Sample records for titanium 40

  1. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  2. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  3. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  4. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  5. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  6. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  7. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  8. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  9. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No. 12673-69...

  10. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No. 12673-69...

  11. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...

  12. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...

  13. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  14. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  15. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    PubMed

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  16. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  17. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  18. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  19. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium...

  20. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  1. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  2. 40 CFR 471.60 - Applicability; description of the titanium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the titanium forming...

  3. 40 CFR 471.60 - Applicability; description of the titanium forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the titanium forming...

  4. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...

  5. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...

  6. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...

  7. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...

  8. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...

  9. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...

  10. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...

  11. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...

  12. 40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...

  13. 40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...

  14. 40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...

  15. 40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...

  16. 40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...

  17. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The provisions of this...

  18. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  19. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  20. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  1. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  2. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  3. Sonochemical method for producing titanium metal powder.

    PubMed

    Halalay, Ion C; Balogh, Michael P

    2008-07-01

    We demonstrate a sonochemical method for producing titanium metal powder. The method uses low intensity ultrasound in a hydrocarbon solvent at near-ambient temperatures to first create a colloidal suspension of liquid sodium-potassium alloy in the solvent and then to reduce liquid titanium tetrachloride to titanium metal under cavitation conditions. XRD data collected for the reaction products after the solvent removal show only NaCl and KCl, with no diffraction peaks attributable to titanium metal or other titanium compounds, indicating either the formation of amorphous metal or extremely small crystallite size. TEM micrographs show that hollow spheres formed of halide salts and titanium metal, with diameters with diameters ranging from 100 to 500 nm and a shell thickness of 20 to 40 nm form during the synthesis, suggesting that the sonochemical reaction occurs inside the liquid shell surrounding the cavitation bubbles. Metal particle sizes are estimated to be significantly smaller than 40 nm from TEM data. XRD data of the powder after annealing and prior to removal of the alkali chloride salts provides direct evidence that titanium metal was formed during the sonochemical synthesis.

  4. Ultrasonic effects on titanium tanning of leather.

    PubMed

    Peng, Biyu; Shi, Bi; Sun, Danhong; Chen, Yaowen; Shelly, Dennis C

    2007-03-01

    The effects of ultrasound on titanium tanning of leather were investigated. Either 20 or 40 kHz ultrasound was applied to the titanium tanning of pigskins. Five different treatment conditions were carried out and the effects were examined, such as leather shrinkage temperature (T(s)), titanium content and titanium distribution in the leather. Overall heat loading was carefully controlled. Results showed that 20 kHz ultrasound effectively improves titanium agent penetration into the hide and increases the leather's shrinkage temperature. Doubling the frequency to 40 kHz produced negligible enhancements. An impressive 105.6 degrees C T(s) was achieved using 20 kHz ultrasound pretreatment of the tanning liquor followed by 20 kHz ultrasound in the tanning mixture (liquor plus pigskins) in a special salt-free medium. Finally, using a unique ultrasonic tanning drum with 26.5 kHz ultrasound, the T(s) reached a record level of 106.5 degrees C, a value not achieved in conventional (no ultrasound) titanium tanning. The ultrasonic effects on titanium tanning of leather are judged to make a superior mineral tanned leather.

  5. Evaluation of silicon carbide fiber/titanium composites

    NASA Technical Reports Server (NTRS)

    Jech, R. W.; Signorelli, R. A.

    1979-01-01

    Izod impact, tensile, and modulus of elasticity were determined for silicon carbide fiber/titanium composites to evaluate their potential usefulness as substitutes for titanium alloys or stainless steel in stiffness critical applications for aircraft turbine engines. Variations in processing conditions and matrix ductility were examined to produce composites having good impact strength in both the as-fabricated condition and after air exposure at elevated temperature. The impact strengths of composites containing 36 volume percent silicon carbide (SiC) fiber in an unalloyed (A-40) titanium matrix were found to be equal to unreinforced titanium-6 aluminum-4 vanadium alloy; the tensile strengths of the composites were marginally better than the unreinforced unalloyed (A-70) matrix at elevated temperature, though not at room temperature. At room temperature the modulus of elasticity of the composites was 48 percent higher than titanium or its alloys and 40 percent higher than that of stainless steel.

  6. 40 CFR 415.225 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production... producing titanium dioxide by the sulfate process must achieve the following new source performance standards (NSPS): Subpart V—Titanium Dioxide-Sulfate Process Pollutant or pollutant property NSPS effluent...

  7. 40 CFR 415.225 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production... producing titanium dioxide by the sulfate process must achieve the following new source performance standards (NSPS): Subpart V—Titanium Dioxide-Sulfate Process Pollutant or pollutant property NSPS effluent...

  8. 40 CFR 415.225 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production... producing titanium dioxide by the sulfate process must achieve the following new source performance standards (NSPS): Subpart V—Titanium Dioxide-Sulfate Process Pollutant or pollutant property NSPS effluent...

  9. 40 CFR 415.225 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production... producing titanium dioxide by the sulfate process must achieve the following new source performance standards (NSPS): Subpart V—Titanium Dioxide-Sulfate Process Pollutant or pollutant property NSPS effluent...

  10. 40 CFR 415.225 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production... producing titanium dioxide by the sulfate process must achieve the following new source performance standards (NSPS): Subpart V—Titanium Dioxide-Sulfate Process Pollutant or pollutant property NSPS effluent...

  11. 40 CFR 471.60 - Applicability; description of the titanium forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the...

  12. 40 CFR 471.60 - Applicability; description of the titanium forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the...

  13. 40 CFR 471.60 - Applicability; description of the titanium forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the...

  14. 40 CFR 415.226 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide... CFR 403.7, any new source subject to this subpart and producing titanium dioxide by the sulfate... and achieve the following pretreatment standards for new sources (PSNS): Subpart V—Titanium Dioxide...

  15. 40 CFR 415.226 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide... CFR 403.7, any new source subject to this subpart and producing titanium dioxide by the sulfate... and achieve the following pretreatment standards for new sources (PSNS): Subpart V—Titanium Dioxide...

  16. 40 CFR 415.226 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide... CFR 403.7, any new source subject to this subpart and producing titanium dioxide by the sulfate... and achieve the following pretreatment standards for new sources (PSNS): Subpart V—Titanium Dioxide...

  17. 40 CFR 415.226 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide... CFR 403.7, any new source subject to this subpart and producing titanium dioxide by the sulfate... and achieve the following pretreatment standards for new sources (PSNS): Subpart V—Titanium Dioxide...

  18. 40 CFR 415.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...

  19. 40 CFR 415.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...

  20. 40 CFR 415.223 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Titanium Dioxide Production Subcategory § 415.223 Effluent limitations guidelines representing the... to this subpart and producing titanium dioxide by the sulfate process must achieve the following..., any existing point source subject to this subpart and producing titanium dioxide by the chloride...

  1. 40 CFR 415.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...

  2. 40 CFR 415.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...

  3. 40 CFR 415.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.222 Effluent limitations guidelines... point source subject to this subpart and producing titanium dioxide by the sulfate process must achieve... application of the best practicable control technology currently available (BPT): Subpart V—Titanium Dioxide...

  4. 40 CFR 415.223 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Titanium Dioxide Production Subcategory § 415.223 Effluent limitations guidelines representing the... to this subpart and producing titanium dioxide by the sulfate process must achieve the following..., any existing point source subject to this subpart and producing titanium dioxide by the chloride...

  5. Desulfurization of 4-methyl dibenzothiophene using titanium supported Keggin type polyoxometalate

    NASA Astrophysics Data System (ADS)

    Lesbani, Aldes; Anggraini, Ana; Mohadi, Risfidian; Rohendi, Dedi; Said, Muhammad

    2017-03-01

    Titanium supported Keggin type polyoxometalate H5PV2Mo10O40.nH2O has been prepared using tetra isopropyl orthotitanate by sol-gel method and microemulsion to form H5PV2Mo10O40/TiO2. Compound H5PV2Mo10O40.nH2O/TiO2 was characterized using FTTR spectroscopy, X-Ray analysis, and acidity measurement. FTTR spectrum showed that all vibration of titanium and polyoxometalate were appeared in H5PV2Mo10O40.nH2O/TiO2 with decreasing crystallinity. The acidity of H5PV2Mo10O40.nH2O/TiO2 was higher than H5PV2Mo10O40.nH2O. Desulfurization of 4-methyl dibenzothiophene (4-MDBT) using H5PV2Mo10O40.nH2O/TiO2 as catalyst resulted conversion of 4-MDBT was 99% and higher than desulfurization using H5PV2Mo10O40.nH2O under mild conditions.

  6. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  7. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  8. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  9. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  10. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  11. 40 CFR 721.10601 - Lanthanum lead titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium...-271; CAS No. 1262279-31-1); Calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS...

  12. 40 CFR 721.10601 - Lanthanum lead titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium...-271; CAS No. 1262279-31-1); Calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS...

  13. 40 CFR 421.304 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Secondary Titanium Subcategory § 421.304 Standards of performance for new sources. Any new source subject to... air pollution control. NSPS Limitations for the Primary and Secondary Titanium Subcategory Pollutant... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496...

  14. 40 CFR 421.304 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Secondary Titanium Subcategory § 421.304 Standards of performance for new sources. Any new source subject to... air pollution control. NSPS Limitations for the Primary and Secondary Titanium Subcategory Pollutant... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496...

  15. 40 CFR 421.304 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Secondary Titanium Subcategory § 421.304 Standards of performance for new sources. Any new source subject to... air pollution control. NSPS Limitations for the Primary and Secondary Titanium Subcategory Pollutant... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496...

  16. 40 CFR 721.10599 - Calcium cobalt lead titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium...-271; CAS No. 1262279-31-1); Calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS...

  17. 40 CFR 721.10599 - Calcium cobalt lead titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium...-271; CAS No. 1262279-31-1); Calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS...

  18. 40 CFR 421.302 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Primary and Secondary Titanium Subcategory § 421.302 Effluent limitations guidelines representing...) Chlorination off-gas wet air pollution control. BPT Limitations for the Primary and Secondary Titanium... Titanium 0.880 0.384 Oil and grease 18.720 11.230 Total suspended solids 38.380 18.250 pH (1) (1) AA1...

  19. 40 CFR 421.302 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Primary and Secondary Titanium Subcategory § 421.302 Effluent limitations guidelines representing...) Chlorination off-gas wet air pollution control. BPT Limitations for the Primary and Secondary Titanium... Titanium 0.880 0.384 Oil and grease 18.720 11.230 Total suspended solids 38.380 18.250 pH (1) (1) AA1...

  20. 40 CFR 421.302 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORY Primary and Secondary Titanium Subcategory § 421.302 Effluent limitations guidelines representing...) Chlorination off-gas wet air pollution control. BPT Limitations for the Primary and Secondary Titanium... Titanium 0.880 0.384 Oil and grease 18.720 11.230 Total suspended solids 38.380 18.250 pH (1) (1) AA1...

  1. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) mills beneficiating titanium ores by electrostatic methods, magnetic and physical methods, or flotation methods; and (c) mines engaged in the dredge mining of placer deposits of sands containing rutile... methods in conjunction with electrostatic or magnetic methods). ...

  2. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.

    PubMed

    Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco

    2017-01-26

    Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.

  3. Solid State Research.

    DTIC Science & Technology

    1995-05-15

    cooled to room temperature. Titanium isopropoxide and zirconium n-propoxide were then added (inside a glove box) to levels that correspond to the...ously patterned with a 200-nm-thick evaporated platinum film. In addition to the platinum there was a 40-nm titanium adhesion layer between the...an etch composed of buffered HF, HC1 and H20 [6]. By using a photoresist lift-off process, the top titanium -gold layer is formed, which provides the

  4. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneibel, Joachim H.

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1450.degree. C. for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  5. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOEpatents

    Schneibel, J.H.

    1997-06-10

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  6. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneibel, J.H.

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  7. 40 CFR 471.63 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.63 New source performance standards (NSPS). Any new source subject to... wastewater pollutants from titanium process wastewater shall not exceed the values set forth below: (a...

  8. 40 CFR 471.63 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.63 New source performance standards (NSPS). Any new source subject to... wastewater pollutants from titanium process wastewater shall not exceed the values set forth below: (a...

  9. Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu

    2008-10-01

    Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.

  10. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  11. 40 CFR 437.46 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662 Zinc 2.87 0.641 Organic Parameters Bis(2... 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662 Zinc 2.87 0... Lead 1.32 0.283 Mercury 0.00234 0.000739 Nickel 3.95 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium...

