability during DEP patterning at different voltage amplitudes, frequencies, and manipulating time. Three different mammalian cells were examined and the effects of the cell size and the cell concentration on the resultant cellular patterns were evaluated. Results showed that the proposed scaffold structure was able to construct multilayer honeycomb cellular patterns in a manner similar to the natural tissue. This honeycomb-like scaffold and the dielectrophoresis-based patterning technique examined in this study could provide the field with a promising tool to enhance seeding and patterning of a wide range of cells for the development of high-quality artificial tissues.
Kaluzhny, Yulia; Kandárová, Helena; Hayden, Patrick; Kubilus, Joseph; d'Argembeau-Thornton, Laurence; Klausner, Mitchell
2011-09-01
The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular(TM) eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial training set of 39 liquid and 21 solid test substances and uses a single exposure period and a single cut-off in tissue viability, as determined by the MTT assay. A chemical is classified as an irritant (GHS Category 1 or 2), if the tissue viability is ≤ 60%, and as a non-irritant (GHS unclassified), if the viability is > 60%. EpiOcular-EIT results for the training set, along with results for an additional 52 substances, which included a range of alcohols, hydrocarbons, amines, esters, and ketones, discriminated between ocular irritants and non-irritants with 98.1% sensitivity, 72.9% specificity, and 84.8% accuracy. To ensure the long-term commercial viability of the assay, EpiOcular tissues produced by using three alternative cell culture inserts were evaluated in the EpiOcular-EIT with 94 chemicals. The assay results obtained with the initial insert and the three alternative inserts were very similar, as judged by correlation coefficients (r²) that ranged from 0.82 to 0.96. The EpiOcular-EIT was pre-validated in 2007/2008, and is currently involved in a formal, multi-laboratory validation study sponsored by the European Cosmetics Association (COLIPA) under the auspices of the European Centre for the Validation of Alternative Methods (ECVAM). The EpiOcular-EIT, together with EpiOcular's long history of reproducibility and proven utility for ultra-mildness testing, make EpiOcular a useful model for addressing current legislation related to animal use in the testing of potential ocular irritants. 2011 FRAME.
Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.
2014-01-01
Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990
Miyazaki, Tsuyoshi; Kobayashi, Shigeru; Takeno, Kenichi; Yayama, Takafumi; Meir, Adam; Baba, Hisatoshi
2011-07-01
A lot of studies on the effect of intra-articular injections are clinical, but many questions on the effect of lidocaine to articular chondrocytes remain unanswered. This study was performed to determine the effects of varying concentrations and exposure times of lidocaine on the viability and proteoglycan metabolism of chondrocytes in vitro. Cartilage was obtained from metatarsal joints of adult bovines. Chondrocytes in alginate beads were cultured in medium containing 6% fetal calf serum at 370 mOsmol at cell densities of 4 million cells/ml. They were then cultured for 24 h under 21% oxygen with 0.125, 0.25, 0.5, and 1% lidocaine and without lidocaine as control. The cell viability profile across intact beads was determined by manual counting using fluorescent probes and transmission electron microscopy. Lactate production was measured enzymatically as a marker of energy metabolism. Glycosaminoglycan (GAG) accumulation was measured using a modified dimethylmethylene blue assay. Cell viability decreased in a time- and dose-dependent manner in the concentration range of 0.125-1.0% lidocaine under the confocal microscope. Under the electron microscope, apoptosis increased as the concentration of lidocaine increased. GAG accumulation/tissue volume decreases as the concentration of lidocaine increased. However, GAG produced per million cells and the rate of lactate production per live cell were significantly higher for cells cultured at 0.5 and 1% lidocaine than the control group. Bovine chondrocytes cultured in alginate beads under high oxygen pressure are negatively influenced by increasing concentrations of lidocaine. Cell viability and proteoglycan production (GAG accumulation/tissue volume) decreased as the concentration of lidocaine increased. These data suggest caution in prolonged exposure of cartilage to high concentration lidocaine. Repeated joint injection of lidocaine potentially worsens osteoarthrosis by accelerating cartilage degradation.
Vahabi, Surena; Vaziri, Shahram; Torshabi, Maryam
2015-01-01
Objectives: Platelet preparations are commonly used to enhance bone and soft tissue regeneration. Considering the existing controversies on the efficacy of platelet products for tissue regeneration, more in vitro studies are required. The aim of the present study was to compare the in vitro effects of plasma rich in growth factors (PRGF) and platelet-rich fibrin (PRF) on proliferation and viability of human gingival fibroblasts (HGFs). Materials and Methods: Anitua’s PRGF and Choukran’s PRF were prepared according to the standard protocols. After culture periods of 24, 48 and 72 hours, proliferation of HGFs was evaluated by the methyl thiazol tetrazolium assay. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer’s multiple comparisons and P-values<0.05 were considered statistically significant. Results: PRGF treatment induced statistically significant (P<0.001) proliferation of HGF cells compared to the negative control (100% viability) at 24, 48 and 72 hours in values of 123%±2.25%, 102%±2.8% and 101%±3.92%, respectively. The PRF membrane treatment of HGF cells had a statistically significant effect on cell proliferation (21%±1.73%, P<0.001) at 24 hours compared to the negative control. However, at 48 and 72 hours after treatment, PRF had a negative effect on HGF cell proliferation and caused 38% and 60% decrease in viability and proliferation compared to the negative control, respectively. The HGF cell proliferation was significantly higher in PRGF than in PRF group (P< 0.001). Conclusion: This study demonstrated that PRGF had a strong stimulatory effect on HGF cell viability and proliferation compared to PRF. PMID:26877740
Bible, Ellen; Qutachi, Omar; Chau, David Y.S.; Alexander, Morgan R.; Shakesheff, Kevin M.; Modo, Michel
2012-01-01
Replacing the tissue lost after a stroke potentially provides a new neural substrate to promote recovery. However, significant neurobiological and biotechnological challenges need to be overcome to make this possibility into a reality. Human neural stem cells (hNSCs) can differentiate into mature brain cells, but require a structural support that retains them within the cavity and affords the formation of a de novo tissue. Nevertheless, in our previous work, even after a week, this primitive tissue is void of a vasculature that could sustain its long-term viability. Therefore, tissue engineering strategies are required to develop a vasculature. Vascular endothelial growth factor (VEGF) is known to promote the proliferation and migration of endothelial cells during angio- and arteriogenesis. VEGF by itself here did not affect viability or differentiation of hNSCs, whereas growing cells on poly(D,L-lactic acid-co-glycolic acid) (PLGA) microparticles, with or without VEGF, doubled astrocytic and neuronal differentiation. Secretion of a burst and a sustained delivery of VEGF from the microparticles in vivo attracted endothelial cells from the host into this primate tissue and in parts established a neovasculature, whereas in other parts endothelial cells were merely interspersed with hNSCs. There was also evidence of a hypervascularization indicating that further work will be required to establish an adequate level of vascularization. It is therefore possible to develop a putative neovasculature within de novo tissue that is forming inside a tissue cavity caused by a stroke. PMID:22818980
Hamlet, Stephen M; Vaquette, Cedryck; Shah, Amit; Hutmacher, Dietmar W; Ivanovski, Saso
2017-04-01
Alveolar bone regeneration remains a significant clinical challenge in periodontology and dental implantology. This study assessed the mineralized tissue forming potential of 3-D printed medical grade polycaprolactone (mPCL) constructs containing osteoblasts (OB) encapsulated in a hyaluronic acid (HA)-hydrogel incorporating bone morphogenetic protein-7 (BMP-7). HA-hydrogels containing human OB ± BMP-7 were prepared. Cell viability, osteogenic gene expression, mineralized tissue formation and BMP-7 release in vitro, were assessed by fluorescence staining, RT-PCR, histological/μ-CT examination and ELISA respectively. In an athymic rat model, subcutaneous ectopic mineralized tissue formation in mPCL-hydrogel constructs was assessed by μ-CT and histology. Osteoblast encapsulation in HA-hydrogels did not detrimentally effect cell viability, and 3-D culture in osteogenic media showed mineralized collagenous matrix formation after 6 weeks. BMP-7 release from the hydrogel was biphasic, sustained and increased osteogenic gene expression in vitro. After 4 weeks in vivo, mPCL-hydrogel constructs containing BMP-7 formed significantly more volume (mm 3 ) of vascularized bone-like tissue. Functionalized mPCL-HA hydrogel constructs provide a favourable environment for bone tissue engineering. Although encapsulated cells contributed to mineralized tissue formation within the hydrogel in vitro and in vivo, their addition did not result in an improved outcome compared to BMP-7 alone. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mutsenko, Vitalii V; Gryshkov, Oleksandr; Lauterboeck, Lothar; Rogulska, Olena; Tarusin, Dmitriy N; Bazhenov, Vasilii V; Schütz, Kathleen; Brüggemeier, Sophie; Gossla, Elke; Akkineni, Ashwini R; Meißner, Heike; Lode, Anja; Meschke, Stephan; Fromont, Jane; Stelling, Allison L; Tabachnik, Konstantin R; Gelinsky, Michael; Nikulin, Sergey; Rodin, Sergey; Tonevitsky, Alexander G; Petrenko, Alexander Y; Glasmacher, Birgit; Schupp, Peter J; Ehrlich, Hermann
2017-11-01
The extraordinary biocompatibility and mechanical properties of chitinous scaffolds from marine sponges endows these structures with unique properties that render them ideal for diverse biomedical applications. In the present work, a technological route to produce "ready-to-use" tissue-engineered products based on poriferan chitin is comprehensively investigated for the first time. Three key stages included isolation of scaffolds from the marine demosponge Ianthella basta, confirmation of their biocompatibility with human mesenchymal stromal cells, and cryopreservation of the tissue-like structures grown within these scaffolds using a slow cooling protocol. Biocompatibility of the macroporous, flat chitin scaffolds has been confirmed by cell attachment, high cell viability and the ability to differentiate into the adipogenic lineage. The viability of cells cryopreserved on chitin scaffolds was reduced by about 30% as compared to cells cryopreserved in suspension. However, the surviving cells were able to retain their differentiation potential; and this is demonstrated for the adipogenic lineage. The results suggest that chitin from the marine demosponge I. basta is a promising, highly biocompatible biomaterial for stem cell-based tissue-engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Zijah, Vahid; Salehi, Roya; Aghazadeh, Marziyeh; Samiei, Mohammad; Alizadeh, Effat; Davaran, Soodabeh
2017-06-01
Tissue engineering has emerged as a potential therapeutic option for dental problems in recent years. One of the policies in tissue engineering is to use both scaffolds and additive factors for enhancing cell responses. This study aims to evaluate and compare the effect of three types of biofactors on poly-caprolactone-poly-ethylene glycol-poly caprolactone (PCL-PEG-PCL) nanofibrous scaffold on human dental pulp stem cell (hDPSCs) engineering. The PCL-PEG-PCL copolymer was synthesized with ring opening polymerization method, and its nanofiber scaffold was prepared by electrospinning method. Nanofibrous scaffold-seeded hDPSCs were treated with sodium fluoride (NaF), melanocyte-stimulating hormone (MSH), or simvastatin (SIM). Non-treated nanofiber seeded cells were utilized as control. The viability, biocompatibility, adhesion, proliferation rate, morphology, osteo/odontogenic potential, and the expression of tissue-specific genes were studied. The results showed that significant higher results demonstrated significant higher adhesive behavior, viability, alizarin red activity, and dentin specific gene expression in MSH- and SIM-treated cells (p < 0.05). This study is unique; in that, it compares the effects of different treatments for optimization of dental tissue engineering.
A study of cryogenic tissue-engineered liver slices in calcium alginate gel for drug testing.
Chen, Ruomeng; Wang, Bo; Liu, Yaxiong; Lin, Rong; He, Jiankang; Li, Dichen
2018-06-01
To address issues such as transportation and the time-consuming nature of tissue-engineered liver for use as an effective drug metabolism and toxicity testing model, "ready-to-use" cryogenic tissue-engineered liver needs to be studied. The research developed a cryogenic tissue-engineered liver slice (TELS), which comprised of HepG2 cells and calcium alginate gel. Cell viability and liver-specific functions were examined after different cryopreservation and recovery culture times. Then, cryogenic TELSs were used as a drug-testing model and treated with Gefitinib. Cryogenic TELSs were stored at -80 °C to ensure high cell viability. During recovery in culture, the cells in the cryogenic TELS were evenly distributed, massively proliferated, and then formed spheroid-like aggregates from day 1 to day 13. The liver-specific functions in the cryogenic TELS were closely related to cryopreservation time and cell proliferation. As a reproducible drug-testing model, the cryogenic TELS showed an obvious drug reaction after treatment with the Gefitinib. The present study shows that the cryopreservation techniques can be used in drug-testing models. Copyright © 2018 Elsevier Inc. All rights reserved.
Fuller, Barry; Seldon, Clare; Davidson, Brian; Seifalian, Alexander
2013-01-01
Background: Although hepatocytes have a remarkable regenerative power, the rapidity of acute liver failure makes liver transplantation the only definitive treatment. Attempts to incorporate engineered three-dimensional liver tissue in bioartificial liver devices or in implantable tissue constructs, to treat or bridge patients to self-recovery, were met with many challenges, amongst which is to find suitable polymeric matrices. We studied the feasibility of utilising nanocomposite polymers in three-dimensional scaffolds for hepatocytes. Materials and methods: Hepatocytes (HepG2) were seeded on a flat sheet and in three-dimensional scaffolds made of a nanocomposite polymer (Polyhedral Oligomeric Silsesquioxane [POSS]-modified polycaprolactone urea urethane) alone as well as with porogen particles, i.e. glucose, sodium bicarbonate and sodium chloride. The scaffold architecture, cell attachment and morphology were studied with scanning electron microscopy, and we assessed cell viability and functionality. Results: Cell attachment to the scaffolds was demonstrated. The scaffold made with glucose particles as porogen showed a narrower range of pore size with higher porosity and better inter-pore communications and seemed to encourage near normal cell morphology. There was a steady increase of albumin secretion throughout the experiment while the control (monolayer cell culture) showed a steep decrease after day 7. At the end of the experiment, there was no significant difference in viability and functionality between the scaffolds and the control. Conclusion: In this initial study, porogen particles were used to modify the scaffolds produced from the novel polymer. Although there was no significance against the control in functionality and viability, the demonstrable attachment on scanning electron microscopy suggest potential roles for this polymer and in particular for scaffolds made with glucose particles in liver tissue engineering. PMID:22532408
Sun, Dawei; Han, Shen; Liu, Chao; Zhou, Rui; Sun, Weihai; Zhang, Zhijun; Qu, Jianjun
2016-04-11
BACKGROUND The objective of this study was to explore the role of miR-199a-5p in the development of thyroid cancer, including its anti-proliferation effect and downstream signaling pathway. MATERIAL AND METHODS We conducted qRT-PCR analysis to detect the expressions of several microRNAs in 42 follicular thyroid carcinoma patients and 42 controls. We identified CTGF as target of miR-491, and viability and cell cycle status were determined in FTC-133 cells transfected with CTGF siRNA, miR-199a mimics, or inhibitors. RESULTS We identified an underexpression of miR-199a-5p in follicular thyroid carcinoma tissue samples compared with controls. Then we confirmed CTGF as a target of miR-199a-5p thyroid cells by using informatics analysis and luciferase reporter assay. Additionally, we found that mRNA and protein expression levels of CTGF were both clearly higher in malignant tissues than in benign tissues. miR-199a-5p mimics and CTGF siRNA similarly downregulated the expression of CTGF, and reduced the viability of FTC-133 cells by arresting the cell cycle in G0 phase. Transfection of miR-199a-5p inhibitors increased the expression of CTGF and promoted the viability of the cells by increasing the fraction of cells in G2/M and S phases. CONCLUSIONS Our study proves that the CTGF gene is a target of miR-199a-5p, demonstrating the negatively related association between CTGF and miR-199a. These findings suggest that miR-199a-5p might be a novel therapeutic target in the treatment of follicular thyroid carcinoma.
Biologic assessment of antiseptic mouthwashes using a three-dimensional human oral mucosal model.
Moharamzadeh, Keyvan; Franklin, Kirsty L; Brook, Ian M; van Noort, Richard
2009-05-01
The biologic safety profile of oral health care products is often assumed on the basis of simplistic test models such as monolayer cell culture systems. We developed and characterized a tissue-engineered human oral mucosal model, which was proven to represent a potentially more informative and more clinically relevant alternative for the biologic assessment of mouthwashes. The aim of this study was to evaluate the biologic effects of alcohol-containing mouthwashes on an engineered human oral mucosal model. Three-dimensional (3D) models were engineered by the air/liquid interface culture technique using human oral fibroblasts and keratinocytes. The models were exposed to phosphate buffered saline (negative control), triethylene glycol dimethacrylate (positive control), cola, and three types of alcohol-containing mouthwashes. The biologic response was recorded using basic histology; a cell proliferation assay; 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tissue-viability assay; transmission electron microscopy (TEM) analysis; and the measurement of release of interleukin (IL)-1beta by enzyme-linked immunosorbent assay. Statistical analysis showed that there was no significant difference in tissue viability among the mouthwashes, cola, and negative control groups. However, exposure to the positive control significantly reduced the tissue viability and caused severe cytotoxic epithelial damage as confirmed by histology and TEM analysis. A significant increase of IL-1beta release was observed with the positive control and, to a lesser extent, with two of the tested mouthrinses. The 3D human oral mucosal model can be a suitable model for the biologic testing of mouthwashes. The alcohol-containing mouthwashes tested in this study do not cause significant cytotoxic damage and may slightly stimulate IL-1beta release.
Nyman, U; Lundberg, I; Hedfors, E; Wahren, M; Pettersson, I
1992-01-01
Sequentially obtained serum samples from 30 patients with connective tissue disease positive for antibody to ribonucleoprotein (RNP) were examined to determine the specificities of IgG and IgM antibodies to snRNP during the disease course using immunoblotting of nuclear extracts. The antibody patterns were correlated with disease activity. The patterns of antibody to snRNP of individual patients were mainly stable during the study but changes in levels of antibody to snRNP were seen corresponding to changes in clinical activity. These results indicate that increased reactivity of serum IgM antibodies against the B/B' proteins seems to precede a clinically evident exacerbation of disease whereas IgG antibody reactivity to the 70 K protein peaks at the time of a disease flare. Images PMID:1485812
Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.
Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro
2015-12-28
Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Grant, Clare F J; Carr, B Veronica; Kotecha, Abhay; van den Born, Erwin; Stuart, David I; Hammond, John A; Charleston, Bryan
2017-05-01
Foot-and-mouth disease virus (FMDV) is a highly contagious viral disease. Antibodies are pivotal in providing protection against FMDV infection. Serological protection against one FMDV serotype does not confer interserotype protection. However, some historical data have shown that interserotype protection can be induced following sequential FMDV challenge with multiple FMDV serotypes. In this study, we have investigated the kinetics of the FMDV-specific antibody-secreting cell (ASC) response following homologous and heterologous inactivated FMDV vaccination regimes. We have demonstrated that the kinetics of the B cell response are similar for all four FMDV serotypes tested following a homologous FMDV vaccination regime. When a heterologous vaccination regime was used with the sequential inoculation of three different inactivated FMDV serotypes (O, A, and Asia1 serotypes) a B cell response to FMDV SAT1 and serotype C was induced. The studies also revealed that the local lymphoid tissue had detectable FMDV-specific ASCs in the absence of circulating FMDV-specific ASCs, indicating the presence of short-lived ASCs, a hallmark of a T-independent 2 (TI-2) antigenic response to inactivated FMDV capsid. IMPORTANCE We have demonstrated the development of intraserotype response following a sequential vaccination regime of four different FMDV serotypes. We have found indication of short-lived ASCs in the local lymphoid tissue, further evidence of a TI-2 response to FMDV. Copyright © 2017 American Society for Microbiology.
Physical non-viral gene delivery methods for tissue engineering.
Mellott, Adam J; Forrest, M Laird; Detamore, Michael S
2013-03-01
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.
OCT as a convenient tool to assess the quality and application of organotypic retinal samples
NASA Astrophysics Data System (ADS)
Gater, Rachel; Khoshnaw, Nicholas; Nguyen, Dan; El Haj, Alicia J.; Yang, Ying
2016-03-01
Eye diseases such as macular degeneration and glaucoma have profound consequences on the quality of human life. Without treatment, these diseases can lead to loss of sight. To develop better treatments for retinal diseases, including cell therapies and drug intervention, establishment of an efficient and reproducible 3D native retinal tissue system, enabled over a prolonged culture duration, will be valuable. The retina is a complex tissue, consisting of ten layers with a different density and cellular composition to each. Uniquely, as a light transmitting tissue, retinal refraction of light differs among the layers, forming a good basis to use optical coherence tomography (OCT) in assessing the layered structure of the retina and its change during the culture and treatments. In this study, we develop a new methodology to generate retinal organotypic tissues and compare two substrates: filter paper and collagen hydrogel, to culture the organotypic tissue. Freshly slaughtered pig eyes have been obtained for use in this study. The layered morphology of intact organotypic retinal tissue cultured on two different substrates has been examined by spectral domain OCT. The viability of the tissues has been examined by live/dead fluorescence dye kit to cross validate the OCT images. For the first time, it is demonstrated that the use of a collagen hydrogel supports the viability of retinal organotypic tissue, capable of prolonged culture up to 2 weeks. OCT is a convenient tool for appraising the quality and application of organotypic retinal samples and is important in the development of current organotypic models.
Physical non-viral gene delivery methods for tissue engineering
Mellott, Adam J.; Forrest, M. Laird; Detamore, Michael S.
2016-01-01
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications. PMID:23099792
The Effect of Commonly Used Excipients on the Epithelial Integrity of Human Cervicovaginal Tissue.
Hu, Minlu; Zhou, Tian; Dezzutti, Charlene S; Rohan, Lisa C
Pharmaceutical excipients are widely used in vaginal drug products. The epithelial integrity of the cervicovaginal tissue is important for HIV-1 prevention. However, the effects of excipients on cervicovaginal epithelium remain unknown. This study aims at assessing the effects of vaginal product excipients on the integrity of human cervicovaginal epithelium and on a lead HIV prevention antiretroviral drug, tenofovir (TFV). In the current study, nine excipients commonly used in vaginal formulations were incubated for 6 h with excised human ectocervical tissue. The effects of the excipients were examined by measuring the transepithelial electrical resistance (TEER), epithelial morphology, paracellular/transcellular permeability, and cell viability. The efficacy of TFV for preventing HIV-1 infection in the ex vivo cultured ectocervix was also tested. We found that disodium ethyl-enediaminetetraacetate (EDTA), sorbic acid, and benzoic acid had no effect on the tissue TEER. Butylated hydroxyanisole, glycerin, propylene glycol, methylparaben, and propylparaben slightly to moderately decreased tissue TEER, whereas citric acid significantly decreased the TEER in a time-dependent manner. Tissue morphology observed post-exposure strongly correlated with TEER data; however, a less strong correlation was observed between paracellular permeability and TEER data after exposure to different excipients. In addition, treatment with EDTA, methylparaben, and propylene glycol at tested levels had no effect on the efficacy of TFV in preventing tissue HIV-1 infection. In conclusion, the combined measurements of TEER, morphology, permeability, and viability using human cervicovaginal tissue represent a clinically relevant platform for safety evaluation of excipients and formulated products for HIV-1 prevention.
Stimulation of the Nonneuronal Cholinergic System by Highly Diluted Acetylcholine in Keratinocytes.
Uberti, Francesca; Bardelli, Claudio; Morsanuto, Vera; Ghirlanda, Sabrina; Cochis, Andrea; Molinari, Claudio
2017-01-01
The physiological effects of acetylcholine on keratinocytes depend on the presence of nicotinic and muscarinic receptors. The role of nonneuronal acetylcholine in keratinocytes could have important clinical implications for patients with various skin disorders such as nonhealing wounds. In order to evaluate the efficacy of highly diluted acetylcholine solutions obtained by sequential kinetic activation, we aimed to investigate the effects of these solutions on normal human keratinocytes. Two different concentrations (10 fg/mL and 1 pg/mL) and formulations (kinetically activated and nonkinetically activated) of acetylcholine were used to verify keratinocyte viability, proliferation, and migration and the intracellular pathways involved using MTT, crystal violet, wound healing, and Western blot compared to 147 ng/mL acetylcholine. The activated formulations (1 pg/mL and 10 fg/mL) revealed a significant capacity to increase migration, cell viability, and cell proliferation compared to 147 ng/mL acetylcholine, and these effects were more evident after a single administration. Sequential kinetic activation resulted in a statistically significant decrease in reactive oxygen species production accompanied by an increase in mitochondrial membrane potential and a decrease in oxygen consumption compared to 147 ng/mL acetylcholine. The M1 muscarinic receptor was involved in these effects. Finally, the involvement of ERK/mitogen-activated protein kinases (MAPK) and KI67 confirmed the effectiveness of the single treatment on cell proliferation. The intracellular pathways of calcium were investigated as well. Our results indicate for the first time that highly diluted and kinetically activated acetylcholine seems to play an active role in an in vitro model of wound healing. Moreover, the administration of acetylcholine within the physiological range may not only be effective but is also likely to be safe. © 2016 S. Karger AG, Basel.
Editorial Commentary: The Acellular Osteochondral Allograft, the Emperor Has New Clothes.
Mandelbaum, Bert R; Chahla, Jorge
2017-12-01
For larger lesions (>2.5-cm 2 ), clinical evidence and practice have shown that fresh osteochondral allograft have good durability, with 88% return to sport and greater than 75% 10-year survival rates for treatment of large femoral condyle lesions. That said, the use of fresh osteochondral allografts in clinical practice is limited by the availability of acceptable donor tissues for eligible patients in a timely fashion. Significant diminution of chondrocyte viability and density occurs during the preservation and storage period. All osteochondral allografts are not equal in performance and outcome. Chondrocyte density and viability are critical for successful transplantation and outcome in the short and long term. This commentary highlights the high failure rates of tissue when it is acellular. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Translational MR Neuroimaging of Stroke and Recovery
Mandeville, Emiri T.; Ayata, Cenk; Zheng, Yi; Mandeville, Joseph B.
2016-01-01
Multiparametric magnetic resonance imaging (MRI) has become a critical clinical tool for diagnosing focal ischemic stroke severity, staging treatment, and predicting outcome. Imaging during the acute phase focuses on tissue viability in the stroke vicinity, while imaging during recovery requires the evaluation of distributed structural and functional connectivity. Preclinical MRI of experimental stroke models provides validation of non-invasive biomarkers in terms of cellular and molecular mechanisms, while also providing a translational platform for evaluation of prospective therapies. This brief review of translational stroke imaging discusses the acute to chronic imaging transition, the principles underlying common MRI methods employed in stroke research, and experimental results obtained by clinical and preclinical imaging to determine tissue viability, vascular remodeling, structural connectivity of major white matter tracts, and functional connectivity using task-based and resting-state fMRI during the stroke recovery process. PMID:27578048
Feng, Yimiao; Fu, Xiaohui; Lou, Xintian; Fu, Baiping
2017-10-01
Periodontal ligament stem cells (PDLSCs) are considered a promising cell source for dental tissue regeneration. Stromal cell-derived factor 1 [SDF‑1, also known as chemokine (C‑X‑C motif) ligand 12] is regarded as a critical cytokine involved in stem/progenitor cell chemotaxis and homing during tissue regeneration. The present study described a previously unsuspected role for SDF‑1 in the protection of PDLSCs against oxidative stress‑induced apoptosis. In the present study, apoptosis was induced by exposure of PDLSCs to various concentrations of H2O2 for 12 h, following which cell viability was assessed, and cleaved caspase‑3 and ‑9 expression levels were evaluated. To investigate the potential mechanism underlying this protection, the protein expression levels of total and phosphorylated extracellular signal‑regulated kinase (ERK), a key protein of the mitogen‑activated protein kinase (MAPK) signaling pathway, were examined. The results of the present study revealed that SDF‑1 pretreatment increased cell viability following H2O2 administration, and downregulated protein expression levels of activated caspase‑3 and ‑9. Furthermore, treatment with SDF‑1 increased the phosphorylation of ERK. The protective effect of SDF‑1 was partially inhibited by treatment with PD98059, a MAPK/ERK inhibitor, which decreased cell viability. The results of the present study suggested that SDF‑1 treatment is a potential strategy to improve the survival of PDLSCs, which may be beneficial for dental tissue regeneration.
Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells.
Bhuptani, Ronak S; Patravale, Vandana B
2016-12-30
The collective power of stem cells due to their evident advantages is incessantly investigated in regenerative medicine to be the next generation exceptional remedy for tissue regeneration and treatment of diseases. Stem cells are highly sensitive and a 3D culture environment is a requisite for its successful transplantation and integration with tissues. Porous microscaffolds can create a 3D microenvironment for growing stems cells, controlling their fate both in vitro and in vivo. In the present study, interconnected porous PLGA microscaffolds were fabricated, characterized and employed to propagate human dental pulp mesenchymal stem cells (DPMSCs) in vitro. The porous topography was investigated by scanning electron microscopy and the pore size was controlled by fabrication conditions such as the concentration of porogen. DPMSCs were cultured on microscaffolds and were evaluated for their morphology, attachment, proliferation, cell viability via MTT and molecular expression (RT-PCR). DPMSCs were adequately proliferated and adhered over the microscaffolds forming a 3D cell-microscaffold construct. The average number of DPMSCs grown on PLGA microscaffolds was significantly higher than monolayer 2D culture during 5th and 7th day. Moreover, cell viability and gene expression results together corroborated that microscaffolds maintained the viability, stemness and plasticity of the cultured dental pulp mesenchymal stem cells. The novel porous microscaffold developed acts as promising scaffold for 3D culture and survival and transplantation of stem cells for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Sherwood, Mark Brian
2006-01-01
Purpose The purpose of this study was to evaluate the concept of targeting mediators of the scarring process at multiple points across the course of bleb failure, in order to prolong bleb survival. Methods There were three linked parts to the experiment. In the first part, a cannula glaucoma filtration surgery (GFS) was performed on 32 New Zealand White (NZW) rabbits, and bleb survival was assessed for six different regimens plus controls by grading bleb height and width. For the second part of the study, the same GFS surgery was performed on an additional 10 NZW rabbits. Two additional filtering blebs were treated with balanced saline solution (BSS), two received mitomycin-C (MMC) (0.4 mg/mL), and for the remaining six, a sequential regimen was given consisting of 200 mmol/L mannose-6-phosphate (M-6-P) solution at the time of surgery, followed by subconjunctival injections of antibody to connective tissue growth factor at days 2 and 4, and Ilomastat, a broad-spectrum matrix metalloproteinase inhibitor, at days 7, 12, and 20 postoperatively. Bleb survival was again assessed. In the final part of the experiment, blebs treated with either BSS, MMC, or the above sequential multitreatment regimen were examined histologically at 14 days postoperatively in three additional NZW rabbits. Results All six individual therapies selected resulted in some improvement of bleb survival compared to BSS control. Blebs treated with the new sequential, multitreatment protocol survived an average of 29 days (regression slope, P < .0001 compared to control), those receiving BSS an average of 17 days, and those treated with MMC (0.4 mg/mL) an average of 36 days. The sequential, multitreatment regimen was significantly superior to any of the six monotherapies for time to zero analysis (flattening) of the bleb (P < .002). Histologic examination of the bleb tissues showed a markedly less epithelial thinning, subepithelial collagen thinning, and goblet cell loss in the multitreatment group, when compared with the MMC blebs. Conclusions In a rabbit model of GFS, a sequential, targeted, multitreatment approach prolonged bleb survival compared to BSS controls and decreased bleb tissue morphological changes when compared to those treated with MMC. It is not known whether these findings can be reproduced in humans, and further work is needed to determine an optimum regimen and timing of therapeutic delivery. PMID:17471357
De Colli, Marianna; Tortorella, Paolo; Marconi, Guya Diletta; Agamennone, Mariangela; Campestre, Cristina; Tauro, Marilena; Cataldi, Amelia; Zara, Susi
2016-11-01
Bisphosphonates (BPs) are drugs clinically used in resorptive diseases. It was already proved that some clinically relevant BPs can inhibit a class of enzymes called matrix metalloproteinases (MMPs), required during tissue remodelling. Combining the arylsulfonamide function with the bisphosphonic group, several compounds were synthesized to obtain selective inhibitors of MMPs. The aim of the present study was to compare the effect of zoledronic acid (ZA), the most potent bisphosphonate available as therapy, with new sulfonamide containing BPs in an in vitro model of human gingival fibroblasts (HGFs). Western blot was used to measure procollagen I, β1 integrin MMP-8 and MMP-9, phase contrast and MTT for cell viability; L-lactate-dehydrogenase (LDH) measurement was performed for toxicity evaluation and ELISA for prostaglandin E 2 (PGE 2 ) secretion assessment. When compared with ZA, the treatment with the newly synthesized compounds shows increasing viability, procollagen I expression and decreased expression of β1 integrin in HGFs. Higher levels of released LDH, PGE 2 and MMP-9 expression are recorded in ZA-treated HGFs. Increased levels of MMP-8 are recorded in newly synthesized compounds-treated samples. These findings allowed to conclude that new tested BPs did not affect HGFs viability and adhesion, did not induce cellular toxicity, were not responsible for inflammatory event induction and could preserve the physiological matrix turnover. It could be hypothesized that the new molecules were better tolerated by soft tissues, resulting in lesser side effects.
A chamber for the perfusion of in vitro tissue with multiple solutions
Covington, James A.; Wall, Mark J.
2013-01-01
There are currently no practical systems that allow extended regions (>5 mm2) of a tissue slice in vitro to be exposed, in isolation, to changes in ionic conditions or to pharmacological manipulation. Previous work has only achieved this at the expense of access to the tissue for recording electrodes. Here, we present a chamber that allows a tissue slice to be maintained in multiple solutions, at physiological temperatures, and preserves the ability to record from the slice. We demonstrate the effectiveness of the tissue bath with respect to minimizing the mixing of the solutions, maintaining the viability of the tissue, and preserving the ability to record from the slice simultaneously. PMID:23576703
Laser-induced cartilage damage: an ex-vivo model using confocal microscopy
NASA Astrophysics Data System (ADS)
Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas
1999-06-01
Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell viability and metabolism. Ho:YAG and Er:YAG lasers emitting at 2.1 micrometer and 2.94 micrometer, respectively, are ideally suited for tissue treatment because these wavelengths are strongly absorbed in water. The Purpose of the present study is to evaluate the effect of laser type and energy on chondrocyte viability in an ex vivo model. Free running Er:YAG (E equals 100 and 150 mJ) and Ho:YAG (E equals 500 and 800 mJ) lasers were used at different energy levels using a fixed pulse length of 400 microseconds. The energy was delivered at 8 Hz through optical fibers. Fresh bovine hyaline cartilage samples were mounted in a water bath at room temperature and the fiber was positioned at 30 degree and 180 degree angles relative to the tissue surface. After laser irradiation the samples were assessed by a life-dead cell viability test using a confocal microscope and by standard histology. Thermal damage was much deeper with Ho:YAG (up to 1800 micrometer) than with the Er:YAG laser (up to 70 micrometer). The cell viability test revealed a damage zone about twice the one determined by standard histology. Confocal microscopy is a powerful tool for assessing changes in tissue structure after laser treatment. In addition this technique allows to quantify these alterations without necessitating time consuming and expensive animal experiments.
MICROORGANISMS, PRESERVATION), (*PRESERVATION, MICROORGANISMS), (*TISSUE CULTURE CELLS, PRESERVATION), MAMMALS, PENICILLIUM (PENICILLINS), VIBRIO, STAPHYLOCOCCUS AUREUS, FUNGI, STORAGE, FREEZING, VIABILITY
Three parameters optimizing closed-loop control in sequential segmental neuromuscular stimulation.
Zonnevijlle, E D; Somia, N N; Perez Abadia, G; Stremel, R W; Maldonado, C J; Werker, P M; Kon, M; Barker, J H
1999-05-01
In conventional dynamic myoplasties, the force generation is poorly controlled. This causes unnecessary fatigue of the transposed/transplanted electrically stimulated muscles and causes damage to the involved tissues. We introduced sequential segmental neuromuscular stimulation (SSNS) to reduce muscle fatigue by allowing part of the muscle to rest periodically while the other parts work. Despite this improvement, we hypothesize that fatigue could be further reduced in some applications of dynamic myoplasty if the muscles were made to contract according to need. The first necessary step is to gain appropriate control over the contractile activity of the dynamic myoplasty. Therefore, closed-loop control was tested on a sequentially stimulated neosphincter to strive for the best possible control over the amount of generated pressure. A selection of parameters was validated for optimizing control. We concluded that the frequency of corrections, the threshold for corrections, and the transition time are meaningful parameters in the controlling algorithm of the closed-loop control in a sequentially stimulated myoplasty.
Effect of sodium hypochlorite on human pulp cells: an in vitro study
Essner, Mark D.; Javed, Amjad; Eleazer, Paul D.
2014-01-01
Background The purpose of this study was to determine the effect of sodium hypochlorite (NaOCl) on human pulp cells to provide an aid in determining its optimum concentration in maintaining the viability of remaining pulp cells in the revascularization of immature permanent teeth with apical periodontitis. Study design Human pulp tissue cells taken from extracted third molars were plated, incubated, and subjected to various concentrations of NaOCl (0.33%, 0.16%, 0.08%, and 0.04%) for 5-, 10-, and 15-minute time intervals to simulate possible contact times in vivo. The Cell Titer–Glo Luminescent Cell Viability Assay was used to determine the number of viable cells present in culture following treatment. Results The results showed an increase in cell viability with the lowering of NaOCl concentration. The use of 0.04% NaOCl was similar to the control, indicating nearly complete preservation of cell viability at all time intervals tested. As sodium hypochlorite concentration increased from 0.04% to 0.33%, cell viability decreased correspondingly. Conclusions The results indicate that the lowest concentration of NaOCl tested did not affect the viability of cells. This may prove beneficial in developing a new treatment protocol to help preserve existing vital pulp cells in revascularization cases. PMID:21821446
Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R.; Rosas, Ivan; Ai, Xingbin
2016-01-01
Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca2+-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca2+ oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease. PMID:26550921
Fabrication and Characterization of Magnesium Ferrite-Based PCL/Aloe Vera Nanofibers
Thompson, Zanshe; Rahman, Shekh; Yarmolenko, Sergey; Sankar, Jagannathan; Kumar, Dhananjay
2017-01-01
Composite nanofibers of biopolymers and inorganic materials have been widely explored as tissue engineering scaffolds because of their superior structural, mechanical and biological properties. In this study, magnesium ferrite (Mg-ferrite) based composite nanofibers were synthesized using an electrospinning technique. Mg-ferrite nanoparticles were first synthesized using the reverse micelle method, and then blended in a mixture of polycaprolactone (PCL), a synthetic polymer, and Aloe vera, a natural polymer, to create magnetic nanofibers by electrospinning. The morphology, structural and magnetic properties, and cellular compatibility of the magnetic nanofibers were analyzed. Mg-ferrite/PCL/Aloe vera nanofibers showed good uniformity in fiber morphology, retained their structural integrity, and displayed magnetic strength. Experimental results, using cell viability assay and scanning electron microscopy imaging showed that magnetic nanofibers supported 3T3 cell viability. We believe that the new composite nanofibrous membranes developed in this study have the ability to mimic the physical structure and function of tissue extracellular matrix, as well as provide the magnetic and soluble metal ion attributes in the scaffolds with enhanced cell attachment, and thus improve tissue regeneration. PMID:28800071
Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin
2016-05-01
Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease.
Localized Cell and Drug Delivery for Auditory Prostheses
Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.
2011-01-01
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323
Cryopreservation of tissue engineered constructs for bone.
Kofron, Michelle D; Opsitnick, Natalie C; Attawia, Mohamed A; Laurencin, Cato T
2003-11-01
The large-scale clinical use of tissue engineered constructs will require provisions for its mass availability and accessibility. Therefore, it is imperative to understand the effects of low temperature (-196 degrees C) on the tissue engineered biological system. Initial studies used samples of the osteoblast-like cell line (SaOS-2) adhered to a two-dimensional poly(lactide-co-glycolide) thin film (2D-PLAGA) or a three-dimensional poly(lactide-co-glycolide) sintered microsphere matrix (3D-PLAGA) designed for bone tissue engineering. Experimental samples were tested for their ability to maintain cell viability, following low temperature banking for one week, in solutions of the penetrating cryoprotective agents, dimethylsulfoxide (DMSO), ethylene glycol, and glycerol. Results indicated the DMSO solution yielded the greatest percent cell survival for SaOS-2 cells adhered to both the 2D- and 3D-PLAGA scaffolds; therefore, DMSO was used to cryopreserve mineralizing primary rabbit osteoblasts cells adhered to 2D-PLAGA matrices for 35 days. Results indicated retention of the extracellular matrix architecture as no statistically significant difference in the pre- and post-thaw mineralized structures was measured. Percent cell viability of the mineralized constructs following low temperature storage was approximately 50%. These are the first studies to address the issue of preservation techniques for tissue engineered constructs. The ability to successfully cryopreserve mineralized tissue engineered matrices for bone may offer an unlimited and readily available source of bone-like materials for orthopaedic applications.
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu Ling; Pei, Ying Hua
2013-01-01
Airway granulation tissue and scar formation pose a challenge because of the high incidence of recurrence after treatment. As an emerging treatment modality, topical application of mitomycin C has potential value in delaying the recurrence of airway obstruction. Several animal and clinical studies have already proven its feasibility and efficacy. However, the ideal dosage has still not been determined. To establish a novel method for culturing primary fibroblasts isolated from human airway granulation tissue, and to investigate the dose-effect of mitomycin C on the fibroblast proliferation in vitro, so as to provide an experimental reference for clinical practitioners. Granulation tissues were collected during the routine bronchoscopy at our department. The primary fibroblasts were obtained by culturing the explanted tissues. The cells were treated with different concentrations of mitomycin C (0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml) for 5 min followed by additional 48-hour culture before an MTT assay was performed to measure cell viability. MTT assay showed that mitomycin C reduced cell viability at all tested concentrations. The inhibitory ratios were 10.26, 26.77, 32.88, 64.91 and 80.45% for cells treated with mitomycin C at 0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml, respectively. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissue, and mitomycin C can inhibit proliferation of the fibroblasts in vitro. Copyright © 2013 S. Karger AG, Basel.