  12. Alveolar Ridge Reconstruction with Titanium Meshes and Simultaneous Implant Placement: A Retrospective, Multicenter Clinical Study

    PubMed Central

    Paraud Freixas, Andres; Han, Chang-Hun; Bechara, Sohueil; Tawil, Isaac

    2016-01-01

    Objective. To evaluate horizontal bone gain and implant survival and complication rates in patients treated with titanium meshes placed simultaneously with dental implants and fixed over them. Methods. Twenty-five patients treated with 40 implants and simultaneous guided bone regeneration with titanium meshes (i–Gen®, MegaGen, Gyeongbuk, Republic of Korea) were selected for inclusion in the present retrospective multicenter study. Primary outcomes were horizontal bone gain and implant survival; secondary outcomes were biological and prosthetic complications. Results. After the removal of titanium meshes, the CBCT evaluation revealed a mean horizontal bone gain of 3.67 mm (±0.89). The most frequent complications were mild postoperative edema (12/25 patients: 48%) and discomfort after surgery (10/25 patients: 40%); these complications were resolved within one week. Titanium mesh exposure occurred in 6 patients (6/25 : 24%): one of these suffered partial loss of the graft and another experienced complete graft loss and implant failure. An implant survival rate of 97.5% (implant-based) and a peri-implant marginal bone loss of 0.43 mm (±0.15) were recorded after 1 year. Conclusions. The horizontal ridge reconstruction with titanium meshes placed simultaneously with dental implants achieved predictable satisfactory results. Prospective randomized controlled trials on a larger sample of patients are required to validate these positive outcomes. PMID:27999799

  13. Hydrocarbon Deposition Attenuates Osteoblast Activity on Titanium

    PubMed Central

    Hayashi, R.; Ueno, T.; Migita, S.; Tsutsumi, Y.; Doi, H.; Ogawa, T.; Hanawa, T.; Wakabayashi, N.

    2014-01-01

    Although the reported percentage of bone-implant contact is far lower than 100%, the cause of such low levels of bone formation has rarely been investigated. This study tested the negative biological effect of hydrocarbon deposition onto titanium surfaces, which has been reported to be inevitable. Osteogenic MC3T3-E1 cells were cultured on titanium disks on which the carbon concentration was experimentally regulated to achieve carbon/titanium (C/Ti) ratios of 0.3, 0.7, and 1.0. Initial cellular activities such as cell attachment and cell spreading were concentration-dependently suppressed by the amount of carbon on the titanium surface. The osteoblastic functions of alkaline phosphatase activity and calcium mineralization were also reduced by more than 40% on the C/Ti (1.0) surface. These results indicate that osteoblast activity is influenced by the degree of hydrocarbon contamination on titanium implants and suggest that hydrocarbon decomposition before implant placement may increase the biocompatibility of titanium. PMID:24868012

  14. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less

  15. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or tight-fitting facepiece (either half- or full-face). As an alternative to the respiratory... significant new uses subject to reporting. (1) The chemical substance identified as magnesium potassium titanium oxide (PMN P-01-764; CAS No. 39290-90-9) is subject to reporting under this section for the...

  16. 40 CFR 437.47 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662 Zinc 2.87 0... 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662 Zinc 2.87 0....000739 Nickel 3.95 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662...

  17. Novel antioxidant capability of titanium induced by UV light treatment.

    PubMed

    Ueno, Takeshi; Ikeda, Takayuki; Tsukimura, Naoki; Ishijima, Manabu; Minamikawa, Hajime; Sugita, Yoshihiko; Yamada, Masahiro; Wakabayashi, Noriyuki; Ogawa, Takahiro

    2016-11-01

    The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of Atomic Layer Depositions (ALD)-Deposited Titanium Oxide (TiO2) Thickness on the Performance of Zr40Cu35Al15Ni10 (ZCAN)/TiO2/Indium (In)-Based Resistive Random Access Memory (RRAM) Structures

    DTIC Science & Technology

    2015-08-01

    metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes

  19. 40 CFR 421.305 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... off-gas wet air pollution control. PSES for the Primary and Secondary Titanium Subcategory Pollutant... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496 0.215 (b) Chlorination Area-vent wet air pollution control. PSES for the Primary and Secondary...

  20. 40 CFR 421.304 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air pollution control. NSPS Limitations for the Primary and Secondary Titanium Subcategory Pollutant... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496... of 7.5 to 10.0 at all times. (b) Chlorination area-vent wet air pollution control. NSPS Limitations...

  1. 40 CFR 421.304 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air pollution control. NSPS Limitations for the Primary and Secondary Titanium Subcategory Pollutant... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496... of 7.5 to 10.0 at all times. (b) Chlorination area-vent wet air pollution control. NSPS Limitations...

  2. 40 CFR 421.305 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... off-gas wet air pollution control. PSES for the Primary and Secondary Titanium Subcategory Pollutant... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496 0.215 (b) Chlorination Area-vent wet air pollution control. PSES for the Primary and Secondary...

  3. 40 CFR 471.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.61 Effluent limitations representing the degree of...-pounds) of titanium rolled with contact cooling water Cyanide 1.4 0.586 Lead 2.05 0.976 Zinc 7.13 2.98...

  4. 40 CFR 471.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.61 Effluent limitations representing the degree of...-pounds) of titanium rolled with contact cooling water Cyanide 1.4 0.586 Lead 2.05 0.976 Zinc 7.13 2.98...

  5. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings

    PubMed Central

    Wu, JC; Lai, LC; Sheets, CG; Earthman, J; Newcomb, R

    2011-01-01

    Statement of problem A new fabrication process has been developed where a titanium coping, which has a gold colored titanium nitride outer layer can be reliably fused to porcelain, but the marginal adaptation characteristics are still undetermined. Purpose The primary purpose of this study is to compare the rate of Clinically Acceptable Marginal Adaptation (CAMA-defined as a marginal gap mean ≤60 μm) of cathode-arc vapor-deposited titanium with the CAMA rate for the cast base metal copings. In addition, the study will evaluate the marginal gap scores themselves to assess their mean difference between the two study groups. Finally, the study will present two analyses of group differences in variability to support the contention that the titanium copings perform more consistently than their base metal counterparts. Material and methods Thirty-seven cathode-arc vapor-deposited titanium copings and 40 cast base metal copings were evaluated by computer-based image analysis using an optical microscope. The conventional lost wax technique was used to fabricate the 40 cast base metal copings that were 0.3 mm thick. The titanium copings were 0.3 mm thick and were formed by a collection of atomic titanium vapor onto a refractory die duplicate in a high vacuum chamber. Fifty vertical marginal gap measurements were collected from each of the 77 copings and the mean of these measurements was computed to form a gap score for each coping. Next, the gap score was compared to the 60 μm criterion to classify each coping as to whether it did or did not achieve Clinically Acceptable Marginal Adaption (CAMA). A comparison of the CAMA rates for each type of coping was used to address the primary purpose of this study. In addition, the gap scores themselves were used to test the (one-sided) hypothesis that the mean of the titanium gap scores is smaller than the mean of the base metal gap scores. Finally, the assertion that the titanium copings provide more consistency in their marginal gap performance was tested in two ways. First, the means of the titanium gap scores were compared to the means of the marginal gap scores for the base metal copings. Second, the standard deviations of the marginal gap scores for the titanium copings were compared with those for the base metal copings. Results Statistical comparison of the CAMA rates for each type of coping showed that the CAMA criterion was achieved by 24 of the 37 (64.86%) titanium copings, while 19 of the 40 (47.50%) base metal copings met this same standard. Noninferiority of the titanium copings was established by the 2-sided 90% Confidence Interval for the 17.36% difference in these rates (−0.95%, 35.68%) and noninferiority of titanium coping adaption was also demonstrated by the Wald Test rejection of the tentative hypothesis of inferiority (Z-score=1.9191, one-sided p=0.0275). The mean of the vertical marginal gap scores for the titanium copings (56.9025) was significantly less than the mean of the marginal gap scores for the base metal copings (71.9041) as shown by the Satterthwaite t-score=−2.29 (one-sided p=0.0126). To compare the adaption consistency of the titanium copings to the base metal counterparts the difference between the variance of the marginal gap scores for the titanium copings (594.843) and the variance of the marginal gap scores for the base metal copings (1510.901) was found to be statistically significant (Folded-F test score=2.63, p=0.0042). Our second method for showing that the titanium copings performed more consistently than the base metal comparisons was to use a one-sided test to show that the mean of the standard deviations of the vertical gap measurements for each titanium coping (29.9835) was significantly lower than the mean of the standard deviations of the vertical gap measurements for each base metal coping (36.1332). This test produced a Satterthwaite’s t-score of −2.24 (one-sided p=0.0141), indicating the titanium adaption was significantly more consistent. Conclusions Cathode-arc vapor deposited titanium copings exhibited a higher rate of Clinically Acceptable Marginal Adaption (CAMA) than the comparison base metal copings. Comparison of the coping marginal adaption score variances and direct assessment of the coping marginal adaption scores provided additional evidence that the titanium copings performed better and with more consistency than their base metal counterparts. PMID:21640242

  6. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high titanium content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of titanium and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of titanium alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is studied.

  7. 40 CFR 421.303 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-gas wet air pollution control. BAT Limitations for the Primary and Secondary Titanium Subcategory... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496 0.215 (b) Chlorination area-vent wet air pollution control. BAT Limitations for the Primary and...

  8. 40 CFR 421.303 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-gas wet air pollution control. BAT Limitations for the Primary and Secondary Titanium Subcategory... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496 0.215 (b) Chlorination area-vent wet air pollution control. BAT Limitations for the Primary and...

  9. Cross-Correlation for Automated Stitching of Two-Dimensional Multi-Tile Electron Backscatter Diffraction Data (Preprint)

    DTIC Science & Technology

    2012-08-01

    270 350x 650 (25, 26) 2 20 Ni-15Al- 5Cr+C,B,Zr 187 x 187 500x 44 ( 4 , 11) 0.5 40 A. Coarse grain, single phase α- titanium The coarse grained... titanium alloy serves as an instructive example because, as evident in Figure 4 (a), only one triple point and one grain boundary appear in the search...wpafb.af.mil Figure 4 . Crystal orientation maps for the first (left) and second (current) tiles of (a) coarse grained α- Titanium , (b) a 2x2 array of a

  10. Design Guidelines for Impressed-Current Cathodic Protection Systems on Surface-Effect Ships

    DTIC Science & Technology

    1975-05-01

    of the SES in order to minimize galvanic effects. Specimens of 17 - 4PH stainless steel, Inconel 625» and titanium 6A1-4V were prepared for high...coating was significantly deteriorated on the 17 - 4PH and Inconel speci- mens by the fourth day, whereas, major deterioration on the titanium specimens... 17 - 4PH at -1025 and at -1100 mV, 1.28 and 1./8 A/ftc; and titanium at -1025 and at -1100 mV, 0.25 and 0.40 A/ft2 . Due to the difficulty in

  11. Strength of titanium intramedullary implant versus miniplate fixation of mandibular condyle fractures.

    PubMed

    Frake, Paul C; Howell, Rebecca J; Joshi, Arjun S

    2012-07-01

    To test the strength of internal fixation of mandibular condyle fractures repaired with titanium miniplates versus titanium intramedullary implants. Prospective laboratory experimentation in urethane mandible models and human cadaveric mandibles. Materials testing laboratory at an academic medical center. Osteotomies of the mandibular condyle were created in 40 urethane hemimandible models and 24 human cadaveric specimens. Half of the samples in each group were repaired with traditional miniplates, and the other half were repaired with intramedullary titanium implants. Anteroposterior and mediolateral loads were applied to the samples, and the displacement was measured with reference to the applied force. Titanium intramedullary implants demonstrated statistically significant improved strength and stiffness versus miniplates in the urethane model experimental groups. Despite frequent plastic deformation and mechanical failures of the miniplates, a 1.6-mm-diameter titanium intramedullary pin did not mechanically fail in any of the cases. Intramedullary implantation failures were due to secondary fracture of the adjacent cortical bone or experimental design limitations including rotation of the smooth pin implant. Mechanical implant failures that were encountered with miniplate fixation were not seen with titanium intramedullary implants. These intramedullary implants provide stronger and more rigid fixation of mandibular condyle fractures than miniplates in this in vitro model.

  12. Surface modification of titanium nitride film by a picosecond Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Gakovic, B.; Trtica, M.; Batani, D.; Desai, T.; Panjan, P.; Vasiljevic-Radovic, D.

    2007-06-01

    The interaction of a picosecond Nd:YAG laser (wavelength 532 nm, pulse duration 40 ps) with a polycrystalline titanium nitride (TiN) film was studied. The TiN thin film was deposited by physical vapour deposition on a silicon substrate. The titanium nitride/silicon system was modified with an energy fluence from 0.2 to 5.9 J cm-2. Multi-pulse irradiation was performed in air by a focused laser beam. Surface modifications were analysed after 1 100 successive laser pulses. Depending on the laser pulse energy and pulse count, the following phenomena were observed: (i) increased surface roughness, (ii) titanium nitride film cracking, (iii) silicon substrate modification, (iv) film exfoliation and (v) laser-induced periodical surface structures on nano- (NPSS) and micro-dimensions (MPSS).

  13. Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide.

    PubMed

    Riazanova, A V; Costanzi, B N; Aristov, A I; Rikers, Y G M; Mulders, J J L; Kabashin, A V; Dahlberg, E Dan; Belova, L M

    2016-03-18

    Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10(-6) in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm(-1). The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.