Soares, M; Sahrari, K; Chiti, M C; Amorim, C A; Ambroise, J; Donnez, J; Dolmans, M-M
2015-07-01
What is the best source of ovarian cells for the artificial ovary: medulla or cortex, cryopreserved or fresh? Ovarian cells from fresh medullary tissue, which can be isolated in larger numbers, show higher viability and are able to improve graft vascularization. In a previous study, addition of endothelial cells along with ovarian cells was found to be crucial for formation of a well-vascularized ovary-like structure. This study is the first to evaluate both the effect of cryopreservation and the source of ovarian tissue on isolated ovarian cells. Prospective experimental study in an academic research unit using ovarian tissue from seven patients undergoing surgery for benign gynecologic disease. Ovarian tissue was retrieved from seven patients, with one half processed as fresh (fresh group) and the other half frozen and thawed before processing (frozen group). In each group, ovarian cells from the cortex and medulla were isolated separately, and their viability was tested using a calcein AM/ethidium homodimer viability assay. Fifty thousand cells were then encapsulated in fibrin and grafted to peritoneal pockets in nude mice (14 in all). Grafts recovered after 7 days were analyzed by immunohistochemistry for the presence of ovarian cells (vimentin), proliferation (Ki67) and graft vascularization (double CD34). Cell apoptosis was analyzed by TUNEL assay. Cryopreservation decreased ovarian cell yield (-2804 cells/mg, P = 0.015) and viability (-9.72%, P = 0.052) before grafting and had a considerable (5-fold, P = 0.2) but non-significant negative impact on ovarian cell presence in grafts. The medulla yielded many more cells (+3841 cells/mg, P < 0.001) with higher viability (+18.23%, P < 0.001) than did the cortex. Moreover, grafts with cells from the medulla exhibited a statistically significant 6.44- and 2.47-fold increase in human and total vascular surface area, respectively. P-values were adjusted for multiple testing using the Benjamini-Hochberg method to achieve a 10% false discovery rate and adjusted P-values < 0.1 were therefore considered significant. Pilot study involving a limited number of experiments. Knowing that fresh medullary tissue is the best source of stromal cells is important for construction of the artificial ovary, as isolated follicles require structural support and a rich vascular network for their survival and development. This work was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (5/4/150/5 and 7.4518.12F), Fonds Spéciaux de Recherche, Fondation Saint Luc and Foundation Against Cancer, and donations from Mr Pietro Ferrero, Baron Frère and Viscount Philippe de Spoelberch. None of the authors have any conflicting interests to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
How to assess intestinal viability during surgery: A review of techniques
Urbanavičius, Linas; Pattyn, Piet; Van de Putte, Dirk; Venskutonis, Donatas
2011-01-01
Objective and quantitative intraoperative methods of bowel viability assessment are essential in gastrointestinal surgery. Exact determination of the borderline of the viable bowel with the help of an objective test could result in a decrease of postoperative ischemic complications. An accurate, reproducible and cost effective method is desirable in every operating theater dealing with abdominal operations. Numerous techniques assessing various parameters of intestinal viability are described by the studies. However, there is no consensus about their clinical use. To evaluate the available methods, a systematic search of the English literature was performed. Virtues and drawbacks of the techniques and possibilities of clinical application are reviewed. Valuable parameters related to postoperative intestinal anastomotic or stoma complications are analyzed. Important issues in the measurement and interpretation of bowel viability are discussed. To date, only a few methods are applicable in surgical practice. Further studies are needed to determine the limiting values of intestinal tissue oxygenation and flow indicative of ischemic complications and to standardize the methods. PMID:21666808
Åhrman, Emma; Hallgren, Oskar; Malmström, Lars; Hedström, Ulf; Malmström, Anders; Bjermer, Leif; Zhou, Xiao-Hong; Westergren-Thorsson, Gunilla; Malmström, Johan
2018-03-01
Remodeling of the extracellular matrix (ECM) is a common feature in lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Here, we applied a sequential tissue extraction strategy to describe disease-specific remodeling of human lung tissue in disease, using end-stages of COPD and IPF. Our strategy was based on quantitative comparison of the disease proteomes, with specific focus on the matrisome, using data-independent acquisition and targeted data analysis (SWATH-MS). Our work provides an in-depth proteomic characterization of human lung tissue during impaired tissue remodeling. In addition, we show important quantitative and qualitative effects of the solubility of matrisome proteins. COPD was characterized by a disease-specific increase in ECM regulators, metalloproteinase inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas for IPF, impairment in cell adhesion proteins, such as collagen VI and laminins, was most prominent. For both diseases, we identified increased levels of proteins involved in the regulation of endopeptidase activity, with several proteins belonging to the serpin family. The established human lung quantitative proteome inventory and the construction of a tissue-specific protein assay library provides a resource for future quantitative proteomic analyses of human lung tissues. We present a sequential tissue extraction strategy to determine changes in extractability of matrisome proteins in end-stage COPD and IPF compared to healthy control tissue. Extensive quantitative analysis of the proteome changes of the disease states revealed altered solubility of matrisome proteins involved in ECM regulators and cell-ECM communication. The results highlight disease-specific remodeling mechanisms associated with COPD and IPF. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
Ahn, Geunseon; Park, Jeong Hun; Kang, Taeyun; Lee, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2010-10-01
The aim of this study was to maximize oxygen diffusion within a three-dimensional scaffold in order to improve cell viability and proliferation. To evaluate the effect of pore architecture on oxygen diffusion, we designed a regular channel shape with uniform diameter, referred to as cylinder shaped, and a new channel shape with a channel diameter gradient, referred to as cone shaped. A numerical analysis predicted higher oxygen concentration in the cone-shaped channels than in the cylinder-shaped channels, throughout the scaffold. To confirm these numerical results, we examined cell proliferation and viability in 2D constructs and 3D scaffolds. Cell culture experiments revealed that cell proliferation and viability were superior in the constructs and scaffolds with cone-shaped channels.
López-García, Jorge; Kuceková, Zdenka; Humpolíček, Petr; Mlček, Jiři; Sáha, Petr
2013-10-30
The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.
Clancy, Neil T.; Stoyanov, Danail; James, David R. C.; Di Marco, Aimee; Sauvage, Vincent; Clark, James; Yang, Guang-Zhong; Elson, Daniel S.
2012-01-01
Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities. PMID:23082296
Viability and infectivity of Ichthyophonus sp. in post-mortem Pacific herring, Clupea pallasii
Kocan, Richard M.; Hart, Lucas M.; Lewandowski, Naomi; Hershberger, Paul
2014-01-01
Ichthyophonus-infected Pacific herring, Clupea pallasii, were allowed to decompose in ambient seawater then serially sampled for 29 days to evaluate parasite viability and infectivity for Pacific staghorn sculpin, Leptocottus armatus. Ichthyophonus sp. was viable in decomposing herring tissues for at least 29 days post-mortem and could be transmitted via ingestion to sculpin for up to 5 days. The parasite underwent morphologic changes during the first 48 hr following death of the host that were similar to those previously reported, but as host tissue decomposition progressed, several previously un-described forms of the parasite were observed. The significance of long-term survival and continued morphologic transformation in the post-mortem host is unknown, but it could represent a saprozoic phase of the parasite life cycle that has survival value for Ichthyophonus sp.
Jang, Sung Won; Koh, In Jun; Kim, Man Soo; Kim, Ju Yeong; In, Yong
2016-11-01
The sequential medial release technique including semimembranosus (semiM) release is effective and safe during varus total knee arthroplasty (TKA). However, there are concerns about weakening of knee flexion strength after semiM release. We determined whether semiM release to balance the medial soft tissue decreased knee flexion strength after TKA. Fifty-nine consecutive varus knees undergoing TKA were prospectively enrolled. A 3-step sequential release protocol which consisted of release of (1) the deep medial collateral ligament (dMCL), (2) the semiM, and (3) the superficial medial collateral ligament based on medial tightness. Gap balancing was obtained after dMCL release in 31 knees. However, 28 knees required semiM release or more after dMCL release. Isometric muscle strength of the knee was compared 6 months postoperatively between the semiM release and semiM nonrelease groups. Knee stability and clinical outcomes were also compared. No differences in knee flexor or extensor peak torque were observed between the groups 6 months postoperatively (P = .322 and P = .383, respectively). No group difference was observed in medial joint opening angle on valgus stress radiographs (P = .327). No differences in the Knee Society or Western Ontario and McMaster Universities Osteoarthritis Index scores were detected between the groups (P = .840 and P = .682, respectively). These results demonstrate that semiM release as a sequential step to balance medial soft tissue in varus knees did not affect knee flexion strength after TKA. Copyright © 2016 Elsevier Inc. All rights reserved.
Human Hepatocyte Isolation: Does Portal Vein Embolization Affect the Outcome?
Kluge, Martin; Reutzel-Selke, Anja; Napierala, Hendrik; Hillebrandt, Karl Herbert; Major, Rebeka Dalma; Struecker, Benjamin; Leder, Annekatrin; Siefert, Jeffrey; Tang, Peter; Lippert, Steffen; Sallmon, Hannes; Seehofer, Daniel; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael
2016-01-01
Primary human hepatocytes are widely used for basic research, pharmaceutical testing, and therapeutic concepts in regenerative medicine. Human hepatocytes can be isolated from resected liver tissue. Preoperative portal vein embolization (PVE) is increasingly used to decrease the risk of delayed postoperative liver regeneration by induction of selective hypertrophy of the future remnant liver tissue. The aim of this study was to investigate the effect of PVE on the outcome of hepatocyte isolation. Primary human hepatocytes were isolated from liver tissue obtained from partial hepatectomies (n = 190) using the two-step collagenase perfusion technique followed by Percoll purification. Of these hepatectomies, 27 isolations (14.2%) were performed using liver tissue obtained from patients undergoing PVE before surgery. All isolations were characterized using parameters that had been described in the literature as relevant for the outcome of hepatocyte isolation. The isolation outcomes of the PVE and the non-PVE groups were then compared before and after Percoll purification. Metabolic parameters (transaminases, urea, albumin, and vascular endothelial growth factor secretion) were measured in the supernatant of cultured hepatocytes for more than 6 days (PVE: n = 4 and non-PVE: n = 3). The PVE and non-PVE groups were similar in regard to donor parameters (sex, age, and indication for surgery), isolation parameters (liver weight and cold ischemia time), and the quality of the liver tissue. The mean initial viable cell yield did not differ between the PVE and non-PVE groups (10.16 ± 2.03 × 10(6) cells/g vs. 9.70 ± 0.73 × 10(6) cells/g, p = 0.499). The initial viability was slightly better in the PVE group (77.8% ± 2.03% vs. 74.4% ± 1.06%). The mean viable cell yield (p = 0.819) and the mean viability (p = 0.141) after Percoll purification did not differ between the groups. PVE had no effect on enzyme leakage and metabolic activity of cultured hepatocytes. Although PVE leads to drastic metabolic alterations and changes in hepatic blood flow, embolized liver tissue is a suitable source for the isolation of primary human hepatocytes and is equivalent to untreated liver tissue in regard to cell yield and viability.
Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J
2015-09-01
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Layer by Layer Three-dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets
Moon, SangJun; Hasan, Syed K.; Song, Young S.; Xu, Feng; Keles, Hasan Onur; Manzur, Fahim; Mikkilineni, Sohan; Hong, Jong Wook; Nagatomi, Jiro; Haeggstrom, Edward; Khademhosseini, Ali
2010-01-01
The ability to bioengineer three-dimensional (3D) tissues is a potentially powerful approach to treat diverse diseases such as cancer, loss of tissue function, or organ failure. Traditional tissue engineering methods, however, face challenges in fabricating 3D tissue constructs that resemble the native tissue microvasculature and microarchitectures. We have developed a bioprinter that can be used to print 3D patches of smooth muscle cells (5 mm × 5 mm × 81 μm) encapsulated within collagen. Current inkjet printing systems suffer from loss of cell viability and clogging. To overcome these limitations, we developed a system that uses mechanical valves to print high viscosity hydrogel precursors containing cells. The bioprinting platform that we developed enables (i) printing of multilayered 3D cell-laden hydrogel structures (16.2 μm thick per layer) with controlled spatial resolution (proximal axis: 18.0 ± 7.0 μm and distal axis: 0.5 ± 4.9 μm), (ii) high-throughput droplet generation (1 s per layer, 160 droplets/s), (iii) cell seeding uniformity (26 ± 2 cells/mm2 at 1 million cells/mL, 122 ± 20 cells/mm2 at 5 million cells/mL, and 216 ± 38 cells/mm2 at 10 million cells/mL), and (iv) long-term viability in culture (>90%, 14 days). This platform to print 3D tissue constructs may be beneficial for regenerative medicine applications by enabling the fabrication of printed replacement tissues. PMID:19586367
Comparative drought resistance of five conifers and foliage moisture content as a viability index.
Richard P. Pharis
1966-01-01
Whole plant lethal points of foliage moisture content (FMC) for ponderosa pine, sugar pine, Douglas-fir, grand fir, and incense-cedar were established from foliage tissue of various ages. Exact lethal level depended upon the age of the tissue, but there was a general plateau between the ages 6 and 13 months for sugar pine and Douglas-fir and 3 and 13 months for incense...
In Vitro/In Vivo Evaluation of Dexamethasone--PAMAM Dendrimer Complexes for Retinal Drug Delivery.
Yavuz, Burçin; Pehlivan, Sibel Bozdağ; Vural, İmran; Ünlü, Nurşen
2015-11-01
Current treatment options for diabetic retinopathy (DR) have side effects because of invasive application and topical application does not generally result in therapeutic levels in the target tissue. Therefore, improving the drug delivery to retina, following topical administration, might be a solution to DR treatment problems. The purpose of this study was to investigate the complexation effects of poly(amidoamine) (PAMAM) dendrimers on ocular absorption of dexamethasone (DEX). Using different PAMAM generations, complex formulations were prepared and characterized. Formulations were evaluated in terms of cytotoxicity and cell permeability, as well as ex vivo transport across ocular tissues. The ocular pharmacokinetic properties of DEX formulations were studied in Sprague-Dawley rats following topical and subconjunctival applications, to evaluate the effect of PAMAM on retinal delivery of DEX. Methyl-thiazol-tetrazolium (MTT) assay indicated that all groups resulted in cell viability comparable to DEX solution (87.5%), with the cell viability being the lowest for G3 complex at 73.5%. Transport study results showed that dendrimer complexation increases DEX transport across both cornea and sclera tissues. The results of in vivo studies were also indicated that especially anionic DEX-PAMAM complex formulations have reached higher DEX concentrations in ocular tissues compared with plain DEX suspension. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
The expression and function of epithelial membrane protein 1 in laryngeal carcinoma.
Li, Hong; Zhang, Xiaowen; Jiang, Xuejun; Ji, Xu
2017-01-01
In this study, we compared the expression of epithelial membrane protein 1 (EMP1) on the steady-state mRNA level (by quantitative real-time PCR) and on the protein level (by western immunoblot and immunohistochemistry) in 51 pairs of laryngeal carcinoma tissues and matched cancer-free peritumor tissues, and we analyzed the correlation between EMP1 expression and different clinicopathological factors. Furthermore, we ectopically expressed EMP1 in human laryngeal carcinoma Hep-2 cells and examined the effects on cell viability, apoptosis, colonogenicity, and motility, by MTT assay, flow cytometry, colony formation assay and Transwell migration assay, respectively. EMP1 expression (on both the mRNA and protein levels) was significantly lower in the cancer tissues than in matched peritumor tissues (P<0.05). In laryngeal cancers, the level of EMP1 protein was correlated with histological grade (P<0.05), but not with age, gender, clinical stage, cancer subtype or lymph node metastasis (P>0.05). Functionally, ectopic expression of EMP1 in Hep-2 cells significantly reduced cell viability, colony formation, and migration, but enhanced apoptosis. Therefore, EMP1 is a tumor suppressor in laryngeal carcinoma. Boosting EMP1 expression in laryngeal carcinoma initiates multiple anticancer phenotypes and thus presents a promising therapeutic strategy for laryngeal cancer.
Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M
2016-03-01
It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material. Copyright © 2015 Elsevier B.V. All rights reserved.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842
2016-01-01
Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs. PMID:26650970
Fabrication and Handling of 3D Scaffolds Based on Polymers and Decellularized Tissues.
Shpichka, Anastasia; Koroleva, Anastasia; Kuznetsova, Daria; Dmitriev, Ruslan I; Timashev, Peter
2017-01-01
Polymeric, ceramic and hybrid material-based three-dimensional (3D) scaffold or matrix structures are important for successful tissue engineering. While the number of approaches utilizing the use of cell-based scaffold and matrix structures is constantly growing, it is essential to provide a framework of their typical preparation and evaluation for tissue engineering. This chapter describes the fabrication of 3D scaffolds using two-photon polymerization, decellularization and cell encapsulation methods and easy-to-use protocols allowing assessing the cell morphology, cytotoxicity and viability in these scaffolds.
Inanç, Bülend; Arslan, Y Emre; Seker, Sükran; Elçin, A Eser; Elçin, Y Murat
2009-07-01
Periodontal tissue engineering is expected to overcome the limitations associated with the existing regenerative techniques for the treatment of periodontal defects involving alveolar bone, cementum, and periodontal ligament. Cell-based tissue engineering approaches involve the utilization of in vitro expanded cells with regenerative capacity and their delivery to the appropriate sites via biomaterial scaffolds. The aim of this study was to establish living periodontal ligament cell-containing structures on electrospun poly(DL-lactic-co-glycolic acid) (PLGA) nanofiber membrane scaffolds, assess their viability and characteristics, and engineer multilayered structures amenable to easy handling. Human periodontal ligament (hPDL) cells were expanded in explant culture and then characterized morphologically and immunohistochemically. PLGA nanofiber membranes were prepared by the electrospinning process; mechanical tensile properties were determined, surface topography, nanofiber size, and porosity status were investigated with SEM. Cells were seeded on the membranes at approximately 50,000 cell/cm(2) and cultured for 21 days either in expansion or in osteogenic induction medium. Cell adhesion and viability were demonstrated using SEM and MTT, respectively, and osteogenic differentiation was determined with IHC and immunohistomorphometric evaluation of osteopontin, osteocalcin, and bone sialoprotein marker expression. At days 3, 6, 9, and 12 additional cell/membrane layers were deposited on the existing ones and multilayered hybrid structures were established. Results indicate the feasibility of periodontal ligament cell-containing tissue-like structures engineering with PDL cells and electrospun nanofiber PLGA scaffolds supporting cell adhesion, viability and osteogenic differentiation properties of cells in hybrid structures amenable to macroscopic handling.
Wang, Yongkun; Liang, Tingting; Wang, Yao; Huang, Yan; Li, Ye
2017-01-01
Osteosarcoma is a malignant tumor of the skeletal system. Long non-coding RNAs (lncRNAs) have been shown to play significant role in osteosarcoma. The present study evaluated the effects and mechanism of lncRNA AK093407 in osteosarcoma. The study included human osteosarcoma cell line, U-2OS. Cell proliferation, viability, and apoptosis were measured using Ki-67 proliferation assay, MTT assay, and Annexin V/PI staining assay, respectively. Relative mRNA and protein expressions were measured using qRT-PCR and western blot, respectively. Interaction between AK093407 and STAT3 was identified using mass spectrometry and RNA pull-down assay. Results revealed that AK093407 was highly expressed in osteosarcoma cells and tissues. Then we demonstrated that overexpression of AK093407 promoted cell proliferation and viability and inhibited apoptosis, whereas suppression of AK093407 showed opposite effects. In addition, AK093407 regulated the expression of genes and proteins (Bcl-2, TGF-β, NF-κB, and PCNA) involved in the cell proliferation, viability, and apoptosis. Furthermore, we showed that AK093407 interacted with STAT3, and promoted its phosphorylation. Lastly, we showed that STAT3 activation was essential for the effects of AK093407 on cell proliferation and apoptosis as the overexpression of AK093407 in the presence of STAT3 inhibitor did not promote cell proliferation and inhibit cell apoptosis. AK093407 is highly expressed in osteosarcoma cells and tissues, and promotes cell proliferation and viability and inhibits apoptosis of osteosarcoma cell line U-2OS via STAT3 activation. PMID:28469961
Apoptosis in fresh and cryopreserved cardiac valves of pig samples.
Rendal Vázquez, M Esther; Díaz Román, T M; Rodríguez Cabarcos, M; Zavanella Botta, C; Domenech García, N; González Cuesta, M; Sánchez Dopico, M J; Pértega Díaz, S; Andión Núñez, C
2008-06-01
To analyse the influence of cold ischemic time (CIT) (2-24 h) and of cryopreservation (liquid phase) on the viability of the valvular fibroblasts and in the presence of apoptosis. Cardiac valves from 10 pigs were evaluated by anatomo-pathological study of the wall, muscle and leaflet. At the same time, the presence of cellular death due to apoptosis was investigated in two ways; directly on tissue by Apodetec system and by two-colour flow cytometry assay analyzing a suspension of fibroblast from valve leaflets using Anexina V and propidium iodure (PI). We established three groups of samples to compare different experimental conditions: 2 h of ischemia (group 1), 24 h of ischemia (group 2), and a programme of cryopreservation (-1 degrees C/min) after 2 h of ischemia, followed by storage in liquid nitrogen during a week and thawing was performed (group 3). The analysis of viabilities showed slight differences between all three groups. The results indicated CIT of 24 h undergoing more structural affectation than CIT of 2 h. Flow cytometry analysis did not show important differences between groups; however cryopreserved samples (group 3) slightly less viability and a higher percentage of death by apoptosis than group 1 and 2 using flow cytometry. Apoptosis was confirmed on tissue from all valves but mainly in samples of group 2 and group 3. In summary, the viability of the valves in the case of ischemic times of 2 h, 24 h or after cryopreservation/thawing differs slightly. The death of the cells is mainly mediated by necrosis and not by apoptosis.
Metabolism of 7-ethyoxycoumarin by Isolated Perfused Rainbow Trout Livers
Isolated trout livers were perfused using methods designed to preserve tissue viability and function. Liver performance was evaluated by measuring O2 consumption, vascular resistance, K+ leakage, glucose flux, lactate flux, alanine aminotransferase leakage, and metabolic clearanc...
Honey, bee pollen and vegetable oil unsaponifiables in wound healing.
Ragno, Alessandro; Cavallaro, Emanuela; Marsili, Daniele; Apa, Michele; D'Erasmo, Laura; Martin, Luis Severino
2016-08-01
We would like to remark on the mechanisms and therapeutic properties of honey, bee pollen and unsaponifiable fractions of vegetable oils in wound healing. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Nanocomposites for bone tissue regeneration.
Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin
2013-04-01
Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.
Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C
2013-01-01
Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. PMID:23593935
Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha
2012-06-22
Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function. Copyright © 2012 Elsevier Inc. All rights reserved.
Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi
2014-11-15
Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Burtch, Stephanie R; Sameti, Mahyar; Olmstead, Richard T; Bashur, Chris A
2018-05-01
The development of tissue-engineered products has been limited by lack of a perfused microvasculature that delivers nutrients and maintains cell viability. Current strategies to promote vascularization such as additive three-dimensional printing techniques have limitations. This study validates the use of an ultra-fast laser subtractive printing technique to generate capillary-sized channels in hydrogels prepopulated with cells by demonstrating cell viability relative to the photodisrupted channels in the gel. The system can move the focal spot laterally in the gel at a rate of 2500 mm/s by using a galvanometric scanner to raster the in plane focal spot. A Galilean telescope allows z-axis movement. Blended hydrogels of polyethylene glycol and collagen with a range of optical clarities, mechanical properties and swelling behavior were tested to demonstrate that the subtractive printing process for writing vascular channels is compatible with all of the blended hydrogels tested. Channel width and patterns were controlled by adjusting the laser energy and focal spot positioning, respectively. After treatment, high cell viability was observed at distances greater than or equal to 18 μm from the fabricated channels. Overall, this study demonstrates a flexible technique that has the potential to rapidly generate channels in tissue-engineered constructs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deliormanlı, Aylin M; Atmaca, Harika
2018-05-25
Graphene-containing 13-93 bioactive glass and poly(ε-caprolactone)-based bilayer, electrically conductive scaffolds were prepared for osteochondral tissue repair. Biological response of osteoblastic MC3T3-E1 and chondrogenic ATDC5 cells to the composite scaffolds was assessed under mono-culture and co-culture conditions. Cytotoxicity was investigated using MTT assay, cartilage matrix production was evaluated by Alcian blue staining, and mineralization of both types of cells in the different culture systems was observed by Alizarin red S staining. Results showed that osteoblastic and chondrogenic cells utilized in the study did not show toxic response to the prepared scaffolds under mono-culture conditions and higher cell viability rates were obtained in co-culture conditions. Larger mineralized areas were determined under co-culture conditions and calcium deposition amount significantly increased compared with that in control group samples after 21 days. Additionally, the amount of glycosaminoglycans synthesized in co-culture was higher compared to mono-culture conditions. Electric stimulation applied under mono-culture conditions suppressed the viability of MC3T3-E1 cells whereas it enhanced the viability rates of ATDC5 cells. The study suggests that the designed bilayered osteochondral constructs have the potential for osteochondral defect repair.
Effects of borate-based bioactive glass on neuron viability and neurite extension.
Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B
2014-08-01
Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. © 2013 Wiley Periodicals, Inc.
Bioreactor Technology in Cardiovascular Tissue Engineering
NASA Astrophysics Data System (ADS)
Mertsching, H.; Hansmann, J.
Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.
Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L
2017-07-01
Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.
Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael
2015-02-01
Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of Impaction Sequence on Osteochondral Graft Damage: The Role of Repeated and Varying Loads
Kang, Richard W.; Friel, Nicole A.; Williams, James M.; Cole, Brian J.; Wimmer, Markus A.
2013-01-01
Background Osteochondral autografts and allografts require mechanical force for proper graft placement into the defect site; however, impaction compromises the tissue. This study aimed to determine the effect of impaction force and number of hits to seat the graft on cartilage integrity. Hypothesis Under constant impulse conditions, higher impaction load magnitudes are more detrimental to cell viability, matrix integrity and collagen network organization and will result in proteoglycan loss and nitric oxide release. Study Design Controlled laboratory study Methods Osteochondral explants, harvested from fresh bovine trochleas, were exposed to a series of consistent impact loads delivered by a pneumatically driven device. Each plug received the same overall impulse of 7 Ns, reflecting the mean of 23 clinically inserted plugs. Impaction loads of 37.5N, 75N, 150N, and 300N were matched with 74, 37, 21, and 11 hits respectively. Following impaction, the plugs were harvested and cartilage was analyzed for cell viability, histology by safranin-o and picosirius red, and release of sulfated glycosaminoglycans and nitric oxide. Data were compared with non-impacted control. Results Impacted plugs had significantly lower cell viability than non-impacted plugs. A dose response relationship in loss of cell viability with respect to load magnitude was seen immediately and after 4 days but lost after 8 days. Histologic analysis revealed intact cartilage surface in all samples (loaded or control), with loaded samples showing alterations in birefringence. While the sulfated GAG release was similar across varying impaction loads, release of nitric oxide increased with increasing impaction magnitudes and time. Conclusions Impaction loading parameters have a direct effect on the time course of the viability of the cartilage in the graft tissue. Clinical Relevance Optimal loading parameters for surgical impaction of osteochondral grafts are those with lower load magnitudes and a greater number of hits to ensure proper fit. PMID:19915099
Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Zhou, Ping; Zhang, Xiaolei; Zhang, Wei; Chen, Qingyu; Kou, Dongquan; Ying, Xiaozhou; Shen, Yue; Cheng, Xiaojie; Yu, Ziming; Peng, Lei; Lu, Chuanzhu
2013-09-01
Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca(2+) on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca(2+) on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca(2+) (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca(2+) stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca(2+) significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.
Optical assessment of intravascular and intracellular parameters related to tissue viability
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Sherman, Efrat; Cohen-Kashi, Meir; Dekel, Nava; Pewzner, Eliyahu
2007-02-01
Tissue viability represents the balance between O II supply and demand. In our previous paper (Mayevsky et al; Proc.SPIE 6083 : z1-z10, 2006) the HbO II was added to the multiparametric tissue spectroscope (Mayevsky et al J.Biomedical Optics 9:1028-1045,2004). This parameter provides relative values of microcirculatory blood oxygenation (MC-HbO II) evaluated by the 2 wavelength reflectometry principle. The advantage of this approach as compared to pulse oximetry is that the measurement is not dependent of the existence of the pulse of the heart. Also in the MC-HbO II the information is collected from small vessels providing O II to the mitochondria as compared to the pulse oximeter indicating blood oxygenation by the respiratory and cardiovascular systems. In the present study we compared the level of blood oxygenation measured by the pulse oximeter to that measured by the CritiView in the brain exposed to various systemic and localized perturbations of O II supply or demand. We exposed gerbils to anoxia, hypoxia, ischemia and terminal anoxia. In addition we measured mitochondrial NADH (surface fluorometry), tissue reflectance, tissue blood flow (laser Doppler flowmetry) from the same site of MC-HbO II measurement. A clear connection was found between the two blood oxygenation parameters only when systemic perturbations were used (anoxia, hypoxia and terminal anoxia). Under local events (ischemia) the MC-HbO II was responsive while the systemic oxygenation was unchanged. We concluded that MC-HbO II has a significant value in interpretation of tissue energy metabolism under pathophysiological conditions.
Castro, Simone Vieira; Carvalho, Adeline Andrade; Silva, Cleidson Manoel Gomes; Santos, Francielli Weber; Campello, Cláudio Cabral; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro
2014-10-01
The aim of this study was to evaluate the efficiency of different media in the in vitro culture of bovine preantral follicles that were used either fresh or following slow freezing treatment. Frozen and fresh noncultured or cultured ovarian fragments were processed for histological, viability, and cell proliferation analyses. For cryopreservation, a solution containing 1.5 M ethylene glycol was frozen in a programmable biological freezer. After thawing, a portion of the samples was destined for frozen controls. The remainder were cultured in vitro for 5 days in three media: α-MEM, McCoy, or M199. Samples from these culture media were collected on days 1 and 5 for quantification of reactive oxygen species (ROS) and for hormonal assays. In fresh-cultured tissues, the percentage of morphologically normal follicles was significantly higher when cultured in M199 compared to that in the other media. In frozen-cultured tissues, McCoy medium was significantly superior to the other media, and was the only treatment that helped in maintaining the viability similar to fresh and frozen controls. Upon quantification of the nucleolus organizer region, we observed greater proliferation of granulosa cells in the frozen-cultured tissues with McCoy medium, and lesser proliferation in fresh-cultured tissues only with α-MEM. In frozen-cultured tissues, ROS levels were highest at day 1 and progressively reduced during culture, independent of the media used. In conclusion, under the conditions used in this study, the M199 and McCoy media are recommended for the culture of follicles derived from fresh and frozen ovarian tissues, respectively.
Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture
Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.
2016-01-01
The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082
Assessment of follicle viability using fluorescence microscopy before and after ovarian thawing.
Sofoudis, C; Zervomanolakis, I; Galani, I; Grigoriou, V; Botsis, D; Vlahos, N
2017-01-01
The incidence of young women diagnosed with cancer has been globally increasing. In many cases the surgical approach followed by chemotherapy, radiotherapy or hormonal therapy could lead to infertility or premature ovarian failure. Several options are available in order to preserve fertility and increase the future gestation rate. Among embryo cryopreservation and oocyte cryopreservation, ovarian tissue cryopreservation represents an ideal option, especially for premenopausal women and for those who cannot delay the start of chemotherapy. The purpose of this study was to examine the follicle viability using fluorescence microscope before and after ovarian thawing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delijewski, Marcin; Wrześniok, Dorota; Beberok, Ar
Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine onmore » this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells. - Highlights: • Nicotine and UVA induced concentration-dependent loss in melanocytes viability. • Nicotine and UVA modulated melanization process in melanocytes. • Changes in viability and melanization were more pronounced in dark pigmented cells.« less
Lin, Chongxiang; Tu, Chengwei; Ma, Yike; Ye, Pengcheng; Shao, Xia; Yang, Zhaoan; Fang, Yiming
2017-10-01
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Diphenyldifluoroketone (EF24) is a curcumin analog that has been demonstrated to improve anticancer activity; however, its therapeutic potential and mechanisms in oral cancer remain unknown. In the present study, the effect of EF24 on apoptosis induction and its potential underlying mechanism in the CAL‑27 human OSCC cell line was investigated. To achieve this, various concentrations of cisplatin or EF24 were administrated to CAL‑27 cells for 24 h, and cell viability, apoptotic DNA fragmentation, and cleaved caspase 3 and 9 levels were evaluated. To investigate the potential underlying mechanism, the levels of mitogen‑activated protein kinase kinase 1 (MEK1) and extracellular signal‑regulated kinase (ERK), two key proteins in the mitogen‑activated protein kinase/ERK signaling pathway, were additionally examined. The results indicated that EF24 and cisplatin treatment decreased cell viability. EF24 treatment increased the levels of activated caspase 3 and 9, and decreased the phosphorylated forms of MEK1 and ERK. Sequential treatments of EF24 and 12‑phorbol‑13‑myristate acetate, a MAPK/ERK activator, resulted in a significant increase of activated MEK1 and ERK, and reversed cell viability. These results suggested that EF24 has potent anti‑tumor activity in OSCC via deactivation of the MAPK/ERK signaling pathway. Further analyses using animal models are required to confirm these findings in vivo.
[Exploratory study on the micro-remodeling of dermal tissue].
Jiang, Yu-zhi; Ding, Gui-fu; Lu, Shu-liang
2009-10-01
To explore the effect of three-dimensional structure of dermal matrix on biological behavior of fibroblasts (Fb) in the microcosmic perspective. The three-dimensional structure of dermal tissue was analyzed by plane geometric and trigonometric function. Microdots structure array with cell adhesion effect was designed by computer-assisted design software according to the adhesive and non-adhesive components of dermal tissue. Four sizes (8 microm x 3 microm, space 6 microm; 16 microm x 3 microm, space 6 microm; 16 microm x 5 microm, space 8 microm; 20 microm x 3 microm, space 2 microm) of micropier grid used for cell culture (MPGCC) with cell-adhesive microdots, built up with micro-pattern printing and molecule self-assembly method were used to culture dermal Fb. Fb cultured with cell culture matrix without micropier grid was set up as control. The expression of skeleton protein (alpha-SMA) of Fb, cell viability and cell secretion were detected with immunohistochemistry, fluorescent immunohistochemistry, MTT test and the hydroxyproline content assay. The three-dimensional structure of dermal tissue could be simulated by MPGCC as shown in arithmetic analysis. Compared with those of control group [(12 +/- 3)% and (0.53 +/- 0.03) microg/mg, (0.35 +/- 0.04)], the expression of alpha-SMA [(49 +/- 3)%, (61 +/- 3)%, (47 +/- 4)%, (51 +/- 3)%] and the content of hydroxyproline [(0.95 +/- 0.04), (0.87 +/- 0.03), (0.81 +/- 0.03), (0.77 +/- 0.03) microg/mg] were increased significantly (P < 0.05), the cell viability of Fb (0.12 +/- 0.03, 0.13 +/- 0.04, 0.14 +/- 0.03, 0.19 +/- 0.03) cultured in MPGCC was decreased significantly (P < 0.05). When the parameters of micropier grid were changed, the expression of alpha-SMA, the cell viability and the content of hydroxyproline of Fb cultured in four sizes of MPGCC were also significantly changed as compared with one another (P < 0.05). MPGCC may be the basic functional unit of dermal template, or unit of dermal template to call. Different three-dimensional circumstances for dermal tissue can result in different template effect and wound healing condition.
Borges, Alana A; Lira, Gabriela P O; Nascimento, Lucas E; Queiroz Neta, Luiza B; Santos, Maria V O; Oliveira, Moacir F; Silva, Alexandre R; Pereira, Alexsandra F
2018-04-01
Skin vitrification is a promising and alternative tool for the conservation of biodiversity, especially for wild mammals, such as collared peccaries. Several factors can affect the success of this procedure, such as the cryoprotectant solution used. Therefore, this study was carried out to compare the efficiency of various vitrification solutions for recovery of viable cells after in vitro culture of cryopreserved skin tissues derived from the collared peccary, aiming to study the application in biobanking, where cellular use is not immediately required. Then, Dulbecco's modified Eagle's medium (DMEM) composed of 2.2 g/L sodium bicarbonate and 10% fetal bovine serum (FBS) was supplemented with 3.0 M ethylene glycol (EG) or 3.0 M dimethyl sulfoxide (DMSO) or 1.5 M EG plus 1.5 M DMSO with or without sucrose (SUC; 0.25 M) to produce six solutions for solid-surface vitrification. After warming, skin tissues were cultured in vitro and recovered cells were analyzed for morphology, adhesion, subconfluence, and proliferative activity for developing the growth curve and determining the population doubling time (PDT), and viability by Trypan Blue. The vitrification did not alter the ability of the tissues to adhere to the culture dish, as well as the day of all explants with cell growth, subconfluence samples, subconfluence total time, and PDT (p > 0.05). Moreover, independent of the cryoprotectant solution used, the vitrification altered the day of all attached explants (p < 0.05). Nevertheless, for viability after the first passage, only the EG-SUC (86.9%) and DMSO-SUC (91.4%) groups maintained viable cell recovery similar to the nonvitrified group (96.3%, p > 0.05). Additionally, for viability after the third passage, only the EG-SUC group maintained the cell quality (88.3%), when compared with the nonvitrified (97.8%, p > 0.05). In conclusion, DMEM with 10% FBS, 3.0 M EG, and 0.25 M sucrose was the most efficient solution for vitrifying collared peccary skin tissues, leading to the in vitro culture of viable cells.
Borem, Ryan; Madeline, Allison; Walters, Joshua; Mayo, Henry; Gill, Sanjitpal; Mercuri, Jeremy
2017-08-01
Annulus fibrosus (AF) damage commonly occurs due to intervertebral disc (IVD) degeneration/herniation. The dynamic mechanical role of the AF is essential for proper IVD function and thus it is imperative that biomaterials developed to repair the AF withstand the mechanical rigors of the native tissue. Furthermore, these biomaterials must resist accelerated degradation within the proteolytic environment of degenerate IVDs while supporting integration with host tissue. We have previously reported a novel approach for developing collagen-based, multi-laminate AF repair patches (AFRPs) that mimic the angle-ply architecture and basic tensile properties of the human AF. Herein, we further evaluate AFRPs for their: tensile fatigue and impact burst strength, IVD attachment strength, and contribution to functional spinal unit (FSU) kinematics following IVD repair. Additionally, AFRP resistance to collagenase degradation and cytocompatibility were assessed following chemical crosslinking. In summary, AFRPs demonstrated enhanced durability at high applied stress amplitudes compared to human AF and withstood radially-directed biaxial stresses commonly borne by the native tissue prior to failure/detachment from IVDs. Moreover, FSUs repaired with AFRPs and nucleus pulposus (NP) surrogates had their axial kinematic parameters restored to intact levels. Finally, carbodiimide crosslinked AFRPs resisted accelerated collagenase digestion without detrimentally effecting AFRP tensile properties or cytocompatibility. Taken together, AFRPs demonstrate the mechanical robustness and enzymatic stability required for implantation into the damaged/degenerate IVD while supporting AF cell infiltration and viability. The quality of life for millions of individuals globally is detrimentally impacted by IVD degeneration and herniation. These pathologies often result in the structural demise of IVD tissue, particularly the annulus fibrosus (AF). Biomaterials developed for AF repair have yet to demonstrate the mechanical strength and durability required for utilization in the spine. Herein, we demonstrate the development of an angle-ply AF repair patch (AFRP) that can resist the application of physiologically relevant stresses without failure and which contributes to the restoration of functional spinal unit axial kinematics following repair. Furthermore, we show that this biomaterial can resist accelerated degradation in a simulated degenerate environment and supports AF cell viability. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The impact of various scaffold components on vascularized bone constructs.
Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila
2017-06-01
Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct. Collagen matrix and a smaller particle size provided more favorable results in terms of vascularization and tissue formation than diluted fibrin and larger Nanobone particles. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Nair, Manitha B; Baranwal, Gaurav; Vijayan, Prajuna; Keyan, Kripa S; Jayakumar, R
2015-12-01
Intervertebral disc degeneration, occurring mainly in nucleus pulposus (NP), is a leading cause of low back pain. In seeking to mitigate this condition, investigators in the field of NP tissue engineering have increasingly studied the use of hydrogels. However, these hydrogels should possess appropriate mechanical strength and swelling pressure, and concurrently support the proliferation of chondrocyte-like cells. The objective of this study was to develop and validate a composite hydrogel for NP tissue engineering, made of chitosan-poly(hydroxybutyrate-co-valerate) (CP) with chondroitin sulfate (CS) nanoparticles, without using a cross linker. The water uptake ability, as well as the viscoelastic properties of this composite hydrogel, was similar to native tissue, as reflected in the complex shear modulus and stress relaxation values. The hydrogel could withstand varying stress corresponding to daily activities like lying down (0.01 MPa), sitting (0.5 MPa) and standing (1.0 MPa) under dynamic conditions. The hydrogels were stable in PBS for 2 weeks and its stiffness, elastic and viscous modulus did not alter significantly during this period. Both CP and CP-CS hydrogels could assist the viability and adhesion of adipose derived rat mesenchymal stem cells (ADMSCs). The viability and chondrogenic differentiation of MSCs was significantly enhanced in presence of CS nanoparticles. Thus, CS nanoparticles-incorporated chitosan-PHBV hydrogels offer great potential for NP tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.
Oxygen and tissue culture affect placental gene expression.
Brew, O; Sullivan, M H F
2017-07-01
Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clérin, Emmanuelle; Wicker, Nicolas; Mohand-Saïd, Saddek; Poch, Olivier; Sahel, José-Alain; Léveillard, Thierry
2011-12-20
Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research. An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields. The method was validated by comparison to the conventional stereological counting. The decrease in cone density in rd1 mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the rd1 mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes Nxnl1 or Nxnl2 encoding RdCVFs, the loss of cones is more pronounced in the ventral retina. The automated platform ℮-conome used here for retinal disease is a tool that can broadly accelerate translational research for neurodegenerative diseases.
de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Vollet-Filho, José Dirceu; Bagnato, Vanderlei Salvador
2018-05-01
Photodynamic therapy (PDT) is a technique with well-established principles that often demands repeated applications for sequential elimination of tumor cells. An important question concerns the way surviving cells from a treatment behave in the subsequent one. Threshold dose is a core concept in PDT dosimetry, as the minimum amount of energy to be delivered for cell destruction via PDT. Concepts of threshold distribution have shown to be an important tool for PDT results analysis in vitro. In this study, we used some of these concepts for demonstrating subsequent treatments with partial elimination of cells modify the distribution, which represents an increased resistance of the cells to the photodynamic action. HepG2 and HepaRG were used as models of tumor and normal liver cells and a protocol to induce resistance, consisted of repeated PDT sessions using Photogem® as a photosensitizer, was applied to the tumor ones. The response of these cells to PDT was assessed using a standard viability assay and the dose response curves were used for deriving the threshold distributions. The changes in the distribution revealed that the resistance protocol effectively eliminated the most sensitive cells. Nevertheless, HepaRG cell line was the most resistant one among the cells analyzed, which indicates a specificity in clinical applications that enables the use of high doses and drug concentrations with minimal damage to the surrounding normal tissue. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei
2015-01-01
Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects.
Multispectral imaging of organ viability during uterine transplantation surgery in rabbits and sheep
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Saso, Srdjan; Stoyanov, Danail; Sauvage, Vincent; Corless, David J.; Boyd, Michael; Noakes, David E.; Thum, Meen-Yau; Ghaem-Maghami, Sadaf; Smith, James Richard; Elson, Daniel S.
2016-10-01
Uterine transplantation surgery (UTx) has been proposed as a treatment for permanent absolute uterine factor infertility (AUFI) in the case of the congenital absence or surgical removal of the uterus. Successful surgical attachment of the organ and its associated vasculature is essential for the organ's reperfusion and long-term viability. Spectral imaging techniques have demonstrated the potential for the measurement of hemodynamics in medical applications. These involve the measurement of reflectance spectra by acquiring images of the tissue in different wavebands. Measures of tissue constituents at each pixel can then be extracted from these spectra through modeling of the light-tissue interaction. A multispectral imaging (MSI) laparoscope was used in sheep and rabbit UTx models to study short- and long-term changes in oxygen saturation following surgery. The whole organ was imaged in the donor and recipient animals in parallel with point measurements from a pulse oximeter. Imaging results confirmed the re-establishment of adequate perfusion in the transplanted organ after surgery. Cornual oxygenation trends measured with MSI are consistent with pulse oximeter readings, showing decreased StO2 immediately after anastomosis of the blood vessels. Long-term results show recovery of StO2 to preoperative levels.
Li, Bo; Li, Hao; Dong, Li; Huang, Guofu
2017-11-01
In this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF). A pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one. There were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P>0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2× to 5× exhibit the comparable lumen definition to the corresponding images at 1×. By combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol. Copyright © 2017. Published by Elsevier Inc.