  14. Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide

    NASA Astrophysics Data System (ADS)

    Riazanova, A. V.; Costanzi, B. N.; Aristov, A. I.; Rikers, Y. G. M.; Mulders, J. J. L.; Kabashin, A. V.; Dahlberg, E. Dan; Belova, L. M.

    2016-03-01

    Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10-6 in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm-1. The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.

  15. 40 CFR 415.226 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.226 Pretreatment standards for new sources (PSNS). (a) Except as provided in 40...

  16. PET fiber fabrics modified with bioactive titanium oxide for bone substitutes.

    PubMed

    Kokubo, Tadashi; Ueda, Takahiro; Kawashita, Masakazu; Ikuhara, Yuichi; Takaoka, Gikan H; Nakamura, Takashi

    2008-02-01

    A rectangular specimen of polyethylene terephthalate (PET) was soaked in a titania solution composed of titanium isopropoxide, water, ethanol and nitric acid at 25 degrees C for 1 h. An amorphous titanium oxide was formed uniformly on the surface of PET specimen, but did not form an apatite on its surface in a simulated body fluid (SBF) within 3 d. The PET plate formed with the amorphous titanium oxide was subsequently soaked in water or HCl solutions with different concentrations at 80 degrees C for different periods of time. The titanium oxide on PET was transformed into nano-sized anatase by the water treatment and into nano-sized brookite by 0.10 M HCl treatment at 80 degrees C for 8 d. The former did not form the apatite on its surface in SBF within 3 d, whereas the latter formed the apatite uniformly on its surface. Adhesive strength of the titanium oxide and apatite layers to PET plate was increased by pre-treatment of PET with 2 wt% NaOH solution at 40 degrees C for 2 h. A two-dimensional fabric of PET fibers 24 microm in diameter was subjected to the NaOH pre-treatment at 40 degrees C, titania solution treatment at 25 degrees C and subsequent 0.10 M HCl treatment at 80 degrees C. Thus treated PET fabric formed the apatite uniformly on surfaces of individual fibers constituting the fabric in SBF within 3 d. Two or three dimensional PET fabrics modified with the nano-sized brookite on surfaces of the individual fibers constituting the fabric by the present method are believed to be useful as flexible bone substitutes, since they could be integrated with living bone through the apatite formed on their constituent fibers.

  17. Enhancement of Apoptosis by Titanium Alloy Internal Fixations during Microwave Treatments for Fractures: An Animal Study.

    PubMed

    Wang, Gang; Xu, Yiming; Zhang, Lina; Ye, Dongmei; Feng, Xianxuan; Fu, Tengfei; Bai, Yuehong

    2015-01-01

    Microwaves are used in one method of physical therapy and can increase muscle tissue temperature which is useful for improving muscle, tendon and bone injuries. In the study, we sought to determine whether titanium alloy internal fixations influence apoptosis in tissues subjected to microwave treatments at 2,450 MHz and 40 W during the healing of fractures because this issue is not yet fully understood. In this study, titanium alloy internal fixations were used to treat 3.0-mm transverse osteotomies in the middle of New Zealand rabbits' femurs. After the operation, 30-day microwave treatments were applied to the 3.0 mm transverse osteotomies 3 days after the operation. The changes in the temperatures of the muscle tissues in front of the implants or the 3.0 mm transverse osteotomies were measured during the microwave treatments. To characterize the effects of titanium alloy internal fixations on apoptosis in the muscles after microwave treatment, we performed TUNEL assays, fluorescent real-time (quantitative) PCR, western blotting analyses, reactive oxygen species (ROS) detection and transmission electron microscopy examinations. The temperatures were markedly increased in the animals with the titanium alloy implants. Apoptosis in the muscle cells of the implanted group was significantly more extensive than that in the non-implanted control group at different time points. Transmission electron microscopy examinations of the skeletal muscles of the implanted groups revealed muscular mitochondrial swelling, vacuolization. ROS, Bax and Hsp70 were up-regulated, and Bcl-2 was down-regulated in the implanted group. Our results suggest that titanium alloy internal fixations caused greater muscular tissue cell apoptosis following 2,450 MHz, 40 W microwave treatments in this rabbit femur fracture models.

  18. Enhancement of Apoptosis by Titanium Alloy Internal Fixations during Microwave Treatments for Fractures: An Animal Study

    PubMed Central

    Zhang, Lina; Ye, Dongmei; Feng, Xianxuan; Fu, Tengfei; Bai, Yuehong

    2015-01-01

    Objective Microwaves are used in one method of physical therapy and can increase muscle tissue temperature which is useful for improving muscle, tendon and bone injuries. In the study, we sought to determine whether titanium alloy internal fixations influence apoptosis in tissues subjected to microwave treatments at 2,450 MHz and 40 W during the healing of fractures because this issue is not yet fully understood. Methods In this study, titanium alloy internal fixations were used to treat 3.0-mm transverse osteotomies in the middle of New Zealand rabbits’ femurs. After the operation, 30-day microwave treatments were applied to the 3.0 mm transverse osteotomies 3 days after the operation. The changes in the temperatures of the muscle tissues in front of the implants or the 3.0 mm transverse osteotomies were measured during the microwave treatments. To characterize the effects of titanium alloy internal fixations on apoptosis in the muscles after microwave treatment, we performed TUNEL assays, fluorescent real-time (quantitative) PCR, western blotting analyses, reactive oxygen species (ROS) detection and transmission electron microscopy examinations. Results The temperatures were markedly increased in the animals with the titanium alloy implants. Apoptosis in the muscle cells of the implanted group was significantly more extensive than that in the non-implanted control group at different time points. Transmission electron microscopy examinations of the skeletal muscles of the implanted groups revealed muscular mitochondrial swelling, vacuolization. ROS, Bax and Hsp70 were up-regulated, and Bcl-2 was down-regulated in the implanted group. Conclusion Our results suggest that titanium alloy internal fixations caused greater muscular tissue cell apoptosis following 2,450 MHz, 40 W microwave treatments in this rabbit femur fracture models. PMID:26132082

  19. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  20. Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants.

    PubMed

    Choi, Hae Won; Park, Young Seok; Chung, Shin Hye; Jung, Min Ho; Moon, Won; Rhee, Sang Hoon

    2017-07-01

    The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of 0°, 10°, 20°, 30°, and 40°. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was 56.88 ± 6.72%. Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

  1. 40 CFR 421.301 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Specialized definitions. 421.301 Section 421.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium...

  2. 40 CFR 421.301 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Specialized definitions. 421.301 Section 421.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium...

  3. 40 CFR 421.301 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 421.301 Section 421.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium...

  4. 40 CFR 415.224 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false [Reserved] 415.224 Section 415.224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.224...

  5. 40 CFR 415.224 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true [Reserved] 415.224 Section 415.224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.224...

  6. 40 CFR 415.224 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 415.224 Section 415.224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.224...

  7. 40 CFR 421.301 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Specialized definitions. 421.301 Section 421.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium...

  8. 40 CFR 415.224 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 415.224 Section 415.224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.224...

  9. 40 CFR 415.224 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true [Reserved] 415.224 Section 415.224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.224...

  10. 40 CFR 421.301 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Specialized definitions. 421.301 Section 421.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium...

  11. [Effects of different concentrations of MgSiF(6) as electrolyte for micro-arc oxidation on the bond strength between titanium and porcelain].

    PubMed

    Yuan, M J; Zhang, S J; Liu, J; Tan, F

    2018-02-09

    Objective: To investigate the effects of different concentrations of MgSiF(6) as electrolyte on the bond strength between titanium and porcelain after micro-arc oxidation (MAO) treatment and screen the suitable concentration of MgSiF(6) that can improve the bond strength between titanium and porcelain. Methods: Four different concentrations of MgSiF(6) (10, 20, 30, 40 g/L) were chosen as MAO reaction solutions. Sandblasting treatment was selected as a control group. After porcelain was fused to each specimen, titanium-porcelain bond strengths were evaluated by the three-point bending test according to ISO 9693. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were adopted to evaluate the morphologies and elemental compositions of both the MAO coatings and the interfaces of the titanium-porcelain restoration. Results: The surface of titanium specimen in the control group was sharp and rough, while specimens in both 10 g/L group and 20 g/L group were porous and homogeneous. However, the pores found on the specimens in the latter group were larger in diameter (approximately 1.0-2.0 μm) than those on the former one (0.2-0.5 μm). The bond strengths of the control group and the experimental groups (10, 20, 30, 40 g/L MgSiF(6)) were (27.08±3.16), (38.18±2.65), (44.75±2.21), (36.44±2.04), (31.04±2.59) MPa, respectively. All the experimental groups showed higher bond strengths than the control group did ( P< 0.05), and the bond strength of 20 g/L MgSiF(6) group was significantly higher than those of the other groups ( P< 0.05). Besides, the interfaces between titanium and porcelain were tight and compact in the 20 g/L group, while different amounts of pores and cracks were visible in the other groups. Additionally, after the three-point bending test, few residual porcelains could be observed on the surfaces of specimens in the control group. Conclusions: MAO treatment with 20 g/L MgSiF(6) on titanium can improve bonding strength between titanium and porcelain.

  12. Using titanium complexes to defeat cancer: the view from the shoulders of titans.

    PubMed

    Cini, Melchior; Bradshaw, Tracey D; Woodward, Simon

    2017-02-20

    When the first titanium complex with anticancer activity was identified in the 1970s, it was attractive, based on the presence of the dichloride unit in TiCl 2 Cp 2 (Cp = η-C 5 H 5 ) 2 , to assume its mode of biological action was closely aligned with cisplatin [cis-PtCl 2 (NH 3 ) 2 ]. Over the intervening 40 years however a far more complicated picture has arisen indicating multiple cellular mechanisms of cellular action can be triggered by titanium anti-cancer agents. This tutorial review aims to unpick the historical data and provide new researchers, without an explicit cancer biology background, a contemporary interpretation of both older and newer literature and to review the best techniques for attaining the identities of the biologically active titanium species and how these interact with the cancer cellular machinery.

  13. 40 CFR 421.307 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true [Reserved] 421.307 Section 421.307 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.307...

  14. 40 CFR 421.307 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false [Reserved] 421.307 Section 421.307 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.307...

  15. 40 CFR 421.307 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 421.307 Section 421.307 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.307...

  16. 40 CFR 421.307 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true [Reserved] 421.307 Section 421.307 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.307...

  17. 40 CFR 421.307 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 421.307 Section 421.307 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.307...

  18. 40 CFR 440.51 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false [Reserved] 440.51 Section 440.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.51 [Reserved] ...

  19. 40 CFR 440.51 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 440.51 Section 440.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.51 [Reserved] ...

  20. 40 CFR 440.51 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 440.51 Section 440.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.51 [Reserved] ...

  1. 40 CFR 440.51 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 440.51 Section 440.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.51 [Reserved] ...

  2. 40 CFR 440.51 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 440.51 Section 440.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.51 [Reserved] ...

  3. Prototyped grafting plate for reconstruction of mandibular defects.

    PubMed

    Zhou, Libin; Wang, Peilin; Han, Haolun; Li, Baowei; Wang, Hongnan; Wang, Gang; Zhao, Jinlong; Liu, Yanpu; Wu, Wei

    2014-12-01

    To esthetically and functionally restore a 40-mm canine mandibular discontinuity defect using a custom-made titanium bone-grafting plate in combination with autologous iliac bone grafts. Individualized titanium bone-grafting plates were manufactured using a series of techniques, including reverse engineering, computer aided design, rapid prototyping and titanium casting. A 40-mm discontinuous defect in the right mandibular body was created in 9 hybrid dogs. The defect was restored immediately using the customized plate in combination with autologous cancellous iliac blocks. Sequential radionuclide bone imaging was performed to evaluate the bone metabolism and reconstitution of the grafts. The specimens were evaluated by biomechanical testing, 3-dimensional microcomputed tomographic scanning, and histological examination. The results revealed that the symmetry of the mandibles was reconstructed using the customized grafting plate, and the bony continuity of the mandibles was restored. By 12 weeks after the operation, the cancellous iliac grafts became a hard bone block, which was of comparable strength to native mandibles. A fibrous tissue intermediate was found between the remodelled bone graft and the titanium plate. The results indicate that the prototyped grafting plate can be used to restore mandibular discontinuous defects, and satisfactory aesthetical and functional reconstruction can be achieved. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Mechanical properties and grindability of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu

    2004-06-01

    Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.

  5. 40 CFR 98.318 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Definitions. 98.318 Section 98.318 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.318 Definitions. All terms used in this subpart...

  6. 40 CFR 98.318 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Definitions. 98.318 Section 98.318 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.318 Definitions. All terms used in this subpart...

  7. 40 CFR 98.318 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Definitions. 98.318 Section 98.318 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.318 Definitions. All terms used in this subpart...

  8. 40 CFR 98.318 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Definitions. 98.318 Section 98.318 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.318 Definitions. All terms used in this subpart...

  9. 40 CFR 98.318 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Definitions. 98.318 Section 98.318 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.318 Definitions. All terms used in this subpart...

  10. 40 CFR 98.311 - Reporting threshold.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Reporting threshold. 98.311 Section 98.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.311 Reporting threshold. You must report...

  11. 40 CFR 98.311 - Reporting threshold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Reporting threshold. 98.311 Section 98.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.311 Reporting threshold. You must report...

  12. Determination of parameters of the Johnson-Cook model for the description of deformation and fracture of titanium alloys

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Gladky, I. L.; Kraus, E. I.

    2015-03-01

    Stress-strain curves of dynamic loading of VT6, OT4, and OT4-0 titanium-based alloys are constructed on the basis of experimental data, and the Johnson-Cook model parameters are determined. Results of LS-DYNA simulations of the processes of deformation and fracture of the fan casing after its high-velocity impact with a fan blade simulator are presented.

  13. A titanium hydride gun for plasma injection into the T2-reversed field pinch device

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Hellblom, K. G.

    1999-02-01

    A study of a plasma gun (modified Bostic type) with titanium hydride electrodes has been carried out. The total number of released hydrogen atoms was in the range 1016-1018 and the maximum plasma flow velocity was 2.5×105 m s-1. The ion density near the gun edge reached 1.8×1020 m-3 and the electron temperature was around 40 eV as estimated from probe measurements. No species other than hydrogen or titanium were seen in the plasma line radiation. The plasma injector was successfully used for gas pre-ionization in the Extrap T2 reversed-field pinch device (ohmic heating toroidal experiment (OHTE)).

  14. Low dose of continuous – wave microwave irradiation did not cause temperature increase in muscles tissue adjacent to titanium alloy implants – an animal study

    PubMed Central

    2013-01-01

    Background Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Methods Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Results Significant difference between control and microwave treatment group at peak temperatures (Tpeak) and temperature gap (Tgap= Tpeak-Tvally) were observed in deep muscles (Tpeak, 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P < 0.01; Tgap, 5.33 ± 0.21°C vs. 8.10 ± 0.36°C, P < 0.01) and superficial muscles (Tpeak, 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; Tgap, 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (Tpeak, 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; Tgap, 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Conclusion Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant. PMID:24365389

  15. 40 CFR 98.316 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lines located at the facility. (15) The number of times in the reporting year that missing data... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Data reporting requirements. 98.316... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.316 Data reporting...

  16. 40 CFR 98.316 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lines located at the facility. (15) The number of times in the reporting year that missing data... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Data reporting requirements. 98.316... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.316 Data reporting...

  17. 40 CFR 98.316 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lines located at the facility. (15) The number of times in the reporting year that missing data... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Data reporting requirements. 98.316... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.316 Data reporting...

  18. 40 CFR 98.316 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lines located at the facility. (15) The number of times in the reporting year that missing data... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Data reporting requirements. 98.316... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.316 Data reporting...

  19. Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine

    NASA Technical Reports Server (NTRS)

    Lewis, J. C.; Kenny, J. T.

    1976-01-01

    Sustained load crack growth data for Ti-6Al-4V titanium alloy in hydrazine per MIL-P-26536 and refined hydrazine are presented. Fracture mechanics data on crack growth thresholds for heat-treated forgings, aged and unaged welds, and aged and unaged heat-affected zones are reported. Fracture mechanics design curves of crack growth threshold stress intensity versus temperature are generated from 40 to 71 C.

  20. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering.

    PubMed

    Chen, Yunhui; Frith, Jessica Ellen; Dehghan-Manshadi, Ali; Attar, Hooyar; Kent, Damon; Soro, Nicolas Dominique Mathieu; Bermingham, Michael J; Dargusch, Matthew S

    2017-11-01

    Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering. Evaluation of the porosity and mechanical properties showed a high level of compatibility with human cortical bone. Interconnectivity between pores is higher than 95% for porosity as low as 30%. The elastic moduli are 44.2GPa, 24.7GPa and 15.4GPa for 30%, 40% and 50% porosity samples which match well to that of natural bone (4-30GPa). The yield strengths for 30% and 40% porosity samples of 221.7MPa and 117MPa are superior to that of human cortical bone (130-180MPa). In-vitro cell culture tests on the scaffold samples using Human Mesenchymal Stem Cells (hMSCs) demonstrated their biocompatibility and indicated osseointegration potential. The scaffolds allowed cells to adhere and spread both on the surface and inside the pore structures. With increasing levels of porosity/interconnectivity, improved cell proliferation is obtained within the pores. It is concluded that samples with 30% porosity exhibit the best biocompatibility. The results suggest that porous titanium scaffolds generated using this manufacturing route have excellent potential for hard tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A comparison of preload values in gold and titanium dental implant retaining screws.

    PubMed

    Doolabh, R; Dullabh, H D; Sykes, L M

    2014-08-01

    This in vitro investigation compared the effect of using either gold or titanium retaining screws on preload in the dental implant- abutment complex. Inadequate preload can result in screw loosening, whilst fracture may occur if preload is excessive. These are the most commonly reported complications in implant-retained prostheses, and result in unscheduled, costly and time-consuming visits for the patient and the clinician. This study investigated changes in preload generation after repeated torque applications to gold and titanium screws. The test set-up consisted of an implant body, a cylindrical transmucosa abutment, and the test samples of gold and of titanium retaining screws. The implant bodies were anchored using a load cell, and the transmucosal abutments were attached using either gold or titanium retaining screws. A torque gauge was used to apply torque of 20Ncm, 32Ncm, and 40Ncm to the retaining screws. The preloads generated in each screw type were compared at each torque setting, and after repeated tightening episodes. In addition, the effect of applying torque beyond the manufacturers' recommendations was also examined. Gold retaining screws were found to achieve consistently higher preload values than titanium retaining screws. Preload values were not significantly different from the first to the tenth torque cycle. Titanium screws showed more consistent preload values, albeit lower than those of the gold screws. However due to possible galling of the internal thread of the implant body by titanium screws, gold screws remain the retaining screw of choice. Based on the findings of this study, gold retaining screws generate better preload than titanium. Torque beyond the manufacturers' recommendations resulted in a more stable implant complex. However, further investigations, with torque applications repeated until screw breakage, are needed to advise on ideal maintenance protocols.

  2. 40 CFR 98.311 - Reporting threshold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Reporting threshold. 98.311 Section 98.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.311 Reporting threshold. You must report GHG emissions under this subpart if your...

  3. 40 CFR 98.311 - Reporting threshold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Reporting threshold. 98.311 Section 98.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.311 Reporting threshold. You must report GHG emissions under this subpart if your...

  4. 40 CFR 98.311 - Reporting threshold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Reporting threshold. 98.311 Section 98.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.311 Reporting threshold. You must report GHG emissions under this subpart if your...

  5. 40 CFR 241.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for the production of cellulosic biofuels (e.g., energy cane, other fast growing grasses, byproducts... emissions, opacity, diazomethane, white phosphorus, and titanium tetrachloride. (3) The definition does not...

  6. 40 CFR 241.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the production of cellulosic biofuels (e.g., energy cane, other fast growing grasses, byproducts... emissions, opacity, diazomethane, white phosphorus, and titanium tetrachloride. (3) The definition does not...

  7. Titanium 󈨠: Science and Technology. Proceedings of a Symposium Sponsored by the Titanium Committee of the Minerals, Metals and Materials Structural Metals Division Held at the World Titanium Conference (7th) in San Diego, California on June 29-July 2, 1992. Volume 2

    DTIC Science & Technology

    1993-01-01

    Hong, and B.J. Marquardt Microstructure, Tensile Ductility, and Fracture Toughness of Ti-25AI- 1ONb-3V- 1M o ...tend to form with a decreasing Al or an increasing Cr concentration 1211. In Ti-48.4A1- O .6fo (at%), thermomechanical processing has been reported to...and all annealed at 9001C. It can be seen that the decrease in microhardness 500 -0-- 15% -zk-30 0 /a > 400 --- 0- 40%/ o S 300 > •As-grown 200. I 1 10

  8. Enhancement of entangled porous titanium by BisGMA for load-bearing biomedical applications.

    PubMed

    Liu, Yan; Jiang, Guofeng; He, Guo

    2016-04-01

    The Bisphenol A glycidyl methacrylate (BisGMA) was used as binder to fix the free cross wire nodes in the entangled porous titanium for enhancement. The entangled titanium with 60% porosity after infiltrated with 5-20 vol.% BisGMA had the pore size in the range of 100 μm-400 μm. The enhanced materials with the real porosity of 40-55% exhibited the elastic modulus in the range of 0.4-1.4 GPa and the yielding strength in the range of 12.9-52.5 MPa. Such mechanical properties were comparable with those of cancellous bones, suggesting potentials for load-bearing bio applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy

    NASA Astrophysics Data System (ADS)

    Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia

    2017-03-01

    TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.

  10. [Effect of sintering gold paste coating on the bonding strength of pure titanium and three low-fusing porcelains].

    PubMed

    Zhang, Ya-li; Luo, Xiao-ping; Zhou, Li

    2012-05-01

    To study the effect of sintering gold paste coating of pure titanium on the adhesion of three porcelains following the protocol ISO 9693, and to investigate the titanium-porcelains interfaces. Sixty machined pure titanium samples were prepared in a rectangular shape according to ISO 9693 and divided equally into six groups. Half of the strips were coated with gold paste (Deckgold) and sintered. Three ultra-low-fusing dental porcelains (I: Initial Ti, S: Super porcelain Ti-22, T: TitanKeramik) were fused onto the titanium surfaces. A thin layer of bonding agent was only applied on the surfaces of uncoated gold specimens. The interface of the porcelain and titanium was observed with a field emission scanning electron microscope (FE-SEM) after metallographic preparation and sputtered with a very thin carbon layer of the embedded titanium-porcelain interface. After three-point bending test was performed, optical stereomicroscope was used to characterize the titanium-porcelains adhesion and determine the mode of failure. FE-SEM illustrated intermetallic compounds of Au-Ti formed with some visible microcracks in the gold layer and the interface of gold layer and ceramic. All the uncoated gold titanium-porcelain system showed predominately adhesive fracture at the titanium oxidation, whereas the failure modes in all gold coated systems were cohesive and adhesive, mainly cohesive. The three-point-bending test showed that the bonding strength of GS and GI groups [(37.08 ± 4.32) and (36.20 ± 2.40) MPa] were higher than those in uncoated groups [(31.56 ± 3.74) and (30.88 ± 2.60) MPa, P < 0.05], while no significant difference was found between T group and GT group (P > 0.05). The gold paste intermediate coatings can improve bond strengths of Super porcelain Ti-22 system and Initial Ti system, which have potential applications in clinical fields.

  11. Synthesis of TiO2 nano-powders prepared from purified sulphate leach liquor of red mud.

    PubMed

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Perraki, M; Agatzini-Leonardou, S

    2011-10-30

    The research work presented in this paper is focused on the development of a purification process of red mud sulphate leach liquor for the recovery of titanium oxide (TiO(2)) nano-powders in the form of anatase. Initially, titanium was extracted over iron and aluminium from the leach liquor by solvent extraction using Cyanex 272 in toluene, at pH: 0.3 and T: 25°C, with 40% extractant concentration. Stripping of the loaded, with titanium, organic phase was carried out by diluted HCl (3 mol/L) at ambient temperature. Finally, the recovery of titanium nano-powder, in the form of anatase, was performed by chemical precipitation at pH: 6 and T: 95°C, using 10 wt% MgO pulp as neutralizing agent. The produced precipitates were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Their morphological characteristics and microstructure were studied by scanning electron microscopy (SEM). High grade titanium white precipitate, in the form of anatase, was obtained. Iron concentration in the precipitate did not exceed 0.3%, whereas no aluminium was detected. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets.

    PubMed

    Archambault, Amy; Major, Thomas W; Carey, Jason P; Heo, Giseon; Badawi, Hisham; Major, Paul W

    2010-09-01

    The force moment providing rotation of the tooth around the x-axis (buccal-lingual) is referred to as torque expression in orthodontic literature. Many factors affect torque expression, including the wire material characteristics. This investigation aims to provide an experimental study into and comparison of the torque expression between wire types. With a worm-gear-driven torquing apparatus, wire was torqued while a bracket mounted on a six-axis load cell was engaged. Three 0.019 x 0.0195 inch wire (stainless steel, titanium molybdenum alloy [TMA], copper nickel titanium [CuNiTi]), and three 0.022 inch slot bracket combinations (Damon 3MX, In-Ovation-R, SPEED) were compared. At low twist angles (<12 degrees), the differences in torque expression between wires were not statistically significant. At twist angles over 24 degrees, stainless steel wire yielded 1.5 to 2 times the torque expression of TMA and 2.5 to 3 times that of nickel titanium (NiTi). At high angles of torsion (over 40 degrees) with a stiff wire material, loss of linear torque expression sometimes occurred. Stainless steel has the largest torque expression, followed by TMA and then NiTi.