Meyer, Marjolaine D; Terry, Leon A
2008-08-27
Methods devised for oil extraction from avocado (Persea americana Mill.) mesocarp (e.g., Soxhlet) are usually lengthy and require operation at high temperature. Moreover, methods for extracting sugars from avocado tissue (e.g., 80% ethanol, v/v) do not allow for lipids to be easily measured from the same sample. This study describes a new simple method that enabled sequential extraction and subsequent quantification of both fatty acids and sugars from the same avocado mesocarp tissue sample. Freeze-dried mesocarp samples of avocado cv. Hass fruit of different ripening stages were extracted by homogenization with hexane and the oil extracts quantified for fatty acid composition by GC. The resulting filter residues were readily usable for sugar extraction with methanol (62.5%, v/v). For comparison, oil was also extracted using the standard Soxhlet technique and the resulting thimble residue extracted for sugars as before. An additional experiment was carried out whereby filter residues were also extracted using ethanol. Average oil yield using the Soxhlet technique was significantly (P < 0.05) higher than that obtained by homogenization with hexane, although the difference remained very slight, and fatty acid profiles of the oil extracts following both methods were very similar. Oil recovery improved with increasing ripeness of the fruit with minor differences observed in the fatty acid composition during postharvest ripening. After lipid removal, methanolic extraction was superior in recovering sucrose and perseitol as compared to 80% ethanol (v/v), whereas mannoheptulose recovery was not affected by solvent used. The method presented has the benefits of shorter extraction time, lower extraction temperature, and reduced amount of solvent and can be used for sequential extraction of fatty acids and sugars from the same sample.
Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis.
2010-01-01
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlPOSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based Analysis The objective of this analysis is to assess the effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined: the diagnostic accuracy of FDG PET for predicting functional recovery;the impact of PET viability imaging on prognosis (mortality and other patient outcomes); andthe contribution of PET viability imaging to treatment decision making and subsequent patient outcomes. CONDITION AND TARGET POPULATION LEFT VENTRICULAR SYSTOLIC DYSFUNCTION AND HEART FAILURE: Heart failure is a complex syndrome characterized by the heart's inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. IN GENERAL, THERE ARE THREE OPTIONS FOR THE TREATMENT OF HEART FAILURE: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure. Left ventricular dysfunction may be permanent if a myocardial scar is formed, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically: dobutamine echocardiography (echo),stress echo with contrast,SPECT using either technetium or thallium,cardiac magnetic resonance imaging (cardiac MRI), andpositron emission tomography (PET). Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 - 10 μg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability. Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium. SPECT: SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images. The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%. There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery. Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. (ABSTRACT TRUNCATED)
Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François
2015-01-01
We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274
Swain, S; Harnik, T; Mejia-Chang, M; Hayden, K; Bakx, W; Creque, J; Garbelotto, M
2006-10-01
To determine the effects of heat and composting treatments on the viability of the plant pathogen Phytophthora ramorum grown on both artificial and various natural substrates. Phytophthora ramorum was grown on V8 agar, inoculated on bay laurel leaves (Umbellularia californica) and on woody tissues of coast live oak (Quercus agrifolia). Effects on growth, viability and survival were measured as a result of treatment in ovens and compost piles. Direct plating onto PARP medium and pear-baiting techniques were used to determine post-treatment viability. No P. ramorum was recovered at the end of the composting process, regardless of the isolation technique used. By using a PCR assay designed to detect the DNA of P. ramorum, we were able to conclude the pathogen was absent from mature compost and not merely suppressed or dormant. Some heat and composting treatments eliminate P. ramorum to lower than detectable levels on all substrates tested. Composting is an effective treatment option for sanitization of P. ramorum-infected plant material. Assaying for pathogen viability in compost requires a direct test capable of differentiating between pathogen suppression and pathogen elimination.
[Viability and germination of Hechtia perotensis (Bromeliaceae) seed].
Elizalde, Violeta; García, José Rodolfo; Peña-Valdivia, Cecilia Beatriz; Ybarra, Ma Carmen; Leyva, Otto Raúl; Trejo, Carlos
2017-03-01
Endemic populations of Hechtia perotensis have been described in Puebla and Veracruz, Mexico. Good quality seed collections can be used in conservation, research and ecological restoration. To evaluate seed quality of wild and endemic species, some compounds are used as effective promoters of germination, such as potassium nitrate (KNO3) and gibberellic acid (AG3), because they increase seed germination capacity and reduce latency. The triphenyl tetrazolium chloride (tetrazolium) test correlates seed viability because it is based on the activity of dehydrogenases in live tissues that catalyze mitochondrial respiration. The objective of this study was to obtain information on size and weight of capsules and seeds and seed germination and viability of H. perotensis, collected in Veracruz in the year 2012 and 2015. The hypotheses were 1) that seed germination and viability are independent of the year of collection, 2) that there is a tetrazolium concentration that can identify seed viability better than others, and 3) that pretreatment with KNO3 or AG3 improves seed germination. Seed germination was assessed using a completely randomized design with three treatments (control and the germination promoters 0.2 % KNO3 and 500 mg/L AG3), four treatments for the viability test (control, 0.2, 0.5 and 1.0 % of tetrazolium) and six replicates for each treatment. A total of one hundred seeds for germination experiments, and 25 seeds for the viability test were used. The results between and within years were analyzed with ANOVA and multiple comparison with the Tukey test. The proportion of non-germinated seeds was quantified along with the number of normal and abnormal seedlings, seeds with viable embryo, seeds without embryo, and seeds with low or no viability. On average, for the 2012 collected sample, 36 % had viable embryos, 7 % had low viability, 24 % were not viable and 33 % had no embryo. This result was significantly different from the 2015 sample, for which 87 % of seed showed viable embryos, 10 % had low viability, 0 % was not viable and 3 % had no embryo. Seed germination was also significantly different between years (22 and 92 %) Pregerminative treatments did not improve germination. Seed germination and viability of H. perotensis significantly varied between years of seed collection.
NASA Astrophysics Data System (ADS)
Adams, Daniel L.; Alpaugh, R. Katherine; Tsai, Susan; Tang, Cha-Mei; Stefansson, Steingrimur
2016-09-01
In tissue biopsies formalin fixed paraffin embedded cancer blocks are micro-sectioned producing multiple semi-identical specimens which are analyzed and subtyped proteomically, and genomically, with numerous biomarkers. In blood based biopsies (BBBs), blood is purified for circulating tumor cells (CTCs) and clinical utility is typically limited to cell enumeration, as only 2-3 positive fluorescent markers and 1 negative marker can be used. As such, increasing the number of subtyping biomarkers on each individual CTC could dramatically enhance the clinical utility of BBBs, allowing in depth interrogation of clinically relevant CTCs. We describe a simple and inexpensive method for quenching the specific fluors of fluorescently stained CTCs followed by sequential restaining with additional biomarkers. As proof of principle a CTC panel, immunosuppression panel and stem cell panel were used to sequentially subtype individual fluorescently stained patient CTCs, suggesting a simple and universal technique to analyze multiple clinically applicable immunomarkers from BBBs.
Peng, Shu; Pan, Yu‐Chen; Wang, Yaling; Xu, Zhe; Chen, Chao
2017-01-01
Abstract The introduction of controlled self‐assembly into living organisms opens up desired biomedical applications in wide areas including bioimaging/assays, drug delivery, and tissue engineering. Besides the enzyme‐activated examples reported before, controlled self‐assembly under integrated stimuli, especially in the form of sequential input, is unprecedented and ultimately challenging. This study reports a programmable self‐assembling strategy in living cells under sequentially integrated control of both endogenous and exogenous stimuli. Fluorescent polymerized vesicles are constructed by using cholinesterase conversion followed by photopolymerization and thermochromism. Furthermore, as a proof‐of‐principle application, the cell apoptosis involved in the overexpression of cholinesterase in virtue of the generated fluorescence is monitored, showing potential in screening apoptosis‐inducing drugs. The approach exhibits multiple advantages for bioimaging in living cells, including specificity to cholinesterase, red emission, wash free, high signal‐to‐noise ratio. PMID:29201625
Peng, Shu; Pan, Yu-Chen; Wang, Yaling; Xu, Zhe; Chen, Chao; Ding, Dan; Wang, Yongjian; Guo, Dong-Sheng
2017-11-01
The introduction of controlled self-assembly into living organisms opens up desired biomedical applications in wide areas including bioimaging/assays, drug delivery, and tissue engineering. Besides the enzyme-activated examples reported before, controlled self-assembly under integrated stimuli, especially in the form of sequential input, is unprecedented and ultimately challenging. This study reports a programmable self-assembling strategy in living cells under sequentially integrated control of both endogenous and exogenous stimuli. Fluorescent polymerized vesicles are constructed by using cholinesterase conversion followed by photopolymerization and thermochromism. Furthermore, as a proof-of-principle application, the cell apoptosis involved in the overexpression of cholinesterase in virtue of the generated fluorescence is monitored, showing potential in screening apoptosis-inducing drugs. The approach exhibits multiple advantages for bioimaging in living cells, including specificity to cholinesterase, red emission, wash free, high signal-to-noise ratio.
Malignant Transformation and Stromal Invasion from Normal or Hyperplastic Tissues: True or False?
Man, Yan-gao; Grinkemeyer, Michael; Izadjoo, Mina; Stojadinovic, Alexander
2011-01-01
Carcinogenesis is believed to be a multi-step process, progressing sequentially from normal to hyperplastic, to in situ, and to invasive stages. A number of studies, however, have detected malignancy-associated alterations in normal or hyperplastic tissues. As the molecular profile and clinical features of these tissues have not been defined, the authors invited several well-recognized pathologist, oncologists, biologist, surgeons, and molecular biologist to offer their opinion on: (1) whether these tissues belong to a previously unrevealed malignant entity or focal alterations with no significant consequence? (2) whether these alterations are linked to early onset of cancer or cancer of unknown primary site, and (3) how to further define these lesions? PMID:21811519
Explanted Diseased Livers – A Possible Source of Metabolic Competent Primary Human Hepatocytes
Krech, Till; DeTemple, Daphne; Jäger, Mark D.; Lehner, Frank; Manns, Michael P.; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W. R.
2014-01-01
Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5′-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might represent a valuable source of metabolically competent PHH which are comparable in viability and function to cells obtained from specimens following partial liver resection. PMID:24999631
NASA Astrophysics Data System (ADS)
Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.
2016-06-01
Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.
Chomard, D; Habault, P; Eveno, D; Le Lamer, S; Ledemeney, M; Haon, C
2000-09-01
Following an earlier study, the investigators sought to identify and define objective prognostic criteria of viability at 1 year of a limb with severe chronic ischemia. A study was undertaken in 116 patients (118 limbs) (74 men and 42 women), with a mean age of 71.9 years for men and 81.6 years for women. Static transcutaneous oxygen pressure (TcPO2) was measured with a verticalization sensitization test and inhalation of oxygen on JO and viability of the limb noted 1 year later. Logistic analysis was made of 13 oximetry parameters and two demographic parameters (age and gender). Results were analyzed in absolute terms and by tissue oxygenation ratio (TOR) (ratio between absolute TcPO2 at the foot and at a chest reference electrode). Six factors appeared to be prognostic factors of limb viability at 1 year, statistically significant at 6% according to threshold values: age, verticalization TcPO2, TcPO2 after 1 minute's inhalation of oxygen, TcPO2 after 4 minutes' inhalation of oxygen, and slope of TcPO2 and slope of TOR between 1 and 4 minutes' inhalation. A 1 year viability index integrating these criteria is suggested.
Chien, David T; Bravo, Paco; Higuchi, Takahiro; Merrill, Jennifer; Bengel, Frank M
2011-08-01
Myocardial washout of the potassium analogue (82)Rb may indicate tissue impairment. Few studies have evaluated its usefulness for viability assessment, and controversial results were reported. We revisited this topic using list-mode positron emission tomography (PET)/CT. A total of 22 patients with chronic ischemic cardiomyopathy (ICM) and 11 control subjects with normal CT coronary angiogram were studied. Rest (82)Rb PET/CT studies were acquired in list mode and resampled to static, gated, and dynamic images. Using a 17-segment model, (82)Rb washout was determined by monoexponential fitting of myocardial time-activity curves. In ICM patients, (18)F-fluorodeoxyglucose (FDG) studies were obtained in the same session and segments were classified as normally perfused, mismatch, or matched defect. (82)Rb washout was minimal and homogeneous in control subjects. Normally perfused segments of ICM did not differ (p = 0.33). ICM patients had a left ventricular ejection fraction (LVEF) of 25 ± 12%, 25/353 mismatched, and 46/353 matched defect segments. (82)Rb washout was higher in hypoperfused vs normal segments (p < 0.05), but not different between mismatch and matched defect (p = 0.18). Intraindividual analysis in nine patients showing both FDG mismatch and matched defect confirmed absence of differences. Overall, segmental (82)Rb washout correlated inversely with (82)Rb uptake (r = -0.70; p < 0.05) and less well with FDG uptake (r = -0.31; p < 0.05). Using state-of-the-art PET/CT technology for myocardial viability assessment, (82)Rb washout does not distinguish between perfusion/metabolism patterns of hibernating myocardium and scar. Tissue integrity may be at least partially impaired in hibernation.
Development of Poly(Ethylene Glycol) Hydrogels for Salivary Gland Tissue Engineering Applications
Shubin, Andrew D.; Felong, Timothy J.; Graunke, Dean; Ovitt, Catherine E.
2015-01-01
More than 40,000 patients are diagnosed with head and neck cancers annually in the United States with the vast majority receiving radiation therapy. Salivary glands are irreparably damaged by radiation therapy resulting in xerostomia, which severely affects patient quality of life. Cell-based therapies have shown some promise in mouse models of radiation-induced xerostomia, but they suffer from insufficient and inconsistent gland regeneration and accompanying secretory function. To aid in the development of regenerative therapies, poly(ethylene glycol) hydrogels were investigated for the encapsulation of primary submandibular gland (SMG) cells for tissue engineering applications. Different methods of hydrogel formation and cell preparation were examined to identify cytocompatible encapsulation conditions for SMG cells. Cell viability was much higher after thiol-ene polymerizations compared with conventional methacrylate polymerizations due to reduced membrane peroxidation and intracellular reactive oxygen species formation. In addition, the formation of multicellular microspheres before encapsulation maximized cell–cell contacts and increased viability of SMG cells over 14-day culture periods. Thiol-ene hydrogel-encapsulated microspheres also promoted SMG proliferation. Lineage tracing was employed to determine the cellular composition of hydrogel-encapsulated microspheres using markers for acinar (Mist1) and duct (Keratin5) cells. Our findings indicate that both acinar and duct cell phenotypes are present throughout the 14 day culture period. However, the acinar:duct cell ratios are reduced over time, likely due to duct cell proliferation. Altogether, permissive encapsulation methods for primary SMG cells have been identified that promote cell viability, proliferation, and maintenance of differentiated salivary gland cell phenotypes, which allows for translation of this approach for salivary gland tissue engineering applications. PMID:25762214
Blattes, Gabriela Bess Ferraz; Mestieri, Leticia Boldrin; Böttcher, Daiana Elisabeth; Fossati, Anna Cristina Medeiros; Montagner, Francisco; Grecca, Fabiana Soares
2017-01-01
This study aimed to analyze in vitro cytotoxicity to cultured 3T3 fibroblasts and in vivo inflammatory reaction in rats by calcium hypochlorite (Ca(OCl) 2 ) solutions compared with sodium hypochlorite (NaOCl) solutions. Cultured 3T3 fibroblasts were exposed to different concentrations of (Ca(OCl) 2 ) and NaOCl solutions, and a scratch assay was performed. The viability rate was analyzed with trypan blue assay. Both solutions of 1% and 2.5% concentrations were injected into the subcutaneous tissue of 18 male Wistar rats aged 18 weeks. The inflammatory tissue reaction was evaluated at 2h, 24h, and 14days after the injections. The samples were qualitatively analyzed using a light microscope. Statistical analysis was performed with ANOVA and Tukey post hoc tests for in vitro assays and Kruskal-Wallis and Dunn post hoc tests for in vivo assays (α=0.05). In the scratch assay, Ca(OCl) 2 showed no significant difference compared with the control group (culture medium) at 24h (p<0.05). Solutions of 0.0075% and 0.005% NaOCl and Ca(OCl) 2 concentrations presented similar results compared with those in the positive control group (hydrogen peroxide) (p>0.05) in the trypan blue assay. In the in vivo assay, 1% Ca(OCl) 2 group showed a significant decrease in neutrophils at 2h and 24h (p=0.041) and 2h and 14days (p=0.017). There was no statistically significant difference for lymphocyte/plasmocyte and macrophage counts among the different concentration groups. Ca(OCl) 2 showed favorable results of viability and induced a low-level inflammatory response. Ca(OCl) 2 presented acceptable cytotoxicity and biocompatibility as an irrigant solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alvarez, Sara D.; Derfus, Austin M.; Schwartz, Michael P.; Bhatia, Sangeeta N.; Sailor, Michael J.
2008-01-01
Porous Si is a nanostructured material that is of interest for molecular and cell-based biosensing, drug delivery, and tissue engineering applications. Surface chemistry is an important factor determining the stability of porous Si in aqueous media, its affinity for various biomolecular species, and its compatibility with tissues. In this study, the attachment and viability of a primary cell type to porous Si samples containing various surface chemistries is reported, and the ability of the porous Si films to retain their optical reflectivity properties relevant to molecular biosensing is assessed. Four chemical species grafted to the porous Si surface are studied: silicon oxide (via ozone oxidation), dodecyl (via hydrosilylation with dodecene), undecanoic acid (via hydrosilylation with undecylenic acid), and oligo(ethylene) glycol (via hydrosilylation with undecylenic acid followed by an oligo(ethylene) glycol coupling reaction). Fourier Transform Infrared (FTIR) spectroscopy and contact angle measurements are used to characterize the surface. Adhesion and short-term viability of primary rat hepatocytes on these surfaces, with and without pre-adsorption of collagen type I, are assessed using vital dyes (calcein-AM and ethidium homodimer I). Cell viability on undecanoic acid-terminated porous Si, oxide-terminated porous Si, and oxide-terminated flat (non-porous) Si are monitored by quantification of albumin production over the course of 8 days. The stability of porous Si thin films after 8 days in cell culture is probed by measuring the optical interferometric reflectance spectra. Results show that hepatocytes adhere better to surfaces coated with collagen, and that chemical modification does not exert a deleterious effect on primary rat hepatocytes. The hydrosilylation chemistry greatly improves the stability of porous Si in contact with cultured primary cells while allowing cell coverage levels comparable to standard culture preparations on tissue culture polystyrene. PMID:18845334
Long, Zi-Wen; Wu, Jiang-Hong; Hong, Cai-; Wang, Ya-Nong; Zhou, Ye
2018-06-14
Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR- 374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR- 374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.
Klos, D; Stašek, M; Loveček, M; Skalický, P; Vrba, R; Aujeský, R; Havlík, R; Neoral, Č; Varanashi, L; Hajdúch, M; Vrbková, J; Džubák, P
The investigation of prognostic and predictive factors for early diagnosis of tumors, their surveillance and monitoring of the impact of therapeutic modalities using hybrid laboratory models in vitro/in vivo is an experimental approach with a significant potential. It is preconditioned by the preparation of in vivo tumor models, which may face a number of potential technical difficulties. The assessment of technical success of grafting and xenotransplantation based on the type of the tumor or cell line is important for the preparation of these models and their further use for proteomic and genomic analyses. Surgically harvested gastrointestinal tract tumor tissue was processed or stable cancer cell lines were cultivated; the viability was assessed, and subsequently the cells were inoculated subcutaneously to SCID mice with an individual duration of tumor growth, followed by its extraction. We analysed 140 specimens of tumor tissue including 17 specimens of esophageal cancer (viability 13/successful inoculations 0), 13 tumors of the cardia (11/0), 39 gastric tumors (24/4), 47 pancreatic tumors (34/1) and 24 specimens of colorectal cancer (22/9). 3 specimens were excluded due to histological absence of the tumor (complete remission after neoadjuvant therapy in 2 cases of esophageal carcinoma, 1 case of chronic pancreatitis). We observed successful inoculation in 17 of 28 tumor cell lines. The probability of successful grafting to the mice model in tumors of the esophagus, stomach and pancreas is significantly lower in comparison with colorectal carcinoma and cell lines generated tumors. The success rate is enhanced upon preservation of viability of the harvested tumor tissue, which depends on the sequence of clinical and laboratory algorithms with a high level of cooperation.Key words: proteomic analysis - xenotransplantation - prognostic and predictive factors - gastrointestinal tract tumors.
Mullick, Madhubanti; Venkatesh, Katari; Sen, Dwaipayan
2017-07-01
Human mesenchymal stem cells (hMSCs) although being potent in repairing injured or ischemic tissues, their success regarding tissue-regenerative approaches are hindered by the paucity in their viability. The elevated levels of reactive oxygen species (ROS) in damaged sites provoke the pernicious effects of donor MSC survival. In the present study, the effect of delta-opioid receptor (DOR) activation on human umbilical cord-blood borne fibroblasts (hUCB-BFs) survival under oxidative stress (H 2 O 2 ) was evaluated. Oxidative stress which is known to trigger pathological conditions of the unfolded protein response (UPR) leads to endoplasmic reticulum stress. Upon its activation by D-Alanine 2, Leucine 5 Enkephaline (DADLE, selective DOR agonist) in hUCB-BFs under oxidative stress, a significant down regulation (~2 folds) of key UPR genes was observed as determined by qPCR, Thioflavin-T protein aggregation assay and western blot analysis. Concomitantly, the oxidative stress-mediated cell-death was ameliorated and the viable-cells' percentage was enhanced following DOR activation. The intracellular ROS production upon H 2 O 2 treatment as determined by CM-H 2 DCFDA staining was repressed, the anti-apoptotic marker Bcl-2 was upregulated along with a significant suppression in the expression levels of pro-apoptotic proteins Bax and Bad upon DOR activation. Upon subsequent treatment with naltrindole, the effects of DADLE-induced cytoprotection were reverted significantly. These results propound the role of DADLE-mediated DOR-activation on improvement of the viability, which might succour successful hUCB-BFs transplants and greatly absolve the inefficacy of tissue-specific engineered transplants. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Yu, Tenghua; Liu, Manran; Luo, Haojun; Wu, Chengyi; Tang, Xi; Tang, Shifu; Hu, Ping; Yan, Yuzhao; Wang, Zhiliang; Tu, Gang
2014-09-01
Triple-negative breast cancer (TNBC) is an aggressive breast cancer with a generally poor prognosis. Due to lack of specific targets for its treatment, an efficient therapy is needed. G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, has been reported to be expressed in TNBC tissues. In this study, we investigated the effects of blocking non-genomic signaling mediated by the estrogen/GPER pathway on cell viability and motility in the TNBC cells. GPER was strongly expressed in the TNBC cell lines MDA-MB-468 and MDA-MB-436, and the estrogen-mediated non-genomic ERK signaling activated by GPER was involved in cell viability and motility of TNBC cells. Treatment with 17β-estradiol (E2), the GPER-specific agonist G-1 and tamoxifen (TAM) led to rapid activation of p-ERK1/2, but not p-Akt. Moreover, estrogen/GPER/ERK signaling was involved in increasing cell growth, survival, and migration/invasion by upregulating expression of cyclinA, cyclinD1, Bcl-2, and c-fos associated with the cell cycle, proliferation, and apoptosis. Immunohistochemical analysis of TNBC specimens showed a significantly different staining of p-ERK1/2 between GPER-positive tissues (58/66, 87.9%) and GPER-negative tissues (13/30, 43.3%). The positivity of GPER and p-ERK1/2 displayed a strong association with large tumor size and poor clinical stage, indicating that GPER/ERK signaling might also contribute to tumor progression in TNBC patients which corresponded with in vitro experimental data. Our findings suggest that inhibition of estrogen/GPER/ERK signaling represents a novel targeted therapy in TNBC. Copyright © 2014 Elsevier Ltd. All rights reserved.
In-vitro analysis of Quantum Molecular Resonance effects on human mesenchymal stromal cells
Sella, Sabrina; Adami, Valentina; Amati, Eliana; Bernardi, Martina; Chieregato, Katia; Gatto, Pamela; Menarin, Martina; Pozzato, Alessandro; Pozzato, Gianantonio; Astori, Giuseppe
2018-01-01
Electromagnetic fields play an essential role in cellular functions interfering with cellular pathways and tissue physiology. In this context, Quantum Molecular Resonance (QMR) produces waves with a specific form at high-frequencies (4–64 MHz) and low intensity through electric fields. We evaluated the effects of QMR stimulation on bone marrow derived mesenchymal stromal cells (MSC). MSC were treated with QMR for 10 minutes for 4 consecutive days for 2 weeks at different nominal powers. Cell morphology, phenotype, multilineage differentiation, viability and proliferation were investigated. QMR effects were further investigated by cDNA microarray validated by real-time PCR. After 1 and 2 weeks of QMR treatment morphology, phenotype and multilineage differentiation were maintained and no alteration of cellular viability and proliferation were observed between treated MSC samples and controls. cDNA microarray analysis evidenced more transcriptional changes on cells treated at 40 nominal power than 80 ones. The main enrichment lists belonged to development processes, regulation of phosphorylation, regulation of cellular pathways including metabolism, kinase activity and cellular organization. Real-time PCR confirmed significant increased expression of MMP1, PLAT and ARHGAP22 genes while A2M gene showed decreased expression in treated cells compared to controls. Interestingly, differentially regulated MMP1, PLAT and A2M genes are involved in the extracellular matrix (ECM) remodelling through the fibrinolytic system that is also implicated in embryogenesis, wound healing and angiogenesis. In our model QMR-treated MSC maintained unaltered cell phenotype, viability, proliferation and the ability to differentiate into bone, cartilage and adipose tissue. Microarray analysis may suggest an involvement of QMR treatment in angiogenesis and in tissue regeneration probably through ECM remodelling. PMID:29293552
Cortijo, Elisa; Calleja, Ana Isabel; García-Bermejo, Pablo; Mulero, Patricia; Pérez-Fernández, Santiago; Reyes, Javier; Muñoz, Ma Fe; Martínez-Galdámez, Mario; Arenillas, Juan Francisco
2014-01-01
Selection of best responders to reperfusion therapies could be aided by predicting the duration of tissue-at-risk viability, which may be dependant on collateral circulation status. We aimed to identify the best predictor of good collateral circulation among perfusion computed tomography (PCT) parameters in middle cerebral artery (MCA) ischemic stroke and to analyze how early MCA response to intravenous thrombolysis and PCT-derived markers of good collaterals interact to determine stroke outcome. We prospectively studied patients with acute MCA ischemic stroke treated with intravenous thrombolysis who underwent PCT before treatment showing a target mismatch profile. Collateral status was assessed using a PCT source image-based score. PCT maps were quantitatively analyzed. Cerebral blood volume (CBV), cerebral blood flow, and Tmax were calculated within the hypoperfused volume and in the equivalent region of unaffected hemisphere. Occluded MCAs were monitored by transcranial Duplex to assess early recanalization. Main outcome variables were brain hypodensity volume and modified Rankin scale score at day 90. One hundred patients with MCA ischemic stroke imaged by PCT received intravenous thrombolysis, and 68 met all inclusion criteria. A relative CBV (rCBV) >0.93 emerged as the only predictor of good collaterals (odds ratio, 12.6; 95% confidence interval, 2.9-55.9; P=0.001). Early MCA recanalization was associated with better long-term outcome and lower infarct volume in patients with rCBV<0.93, but not in patients with high rCBV. None of the patients with rCBV<0.93 achieved good outcome in absence of early recanalization. High rCBV was the strongest marker of good collaterals and may characterize durable tissue-at-risk viability in hyperacute MCA ischemic stroke.
Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H
2013-08-01
The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.
Improvement of biomaterials used in tissue engineering by an ageing treatment.
Acevedo, Cristian A; Díaz-Calderón, Paulo; Enrione, Javier; Caneo, María J; Palacios, Camila F; Weinstein-Oppenheimer, Caroline; Brown, Donald I
2015-04-01
Biomaterials based on crosslinked sponges of biopolymers have been extensively used as scaffolds to culture mammal cells. It is well known that single biopolymers show significant change over time due to a phenomenon called physical ageing. In this research, it was verified that scaffolds used for skin tissue engineering (based on gelatin, chitosan and hyaluronic acid) express an ageing-like phenomenon. Treatments based on ageing of scaffolds improve the behavior of skin-cells for tissue engineering purposes. Physical ageing of dry scaffolds was studied by differential scanning calorimetry and was modeled with ageing kinetic equations. In addition, the physical properties of wet scaffolds also changed with the ageing treatments. Scaffolds were aged up to 3 weeks, and then skin-cells (fibroblasts) were seeded on them. Results indicated that adhesion, migration, viability, proliferation and spreading of the skin-cells were affected by the scaffold ageing. The best performance was obtained with a 2-week aged scaffold (under cell culture conditions). The cell viability inside the scaffold was increased from 60% (scaffold without ageing treatment) to 80%. It is concluded that biopolymeric scaffolds can be modified by means of an ageing treatment, which changes the behavior of the cells seeded on them. The ageing treatment under cell culture conditions might become a bioprocess to improve the scaffolds used for tissue engineering and regenerative medicine.
Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells.
Duscher, Dominik; Maan, Zeshaan N; Luan, Anna; Aitzetmüller, Matthias M; Brett, Elizabeth A; Atashroo, David; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Houschyar, Khosrow S; Schilling, Arndt F; Machens, Hans-Guenther; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C
2017-12-01
Regenerative medicine employs human mesenchymal stromal cells (MSCs) for their multi-lineage plasticity and their pro-regenerative cytokine secretome. Adipose-derived mesenchymal stromal cells (ASCs) are concentrated in fat tissue, and the ease of harvest via liposuction makes them a particularly interesting cell source. However, there are various liposuction methods, and few have been assessed regarding their impact on ASC functionality. Here we study the impact of the two most popular ultrasound-assisted liposuction (UAL) devices currently in clinical use, VASER (Solta Medical) and Lysonix 3000 (Mentor) on ASCs. After lipoaspirate harvest and processing, we sorted for ASCs using fluorescent-assisted cell sorting based on an established surface marker profile (CD34 + CD31 - CD45 - ). ASC yield, viability, osteogenic and adipogenic differentiation capacity and in vivo regenerative performance were assessed. Both UAL samples demonstrated equivalent ASC yield and viability. VASER UAL ASCs showed higher osteogenic and adipogenic marker expression, but a comparable differentiation capacity was observed. Soft tissue healing and neovascularization were significantly enhanced via both UAL-derived ASCs in vivo, and there was no significant difference between the cell therapy groups. Taken together, our data suggest that UAL allows safe and efficient harvesting of the mesenchymal stromal cellular fraction of adipose tissue and that cells harvested via this approach are suitable for cell therapy and tissue engineering applications. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Su, Ying-Fang; Wu, Tzu-Fan; Ko, Jiunn-Liang; Tsai, Hsiu-Ting; Tee, Yi-Torng; Chien, Ming-Hsien; Chou, Chi-Hung; Lin, Wea-Lung; Low, Hui-Ying; Chou, Ming-Yung; Yang, Shun-Fa; Wang, Po-Hui
2014-01-01
To investigate the implication of ribonucleotide reductase M2 (RRM2) in the carcinogenesis of uterine cervix and its relationship with clinicopathological characteristics and prognosis of cancer patients. The impact of RRM2 on cell viability was investigated in SiHa cervical cancer cells after RRM2 knockdown and the addition of cisplatin, which induces inter- and intra-strand DNA crosslinks. RRM2 immunoreactivity was evaluated by semi-quantitative H score among 29 normal, 30 low-grade dysplasia, 30 high-grade dysplasia and 103 invasive cancer tissue specimens of the uterine cervix, using tissue microarrays. RRM2 was then correlated with the clinicopathological variables of cervical cancer and patient survival. A greater toxic effect on cell viability using cisplatin was reflected by the greater reduction in RRM2 protein expression in SiHa cells. The RRM2 expression in cancer tissues was higher than that in high-grade dysplasia, low-grade dysplasia or normal cervical tissues. RRM2 upregulation was correlated with deep stromal invasion, large tumors and parametrial invasion and predicted poor survival. RRM2 is a new molecular marker for the diagnosis and clinical outcomes of cervical cancer. It is involved in cervical carcinogenesis and predicts poor survival, and may be a potential therapeutic target including in cisplatin treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, K.D.; Brown, M.L.; Dewanjee, M.K.
We prospectively compared sequential technetium-gallium imaging with indium-labeled-leukocyte imaging in fifty patients with suspected low-grade musculoskeletal sepsis. Adequate images and follow-up examinations were obtained for forty-two patients. The presence or absence of low-grade sepsis was confirmed by histological and bacteriological examinations of tissue specimens taken at surgery in thirty of the forty-two patients. In these thirty patients, the sensitivity of sequential Tc-Ga imaging was 48 per cent, the specificity was 86 per cent, and the accuracy was 57 per cent, whereas the sensitivity of the indium-labeled-leukocyte technique was 83 per cent, the specificity was 86 per cent, and the accuracymore » was 83 per cent. When the additional twelve patients for whom surgery was deemed unnecessary were considered, the sensitivity of sequential Tc-Ga imaging was 50 per cent, the specificity was 78 per cent, and the accuracy was 62 per cent, as compared with a sensitivity of 83 per cent, a specificity of 94 per cent, and an accuracy of 88 per cent with the indium-labeled-leukocyte method. In patients with a prosthesis the indium-labeled-leukocyte image was 94 per cent accurate, compared with 75 per cent accuracy for sequential Tc-Ga imaging. Statistical analysis of these data demonstrated that the indium-labeled-leukocyte technique was superior to sequential Tc-Ga imaging in detecting areas of low-grade musculoskeletal sepsis.« less
Baste, Jean-Marc; Gay, Arnaud; Smail, Hassiba; Noël, Romain; Bubenheim, Michael; Begueret, Hugues; Morin, Jean-Paul; Litzler, Pierre-Yves
2015-01-01
Donors after cardiac death (DCD) in lung transplantation is considered as a solution for organ shortage. However, it is characterized by warm ischemic period, which could be involved in severe Ischemia-Reperfusion lesion (IR) with early graft dysfunction. We describe a new hybrid model combining in vivo ischemia followed by in vitro reoxygenation using organ-specific culture. A hybrid model using in vivo ischemic period followed by in vitro lung slice reoxygenation was set up in rat to mimic DCD in lung transplantation with in vitro perfusion. Different markers (bioenergetics, oxidant stress assays, and histology) were measured to evaluate the viability of lung tissue after different ischemic times (I-0, I-1, I-2, I-4, I-15 hours) and reoxygenation times (R-0, R-1, R-4, R-24 hours). No differences were found in cell viability, ATP concentrations, extracellular LDH assays or histology, demonstrating extensive viability of up to 4 hours in lung tissue warm ischemia. We found oxidative stress mainly during the ischemic period with no burst at reoxygenation. Cytosolic anti-oxidant system was involved first (I-0,I-1,I-2) followed by mitochondrial anti-oxidant system for extensive ischemia (I-4). Histological features showed differences in this model of ischemia-reoxygenation between bronchial epithelium and lung parenchymal cells, with epithelium regeneration after 2 hours of warm ischemia and 24 hours of perfusion. The results of our hybrid model experiment suggest extensive lung viability of up to 4 hours ischemia. Our model could be an interesting tool to evaluate ex vivo reconditioning techniques after different in vivo lung insults.
Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.
Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina
Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah
Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cellsmore » by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.« less
Gómez-Lechón, María José; Lahoz, Agustín; Jiménez, Nuria; Bonora, Ana; Castell, José V; Donato, María Teresa
2008-01-01
Hepatocyte transplantation has been proposed as a method to support patients with liver insufficiency. Key factors for clinical cell transplantation to progress is to prevent hepatocyte damage, loss of viability and cell functionality, factors that depend on the nature of the tissue used for isolation to a large extent. The main sources of tissue for hepatocyte isolation are marginal livers that are unsuitable for transplantation, and segments from reduced cadaveric grafts. Hepatocellular transplantation requires infusing human hepatocytes in suspension over a period of minutes to hours. The beneficial effect of hypothermic preservation of hepatocytes in infusion medium has been reported, but how critical issues towards the success of cell transplantation, such as the composition of infusion medium and duration of hepatocyte storage will affect hepatocyte quality for clinical cell infusion has not been systematically investigated. Infusion media composition is phosphate-buffered saline containing anticoagulants and human serum albumin. The supplementation of infusion media with glucose or N-acetyl-cystein, or with both components at the same time, has been investigated. After isolation, hepatocytes were suspended in each infusion medium and a sample at the 0 time point was harvested for cell viability and functional assessment. Thereafter, cells were incubated in different infusion media agitated on a rocker platform to simulate the clinical infusion technique. The time course of hepatocyte viability, funtionality (drug-metabolizing enzymes, ureogenic capability, ATP, glycogen, and GSH levels), apoptosis (caspase-3 activation), and attachment and monolayer formation were analyzed. The optimal preservation of cell viability, attaching capacity, and functionality, particularly GSH and glycogen levels, as well as drug-metabolizing cytochrome P450 enzymes, was found in infusion media supplemented with 2 mM N-acetyl-cystein and 15 mM glucose.
Halwani, Dina O; Brockbank, Kelvin G M; Duman, John G; Campbell, Lia H
2014-06-01
Expanding cryopreservation methods to include a wider range of cell types, such as those sensitive to freezing, is needed for maintaining the viability of cell-based regenerative medicine products. Conventional cryopreservation protocols, which include use of cryoprotectants such as dimethylsulfoxide (Me2SO), have not prevented ice-induced damage to cell and tissue matrices during freezing. A family of antifreeze proteins (AFPs) produced in the larvae of the beetle, Dendroides canadensis allow this insect to survive subzero temperatures as low as -26°C. This study is an assessment of the effect of the four hemolymph D. canadensis AFPs (DAFPs) on the supercooling (nucleating) temperature, ice structure patterns and viability of the A10 cell line derived from the thoracic aorta of embryonic rat. Cryoprotectant solution cocktails containing combinations of DAFPs in concentrations ranging from 0 to 3mg/mL in Unisol base mixed with 1M Me2SO were first evaluated by cryomicroscopy. Combining multiple DAFPs demonstrated significant supercooling point depressing activity (∼9°C) when compared to single DAFPs and/or conventional 1M Me2SO control solutions. Concentrations of DAFPs as low as 1 μg/mL were sufficient to trigger this effect. In addition, significantly improved A10 smooth muscle cell viability was observed in cryopreservation experiments with low DAFP-6 and DAFP-2 concentrations in combination with Me2SO. No significant improvement in viability was observed with either DAFP-1 or DAFP-4. Low and effective DAFP concentrations are advantageous because they minimize concerns regarding cell cytotoxicity and manufacturing cost. These findings support the potential of incorporating DAFPs in solutions used to cryopreserve cells and tissues. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Desrochers, Johanne; Vermette, Patrick; Fontaine, Réjean; Bérubé-Lauzière, Yves
2009-02-01
Current efforts in tissue engineering target the growth of 3D volumes of tissue cultures in bioreactor conditions. Fluorescence optical tomography has the potential to monitor cells viability and tissue growth non-destructively directly within the bioreactor via bio-molecular fluorescent labelling strategies. We currently work on developing the imaging instrumentation for tissue cultures in bioreactor conditions. Previously, we localized in 3D thin fluorescent-labelled capillaries in a cylindrically shaped bioreactor phantom containing a diffusive medium with our time-of-flight localization technique. Here, we present our first reconstruction results of the spatial distribution of fluorophore concentrations for labelled capillaries embedded in a bioreactor phantom.
Towards a minimally invasive sampling tool for high resolution tissue analytical mapping
NASA Astrophysics Data System (ADS)
Gottardi, R.
2015-09-01
Multiple spatial mapping techniques of biological tissues have been proposed over the years, but all present limitations either in terms of resolution, analytical capacity or invasiveness. Ren et al (2015 Nanotechnology 26 284001) propose in their most recent work the use of a picosecond infrared laser (PIRL) under conditions of ultrafast desorption by impulsive vibrational excitation (DIVE) to extract small amounts of cellular and molecular components, conserving their viability, structure and activity. The PIRL DIVE technique would then work as a nanobiopsy with minimal damage to the surrounding tissues, which could potentially be applied for high resolution local structural characterization of tissues in health and disease with the spatial limit determined by the laser focus.
Karthivashan, Govindarajan; Masarudin, Mas Jaffri; Kura, Aminu Umar; Abas, Faridah; Fakurazi, Sharida
2016-01-01
This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as “flavonosome”. Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA–phosphatidylcholine) through four different methods of synthesis – bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug–carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA–phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of −39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate. PMID:27555765
Karthivashan, Govindarajan; Masarudin, Mas Jaffri; Kura, Aminu Umar; Abas, Faridah; Fakurazi, Sharida
2016-01-01
This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.
Myocardial Viability: From Proof of Concept to Clinical Practice
Tan, Timothy C.; Hsu, Chijen; Denniss, Alan Robert
2016-01-01
Ischaemic left ventricular (LV) dysfunction can arise from myocardial stunning, hibernation, or necrosis. Imaging modalities have become front-line methods in the assessment of viable myocardial tissue, with the aim to stratify patients into optimal treatment pathways. Initial studies, although favorable, lacked sufficient power and sample size to provide conclusive outcomes of viability assessment. Recent trials, including the STICH and HEART studies, have failed to confer prognostic benefits of revascularisation therapy over standard medical management in ischaemic cardiomyopathy. In lieu of these recent findings, assessment of myocardial viability therefore should not be the sole factor for therapy choice. Optimization of medical therapy is paramount, and physicians should feel comfortable in deferring coronary revascularisation in patients with coronary artery disease with reduced LV systolic function. Newer trials are currently underway and will hopefully provide a more complete understanding of the pathos and management of ischaemic cardiomyopathy. PMID:27313943
Isolated trout livers were perfused using methods designed to preserve tissue viability and function. Liver performance was evaluated by measuring O2 consumption (VO2), vascular resistance, K+ leakage, glucose flux, lactate flux, alanine aminotransferase (ALT) leakage, and meta...
Contributions of Bioactive Molecules in Stem Cell-Based Periodontal Regeneration
Liu, An-Qi; Hu, Cheng-Hu; Jin, Fang; Zhang, Li-Shu; Xuan, Kun
2018-01-01
Periodontal disease is a widespread disease, which without proper treatment, may lead to tooth loss in adults. Because stem cells from the inflammatory microenvironment created by periodontal disease exhibit impaired regeneration potential even under favorable conditions, it is difficult to obtain satisfactory therapeutic outcomes using traditional treatments, which only focus on the control of inflammation. Therefore, a new stem cell-based therapy known as cell aggregates/cell sheets technology has emerged. This approach provides sufficient numbers of stem cells with high viability for treating the defective site and offers new hope in the field of periodontal regeneration. However, it is not sufficient for regenerating periodontal tissues by delivering cell aggregates/cell sheets to the impaired microenvironment in order to suppress the function of resident cells. In the present review, we summarize some promising bioactive molecules that act as cellular signals, which recreate a favorable microenvironment for tissue regeneration, recruit endogenous cells into the defective site and enhance the viability of exogenous cells. PMID:29597317
Makioka, Yuko; Tsukahara, Takamitsu; Ijichi, Tetsuo; Inoue, Ryo
2018-03-20
Effect on cecal microbiota and gene expression of various cytokines in ileal Peyer's patches and cecal tissues were compared between viable and heat-killed Bifidobacterium longum strain BR-108 (BR-108) using a mouse model. Irrespectively of viability, oral supplementation of BR-108 altered the cecal microbiota and stimulated gene expression of cytokines such as IL-6 and IL-10 in ileal Peyer's patches and cecal tissue of mice. In addition, BR-108 supplementation significantly affected the relative abundance of bacterial genera and family, Oscillospira, Bacteroides and S24-7. The abundance of these bacterial genera and family strongly correlated with gene expression induced by BR-108. This study demonstrated that the effect of heat-killed BR-108 on the mouse cecal microbiota is similar to that of viable BR-108, most likely due to stimulation of the gut immune system by both heat-killed and viable BR-108 is also similar.
Effects of some air pollutants and meteorological conditions on airborne algae and protozoa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.E.