  13. Synthesis of Nanometric-Sized Barium Titanate Powders Using Acetylacetone as the Chelating Agent in a Sol-Precipitation Process

    NASA Astrophysics Data System (ADS)

    Hung, Kun Ming; Hsieh, Ching Shieh; Yang, Wein Duo; Tsai, Hui Ju

    2007-03-01

    Nanometric-sized barium titanate powders were prepared by using titanium isopropoxid as the raw material and acetylacetone as a chelating agent, in a strong alkaline solution (pH > 13) through the sol-precipitation method. The preparatory variables affect the extent of cross-linking in the structure, change the mode of condensation of the gels, and even control the particle size of the powder. The reaction rate of forming powder, at a higher temperature such as 100°C and more water content (the molar ratio of water to titanium isopropoxide is 25) or fewer acetylacetone (the molar ratio of acetylacetone to titanium isopropoxide is 1), is rapid and the particle size formed is finer at 60 80 nm. On the contrary, that of forming powder, at lower temperature (40°C) and less water content (molar ratio of water/titanium isopropoxide = 5) or higher acetylacetone (acetylacetone/titanium isopropoxide = 7), is slow and the particle size of the powder is larger. The optimal preparatory conditions were obtained by using the experimental statistical method; as a result, nanometric-sized BaTiO3 powder with an average particle size of about 50 nm was prepared.

  14. 40 CFR 437.15 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Metals Treatment..., cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, tin, titanium, vanadium, and zinc are...

  15. The effects of different types of investments on the alpha-case layer of titanium castings.

    PubMed

    Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang

    2007-03-01

    Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface microhardness of titanium castings, MgO-based investment materials may be the best choice for casting these materials.

  16. Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires.

    PubMed

    Kusy, Robert P; Whitley, John Q

    2007-02-01

    In recent years, nickel-titanium (Ni-Ti) archwires have been developed that undergo thermal transitions. Before the practitioner can fully utilize these products, the effect of those transitions within the clinical application must be understood. The transitional temperatures and mechanical stiffnesses of 3 archwire alloys--stainless steel, beta-titanium, and Ni-Ti--were investigated were for 7 products. Among the nickel-titanium alloys, 2 were thought to represent classic Ni-Ti products and 3 copper (Cu)-Ni-Ti products. By using 2 techniques, differential scanning calorimetry to measure heat flow and dynamic mechanical analysis to measure storage modulus, transition temperatures were evaluated from -30 degrees C to +80 degrees C. With regard to the first technique, no transitions were observed for the stainless steel alloy, the beta-titanium alloy, and 1 of the 2 classic Ni-Ti products. For the other classic Ni-Ti product, however, a martensitic-austenitic transition was suggested on heating, and a reverse transformation was suggested on cooling. As expected, the Cu-Ni-Ti 27, 35, and 40 products manifested austenitic finish temperatures of 29.3 degrees C, 31.4 degrees C, and 37.3 degrees C, respectively, as the enthalpy increased from 2.47 to 3.18 calories per gram. With regard to the second technique, the storage modulus at a low frequency of 0.1 Hz paralleled static mechanical tests for the stainless steel alloy (183 gigapascal [GPa]), the beta-titanium alloy (64 GPa), and the Nitinol Classic (3M Unitek, Monrovia, Calif) product that represented a stable martensitic phase (41 GPa). The remaining 4 Ni-Ti products generally varied from 20 to 35 GPa when the low-temperature or martensitic phase was present and from 60 to 70 GPa after the high-temperature or austenitic phase had formed. From the clinical viewpoint, the Orthonol (Rocky Mountain Orthodontics, Denver, Colo), Cu-Ni-Ti 27, Cu-Ni-Ti 35, and Cu-Ni-Ti 40 (SDS/Ormco, Glendora, Calif) products increased at least twofold in stiffness as temperature increased, best emulating the stiffness of Nitinol Classic below the transformational temperature and the stiffness of TMA (SDS/Ormco, Glendora, Calif) above the transformational temperature. Of the 3 Cu-Ni-Ti products, the least differences were found between Cu-Ni-Ti 27 and Cu-Ni-Ti 35, thereby questioning the justification for 3 similar products.

  17. [Activity of amphotericin B and anidulafungin, alone and combined, against Candida tropicalis biofilms developed on Teflon® and titanium].

    PubMed

    Fernández-Rivero, Marcelo Ernesto; Del Pozo, José L; Valentín, Amparo; Fornes, Victoria; Molina de Diego, Araceli; Pemán, Javier; Cantón, Emilia

    Current therapeutic strategies have a limited efficacy against Candida biofilms that form on the surfaces of biomedical devices. Few studies have evaluated the activity of antifungal agents against Candida tropicalis biofilms. To evaluate the activity of amphotericin B (AMB) and anidulafungin (AND), alone and in combination, against C. tropicalis biofilms developed on polytetrafluoroethylene (teflon -PTFE) and titanium surfaces using time-kill assays. Assays were performed using the CDC Biofilm Reactor equipped with PTFE and titanium disks with C. tropicalis biofilms after 24h of maturation. The concentrations assayed were 40mg/l for AMB and 8mg/l for AND, both alone and combined. After 24, 48 and 72h of exposure to the antifungals, the cfu/cm 2 was determined by a vortexing-sonication procedure. AMB reduced biofilm viable cells attached to PTFE and titanium by ≥99% and AND by 89.3% on PTFE and 96.8% on titanium. The AMB+AND combination was less active than AMB alone, both on PTFE (decrease of cfu/cm 2 3.09 Log 10 vs. 1.08 when combined) and titanium (4.51 vs. 1.53 when combined), being the interaction irrelevant on both surfaces. AMB is more active than AND against C. tropicalis biofilms. Yeast killing rates are higher on titanium than on PTFE surfaces. The combination of AMB plus AND is less effective than AMB alone on both surfaces. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tolerance for residues in or on growing crops, when used as an inert ingredient (UV protectant) in... formulation and as an inert ingredient (UV-stabilizer) at no more than 5% in pesticide formulations containing...

  19. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tolerance for residues in or on growing crops, when used as an inert ingredient (UV protectant) in... formulation and as an inert ingredient (UV-stabilizer) at no more than 5% in pesticide formulations containing...

  20. New Titanium Monosulfide Mineral Phase in Yamato 691 Enstatite Chondrite

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K; Clemett, S. J.; Rubin, A. E.; Choi, B.-G.; Zhang, S.; Rahman, Z.; Oikawa, K.; Keller, L. P.

    2011-01-01

    Yamato 691, an EH3 enstatite chondrite, was among the first meteorites discovered by chance in Antarctica by the Japanese Antarctic Research Expedition (JARE) team in 1969. This discovery led to follow-up searches for meteorites in Antarctica [1]. These international searches have been very successful recovering over 40,000 total specimens (and still counting), including martian and lunar meteorites. Titanium is partly chalcophile in enstatite-rich meteorites. Previous occurrences of Ti-bearing sulfides include troilite, daubrelite and ferroan alabandite in enstatite chondrites and aubrites [2], and heideite with 28.5 wt% Ti in the Bustee aubrite [3]. Here we report a new mineral from Yamato 691, ideally stoichiometric TiS, titanium monosulfide, a simple two-element mineral phase, yet with a very unique crystal structure that, to our knowledge, has not been observed previously in nature.

  1. Mondani intraoral welding: historical process and main practical applications.

    PubMed

    Dal Carlo, L; Pasqualini, M E; Mondani, P M; Rossi, F; Moglioni, E; Shulman, M

    2017-01-01

    The intraoral welder was invented by Dr. Pierluigi Mondani during the early 70’s to weld titanium needle implants to a titanium bar in patient’s mouth and to load them immediately by means of resin prosthesis. The clinical use documented dates back to 1972. Over the years, many practical applications have been added to the initial one, which have expanded the use of this device. In this scientific work, main applications are described. The aim of the work was to trace the historical process of intra-oral welding according to Mondani and describe the main practical applications. Intra-oral welding is a process introduced by dr. Pier Luigi Mondani of Genova (Italy) which allows to firmly conjoin titanium implants of any shape by means of a titanium bar or also directly between them in the mouth during surgery. The immediate stabilization achieved by intraoral welding increases implants success rate, allows immediate loading even in situations of bone atrophy, saves implants that are running into failure, re-evaluates fractured implants, allows to stabilize submerged implants postponing prosthesis management, allows to achieve efficient rehabilitation protocols to deal with difficult cases. The 40-years’ experience with intra-oral welding described in this article, confirms the ease of use and efficiency in providing immediate stabilization of titanium implants of all types.

  2. Clinical evaluation of immediate loading of electroeroded screw-retained titanium fixed prostheses supported by tilted implant: a multicenter retrospective study.

    PubMed

    Acocella, Alessandro; Ercoli, Carlo; Geminiani, Alessandro; Feng, Changyong; Billi, Mauro; Acocella, Gabriele; Giannini, Domenico; Sacco, Roberto

    2012-05-01

    Immediate occlusal loading of dental implants in the edentulous mandible has proven to be an effective, reliable, and predictable treatment protocol. However, there is limited long-term data available in the literature, when an electroeroded definitive cast-titanium fixed prosthesis is used for this treatment protocol. The aim of this study was to evaluate the clinical effectiveness of dental implants (Astra Tech Dental, Mölndal, Sweden) in the edentulous mandible immediately loaded with an electroeroded cast-titanium screw-retained fixed prosthesis. Forty-five patients received five implants each in the interforaminal area. All the implants were inserted with torque up to 40 Ncm and the distal implants were distally tilted approximately 20 to 30 degrees to minimize the length of posterior cantilevers. Implants were loaded within 48 hours of placement with an acrylic resin-titanium screw-retained prosthesis fabricated by electroerosion. Two of the 225 inserted implants failed after 3 and 16 months of healing, respectively, with a cumulative survival rate of 99.1% and a prosthetic survival rate of 97.8%. Immediate loading of tilted dental implants inserted in the edentulous mandible with a screw-retained titanium definitive prosthesis fabricated with electrical discharge machining provide reliable and predictable results. © 2011 Wiley Periodicals, Inc.

  3. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    NASA Technical Reports Server (NTRS)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  4. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...

  5. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...

  6. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...

  7. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...

  8. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...

  9. 40 CFR 437.15 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, tin, titanium, vanadium, and zinc are the same as the corresponding limitation specified in § 437.11(a). (b) In-plant standards for cyanide...

  10. 40 CFR 440.55 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...

  11. 40 CFR 440.55 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...

  12. 40 CFR 440.55 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...

  13. 40 CFR 63.4681 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application of clay slurry, titanium dioxide, or asphalt coatings to fiberboard. (v) Painting of company logo...) Synthetic patches, wood patches, and wood putty applied to plywood. (ix) Application of concrete forming and...

  14. Energetic Materials and Metals Contamination at CFB/ASU Wainwirght, Alberta Phase 1

    DTIC Science & Technology

    2008-11-01

    Edmonton, Alberta). Metals analyzed for this study were silver (Ag), aluminium (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), bismuth 4...selenium (Se), antimony (Sb), tin (Sn), strontium (Sr), tellurium (Te), titanium (Ti), thallium (Tl), uranium (U), vanadium (V), zinc (Zn), and...mg/kg mg/kg mg/kg Aluminium - 9070 1040 Antimony 40 2 1 Arsenic 12 7 13.6 Barium 2000 177 73.4 Beryllium 8 40 40 Bismuth - 20 20 Boron - 10

  15. Nickel-titanium wire as a flexor tendon suture material: an ex vivo study.

    PubMed

    Karjalainen, T; Göransson, H; Viinikainen, A; Jämsä, T; Ryhänen, J

    2010-07-01

    Nickel-titanium shape memory alloy (NiTi) is a new suture material that is easy to handle, is strong, and biocompatible. The purpose of this study was to evaluate the material properties and biomechanical behaviour of 150 microm and 200 microm NiTi wires in flexor tendon repair. Braided polyester (4-0 Ethibond) was used as control. Fifty fresh-frozen porcine flexor tendons were repaired using the Pennington modification of the Kessler repair or a double Kessler technique. NiTi wires were stiffer and reached higher tensile strength compared to braided polyester suture. Repairs with 200 microm NiTi wire had a higher yield force, ultimate force and better resistance to gapping than 4-0 braided polyester repairs. Repairs made with 200 microm NiTi wire achieved higher stiffness and ultimate force than repairs made with 150 microm NiTi wire.

  16. Anodic oxidation of commercially pure titanium for purification of polluted water

    NASA Astrophysics Data System (ADS)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  17. Nondestructive Evaluation (NDE) Exploratory Development for Air Force Systems. Delivery Order 0001: Quick Reaction NDE and Characterization--Effects of Chemical Effects of Chemical Etching after Pre-Inspection Mechanical Cleaning on Fluorescent Penetrant Indications of Fatigue Cracks

    DTIC Science & Technology

    2011-08-01

    Specimen 625 -58 Cleaned with 50-ksi Water Jet ....................... 18 Figure 12. SEM Images of Inconel Specimen 626-63 Cleaned with 50-ksi Water...SEM Images of Inconel Specimen 626-22 Cleaned with Wet Glass Bead.......................... 21 Figure 15. SEM Images of Titanium Specimen 625 -02...Figure 18. SEM Images of Titanium Specimen 625 -40 Cleaned with Dry Al2O3 (240 grit) ............... 24 Figure 19. SEM Images of Inconel Specimen

  18. Metal Oxide Supported Vanadium Substituted Keggin Type Polyoxometalates as Catalyst For Oxidation of Dibenzothiophene

    NASA Astrophysics Data System (ADS)

    Lesbani, Aldes; Novri Meilyana, Sarah; Karim, Nofi; Hidayati, Nurlisa; Said, Muhammad; Mohadi, Risfidian; Miksusanti

    2018-01-01

    Supported polyoxometalatate H4[γ-H2SiV2W10O40]·nH2O with metal oxide i.e. silica, titanium, and tantalum was successfully synthesized via wet impregnation method to form H4[γ-H2SiV2W10O40]·nH2O-Si, H4[γ-H2SiV2W10O40]·nH2O-Ti, and H4[γ-H2SiV2W10O40]·nH2O-Ta. Characterization was performed using FTIR spectroscopy, X-Ray analyses, and morphology analyses using SEM. All compounds were used as the catalyst for desulfurization of dibenzothiophene (DBT). Silica and titanium supported polyoxometalate H4[γ-H2SiV2W10O40]·nH2O better than tantalum due to retaining crystallinity after impregnation process. On the other hand, compound H H4[γ-H2SiV2W10O40]·nH2O-Ta showed high catalytic activity than other supported metal oxides for desulfurization of DBT. Optimization desulfurization process resulted in 99% conversion of DBT under a mild condition at 70 °C, 0.1 g catalyst, and reaction for 3 hours. Regeneration studies showed catalyst H4[γ-H2SiV2W10O40]·nH2O-Ti was remaining catalytic activity for desulfurization of DBT.

  19. Reduction of Residual Stress and Distortion in HY100 and HY130 High Strength Steels During Welding

    DTIC Science & Technology

    1989-06-01

    SMAW), Gas Tungsten Arc Welding ( GTAW ), Gas Metal Arc Welding (GMAW), Submerged Arc Welding (SAW), and Stud Welding (SW) the recommended joint...3.2 4.83 Cr Chromium -(3) 1.5 .55 M0 Molybdium -(3) .40 .40 V Vanadium -(3) .08 T i Titanium -(3) .005 Identifier ABS Class B USX TAG328 Lukens

  20. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.

  1. Laser-assisted surface modification of Ti-implant in air and water environment

    NASA Astrophysics Data System (ADS)

    Trtica, M.; Stasic, J.; Batani, D.; Benocci, R.; Narayanan, V.; Ciganovic, J.

    2018-01-01

    A study of the surface modification of titanium CP grade 2 implant/target with high intensity picosecond (Nd:YAG) laser, operating at 1064 nm wavelength and pulse duration of 40 ps, in gaseous (air) and liquid (water) medium, is presented. The exposure of Ti to a laser pulse energy of 17 mJ in both media - gaseous and liquid, induced specific surface features and phenomena: (i) enhancement of the implant surface roughness (higher in water). In this context, the damage depth is more prominent in water (as high as ∼40 μm) vs. air (∼14 μm). Also, the appearance of laser induced periodic surface structures (LIPSS) is recorded in both media, at periphery area, while in water they are registered at lower pulse count; (ii) variation of chemical surface content depending on the applied medium. Thus, in the central irradiation region, the oxygen was absent in air while its concentration was relatively high (6.44 wt%) in case of water; (iii) possibility of direct collection of synthesized titanium based nanoparticles in water environment, and (iv) formation of the plasma above the sample in both mediums, more volumetrically confined in water. These investigations showed that surface structuring and observed phenomena are in strong correlation with the medium used. The liquid - water seems like the medium of choice in regard to titanium implant biocompatibility and bio-activity (the water is a favorable medium for build-up of the oxide layer which affects bioactivity). The process of laser interaction with titanium implant targets was accompanied by the formation of plasma plume, which provides the additional sterilizing effect facilitating contaminant-free conditions.

  2. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO2 lasers.

    PubMed

    Ayubianmarkazi, Nader; Karimi, Mohammadreza; Koohkan, Shima; Sanasa, Armand; Foroutan, Tahereh

    2015-11-01

    Bacterial biofilms have been identified as the primary etiological factor for the development and progression of peri-implantitis. Lasers have been shown to remove bacterial plaque from titanium surfaces effectively and can restore its biocompatibility without damaging these surfaces. Therefore, the aim of this study was to evaluate the responses (i.e., the cell viability and morphology) of human osteoblast-like SaOs-2 cells to sandblasted, large grit, and acid-etched (SLA) titanium surfaces irradiated by CO2 lasers at two different power outputs. A total of 24 SLA disks were randomly radiated by CO2 lasers at either 6 W (group 1, 12 disks) or 8 W (group 2, 12 disks). Non-irradiated disks were used as a control group (four disks). The cell viability rates of the SaOs-2 cells in the control and study groups (6 and 8 W) were 0.33 ± 0.00, 0.24 ± 0.11, and 0.2372 ± 0.09, respectively (P < 0.6). Cells with cytoplasmic extensions and spreading morphology were most prominent in the control group (141.00 ± 29.00), while in the study groups (6 and 8 W), the number of cells with such morphology was 60.40 ± 26.00 and 35.20 ± 5.40, respectively (P < 0.005). Within the limits of this study, it may be concluded that the use of CO2 lasers with the aforementioned setting parameters could not be recommended for decontamination of SLA titanium surfaces.

  3. 40 CFR 437.16 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., tin, titanium, vanadium, and zinc are the same as the corresponding limitation specified in § 437.11(a) (b) In-plant standards for cyanide are the same as the limitations specified in § 437.11(b). [65 FR...

  4. Titanium Dioxide Nanoparticles in Food and Personal Care Products

    PubMed Central

    Weir, Alex; Westerhoff, Paul; Fabricius, Lars

    2012-01-01

    Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system, and subsequently enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO2, and discusses the impact of the nanoscale fraction of TiO2 entering the environment. The foods with the highest content of TiO2 included candies, sweets and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (<0.01 μg/mg). For several high-consumption pharmaceuticals, the titanium content ranged from below the instrument detection limit (0.0001 μg Ti/mg) to a high of 0.014 μg Ti/mg. Electron microscopy and stability testing of food-grade TiO2 (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to WWTPs deserves attention. A Monte Carlo human exposure analysis to TiO2 through foods identified children as having the highest exposures because TiO2 content of sweets is higher than other food products, and that a typical exposure for a US adult may be on the order of 1 mg Ti per kilogram body weight per day. Thus, because of the millions of tons of titanium based white pigment used annually, testing should focus on food-grade TiO2 (E171) rather than that adopted in many environmental health and safety tests (i.e., P25), which is used in much lower amounts in products less likely to enter the environment (e.g., catalyst supports, photocatalytic coatings). PMID:22260395

  5. 40 CFR 372.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., roasters, and foundry furnaces). (8) Titanium dioxide chloride process oxidation reactors. (9) Methane... sulfur values from spent sulfuric acid. (12) Halogen acid furnaces (HAFs) for the production of acid from halogenated hazardous waste generated by chemical production facilities where the furnace is located on the...

  6. 40 CFR 372.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., roasters, and foundry furnaces). (8) Titanium dioxide chloride process oxidation reactors. (9) Methane... sulfur values from spent sulfuric acid. (12) Halogen acid furnaces (HAFs) for the production of acid from halogenated hazardous waste generated by chemical production facilities where the furnace is located on the...

  7. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model.

    PubMed

    Yao, James H; Schwartz, Scott A; Beeson, Thomas J

    2006-01-01

    The cyclic fatigue resistance of three types of nickel-titanium rotary files was compared in a model using reciprocating axial movement. The influence of file size and taper was also investigated and fracture patterns were examined under SEM. The 10 experimental groups consisted of ProFiles, K3s, and RaCe files, size 25 in .04 and .06 tapers, as well as ProFiles and K3s, size 40 in .04 and .06 tapers. Each file was rotated freely at 300 rpm inside a stainless steel tube with a 60 degree and 5 mm radius of curvature. A continuous 3 mm oscillating axial motion was applied at 1 cycle per second by attaching an electric dental handpiece to the most inferior load cell of an Instron machine using a custom-made jig. The number of rotations to failure was determined and analyzed using analysis of variance and Tukey's post hoc tests. Overall, K3 25/.04 files were significantly more resistant to cyclic fatigue compared to any other group in this study. In the 25/.04 category, K3s were significantly more resistant to failure than ProFiles and RaCe files. Also in the same category, ProFiles significantly outlasted RaCe files. In the 25/.06 group, K3s and ProFiles were significantly more resistant to failure than RaCe files, but K3s were not significantly different than ProFiles. In the 40/.04 and 40/.06 groups, K3s were significantly more resistant to cyclic fatigue than ProFiles. SEM observations demonstrated mostly a ductile mode of fracture. The results suggest that different cross-sectional designs, diameters, and tapers all contribute to a nickel-titanium instrument's vulnerability to cyclic failure.

  8. Outcomes of Cranioplasty with Preformed Titanium versus Freehand Molded Polymethylmethacrylate Implants.

    PubMed

    Höhne, Julius; Werzmirzowsky, Korbinian; Ott, Christian; Hohenberger, Christoph; Hassanin, Bahaa Ghareb; Brawanski, Alexander; Schebesch, Karl-Michael

    2018-05-01

     Cranioplasty reshapes the neurocranium and viscerocranium after craniectomy. Different materials have been used for cranioplasty. However, no consistent data are yet available comparing these different materials regarding indications, complications, and outcome. We report our experience with preformed titanium implants and freehand molded polymethylmethacrylate (PMMA) implants for cranioplasty.  This retrospective single-center analysis included 120 consecutive cranioplasty patients who had been operated between 2006 and 2013. A total of 60 patients (27 women, 33 men; mean age: 54 years) had received a preformed titanium implant and 60 patients (22 women, 38 men; mean age: 46 years) a freehand molded PMMA implant. We evaluated all demographic and procedure-related data, indications, and outcome. The longest follow-up was 5.5 years.  The most frequent indications for cranioplasty were trauma ( n  = 48 [40%]), malignant infarction ( n  = 27 [23%]), tumor ( n  = 22 [18%]), spontaneous intracerebral or aneurysmal subarachnoid hemorrhage ( n  = 16 [13%]), revision surgery ( n  = 5 [4%]), and empyema ( n  = 2 [2%]). PMMA implants were more often associated with wound-healing disorders ( p  < 0.023; odds ratio [OR]: 10.53) and epidural hematoma ( p  < 0.03; OR: 8.46), resulting in a significantly higher re-operation rate ( p  < 0.005). Precise fitting was radiologically confirmed in 98% of titanium implants but in only 71% of PMMA implants ( p  < 0.001). Magnetic resonance imaging of patients with titanium implants ( n  = 4) did not show any relevant artifacts.  Cranioplasty with preformed titanium implants seems to be superior to freehand molded PMMA implants regarding surgical morbidity, revision rate, and aesthetic results. Georg Thieme Verlag KG Stuttgart · New York.

  9. Effective removal of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers.

    PubMed

    Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi

    2018-03-13

    Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  11. Effects of washing on mineral composition of leaf samples of Lycium andersonii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Romney, E.M.; Hunter, R.B.

    1982-07-01

    Leaves of Lycium andersonii A. Gray from 20 different shrubs from the northern Mojave Desert were collected. Half of each sample was washed in 1/10 N HCl followed with deionized water before analysis in triplicate by optical emission spectrometry, and the other half was analyzed unwashed. Washed samples contained 12, 35, 33, 40, 55, 47, 57, 8, 8, 9, and 20 percent, respectivey, less calcium, zinc, copper, iron, aluminum, silicon, titanium, strontium, barium, lithium, and lead than did unwashed leaves. The losses probably exceed contamination for some elements, because the results differed in some respects from those obtained for citrus.more » Statisticaly significant differences were not obtained for other elements analyzed. Even though 40 to 57 percent of the iron, aluminum, silicon, and titanium was washed from the leaves, cluster analyses grouped the four elements into a common cluster whether or not the leaves had been washed. Washing resulted in a lower coefficient of variation for some of the elements compared with unwashed leaves.« less

  12. Plasma-enhanced deposition and processing of transition metals and transition metal silicides for VLSI

    NASA Astrophysics Data System (ADS)

    Hess, D. W.

    1986-05-01

    Radiofrequency (rf) discharges have been used to deposit films of tungsten, molybdenum and titanium silicide. As-deposited tungsten films, from tungsten hexafluoride and hydrogen source gases, were metastable (beta W), with significant (>1 atomic percent) fluorine incorporation. Film resistivities were 40-55 micro ohm - cm due to the beta W, but dropped to about 8 micro ohm cm after a short heat treatment at 700 C which resulted in a phase transition to alpha W (bcc form). The high resistivity (>10,000 micro ohm) associated with molybdenum films deposited from molybdenum hexafluoride and hydrogen appeared to be a result of the formation of molybdenum trifluoride in the deposited material. Titanium silicide films formed from a discharge of titanium tetrachloride, silane, and hydrogen, displayed resistivities of about 150 micro ohm cm, due to small amounts of oxygen and chlorine incorporated during deposition. Plasma etching studies of tungsten films with fluorine containing gases suggest that the etchant species for tungsten in these discharges are fluorine atoms.