1973-10-01
The effects of meteorological conditions and specific air pollutants on the viability of airborne algae and protozoa were investigated. Such investigations will be of interest to medical researchers because these organisms are the source of many allergies. The three air pollutants that were continuously measured and recorded were sulfur, hydrocarbons, and particulate matter. During the experiment, 25 different species of algae and 19 species of protozoa were collected from the atmosphere and cultured at the Westinghouse environmental Station Laboratory in Raleigh, North Carolina. The algae and protozoa were collected over a one-year period (Jan-Dec 1971) by using a sequential samplermore » that moved air through a membrane filter at the rate of 15 ft/sup 3//hr. Every two hours a new filter was sequentially moved in to replace the old one. The results indicated a relationship between wind speed, wind direction, temperature, dewpoint, particulate matter, barometric pressure, and rainfall to the percent frequency of positive culture tubes and number of cell/ft/sup 3/ of air. Further studies are necessary to determine the interrelationships between the physical and chemical character of various air masses and their effect on the survival of algae and protozoa.« less
Zhang, Wenting; Gu, Yexin; Sun, Qiaoling; Siegel, David S; Tolias, Peter; Yang, Zheng; Lee, Woo Y; Zilberberg, Jenny
2015-01-01
We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC) using an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1) optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2) replenishing OSB during culture as a practical means of prolonging MMC's viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses.
Zhang, Wenting; Gu, Yexin; Sun, Qiaoling; Siegel, David S.; Tolias, Peter; Yang, Zheng
2015-01-01
We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC) using an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1) optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2) replenishing OSB during culture as a practical means of prolonging MMC’s viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses. PMID:25973790
Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C
2013-06-01
Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.
Effect of oxygen supply on the size of implantable islet-containing encapsulation devices.
Papas, Klearchos K; Avgoustiniatos, Efstathios S; Suszynski, Thomas M
2016-03-01
Beta-cell replacement therapy is a promising approach for the treatment of diabetes but is currently limited by the human islet availability and by the need for systemic immunosuppression. Tissue engineering approaches that will enable the utilization of islets or β-cells from alternative sources (such as porcine islets or human stem cell derived beta cells) and minimize or eliminate the need for immunosuppression have the potential to address these critical limitations. However, tissue engineering approaches are critically hindered by the device size (similar to the size of a large flat screen television) required for efficacy in humans. The primary factor dictating the device size is the oxygen availability to islets to support their viability and function (glucose-stimulated insulin secretion [GSIS]). GSIS is affected (inhibited) at a much higher oxygen partial pressure [pO2] than that of viability (e.g. 10 mmHg as opposed to 0.1 mmHg). Enhanced oxygen supply (higher pO2) than what is available in vivo at transplant sites can have a profound effect on the required device size (potentially reduce it to the size of a postage stamp). This paper summarizes key information on the effect of oxygen on islet viability and function within immunoisolation devices and describes the potential impact of enhanced oxygen supply to devices in vivo on device size reduction.
Successful slush nitrogen vitrification of human ovarian tissue.
Talevi, Riccardo; Barbato, Vincenza; Fiorentino, Ilaria; Braun, Sabrina; De Stefano, Cristofaro; Ferraro, Raffaele; Sudhakaran, Sam; Gualtieri, Roberto
2016-06-01
To study whether slush nitrogen vitrification improves the preservation of human ovarian tissue. Control vs. treatment study. University research laboratory. Ovarian biopsies collected from nine women (aged 14-35 years) during laparoscopic surgery for benign gynecologic conditions. None. Ovarian cortical strips of 2 × 5 × 1 mm were vitrified with liquid or slush nitrogen. Fresh and vitrified cortical strips were analyzed for cryodamage and viability under light, confocal, and transmission electron microscopy. Compared with liquid nitrogen, vitrification with slush nitrogen preserves [1] follicle quality (grade 1 follicles: fresh control, 50%; liquid nitrogen, 27%; slush nitrogen, 48%); [2] granulosa cell ultrastructure (intact cells: fresh control, 92%; liquid nitrogen, 45%; slush nitrogen, 73%), stromal cell ultrastructure (intact cells: fresh control, 59.8%; liquid nitrogen, 24%; slush nitrogen, 48.7%), and DNA integrity (TUNEL-positive cells: fresh control, 0.5%; liquid nitrogen, 2.3%; slush nitrogen, 0.4%); and [3] oocyte, granulosa, and stromal cell viability (oocyte: fresh control, 90%; liquid nitrogen, 63%; slush nitrogen, 87%; granulosa cells: fresh control, 93%; liquid nitrogen, 53%; slush nitrogen, 81%; stromal cells: fresh control, 63%; liquid nitrogen, 30%; slush nitrogen, 52%). The histology, ultrastructure, and viability of follicles and stromal cells are better preserved after vitrification with slush nitrogen compared with liquid nitrogen. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Minimizing photodecomposition of flavin adenine dinucleotide fluorescence by the use of pulsed LEDs.
Rösner, J; Liotta, A; Angamo, E A; Spies, C; Heinemann, U; Kovács, R
2016-11-01
Dynamic alterations in flavin adenine dinucleotide (FAD) fluorescence permit insight into energy metabolism-dependent changes of intramitochondrial redox potential. Monitoring FAD fluorescence in living tissue is impeded by photobleaching, restricting the length of microfluorimetric recordings. In addition, photodecomposition of these essential electron carriers negatively interferes with energy metabolism and viability of the biological specimen. Taking advantage of pulsed LED illumination, here we determined the optimal excitation settings giving the largest fluorescence yield with the lowest photobleaching and interference with metabolism in hippocampal brain slices. The effects of FAD bleaching on energy metabolism and viability were studied by monitoring tissue pO 2 , field potentials and changes in extracellular potassium concentration ([K + ] o ). Photobleaching with continuous illumination consisted of an initial exponential decrease followed by a nearly linear decay. The exponential decay was significantly decelerated with pulsed illumination. Pulse length of 5 ms was sufficient to reach a fluorescence output comparable to continuous illumination, whereas further increasing duration increased photobleaching. Similarly, photobleaching increased with shortening of the interpulse interval. Photobleaching was partially reversible indicating the existence of a transient nonfluorescent flavin derivative. Pulsed illumination decreased FAD photodecomposition, improved slice viability and reproducibility of stimulus-induced FAD, field potential, [K + ] o and pO 2 changes as compared to continuous illumination. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Shen, Kaitlin; Murphy, Ciara M; Chan, Ben; Kolind, Mille; Cheng, Tegan L; Mikulec, Kathy; Peacock, Lauren; Xue, Meilang; Park, Sang-Youel; Little, David G; Jackson, Chris J; Schindeler, Aaron
2014-12-01
Activated Protein C (APC) is an anticoagulant with strong cytoprotective properties that has been shown to promote wound healing. In this study APC was investigated for its potential orthopedic application using a Bone Morphogenetic Protein 2 (rhBMP-2) induced ectopic bone formation model. Local co-administration of 10 µg rhBMP-2 with 10 µg or 25 µg APC increased bone volume at 3 weeks by 32% (N.S.) and 74% (p<0.01) compared to rhBMP-2 alone. This was associated with a significant increase in CD31+ and TRAP+ cells in tissue sections of ectopic bone, consistent with enhanced vascularity and bone turnover. The actions of APC are largely mediated by its receptors endothelial protein C receptor (EPCR) and protease-activated receptors (PARs). Cultured pre-osteoblasts and bone nodule tissue sections were shown to express PAR1/2 and EPCR. When pre-osteoblasts were treated with APC, cell viability and phosphorylation of ERK1/2, Akt, and p38 were increased. Inhibition with PAR1 and sometimes PAR2 antagonists, but not with EPCR blocking antibodies, ameliorated the effects of APC on cell viability and kinase phosphorylation. These data indicate that APC can affect osteoblast viability and signaling, and may have in vivo applications with rhBMP-2 for bone repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Ntuli, Tobias M; Pammenter, Norman W; Berjak, Patricia
2013-01-01
Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goven, A.J.; Fitzpatrick, L.C.; Eyambe, G.S.
Acute toxicity in earthworms (Lumbricus terrestris) was assayed immediately after 5-d filter paper exposure to the polychlorinated biphenyl (PCB) Aroclor 1254, using coelomocyte viability, total extruded cell counts (ECC), differential cell counts (DCC), and formation of erythrocyte (ER) and secretory rosettes (SR) with, and phagocytosis of, antigenic rabbit red blood cells (RRBC). Chronic toxicity was assayed using rates by which earthworms replaced viable immunoactive coelomocytes, removed noninvasively immediately after exposure, over an 18-week depuration period. All cytological parameters, except ECC, were acutely affected immediately after exposure, when tissue concentrations were ([anti X] [plus minus] SE) 91.2 [plus minus] 8.19 [mu]gmore » PCB per gram dry mass. Replacement of viable immunoactive coelomocytes occurred within six weeks in unexposed control earthworms. Exposed earthworms showed significant alteration in viability, ECC, DCC, ER, and SR formation, and phagocytosis at 6 and 12 weeks when PCB tissue concentrations were 41 [plus minus] 0.31 and 30.2 [plus minus] 0.88 [mu]g/g dry mass, respectively. Replacement of extruded coelomocytes with normal DCC of viable immunocompetent cells was not observed until week 18, when PCB had decreased to 15.7 [plus minus] 0.83 [mu]g/g dry mass. Low inherent natural variability in coelomocyte viability, ECC, DCC, rosette formation, and phagocytosis, and their sensitivity to sublethal PCB body burdens, indicated that earthworm coelomocytes have potential as nonmammalian biomarkers for assaying acute and chronic sublethal toxicity of xenobiotics.« less
Li, Jing-Jie; Li, Zheng; Gu, Li-Juan; Choi, Kang-Ju; Kim, Dong-Seon; Kim, Ho-Kyoung; Sung, Chang-Keun
2018-01-01
This study investigated the potential hair regrowth effects associated with a plant extract of Perilla frutescens, which was selected due to its putative hair regrowth activity. Extracts were prepared from dried P. frutescens suspended in distilled water, where the resultant aqueous suspension was fractionated sequentially using hexane, ethyl acetate, n-butanol, and distilled water. We observed that the n-butanol fraction resulted in the highest hair regrowth activity. The n-butanol soluble fraction of P. frutescens extract (BFPE) was further separated using AB-8 macroporous resin and silica gel chromatography to obtain rosmarinic acid (RA), which demonstrated effective hair growth regeneration potential. BFPE also showed in vivo anti-androgenic activity following the use of a hair growth assay in testosterone-sensitive male C57Bl/6NCrSlc mice. Furthermore, the effects of cell viability promotion were investigated following an in vitro analysis in primary hair follicle fibroblast cells (PHFCs) treated with RA. The results suggested that RA was the active compound in P. frutescens that triggers hair growth, and RA could be a potential therapeutic agent for the promotion of hair growth and prevention of androgenetic alopecia (AGA).
Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Yanxi; College of Life Science, Shanxi University, Taiyuan; Wu, Bo
2011-12-15
Hydrogen sulfide (H{sub 2}S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H{sub 2}S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H{sub 2}S donor) decreased the viability ofmore » PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H{sub 2}S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H{sub 2}S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H{sub 2}S-producing enzyme in prostate. CSE overexpression enhanced H{sub 2}S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H{sub 2}S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H{sub 2}S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H{sub 2}S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: Black-Right-Pointing-Pointer A large amount of H{sub 2}S is released from sulforaphane. Black-Right-Pointing-Pointer H{sub 2}S mediates the anti-survival effect of sulforaphane on human prostate cancer cells. Black-Right-Pointing-Pointer Cystathionine gamma-lyase is a major H{sub 2}S-producing enzyme in prostate tissues. Black-Right-Pointing-Pointer p38 MAPK and JNK contribute to H{sub 2}S and sulforaphane-reduced viability in prostate cancer cells.« less
Cressman, Erik N K; Shenoi, Mithun M; Edelman, Theresa L; Geeslin, Matthew G; Hennings, Leah J; Zhang, Yan; Iaizzo, Paul A; Bischof, John C
2012-01-01
To investigate simultaneous and sequential injection thermochemical ablation in a porcine model, and compare them to sham and acid-only ablation. This IACUC-approved study involved 11 pigs in an acute setting. Ultrasound was used to guide placement of a thermocouple probe and coaxial device designed for thermochemical ablation. Solutions of 10 M acetic acid and NaOH were used in the study. Four injections per pig were performed in identical order at a total rate of 4 mL/min: saline sham, simultaneous, sequential, and acid only. Volume and sphericity of zones of coagulation were measured. Fixed specimens were examined by H&E stain. Average coagulation volumes were 11.2 mL (simultaneous), 19.0 mL (sequential) and 4.4 mL (acid). The highest temperature, 81.3°C, was obtained with simultaneous injection. Average temperatures were 61.1°C (simultaneous), 47.7°C (sequential) and 39.5°C (acid only). Sphericity coefficients (0.83-0.89) had no statistically significant difference among conditions. Thermochemical ablation produced substantial volumes of coagulated tissues relative to the amounts of reagents injected, considerably greater than acid alone in either technique employed. The largest volumes were obtained with sequential injection, yet this came at a price in one case of cardiac arrest. Simultaneous injection yielded the highest recorded temperatures and may be tolerated as well as or better than acid injection alone. Although this pilot study did not show a clear advantage for either sequential or simultaneous methods, the results indicate that thermochemical ablation is attractive for further investigation with regard to both safety and efficacy.
Xenopus laevis deiodinase 3 expression for in vitro screening of potential chemical inhibitors
Thyroid hormones are essential for normal sequential development and metamorphosis of amphibian tissues and organs. Critical to this process are the deiodinase (DIO) enzymes which catalyze the removal of an iodine from thyroid hormones to either activate or inactivate the hormone...
A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
Daly, Andrew C; Critchley, Susan E; Rencsok, Emily M; Kelly, Daniel J
2016-10-07
Cartilage is a dense connective tissue with limited self-repair capabilities. Mesenchymal stem cell (MSC) laden hydrogels are commonly used for fibrocartilage and articular cartilage tissue engineering, however they typically lack the mechanical integrity for implantation into high load bearing environments. This has led to increased interested in 3D bioprinting of cell laden hydrogel bioinks reinforced with stiffer polymer fibres. The objective of this study was to compare a range of commonly used hydrogel bioinks (agarose, alginate, GelMA and BioINK™) for their printing properties and capacity to support the development of either hyaline cartilage or fibrocartilage in vitro. Each hydrogel was seeded with MSCs, cultured for 28 days in the presence of TGF-β3 and then analysed for markers indicative of differentiation towards either a fibrocartilaginous or hyaline cartilage-like phenotype. Alginate and agarose hydrogels best supported the development of hyaline-like cartilage, as evident by the development of a tissue staining predominantly for type II collagen. In contrast, GelMA and BioINK ™ (a PEGMA based hydrogel) supported the development of a more fibrocartilage-like tissue, as evident by the development of a tissue containing both type I and type II collagen. GelMA demonstrated superior printability, generating structures with greater fidelity, followed by the alginate and agarose bioinks. High levels of MSC viability were observed in all bioinks post-printing (∼80%). Finally we demonstrate that it is possible to engineer mechanically reinforced hydrogels with high cell viability by co-depositing a hydrogel bioink with polycaprolactone filaments, generating composites with bulk compressive moduli comparable to articular cartilage. This study demonstrates the importance of the choice of bioink when bioprinting different cartilaginous tissues for musculoskeletal applications.
Moreira, Maria Stella; Katayama, Emilio; Bombana, Antonio Carlos; Marques, Márcia Martins
2005-12-01
The use of alendronate, a bisphosphonate which is able to inhibit bone resorption, in order to prevent dental root resorption after tooth replantation would be of clinical relevance. However, this drug must be biocompatible to the periapical tissues. The aim of this study was to analyze the effect of an alendronate paste in polyethyleneglycol (2 g ml(-1)) on endothelial cells in culture (in vitro) and on rat subcutaneous tissue (in vivo). For the in vitro study the paste was applied on round glass coverslips that were immersed into confluent cell cultures (clone Cips). The cell viability percentages of these cultures were obtained 0, 6 and 12 h after contact with the substance. As control, cultures that received plain coverslips were used. This analysis was carried out in triplicate using the Trypan blue dye exclusion assay. For the in vivo study the paste was introduced into polyethylene tubes that were placed into the rat subcutaneous tissue. The rats were killed 7 and 14 days later; then, the tissue sections stained with hematoxylin-eosin were analyzed. In vitro, the alendronate caused a significant decrease in the cell viability in 6 h (P < 0.05) and 12 h (P < 0.01), when compared with the control cultures. In vivo the tissue response was exuberant and similar at the two experimental times. There was a necrosis in a comprehensive area in contact with the open end of the tube. Presence of micro-abscesses and intense inflammatory infiltrate in the hypoderm permeating the muscle fibers and fat lobules were observed. In conclusion, the alendronate paste in polyethylene glycol as used showed to be highly cytotoxic in vitro as well as in vivo.
Tang, Qinggong; Piard, Charlotte; Lin, Jonathan; Nan, Kai; Guo, Ting; Caccamese, John; Fisher, John; Chen, Yu
2018-01-01
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2 ∼ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ. © 2017 Wiley Periodicals, Inc.
In Vitro Engineering of Vascularized Tissue Surrogates
Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Horaguchi, Shigeto; Sekine, Hidekazu; Yamato, Masayuki; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models. PMID:23419835
Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
Pati, Falguni; Cho, Dong-Woo
2017-01-01
Bioprinting provides an exciting opportunity to print and pattern all the components that make up a tissue-cells and extracellular matrix (ECM) material-in three dimensions (3D) to generate tissue analogues. A large number of materials have been used for making bioinks; however, majority of them cannot represent the complexity of natural ECM and thus are unable to reconstitute the intrinsic cellular morphologies and functions. We present here a method for making of bioink from decellularized extracellular matrices (dECMs) and a protocol for bioprinting of cell-laden constructs with this novel bioink. The dECM bioink is capable of providing an optimized microenvironment that is conducive to the growth of 3D structured tissue. We have prepared bioinks from different tissues, including adipose, cartilage and heart tissues and achieved high cell viability and functionality of the bioprinted tissue structures using our novel bioink.
Tissue strands as "bioink" for scale-up organ printing.
Yu, Yin; Ozbolat, Ibrahim T
2014-01-01
Organ printing, takes tissue spheroids as building blocks together with additive manufacturing technique to engineer tissue or organ replacement parts. Although a wide array of cell aggregation techniques has been investigated, and gained noticeable success, the application of tissue spheroids for scale-up tissue fabrication is still worth investigation. In this paper, we introduce a new micro-fabrication technique to create tissue strands at the scale of 500-700μm as a "bioink" for future robotic tissue printing. Printable alginate micro-conduits are used as semi-permeable capsules for tissue strand fabrication. Mouse insulinoma beta TC3 cell tissue strands were formed upon 4 days post fabrication with reasonable mechanical strength, high cell viability close to 90%, and tissue specific markers expression. Fusion was readily observed between strands when placing them together as early as 24h. Also, tissue strands were deposited with human umbilical vein smooth muscle cells (HUVSMCs) vascular conduits together to fabricated miniature pancreatic tissue analog. Our study provided a novel technique using tissue strands as "bioink" for scale-up bioprinting of tissues or organs.
Viability of commercial cucumber fermentation without nitrogen or air purging
USDA-ARS?s Scientific Manuscript database
Bloater defect in cucumber fermentation refers to the formation of gas pockets in the seed cavity or endocarp as the result of carbon dioxide production. Bloater damage is known to cause economic losses for the pickling industry. Microbial activity during fermentation, tissue respiration within the ...
Jenderek, Maria M; Tanner, Justin D; Ambruzs, Barbara D; West, Mark; Postman, Joseph D; Hummer, Kim E
2017-02-01
Cryopreservation of temperate woody-plant material by dormant buds is less expensive than using shoot tips isolated from tissue cultured plants; however currently, dormant buds are used only for preservation of selected temperate tree and shrub species. Using dormant buds could be an efficient strategy for long-term preservation of blueberry (Vaccinium L.) genetic resources. In this study, viability of V. hybrid 'Northsky' (PI 554943) dormant buds was evaluated at 30 harvest dates over three consecutive fall/winter seasons to determine the optimal harvest time that promotes high post cryopreservation viability. Twigs with dormant buds were cut into 70 mm segments containing at least two nodes, desiccated, slowly cooled, stored in liquid nitrogen vapor and tested for post-cryopreservation regrowth. The highest regrowth of cryopreserved dormant buds was observed for buds harvested in mid-December and during the first half of January. Pearson's correlation coefficients were computed to evaluate the association between bud characteristics and viability at harvest date and logistic regression models were fit to test the ability of twig characteristics and temperatures to predict post cryopreservation bud viability. Post-cryopreservation viability was negatively correlated (p < 0.05) with average minimum, maximum and daily mean temperature preceding the bud harvest but was not correlated with the dormant bud initial and end moisture content, twig diameter, the number of dormant buds/cm of twig length and the number of days in desiccation. Regression tree analysis suggested post-cryopreservation viability to be between 52 and 80% for dormant buds harvested after a 10 day average maximum air temperature of <11.2 °C. Pre-harvest air temperature was a significant indicator of optimal dormant bud harvest time to produce adequate viability for long term preservation of blueberry genetic resources. Published by Elsevier Inc.
Sequential Leaching of Chromium Contaminated Sediments - A Study Characterizing Natural Attenuation
NASA Astrophysics Data System (ADS)
Musa, D.; Ding, M.; Beroff, S.; Rearick, M.; Perkins, G.; WoldeGabriel, G. W.; Ware, D.; Harris, R.; Kluk, E.; Katzman, D.; Reimus, P. W.; Heikoop, J. M.
2015-12-01
Natural attenuation is an important process in slowing down the transport of hexavalent chromium, Cr(VI), an anthropogenic environmental contaminant, either by adsorption of Cr(VI) to sediments, or by reduction to nontoxic trivalent chromium, Cr(III). The capacity and mechanism of attenuation is explored in this sequential leaching study of different particle size fractions of chromium contaminated sediments and similar uncontaminated sediments from the regional aquifer near Los Alamos, New Mexico. Using this leaching protocol each sediment sample is split in two: one half is leached three times using a 0.1 M sodium bicarbonate/carbonate solution, while the second half is leached three times using a 0.01 M nitric acid, followed by two consecutively increasing magnitudes of nitric acid concentrations. Based on the amphoteric nature of chromium, alkaline leaching is used to establish the amount of Cr(VI) sorbed on the sediment, whereas acid leaching is used to establish the amount of Cr(III). The weak acid is predicted to release the attenuated anthropogenic Cr(III), without affecting Cr-bearing minerals. The sequential, stronger, acid is anticipated to leach Cr(III)-incorporated in the minerals. The efficiency and validation of the sequential leaching method is assessed by comparing the leaching behavior of bentonite and biotite samples, with and without loaded Cr(VI). A 97% chromium mass balance of leached Cr(VI)-loaded bentonite and biotite proves the viability of this method for further use on leaching contaminated sediments. By comparing contaminated and uncontaminated sediment leachate results, of chromium and other major and trace elements, the signature of anthropogenic chromium is determined. Further mineralogical characterization of the sediments provides a quantitative measure of the natural attenuation capacity for chromium. Understanding these results is pertinent in delineating the optimal procedure for the remediation of Cr(VI) in the regional aquifer near Los Alamos.
Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya
2013-07-01
A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.
USDA-ARS?s Scientific Manuscript database
Deficit irrigation reduces seasonal carbohydrate supply and decreases starch concentrations in vegetative tissues. The specific role of starch metabolism in conferring tolerance to cold is still poorly understood. A decrease in cold tolerance after sequential years of deficit irrigation would limit ...
Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C
2012-07-01
DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.
Zhu, Xin; Rudolf, Heike; Healey, Lucas; François, Paul; Brown, Susan J.; Klingler, Martin; El-Sherif, Ezzat
2017-01-01
During the anterior−posterior fate specification of insects, anterior fates arise in a nonelongating tissue (called the “blastoderm”), and posterior fates arise in an elongating tissue (called the “germband”). However, insects differ widely in the extent to which anterior−posterior fates are specified in the blastoderm versus the germband. Here we present a model in which patterning in both the blastoderm and germband of the beetle Tribolium castaneum is based on the same flexible mechanism: a gradient that modulates the speed of a genetic cascade of gap genes, resulting in the induction of sequential kinematic waves of gap gene expression. The mechanism is flexible and capable of patterning both elongating and nonelongating tissues, and hence converting blastodermal to germband fates and vice versa. Using RNAi perturbations, we found that blastodermal fates could be shifted to the germband, and germband fates could be generated in a blastoderm-like morphology. We also suggest a molecular mechanism underlying our model, in which gradient levels regulate the switch between two enhancers: One enhancer is responsible for sequential gene activation, and the other is responsible for freezing temporal rhythms into spatial patterns. This model is consistent with findings in Drosophila melanogaster, where gap genes were found to be regulated by two nonredundant “shadow” enhancers. PMID:28973882
Bioerodible System for Sequential Release of Multiple Drugs
Sundararaj, Sharath C.; Thomas, Mark V.; Dziubla, Thomas D.; Puleo, David A.
2013-01-01
Because many complex physiological processes are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the objective of the present research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. The polymers used were cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. PMID:24096151
Zhang, Yi-Ran; Xiong, Hai-Rong; Guo, Xiao-Hua
2014-01-01
In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30∼35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01 ± 0.15 log CFU/g and spores of Bacillus of about 10.30 ± 0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P < 0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P < 0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.
The Role of Na+/K+-ATPase during Chick Skeletal Myogenesis
Oliveira, Taissa Neustadt; Possidonio, Ana Claudia; Soares, Carolina Pontes; Ayres, Rodrigo; Costa, Manoel Luis; Quintas, Luis Eduardo Menezes; Mermelstein, Cláudia
2015-01-01
The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase. PMID:25775465
The role of Na+/K+-ATPase during chick skeletal myogenesis.
Oliveira, Taissa Neustadt; Possidonio, Ana Claudia; Soares, Carolina Pontes; Ayres, Rodrigo; Costa, Manoel Luis; Quintas, Luis Eduardo Menezes; Mermelstein, Cláudia
2015-01-01
The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase.
Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.
Stephens, J S; Cooper, J A; Phelan, F R; Dunkers, J P
2007-07-01
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. (c) 2006 Wiley Periodicals, Inc.
Hydrogel tissue construct-based high-content compound screening.
Lam, Vy; Wakatsuki, Tetsuro
2011-01-01
Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)-based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds--rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)--for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.
Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi
2017-04-01
We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.
Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan
2014-07-01
Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering. © 2013 Wiley Periodicals, Inc.
Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.
2013-01-01
Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554
Synthetic vs natural scaffolds for human limbal stem cells
Tominac Trcin, Mirna; Dekaris, Iva; Mijović, Budimir; Bujić, Marina; Zdraveva, Emilija; Dolenec, Tamara; Pauk-Gulić, Maja; Primorac, Dragan; Crnjac, Josip; Špoljarić, Branimira; Mršić, Gordan; Kuna, Krunoslav; Špoljarić, Daniel; Popović, Maja
2015-01-01
Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes. PMID:26088849
D’Costa, Vivian Flourish; Bangera, Madhu Keshava; Kini, Shravan; Kutty, Shakkira Moosa; Ragher, Mallikarjuna
2017-01-01
Background and Objectives: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extraoral dry time and the storage media in which the tooth is placed before treatment is rendered. The present study is undertaken to evaluate the periodontal ligament (PDL) cell viability after storage of teeth in different storage media, namely, coconut water, milk, and saline. Materials and Methods: Forty sound human premolars undergoing extraction for orthodontic purpose were selected. The teeth were allowed to lie dry on sand/mud for 30 min followed by which they were randomly divided and stored in three different media, i.e., coconut water, milk, and saline. After 45-min storage in their respective media, the root surface was then scraped for PDL tissue. Results: The ANOVA and Newman–Keuls post hoc procedure for statistical analysis of viable cell count under a light microscope using hemocytometer demonstrated that coconut water preserved significantly more PDL cells viable (P < 0.05) compared with milk and saline. Conclusion: Storage media help in preserving the viability of PDL cells when immediate replantation is not possible. This study evaluated the posttraumatic PDL cells’ viability following storage in three different storage media. Within the parameters of this study, it was found that coconut water is the most effective media for maintaining the viability of PDL. PMID:29284947
Knee joint transplantation combined with surgical angiogenesis in rabbits – a new experimental model
Kremer, Thomas; Giusti, Guilherme; Friedrich, Patricia F.; Willems, Wouter; Bishop, Allen T.; Giessler, Goetz A.
2012-01-01
Summary Purpose We have previously described a means to maintain bone allotransplant viability, without long-term immune modulation, replacing allogenic bone vasculature with autogenous vessels. A rabbit model for whole knee joint transplantation was developed and tested using the same methodology, initially as an autotransplant. Materials/Methods Eight New Zealand White rabbit knee joints were elevated on a popliteal vessel pedicle to evaluate limb viability in a non-survival study. Ten additional joints were elevated and replaced orthotopically in a fashion identical to allotransplantation, obviating only microsurgical repairs and immunosuppression. A superficial inferior epigastric facial (SIEF) flap and a saphenous arteriovenous (AV) bundle were introduced into the femur and tibia respectively, generating a neoangiogenic bone circulation. In allogenic transplantation, this step maintains viability after cessation of immunosuppression. Sixteen weeks later, x-rays, microangiography, histology, histomorphometry and biomechanical analysis were performed. Results Limb viability was preserved in the initial 8 animals. Both soft tissue and bone healing occurred in 10 orthotopic transplants. Surgical angiogenesis from the SIEF flap and AV bundle was always present. Bone and joint viability was maintained, with demonstrable new bone formation. Bone strength was less than the opposite side. Arthrosis and joint contractures were frequent. Conclusion We have developed a rabbit knee joint model and evaluation methods suitable for subsequent studies of whole joint allotransplantation. PMID:22113889
NASA Astrophysics Data System (ADS)
Catros, Sylvain; Guillotin, Bertrand; Bačáková, Markéta; Fricain, Jean-Christophe; Guillemot, Fabien
2011-04-01
Biofabrication of three dimensional tissues by Laser-Assisted Bioprinting (LAB) implies to develop specific strategies for assembling the extracellular matrix (ECM) and cells. Possible strategies consist in (i) printing cells onto or in the depth of ECM layer and/or (ii) printing bioinks containing both cells and ECM-like printable biomaterial. The aim of this article was to evaluate combinatorial effects of laser pulse energy, ECM thickness and viscosity of the bioink on cell viability. A LAB workstation was used to print Ea.hy926 endothelial cells onto a quartz substrate covered with a film of ECM mimicking Matrigel™. Hence, effect of laser energy, Matrigel™ film thickness and bioink viscosity was addressed for different experimental conditions (8-24 μJ, 20-100 μm and 40-110 mPa s, respectively). Cell viability was assessed by live/dead assay performed 24 h post-printing. Results show that increasing the laser energy tends to augment the cell mortality while increasing the thickness of the Matrigel™ film and the viscosity of the bioink support cell viability. Hence, critical printing parameters influencing high cell viability have been related to the cell landing conditions and more specifically to the intensity of the cell impacts occurring at the air-ECM interface and at the ECM-glass interface.
2010-01-01
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of noninvasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlPOSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based Analysis The objective of this analysis is to assess the effectiveness and cost-effectiveness of cardiovascular magnetic resonance imaging (cardiac MRI) for the assessment of myocardial viability. To evaluate the effectiveness of cardiac MRI viability imaging, the following outcomes were examined: the diagnostic accuracy in predicting functional recovery and the impact of cardiac MRI viability imaging on prognosis (mortality and other patient outcomes). CONDITION AND TARGET POPULATION LEFT VENTRICULAR SYSTOLIC DYSFUNCTION AND HEART FAILURE: Heart failure is a complex syndrome characterized by the heart's inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) () is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. IN GENERAL, THERE ARE THREE OPTIONS FOR THE TREATMENT OF HEART FAILURE: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or, in some cases, through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure. Left ventricular dysfunction may be permanent, due to the formation of myocardial scar, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically: dobutamine echocardiography (echo),stress echo with contrast,SPECT using either technetium or thallium,cardiac magnetic resonance imaging (cardiac MRI), andpositron emission tomography (PET). Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 - 10 µg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability. Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium. SPECT: SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images. The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%. There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution. Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. (ABSTRACT TRUNCATED)
NASA Technical Reports Server (NTRS)
Iarlsson, Ingrid; Grivel, Jean-Charles; Chen. Silvia; Karlsson, Anders; Albert, Jan; Fenyol, Eva Maria; Margolis, Leonid B.
2005-01-01
CCR5-utilizing HIV-1 variants (R5) typically transmit infection and dominate its early stages, whereas emergence of CXCR4-using (X4 or R5X4) HIV-1 is often associated with disease progression. However, such a switch in co-receptor usage can only be detected in approximately onehalf of HIV-infected patients (switch virus patients), and progression to immunodeficiency may also occur in patients without detectable switch in co-receptor usage (non-switch virus patients). Here, we used a system of ex vivo-infected tonsillar tissue to compare the pathogenesis of sequential primary R5 HIV-1 isolates from the switch and non-switch patients. Inoculation of ex vivo tissue with these R5 isolates resulted in viral replication and CCR5(+)CD4(+) T cell depletion. The levels of such depletion by HIV-1 isolated from non-switch virus patients were significantly higher than those by R5 HIV-1 isolates from switch virus patients. T cell depletion seemed to be controlled by viral factors and did not significantly vary between tissues from different donors. In contrast, viral replication did not correlate with the switch status of the patients; in tissues fiom different donors it varied 30-fold and seemed to be controlled by a combination of viral and tissue factors. Nevertheless, replication-level hierarchy among sequential isolates remained constant in tissues from various donors. Viral load in vivo was higher in switch virus patients compared to non-switch virus patients. The high cytopathogenicity of CCR5(+)CD4(+) T cells by R5 HIV-1 isolates from non-switch virus patients may explain the steady decline of CD4(+) T cells in the absence of CXCR4 using virus; elimination of target cells by these isolates may limit their own replication in vivo.
The Effect of Liquid Nitrogen on Bone Graft Survival.
Sirinoglu, Hakan; Çilingir, Özlem Tuğçe; Çelebiler, Ozhan; Ercan, Feriha; Numanoglu, Ayhan
2015-08-01
Liquid nitrogen is used in medicine for cancer treatment and tissue preservation; however, bone viability after its application is controversial. This study aims to evaluate both the tissue viability and the clinical and histopathologic findings following liquid nitrogen application with different thawing techniques in rats. Mandibular bone grafts were taken from 45 Wistar rats and freezed in liquid nitrogen for 20 minutes. In the rapid-thawing technique (Rapid Thawing-1, Rapid Thawing-2), the grafts were held for 20 minutes in room temperature; in the slow-thawing technique (Slow Thawing-1, Slow Thawing-2), 20 minutes in -20°C, 20 minutes in +4°C, and 20 minutes in room temperature, respectively. In Rapid Thawing-2 and Slow Thawing-2 groups, autografts were implanted to their origin for 3 weeks and bone staining with India ink was performed and samples taken for histologic examination. The amount of cells and blood vessels and the density of bone canaliculi were significantly reduced in Rapid Thawing-1 and Slow Thawing-1 groups comparing to the Control group. However, the reduction rate was more significant in the Slow Thawing-1 group. Histomorphometric evaluation of the healing autografts after 3 weeks revealed that the decreased amounts of canaliculi were not changed in Slow Thawing-2 group. The study results demonstrated that bone tissue survives after liquid nitrogen treatment regardless of the performed thawing technique; however, slow thawing causes more tissue damage and metabolism impairment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Döge, Nadine; Avetisyan, Araks; Hadam, Sabrina; Pfannes, Eva Katharina Barbosa; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Vogt, Annika
2017-07-01
Topical dermatotherapy is intended to be used on diseased skin. Novel drug delivery systems even address differences between intact and diseased skin underlining the need for pre-clinical assessment of different states of barrier disruption. Herein, we studied how short-term incubation in culture media compared to incubation in humidified chambers affects human skin barrier function and viability. On both models we assessed different types and intensities of physical and chemical barrier disruption methods with regard to structural integrity, biophysical parameters and cytokine levels. Tissue degeneration and proliferative activity limited the use of tissue cultures to 48h. Viability is better preserved in cultured tissue. Tape-stripping (50×TS) and 4h sodium lauryl sulfate (SLS) pre-treatment were identified as highly reproducible and effective procedures for barrier disruption. Transepidermal water loss (TEWL) values reproducibly increased with the intensity of disruption while sebum content and skin surface pH were of limited value. Interleukin (IL)-6/8 and various chemokines and proteases were increased in tape-stripped skin which was more pronounced in SLS-treated skin tissue extracts. Thus, albeit limited to 48h, cultured full-thickness skin maintained several barrier characteristics and responded to different intensities of barrier disruption. Potentially, these models can be used to assess pre-clinically the efficacy and penetration of anti-inflammatory compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo
2014-01-01
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method. PMID:24887553
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
NASA Astrophysics Data System (ADS)
Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo
2014-06-01
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.
Haag, K T; Magalhães-Padilha, D M; Fonseca, G R; Wischral, A; Gastal, M O; King, S S; Jones, K L; Figueiredo, J R; Gastal, E L
2013-03-01
A Biopsy Pick-Up (BPU) method was tested to determine the feasibility of retrieving preantral follicles from mare ovaries in vivo. A total of 33 ovarian biopsy procedures were performed on 18 mares during the breeding season. Mares were 5 to 21 years old and biopsies were performed during the estrous and/or diestrous phase, as confirmed by transrectal ultrasonography. Follicles were mechanically isolated using a tissue chopper, counted, and classified as normal or abnormal and primordial or primary. Viability of isolated follicles was determined by Trypan Blue dye. A total of 256 biopsy attempts were made resulting in 185 successful tissue sample collections (72% success rate). The mean weight of ovarian tissue collected per procedure was 25.0 ± 1.6 mg. Overall, 620 preantral follicles were collected and isolated (95% primordial and 5% primary). The mean (±SEM) number of follicles isolated per biopsy procedure was 18.8 ± 1.9. Primordial and primary follicles had an average diameter of 31.3 ± 6.2 and 41.1 ± 6.6 μm, respectively. Viability rate was higher (P < 0.001) for primordial follicles (91%) compared with primary follicles (50%). Primordial follicles tended (P < 0.06) to have a higher rate of morphological normality (96%) compared with primary follicles (80%). The total number of follicles isolated, amount of tissue harvested, and number of follicles per mg of tissue did not differ (P > 0.05) according to phase of the estrous cycle. Younger mares (5 to 7 years old) had more (P < 0.05) follicles isolated per procedure than older mares (14 to 21 years old). The length of the interovulatory interval was not affected (P > 0.05) by any biopsy procedure, and there were no adverse effects on cyclicity or general reproductive health. In conclusion, the BPU method provided large numbers of normal and viable preantral follicles for the study of early follicular development in mares. The BPU method might be used in the future to obtain preantral follicles for in vitro culture to enable the use of numerous oocytes present within the equine ovary. This could allow for the preservation of genetic material or large-scale embryo production. Copyright © 2013 Elsevier Inc. All rights reserved.
Zustiak, Silviya P.; Pubill, Stephanie; Ribeiro, Andreia; Leach, Jennie B.
2013-01-01
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically-degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. PMID:24474590
Shiekh, Parvaiz A; Singh, Anamika; Kumar, Ashok
2018-06-06
With the advancement in biomaterial sciences, tissue-engineered scaffolds are developing as a promising strategy for the regeneration of damaged tissues. However, only a few of these scaffolds have been translated into clinical applications. One of the primary drawbacks of the existing scaffolds is the lack of adequate oxygen supply within the scaffolds. Oxygen-producing biomaterials have been developed as an alternate strategy but are faced with two major concerns. One is the control of the rate of oxygen generation, and the other is the production of reactive oxygen species (ROS). To address these concerns, here, we report the development of an oxygen-releasing antioxidant polymeric cryogel scaffold (PUAO-CPO) for sustained oxygen delivery. PUAO-CPO scaffold was fabricated using the cryogelation technique by the incorporation of calcium peroxide (CPO) in the antioxidant polyurethane (PUAO) scaffolds. The PUAO-CPO cryogels attenuated the ROS and showed a sustained release of oxygen over a period of 10 days. An in vitro analysis of the PUAO-CPO cryogels showed their ability to sustain H9C2 cardiomyoblast cells under hypoxic conditions, with cell viability being significantly better than the normal polyurethane (PU) scaffolds. Furthermore, in vivo studies using an ischemic flap model showed the ability of the oxygen-releasing cryogel scaffolds to prevent tissue necrosis upto 9 days. Histological examination indicated the maintenance of tissue architecture and collagen content, whereas immunostaining for proliferating cell nuclear antigen confirmed the viability of the ischemic tissue with oxygen delivery. Our study demonstrated an advanced approach for the development of oxygen-releasing biomaterials with sustained oxygen delivery as well as attenuated production of residual ROS and free radicals because of ischemia or oxygen generation. Hence, the oxygen-releasing PUAO-CPO cryogel scaffolds may be used with cell-based therapeutic approaches for the regeneration of damaged tissue, particularly with ischemic conditions such as myocardial infarction and chronic wound healing.
Liu, Xiaomin; Zhang, Yingjian; Wang, Ping; Wang, Hongyun; Su, Huanhuan; Zhou, Xin; Zhang, Lamei
2016-07-16
BACKGROUND This study was designed to improve our understanding of the role of miR-18a and its target (connective tissue growth factor (CTGF), which are mediators in HBX-induced hepatocellular carcinoma (HCC). MATERIAL AND METHODS We first investigated the expression of several candidate microRNAs (miRNAs) reported to have been aberrantly expressed between HepG2 and HepG2.2.15, which is characterized by stable HBV infection, while the CTGF is identified as a target of miR-18a. Furthermore, the expression of CTGF evaluated in HepG2 was transfected with HBX, while the HepG2.2.15 was transfected with miR-18a and CTGF siRNA. We examined the cell cycle at the same time. RESULTS We found that the expression of miR-18a was abnormally reduced in the HBV-positive HCC tissue samples compared with HBV-negative HCC samples. Through the use of a luciferase reporter system, we also identified CTGF 3'UTR (1046-1052 bp) as the exact binding site for miR-18a. We also observed a clear increase in CTGF mRNA and protein expression levels in HBV-positive HCC human tissue samples in comparison with the HBV-negative controls, indicating a possible negatively associated relationship between miR-18a and CTGF. Furthermore, we investigated the effect of HBX overexpression on miR-18a and CTGF, as well as the viability and cell cycle status of HepG2 cells. In addition, we found that HBX introduction downregulated miR-18a, upregulated CTGF, elevated the viability, and promoted cell cycle progression. We transfected HepG2.2.15 with miR-18a mimics and CTGF siRNA, finding that upregulated miR-18a and downregulated CTGF suppress the viability and cause cell cycle arrest. CONCLUSIONS Our study shows the role of the CTGF gene as a target of miR-18a, and identifies the function of HBV/HBX/miR-18a/CTGF as a key signaling pathway mediating HBV infection-induced HCC.
Wachs, Rebecca A; Hoogenboezem, Ella N; Huda, Hammad I; Xin, Shangjing; Porvasnik, Stacy L; Schmidt, Christine E
2017-03-01
Disc degeneration is the leading cause of low back pain and is often characterized by a loss of disc height, resulting from cleavage of chondroitin sulfate proteoglycans (CSPGs) present in the nucleus pulposus. Intact CSPGs are critical to water retention and maintenance of the nucleus osmotic pressure. Decellularization of healthy nucleus pulposus tissue has the potential to serve as an ideal matrix for tissue engineering of the disc because of the presence of native disc proteins and CSPGs. Injectable in situ gelling matrices are the most viable therapeutic option to prevent damage to the anulus fibrosus and future disc degeneration. The purpose of this research was to create a gentle decellularization method for use on healthy nucleus pulposus tissue explants and to develop an injectable formulation of this matrix to enable therapeutic use without substantial tissue disruption. Porcine nuclei pulposi were isolated, decellularized, and solubilized. Samples were assessed to determine the degree of cell removal, matrix maintenance, gelation ability, cytotoxic residuals, and native cell viability. Nuclei pulposi were decellularized using serial detergent, buffer, and enzyme treatments. Decellularized nuclei pulposi were solubilized, neutralized, and buffered. The efficacy of decellularization was assessed by quantifying DNA removal and matrix preservation. An elution study was performed to confirm removal of cytotoxic residuals. Gelation kinetics and injectability were quantified. Long-term in vitro experiments were performed with nucleus pulposus cells to ensure cell viability and native matrix production within the injectable decellularized nucleus pulposus matrices. This work resulted in the creation of a robust acellular matrix (>96% DNA removal) with highly preserved sulfated glycosaminoglycans (>47%), and collagen content and microstructure similar to native nucleus pulposus, indicating preservation of disc components. Furthermore, it was possible to create an injectable formulation that gelled in situ within 45 minutes and formed fibrillar collagen with similar diameters to native nucleus pulposus. The processing did not result in any remaining cytotoxic residuals. Solubilized decellularized nucleus pulposus samples seeded with nucleus pulposus cells maintained robust viability (>89%) up to 21 days of culture in vitro, with morphology similar to native nucleus pulposus cells, and exhibited significantly enhanced sulfated glycosaminoglycans production over 21 days. A gentle decellularization of porcine nucleus pulposus followed by solubilization enabled the creation of an injectable tissue-specific matrix that is well tolerated in vitro by nucleus pulposus cells. These matrices have the potential to be used as a minimally invasive nucleus pulposus therapeutic to restore disc height. Copyright © 2016 Elsevier Inc. All rights reserved.