  13. Biocompatibility of Ricinus communis polymer with addition of calcium carbonate compared to titanium. Experimental study in guinea pigs

    PubMed Central

    Graça, Yorgos Luiz Santos De Salles; Opolski, Ana Cristina; Barboza, Barbara Evelin Gonçalves; Erbano, Bruna Olandoski; Mazzaro, Caroline Cantalejo; Klostermann, Flávia Caroline; Sucharski, Enéas Eduardo; Kubrusly, Luiz Fernando

    2014-01-01

    Objective The aim of the present investigation was to determine whether the difference in inflammatory tissue reaction between the Riccinus communis (castor) polymer with calcium carbonate and the titanium implant is statistically significant. Methods Thirty-two Cavia porcellus were allocated into four groups of eight animals each. We implanted the two types of materials in the retroperitoneal space of all the animals. They were euthanized at 7, 20, 30 and 40 days after surgery, and an histological study of the samples was conducted. Results All implants showed characteristics of chronic inflammation regardless of the material and timepoint of evaluation. There was no statistically significant difference between Pm+CaCO3 and Ti with regard to the presence of granulation tissue, tissue congestion, histiocytes, lymphocytes, neutrophils, giant cells, and fibrosis (P> 0.05). Conclusion The castor oil polymer plus calcium carbonate implant was not statistically different from the titanium implant regarding inflammatory tissue reaction. PMID:25140479

  14. Grindability of cast Ti-Hf alloys.

    PubMed

    Kikuchi, Masafumi; Takahashi, Masatoshi; Sato, Hideki; Okuno, Osamu; Nunn, Martha E; Okabe, Toru

    2006-04-01

    As part of our systematic studies characterizing the properties of titanium alloys, we investigated the grindability of a series of cast Ti-Hf alloys. Alloy buttons with hafnium concentrations up to 40 mass% were made using an argon-arc melting furnace. Each button was cast into a magnesia-based mold using a dental titanium casting machine; three specimens were made for each metal. Prior to testing, the hardened surface layer was removed. The specimens were ground at five different speeds for 1 min at 0.98 N using a carborundum wheel on an electric dental handpiece. Grindability was evaluated as the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost (grinding ratio). The data were analyzed using ANOVA. A trend of increasing grindability was found with increasing amounts of hafnium, although there was no statistical difference in the grindability with increasing hafnium contents. We also found that hafnium may be used to harden or strengthen titanium without deteriorating the grindability.

  15. 40 CFR 440.54 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reduction attainable by the applications of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines obtaining titanium ores from lode deposits...) The concentration of pollutants discharged in mine drainage from mines engaged in the dredge mining of...

  16. 40 CFR 440.54 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reduction attainable by the applications of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines obtaining titanium ores from lode deposits...) The concentration of pollutants discharged in mine drainage from mines engaged in the dredge mining of...

  17. 40 CFR 440.54 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reduction attainable by the applications of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines obtaining titanium ores from lode deposits...) The concentration of pollutants discharged in mine drainage from mines engaged in the dredge mining of...

  18. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1983-06-01

    Proposal will be prepared by Solar Turbines, Inc. for introduction of cast titanium impellers into T62T-40 production. Detroit Diesel Allison will...microprocessor con- trol, RS 232 serial zommunications ports, binary I/O ports, floppy disk mass storage and cor.-rol panal . A component pickup

  19. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm.

    PubMed

    Gosau, Martin; Hahnel, Sebastian; Schwarz, Frank; Gerlach, Till; Reichert, Torsten E; Bürgers, Ralf

    2010-08-01

    The aim of this human in vivo pilot study was to evaluate the efficacy of six antimicrobial agents on the surface decontamination of an oral biofilm attached to titanium implants. For in vivo biofilm formation, we fixed titanium specimens to individual removable acrylic upper jaw splints (14 specimens in every splint), which were worn by four volunteers overnight for 12 h. The specimens were then treated with different antimicrobial agents for 1 min (Sodium hypochlorite, Hydrogen peroxide 3%, Chlorhexidingluconate 0.2%, Plax, Listerine, citric acid 40%). Afterwards, we quantified the total bacterial load and the viability of adhering bacteria by live or dead cell labelling in combination with fluorescence microscopy. The total bacterial load on the titanium surfaces was significantly higher after incubation in the control solution phosphate-buffered saline (PBS) than after disinfection in sodium hypochlorite, hydrogen peroxide, chlorhexidine, Plax, Listerine, and citric acid. Furthermore, a significantly lower ratio between dead and total adhering bacteria (bactericidal effect) was found after incubation in control PBS, Plax mouth rinse, and citric acid than after incubation in sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine. All tested antiseptics seem to be able to reduce the total amount of microorganisms accumulating on titanium surfaces. Furthermore, sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine showed a significant bactericidal effect against adhering bacteria.

  20. Eighteen-Month Outcomes of Titanium Frameworks Using Computer-Aided Design and Computer-Aided Manufacturing Method.

    PubMed

    Turkyilmaz, Ilser; Asar, Neset Volkan

    2017-06-01

    The aim of the report is to introduce a new software and a new scanner with a noncontact laser probe and to present outcomes of computer-aided design and computer-aided manufacturing titanium frameworks using this new software and scanner with a laser probe. Seven patients received 40 implants placed using a 1-stage protocol. After all implants were planned using an implant planning software (NobelClinician), either 5 or 6 implants were placed in each edentulous arch. Each edentulous arch was treated with a fixed dental prosthesis using implant-supported complete-arch milled-titanium framework using the software (NobelProcera) and the scanner. All patients were followed up for 18 ± 3 months. Implant survival, prosthesis survival, framework fit, marginal bone levels, and maintenance requirements were evaluated. One implant was lost during the follow-up period, giving the implant survival rate of 97.5%; 0.4 ± 0.2 mm marginal bone loss was noted for all implants after 18 ± 3 months. None of the prostheses needed a replacement, indicating the prosthesis success rate of 100%. The results of this clinical study suggest that titanium frameworks fabricated using the software and scanner presented in this study fit accurately and may be a viable option to restore edentulous arches.

  1. Demonstration of periodic nanostructure formation with less ablation by double-pulse laser irradiation on titanium

    NASA Astrophysics Data System (ADS)

    Furukawa, Yuki; Sakata, Ryoichi; Konishi, Kazuki; Ono, Koki; Matsuoka, Shusaku; Watanabe, Kota; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2016-06-01

    By pairing femtosecond laser pulses (duration ˜40 fs and central wavelength ˜810 nm) at an appropriate time interval, a laser-induced periodic surface structure (LIPSS) is formed with much less ablation than one formed with a single pulse. On a titanium plate, a pair of laser pulses with fluences of 70 and 140 mJ/cm2 and a rather large time interval (>10 ps) creates a LIPSS with an interspace of 600 nm, the same as that formed by a single pulse of 210 mJ/cm2, while the double pulse ablates only 4 nm, a quarter of the ablation depth of a single pulse.

  2. 40 CFR 98.317 - Records that must be retained.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...

  3. 40 CFR 98.317 - Records that must be retained.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...

  4. 40 CFR 98.317 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...

  5. 40 CFR 98.317 - Records that must be retained.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...

  6. 40 CFR 440.54 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... attainable by the applications of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines obtaining titanium ores from lode deposits shall not exceed... pollutants discharged in mine drainage from mines engaged in the dredge mining of placer deposits of sands...

  7. 40 CFR 440.54 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... attainable by the applications of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines obtaining titanium ores from lode deposits shall not exceed... pollutants discharged in mine drainage from mines engaged in the dredge mining of placer deposits of sands...

  8. Cyclic fatigue testing of nickel-titanium endodontic instruments.

    PubMed

    Pruett, J P; Clement, D J; Carnes, D L

    1997-02-01

    Cyclic fatigue of nickel-titanium, engine-driven instruments was studied by determining the effect of canal curvature and operating speed on the breakage of Lightspeed instruments. A new method of canal curvature evaluation that addressed both angle and abruptness of curvature was introduced. Canal curvature was simulated by constructing six curved stainless-steel guide tubes with angles of curvature of 30, 45, or 60 degrees, and radii of curvature of 2 or 5 mm. Size #30 and #40 Light-speed instruments were placed through the guide tubes and the heads secured in the collet of a Mangtrol Dynamometer. A simulated operating load of 10 g-cm was applied. Instruments were able to rotate freely in the test apparatus at speeds of 750, 1300, or 2000 rpm until separation occurred. Cycles to failure were determined. Cycles to failure were not affected by rpm. Instruments did not separate at the head, but rather at the point of maximum flexure of the shaft, corresponding to the midpoint of curvature within the guide tube. The instruments with larger diameter shafts, #40, failed after significantly fewer cycles than did #30 instruments under identical test conditions. Multivariable analysis of variance indicated that cycles to failure significantly decreased as the radius of curvature decreased from 5 mm to 2 mm and as the angle of curvature increased greater than 30 degrees (p < 0.05, power = 0.9). Scanning electron microscopic evaluation revealed ductile fracture as the fatigue failure mode. These results indicate that, for nickel-titanium, engine-driven rotary instruments, the radius of curvature, angle of curvature, and instrument size are more important than operating speed for predicting separation. This study supports engineering concepts of cyclic fatigue failure and suggests that standardized fatigue tests of nickel-titanium rotary instruments should include dynamic operation in a flexed state. The results also suggest that the effect of the radius of curvature as an independent variable should be considered when evaluating studies of root canal instrumentation.

  9. In vitro investigation of marginal accuracy of implant-supported screw-retained partial dentures.

    PubMed

    Koke, U; Wolf, A; Lenz, P; Gilde, H

    2004-05-01

    Mismatch occurring during the fabrication of implant-supported dentures may induce stress to the peri-implant bone. The purpose of this study was to investigate the influence of two different alloys and the fabrication method on the marginal accuracy of cast partial dentures. Two laboratory implants were bonded into an aluminium block so that the distance between their longitudinal axes was 21 mm. Frameworks designed for screw-retained partial dentures were cast either with pure titanium (rematitan) or with a CoCr-alloy (remanium CD). Two groups of 10 frameworks were cast in a single piece. The first group was made of pure titanium, and the second group of a CoCr-alloy (remanium CD). A third group of 10 was cast in two pieces and then laser-welded onto a soldering model. This latter group was also made of the CoCr-alloy. All the frameworks were screwed to the original model with defined torque. Using light microscopy, marginal accuracy was determined by measuring vertical gaps at eight defined points around each implant. Titanium frameworks cast in a single piece demonstrated mean vertical gaps of 40 microm (s.d. = 11 microm) compared with 72 microm (s.d. = 40 microm) for CoCr-frameworks. These differences were not significant (U-test, P = 0.124) because of a considerable variation of the values for CoCr-frameworks (minimum: 8 microm and maximum: 216 microm). However, frameworks cast in two pieces and mated with a laser showed significantly better accuracy in comparison with the other experimental groups (mean: 17 microm +/- 6; P < 0.01). (i) The fit of implant-supported partial dentures cast with pure titanium in a single piece is preferable to that of those made with the CoCr-alloy and (ii) the highest accuracy can be achieved by using a two-piece casting technique combined with laser welding. Manufacturing the framework pieces separately and then welding them together provides the best marginal fit.

  10. Titanium Isotopes Provide Clues to Lunar Origin

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2012-05-01

    The idea that the Moon formed as the result of the giant impact of a Mars-sized impactor with the still-growing Earth explains two central facts about the Earth-Moon system: its total angular momentum (Earth's spin and the Moon's orbital motion), and the sizes of the metallic cores of the Earth (large) and Moon (tiny). This gives cosmochemists some confidence in the hypothesis, but they would greatly appreciate additional compositional tests. One undisputed point is the identical abundance of the three oxygen isotopes in Earth and Moon. Junjun Zhang and colleagues at the University of Chicago (USA) and the University of Bern (Switzerland) have added another isotopic system to the cosmochemical testing tool kit, titanium isotopes. They find that the ratio of titanium-50 to titanium-47 is identical in Earth and Moon to within four parts per million. In contrast, other solar system materials, such as carbonaceous chondrites, vary by considerably more than this-- up to 150 times as much. The identical oxygen and titanium isotopic compositions in Earth and Moon are surprising in light of what we think we know about planet formation and formation of the Moon after a giant impact. The variations in oxygen and titanium isotopes among meteorite types suggest that it is unlikely that the Moon-forming giant impactor would have had the same isotopic composition as the Earth. Simulations show that the Moon ends up constructed mostly (40-75%) from the impactor materials. Thus, the Moon ought to have different isotopic composition than does Earth. The isotopes might have exchanged in the complicated, messy proto-lunar disk (as has been suggested for oxygen isotopes), making them the same. However, Zhang and colleagues suggest that this exchange is unlikely for a refractory element like titanium. Could the impact simulations be greatly overestimating the contributions from the impactor? Was the mixing of building-block materials throughout the inner solar system much less than thought so that the impactor and early Earth actually had the same isotopic compositions? Zhang and coauthors also draw attention to the possibility that the impactor could have been rich in ice, so that the Moon formed mostly from Earth's rocky materials. Questions abound as our understanding of planet formation evolves. Whatever the cause of the titanium-isotope homogeneity in the Earth-Moon system, the new data from titanium isotopes herald new directions for understanding the complicated processes involved in forming the Moon by a giant impact.