3D printing of functional biomaterials for tissue engineering.
Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen
2016-08-01
3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biomimetic 3D tissue printing for soft tissue regeneration.
Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo
2015-09-01
Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rodriguez-Canul, R; Argaez-Rodriguez, F; de, la Gala D Pacheco; Villegas-Perez, S; Fraser, A; Craig, P S; Cob-Galera, L; Dominguez-Alpizar, J L
2002-04-01
The cestode parasite Taenia solium is an important cause of foodborne infection throughout tropical and subtropical regions. Ingestion of pork meat infected with T. solium larvae can lead to taeniasis infection in humans. With tourism and the consumption of native food increasing, it is important to investigate potential risks of transmission associated with food preparation methods. In this study, traditional Mexican salt pickling and two methods of pork preparation (as roast pork [cochinita pibil] and in pork and beans [frijol con puerco]) were evaluated in order to determine their effects on T. solium cyst viability in infected tissue. In the control groups, all metacestodes isolated were 100% viable, and only small changes in pH (from 6.0 to 5.9) and temperature (29 to 30 degrees C) were recorded. No viable cysts were detected after 12 and 24 h of salt pickling. The pH of the meat during salting dropped from 6.0 to 5.3. Osmotic changes and dehydration from the salting, rather than a change in pH, could be considered the main cause of cyst death. Temperatures of >65 degrees C damaged T. solium metacestodes in roast pork and in pork and beans. The results of this study indicate that if traditional pork dishes are prepared properly, T. solium cysts are destroyed. The criteria used in this study to evaluate the viability of tissue cysts are discussed.
Castini, D; Bestetti, A; Garbin, M; Di Leo, C; Bigi, R; Sponzilli, C; Concardi, G; Gioventù, M; Tarolo, G L; Lombardi, F; Fiorentini, C
1999-09-01
The presence of tissue viability is of great importance in the prognostic work-up of patients recovering from acute myocardial infarction. However, uncertainty still exists concerning the optimal tool for its assessment. The present study was undertaken in order to compare low-dose dobutamine echocardiography and rest-redistribution thallium SPECT for predicting late improvement of regional left ventricular function after acute myocardial infarction. Fifteen patients undergoing coronary angiography, low-dose dobutamine echocardiography and rest-redistribution thallium SPECT after thrombolyzed anterior acute myocardial infarction were studied. A 3 month follow-up echocardiogram was performed in all patients and 9 underwent coronary revascularization. A significant (> or = 70%) residual stenosis of the infarct-related artery was present in 14 patients, whilst a total occlusion was observed in 1. At 3 month follow-up, 41% of the dyssynergic segments improved. The sensitivity, specificity and accuracy for late wall motion improvement was 61, 89 and 77% for low-dose dobutamine echocardiography and, respectively, 76, 45 and 58% for rest-redistribution thallium SPECT. Tissue viability was detected in 65 and 31% of dyssynergic segments by rest-redistribution thallium SPECT and low-dose dobutamine echocardiography, respectively (p < 0.001). The agreement between the two techniques was 48%. Low-dose dobutamine echocardiography is more accurate than rest-redistribution thallium SPECT for predicting 3 month wall motion improvement in patients with acute anterior myocardial infarction, mainly due to its significantly better specificity.
Yabes, Joseph M.; White, Brian K.; Murray, Clinton K.; Sanchez, Carlos J.; Mende, Katrin; Beckius, Miriam L.; Zera, Wendy C.; Wenke, Joseph C.; Akers, Kevin S.
2016-01-01
Soft-tissue invasive fungal infections are increasingly recognized as significant entities directly contributing to morbidity and mortality. They complicate clinical care, requiring aggressive surgical debridement and systemic antifungal therapy. To evaluate new topical approaches to therapy, we examined the antifungal activity and cytotoxicity of Manuka Honey (MH) and polyhexamethylene biguanide (PHMB). The activities of multiple concentrations of MH (40%, 60%, 80%) and PHMB (0.01%, 0.04%, 0.1%) against 13 clinical mold isolates were evaluated using a time-kill assay between 5 min and 24 h. Concentrations were selected to represent current clinical use. Cell viability was examined in parallel for human epidermal keratinocytes, dermal fibroblasts and osteoblasts, allowing determination of the 50% viability (LD50) concentration. Antifungal activity of both agents correlated more closely with exposure time than concentration. Exophiala and Fusarium growth was completely suppressed at 5 min for all PHMB concentrations, and at 12 and 6 h, respectively, for all MH concentrations. Only Lichtheimia had persistent growth to both agents at 24 h. Viability assays displayed concentration-and time-dependent toxicity for PHMB. For MH, exposure time predicted cytotoxicity only when all cell types were analyzed in aggregate. This study demonstrates that MH and PHMB possess primarily time-dependent antifungal activity, but also exert in vitro toxicity on human cells which may limit clinical use. Further research is needed to determine ideal treatment strategies to optimize antifungal activity against molds while limiting cytotoxicity against host tissues in vivo. PMID:27601610
NASA Astrophysics Data System (ADS)
Mannoh, Emmanuel; Thomas, Giju; Solorzano, Carmen C.; Mahadevan-Jansen, Anita
2017-02-01
As many as 80,000 patients a year in the US undergo thyroidectomies or parathyroidectomies for diseased glands. About 21% of these surgeries result in disruption of blood supply to health parathyroid glands, which, if unaddressed, may result in long-term hypocalcemia. Surgeons need to know as soon as possible whether or not the blood supply to a parathyroid gland has been disrupted, as this informs their decision on whether or not to excise and reimplant the gland. There is a non-trivial failure rate involved in this transplantation process, and in the absence of an objective gold-standard surgeons often rely on subjective visual inspection in making this decision. Here we present Laser Speckle Imaging as a real-time objective method to assess parathyroid viability. Our device consists of a 785 nm laser source and a near-infrared camera with a zoom lens, positioned above the surgical field with an articulated arm. With the laser diffusing light onto the tissue, the camera acquires images which are processed in real-time and displayed on a monitor. These speckle contrast images are then averaged and the relative difference in speckle contrast between the parathyroid gland and surrounding thyroid tissue is calculated and correlated with the surgeon's assessment of viability. Preliminary findings from in vivo measurement of 9 diseased glands show 100% agreement with the surgeon when taking a greater than 5% relative difference to indicate devascularization. This device has the potential to be used as an intraoperative tool for assessing parathyroid viability.
Ding, Ke; Yang, Zhong; Zhang, Yu-Long; Xu, Jian-Zhong
2013-09-01
A cell carrier plays an important role in the maintenance, growth and engraftment of specific cells aimed for defined therapeutic uses in many tissue engineering strategies. A suitable microenvironment for the cells allows for the maximum efficacy of the hybrid device. We have prepared an injectable thermosensitive chitosan/β-glycerophosphate/collagen (C/GP/Co) gel and investigated its potential application as a support for the culture of skeletal muscle satellite cells (SMSCs). A cell viability assay was used to evaluate the in vitro cytocompatibility of the gel. Cell growth was assessed by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and histological analysis. The influence of the C/GP/Co gel on the plasticity of SMSCs seeded at the surface of the gel was assessed by induction of the myogenic, osteogenic and adipogenic differentiation. C/GP/Co gel provided the appropriate environment for the culture of SMSCs in vitro. In addition, the C/GP/Co gel supported SMSC plasticity. In vivo testing of the SMSC-seeded gel was investigated by subcutaneous injection into the dorsum of nude mice. Cell viability was assessed both by in vivo imaging and histological examination of the explants. In conclusion, C/GP/Co hydrogel is a cytocompatible carrier for the in vivo delivery of SMSCs and supportive for SMSC plasticity. Thus, this gel has potential applications in tissue engineering and regenerative medicine. © 2013 International Federation for Cell Biology.
Nanomedicine for Early Disease Detection and Treatment
2013-09-01
AD_________________ Award Number: W81XWH-11-1-0442 TITLE: Nanomedicine for early disease ...been developed to report and cure diseases . ESNM is prepared with multiple layers of polyelectrolytes, sequentially assembled on an inert gold...molecular characteristics of the patient and his/her specific diseased tissues with the treatment. In order to maximize therapeutic effects and
Matsuo, Junko; Sugama, Junko; Sanada, Hiromi; Okuwa, Mayumi; Nakatani, Toshio; Konya, Chizuko; Sakamoto, Jirou
2011-05-01
Pressure ulcers are a common problem, especially in older patients. In Japan, most institutionalized older people are malnourished and show extreme bony prominence (EBP). EBP is a significant factor in the development of pressure ulcers due to increased interface pressure concentrated at the skin surface over the EBP. The use of support surfaces is recommended for the prophylaxis of pressure ulcers. However, the present equivocal criteria for evaluating the pressure redistribution of support surfaces are inadequate. Since pressure redistribution is influenced by physique and posture, evaluations using human subjects are limited. For this reason, models that can substitute for humans are necessary. We developed a new EBP model based on the anthropometric measurements, including pelvic inclination, of 100 bedridden elderly people. A comparison between the pressure distribution charts of our model and bedridden elderly subjects demonstrated that maximum contact pressure values, buttock contact pressure values, and bone prominence rates corresponded closely. This indicates that the model provides a good approximation of the features of elderly people with EBP. We subsequently examined the validity of the model through quantitative assessment of pressure redistribution functions consisting of immersion, envelopment, and contact area change. The model was able to detect differences in the hardness of urethane foam, differences in the internal pressure of an air mattress, and sequential changes during the pressure switching mode. These results demonstrate the validity of our new buttock model in evaluating pressure redistribution for a variety of surfaces. Copyright © 2010 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
2017-01-01
The viability and differentiation of SaOS-2 preosteoblasts on fiber mats of blends comprising of the biodegradable poly(ester-ether) polydioxanone (PDX) and the sulfate-containing anionic polysaccharides kappa-carrageenan (KCG) and fucoidan (FUC) were investigated for a range of different blend compositions. The detailed analysis of the blend nanofiber properties revealed a different degree of miscibility of PDX and the polysaccharide leading to a different enrichment at the surface of the blend nanofibers, which were observed to be stable in phosphate buffer solution (PBS) for up to 5 weeks. The fibrous mats of PDX/FUC led to the highest osteogenic differentiation with very good cell viability. The electrospun blend fibers also supported human-induced pluripotent stem (iPS) cells and iPS cell-derived embryoid bodies with high cell viability, which underlines the potential of these novel blend fiber systems for optimized performance in bone tissue engineering applications. PMID:29285521
Feng, Z M; Guo, S M
2016-09-02
The aim of this study was to investigate the expression of T-cell immunoglobulin mucin domain molecule-3 (Tim-3) in osteosarcoma tissues, and analyze its effect on cell proliferation and metastasis in an osteosarcoma cell line. Tim-3 mRNA and protein expression in osteosarcoma tissue was detected by reverse transcriptase-polymerase chain reaction and immunohistochemistry, respectively. Additionally, the cell viability, apoptosis rate, and invasive ability of the osteosarcoma cell line MG-63 were tested using the methyl thiazolyl tetrazolium assay, Annexin V-propidium iodide flow cytometry, and a Transwell assay, respectively, following Tim-3 interference using small interfering RNA (siRNA). We also analyzed the expression of Snail, E-cadherin, vimentin, and nuclear factor (NF)-kB in the cells by western blot. We observed that Tim-3 mRNA and protein was significantly overexpressed in osteosarcoma tissues, compared to the adjacent normal tissue (P < 0.01). Moreover, MG-63 cells transfected with the Tim-3 siRNA presented lower cell viability, a greater number of apoptotic cells, and decreased invasive ability (P < 0.01), compared to control cells. Additionally, we observed a decrease in Snail and vimentin expression, an increase in the E-cadherin level, and an increase in NF-kB p65 phosphorylation (P < 0.01) in Tim-3 siRNA-transfected MG-63 cells. Based on these results, we concluded that Tim-3 is highly expressed in osteosarcoma tissue. Moreover, we speculated that interfering in Tim-3 expression could significantly suppress osteosarcoma cell (MG-63) proliferation and metastasis via the NF-kB/Snail signaling pathway and epithelial-mesenchymal transition.
Gennai, Alessandro; Zambelli, Alessandra; Repaci, Erica; Quarto, Rodolfo; Baldelli, Ilaria; Fraternali, Giulio; Bernardini, Francesco P
2017-01-01
Adipose-derived stromal and stem cells (ADSC) in autologous fat promises regenerative advantages, and injected into the dermal and subdermal layers, enhances rejuvenation and volume. However, extremely superficial fat injection with current techniques is limited. Efficacy and viability evaluation of fat harvested with extremely small side port (0.3 mm) cannulae without further tissue manipulation for the correction of aging/thin skin in the periocular and perioral regions. Micro-superficial enhanced fluid fat injection (M-SEFFI) harvests adipose tissue with a multi-perforated cannula (0.3 mm), and autologous platelet rich plasma (PRP) is added. The tissue is injected into the dermal region of the periocular and perioral zones. Efficacy and viability were evaluated by histological and cell culture analysis. Clinical assessment included retrospective evaluation according to 1 = no effect, 2 = fair effect, 3 = good effect, 4 = excellent effect. Between June 2014 and July 2015, 65 patients (7 men; mean age 49.7 years) were treated with M-SEFFI. No intraoperative complications or visible lumpiness were recorded. Analysis demonstrated mature, viable adipocytes with a strong stromal component. Following PRP addition, there was a greater proliferation noted in the M-SEFFI compared to the SEFFI (0.5 mm). Mean follow-up was 4.1 months. Clinical assessment by surgeons and patients at 1 month was 3.52 and 3.74, and 6 months 3.06 and 2.6 respectively. M-SEFFI is effective and viable for lump free skin rejuvenation and volume enhancement, through the extraction of smoother ADSC rich, autologous fat tissue that does not require further tissue manipulation, to correct skin aging. 4 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Knuttel, Floortje M; Waaijer, Laurien; Merckel, Laura G; van den Bosch, Maurice A A J; Witkamp, Arjen J; Deckers, Roel; van Diest, Paul J
2016-08-01
Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This study aimed to compare histopathological features of breast cancer after MR-HIFU ablation and RFA. MR-HIFU ablation and RFA were performed in- and ex-vivo. Tumours in six mastectomy specimens were partially ablated with RFA or MR-HIFU. In-vivo MR-HIFU ablation was performed 3-6 days before excision; RFA was performed in the operation room. Tissue was fixed in formalin and processed to haematoxylin and eosin (H&E) and cytokeratin-8 (CK-8)-stained slides. Morphology and cell viability were assessed. Ex-vivo ablation resulted in clear morphological changes after RFA versus subtle differences after MR-HIFU. CK-8 staining was decreased or absent. H&E tended to underestimate the size of thermal damage. In-vivo MR-HIFU resulted in necrotic-like changes. Surprisingly, some ablated lesions were CK-8-positive. Histopathology after in-vivo RFA resembled ex-vivo RFA, with hyper-eosinophilic stroma and elongated nuclei. Lesion borders were sharp after MR-HIFU and indistinct after RFA. Histopathological differences between MR-HIFU-ablated tissue and RF-ablated tissue were demonstrated. CK-8 was more reliable for cell viability assessment than H&E when used directly after ablation, while H&E was more reliable in ablated tissue left in situ for a few days. Our results contribute to improved understanding of histopathological features in breast cancer lesions treated with minimally invasive ablative techniques. © 2016 John Wiley & Sons Ltd.
Staal, Jerome A; Alexander, Samuel R; Liu, Yao; Dickson, Tracey D; Vickers, James C
2011-01-01
Organotypic brain slice culturing techniques are extensively used in a wide range of experimental procedures and are particularly useful in providing mechanistic insights into neurological disorders or injury. The cellular and morphological alterations associated with hippocampal brain slice cultures has been well established, however, the neuronal response of mouse cortical neurons to culture is not well documented. In the current study, we compared the cell viability, as well as phenotypic and protein expression changes in cortical neurons, in whole brain slice cultures from mouse neonates (P4-6), adolescent animals (P25-28) and mature adults (P50+). Cultures were prepared using the membrane interface method. Propidium iodide labeling of nuclei (due to compromised cell membrane) and AlamarBlue™ (cell respiration) analysis demonstrated that neonatal tissue was significantly less vulnerable to long-term culture in comparison to the more mature brain tissues. Cultures from P6 animals showed a significant increase in the expression of synaptic markers and a decrease in growth-associated proteins over the entire culture period. However, morphological analysis of organotypic brain slices cultured from neonatal tissue demonstrated that there were substantial changes to neuronal and glial organization within the neocortex, with a distinct loss of cytoarchitectural stratification and increased GFAP expression (p<0.05). Additionally, cultures from neonatal tissue had no glial limitans and, after 14 DIV, displayed substantial cellular protrusions from slice edges, including cells that expressed both glial and neuronal markers. In summary, we present a substantial evaluation of the viability and morphological changes that occur in the neocortex of whole brain tissue cultures, from different ages, over an extended period of culture.
Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P
2015-06-01
A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ligament flow during drop-on-demand inkjet printing of bioink containing living cells
NASA Astrophysics Data System (ADS)
Zhang, Mengyun; Krishnamoorthy, Srikumar; Song, Hongtao; Zhang, Zhengyi; Xu, Changxue
2017-03-01
Organ printing utilizes tissue spheroids or filaments as building blocks to fabricate three-dimensional (3D) functional tissues and organs based on a layer-by-layer manufacturing mechanism. These fabricated tissues and organs are envisioned as alternatives to replace the damaged human tissues and organs, which is emerging as a promising solution to solve the organ donor shortage problem being faced all over the world. Inkjetting, one of the key technologies in organ printing, has been widely developed because of its moderate fabrication cost, good process controllability, and scale-up potentials. There are several key steps towards inkjet-based organ printing: generation of droplets from bioink, fabrication of 3D cellular structures, and post-printing tissue fusion and maturation. The droplet formation process is the first step, affecting the overall feasibility of the envisioned organ printing technology. This paper focuses on the ligament flow of the droplet formation process during inkjet printing of bioink containing living cells and its corresponding effect on post-printing cell viability and cell distribution. It is found that (1) two types of ligament flow are observed: at 30 V (Type I), the ligament flow has two different directions at the locations near the nozzle orifice and the forming droplet; at 60 V (Type II), the ligament flow directions are the same at both locations; (2) compared to Type II, fewer cells are ejected into the primary droplets in Type I, because some cells move back into the nozzle driven by the ligament flow in the positive z direction; and (3) cell viability in both Type I and Type II is around 90% without a significant difference. The resulting knowledge will benefit precise control of printing dynamics during inkjet printing of viscoelastic bioink for 3D biofabrication applications.
Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme
2015-01-01
Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471
Li, Junfeng; Pang, Jinglin; Liu, Yongdong; Zhang, Jing; Zhang, Chuanguang; Shen, Gang; Song, Lili
2018-07-01
Ribonucleotide reductase regulatory subunit M2 (RRM2) is a rate‑limiting enzyme for DNA synthesis and repair. RRM2 has vital roles in controlling the progression of cancer. In the present study, we investigated the RRM2 level in neuroblastoma tissues, analyzed its relationship with clinicopathological characteristics of neuroblastoma patients, and explored the effect of RRM2 on the biological functions of neuroblastoma cells. RRM2 levels in 67 pairs of neuroblastoma and matched adjacent non‑cancerous tissues were detected by qRT‑PCR, and its association with patient clinicopathological features was assessed. Using RRM2 siRNA, the role of RRM2 in cell viability was detected by CCK‑8 assay, and the effects on cell cycle distribution and cell apoptosis were detected by flow cytometry. Hoechst 33342 staining was also performed. For RRM2 protein detection in cells and tissues, western blot analyses were employed. Our results revealed that RRM2 expression was significant higher in neuroblastoma tissues than that noted in adjacent non‑cancerous tissues at both the mRNA and protein levels. The increased RRM2 level was significantly associated with clinical stage. RRM2 levels were suppressed in stage III and IV tumors in the chemotherapy subgroup, compared with levels noted in tumors in the preoperative non‑chemotherapy subgroup. RRM2 siRNA significantly inhibited cell viability in the SH‑5Y5Y cells, induced cell arrest in the G0/G1 phase, and enhanced cell apoptosis. Taken together, overexpression of RRM2 is associated with the genesis and progression of neuroblastoma, and may be a potential chemotherapeutic target.
Biological effects of combined resveratrol and vitamin D3 on ovarian tissue.
Uberti, Francesca; Morsanuto, Vera; Aprile, Silvio; Ghirlanda, Sabrina; Stoppa, Ian; Cochis, Andrea; Grosa, Giorgio; Rimondini, Lia; Molinari, Claudio
2017-09-15
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural antioxidant polyphenol able to exert a wide range of biological effect on several tissues. Despite its important beneficial properties, it has a low water solubility, which limits its therapeutic applications in humans. Resveratrol also acts as a phytoestrogen that modulates estrogen receptor (ER)-mediated transcription. In addition, it has been shown that ovarian tissues benefit greatly from vitamin D3, which exerts its beneficial effects through VDR receptors. The aim was to evaluate the cooperative effects of resveratrol combined with vitamin D3 on ovarian cells and tissues and some other organs as well. Moreover, the modulation of specific intracellular pathways involving ER and VDR receptors has been studied. The experiments were performed both in vitro and in vivo, to analyze cell viability, radical oxygen species production, signal transductions through Western Blot, and resveratrol quantification by HPLC. Cell viability, radical oxygen species production, and intracellular pathways have been studied on CHO-K1 cells. Also, the relative mechanism activated following oral intake in female Wistar rats as animal model was investigated, evaluating bioavailability, biodistribution and signal transduction in heart, kidney, liver and ovarian tissues. Both in in vitro and in vivo experiments, resveratrol exerts more evident effects when administered in combination with vitD in ovarian cells, showing a common biphasic cooperative effect: The role of vitamin D3 in maintaining and supporting the biological activity of resveratrol has been clearly observed. Moreover, resveratrol plus vitamin D3 blood concentrations showed a biphasic absorption rate. Such results could be used as a fundamental data for the development of new therapies for gynecological conditions, such as hot-flashes.
Role of the clinical research nurse in tissue viability.
Hemingway, Beverley; Storey, Carron
Opportunities for nurses to be involved in clinical research have increased with the growing emphasis on research in the NHS. This article examines the experiences of two registered nurses adapting to the role of clinical research nurse in a pressure ulcer programme of research. The challenges, rewards and strategies involved are discussed.
Zuchtriegel, Gabriele; Uhl, Bernd; Hessenauer, Maximilian E T; Kurz, Angela R M; Rehberg, Markus; Lauber, Kirsten; Krombach, Fritz; Reichel, Christoph A
2015-04-01
Leukocyte recruitment to the site of inflammation is a key event in a variety of cardiovascular pathologies. Infiltrating neutrophils constitute the first line of defense that precedes a second wave of emigrating monocytes reinforcing the inflammatory reaction. The mechanisms initiating this sequential process remained largely obscure. Using advanced in vivo microscopy and in vitro/ex vivo techniques, we identified individual spatiotemporal expression patterns of selectins and their principal interaction partners on neutrophils, resident/inflammatory monocytes, and endothelial cells. Coordinating the intraluminal trafficking of neutrophils and inflammatory monocytes to common sites of extravasation, selectins assign different sites to these immune cells for their initial interactions with the microvascular endothelium. Whereas constitutively expressed leukocyte L-selectin/CD62L and endothelial P-selectin/CD62P together with CD44 and P-selectin glycoprotein ligand-1/CD162 initiate the emigration of neutrophils, de novo synthesis of endothelial E-selectin/CD62E launches the delayed secondary recruitment of inflammatory monocytes. In this context, P-selectin/CD62P and L-selectin/CD62L together with P-selectin glycoprotein ligand-1/CD162 and CD44 were found to regulate the flux of rolling neutrophils and inflammatory monocytes, whereas E-selectin/CD62E selectively adjusts the rolling velocity of inflammatory monocytes. Moreover, selectins and their interaction partners P-selectin glycoprotein ligand-1/CD162 and CD44 differentially control the intraluminal crawling behavior of neutrophils and inflammatory monocytes collectively enabling the sequential extravasation of these immune cells to inflamed tissue. Our findings provide novel insights into the mechanisms initiating the sequential infiltration of the perivascular tissue by neutrophils and monocytes in the acute inflammatory response and might thereby contribute to the development of targeted therapeutic strategies for prevention and treatment of cardiovascular diseases. © 2015 American Heart Association, Inc.
miR-34a: Multiple Opposing Targets and One Destiny in Hepatocellular Carcinoma.
Yacoub, Radwa Alaa; Fawzy, Injie Omar; Assal, Reem Amr; Hosny, Karim Adel; Zekri, Abdel-Rahman Nabawy; Esmat, Gamal; El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab
2016-12-28
Background and Aims: The role of miR-34a in hepatocellular carcinoma (HCC) is controversial and several unresolved issues remain, including its expression pattern and relevance to tumor etiology, tumor stage and prognosis, and finally, its impact on apoptosis. Methods: miR-34a expression was assessed in hepatitis C virus (HCV)-induced non-metastatic HCC tissues by RT-Q-PCR. Huh-7 cells were transfected with miR-34a mimics and the impact of miR-34a was examined on 84 pro-apoptotic/anti-apoptotic genes using PCR array; its net effect was tested on cell viability via MTT assay. Results: miR-34a expression was up-regulated in HCC tissues. Moreover, miR-34a induced a large set of pro-apoptotic/anti-apoptotic genes, with a net result of triggering apoptosis and repressing cell viability. Conclusions: HCC-related differential expression of miR-34a could be etiology-based or stage-specific, and low expression of miR-34a may predict poor prognosis. This study's findings also emphasize the role of miR-34a in apoptosis.
[siRNA-mediated tissue factor knockdown in porcine neonatal islet cell clusters in vitro].
Ji, Ming; Yi, Shounan; Yu, Deling; Wang, Wei
2011-12-01
To determine the genetic modification on neonatal porcine islet cell clusters (NICC) by small interfering RNA (siRNA)-mediated tissue factor (TF) knockdown in vitro. Porcine NICC were transfected with 5 pairs of designed siRNA respectively or in different combinations with lipofectamine 2000. Transfected NICC were analyzed for TF gene by real-time PCR to select the siRNA which worked best. Meanwhile, the viability of NICC after the TF siRNA transfection was examined by FACS. The efficiency of TF gene and protein suppression was measured by real-time PCR and and FACS respectively. Real-time PCR and FACS showed that a 60% reduction in the TF gene expression and a 50% reduction in the protien level of TF on NICC were achieved by transfecting 3 pairs of selected siRNA. The siRNA transfection had no significant effect on the viability of NICC which was analyzed by FACS. The expression of TF on porcine NICC is efficiently suppressed by 3 pairs of designed siRNA in vitro.
Sun, Mei; Jiang, Man; Cui, Jihong; Liu, Wei; Yin, Lu; Xu, Chunli; Wei, Qi; Yan, Xingrong; Chen, Fulin
2016-03-01
Tissue-engineered skin (TES) holds great promise for wound healing in the clinic. However, optimized preservation methods remain an obstacle for its wide application. In this experimental work, we developed a novel approach to preserve TES in the desiccated state with trehalose. The uptake of trehalose by fibroblasts under various conditions, including the trehalose concentration, incubation temperature and time, was studied. The cell viability was investigated by the MTT assay and CFSE/PI staining after cryodesiccation and rehydration. TES was then prepared and incubated with trehalose, and the wound healing effect was investigated after desiccated preservation. The results showed that the optimized conditions for trehalose uptake by fibroblasts were incubation in 200 mM trehalose at 37 °C for 8 h. Cryodesiccated cells and TES maintained 37.55% and 28.31% viabilities of controls, respectively. Furthermore, cryodesiccated TES exhibited a similar wound healing effect to normal TES. This novel approach enabled the preservation and transportation of TES at ambient temperature with a prolonged shelf time, which provides great advantages for the application of TES. Copyright © 2015 Elsevier B.V. All rights reserved.
Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng
2015-12-22
Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.
The effects of drilling muds on marine invertebrate larvae and adults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raimondi, P.T.; Barnett, A.M.; Krause, P.R.
1997-06-01
A series of laboratory experiments tested the effects of drilling muds from an active platform off southern California on larvae and adults of marine invertebrates. Red abalone (Haliotis rufescens) were used to determine effects of drilling muds on fertilization, early development, survivorship, and settlement, and experiments on adult brown cup corals (Paracyathus stearnsii) tested effects on adult survivorship, viability, and tissue loss. Exposures to drilling muds did not have an effect on abalone fertilization or early development. However, several exposures to drilling muds resulted in weak, but significant, positive effects of drilling muds on settlement of competent larvae. In contrast,more » settlement of red abalone larvae on natural coralline algal crusts decreased with increasing concentrations of drilling muds. This suggests that drilling muds affect either the abalone`s ability to detect natural settlement inducers, or they affect the inducer itself. Exposure of brown cup corals to concentrations of drilling muds adversely impacted their survivorship and viability. These effects were likely caused by increased tissue mortality of the coral polyps.« less
Tissue viability imaging for quantification of skin erythema and blanching
NASA Astrophysics Data System (ADS)
Nilsson, Gert E.; Leahy, Martin J.
2010-02-01
Naked eye observation has up to recently been the main method of determining skin erythema (vasodilatation) and blanching (vasoconstriction) in skin testing. Since naked eye observation is a highly subjective and investigatordependent method, it is difficult to attain reproducibility and to compare results reported by different researchers performing their studies at different laboratories. Consequently there is a need for more objective, quantitative and versatile methods in the assessment of alterations in skin erythema and blanching caused by internal and external factors such as the intake of vasoactive drugs, application of agents on the skin surface and by constituents in the environment. Since skin microcirculation is sensitive to applied pressure and heat, such methods should preferably be noninvasive and designed for remote use without touching the skin. As skin microcirculation further possesses substantial spatial variability, imaging techniques are to be preferred before single point measurements. An emerging technology based on polarization digital camera spectroscopy - Tissue Viability Imaging (TiVi) - fulfills these requirements. The principles of TiVi (1) and some of its early applications (2-5) are addressed in this paper.
Raff, Lester J; Engel, George; Beck, Kenneth R; O'Brien, Andrea S; Bauer, Meagan E
2009-02-01
The elimination or reduction of medical errors has been a main focus of health care enterprises in the United States since the year 2000. Elimination of errors in patient and specimen identification is a key component of this focus and is the number one goal in the Joint Commission's 2008 National Patient Safety Goals Laboratory Services Program. To evaluate the effectiveness of using permanent inks to maintain specimen identity in sequentially submitted prostate needle biopsies. For a 12-month period, a grossing technician stained each prostate core with permanent ink developed for inking of pathology specimens. A different color was used for each patient, with all the prostate cores from all vials for a particular patient inked with the same color. Five colors were used sequentially: green, blue, yellow, orange, and black. The ink was diluted with distilled water to a consistency that allowed application of a thin, uniform coating of ink along the edges of the prostate core. The time required to ink patient specimens comprising different numbers of vials and prostate biopsies was timed. The number and type of inked specimen discrepancies were evaluated. The identified discrepancy rate for prostate biopsy patients was 0.13%. The discrepancy rate in terms of total number of prostate blocks was 0.014%. Diluted inks adhered to biopsy contours throughout tissue processing. The tissue showed no untoward reactions to the inks. Inking did not affect staining (histochemical or immunohistochemical) or pathologic evaluation. On average, inking prostate needle biopsies increases grossing time by 20%. Inking of all prostate core biopsies with colored inks, in sequential order, is an aid in maintaining specimen identity. It is a simple and effective method of addressing Joint Commission patient safety goals by maintaining specimen identity during processing of similar types of gross specimens. This technique may be applicable in other specialty laboratories and high-volume laboratories, where many similar tissue specimens are processed.
Bramley, Kyle; Pisani, Margaret A.; Murphy, Terrence E.; Araujo, Katy; Homer, Robert; Puchalski, Jonathan
2016-01-01
Background EBUS-guided transbronchial needle aspiration (TBNA) is important in the evaluation of thoracic lymphadenopathy. Reliably providing excellent diagnostic yield for malignancy, its diagnosis of sarcoidosis is inconsistent. Furthermore, when larger “core” biopsy samples of malignant tissue are required, TBNA may not suffice. The primary objective of this study was to determine if the sequential use of TBNA and a novel technique called cautery-assisted transbronchial forceps biopsies (ca-TBFB) was safe. Secondary outcomes included sensitivity and successful acquisition of tissue. Methods Fifty unselected patients undergoing convex probe EBUS were prospectively enrolled. Under EBUS guidance, all lymph nodes ≥ 1 cm were sequentially biopsied using TBNA and ca-TBFB. Safety and sensitivity were assessed at the nodal level for 111 nodes. Results of each technique were also reported on a per-patient basis. Results There were no significant adverse events. In nodes determined to be malignant, TBNA provided higher sensitivity (100%) than ca-TBFB (78%). However, among nodes with granulomatous inflammation, ca-TBFB exhibited higher sensitivity (90%) than TBNA (33%). For analysis based on patients rather than nodes, 6 of the 31 patients with malignancy would have been missed or understaged if the diagnosis was based on samples obtained by ca-TBFB. On the other hand, 3 of 8 patients with sarcoidosis would have been missed if analysis was based only on TBNA samples. In some cases only ca-TBFB acquired sufficient tissue for the core samples needed in clinical trials of malignancy. Conclusions The sequential use of TBNA and ca-TBFB appears to be safe. The larger samples obtained from ca-TBFB increased its sensitivity to detect granulomatous disease and provided specimens for clinical trials of malignancy when needle biopsies were insufficient. For thoracic surgeons and advanced bronchoscopists, we advocate ca-TBFB as an alternative to TBNA in select clinical scenarios. PMID:26912301
Bramley, Kyle; Pisani, Margaret A; Murphy, Terrence E; Araujo, Katy L; Homer, Robert J; Puchalski, Jonathan T
2016-05-01
Endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration (TBNA) is important in the evaluation of thoracic lymphadenopathy. Reliably providing excellent diagnostic yield for malignancy, its diagnosis of sarcoidosis is inconsistent. Furthermore, TBNA may not suffice when larger "core biopsy" samples of malignant tissue are required. The primary objective of this study was to determine if the sequential use of TBNA and a novel technique called cautery-assisted transbronchial forceps biopsy (ca-TBFB) was safe. Secondary outcomes included sensitivity and successful acquisition of tissue. The study prospectively enrolled 50 unselected patients undergoing convex-probe EBUS. All lymph nodes exceeding 1 cm were sequentially biopsied under EBUS guidance using TBNA and ca-TBFB. Safety and sensitivity were assessed at the nodal level for 111 nodes. Results of each technique were also reported for each patient. There were no significant adverse events. In nodes determined to be malignant, TBNA provided higher sensitivity (100%) than ca-TBFB (78%). However, among nodes with granulomatous inflammation, ca-TBFB exhibited higher sensitivity (90%) than TBNA (33%). On the one hand, for analysis based on patients rather than nodes, 6 of the 31 patients with malignancy would have been missed or understaged if the diagnosis were based on samples obtained by ca-TBFB. On the other hand, 3 of 8 patients with sarcoidosis would have been missed if analysis were based only on TBNA samples. In some patients, only ca-TBFB acquired sufficient tissue for the core samples needed in clinical trials of malignancy. The sequential use of TBNA and ca-TBFB appears to be safe. The larger samples obtained from ca-TBFB increased its sensitivity to detect granulomatous disease and provided adequate specimens for clinical trials of malignancy when specimens from needle biopsies were insufficient. For thoracic surgeons and advanced bronchoscopists, we advocate ca-TBFB as an alternative to TBNA in select clinical scenarios. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Tissue culture of surgically prepared temporalis fascia.
Walby, A P; Kerr, A G; Nevin, N C; Woods, G
1982-10-01
Temporalis fascia which is used to graft the tympanic membrane has been shown to be viable in tissue culture by a previous pilot study. This present study reports the effect on the viability of the fascia by scraping loose connective tissue from it and allowing it to dry. Pieces of fascia from 30 patients were each divided in 4 and prepared to give explants, fresh, fresh and scraped, dried, and dried and scraped. The fascia grew from 17 patients when cultured fresh, 5 when fresh and scraped, 1 when dried, and none when dried and scraped. These results are significantly different and show that the fascia is devitilized when prepared by the normal method for use in tympanoplasty.
Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells.
Pei, Yanxi; Wu, Bo; Cao, Qiuhui; Wu, Lingyun; Yang, Guangdong
2011-12-15
Hydrogen sulfide (H(2)S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H(2)S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H(2)S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H(2)S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H(2)S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H(2)S-producing enzyme in prostate. CSE overexpression enhanced H(2)S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H(2)S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H(2)S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H(2)S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
Cytotoxicity, Biocompatibility, and Biomineralization of the New High-plasticity MTA Material.
Cintra, Luciano Tavares Angelo; Benetti, Francine; de Azevedo Queiroz, Índia Olinta; de Araújo Lopes, Juliana Maria; Penha de Oliveira, Sandra Helena; Sivieri Araújo, Gustavo; Gomes-Filho, João Eduardo
2017-05-01
Mineral trioxide aggregate (MTA) has excellent biological properties, but its handling properties have been criticized for both ProRoot MTA (Tulsa Dental Products, Tulsa, OK) and white MTA-Angelus (MTA-Ang; Angelus Indústria de Produtos Odontológicos S/A, Londrina, PR, Brazil). Angelus MTA HP (high plasticity) (Angelus Indústria de Produtos Odontológicos S/A) has been introduced recently. Considering the importance of biological properties of materials that will be in contact with the tissues, this study evaluated the cytotoxicity, biocompatibility, and biomineralization of MTA HP compared with white MTA-Ang. L929 fibroblast cell lines were cultured, and cell viability was assessed at 6, 24, 48, and 72 hours using the alamar Blue assay (Thermo Fisher Scientific, Waltham, MA). A subcutaneous implant test was performed with polyethylene tubes containing 1 of the materials or empty tubes (control) using 20 Wistar rats. After 7 and 30 days of implantation, the tubes with surrounding tissues were removed for analysis using hematoxylin-eosin or von Kossa stain or they remained unstained for observation under polarized light. The results were statistically analyzed (P < .05). A significant increase in cell viability for MTA HP was observed after 24, 48, and 72 hours compared with the control (P < .05). At 72 hours, MTA HP exhibited a higher viability compared with white MTA-Ang (P < .05). Histologic analysis performed at 7 days showed moderate inflammation and a thick fibrous capsule in all groups (P > .05). At 30 days, mild inflammation and a thin fibrous capsule were observed in all groups (P > .05). All materials had structures positive for von Kossa and birefringent to polarized light. MTA HP showed biocompatibility and biomineralization similar to MTA-Ang. In addition, MTA HP showed increased fibroblast cell viability compared with white MTA-Ang after a longer period. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Varela, Rodolfo Omar; Albornoz, Patricia Liliana
2013-09-01
Seed biology is a relevant aspect of tropical forests because it is central to the understanding of processes of plant establishment, succession and natural regeneration. Anadenanthera colubrina var. cebil is a timber tree from South America that produces large seeds with thin weak teguments, which is uncommon among legumes. This study describes the morphology and anatomy of the seed coat, the viability, imbibition, and germination in this species. Seeds used during the essays came from 10 trees that grow naturally in Horco Molle, province of Tucumán, Argentina. Seed morphology was described from a sample of 20 units. The seed coat surface was examined with a scanning electron microscope. Transverse sections of hydrated and non-hydrated seeds were employed to describe the histological structure of the seed coat. Hydration, viability and germination experiments were performed under laboratory controlled conditions; and the experimental design consisted of 10 replicas of 10 seeds each. Viability and germination tests were conducted using freshly fallen seeds and seeds stored for five months. Morphologically the seeds of A. colubrina var. cebil are circular to subcircular, laterally compressed, smooth, bright brown and have a horseshoe fissure line (= pleurogram) on both sides. The seed coat comprises five tissue layers and a double (external and internal) cuticle. The outer cuticle (on the epidermis) is smooth and interrupted by microcracks and pores of variable depth. The epidermis consists of macroesclereids with non-lignified secondary walls. This layer is separated from the underlying ones during seed hydration. The other layers of internal tissues are comprised of osteosclereids, parenchyma, osteosclereids, and macrosclereids. The percentage of viable seeds was 93%, decreasing to 75% in seeds with five months old. Seed mass increased 76% after the first eight hours of hydration. Germination percentage was 75% after 76 hours. Germination of seeds stored for five months decreased to 12%. The results showed that seeds of A. colubrina var. cebil are highly permeable and germinate directly without a dormant period.
Alginate microencapsulation technology for the percutaneous delivery of adipose-derived stem cells.
Moyer, Hunter R; Kinney, Ramsey C; Singh, Kimberly A; Williams, Joseph K; Schwartz, Zvi; Boyan, Barbara D
2010-11-01
Autologous fat is the ideal soft-tissue filler; however, its widespread application is limited because of variable clinical results and poor survival. Engineered fillers have the potential to maximize survival. Alginate is a hydrogel copolymer that can be engineered into spheres of <200 μm, thus facilitating mass transfer, allowing for subcutaneous injection, and protecting cells from shearing forces. Alginate powder was dissolved in saline, and adipose-derived stem cells (ADSCs) were encapsulated (1 million cells/mL) in alginate using an electrostatic bead generator. To assess effects of injection on cell viability, microspheres containing ADSCs were separated into 2 groups: the control group was decanted into culture wells and the injection group was mixed with basal media and injected through a 21-gauge needle into culture wells. Microbeads were cultured for 3 weeks, and cell number and viability were measured weekly using electron and confocal microscopy. To assess effects of percutaneous injection in vivo, twenty-four male nude mice were randomly separated into 2 groups and injected with either empty microcapsules or ADSC-laden microcapsules. Mice were harvested at 1 and 3 months, and the implants were examined microscopically to assess bead and cell viability. A flow rate of 5 mL/h and an electrostatic potential of 7 kV produced viable ADSC-laden microbeads of <200 μm. There were no differences in bead morphology and ADSC viability between microcapsules placed versus injected into tissue culture plates for up to 3 weeks. Microspheres implanted in a nude mouse model show durability up to 3 months with a host response around each individual sphere. ADSCs remained viable and showed signs of mitosis. ADSCs can be readily cultured, encapsulated, and injected in alginate microspheres. Stem cells suspended in alginate microspheres survive in vivo and are seen to replicate in vitro.
Jalowiec, Jagoda M.; D'Este, Matteo; Bara, Jennifer Jane; Denom, Jessica; Menzel, Ursula; Alini, Mauro; Herrmann, Marietta
2016-01-01
Platelet-rich plasma (PRP) has been used for different applications in human and veterinary medicine. Many studies have shown promising therapeutic effects of PRP; however, there are still many controversies regarding its composition, properties, and clinical efficacy. The aim of this study was to evaluate the influence of different platelet concentrations on the rheological properties and growth factor (GF) release profile of PRP-gels. In addition, the viability of incorporated bone marrow-derived human mesenchymal stem cells (MSCs) was investigated. PRP (containing 1000 × 103, 2000 × 103, and 10,000 × 103 platelets/μL) was prepared from human platelet concentrates. Platelet activation and gelification were achieved by addition of human thrombin. Viscoelastic properties of PRP-gels were evaluated by rheological studies. The release of GFs and inflammatory proteins was measured using a membrane-based protein array and enzyme-linked immunosorbent assay. MSC viability and proliferation in PRP-gels were assessed over 7 days by cell viability staining. Cell proliferation was examined using DNA quantification. Regardless of the platelet content, all tested PRP-gels showed effective cross-linking. A positive correlation between protein release and the platelet concentration was observed at all time points. Among the detected proteins, the chemokine CCL5 was the most abundant. The greatest release appeared within the first 4 h after gelification. MSCs could be successfully cultured in PRP-gels over 7 days, with the highest cell viability and DNA content found in PRP-gels with 1000 × 103 platelets/μL. The results of this study suggest that PRP-gels represent a suitable carrier for both cell and GF delivery for tissue engineering. Notably, a platelet concentration of 1000 × 103 platelets/μL appeared to provide the most favorable environment for MSCs. Thus, the platelet concentration is an important consideration for the clinical application of PRP-gels. PMID:26467221
Zorn-Kruppa, Michaela; Houdek, Pia; Wladykowski, Ewa; Engelke, Maria; Bartok, Melinda; Mewes, Karsten R.; Moll, Ingrid; Brandner, Johanna M.
2014-01-01
The depth of injury (DOI) is a mechanistic correlate to the ocular irritation response. Attempts to quantitatively determine the DOI in alternative tests have been limited to ex vivo animal eyes by fluorescent staining for biomarkers of cell death and viability in histological cross sections. It was the purpose of this study to assess whether DOI could also be measured by means of cell viability detected by the MTT assay using 3-dimensional (3D) reconstructed models of cornea and conjunctiva. The formazan-free area of metabolically inactive cells in the tissue after topical substance application is used as the visible correlate of the DOI. Areas of metabolically active or inactive cells are quantitatively analyzed on cryosection images with ImageJ software analysis tools. By incorporating the total tissue thickness, the relative MTT-DOI (rMTT-DOI) was calculated. Using the rMTT-DOI and human reconstructed cornea equivalents, we developed a prediction model based on suitable viability cut-off values. We tested 25 chemicals that cover the whole range of eye irritation potential based on the globally harmonized system of classification and labelling of chemicals (GHS). Principally, the MTT-DOI test method allows distinguishing between the cytotoxic effects of the different chemicals in accordance with all 3 GHS categories for eye irritation. Although the prediction model is slightly over-predictive with respect to non-irritants, it promises to be highly valuable to discriminate between severe irritants (Cat. 1), and mild to moderate irritants (Cat. 2). We also tested 3D conjunctiva models with the aim to specifically address conjunctiva-damaging substances. Using the MTT-DOI method in this model delivers comparable results as the cornea model, but does not add additional information. However, the MTT-DOI method using reconstructed cornea models already provided good predictability that was superior to the already existing established in vitro/ex vivo methods. PMID:25494045
NASA Astrophysics Data System (ADS)
Fisher, Jessica W.; Rylander, Marissa Nichole
2008-02-01
Laser therapies can provide a minimally invasive treatment alternative to surgical resection of tumors. However, the effectiveness of these therapies is limited due to nonspecific heating of target tissue which often leads to healthy tissue injury and extended treatment durations. These therapies can be further compromised due to heat shock protein (HSP) induction in tumor regions where non-lethal temperature elevation occurs, thereby imparting enhanced tumor cell viability and resistance to subsequent chemotherapy and radiation treatments. Introducing multi-walled nanotubes (MWNT) into target tissue prior to laser irradiation increases heating selectivity permitting more precise thermal energy delivery to the tumor region and enhances thermal deposition thereby increasing tumor injury and reducing HSP expression induction. This study investigated the impact of MWNT inclusion in untreated and laser irradiated monolayer cell culture and cell phantom model. Cell viability remained high for all samples with MWNT inclusion and cells integrated into alginate phantoms, demonstrating the non-toxic nature of both MWNTs and alginate phantom models. Following, laser irradiation samples with MWNT inclusion exhibited dramatic temperature elevations and decreased cell viability compared to samples without MWNT. In the cell monolayer studies, laser irradiation of samples with MWNT inclusion experienced up-regulated HSP27, 70 and 90 expression as compared to laser only or untreated samples due to greater temperature increases albeit below the threshold for cell death. Further tuning of laser parameters will permit effective cell killing and down-regulation of HSP. Due to optimal tuning of laser parameters and inclusion of MWNT in phantom models, extensive temperature elevations and cell death occurred, demonstrating MWNT-mediated laser therapy as a viable therapy option when parameters are optimized. In conclusion, MWNT-mediated laser therapies show great promise for effective tumor destruction, but require determination of appropriate MWNT characteristics and laser parameters for maximum tumor destruction.
Biomacromolecule conjugated nanofiber scaffold for salivary gland tissue engineering
NASA Astrophysics Data System (ADS)
Jayarathanam, Kavitha
Xerostomia or dry mouth, resulting from loss of salivary gland secretion can be alleviated by tissue engineering approaches to restore glandular cell function. Engineering an artificial salivary gland structure requires closely mimicking the natural environment, both physically and functionally, to promote epithelial cell proliferation, monolayer formation and apico-basal polarization. While the physical structure of the salivary gland extracellular matrix (ECM) can be reconstructed using biocompatible nanofiber scaffolds, the chemical signals from ECM macromolecules are equally involved in the gland morphogenesis. In these glands, Hyaluronic acid (HA), a biomacromolecule that is a major component of the ECM, plays a crucial role in recruiting growth factors to improve cell viability and growth in these glands. Another molecule of interest that improved salivary epithelial cell viability and apico-basal differentiation is laminin, a major protein found in the basement membrane. We hypothesize that these biomacromolecules, when conjugated nanofiber scaffolds, will provide the essential chemical signals that promote cell viability, proliferation, polarity in the salivary cell line of interest. These morphological changes will in turn promote the secretory function (salivary production). The nanofiber scaffold consisting of poly(lactic-co-glycolic)acid is conjugated with HA using a polyethylene glycol (PEG) diamine crosslinker. This conjugation was confirmed using fluorescence spectrometry, water contact angle test and immunocytochemistry analysis using confocal microscopy. The effect of HA in promoting cell survival in-vitro was established with MTT assay using SIMS (mouse submandibular immortalized ductal SIMS cells) cells. The effect of HA in improving the apico - basal polarity of SIMS cells will be assessed. Chemical modification of synthetic nanopolymeric scaffolds with ECM molecules e.g., HA, laminin are the next step towards developing "smart scaffolds", that can be used to specifically induce proper salivary gland function. These scaffolds can potentially be used to provide a viable approach for creating future artificial tissue engineered glands.
Yang, Xing-Xiao; Ma, Ming; Sang, Mei-Xiang; Zhang, Xue-Yuan; Liu, Zhi-Kun; Song, Heng; Zhu, Shu-Chai
2018-02-01
B-cell‑specific Moloney murine leukaemia virus integration site-1 (BMI-1) contributes to the growth of tumour cells post-irradiation (IR). The aim of the present study was to characterize the effects of BMI-1 on cell viability, radiosensitivity and its mechanisms of action in oesophageal squamous cell cancer (ESCC). Western blotting and immunohistochemistry were employed to evaluate the protein expression of BMI-1 in ESCC cells and specimens, respectively. Additionally, the protein expression levels of BMI-1, H2AK119ub and γH2AX in ESCC cells were detected following different doses of IR and at different times after IR. The protein expression levels of MDC1 and 53BP1 were also measured. Flow cytometry and MTT assays were used to determine cell cycle progression, apoptosis and cell viability. The phosphatidylinositol 3-kinase inhibitor LY294002 and the agonist IGF-1 were employed to suppress or induce the phosphorylation of Akt to determine whether BMI-1 induces radioresistance in ESCC cells via activation of the PI3K/Akt pathway. The expression of BMI-1 was higher in ESCC tissues and cells compared with that in normal oesophageal tissues and cells. In addition, BMI-1 was positively related to tumour size and lymph node metastases and negatively to the overall survival of ESCC patients. IR induced the expression of BMI-1, H2AK119ub and γH2AX in a dose- and time-dependent manner. BMI-1 knockdown lowered the expression of γH2AX, MDC1 and 53BP1, suppressed cell viability and increased radiosensitivity. G2/M phase arrest was eliminated; this was followed by an increased proportion of cells entering the G0/G1 phase after IR and BMI-1 knockdown via the upregulation of P16 and downregulation of cyclin D2 and cyclin-dependent kinase-4. Moreover, BMI-1 knockdown increased cell apoptosis, downregulated MCL-1 and p-Akt and upregulated Bax. Additionally, the inhibitory effect of the downregulation of p-Akt by LY294002 on tumour cell viability was identical to that of BMI-1 knockdown, while the kinase agonist IGF-1 reversed the effects of BMI-1 knockdown on cell viability and radiosensitivity. Taken together, BMI-1 knockdown induces radiosensitivity in ESCC and significantly inhibits cell viability, which may contribute to an increased proportion of cells in the G0/G1 phase and cell apoptosis via suppression of the PI3K/Akt signalling pathway.
Yang, Qiang; Ma, Yanling; Zhao, Yongxue; She, Zhennan; Wang, Long; Li, Jie; Wang, Chunling; Deng, Yihui
2013-01-01
Background Sequential low-dose chemotherapy has received great attention for its unique advantages in attenuating multidrug resistance of tumor cells. Nevertheless, it runs the risk of producing new problems associated with the accelerated blood clearance phenomenon, especially with multiple injections of PEGylated liposomes. Methods Liposomes were labeled with fluorescent phospholipids of 1,2-dipalmitoyl-snglycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) and epirubicin (EPI). The pharmacokinetics profile and biodistribution of the drug and liposome carrier following multiple injections were determined. Meanwhile, the antitumor effect of sequential low-dose chemotherapy was tested. To clarify this unexpected phenomenon, the production of polyethylene glycol (PEG)-specific immunoglobulin M (IgM), drug release, and residual complement activity experiments were conducted in serum. Results The first or sequential injections of PEGylated liposomes within a certain dose range induced the rapid clearance of subsequently injected PEGylated liposomal EPI. Of note, the clearance of EPI was two- to three-fold faster than the liposome itself, and a large amount of EPI was released from liposomes in the first 30 minutes in a complement-activation, direct-dependent manner. The therapeutic efficacy of liposomal EPI following 10 days of sequential injections in S180 tumor-bearing mice of 0.75 mg EPI/kg body weight was almost completely abolished between the sixth and tenth day of the sequential injections, even although the subsequently injected doses were doubled. The level of PEG-specific IgM in the blood increased rapidly, with a larger amount of complement being activated while the concentration of EPI in blood and tumor tissue was significantly reduced. Conclusion Our investigation implied that the accelerated blood clearance phenomenon and its accompanying rapid leakage and clearance of drug following sequential low-dose injections may reverse the unique pharmacokinetic–toxicity profile of liposomes which deserved our attention. Therefore, a more reasonable treatment regime should be selected to lessen or even eliminate this phenomenon. PMID:23576868
Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials
Kim, Jong Sung; Peters, Thomas M.; O’Shaughnessy, Patrick T.; Adamcakova-Dodd, Andrea; Thorne, Peter S.
2013-01-01
To overcome the limitations of in vitro exposure of submerged lung cells to nanoparticles (NPs), we validated an integrated low flow system capable of generating and depositing airborne NPs directly onto cells at an air–liquid interface (ALI). The in vitro exposure system was shown to provide uniform and controlled dosing of particles with 70.3% efficiency to epithelial cells grown on transwells. This system delivered a continuous airborne exposure of NPs to lung cells without loss of cell viability in repeated 4 h exposure periods. We sequentially exposed cells to air-delivered copper (Cu) NPs in vitro to compare toxicity results to our prior in vivo inhalation studies. The evaluation of cellular dosimetry indicated that a large amount of Cu was taken up, dissolved and released into the basolateral medium (62% of total mass). Exposure to Cu NPs decreased cell viability to 73% (p < 0.01) and significantly (p < 0.05) elevated levels of lactate dehydrogenase, intracellular reactive oxygen species and interleukin-8 that mirrored our findings from subacute in vivo inhalation studies in mice. Our results show that this exposure system is useful for screening of NP toxicity in a manner that represents cellular responses of the pulmonary epithelium in vivo. PMID:22981796
Zheng, Nan; Liu, Lu; Liu, Weiwei; Zhang, Ping; Huang, Huai; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi
2016-02-01
We previously reported that silibinin induced a loss of cell viability in breast cancer (MCF-7) cells by ERα down-regulation. But whether this cytotoxicity depends on another estrogen receptor, ERβ, has yet to be elucidated. Therefore, we sought to explore the effects of ERβ modulation on cell viability by using an ERβ-selective agonist (Diarylprepionitrile, DPN) and an antagonist (PHTPP). Our data demonstrated that ERβ served as a growth suppressor in MCF-7 cells, and the incubation of silibinin, elevated ERβ expression, resulting in the tumor growth inhibition. The cytotoxic effect of silibinin was diminished by PHTPP and enhanced by DPN. Silencing of ERβ by siRNA confirmed these results. Apoptotic cascades, including the sequential activation of caspase-9 and -6, and finally the cleavage of caspase substrates, PARP and ICAD, caused by treatment with silibinin, were all repressed by PHTPP pre-treatment but exacerbated by DPN. Unlike ERα, ERβ did not involve autophagic process in the regulation, since neither autophagic inhibitor (3-MA) nor the inducer (rapamycin) affected the cell survival rates regardless ERβ activity. Taken together, silibinin induced apoptosis through mitochondrial pathway by up-regulating ERβ pathways in MCF-7 cells without the involvement of autophagy. Copyright © 2016. Published by Elsevier Inc.
Effects of some cryopreservation procedures on recalcitrant zygotic embryos of Ammocharis coranica.
Nomali, Z; Ngobese; Sershen; Berjak, P; Pammenter, N W
2014-01-01
Cryopreservation, the most promising method for the long-term conservation of recalcitrant (desiccation-sensitive) seed germplasm, is often associated with high viability losses. Cryo-procedures involve a sequence of steps which must be optimised to reduce the impact of the stresses. This study reports on the effects of some of the steps of cryopreservation on the recalcitrant zygotic embryos of the amaryllid, Ammocharis coranica. Embryos were subjected to cryoprotection with glycerol and/or DMSO, rapid (flash) drying, and rapid (>100 degree C s(-1)) or slow (1 degree C s(-1)) cooling. Rapid dehydration (from c. 2.7 to 0.9 g g(-1) over 60 min) and cooling had a detrimental effect on the viability of the embryos, which was exacerbated when these steps were applied sequentially. After cooling, seedling production (30%) was obtained only from embryos that had been cryoprotected with glycerol prior to drying and rapid cooling, while 30% of non-treated embryos and 70% of those that had undergone cathodic protection during flash drying produced callus. Noting that no post-cryo survival of A. coranica embryos had previously been obtained, this study identified cryoprotection with glycerol and the incorporation of cathodic protection during flash drying as promising intervention points for future studies.
Arthroscopic Harvest of Adipose-Derived Mesenchymal Stem Cells From the Infrapatellar Fat Pad.
Dragoo, Jason L; Chang, Wenteh
2017-11-01
The successful isolation of adipose-derived mesenchymal stem cells (ADSCs) from the arthroscopically harvested infrapatellar fat pad (IFP) would provide orthopaedic surgeons with an autologous solution for regenerative procedures. To demonstrate the quantity and viability of the mesenchymal stem cell population arthroscopically harvested from the IFP as well as the surrounding synovium. Descriptive laboratory study. The posterior border of the IFP, including the surrounding synovial tissue, was harvested arthroscopically from patients undergoing anterior cruciate ligament reconstruction. Tissue was then collected in an AquaVage adipose canister, followed by fat fractionization using syringe emulsification and concentration with an AdiPrep device. In the laboratory, the layers of tissue were separated and then digested with 0.3% type I collagenase. The pelleted stromal vascular fraction (SVF) cells were then immediately analyzed for viability, mesenchymal cell surface markers by fluorescence-activated cell sorting, and clonogenic capacity. After culture expansion, the metabolic activity of the ADSCs was assessed by an AlamarBlue assay, and the multilineage differentiation capability was tested. The transition of surface antigens from the SVF toward expanded ADSCs at passage 2 was further evaluated. SVF cells were successfully harvested with a mean yield of 4.86 ± 2.64 × 10 5 cells/g of tissue and a mean viability of 69.03% ± 10.75%, with ages ranging from 17 to 52 years (mean, 35.14 ± 13.70 years; n = 7). The cultured ADSCs composed a mean 5.85% ± 5.89% of SVF cells with a mean yield of 0.33 ± 0.42 × 10 5 cells/g of tissue. The nonhematopoietic cells (CD45 - ) displayed the following surface antigens as a percentage of the viable population: CD44 + (52.21% ± 4.50%), CD73 + CD90 + CD105 + (19.20% ± 17.04%), and CD44 + CD73 + CD90 + CD105 + (15.32% ± 15.23%). There was also a significant increase in the expression of ADSC markers CD73 (96.97% ± 1.72%; P < .01), CD10 (84.47% ± 15.46%; P < .05), and CD166 (11.63% ± 7.84%; P < .005) starting at passage 2 compared with freshly harvested SVF cells. The clonogenic efficiency of SVF cells was determined at a mean 3.21% ± 1.52% for layer 1 and 1.51% ± 0.55% for layer 2. Differentiation into cartilage, fat, and bone tissue was demonstrated by tissue-specific staining and quantitative polymerase chain reaction. SVF cells from the IFP and adjacent synovial tissue were successfully harvested using an arthroscopic technique and produced ADSCs with surface markers that meet criteria for defined mesenchymal stem cells. An autologous source of stem cells can now be harvested using a simple arthroscopic technique that will allow orthopaedic surgeons easier access to progenitor cells for regenerative procedures.
Ferreira, A P A; Póvoa, L C; Zanier, J F C; Machado, D C; Ferreira, A S
2017-08-03
Evidence on the diagnostic performance of palpatory methods and possible confounding factors is scarce. To examine the sensitivity of palpatory methods for location of lumbopelvic landmarks and to assess its association with personal characteristics. Eighty-three participants (41 men, 55.6 (16.5) years, 25.9 (4.8) kg/m2 [mean (SD)]) were enrolled in this single-blinded study. Fourteen body and softy-tissue landmarks were sequentially palpated from the spinous process of L4 to the ischial tuberosity. CT-scan images were used to assess what landmark was located. Sensitivity for location was in range 22-86% for soft-tissues and 26-69% for bony landmarks. Reduction in sensitivity was observed from the quadratus lumborum to the inferior and lateral angle of the sacrum (86-26% and 75-33%, left and right sides, respectively). Palpations of L4 and L5 spinous processes were systematically more cephalic than other landmarks. Gender was weakly correlated to almost all landmarks (rpb= 0.333 or weaker). Body mass index was weakly correlated to the accurate location of ILAS and quadratus lumborum, great trochanter, PSIS, and piriformis (rpb=-0.307 or weaker). Systematic and propagation errors were present using sequential palpatory methods. Palpation in men was more sensitive and higher BMI was associated with lower sensitivity for lumbopelvic landmarks.
Heart rate sensitive optical coherence angiography
NASA Astrophysics Data System (ADS)
Alvarez, Karl; Lopez-Tremoleda, Jordi; Donnan, Rob; Michael-Titus, Adina T.; Tomlins, Peter H.
2018-02-01
Optical coherence angiography (OCA) enables visualisation of three-dimensional micro-vasculature from optical coherence tomography data volumes. Typically, various statistical methods are used to discriminate static tissue from blood flow within vessels. In this paper, we introduce a new method that relies upon the beating heart frequency to isolate blood vessels from the surrounding tissue. Vascular blood flow is assumed to be more strongly modulated by the heart-beat compared to surrounding tissue and therefore short-time Fourier transform of sequential measurements can discriminate the two. Furthermore, it is demonstrated that adjacent B-Scans within an OCT data volume can provide the required sampling frequency. As such, the technique can be considered to be a spatially mapped variation of photoplethysmography (PPG), whereby each image voxel operates as a PPG detector. This principle is demonstrated using both a model system and in vivo for monitoring the vascular changes effected by traumatic brain injury in mice. In vivo measurements were acquired at an A-Scan rate of 10kHz to form a 500x500x512 (lateral x lateral x axial) pixel volume, enabling sequential sampling of the mouse heart rate in an expected range of 300-600 bpm. One of the advantages of this new OCA processing method is that it can be used in conjunction with existing algorithms as an additional filter for signal to noise enhancement.
In vitro 3D corneal tissue model with epithelium, stroma, and innervation.
Wang, Siran; Ghezzi, Chiara E; Gomes, Rachel; Pollard, Rachel E; Funderburgh, James L; Kaplan, David L
2017-01-01
The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth. The neurons innervated the stromal and epithelial layers and improved function and viability of the tissues. An air-liquid interface environment of the corneal tissue was also mimicked in vitro, resulting in a positive impact on epithelial maturity. The inclusion of three cell types in co-culture at an air-liquid interface provides an important advance for the field of in vitro corneal tissue engineering, to permit improvements in the study of innervation and corneal tissue development, corneal disease, and tissue responses to environmental factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qiao, Wei-Hua; Liu, Peng; Hu, Dan; Al Shirbini, Mahmoud; Zhou, Xian-Ming; Dong, Nian-Guo
2018-02-01
Antigenicity of xenogeneic tissues is the major obstacle to increased use of these materials in clinical medicine. Residual xenoantigens in decellularized tissue elicit the immune response after implantation, causing graft failure. With this in mind, the potential use is proposed of three protein solubilization-based protocols for porcine aortic valve leaflets decellularization. It was demonstrated that hydrophile solubilization alone achieved incomplete decellularization; lipophile solubilization alone (LSA) completely removed all cells and two most critical xenoantigens - galactose-α(1,3)-galactose (α-Gal) and major histocompatibility complex I (MHC I) - but caused severe alterations of the structure and mechanical properties; sequential hydrophile and lipophile solubilization (SHLS) resulted in a complete removal of cells, α-Gal and MHC I, and good preservation of the structure and mechanical properties. In contrast, a previously reported method using Triton X-100, sodium deoxycholate and IGEPAL CA-630 resulted in a complete removal of all cells and MHC I, but with remaining α-Gal epitope. LSA- and SHLS-treated leaflets showed significantly reduced leucocyte activation (polymorphonuclear elastase) upon interaction with human blood in vitro. When implanted subdermally in rats for 6 weeks, LSA- or SHLS-treated leaflets were presented with more biocompatible implants and all four decellularized leaflets were highly resistant to calcification. These findings illustrate that the SHLS protocol could be considered as a promising decellularization method for the decellularization of xenogeneic tissues in tissue engineering and regenerative medicine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zaccara, Ivana Maria; Ginani, Fernanda; Mota-Filho, Haroldo Gurgel; Henriques, Águida Cristina Gomes; Barboza, Carlos Augusto Galvão
2015-12-01
A positive effect of low-level laser irradiation (LLLI) on the proliferation of some cell types has been observed, but little is known about its effect on dental pulp stem cells (DPSCs). The aim of this study was to identify the lowest energy density able to promote the proliferation of DPSCs and to maintain cell viability. Human DPSCs were isolated from two healthy third molars. In the third passage, the cells were irradiated or not (control) with an InGaAlP diode laser at 0 and 48 h using two different energy densities (0.5 and 1.0 J/cm²). Cell proliferation and viability and mitochondrial activity were evaluated at intervals of 24, 48, 72, and 96 h after the first laser application. Apoptosis- and cell cycle-related events were analyzed by flow cytometry. The group irradiated with an energy density of 1.0 J/cm² exhibited an increase of cell proliferation, with a statistically significant difference (p < 0.05) compared to the control group at 72 and 96 h. No significant changes in cell viability were observed throughout the experiment. The distribution of cells in the cell cycle phases was consistent with proliferating cells in all three groups. We concluded that LLLI, particularly a dose of 1.0 J/cm², contributed to the growth of DPSCs and maintenance of its viability. This fact indicates this therapy to be an important future tool for tissue engineering and regenerative medicine involving stem cells.
A Novel Human Adipocyte-derived Basement Membrane for Tissue Engineering Applications
NASA Astrophysics Data System (ADS)
Damm, Aaron
Tissue engineering strategies have traditionally focused on the use of synthetic polymers as support scaffolds for cell growth. Recently, strategies have shifted towards a natural biologically derived scaffold, with the main focus on decellularized organs. Here, we report the development and engineering of a scaffold naturally secreted by human preadipocytes during differentiation. During this differentiation process, the preadipocytes remodel the extracellular matrix by releasing new extracellular proteins. Finally, we investigated the viability of the new basement membrane as a scaffold for tissue engineering using human pancreatic islets, and as a scaffold for soft tissue repair. After identifying the original scaffold material, we sought to improve the yield of material, treating the cell as a bioreactor, through various nutritional and cytokine stimuli. The results suggest that adipocytes can be used as bioreactors to produce a designer-specified engineered human extracellular matrix scaffold for specific tissue engineering applications.
Korosoglou, G; Hansen, A; Bekeredjian, R; Filusch, A; Hardt, S; Wolf, D; Schellberg, D; Katus, H A; Kuecherer, H
2006-03-01
To evaluate whether myocardial parametric imaging (MPI) is superior to visual assessment for the evaluation of myocardial viability. Myocardial contrast echocardiography (MCE) was assessed in 11 pigs before, during, and after left anterior descending coronary artery occlusion and in 32 patients with ischaemic heart disease by using intravenous SonoVue administration. In experimental studies perfusion defect area assessment by MPI was compared with visually guided perfusion defect planimetry. Histological assessment of necrotic tissue was the standard reference. In clinical studies viability was assessed on a segmental level by (1) visual analysis of myocardial opacification; (2) quantitative estimation of myocardial blood flow in regions of interest; and (3) MPI. Functional recovery between three and six months after revascularisation was the standard reference. In experimental studies, compared with visually guided perfusion defect planimetry, planimetric assessment of infarct size by MPI correlated more significantly with histology (r2 = 0.92 versus r2 = 0.56) and had a lower intraobserver variability (4% v 15%, p < 0.05). In clinical studies, MPI had higher specificity (66% v 43%, p < 0.05) than visual MCE and good accuracy (81%) for viability detection. It was less time consuming (3.4 (1.6) v 9.2 (2.4) minutes per image, p < 0.05) than quantitative blood flow estimation by regions of interest and increased the agreement between observers interpreting myocardial perfusion (kappa = 0.87 v kappa = 0.75, p < 0.05). MPI is useful for the evaluation of myocardial viability both in animals and in patients. It is less time consuming than quantification analysis by regions of interest and less observer dependent than visual analysis. Thus, strategies incorporating this technique may be valuable for the evaluation of myocardial viability in clinical routine.
Ding, Shuang; Xiong, Jian; Lei, Dan; Zhu, Xiao-Li; Zhang, Hai-Jun
2018-01-01
Breast cancer greatly threatens the health of women all over the word despite of several effective drugs. Targeted therapy for breast cancer is limited to human epidermal growth factor receptor 2 (HER2). Herceptin ® , monoclonal antibody against HER2, is now widely used in HER2(+) breast cancer. Abraxane ® , the current gold standard for paclitaxel (PTX) delivery, has shown superiority in breast cancer based on nanoparticle albumin bound technology. Despite these advances, further novel targeted therapy with more improved anti-tumor efficacy for breast cancer is still urgently needed. Here, we report the recombinant nanocomposites (NPs) composed of the above two clinical drugs of Abraxane ® and Herceptin ® (Abra/anti-HER2), which at first migrates to the tumor region through the unique targeting mechanism of human serum albumin (HSA) of Abraxane ® , and sequentially further precisely recognize the HER2(+) breast cancer cells due to Herceptin ® . The Abra/anti-HER2 NPs were fabricated by a "one-step" synthesis using EDC/NHS. In vitro analysis of cell viability, apoptosis and cell cycle revealed that Abra/anti-HER2 NPs showed more anti-tumor efficacy against HER2(+) SK-BR-3 cells than Abraxane ® at equivalent PTX concentration. In addition, in HER2(+) breast cancer xenograft model, Abra/anti-HER2 NPs significantly inhibited tumor growth with less side effects. Moreover, the properties of more precise target and delayed release of PTX were proved by NIRF imaging. Thus, our results indicate that Abra/anti-HER2 NPs could represent a next-generation sequentially dual-targeting therapeutic agent for HER2(+) breast cancer.
Valentin-Silva, Adriano; Coelho, Victor Peçanha de Miranda; Ventrella, Marília Contin; Vieira, Milene Faria
2015-04-01
Dichogamy is a common characteristic among angiosperms, including Piper species. In this genus, the tiny flowers are morphologically similar and have an asynchronous stamen development. However, there is no information on the duration of stigma receptivity and whether it overlaps with pollen release. To better understand mechanisms of floral function in Piper vicosanum, we provide a detailed characterization of the timing of pollen release from the four stamens and the period of stigma receptivity and exposure mode of the receptive areas. We investigated plants of a natural population in a semideciduous seasonal forest (Viçosa, Minas Gerais State, southeastern Brazil), based on chemical tests, light microscopy, and scanning electron microscopy analyses. Incomplete protogyny-a mechanism that favors outcrossing-was recorded. The period of stigma receptivity was long (14 d), and the sequential exposure and senescence of stigmatic papillae occurred gradually and in a basipetal direction. Pollen release began 2-6 d after the beginning of the pistillate phase, with an average pollen viability of 87.7%, during the bisexual flower phase. Pollen was released for up to 6 d and occurred in one stamen at a time. The fruit set observed in tests of self-pollination indicated self-compatibility. The gradual and sequential exposure of stigmatic papillae in P. vicosanum flowers is described here as the mechanism for the long duration of receptivity. Anther development and pollen release were also sequential. These findings are yet unreported reproductive characteristics of the genus and offer new perspectives for future studies on the floral biology of other Piper species. © 2015 Botanical Society of America, Inc.
A method to screen and evaluate tissue adhesives for joint repair applications
2012-01-01
Background Tissue adhesives are useful means for various medical procedures. Since varying requirements cause that a single adhesive cannot meet all needs, bond strength testing remains one of the key applications used to screen for new products and study the influence of experimental variables. This study was conducted to develop an easy to use method to screen and evaluate tissue adhesives for tissue engineering applications. Method Tissue grips were designed to facilitate the reproducible production of substrate tissue and adhesive strength measurements in universal testing machines. Porcine femoral condyles were used to generate osteochondral test tissue cylinders (substrates) of different shapes. Viability of substrates was tested using PI/FDA staining. Self-bonding properties were determined to examine reusability of substrates (n = 3). Serial measurements (n = 5) in different operation modes (OM) were performed to analyze the bonding strength of tissue adhesives in bone (OM-1) and cartilage tissue either in isolation (OM-2) or under specific requirements in joint repair such as filling cartilage defects with clinical applied fibrin/PLGA-cell-transplants (OM-3) or tissues (OM-4). The efficiency of the method was determined on the basis of adhesive properties of fibrin glue for different assembly times (30 s, 60 s). Seven randomly generated collagen formulations were analyzed to examine the potential of method to identify new tissue adhesives. Results Viability analysis of test tissue cylinders revealed vital cells (>80%) in cartilage components even 48 h post preparation. Reuse (n = 10) of test substrate did not significantly change adhesive characteristics. Adhesive strength of fibrin varied in different test settings (OM-1: 7.1 kPa, OM-2: 2.6 kPa, OM-3: 32.7 kPa, OM-4: 30.1 kPa) and was increasing with assembly time on average (2.4-fold). The screening of the different collagen formulations revealed a substance with significant higher adhesive strength on cartilage (14.8 kPa) and bone tissue (11.8 kPa) compared to fibrin and also considerable adhesive properties when filling defects with cartilage tissue (23.2 kPa). Conclusion The method confirmed adhesive properties of fibrin and demonstrated the dependence of adhesive properties and applied settings. Furthermore the method was suitable to screen for potential adhesives and to identify a promising candidate for cartilage and bone applications. The method can offer simple, replicable and efficient evaluation of adhesive properties in ex vivo specimens and may be a useful supplement to existing methods in clinical relevant settings. PMID:22984926
NASA Astrophysics Data System (ADS)
Bermeo Varon, L. A.; Orlande, H. R. B.; Eliçabe, G. E.
2016-09-01
The particle filter methods have been widely used to solve inverse problems with sequential Bayesian inference in dynamic models, simultaneously estimating sequential state variables and fixed model parameters. This methods are an approximation of sequences of probability distributions of interest, that using a large set of random samples, with presence uncertainties in the model, measurements and parameters. In this paper the main focus is the solution combined parameters and state estimation in the radiofrequency hyperthermia with nanoparticles in a complex domain. This domain contains different tissues like muscle, pancreas, lungs, small intestine and a tumor which is loaded iron oxide nanoparticles. The results indicated that excellent agreements between estimated and exact value are obtained.
Perera, P I P; Quintero, M; Dedicova, B; Kularatne, J D J S; Ceballos, H
2013-01-01
Cassava (Manihot esculenta), a major food staple in the tropics and subtropics, thrives even in environments undergoing threatening climate change. To satisfy the increasing demand for crop improvement and overcome the limitations of conventional breeding, the introduction of inbreeding techniques such as the production of doubled haploid lines via androgenesis or gynogenesis offers advantages. However, comprehensive studies on cassava flower bud biology or structural development are lacking and precise structural and biological information is a prerequisite to enhance the efficiency of these techniques. The floral biology of three selected cassava lines was studied, focusing on morphology, phenology and pollen biology (quantity, viability and dimorphism). Histological studies were also conducted on microsporogenesis/microgametogenesis and megasporogenesis/megagameto-genesis to generate precise developmental data for these lines. Male and female cyathia have distinct developmental phases. Pollen viability was high during immature stages of plant development; however, pollen mortality was common at later stages. Pollen trimorphism in male gametophytes towards the larger or smaller pollen size, as compared with normal size, was observed. Ten characteristic events were identified in male gametogenesis and six in female gametogenesis that were correlated with flower bud diameter. Male gametophyte diameter at different developmental stages was also determined. Results indicate that the three lines did not differ significantly, except regarding a few morphological aspects such as plant height, flower colour and number of male cyathia. Pollen grains were initially viable, but viability decreased drastically at later stages of growth. Abnormal meiosis or mitosis triggered pollen trimorphism. The demonstrated sequential events of reproductive development generated valuable information at the cellular level, which will help close the current information gap for cassava improvement via breeding programmes and doubled haploid plant production.
Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro
2013-01-01
Background Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds. Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. Methods Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. Results All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. Conclusion Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer. PMID:23870175
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaroni, Luca; Zlateva, Theodora; Sarafimov, Blagoj
2014-03-26
We tested the viability of using synchrotron based infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imagingmore » format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.« less
Bansal, A.; Kapoor, R.; Singh, S. K.; Kumar, N.; Oinam, A. S.; Sharma, S. C.
2012-01-01
Aims: Dosimeteric and radiobiological comparison of two radiation schedules in localized carcinoma prostate: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Material and Methods: Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose–volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. Results: The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. Conclusions: For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT. PMID:23204659
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2008-02-01
We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.
Tresoldi, Claudia; Stefani, Ilaria; Ferracci, Gaia; Bertoldi, Serena; Pellegata, Alessandro F; Farè, Silvia; Mantero, Sara
2017-04-26
In vitro dynamic culture conditions play a pivotal role in developing engineered tissue grafts, where the supply of oxygen and nutrients, and waste removal must be permitted within construct thickness. For tubular scaffolds, mass transfer is enhanced by introducing a convective flow through rotating bioreactors with positive effects on cell proliferation, scaffold colonization and extracellular matrix deposition. We characterized a novel polyurethane-based tubular scaffold and investigated the impact of 3 different culture configurations over cell behavior: dynamic (i) single-phase (medium) rotation and (ii) double-phase exposure (medium-air) rotation; static (iii) single-phase static culture as control. A new mixture of polyol was tested to create polyurethane foams (PUFs) as 3D scaffold for tissue engineering. The structure obtained was morphologically and mechanically analyzed tested. Murine fibroblasts were externally seeded on the novel porous PUF scaffold, and cultured under different dynamic conditions. Viability assay, DNA quantification, SEM and histological analyses were performed at different time points. The PUF scaffold presented interesting mechanical properties and morphology adequate to promote cell adhesion, highlighting its potential for tissue engineering purposes. Results showed that constructs under dynamic conditions contain enhanced viability and cell number, exponentially increased for double-phase rotation; under this last configuration, cells uniformly covered both the external surface and the lumen. The developed 3D structure combined with the alternated exposure to air and medium provided the optimal in vitro biochemical conditioning with adequate nutrient supply for cells. The results highlight a valuable combination of material and dynamic culture for tissue engineering applications.
Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna
2014-04-01
In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.
Pehlivaner Kara, Meryem O; Ekenseair, Adam K
2016-10-01
In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.
Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.
Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K
2011-11-01
The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.
Rocha, Carina Diniz; Soares, Mayara Mafra; de Cássia Antonino, Deize; Júnior, Jairo Melo; Freitas Mohallem, Renata Ferreira; Ribeiro Rodrigues, Ana Paula; Figueiredo, José Ricardo; Beletti, Marcelo Emílio; Jacomini, José Octavio; Alves, Benner Geraldo; Alves, Kele Amaral
2018-07-01
This study aimed to evaluate whether the addition of resveratrol to vitrification/thawing medium improves the cryotolerance of preantral follicles enclosed in bovine ovarian fragments. Ovarian fragments were obtained from bovine fetuses and distributed to the following groups: fresh ovarian fragments (control), vitrified (VIT), and vitrified with resveratrol (VIT + RESV). Overall, the mean percentage of normal follicles was greater (P < 0.05) in the VIT + RESV compared to the VIT group. Moreover, the probability of finding normal follicles was 2.5 greater (P < 0.05) in the VIT + RESV group. In class comparison, the primordial and transitional follicles have ∼3.0 times (P < 0.05) greater odds of being normal after vitrification compared to the secondary follicles. Additionally, a negative association (P < 0.05) was observed between the proportion of viable follicles and the stage of follicular development. ROS levels were similar (P > 0.05) between the VIT and VIT + RESV groups, and both were lower (P < 0.05) than the control group. The tissue viability in the VIT + RESV group was similar (P > 0.05) to the control group. In summary, the resveratrol provided greater ovarian tissue viability and has a positive effect against degeneration of preantral follicles enclosed in ovarian fragments. Copyright © 2018 Elsevier Inc. All rights reserved.
Biofunctionalized Lysophosphatidic Acid/Silk Fibroin Film for Cornea Endothelial Cell Regeneration
Jeon, Hayan; Oliveira, Joaquim Miguel; Reis, Rui Luis; Khang, Gilson
2018-01-01
Cornea endothelial cells (CEnCs) tissue engineering is a great challenge to repair diseased or damaged CEnCs and require an appropriate biomaterial to support cell proliferation and differentiation. Biomaterials for CEnCs tissue engineering require biocompatibility, tunable biodegradability, transparency, and suitable mechanical properties. Silk fibroin-based film (SF) is known to meet these factors, but construction of functionalized graft for bioengineering of cornea is still a challenge. Herein, lysophosphatidic acid (LPA) is used to maintain and increase the specific function of CEnCs. The LPA and SF composite film (LPA/SF) was fabricated in this study. Mechanical properties and in vitro studies were performed using a rabbit model to demonstrate the characters of LPA/SF. ATR-FTIR was characterized to identify chemical composition of the films. The morphological and physical properties were performed by SEM, AFM, transparency, and contact angle. Initial cell density and MTT were performed for adhesion and cell viability in the SF and LPA/SF film. Reverse transcription polymerase chain reactions (RT-PCR) and immunofluorescence were performed to examine gene and protein expression. The results showed that films were designed appropriately for CEnCs delivery. Compared to pristine SF, LPA/SF showed higher biocompatibility, cell viability, and expression of CEnCs specific genes and proteins. These indicate that LPA/SF, a new biomaterial, offers potential benefits for CEnCs tissue engineering for regeneration. PMID:29710848
Dias, Isabelle; Salviano, Ísis; Mencalha, André; de Carvalho, Simone Nunes; Thole, Alessandra Alves; Carvalho, Laís; Cortez, Erika; Stumbo, Ana Carolina
2018-04-17
Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.
Lee, Bernard; Benyajati, Siribhinya; Woods, Jeffrey A; Jan, Yih-Kuen
2014-05-01
The primary purpose of this feasibility study was to establish a correlation between pro-inflammatory cytokine accumulation and severity of tissue damage during local pressure with various temperatures. The secondary purpose was to compare skin blood flow patterns for assessing the efficacy of local cooling on reducing skin ischemia under surface pressure. Eight Sprague-Dawley rats were assigned to two protocols, including pressure with local cooling (Δt = -10 °C) and pressure with local heating (Δt = 10 °C). Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin perfusion quantified by laser Doppler flowmetry and TNF-∗ and IL-1β levels were measured. Our results showed that TNF-α concentrations were increased more significantly with local heating than with local cooling under pressure whereas IL-1β did not change. Our results support the notion that weight bearing soft tissue damage may be reduced through temperature modulation and that non-invasive perfusion measurements using laser Doppler flowmetry may be capable of assessing viability. Furthermore, these results show that perfusion response to loading pressure may be correlated with changes in local pro-inflammatory cytokines. These relationships may be relevant for the development of cooling technologies for reducing risk of pressure ulcers. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Cheng; Shi, Dike; Zheng, Yixiong; Nelson, Peter J.; Bao, Qi
2017-09-01
The purpose of this study was to testify the hypothesis that graphene oxide (GO) could act as an appropriate vehicle for the release of tissue inhibitors of metalloproteinase-1 (TIMP-1) protein in the context of skin repair. GO characteristics were observed by scanning electron microscopy, atomic force microscopy, and thermal gravimetric analysis. After TIMP-1 absorbing GO, the release profiles of various concentrations of TIMP-1 from GO were compared. GO biocompatibility with fibroblast viability was assessed by measuring cell cycle and apoptosis. In vivo wound healing assays were used to determine the effect of TIMP-1-GO on skin regeneration. The greatest intensity of GO was 1140 nm, and the most intensity volume was 10,674.1 nm (nanometer). TIMP-1 was shown to be continuously released for at least 40 days from GO. The proliferation and viability of rat fibroblasts cultured with TIMP-1-GO were not significantly different as compared with the cells grown in GO or TIMP-1 alone ( p > 0.05). Skin defect of rats treated with TIMP-1 and TIMP-1-GO showed significant differences in histological and immunohistochemical scores ( p < 0.05). GO can be controlled to release carrier materials. The combination of TIMP-1 and GO promoted the progression of skin tissue regeneration in skin defect.
Maji, Somnath; Agarwal, Tarun; Das, Joyjyoti; Maiti, Tapas Kumar
2018-06-01
The present study delineates a relatively simpler approach for fabrication of a macroporous three-dimensional scaffold for bone tissue engineering. The novelty of the work is to obtain a scaffold with macroporosity (interconnected networks) through a combined approach of high stirring induced foaming of the gelatin/carboxymethyl chitosan (CMC)/nano-hydroxyapatite (nHAp) matrix followed by freeze drying. The fabricated macroporous (SGC) scaffold had a greater pore size, higher porosity, higher water retention capacity, slow and sustained enzymatic degradation rate along with higher compressive strength compared to that of non-macroporous (NGC, prepared by conventional freeze drying methodology) scaffold. The biological studies revealed the increased percentage of viability, proliferation, and differentiation as well as higher mineralization of differentiated human Wharton's jelly MSC microtissue (wjhMSC-MT) on SGC as compared to NGC scaffold. RT-PCR also showed enhanced expression level of collagen type I, osteocalcin and Runx2 when seeded on SGC. μCT and histological analysis further revealed a penetration of cellular spheroid to a greater depth in SGC scaffold than NGC scaffold. Furthermore, the effect of cryopreservation on microtissue survival on the three-dimensional construct revealed significant higher viability upon revival in macroporous SGC scaffolds. These results together suggest that high stirring based macroporous scaffolds could have a potential application in bone tissue engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.
Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells
Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty
2013-01-01
Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, p<0.05) and maximal (50%, p<0.05) OCR and gene expression of mitochondrial proteins and Bax without affecting cell viability or expression of glycolytic enzymes. Similar changes could be recapitulated by incubating cells with leptin, whereas, leptin-receptor specific antagonist inhibited the reduced OCR induced by conditioned media from obese subjects. We conclude that secreted products from the adipose tissue of obese subjects inhibit mitochondrial respiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224
NASA Astrophysics Data System (ADS)
Bader, Kenneth B.
2018-05-01
Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.
NASA Astrophysics Data System (ADS)
Tolmasov, Michael; Barbiro-Michaely, Efrat; Mayevsky, Avraham
2007-02-01
Under body O II imbalance, the Autonomic Nervous System is responsible for redistribution of blood flow with preference to the most vital organs (brain, heart), while the less vital organs (intestine, GI tract) are hypoperfused. The aim of this study was to develop and use an animal model for real time monitoring of tissue viability in the brain, and the small intestine, under various levels of oxygen and blood supply. Male Wistar rats were anesthetized, the brain cortex and intestinal serosa were exposed and connected by optical fibers to the Multi-Site Multi-Parametric (MSMP) monitoring system. Tissue blood flow (TBF) and mitochondrial NADH redox state were monitored simultaneously in the two organs. The rats were subjected to short anoxia, 20 minutes hypoxia or epinephrine (2& 8μg/kg I.V.). Under oxygen deficiency, cerebral blood flow (CBF) was elevated, whereas intestinal TBF was reduced. Mitochondrial NADH was significantly elevated in both organs. Systemic injection of Adrenaline showed a dose-depended increase in systemic blood pressure and CBF response whereas, intestinal TBF similarly decreased in both doses. In addition, NADH was elevated (reduced form) in the intestine whereas oxidation was observed in the brain. In conclusion, our preliminary results may imply the ability of using of the MSMP for monitoring non-vital organs in order to detect early changes in the balance between oxygen supply and demand in the body.
Klingenberg, Marcel; Groß, Matthias; Goyal, Ashish; Polycarpou-Schwarz, Maria; Miersch, Thilo; Ernst, Anne-Sophie; Leupold, Jörg; Patil, Nitin; Warnken, Uwe; Allgayer, Heike; Longerich, Thomas; Schirmacher, Peter; Boutros, Michael; Diederichs, Sven
2018-05-23
The identification of viability-associated long non-coding RNAs (lncRNA) might be a promising rationale for new therapeutic approaches in liver cancer. Here, we applied the first RNAi screening approach in hepatocellular carcinoma (HCC) cell lines to find viability-associated lncRNAs. Among the multiple identified lncRNAs with a significant impact on HCC cell viability, we selected CASC9 (Cancer Susceptibility 9) due to the strength of its phenotype, expression, and upregulation in HCC versus normal liver. CASC9 regulated viability across multiple HCC cell lines as shown by CRISPR interference, single siRNA- and siPOOL-mediated depletion of CASC9. Further, CASC9 depletion caused an increase in apoptosis and decrease of proliferation. We identified the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a CASC9 interacting protein by RNA affinity purification (RAP) and validated it by native RNA immunoprecipitation (RIP). Knockdown of HNRNPL mimicked the loss-of-viability phenotype observed upon CASC9 depletion. Analysis of the proteome (SILAC) of CASC9- and HNRNPL-depleted cells revealed a set of co-regulated genes which implied a role of the CASC9:HNRNPL complex in AKT-signaling and DNA damage sensing. CASC9 expression levels were elevated in patient-derived tumor samples compared to normal control tissue and had a significant association with overall survival of HCC patients. In a xenograft chicken chorioallantoic membrane model, we measured a decreased tumor size after knockdown of CASC9. Taken together, we provide a comprehensive list of viability-associated lncRNAs in HCC. We identified the CASC9:HNRNPL complex as a clinically relevant viability-associated lncRNA/protein complex which affects AKT-signaling and DNA damage sensing in HCC. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men.
Safari, Hassan; Khanlarkhani, Neda; Sobhani, Aligholi; Najafi, Atefeh; Amidi, Fardin
2017-07-05
The neurotrophin family of proteins and their receptors act as important proliferative and pro-survival factors in differentiation of nerve cells and are thought to play key roles in the development of reproductive tissues and normal function of spermatozoa. The objective of the present study was to evaluate the effect of Brain-Derived Neurotrophic Factor (BDNF) on the sperm viability and motility, lipid peroxidation (LPO), mitochondrial activity and concentration of leptin, nitric oxide (NO) and insulin in normozoospermic men. Semen samples from 20 normozoospermic men were divided into three groups: (i) control, (ii) BDNF and (iii) BDNF + K252a. BDNF and K252a were added in the dose of 0.133 and 0.1 nM, respectively. Viability was assessed by eosin-nigrosin staining technique, and motility was observed by microscopy. NO concentration and mitochondrial activity were measured with flow cytometry, and LPO was analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Results showed that exogenous BDNF at 0.133 nM could significantly (p < 0.05) influence viability, motility, NO concentration, mitochondrial activity and LPO content. Secretions of insulin and leptin by human sperm were increased in cells exposed to the exogenous BDNF, whereas viability, mitochondrial activity and insulin and leptin secretions were decreased in cells exposed to the K252.
NASA Astrophysics Data System (ADS)
Saveriades, George
This PhD dissertation focuses on the study of the effects of magnetic exposure on biological systems using amperometry techniques and viability assays. In our prior work based on the cyclotron resonance model, chromaffin cells in physiological saline and Ca2+-free media were exposed for 5 minutes to a 2.7 muT magnetic field, with frequency sweeps going from 30-60 Hz (targeting several ions involved in exocytosis) and 44-48 Hz (targeting specifically Ca2+ ions), with noticeable effects on exocytosis. The present study extended the work on chromaffin cells by covering frequency sweeps for different ions, manipulating the time of exposure and the strength of the magnetic field. Furthermore, amperometry was conducted on acute coronal brain slices, to demonstrate that the recorded effects could be measured on neuronal tissue. The viability of chromaffin cells and primary neuronal cultures exposed to magnetic fields was also addressed. The results demonstrate that cellular exocytosis is sensitive to the frequency of the magnetic field it is exposed to, the strength of the magnetic field and the duration of exposure. No significant effects were established with regards to the viability of the cells exposed to magnetic fields.
Angiogenic response in the chick chorioallantoic membrane model to laser-irradiated cartilage
NASA Astrophysics Data System (ADS)
Karamzadeh, Amir M.; Wong, Brian J.; Milner, Thomas E.; Wilson, Marie; Liaw, Lih-Huei L.; Nelson, J. Stuart
1999-06-01
Laser radiation can be used to reshape cartilage grafts via thermally mediated stress relaxation. While several studies have addressed the biophysical changes accompanying reshaping, cartilage viability following laser irradiation has not been extensively investigated. The objective of this study was to determine the extent of angioinvasion of irradiated cartilage explant placed onto the chick chorioallantoic membrane (CAM) model. Angioinvasion of the tissue matrix does not occur in viable cartilage tissue, whereas denatured tissue is readily vasculairzed and/or resorbed in vivo. Porcine septal cartilage specimens were removed from freshly sacrificed animals and divided into three protocols (n=10 each group) consisting of an untreated control, cartilage boiled in saline solution for one hour, and a laser irradiated group (Nd:YAG, λ=1.32 μm, 30.8 W/cm2, irradiation time = 10 sec). Following laser irradiation, tissue specimens were washed in antibiotic solution sand cut into small cubes (~1.5 mm3). The cartilage specimens were placed onto the surface of twenty CAMs, six of which, survived the entire 14 days incubation period. After incubation, the membranes and specimens were fixed in situ with formaldehyde, an then photographed using a dissection microscope. Cartilage specimens were prepared for histologic evaluation and stained with hematoxylin and eosin. Examination with a dissecting microscope showed no obvious vascular invasion of the cartilage or loss of gross tissue integrity in both the control and laser treated groups. In contrast, boiled specimens appeared to be partially or completely resorbed by the surrounding CAM vascular network. These gross findings were also confirmed by histological examination. In summary, our preliminary studies suggest that cartilage specimens treated using the present laser parameters remain resistant to angioinvasion or metabolism by the CAM, whereas boiled tissue undergoes resorption. Clinically, uncontrolled heating may result in total resorption of cartilage with catastrophic sequelae such as infection, necrosis, and total graft resorption. This study underscores the importance of preserving cartilage viability during laser surgical procedures relying on a photothermal mechanism.
NASA Astrophysics Data System (ADS)
Chouinard, Julie
The continuous assessment of developing tissue substitutes is crucial to understand their evolution over time. However, this represents quite a challenge when thick samples must be evaluated with standard microscopy techniques. Common characterization methods are time consuming and usually result in the destruction of the culture. Real-time, in situ, non-invasive and non-destructives methods are needed to monitor the growth of large non-transparent constructs in tissue engineering. Medical imaging modalities, which can provide information on the structure and function of internal organs and tissues in living organisms, have the potential of allowing repetitive monitoring of these 3D cultures in vitro. The working hypothesis of this thesis was to establish standard noninvasive and nondestructive real-time bioreactor imaging protocols for in situ monitoring of the viability and metabolism of endothelial cells when grown in perfused 3D fibrin gel scaffolds. To achieve this goal, a culture chamber with hollow fibers was designed and a pulsatile perfusion bioreactor system, able to promote cell survival and proliferation, was constructed and validated. Standard imaging protocols in Positron Emission Tomography (PET) are not adapted to image bioreactor systems. A suitable method had to be devised using the well-known radiotracer 18F-fluorodeoxyglucose ( 18FDG), a marker of glucose metabolism. Optimal uptake conditions were determined using cell monolayers and the best parameters were then applied on perfused 3D cultures to evaluate perfusion, cell viability and emerging cell structures. After only 12 hours of culture, the cell density could be estimated and cell structures were localized within the fibrin gels after 1-2 weeks of culture. PET is a promising tool for tissue engineering with many specific tracers available that might eventually be able to reveal new information on tissue development. Key words: Endothelial cells, Perfusion bioreactor, Positron Emission Tomography (PET), 18F-fluorodeoxyglucose ( 18FDG), Tissue Engineering, 3D cultures, Fibrin.
A versatile fabrication strategy of three-dimensional foams for soft and hard tissue engineering.
Xu, Changlu; Bai, Yanjie; Yang, Shaofeng; Yang, Huilin; Stout, David A; Tran, Phong; Yang, Lei
2017-12-15
The fabrication strategies of three-dimensional porous biomaterials have been extensively studied and well established in the past decades, yet the biocompatibility and versatility in preparing porous architecture still lacks. Herewith, we present a novel and green fabrication technique of 3D porous foams for both soft and hard engineering. By utilizing the gelatinization and retrogradation property of starches, stabilized porous constructs made of various building blocks from living cells to ceramic particles were created for the first time. In soft tissue engineering applications, 3D cultured tissue foam (CTF) with controlled release property of cells was developed and the foams constituted by osteoblasts, fibroblasts and vascular endothelial cells all exhibited high mechanical stability and preservation of cell viability or functions. More importantly, the CTF achieved sustained self-release of cells controlled by serum (containing amylase) concentration and the released cells also maintained high viability and functions. In the context of hard tissue engineering applications, ceramic/bioglass (BG) foam scaffolds were developed by the similar starch-assisted foaming strategy where the resultant bone scaffolds of hydroxyapatite (HA)/BG and Si3N4/BG possessed>70% porosity with interconnected macropores (sizes 200~400μm) and fine pores (sizes1~10 μm) and superior mechanical properties despite the high porosity. Additionally, in vitro and in vivo evaluations on the biological properties revealed that porous HA/BG foam exhibited desired biocompatibility and osteogenesis. The in vivo study indicated new bone ingrowth after 1 week and significant increases in new bone volume after 2 weeks. In conclusion, the presented foaming strategy provides opportunities for biofabricating CTF with different cells for different target soft tissues and preparing porous ceramic/BG foams with different material components and high strengths-showing great versatility in soft and hard tissue engineering. © 2017 IOP Publishing Ltd.
Development of a multilayered association polymer system for sequential drug delivery
NASA Astrophysics Data System (ADS)
Chinnakavanam Sundararaj, Sharath kumar
As all the physiological processes in our body are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the primary objective of this research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. This particular device was designed aimed at the treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of the world population. This condition is caused by bacterial biofilm on the teeth, resulting in a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The polymers used for the fabrication of this multilayered device consists of cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion property of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. After the initial characterization of the CAPP system, the device was specifically modified to achieve sequential release of drugs aimed at the treatment of periodontitis. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. To obtain different erosion times and achieve appropriate release profiles specific to the disease condition, the device was modified by increasing the number of layers or by inclusion of a slower eroding polymer layer. In all the cases, the device was able to release the four different drugs in the designed temporal sequence. Analysis of antibiotic and antiinflammatory bioactivity showed that drugs released from the devices retained 100% bioactivity. Following extensive studies on the in vitro sequential drug release from these devices, the in vivo drug release profiles were investigated. The CAPP devices with different release rates and dosage formulations were implanted in a rat calvarial onlay model, and the in vivo drug release and erosion was compared with in vitro results. In vivo studies showed sequential release of drugs comparable to those measured in vitro, with some difference in drug release rates observed. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. KEYWORDS: Multiple drug delivery, Periodontitis, Cellulose acetate phthalate, Pluronic F-127, Sequential drug release, in vitro drug release, in vivo drug release.
Seemayer, N H; Hadnagy, W; Tomingas, R
1987-03-01
Extract of particulate matter (EPM) of gasoline engine exhaust induced only a slight loss of cell viability of mouse macrophages (line IC-21) in vitro, while a strong dose-dependent reduction of plating efficiency of human cell line A-549 and of Syrian hamster line 14-1b occurred. Cytological investigations of exposed macrophages of line IC-21 revealed an increase in the mitotic index from 1.5% of control values up to 14.6% at the highest tested concentration of EPM. Mitotic arrest is based almost exclusively on C-type mitoses occurring dose-dependently in the presence of EPM. Results indicate disturbances of the spindle apparatus in the presence of EPM.
Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.
Gao, Guifang; Hubbell, Karen; Schilling, Arndt F; Dai, Guohao; Cui, Xiaofeng
2017-01-01
Bioprinting based on thermal inkjet printing is one of the most attractive enabling technologies for tissue engineering and regeneration. During the printing process, cells, scaffolds , and growth factors are rapidly deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations. Ideally, the bioprinted tissues are able to mimic the native anatomic structures in order to restore the biological functions. In this study, a bioprinting platform for 3D cartilage tissue engineering was developed using a commercially available thermal inkjet printer with simultaneous photopolymerization . The engineered cartilage demonstrated native zonal organization, ideal extracellular matrix (ECM ) composition, and proper mechanical properties. Compared to the conventional tissue fabrication approach, which requires extended UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression profile. Therefore, this platform is ideal for anatomic tissue engineering with accurate cell distribution and arrangement.
Vitushynska, M V; Matiytsiv, N P; Chernyk, Y
2015-01-01
The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.
Recent advances in bioprinting techniques: approaches, applications and future prospects.
Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang
2016-09-20
Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.
A model for cancer tissue heterogeneity.
Mohanty, Anwoy Kumar; Datta, Aniruddha; Venkatraj, Vijayanagaram
2014-03-01
An important problem in the study of cancer is the understanding of the heterogeneous nature of the cell population. The clonal evolution of the tumor cells results in the tumors being composed of multiple subpopulations. Each subpopulation reacts differently to any given therapy. This calls for the development of novel (regulatory network) models, which can accommodate heterogeneity in cancerous tissues. In this paper, we present a new approach to model heterogeneity in cancer. We model heterogeneity as an ensemble of deterministic Boolean networks based on prior pathway knowledge. We develop the model considering the use of qPCR data. By observing gene expressions when the tissue is subjected to various stimuli, the compositional breakup of the tissue under study can be determined. We demonstrate the viability of this approach by using our model on synthetic data, and real-world data collected from fibroblasts.
Castro, Simone Vieira; de Carvalho, Adeline Andrade; da Silva, Cleidson Manoel Gomes; Faustino, Luciana Rocha; Campello, Cláudio Cabral; Lucci, Carolina Madeira; Báo, Sônia Nair; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro
2011-11-01
Goat ovarian cortex fragments were subjected to slow freezing in the presence of various solutions containing intracellular cryoprotectants, including 1.0 M ethylene glycol (EG), propanediol (PROH), or dimethyl sulfoxide (DMSO), with or without sucrose and/or fetal calf serum (FCS). Histological examination revealed that only the DMSO-containing solutions were able to maintain a follicular ultrastructure similar to the morphology observed in the fresh control. Therefore, fragments previously cryopreserved in DMSO solutions (with and without sucrose and/or FCS) were cultured in vitro for 48 h and then subjected to viability, histological, and ultrastructural analysis. No significant differences were observed among the percentages of morphologically normal follicles in cryopreserved ovarian tissue before in vitro culture (DMSO: 62.5%; DMSO + sucrose: 68.3%; DMSO + FCS: 60.0%; DMSO + sucrose + FCS: 60.0%) and after culture (DMSO: 60.8%; DMSO + sucrose: 64.2%; DMSO + FCS: 70.8%; DMSO + sucrose + FCS: 55.0%). Following in vitro culture, the viability analysis showed that only the freezing solution containing DMSO and FCS (75.6%) maintained a percentage of viable follicles similar to that observed after culture without cryopreservation (89.3%). As determined by ultrastructural analysis, morphologically normal preantral follicles were detected in the fresh control and in fragments cultured before and after cryopreservation with DMSO and FCS. Thus, a freezing solution containing DMSO and FCS, under the experimental conditions tested here, guaranteed the maintenance of viability and follicular ultrastructure after short-term in vitro culture.
Porcine circovirus 2 (PCV2) increases the expression of endothelial adhesion/junction molecules.
Marks, Fernanda S; Almeida, Laura L; Driemeier, David; Canal, Cláudio; Barcellos, David E S N; Guimarães, Jorge A; Reck, José
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus disease, a complex multisystem syndrome in domestic pigs. Despite the significant economic losses caused by porcine circovirus disease, the mechanisms of pathogenesis underlying the clinical findings remain largely unclear. As various reports have highlighted the potential key role of vascular lesions in the pathogenesis of porcine circovirus disease, the aim of this work was to investigate effects of PCV2 infection on vascular endothelial cells, focusing on cell viability and expression of adhesion/junction molecules. PCV2 infection reduced endothelial cell viability, while viral infection did not affected the viability of several other classical cell lines. Also, PCV2 infection in endothelial cells displayed a dual/biphasic effect: initially, infection increased ICAM-1 expression, which can favor leukocyte recruitment and emigration to tissues and possibly inducing characteristic porcine circovirus disease inflammatory lesions; then, secondarily, infection caused an increase in zonula occludens 1 tight junction protein (ZO-1) expression, which in turn can result in difficulties for cell traffic across the endothelium and a potential impairment the immune response in peripheral tissues. These virus-induced endothelial changes could directly impact the inflammatory process of porcine circovirus disease and associated vascular/immune system disturbances. Data suggest that, among the wide range of effects induced by PCV2 on the host, endothelial modulation can be a pivotal process which can help to explain PCV2 pathogenesis in some porcine circovirus disease presentations. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Philippeos, Christina; Hughes, Robin D; Dhawan, Anil; Mitry, Ragai R
2012-01-01
The basics of cell culture as applied to human cells are discussed. Biosafety when working with human tissue, which is often pathogenic, is important. The requirements for a tissue culture laboratory are described, particularly the range of equipment needed to carry out cell isolation, purification, and culture. Steps must be taken to maintain aseptic conditions to prevent contamination of cultures with micro-organisms. Basic cell-handling techniques are discussed, including choice of media, primary culture, and cryopreservation of cells so they can be stored for future use. Common assays which are used to determine cell viability and activity are considered.
Two-photon induced collagen cross-linking in bioartificial cardiac tissue
NASA Astrophysics Data System (ADS)
Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander
2011-08-01
Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.
3D bioprinted functional and contractile cardiac tissue constructs
Wang, Zhan; Lee, Sang Jin; Cheng, Heng-Jie; Yoo, James J.; Atala, Anthony
2018-01-01
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-μm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. PMID:29452273
van den Bos, Willemien; Neal, Robert E.; van Lienden, Krijn P.; Besselink, Marc G. H.; van Gemert, Martin J. C.; van der Geld, Cees W. M.; Meijerink, Martijn R.; Klaessens, John H.; Verdaasdonk, Rudolf M.
2016-01-01
Purpose Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. Methods IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15–35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000–1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. Results In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. Conclusion IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective. PMID:26844550
Salinas, Evelia Y; Hu, Jerry C; Athanasiou, Kyriacos
2018-04-26
The use of tissue-engineered articular cartilage (TEAC) constructs has the potential to become a powerful treatment option for cartilage lesions resulting from trauma or early stages of pathology. Although fundamental tissue-engineering strategies based on the use of scaffolds, cells, and signals have been developed, techniques that lead to biomimetic AC constructs that can be translated to in vivo use are yet to be fully confirmed. Mechanical stimulation during tissue culture can be an effective strategy to enhance the mechanical, structural, and cellular properties of tissue-engineered constructs toward mimicking those of native AC. This review focuses on the use of mechanical stimulation to attain and enhance the properties of AC constructs needed to translate these implants to the clinic. In vivo, mechanical loading at maximal and supramaximal physiological levels has been shown to be detrimental to AC through the development of degenerative changes. In contrast, multiple studies have revealed that during culture, mechanical stimulation within narrow ranges of magnitude and duration can produce anisotropic, mechanically robust AC constructs with high cellular viability. Significant progress has been made in evaluating a variety of mechanical stimulation techniques on TEAC, either alone or in combination with other stimuli. These advancements include determining and optimizing efficacious loading parameters (e.g., duration and frequency) to yield improvements in construct design criteria, such as collagen II content, compressive stiffness, cell viability, and fiber organization. With the advancement of mechanical stimulation as a potent strategy in AC tissue engineering, a compendium detailing the results achievable by various stimulus regimens would be of great use for researchers in academia and industry. The objective is to list the qualitative and quantitative effects that can be attained when direct compression, hydrostatic pressure, shear, and tensile loading are used to tissue-engineer AC. Our goal is to provide a practical guide to their use and optimization of loading parameters. For each loading condition, we will also present and discuss benefits and limitations of bioreactor configurations that have been used. The intent is for this review to serve as a reference for including mechanical stimulation strategies as part of AC construct culture regimens.
Dehydration Effects on Imbibitional Leakage from Desiccation-Sensitive Seeds 1
Becwar, Michael R.; Stanwood, Phillip C.; Roos, Eric E.
1982-01-01
Changes in electrolyte leakage and viability in response to dehydration stress were examined in two species of seeds that do not survive desiccation. Leakage from silver maple (Acer saccharinum L.) seeds increased markedly as seed moisture contents decreased from 45 to 35% (fresh weight basis) and germination decreased from 97 to 5%, coincidentally. Time course curves of imbibitional leakage from areca palm (Chrysalido-carpus lutescens [Bory] Wendl.) embryos showed an increase in both initial leakage and steady-state leakage rates in response to dehydration from an original moisture content of 84 to as low as 53%. Absorbance at 530 nanometers of extracts from triphenyl tetrazolium chloride stained embryos of areca palm was used as a measure of viability. Absorbance decreased significantly in response to dehydration as embryo moisture content decreased from 80 to 30%. Collectively, the data suggest that membranes in the desiccation-sensitive seed tissues studied are damaged by dehydration below a critical moisture content, 40% in silver maple seed and 55% in areca palm embryos, and that the membrane damage contributes to loss of viability. PMID:16662357
Low-level lasers affect Escherichia coli cultures in hyperosmotic stress
NASA Astrophysics Data System (ADS)
Pinheiro, C. C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.
2015-08-01
Physical characteristics and practical properties have made lasers of interest for biomedical applications. Effects of low-level lasers on biological tissues could occur or be measurable depending on cell type, presence of a pathologic process or whether the cells are in an adverse environment. The objective of this work was to evaluate the survival, morphology and filamentation of E. coli cells proficient and deficient in the repair of oxidative DNA lesions exposed low-level red and infrared lasers submitted to hyperosmotic stress. Wild type and endonuclease VIII deficient E. coli cells in exponential and stationary growth phase were exposed to red and infrared lasers and submitted to hyperosmotic stress. Cell viability, filamentation phenotype and cell morphology were evaluated. Cell viability was not significantly altered but previous laser exposure induced filamentation and an altered area of stressed cells depending on physiologic condition and presence of the DNA repair. Results suggest that previous exposure to low-level red and infrared lasers could not affect viability but induced morphologic changes in cells submitted to hyperosmotic stress depending on physiologic conditions and repair of oxidative DNA lesions.
Stubbs, Nikki; Sandoe, Jonathan; Mc Ginnis, Elizabeth; Edmunds, Heather
2012-11-01
The Tissue Viability services in acute and primary care in Leeds had concerns about the increasing inappropriate use of topical antiseptic dressings for wound management and were aware that the use was disproportionate to the evidence supporting their prescribing. A scoping exercise of the use of topical antiseptics and systemic antibiotic usage in Leeds led to the identification of heterogeneous prescribing of systemic antibiotics and an almost £500,000 spend on topical antiseptics across Leeds community. The project involved the following stages. 1- Local scoping of topical antiseptics and systemic antibiotic prescribing. 2- A cross organisational working group to develop and implement a clinical best practice guideline for the prevention, diagnosis and management of wound infection. 3- Development of a revised local dressings formulary. 4- The establishment of a new referral process to Tissue Viability for wounds requiring topical antiseptic treatments. 5- Evaluation of the new guideline through- monitoring prescribing- monitoring wound sampling- monitoring A & E admissions- collecting patient feedback through the ‘Tell Tissue Viability’ process. *Expenditure on topical antiseptic dressings for the period Oct 2009-Dec 2009 was £128,864 and this reduced to £65,604 for the period Nov 2011-Jan 2012. This demonstrates an overall saving of £63,260 with a projected annual saving of £237,584 within the community trust alone. *A reduction in the number of wound swabs sent to microbiology from inpatient locations by 1500/year comparing 2008/9 with 2010/11. *An increase in wound swabs sent from GPs by 100/year comparing 2008/9 with 2010/11. *A reduction in penicillin V and co-fluampicil prescriptions and an increase in flucloxacillin prescriptions in general practise suggesting greater concordance with local antibiotic prescribing recommendations. The implementation of a clinical guideline in association with support from the specialist team, for patients requiring topical antiseptics has resulted in a reduction in the inappropriate use of topical antiseptics in hospital and community. Wound sampling practises and prescribing practises have changed. No apparent increased risk for patients has been identified but it has not been easy to obtain details about admission to Accident and Emergency with cellulitis and optimising surveillance remains a challenge for the future. Copyright © 2012 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Three-dimensional Cell Culture Devices for Cancer Migration and Drug Testing
NASA Astrophysics Data System (ADS)
Ma, Liang
Porous polymeric materials are widely used to mimic the extracellular matrix (ECM) environment for applications such as 3D cell culturing and tissue engineering. A series of comparative experiments on 3D cell cultures both in PLA porous scaffolds and alginate gels were conducted to create an in vitro tumor model. A novel 3D cell culture device based on porous polymeric material was developed to study cancer migration. Significant cell migration was observed through the porous channel within 1--2 weeks induced by 20% fetal bovine serum (FBS). A three-dimensional micro-scale perfusion-based two-chamber (3D-muPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs by emulating liver metabolism effects in vitro. Hepatoma cells and glioblastoma multiforme (GBM) cancer cells were cultured in porous polymeric scaffolds in two separate chambers, representing the liver and tumor, respectively. The cytotoxic effect of temozolomide (TMZ) was first tested using this system. It was found that the GBM cells showed a much higher viability under the TMZ treatment with liver cells in the system, suggesting that the drug metabolism in liver is affecting the efficacy of the drug. The favorable metabolism effect of cytochrome P450 (CYP) was tested using a prodrug ifosfamide (IFO). Without the liver cells, IFO showed only slight toxicity to GBM cells. Moreover, it was shown that different expression levels of CYP 3A4, a major drug metabolizing enzyme, in liver cells caused significantly different levels of GBM cell viability. Simulation of the flow characteristics in the 3D-muPTC system was conducted using the finite-element analysis approach. The shear stress was predicted in the porous scaffolds under different flow rate conditions. The predicted shear stress effects agreed well with an experimental cell viability study. A low cost organic solvent free approach to fabricating tissue engineering scaffolds was developed by combining the twin-screw extrusion and particulate leaching. High porosity and interconnected porous PLA scaffolds with the pore size 50 to 200μm were fabricated with this immiscible polymer blending method. This combined extrusion and particulate leaching method provides a new technique to fabricate tissue engineering scaffolds that can be used in the 3D-muPTC device.
In vitro effects of dental cements on hard and soft tissues associated with dental implants.
Rodriguez, Lucas C; Saba, Juliana N; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C
2017-07-01
Dental cements for cement-retained restorations are often chosen based on clinician preference for the product's material properties, mixing process, delivery mechanism, or viscosity. The composition of dental cement may play a significant role in the proliferation or inhibition of different bacterial strains associated with peri-implant disease, and the effect of dental cements on host cellular proliferation may provide further insight into appropriate cement material selection. The purpose of this in vitro study was to investigate the cellular host response of bone cells (osteoblasts) and soft tissue cells (gingival fibroblasts) to dental cements. Zinc oxide (eugenol and noneugenol), zinc phosphate, and acrylic resin cements were molded into pellets and directly applied to confluent preosteoblast (cell line MC3T3 E1) or gingival fibroblast cell cultures (cell line HGF) to determine cellular viability after exposure. Controls were defined as confluent cell cultures with no cement exposure. Direct contact cell culture testing was conducted following International Organization for Standardization 10993 methods, and all experiments were performed in triplicate. To compare either the MC3T3 E1 cell line, or the HGF cell line alone, a 1-way ANOVA test with multiple comparisons was used (α=.05). To compare the MC3T3 E1 cell line results and the HGF cell line results, a 2-way ANOVA test with multiple comparisons was used (α=.05). The results of this study illustrated that while both bone and soft tissue cell lines were vulnerable to the dental cement test materials, the soft tissue cell line (human gingival fibroblasts) was more susceptible to reduced cellular viability after exposure. The HGF cell line was much more sensitive to cement exposure. Here, the acrylic resin, zinc oxide (eugenol), and zinc phosphate cements significantly reduced cellular viability after exposure with respect to HGF cells only. Within the limitation of this in vitro cellular study, the results indicated that cell response to various implant cements varied significantly, with osteoblast proliferation much less affected than gingival fibroblast cells. Furthermore, the zinc oxide noneugenol dental cement appeared to affect the cell lines significantly less than the other test cements. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Zhang, Bin; Yang, Ning; Lin, Shao-Peng; Zhang, Feng
2017-07-01
Cerebral infarction (CI) is a common clinical cerebrovascular disease, and to explore the pathophysiological mechanisms and seek effective treatment means are the hotspot and difficult point in medical research nowadays. Numerous studies have confirmed that uric acid plays an important role in CI, but the mechanism has not yet been clarified. When treating HT22 and BV-2 cells with different concentrations of uric acid, uric acid below 450 μM does not have significant effect on cell viability, but uric acid more than 500 μM can significantly inhibit cell viability. After establishing models of OGD (oxygen-glucose deprivation) with HT22 and BV-2 cells, uric acid at a low concentration (50 μM) cannot improve cell viability and apoptosis, and Reactive oxygen species (ROS) levels during OGD/reoxygenation; a suitable concentration (300 μM) of uric acid can significantly improve cell viability and apoptosis, and reduce ROS production during OGD/reoxygenation; but a high concentration (1000 μM) of uric acid can further reduce cell viability and enhance ROS production. After establishing middle cerebral artery occlusion of male rats with suture method, damage and increase of ROS production in brain tissue could be seen, and after adding suitable concentration of uric acid, the degree of brain damage and ROS production was reduced. Therefore, different concentrations of uric acid should have different effect, and suitable concentrations of uric acid have neuroprotective effect, and this finding may provide guidance for study on the clinical curative effect of uric acid.
Lunardi, Franciele Osmarini; de Aguiar, Francisco Leo Nascimento; Duarte, Ana Beatriz Graça; Araújo, Valdevane Rocha; de Lima, Laritza Ferreira; Ribeiro de Sá, Naiza Arcângela; Vieira Correia, Hudson Henrique; Domingues, Sheyla Farhayldes Souza; Campello, Cláudio Cabral; Smitz, Johan; de Figueiredo, José Ricardo; Ribeiro Rodrigues, Ana Paula
2016-04-15
Cryopreservation of preantral follicles is a promising technique to preserve female fertility. The aim of this study was to evaluate the effect of vitrification on the development of secondary follicles included in ovarian tissue or isolated after microdissection. An important end point included is the capacity of grown oocytes to resume meiosis. Sheep ovarian cortexes were cut into fragments and split into three different groups: (1) fresh (control): secondary follicles isolated without any previous vitrification; (2) follicle-vitrification (follicle-vit): secondary follicles vitrified in isolated form; and (3) tissue-vitrification (tissue-vit): secondary follicles vitrified within fragments of ovarian tissue (in situ former) and subsequently subjected to isolation. From the three groups, isolated secondary follicles were submitted to IVC for 18 days. After IVC, cumulus-oocyte complexes (COCs) were harvested from follicles. As an additional control group, in vivo grown, in vivo-grown COCs were collected from antral ovarian follicles. All, recovered COCs were matured and the chromatin configuration was evaluated. Data were analyzed by ANOVA, and the means were compared by Student-Newman-Keuls test, and by chi-square. Differences were considered to be significant when P < 0.05. Isolated preantral follicles from all treatments had normal morphology, antrum formation, and low follicle degeneration after IVC. The growth rate between control and follicle-vit did not differ (P > 0.05), and was higher (P < 0.05) than for tissue-vit. The percentage of follicles that decreased diameter during IVC was significantly higher in tissue-vit than the in follicle-vit. Recovery rate of oocytes from normal follicles was higher in follicle-vit than in tissue-vit. Furthermore, oocyte viability was lower in tissue-vit than other treatments, and follicle-vit did not differ from control and in vivo grown. The percentage of oocytes meiosis resuming was not different between treatments except for in vivo grown. After vitrification, only follicle-vit showed metaphase I oocyte. We conclude that secondary follicles vitrified after isolation displayed a better follicular growth rate, oocyte viability, percentage of oocytes reaching the metaphase I stage, and fewer follicles with decreased diameter after IVC. Copyright © 2016 Elsevier Inc. All rights reserved.
Functional and morphological ultrasonic biomicroscopy for tissue engineers
NASA Astrophysics Data System (ADS)
Mallidi, S.; Aglyamov, S. R.; Karpiouk, A. B.; Park, S.; Emelianov, S. Y.
2006-03-01
Tissue engineering is an interdisciplinary field that combines various aspects of engineering and life sciences and aims to develop biological substitutes to restore, repair or maintain tissue function. Currently, the ability to have quantitative functional assays of engineered tissues is limited to existing invasive methods like biopsy. Hence, an imaging tool for non-invasive and simultaneous evaluation of the anatomical and functional properties of the engineered tissue is needed. In this paper we present an advanced in-vivo imaging technology - ultrasound biomicroscopy combined with complementary photoacoustic and elasticity imaging techniques, capable of accurate visualization of both structural and functional changes in engineered tissues, sequential monitoring of tissue adaptation and/or regeneration, and possible assistance of drug delivery and treatment planning. The combined imaging at microscopic resolution was evaluated on tissue mimicking phantoms imaged with 25 MHz single element focused transducer. The results of our study demonstrate that the ultrasonic, photoacoustic and elasticity images synergistically complement each other in detecting features otherwise imperceptible using the individual techniques. Finally, we illustrate the feasibility of the combined ultrasound, photoacoustic and elasticity imaging techniques in accurately assessing the morphological and functional changes occurring in engineered tissue.
Eğri, Sinan; Eczacıoğlu, Numan
2017-03-01
Biodegradable PLA-PEG-PLA block copolymers were synthesized with desired backbone structures and molecular weights using PEG20000. Rectangular scaffolds were prepared by freeze drying with or without using NaCl particles. Bone morphogenetic protein (BMP)-2 was loaded to the matrix after the scaffold formation for sustained release while vascular endothelial growth factor (VEGF) was loaded within the pores with gelatin solution. VEGF release was quite fast and almost 60% of it was released in 2 d. However, sequential - sustained released was observed for BMP-2 in the following few months. Corporation of VEGF/BMP-2 couple into the scaffolds increased the cell adhesion and proliferation. Neither significant cytotoxicity nor apoptosis/necrosis were observed.
The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting.
Lee, Hyun; Jang, Tae-Sik; Song, Juha; Kim, Hyoun-Ee; Jung, Hyun-Do
2017-03-31
Porous hydroxyapatite (HA) scaffolds with porosity-graded structures were fabricated by sequential freeze-casting. The pore structures, compressive strengths, and biocompatibilities of the fabricated porous HA scaffolds were evaluated. The porosities of the inner and outer layers of the graded HA scaffolds were controlled by adjusting the initial HA contents of the casting slurries. The interface between the dense and porous parts was compact and tightly adherent. The porosity and compressive strengths of the scaffold were controlled by the relative thicknesses of the dense/porous parts. In addition, the porous HA scaffolds showed good biocompatibility in terms of preosteoblast cell attachment and proliferation. The results suggest that porous HA scaffolds with load-bearing parts have potential as bone grafts in hard-tissue engineering.
The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting
Lee, Hyun; Jang, Tae-Sik; Song, Juha; Kim, Hyoun-Ee; Jung, Hyun-Do
2017-01-01
Porous hydroxyapatite (HA) scaffolds with porosity-graded structures were fabricated by sequential freeze-casting. The pore structures, compressive strengths, and biocompatibilities of the fabricated porous HA scaffolds were evaluated. The porosities of the inner and outer layers of the graded HA scaffolds were controlled by adjusting the initial HA contents of the casting slurries. The interface between the dense and porous parts was compact and tightly adherent. The porosity and compressive strengths of the scaffold were controlled by the relative thicknesses of the dense/porous parts. In addition, the porous HA scaffolds showed good biocompatibility in terms of preosteoblast cell attachment and proliferation. The results suggest that porous HA scaffolds with load-bearing parts have potential as bone grafts in hard-tissue engineering. PMID:28772735
Arkesteijn, Irene T M; Mouser, Vivian H M; Mwale, Fackson; van Dijk, Bart G M; Ito, Keita
2016-05-01
In vitro evaluation of nucleus pulposus (NP) tissue regeneration would be useful, but current systems for NP culture are not ideal for injections. The aim of this study was to develop a long-term culture system for NP tissue that allows injections of regenerative agents. Bovine caudal NPs were harvested and placed in the newly designed culture system. After equilibration of the tissue to 0.3 MPa the volume was fixed and the tissue was cultured for 28 days. The cell viability and extracellular matrix composition remained unchanged during the culture period and gene expression profiles were similar to those obtained in earlier studies. Furthermore, to test the responsiveness of bovine caudal NPs in the system, samples were cultured for 4 days and injected twice (day 1 and 3) with (1) PBS, (2) Link-N, for regeneration, and (3) TNF-α, for degeneration. It was shown that TNF-α increased COX2 gene expression, whereas no effect of Link-N was detected. In conclusion, the newly designed system allows long-term culture of NP tissue, wherein tissue reactions to injected stimulants can be observed.
Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue.
Tandon, Nina; Taubman, Alanna; Cimetta, Elisa; Saccenti, Laetitia; Vunjak-Novakovic, Gordana
2013-01-01
Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Although bioreactors have facilitated the engineering of cardiac patches of clinically relevant size in vitro, a major drawback remains the transportation of the engineered tissues from a production facility to a medical operation facility while maintaining tissue viability and preventing contamination. Furthermore, after implantation, most of the cells are endangered by hypoxic conditions that exist before vascular flow is established. We developed a portable device that provides the perfusion and electrical stimulation necessary to engineer cardiac tissue in vitro, and to transport it to the site where it will be implantated. The micropump-powered perfusion apparatus may additionally function as an extracorporeal active pumping system providing nutrients and oxygen supply to the graft post-implantation. Such a system, through perfusion of oxygenated media and bioactive molecules (e.g. growth factors), could transiently support the tissue construct until it connects to the host vasculature and heart muscle, after which it could be taken away or let biodegrade.
The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering
Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo
2016-01-01
Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777
Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo
2014-09-01
Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.
Mohammad-Shafie Rahmani; Paula M. Pijut; Naghi Shabanian
2016-01-01
Protoplast isolation and subsequent plant regeneration of Albizia julibrissin was achieved from leaf and callus explants. Leaf tissue from 4 to 5-week-old in vitro seedlings was the best source for high-yield protoplast isolation. This approach produced 7.77 Ã 105 protoplasts (Pp) per gram fresh weight with 94 % viability;...
Effects of desiccation on the physiology and biochemistry of Quercus alba acorns
Kristina F. Connor; Sharon Sowa
2003-01-01
Seeds that lose viability when dried to a water content of less than 12% are said to be recalcitrant. We subjected acorns of Quercus alba L., a species with recalcitrant seeds, to desiccation to determine the effects of drying on lipids, proteins and carbohydrates of the embryonic axis and cotyledon tissues. Samples of fresh seed and seed dried for...
Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J
2014-09-06
A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.
Meeting targets in pressure ulcer prevention in the community by collaborating with industry.
Woodhouse, Lucy; Graham, Katriona
2014-12-01
This article describes how a community health-care trust achieved a reduction in acquired pressure ulcers. Commissioning for Quality and Innovation 2014/15 guidance states that provider organisations should work with their partners across their local health and social care system to address the causes of pressure ulcers and reduce their prevalence, regardless of source. Gloucestershire Care Service NHS Trust was challenged to reduce the number of acquired pressure ulcers by 17% in 2013-14. The challenge for the three members of the tissue viability team was to train the qualified and unqualified staff within seven community hospitals and district nurse teams from 85 GP practices, covering a population of 600 000 within 4 months. Staff shortages and a lack of venues available meant that an adaptive educational approach was necessary. A dedicated programme of educational support from both the tissue viability nurse and an industry partner enabled the delivery of a wide range of educational materials to staff across the county. As a result of this partnership working, there was a reduction of category 3 and 4 pressure ulcers, and an increased awareness of the initial stages of pressure ulcer development demonstrated by an increase in grade 2 pressure ulcers.
Gupta, Dhanak; Grant, David M; Zakir Hossain, Kazi M; Ahmed, Ifty; Sottile, Virginie
2018-02-01
Mesenchymal stem cells play a vital role in bone formation process by differentiating into osteoblasts, in a tissue that offers not a flat but a discontinuous three-dimensional (3D) topography in vivo. In order to understand how geometry may be affecting mesenchymal stem cells, this study explored the influence of 3D geometry on mesenchymal stem cell-fate by comparing cell growth, viability and osteogenic potential using monolayer (two-dimensional, 2D) with microsphere (3D) culture systems normalised to surface area. The results suggested lower cell viability and reduced cell growth in 3D. Alkaline phosphatase activity was higher in 3D; however, both collagen and mineral deposition appeared significantly lower in 3D, even after osteogenic supplementation. Also, there were signs of patchy mineralisation in 3D with or without osteogenic supplementation as early as day 7. These results suggest that the convex surfaces on microspheres and inter-particulate porosity may have led to variable cell morphology and fate within the 3D culture. This study provides deeper insights into geometrical regulation of mesenchymal stem cell responses applicable for bone tissue engineering.
Construction of 3D multicellular microfluidic chip for an in vitro skin model.
Lee, Sojin; Jin, Seon-Pil; Kim, Yeon Kyung; Sung, Gun Yong; Chung, Jin Ho; Sung, Jong Hwan
2017-06-01
Current in vitro skin models do not recapitulate the complex architecture and functions of the skin tissue. In particular, on-chip construction of an in vitro model comprising the epidermis and dermis layer with vascular structure for mass transport has not been reported yet. In this study, we aim to develop a microfluidic, three-dimensional (3D) skin chip with fluidic channels using PDMS and hydrogels. Mass transport within the collagen hydrogel matrix was verified with fluorescent model molecules, and a transport-reaction model of oxygen and glucose inside the skin chip was developed to aid the design of the microfluidic skin chip. Comparison of viabilities of dermal fibroblasts and HaCaT cultured in the chip with various culture conditions revealed that the presence of flow plays a crucial role in maintaining the viability, and both cells were viable after 10 days of air exposure culture. Our 3D skin chip with vascular structures can be a valuable in vitro model for reproducing the interaction between different components of the skin tissue, and thus work as a more physiologically realistic platform for testing skin reaction to cosmetic products and drugs.
Marycz, Krzysztof; Kornicka, Katarzyna; Grzesiak, Jakub; Tomaszewski, Krzysztof A; Szarek, Dariusz; Kopacz, Paweł
2017-01-01
The olfactory bulb (OB) is a unique structure in the central nervous system that retains the ability to create new neuronal connections. Glial cells isolated from the OB have been recently considered as a novel and promising tool to establish an effective therapy for central nervous system injuries. Due to the hindered access to autologous tissue for cell isolation, an allogeneic source of tissues obtained postmortem has been proposed. In this study, we focused on the morphological and molecular characteristics of human OB-derived glial cells isolated postmortem, at different time points after a donor's death. We evaluated the proliferative activity of the isolated cells, and investigated the ultrastructure of the mitochondria, the accumulation of intracellular reactive oxygen species, and the activity of superoxide dismutase. The data obtained clearly indicate that the duration of ischemia is crucial for the viability/senescence rate of OB-derived glial cells. The OB can be isolated during autopsy and still stand as a source of viable glial cells, but ischemia duration is a major factor limiting its potential usefulness in therapies. © 2017 S. Karger AG, Basel.
Endochondral bone formation in embryonic mouse pre-metatarsals
NASA Technical Reports Server (NTRS)
Klement, B. J.; Spooner, B. S.
1992-01-01
Long term exposure to a reduced gravitational environment has a deleterious effect on bone. The developmental events which occur prior to initial bone deposition will provide insight into the regulation of mature bone physiology. We have characterized a system in which the events preceding bone formation take place in an isolated in vitro organ culture environment. We show that cultured pre-metatarsal tissue parallels development of pre-metatarsal tissue in the embryo. Both undergo mesenchyme differentiation and morphogenesis to form a cartilage rod, which resembles the future bone, followed by terminal chondrocyte differentiation in a definite morphogenetic pattern. These sequential steps occur prior to osteoblast maturation and bone matrix deposition in the developing organism. Alkaline phosphatase (ALP) activity is a distinctive enzymatic marker for mineralizing tissues. We have measured this activity throughout pre-metatarsal development and show (a) where in the tissue it is predominantly found, and (b) that this is indeed the mineralizing isoform of the enzyme.
Bone marrow-resident NK cells prime monocytes for regulatory function during infection
Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine
2015-01-01
SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484
Yango, Pamela; Altman, Eran; Smith, James F.; Klatsky, Peter C.; Tran, Nam D.
2015-01-01
Objective To determine whether optimal human spermatogonial stem cell (SSC) cryopreservation is best achieved with testicular tissue or single cell suspension cryopreservation. This study compares the effectiveness between these two approaches by using testicular SSEA-4+ cells, a known population containing SSCs. Design In vitro human testicular tissues. Setting Academic research unit. Patients Adult testicular tissues (n = 4) collected from subjects with normal spermatogenesis and normal fetal testicular tissues (n = 3). Intervention(s) Testicular tissue vs. single cell suspension cryopreservation. Main Outcome Measures Cell viability, total cell recovery per milligram of tissue, as well as, viable and SSEA-4+ cell recovery. Results Single cell suspension cryopreservation yielded higher recovery of SSEA-4+ cells enriched in adult SSCs whereas fetal SSEA-4+ cell recovery was similar between testicular tissue and single cell suspension cryopreservation. Conclusions Adult and fetal human SSEA-4+ populations exhibited differential sensitivity to cryopreservation based on whether they were cryopreserved in situ as testicular tissues or as single cells. Thus, optimal preservation of human SSCs depends on the patient age, type of samples cryopreserved, and end points of therapeutic applications. PMID:25241367
Magnetic Resonance Imaging (MRI) for the Assessment of Myocardial Viability
2010-01-01
Executive Summary In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of noninvasive cardiac imaging modalities. After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography. A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed. A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website). The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis Magnetic Resonance Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis Objective The objective of this analysis is to assess the effectiveness and cost-effectiveness of cardiovascular magnetic resonance imaging (cardiac MRI) for the assessment of myocardial viability. To evaluate the effectiveness of cardiac MRI viability imaging, the following outcomes were examined: the diagnostic accuracy in predicting functional recovery and the impact of cardiac MRI viability imaging on prognosis (mortality and other patient outcomes). Clinical Need: Condition and Target Population Left Ventricular Systolic Dysfunction and Heart Failure Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) 1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. Treatment Options In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or, in some cases, through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure. Myocardial Viability Left ventricular dysfunction may be permanent, due to the formation of myocardial scar, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically: dobutamine echocardiography (echo), stress echo with contrast, SPECT using either technetium or thallium, cardiac magnetic resonance imaging (cardiac MRI), and positron emission tomography (PET). Dobutamine Echocardiography Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 – 10 µg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability. Stress Echocardiography with Contrast Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium. SPECT SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images. The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%. There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Cardiac Positron Emission Tomography Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution. Cardiac Magnetic Resonance Imaging Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery. Evidence-Based Analysis Research Questions What is the diagnostic accuracy of cardiac MRI for detecting myocardial viability? What is the impact of cardiac MRI viability imaging on prognosis (mortality and other clinical outcomes)? How does cardiac MRI compare with cardiac PET imaging for the assessment of myocardial viability? What is the contribution of cardiac MRI viability imaging to treatment decision making? Is cardiac MRI cost-effective compared with other cardiac imaging modalities for the assessment of myocardial viability? Literature Search A literature search was performed on October 9, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2005 until October 9, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria full-text articles were obtained. In addition, published systematic reviews and health technology assessments were reviewed for relevant studies published before 2005. Reference lists were also examined for any additional relevant studies not identified through the search. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology. Inclusion Criteria English language full-reports Published between January 1, 2005 and October 9, 2009 Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies Patients with chronic, known coronary artery disease (CAD) Used contrast-enhanced MRI Assessment of functional recovery ≥ 3 months after revascularization Exclusion Criteria < 20 patients < 18 years of age Patients with non-ischemic heart disease Studies conducted exclusively in patients with acute myocardial infarction (MI) Studies where TP, TN, FP, FN cannot be determined Outcomes of Interest Sensitivity Specificity Positive predictive value (PPV) Negative Predictive value (NPV) Positive likelihood ratio Negative likelihood ratio Diagnostic accuracy Mortality rate (for prognostic studies) Adverse events Summary of Findings Based on the available very low quality evidence, MRI is a useful imaging modality for the detection of viable myocardium. The pooled estimates of sensitivity and specificity for the prediction of regional functional recovery as a surrogate for viable myocardium are 84.5% (95% CI: 77.5% – 91.6%) and 71.0% (95% CI: 68.8% – 79.2%), respectively. Subgroup analysis demonstrated a statistically significant difference in the sensitivity of MRI to assess myocardial viability for studies using ≤25% hyperenhancement as a viability threshold versus studies using ≤50% hyperenhancement as their viability threshold [78.7 (95% CI: 69.1% - 88.2%) and 96.2 (95% CI: 91.8 – 100.6); p=0.0044 respectively]. Marked differences in specificity were observed [73.6 (95% CI: 62.6% - 84.6%) and 47.2 (95% CI: 22.2 – 72.3); p=0.2384 respectively]; however, these findings were not statistically significant. There were no statistically significant differences between the sensitivities or specificities for any other subgroups including mean preoperative LVEF, imaging method for function recovery assessment, and length of follow-up. There was no evidence available to determine whether patients with viable myocardium who are revascularized have a lower mortality rate than those who are treated with medical therapy. PMID:23074392
Feasibility of combined modality therapy for localized high-grade soft tissue sarcomas in adults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, R.H.; Greenberger, J.S.; Wilson, R.E.
1979-08-01
Seventeen consecutive patients with localized, high grade soft tissue sarcomas had resection of their primary tumor, radiation therapy and chemotherapy. The soft tissue sarcoma was primary in 14 patients and regionally recurrent in 3 patients. Chemotherapy consisted of cyclophosphamide 500 mg/M/sup 2/ day 1, Adriamycin (ADR) 60 mg/M/sup 2/ day 2, and DTIC 400 mg/M/sup 2/ days 1 and 2, given every 21 days to a maximum ADR dose of 450 mg/M/sup 2/. Cyclophosphamide and DTIC were then given to a total duration of 1 year. Radiation therapy consisted of 4000 to 5000 rad by megavoltage photons in 5 weeks,more » and in selected cases, an additional 1500 to 2000 rad by electron beam boost in the tumor bed delivered over 2 additional weeks. Following surgery, 12 patients were treated sequentially with an interval of chemotherapy, radiation therapy and then the completion of chemotherapy. The added morbidity of this sequential approach is minimal: one patient of 12 had delayed primary healing of her wound, 1 of 10 patients required a break in radiation therapy because of skin erythema. Four patients were treated with intensive pre-chemotherapy radiation therapy because of inadequate surgical margins. The median time on study was 18 months from onset of treatment (range, 8 to 41 months). Although there have been no local, regional or distant recurrences, the follow-up time is inadequate to assess the therapeutic benefit of this combined modality treatment.« less
Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues.
Wang, Yu; Woehrstein, Johannes B; Donoghue, Noah; Dai, Mingjie; Avendaño, Maier S; Schackmann, Ron C J; Zoeller, Jason J; Wang, Shan Shan H; Tillberg, Paul W; Park, Demian; Lapan, Sylvain W; Boyden, Edward S; Brugge, Joan S; Kaeser, Pascal S; Church, George M; Agasti, Sarit S; Jungmann, Ralf; Yin, Peng
2017-10-11
To decipher the molecular mechanisms of biological function, it is critical to map the molecular composition of individual cells or even more importantly tissue samples in the context of their biological environment in situ. Immunofluorescence (IF) provides specific labeling for molecular profiling. However, conventional IF methods have finite multiplexing capabilities due to spectral overlap of the fluorophores. Various sequential imaging methods have been developed to circumvent this spectral limit but are not widely adopted due to the common limitation of requiring multirounds of slow (typically over 2 h at room temperature to overnight at 4 °C in practice) immunostaining. We present here a practical and robust method, which we call DNA Exchange Imaging (DEI), for rapid in situ spectrally unlimited multiplexing. This technique overcomes speed restrictions by allowing for single-round immunostaining with DNA-barcoded antibodies, followed by rapid (less than 10 min) buffer exchange of fluorophore-bearing DNA imager strands. The programmability of DEI allows us to apply it to diverse microscopy platforms (with Exchange Confocal, Exchange-SIM, Exchange-STED, and Exchange-PAINT demonstrated here) at multiple desired resolution scales (from ∼300 nm down to sub-20 nm). We optimized and validated the use of DEI in complex biological samples, including primary neuron cultures and tissue sections. These results collectively suggest DNA exchange as a versatile, practical platform for rapid, highly multiplexed in situ imaging, potentially enabling new applications ranging from basic science, to drug discovery, and to clinical pathology.
Chaput, Benoit; Orio, Julie; Garrido, Ignacio; De Bonnecaze, Guillaume; Espagnolle, Nicolas; Gadelorge, Melanie; Chavoin, Jean-Pierre; Grolleau-Raoux, Jean-Louis; Casteilla, Louis; Planat, Valérie; Bourin, Philippe
2014-04-01
Adipose tissue is widely used in plastic surgery. The main obstacle is that it can be used only immediately after liposuction, while reconstruction often requires several procedures to achieve optimal results. This study aimed to develop a cryopreservation protocol directly applicable to clinical situations, allowing repetitive procedures without multiple tissue harvests. The authors first tested scalable bags suitable for therapeutic uses. All subsequent experiments were performed in those bags. The authors evaluated in vitro, on the basis of cell viability, cell number, phenotype, and stromal cell proliferation, the efficacy of six cryopreservation media composed of an external cryoprotectant (human albumin or hydroxylethyl starch) with or without an internal cryoprotectant (dimethyl sulfoxide). Two storage temperatures (-196°C and -80°C) were tested in vitro and in vivo (subcutaneous graft in 30 nude mice) with the selected medium. The combination of 5% dimethyl sulfoxide and 95% hydroxylethyl yielded in vitro results that were good and the most consistent. With this cryoprotective solution, the authors observed no significant difference in vitro for a storage period of 7 days. When the storage was extended to 1 month, the cell viability was decreased by 10 percent for both storage temperatures. The in vivo experiments assessed the superiority of cryopreservation at -80°C with less graft resorption (60 percent and 70 percent, respectively, for -80°C and -196°C) and less fibrosis. The study's protocol with a chemically defined cryoprotective solution, specific scalable bags constrained in an aluminum holder, and a storage temperature of -80°C is promising for long-term adipose tissue cryopreservation.
Rathbone, S; Furrer, P; Lübben, J; Zinn, M; Cartmell, S
2010-06-15
There is a strong need for new biodegradable materials that are suitable for scaffolds in tissue engineering of tendons and ligaments. In many cases, quick degradation rates are favorable, however, with respect to ligament and tendon replacement, slowly degrading polymers are clearly favored. Prime candidates are members of the large class of polyhydroxyalkanoates (PHAs), which are thermoplastic/elastomeric biopolyesters that are slowly degraded by surface erosion. Moreover, their physico-mechanical properties can be tailored during biosynthesis in bacteria or by chemical modifications. They may be spun into fibers, coated on surfaces or be part of composites. This study has investigated the biocompatability of seven different thermoplastic or elastomeric PHAs using L929 murine fibroblast cells. Cell viability and proliferation over 7 days was analyzed with live/dead staining and a picogreen assay. In addition, extracellular matrix production was measured with the hydroxyproline assay after 14 days. It was found that cell attachment to the PHA film ranged from 85-99% after 7 days. Three PHA films (PHBV (92/8), PHOUE-POSS and PHUE-O3) supported similar cell viability in comparison to the controls performed on tissue culture plastic (polystyrene), whereas the biomaterials (PHUA, PHUE, PHB and PHOUE) showed fewer viable cells than in controls. PHB, PHUE-O3, and PHBV with a water contact angle below 85 degrees supported a similar amount of collagen production in comparison to the tissue culture plastic controls. PHUA, PHUE, PHOUE, and PHOUE-POSS showed a decrease in collagen production in comparison to the controls after 14 days. Overall, PHB, PHBV, and PHUE-O3 demonstrated good performance with regards to potential use as a tissue-engineering scaffold. (c) 2009 Wiley Periodicals, Inc.
Papageorgiou, Iraklis; Abberton, Thomas; Fuller, Martin; Tipper, Joanne L.; Fisher, John; Ingham, Eileen
2014-01-01
Medical interventions for the treatment of spinal disc degeneration include total disc replacement and fusion devices. There are, however, concerns regarding the generation of wear particles by these devices, the majority of which are in the nanometre sized range with the potential to cause adverse biological effects in the surrounding tissues. The aims of this study were to develop an organ culture model of the porcine dura mater and to investigate the biological effects of CoCr nanoparticles in this model. A range of histological techniques were used to analyse the structure of the tissue in the organ culture. The biological effects of the CoCr wear particles and the subsequent structural changes were assessed using tissue viability assays, cytokine assays, histology, immunohistochemistry, and TEM imaging. The physiological structure of the dura mater remained unchanged during the seven days of in vitro culture. There was no significant loss of cell viability. After exposure of the organ culture to CoCr nanoparticles, there was significant loosening of the epithelial layer, as well as the underlying collagen matrix. TEM imaging confirmed these structural alterations. These structural alterations were attributed to the production of MMP-1, -3, -9, -13, and TIMP-1. ELISA analysis revealed that there was significant release of cytokines including IL-8, IL-6, TNF-α, ECP and also the matrix protein, tenascin-C. This study suggested that CoCr nanoparticles did not cause cytotoxicity in the dura mater but they caused significant alterations to its structural integrity that could lead to significant secondary effects due to nanoparticle penetration, such as inflammation to the local neural tissue. PMID:28344233
Rayegan, Samira; Dehpour, Ahmad Reza; Sharifi, Ali Mohammad
2017-02-01
Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.
Kim, Hyunjeong; Kim, Eosu; Park, Minsun; Lee, Eun; Namkoong, Kee
2013-03-05
One of the most significant barriers towards translational neuropsychiatry would be an unavailability of living brain tissues. Although organotypic brain tissue culture could be a useful alternative enabling observation of temporal changes induced by various drugs in living brain tissues, a proper method to establish a stable organotypic brain slice culture system using adult (rather than neonatal) hippocampus has been still elusive. In this study, we evaluated our simple method using the serum-free culture medium for successful adult organotypic hippocampal slice culture. Several tens of hippocampal slices from a single adult mouse (3-5 months old) were cultured in serum-free versus serum-containing conventional culture medium for 30 days and underwent various experiments to validate the effects of the existence of serum in the culture medium. Neither the excessive regression of neuronal viability nor metabolic deficiency was observed in the serum-free medium culture in contrast to the serum-containing medium culture. Despite such viability, newly generated immature neurons were scarcely detected in the serum-free culture, suggesting that the original neurons in the brain slice persist rather than being replaced by neurogenesis. Key structural features of in vivo neural tissue constituting astrocytes, neural processes, and pre- and post-synapses were also well preserved in the serum-free culture. In conclusion, using the serum-free culture medium, the adult hippocampal slice culture system will serve as a promising ex vivo tool for various fields of neuroscience, especially for studies on aging-related neuropsychiatric disorders or for high throughput screening of potential agents working against such disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com; Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences; Ma, Qunfeng
Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level ofmore » MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.« less
SPOP suppresses tumorigenesis by regulating Hedgehog/Gli2 signaling pathway in gastric cancer.
Zeng, Chunyan; Wang, Yao; Lu, Quqin; Chen, Jiang; Zhang, Junyan; Liu, Tao; Lv, Nonghua; Luo, Shiwen
2014-09-11
Recent evidence suggests that aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas including gastric cancer. Speckle-type POZ protein, SPOP, is an E3 ubiquitin ligase adaptor, and it is found to inhibit oncogenic signaling. However, the molecular mechanisms are largely unknown. In this study, we characterized the expression of SPOP in 88 pairs of gastric cancer tissues and adjacent tissues by immunohistochemical staining and Western blotting. The relationship between SPOP expression and clinical pathologic factors was analyzed. Transfected gastric cancer cell lines were used in cell viability, wound healing and colony formation assays. The interaction of SPOP with Gli2 and other related apoptotic proteins was assessed by immunoprecipitation, Western blotting, real-time PCR and dual luciferase reporter assays. Intracellular interaction of SPOP and Gli2 was visualized by immunofluorescent staining in gastric cancer cells. Immunohistochemical staining of SPOP can be detected in gastric cancer tissues but much less than adjacent gastric tissues (P < 0.01). High SPOP expression is negatively correlated with lymph node metastasis, poor histological differentiation, and tumor malignancy according to TNM staging. In vitro experiments revealed that over-expression of SPOP prevented tumor cells from proliferation, migration and colony formation in gastric cancer cell lines. Likewise, repression of SPOP promoted cell viability, migration, proliferation, and attenuated apoptosis. Mechanistic studies revealed that increasing SPOP accelerated Gli2 degradation but regardless of Gli2 synthesis. Furthermore, cytoplasmic Gli2 decreased markedly along with the abundant expression of SPOP in MKN45 cells. Our findings indicate that SPOP plays critical roles in suppressing gastric tumorigenesis through inhibiting Hh/Gli2 signaling pathway. It may provide an alternative strategy for developing therapeutic agents of gastric cancer in future.
Assessment of test method variables for in vitro skin irritation testing of medical device extracts.
Olsen, Daniel S; Lee, Michelle; Turley, Audrey P
2018-08-01
Skin irritation is an important component of the biological safety evaluation of medical devices. This testing has typically been performed using in vivo models. However, in an effort to reduce the need for in vivo testing, alternative methods for assessing skin irritation potential in vitro have been developed using a Reconstructed Human Epidermis (RhE) model. During the development of the protocol for the round robin validation of in vitro irritation testing for medical device extracts, it became clear that there were three points in the procedure where different options may be validated within each laboratory for routine testing: sample exposure time (18 vs 24h), SDS positive control concentration, and cytokine (IL-1α) release testing. The goal of our study was to evaluate the effect of these variables. EpiDerm™ tissues were exposed to extracts of three plain polymer samples, and four polymers embedded with known irritant chemicals. Exposures were performed for 18 and 24h. Resulting tissue viability was assessed by MTT reduction and IL-1α release was assessed by ELISA. Testing was also performed using various concentrations of SDS ranging from 0.5 to 1% (w/v). Overall, results were similar for samples tested and 18 and 24h, but the 18h exposure time has the potential to have an impact on the results of some sample types. IL-1α testing was shown to be useful to clarify conflicting tissue viability results. Use of a lower concentration of SDS as a positive control can help prevent issues that arise from excessive tissue damage often caused by 1% SDS. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Infarct characterization using CT
Toia, Patrizia; Maffei, Erica; Cademartiri, Filippo; Lagalla, Roberto; Midiri, Massimo
2017-01-01
Myocardial infarction (MI) is a major cause of death and disability worldwide. The incidence is not expected to diminish, despite better prevention, diagnosis and treatment, because of the ageing population in industrialized countries and unhealthy lifestyles in developing countries. Nowadays it is highly requested an imaging tool able to evaluate MI and viability. Technology improvements determined an expansion of clinical indications from coronary plaque evaluation to functional applications (perfusion, ischemia and viability after MI) integrating additional phases and information in the mainstream examination. Cardiac computed tomography (CCT) and cardiac MR (CMR) employ different contrast media, but may characterize MI with overlapping imaging findings due to the similar kinetics and tissue distribution of gadolinium and iodinated contrast media. CCT may detect first-pass perfusion defects, dynamic perfusion after pharmacological stress, and delayed enhancement (DE) of non-viable territories. PMID:28540212
Mvula, B; Moore, T J; Abrahamse, H
2010-01-01
The study investigated the effects of low-level laser radiation and epidermal growth factor (EGF) on adult adipose-derived stem cells (ADSCs) isolated from human adipose tissue. Isolated cells were cultured to semi-confluence, and the monolayers of ADSCs were exposed to low-level laser at 5 J/cm(2) using 636 nm diode laser. Cell viability and proliferation were monitored using adenosine triphosphate (ATP) luminescence and optical density at 0 h, 24 h and 48 h after irradiation. Application of low-level laser irradiation at 5 J/cm(2) on human ADSCs cultured with EGF increased the viability and proliferation of these cells. The results indicate that low-level laser irradiation in combination with EGF enhances the proliferation and maintenance of ADSCs in vitro.
Manchón, Angel; Hamdan Alkhraisat, Mohammad; Rueda-Rodriguez, Carmen; Prados-Frutos, Juan Carlos; Torres, Jesús; Lucas-Aparicio, Julia; Ewald, Andrea; Gbureck, Uwe; López-Cabarcos, Enrique
2015-10-20
β-tricalcium phosphate (β-TCP) is an osteoconductive and biodegradable material used in bone regeneration procedures, while iron has been suggested as a tool to improve the biological performance of calcium phosphate-based materials. However, the mechanisms of interaction between these materials and human cells are not fully understood. In order to clarify this relationship, we have studied the iron role in β-TCP ceramics. Iron-containing β-TCPs were prepared by replacing CaCO3 with C6H5FeO7 at different molar ratios. X-ray diffraction analysis indicated the occurrence of β-TCP as the sole phase in the pure β-TCP and iron-containing ceramics. The incorporation of iron ions in the β-TCP lattice decreased the specific surface area as the pore size was shifted toward meso- and/or macropores. Furthermore, the human osteoblastlike cell line MG-63 was cultured onto the ceramics to determine cell proliferation and viability, and it was observed that the iron-β-TCP ceramics have better cytocompatibility than pure β-TCP. Finally, in vivo assays were performed using rabbit calvaria as a bone model. The scaffolds were implanted for 8 and 12 weeks in the defects created in the skullcap with pure β-TCP as the control. The in vivo behavior, in terms of new bone formed, degradation, and residual graft material were investigated using sequential histological evaluations and histomorphometric analysis. The in vivo implantation of the ceramics showed enhanced bone tissue formation and scaffold degradation for iron-β-TCPs. Thus, iron appears to be a useful tool to enhance the osteoconductive properties of calcium phosphate ceramics.
Cellular and Molecular Changes in Orthodontic Tooth Movement
Zainal Ariffin, Shahrul Hisham; Yamamoto, Zulham; Zainol Abidin, lntan Zarina; Megat Abdul Wahab, Rohaya; Zainal Ariffin, Zaidah
2011-01-01
Tooth movement induced by orthodontic treatment can cause sequential reactions involving the periodontal tissue and alveolar bone, resulting in the release of numerous substances from the dental tissues and surrounding structures. To better understand the biological processes involved in orthodontic treatment, improve treatment, and reduce adverse side effects, several of these substances have been proposed as biomarkers. Potential biological markers can be collected from different tissue samples, and suitable sampling is important to accurately reflect biological processes. This paper covers the tissue changes that are involved during orthodontic tooth movement such as at compression region (involving osteoblasts), tension region (involving osteoclasts), dental root, and pulp tissues. Besides, the involvement of stem cells and their development towards osteoblasts and osteoclasts during orthodontic treatment have also been explained. Several possible biomarkers representing these biological changes during specific phenomenon, that is, bone remodelling (formation and resorption), inflammation, and root resorption have also been proposed. The knowledge of these biomarkers could be used in accelerating orthodontic treatment. PMID:22125437
The relationship between water binding and desiccation tolerance in tissues
NASA Technical Reports Server (NTRS)
Vertucci, C. W.; Leopold, A. C.
1987-01-01
In an effort to define the nature of desiccation tolerance, a comparison of the water sorption characteristics was made between tissues that were resistant and tissues that were sensitive to desiccation. Water sorption isotherms were constructed for germinated and ungerminated soybean axes and also for fronds of several species of Polypodium with varying tolerance to dehydration. The strength of water binding was determined by van't Hoff as well as D'Arcy/Watt analyses of the isotherms at 5, 15, and/or 25 degrees C. Tissues which were sensitive to desiccation had a poor capacity to bind water tightly. Tightly bound water can be removed from soybean and pea seeds by equilibration at 35 degrees C over very low relative humidities; this results in a reduction in the viability of the seed. We suggest that region 1 water (i.e. water bound with very negative enthalpy values) is an important component of desiccation tolerance.
NASA Astrophysics Data System (ADS)
Khodko, A. T.; Lysak, Yu. S.
2017-10-01
Critical opalescence phenomenon was observed in the cytoplasm of garlic embryonic tissue—meristem—upon cooling in liquid nitrogen vapor, indicating liquid-liquid phase transition in the system. It was established that cells of the meristem tissue survive the cooling-thawing cycle. We suggest that the transition of meristem tissue to the state of anabiosis is mainly due to a drastic slowing of the diffusion in the cytoplasm caused by the passage of the solution through the critical point, followed by the formation of a dispersed system—a highly concentrated emulsion—as a result of a liquid-liquid phase transition. This macrophase separation is characteristic of polymer-solvent systems. We established the regime of cooling down to liquid nitrogen temperature and subsequent thawing in the cryopreservation cycle for the biological object under study, which ensures the preservation of tissue viability.
Cellulose/poly-(m-phenylene isophthalamide) porous film as a tissue-engineered skin bioconstruct
NASA Astrophysics Data System (ADS)
Lee, Jae Woong; Han, Sung Soo; Zo, Sum Mi; Choi, Soon Mo
2018-06-01
Regarding the porous structure, coagulated cellulose may not provide sufficient voids for cell proliferation, resulting in tissue growth. For this reason, it was blended with poly(m-phenylene isophthalamide) (PMIA), which could produce a porous structure in the resulting construct. The aim of this study was to confirm the potential of a novel cellulose/PMIA porous film as a tissue-engineered bioconstruct for impaired skin. The films were fabricated by a coagulation process added with a peel-off method, and the structural, mechanical properties were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and capillary flow porometry. CRL-2310 human keratinocytes were used to determine the biocompatibility of the prepared films. The attachment and proliferation of cells were investigated by scanning electron microscopy, DAPI staining, and a cell viability assay. The results show that cellulose/PMIA porous films have potential use as wound matrices for skin tissue genesis.
Piezosurgery applied to implant dentistry: clinical and biological aspects.
Pereira, Cassiano Costa Silva; Gealh, Walter Cristiano; Meorin-Nogueira, Lamis; Garcia-Júnior, Idelmo Rangel; Okamoto, Roberta
2014-07-01
Piezosurgery is a new and modern technique of bone surgery in implantology. Selective cutting is possible for different ultrasonic frequencies acting only in hard tissues (mineralized), saving vital anatomical structures. With the piezoelectric osteotomy technique, receptor site preparation for implants, autogenous bone graft acquistition (particles and blocks), osteotomy for alveolar bone crest expansion, maxillary sinus lifting, and dental implant removal can be performed accurately and safely, providing excellent clinical and biological results, especially for osteocyte viability. The aim of this review was, through literature review, to present clinical applications of piezosurgery in implant dentistry and outline their advantages and disadvantages over conventional surgical systems. Moreover, this study addressed the biological aspects related to piezosurgery that differentiate it from those of bone tissue approaches. Overall, piezosurgery enables critical operations in simple and fully executable procedures; and effectively, areas that are difficult to access have less risk of soft tissue and neurovascular tissue damage via piezosurgery.
Kiefer, Kristina M; O'Brien, Timothy D; Pluhar, Elizabeth G; Conzemius, Michael
2015-01-01
Stem cell therapy used in clinical application of osteoarthritis in veterinary medicine typically involves intra-articular injection of the cells, however the effect of an osteoarthritic environment on the fate of the cells has not been investigated. Assess the viability of adipose derived stromal cells following exposure to osteoarthritic joint fluid. Adipose derived stromal cells (ASCs) were derived from falciform adipose tissue of five adult dogs, and osteoarthritic synovial fluid (SF) was obtained from ten patients undergoing surgical intervention on orthopedic diseases with secondary osteoarthritis. Normal synovial fluid was obtained from seven adult dogs from an unrelated study. ASCs were exposed to the following treatment conditions: culture medium, normal SF, osteoarthritic SF, or serial dilutions of 1:1 to 1:10 of osteoarthritic SF with media. Cells were then harvested and assessed for viability using trypan blue dye exclusion. There was no significant difference in the viability of cells in culture medium or normal SF. Significant differences were found between cells exposed to any concentration of osteoarthritic SF and normal SF and between cells exposed to undiluted osteoarthritic SF and all serial dilutions. Subsequent dilutions reduced cytotoxicity. Osteoarthritic synovial fluid in this ex vivo experiment is cytotoxic to ASCs, when compared with normal synovial fluid. Current practice of direct injection of ASCs into osteoarthritic joints should be re-evaluated to determine if alternative means of administration may be more effective.
Yang, Zhongmeng; Tang, Yuxing; Lu, Huading; Shi, Bo; Ye, Yongheng; Xu, Guoyong; Zhao, Qing
2018-06-12
Long Non-Coding RNA Reprogramming (lncRNA-ROR) plays an important role in regulating various biologic processes, whereas the effect of lncRNA-ROR in osteoarthritis (OA) is little studied. This study aimed to explore lncRNA-ROR expression in articular cartilage and identify the functional mechanism of lncRNA-ROR in OA. OA cartilage tissues were obtained from 15 OA patients, and 6 normal cartilage tissues were set as controls. Chondrocytes were isolated from the collected cartilage tissues. lncRNA-ROR was knockdown in normal cells and overexpressed in OA cells. Cell viability was determined with Cell Counting Kit-8 assay, and apoptosis was measured using flow cytometric analysis. Moreover, proteins and mRNAs involved in this study were also measured using Western blotting and quantitative real-time PCR (qPCR). Level of lncRNA-ROR was decreased in OA compared with normal chondrocytes, and overexpression of lncRNA-ROR dramatically promoted cell viability of OA chondrocytes. In addition, knockdown lncRNA-ROR inhibited apoptosis and promoted autophagy of normal chondrocytes. Moreover, lncRNA-ROR inhibited the expression of p53 in both mRNA and protein levels. Furthermore, we revealed that lncRNA-ROR regulated apoptosis and autophagy of chondrocytes via HIF1α and p53. The results indicated that lncRNA-ROR played a critical role in the pathogenesis of OA, suggesting that lncRNA-ROR could serve as a new potential therapeutic target for OA. © 2018 Wiley Periodicals, Inc.
Farshid, Behzad; Lalwani, Gaurav; Mohammadi, Meisam Shir; Simonsen, John; Sitharaman, Balaji
2016-01-01
This study investigates the mechanical properties and in vitro cytotoxicity of one- and two-dimensional boron nitride nanomaterials-reinforced biodegradable polymeric nanocomposites. Poly(propylene fumarate) (PPF) nanocomposites were fabricated using crosslinking agent N-vinyl pyrrolidone (NVP) and inorganic nanomaterials: boron nitride nanotubes (BNNTs) and boron nitride nanoplatelets (BNNPs) dispersed at 0.2 wt.% in the polymeric matrix. The incorporation of BNNPs and BNNTs resulted in a ~38% and ~15% increase in compressive (young's) modulus, and ~31% and ~6% increase in compressive yield strength compared to PPF control, respectively. The nanocomposites showed a time-dependent increased protein adsorption for only collagen-I protein. The cytotoxicity evaluation of aqueous BNNT and BNNP dispersions (at 1-100 μg/mL concentrations) using a representative murine MC3T3 preosteoblast cell line showed cytocompatibility of BNNTs and BNNPs (~73-99% viability). The cytotoxicity evaluation of media extracts of nanocomposites prior to crosslinking, after crosslinking and upon degradation (using 1X-100X dilutions) showed dose-dependent cytotoxicity responses. Crosslinked nanocomposites showed excellent (~79-100%) cell viability, cellular attachment (~57-67%), and spreading similar to cells grown on the surface of tissue culture polystyrene (TCPS) control. The media extracts of degradation products showed a dose-dependent cytotoxicity. The favorable cytocompatibility results in combination with improved mechanical properties of BNNT and BNNP nanocomposites opens new avenues for further in vitro and in vivo safety and efficacy studies for their bone tissue engineering applications. PMID:26526153
Ex vivo culture platform for assessment of cartilage repair treatment strategies.
Schwab, Andrea; Meeuwsen, Annick; Ehlicke, Franziska; Hansmann, Jan; Mulder, Lars; Smits, Anthal; Walles, Heike; Kock, Linda
2017-01-01
There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors specific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we evaluated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, matrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivo testing.
Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers.
Santo, Vítor E; Babo, Pedro; Amador, Miguel; Correia, Cláudia; Cunha, Bárbara; Coutinho, Daniela F; Neves, Nuno M; Mano, João F; Reis, Rui L; Gomes, Manuela E
2016-06-13
Gradients of physical and chemical cues are characteristic of specific tissue microenvironments and contribute toward morphogenesis and tissue regeneration upon injury. Recent advances on microfluidics and hydrogel manipulation raised the possibility of generating biomimetic biomaterials enriched with bioactive factors and encapsulating cells following designs specifically tailored for a target application. The novelty of this work relies on the combination of methacrylated gellan gum (MeGG) with platelet lysate (PL), aiming to generate novel advanced 3D PL-enriched photo-cross-linkable hydrogels and overcoming the lack of adhesion sites provided by the native MeGG hydrogels. This combination takes advantage of the availability, enriched growth factor composition, and potential autologous application of PL while simultaneously preserving the ability provided by MeGG to tailor mechanical properties, protein release kinetics, and shape of the construct according to the desired goal. Incorporation of PL in the hydrogels significantly improved cellular adhesion and viability in the constructs. The use of microfluidic tools allowed the design of a fiber-like hydrogel incorporating a gradient of PL along the length of the fiber. These spatial protein gradients led to the viability and cell number gradients caused by maintenance of human umbilical vein endothelial cells (HUVECs) survival in the fibers toward the PL-enriched sections in comparison with the nonloaded MeGG sections of the fibers. Altogether, we propose a proof of concept strategy to design a PL gradient biomaterial with potential in tissue engineering approaches and analysis of cell-microenvironment interactions.
Nomura, Yusuke; Lee, Michelle; Fukui, Chie; Watanabe, Kayo; Olsen, Daniel; Turley, Audrey; Morishita, Yuki; Kawakami, Tsuyoshi; Yuba, Toshiyasu; Fujimaki, Hideo; Inoue, Kaoru; Yoshida, Midori; Ogawa, Kumiko; Haishima, Yuji
2017-12-11
In vivo and in vitro irritation testing is important for evaluating the biological safety of medical devices. Here, the performance of positive reference materials for skin irritation testing was evaluated. Four reference standards, referred to as Y-series materials, were analyzed: a polyvinyl chloride (PVC) sheet spiked with 0 (Y-1), 1.0 (Y-2), 1.5 (Y-3), or 10 (Y-4) parts of Genapol X-080 per 100 parts of PVC by weight. Y-1, Y-2, and Y-3 did not induce skin irritation responses in an in vitro reconstructed human epidermis (RhE) tissue model, as measured by tissue viability or interleukin-1α release, or in an in vivo intracutaneous response test using rabbits. In contrast, Y-4 extracts prepared with saline or sesame oil at 37°C and 50°C clearly elicited positive irritation responses, including reduced viability (< 50%) and significantly higher interleukin-1α release compared with the solvent alone group, in the RhE tissue model and an intracutaneous response test, where substantial necrosis was observed by histopathology. The positive skin irritation responses induced in vitro under various extraction conditions, as well as those elicited in vivo, indicate that Y-4 is an effective extractable positive control material for in vivo and in vitro skin irritation tests of medical devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.
Fabrication of chitosan/gallic acid 3D microporous scaffold for tissue engineering applications.
Thangavel, Ponrasu; Ramachandran, Balaji; Muthuvijayan, Vignesh
2016-05-01
This study explores the potential of gallic acid incorporated chitosan (CS/GA) 3D scaffolds for tissue engineering applications. Scaffolds were prepared by freezing and lyophilization technique and characterized. FTIR spectra confirmed the presence of GA in chitosan (CS) gel. DSC and TGA analysis revealed that the structure of chitosan was not altered due to the incorporation of GA, but thermal stability was significantly increased compared to the CS scaffold. SEM micrographs showed smooth, homogeneous, and microporous architecture of the scaffolds with good interconnectivity. CS/GA scaffolds exhibited approximately 90% porosity on average, increased swelling (600-900%) and controlled biodegradation (15-40%) in PBS (pH 7.4 at 37°C) with 1 mg/mL of lysozyme. CS/GA scaffolds showed 2-4 fold decrease in CFUs (p < 0.05) for both gram positive and gram negative bacteria compared to the CS scaffold. Cytotoxicity of these scaffolds was evaluated using NIH 3T3 L1 fibroblast cells. CS/GA 0.25% scaffold showed similar viability with CS scaffold at 24 and 48 h. CS/GA scaffolds (0.5-1.0%) showed 60-75% viability at 24 h and 90% at 48 h. SEM images showed that an increased cell attachment was observed for CS/GA scaffolds compared to CS scaffolds. These findings authenticate that CS/GA scaffolds were cytocompatible and would be useful for tissue engineering applications. © 2015 Wiley Periodicals, Inc.
Wilson, C E; Dhert, W J A; Van Blitterswijk, C A; Verbout, A J; De Bruijn, J D
2002-12-01
Bone tissue engineering using patient derived cells seeded onto porous scaffolds has gained much attention in recent years. Evaluating the viability of these 3D constructs is an essential step in optimizing the process. The alamarBlue (aB) assay was evaluated for its potential to follow in vitro cell proliferation on architecturally standardized hydroxyapatite scaffolds. The impact of the aB assayed and seeding density on subsequent in vivo bone formation was investigated. Twelve scaffolds were seeded with various densities from 250 to 2.5x10(6) cells/scaffold and assay by aB at 5 time points during the 7-day culture period. Twelve additional scaffolds were seeded with 2.5x10(5) cells/scaffold. Two control and 2 aB treated scaffolds were subcutaneously implanted into each of 6 nude mice for 6 weeks. Four observers ranked bone formation using a pair wise comparison of histological sections form each mouse. The aB assay successfully followed cell proliferation, however, the diffusion kinetics of the 3D constructs must be considered. The influence of in vitro aB treatment on subsequent in vivo bone formation cannot be ruled out but was not shown to be significant in the current study. The aB assay appears to be quite promising for evaluating a maximum or end-point viability of 3D tissue engineered constructs. Finally, higher seeding densities resulted in more observed bone formation.
Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria
2015-02-10
Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.
Cuzzilla, R; Spittle, A J; Lee, K J; Rogerson, S; Cowan, F M; Doyle, L W; Cheong, J L Y
2018-06-01
Brain growth in the early postnatal period following preterm birth has not been well described. This study of infants born at <30 weeks' gestational age and without major brain injury aimed to accomplish the following: 1) assess the reproducibility of linear measures made from cranial ultrasonography, 2) evaluate brain growth using sequential cranial ultrasonography linear measures from birth to term-equivalent age, and 3) explore perinatal predictors of postnatal brain growth. Participants comprised 144 infants born at <30 weeks' gestational age at a single center between January 2011 and December 2013. Infants with major brain injury seen on cranial ultrasonography or congenital or chromosomal abnormalities were excluded. Brain tissue and fluid spaces were measured from cranial ultrasonography performed as part of routine clinical care. Brain growth was assessed in 3 time intervals: <7, 7-27, and >27 days' postnatal age. Data were analyzed using intraclass correlation coefficients and mixed-effects regression. A total of 429 scans were assessed for 144 infants. Several linear measures showed excellent reproducibility. All measures of brain tissue increased with postnatal age, except for the biparietal diameter, which decreased within the first postnatal week and increased thereafter. Gestational age of ≥28 weeks at birth was associated with slower growth of the biparietal diameter and ventricular width compared with gestational age of <28 weeks. Postnatal corticosteroid administration was associated with slower growth of the corpus callosum length, transcerebellar diameter, and vermis height. Sepsis and necrotizing enterocolitis were associated with slower growth of the transcerebellar diameter. Postnatal brain growth in infants born at <30 weeks' gestational age can be evaluated using sequential linear measures made from routine cranial ultrasonography and is associated with perinatal predictors of long-term development. © 2018 by American Journal of Neuroradiology.
Taeger, Christian D.; Friedrich, Oliver; Dragu, Adrian; Weigand, Annika; Hobe, Frieder; Drechsler, Caroline; Geppert, Carol I.; Arkudas, Andreas; Münch, Frank; Buchholz, Rainer; Pollmann, Charlotte; Schramm, Axel; Birkholz, Torsten; Horch, Raymund E.; Präbst, Konstantin
2015-01-01
Preventing ischemia-related cell damage is a priority when preserving tissue for transplantation. Perfusion protocols have been established for a variety of applications and proven to be superior to procedures used in clinical routine. Extracorporeal perfusion of muscle tissue though cumbersome is highly desirable since it is highly susceptible to ischemia-related damage. To show the efficacy of different perfusion protocols external field stimulation can be used to immediately visualize improvement or deterioration of the tissue during active and running perfusion protocols. This method has been used to show the superiority of extracorporeal perfusion using porcine rectus abdominis muscles perfused with heparinized saline solution. Perfused muscles showed statistically significant higher ability to exert force compared to nonperfused ones. These findings can be confirmed using Annexin V as marker for cell damage, perfusion of muscle tissue limits damage significantly compared to nonperfused tissue. The combination of extracorporeal perfusion and external field stimulation may improve organ conservation research. PMID:26145230