  11. Evaluating the Surface Characteristics of Stainless Steel, TMA, Timolium, and Titanium-niobium Wires: An in vivo Scanning Electron Microscope Study.

    PubMed

    Babu, K Pradeep; Keerthi, V Naga; Madathody, Deepika; Prasanna, A Laxmi; Gopinath, Vidhya; Kumar, M Senthil; Kumar, A Nanda

    2016-05-01

    Recent metallurgical research and advancement in material science has benefited orthodontists in the selection of an appropriate wire size and alloy type, which is necessary to provide an optimum and predictable treatment results. The purpose of the study was to clinically evaluate and compare the surface characteristics of 16 x 22 stainless steel, Titanium molybdenum alloy, timolium, and titanium-niobium before and after placing them in a patient's mouth for 3 months using a scanning electron microscope (SEM). The total sample size was 40, which were divided into four groups (group 1 - stainless steel wires, 10 samples, group 2 - TMA wires, 10 samples, group 3 - timolium wires, 10 samples, and group 4 - titanium-niobium wires, 10 samples), and these were further subdivided into 5 each. The first subgroup of five samples was placed in the patient's mouth and was evaluated under SEM, and another subgroup of five samples was directly subjected to the SEM. Scanning electron microscopic evaluation of surface characteristics of unused 16 x 22 rectangular stainless steel wire under 500 x magnification showed an overall smooth surface. Stainless steel wire samples placed in the patient's mouth showed black hazy patches, which may be interoperated as areas of stress. TMA unused wires showed multiple small voids of areas and small craters with fewer elevated regions. The TMA wire samples placed in the patient's mouth showed black hazy patches and prominent ridges, making the wire rougher. Timolium unused archwires showed heavy roughness and voids, whereas wires tested in the patient's mouth showed homogeneous distribution of deep cracks and craters. Unused titanium-niobium archwires showed uniform prominent striations and ridges with occasional voids, whereas wires used in the patient's mouth showed prominent huge voids that could be interpreted as maximum stress areas. Stainless steel (group 1) used and unused wires showed smooth surface characteristics when compared with all the other three groups followed by timolium, which was superior to titanium-niobium wires and TMA wires. Timolium wires are superior to titanium-niobium wires and TMA wires.

  12. Demonstration of periodic nanostructure formation with less ablation by double-pulse laser irradiation on titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Yuki; Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502; Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011

    By pairing femtosecond laser pulses (duration ∼40 fs and central wavelength ∼810 nm) at an appropriate time interval, a laser-induced periodic surface structure (LIPSS) is formed with much less ablation than one formed with a single pulse. On a titanium plate, a pair of laser pulses with fluences of 70 and 140 mJ/cm{sup 2} and a rather large time interval (>10 ps) creates a LIPSS with an interspace of 600 nm, the same as that formed by a single pulse of 210 mJ/cm{sup 2}, while the double pulse ablates only 4 nm, a quarter of the ablation depth of a single pulse.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemt, M.

    Relative oscillator strengths of 139 Til lines were determined from emission measurements of a three chamber electric arc burning in an argon atmosphere. Introducing a small admixture of titanium chloride into the center of the arc, spectra of titanium could be observed end-on with no self-absorption and no selfreversal of the measured lines. The relative oscillator strengths were obtained from the Til line intensities and the measured arc temperature. Using absolute oscillator strengths of three resonance lines which had been measured by Reinke (1967), and several life time measurements from Hese (1970), Witt et al. (1971) and Andersen and Sorensenmore » (1972), the relative oscillator strengths were converted to an absolute scale. The accuracy of these absolute values is in the range of 20% to 40%. (auth)« less

  14. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques.

    PubMed

    Torres, Yadir; Lascano, Sheila; Bris, Jorge; Pavón, Juan; Rodriguez, José A

    2014-04-01

    One of the most important concerns in long-term prostheses is bone resorption as a result of the stress shielding due to stiffness mismatch between bone and implant. The aim of this study was to obtain porous titanium with stiffness values similar to that exhibited by cortical bone. Porous samples of commercial pure titanium grade-4 were obtained by following both loose-sintering processing and space-holder technique with NaCl between 40 and 70% in volume fraction. Both mechanical properties and porosity morphology were assessed. Young's modulus was measured using uniaxial compression testing, as well as ultrasound methodology. Complete characterization and mechanical testing results allowed us to determine some important findings: (i) optimal parameters for both processing routes; (ii) better mechanical response was obtained by using space-holder technique; (iii) pore geometry of loose sintering samples becomes more regular with increasing sintering temperature; in the case of the space-holder technique that trend was observed for decreasing volume fraction; (iv) most reliable Young's modulus measurements were achieved by ultrasound technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Development of solid-lubricated ball-screws for use in space

    NASA Technical Reports Server (NTRS)

    Chiba, Masatoshi; Gyougi, Toru; Nishimura, Makoto; Seki, Katsumi

    1991-01-01

    Ball-screws lubricated by solid lubricant films containing molybdenum disulphide are developed. The ball-screws (shaft diameter: phi 25 mm, length: 667 mm) were operated under a load of 40 to 120 N at a speed of 1.5 to 200 rpm at 10(exp -5) Pa. First, ball-screws made of stainless steel SUS 440C were studied using test equipment originally designed for this study. To reduce weight, the next step taken was to develop a ball-screw made of 6Al-4V-titanium. Long wear-life of more than 1 x 10(exp 7) revolutions was achieved with solid lubricated ball-screws made of SUS 440C and 6Al-4V-titanium in a hard vacuum. According to the surface profile of the shaft measured after 1 x 10(exp 7) revolutions, more solid lubricant remained on the surface of 6Al-4V-titanium than that of stainless steel. Auger and EPMA analysis confirmed lubrication was maintained by solid lubricant on nuts and screws after the lubricant films on the balls were worn off.

  16. Realistic Evaluation of Titanium Dioxide Nanoparticle Exposure in Chewing Gum.

    PubMed

    Fiordaliso, Fabio; Foray, Claudia; Salio, Monica; Salmona, Mario; Diomede, Luisa

    2018-06-20

    There is growing concern about the presence of nanoparticles (NPs) in titanium dioxide (TiO 2 ) as food additive (E171). To realistically estimate the number and the amount of TiO 2 NPs ingested with food, we applied a transmission electron microscopy method combined with inductively coupled plasma optical emission spectrometry. Different percentages of TiO 2 NPs (6-18%) were detected in E171 from various suppliers. In the eight chewing gums analyzed as food prototypes, TiO 2 NPs were absent in one sample and ranged 0.01-0.66 mg/gum, corresponding to 7-568 billion NPs/gum, in the other seven. We estimated that the mass-based TiO 2 NPs ingested with chewing gums by the European population ranged from 0.28 to 112.40 μg/kg b.w./day, and children ingested more nanosized titanium than adolescents and adults. Although this level may appear negligible it corresponds to 0.1-84 billion TiO 2 NPs/kg b.w/day, raising important questions regarding their potential accumulation in the body, possibly causing long-term effects on consumers' health.

  17. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays

    PubMed Central

    Besinis, Alexandros; De Peralta, Tracy

    2014-01-01

    Metal-containing nanomaterials have the potential to be used in dentistry for infection control, but little is known about their antibacterial properties. This study investigated the toxicity of silver (Ag), titanium dioxide and silica nanoparticles (NPs) against the oral pathogenic species of Streptococcus mutans, compared to the routine disinfectant, chlorhexidine. The bacteria were assessed using the minimum inhibitory concentration assay for growth, fluorescent staining for live/dead cells, and measurements of lactate. All the assays showed that Ag NPs had the strongest antibacterial activity of the NPs tested, with bacterial growth also being 25-fold lower than that in chlorhexidine. The survival rate of bacteria under the effect of 100 mg l−1 Ag NPs in the media was 2% compared to 60% with chlorhexidine, while the lactate concentration was 0.6 and 4.0 mM, respectively. Silica and titanium dioxide NPs had limited effects. Dialysis experiments showed negligible silver dissolution. Overall, Ag NPs were the best disinfectant and performed better than chlorhexidine. Improvements to the MIC assay are suggested. PMID:23092443

  18. Comparison of transcriptomes between Sclerotinia sclerotiorum and S. trifoliorum using 454 Titanium RNA sequencing

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum and S. trifoliorum cause Sclerotinia stem and crown rot of chickpea and white mold on many economically important crops. The host range of S. trifoliorum is mainly on cool season forage and grain legumes of about 40 plant species, whereas the host range of S. sclerotiorum ...

  19. Nickel-titanium alloys: stress-related temperature transitional range.

    PubMed

    Santoro, M; Beshers, D N

    2000-12-01

    The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.

  20. Identification of radiopure titanium for the LZ dark matter experiment and future rare event searches

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Akerlof, C. W.; Akimov, D. Yu.; Alsum, S. K.; Araújo, H. M.; Arnquist, I. J.; Arthurs, M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Balashov, S.; Barry, M. J.; Belle, J.; Beltrame, P.; Benson, T.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boast, K. E.; Bolozdynya, A.; Boxer, B.; Bramante, R.; Brás, P.; Buckley, J. H.; Bugaev, V. V.; Bunker, R.; Burdin, S.; Busenitz, J. K.; Carels, C.; Carlsmith, D. L.; Carlson, B.; Carmona-Benitez, M. C.; Chan, C.; Cherwinka, J. J.; Chiller, A. A.; Chiller, C.; Cottle, A.; Coughlen, R.; Craddock, W. W.; Currie, A.; Dahl, C. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edberg, T. K.; Edwards, W. R.; Emmet, W. T.; Faham, C. H.; Fiorucci, S.; Fruth, T.; Gaitskell, R. J.; Gantos, N. J.; Gehman, V. M.; Gerhard, R. M.; Ghag, C.; Gilchriese, M. G. D.; Gomber, B.; Hall, C. R.; Hans, S.; Hanzel, K.; Haselschwardt, S. J.; Hertel, S. A.; Hillbrand, S.; Hjemfelt, C.; Hoff, M. D.; Holbrook, B.; Holtom, E.; Hoppe, E. W.; Hor, J. Y.-K.; Horn, M.; Huang, D. Q.; Hurteau, T. W.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kaboth, A.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Khazov, A.; Khromov, A. V.; Konovalov, A. M.; Korolkova, E. V.; Koyuncu, M.; Kraus, H.; Krebs, H. J.; Kudryavtsev, V. A.; Kumpan, A. V.; Kyre, S.; Lee, C.; Lee, H. S.; Lee, J.; Leonard, D. S.; Leonard, R.; Lesko, K. T.; Levy, C.; Liao, F.-T.; Lin, J.; Lindote, A.; Linehan, R. E.; Lippincott, W. H.; Liu, X.; Lopes, M. I.; Lopez Paredes, B.; Lorenzon, W.; Luitz, S.; Majewski, P.; Manalaysay, A.; Manenti, L.; Mannino, R. L.; Markley, D. J.; Martin, T. J.; Marzioni, M. F.; McConnell, C. T.; McKinsey, D. N.; Mei, D.-M.; Meng, Y.; Miller, E. H.; Mizrachi, E.; Mock, J.; Monzani, M. E.; Morad, J. A.; Mount, B. J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; Nikkel, J. A.; O'Dell, J.; O'Sullivan, K.; Olcina, I.; Olevitch, M. A.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Piepke, A.; Powell, S.; Preece, R. M.; Pushkin, K.; Ratcliff, B. N.; Reichenbacher, J.; Reichhart, L.; Rhyne, C. A.; Richards, A.; Rodrigues, J. P.; Rose, H. J.; Rosero, R.; Rossiter, P.; Saba, J. S.; Sarychev, M.; Schnee, R. W.; Schubnell, M.; Scovell, P. R.; Shaw, S.; Shutt, T. A.; Silva, C.; Skarpaas, K.; Skulski, W.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sosnovtsev, V. V.; Stancu, I.; Stark, M. R.; Stephenson, S.; Stiegler, T. M.; Stifter, K.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Temples, D.; Terman, P. A.; Thomas, K. J.; Thomson, J. A.; Tiedt, D. R.; Timalsina, M.; To, W. H.; Tomás, A.; Tope, T. E.; Tripathi, M.; Tvrznikova, L.; Va'Vra, J.; Vacheret, A.; van der Grinten, M. G. D.; Verbus, J. R.; Vuosalo, C. O.; Waldron, W. L.; Wang, R.; Watson, R.; Webb, R. C.; Wei, W.-Z.; While, M.; White, D. T.; Whitis, T. J.; Wisniewski, W. J.; Witherell, M. S.; Wolfs, F. L. H.; Woodward, D.; Worm, S.; Xu, J.; Yeh, M.; Yin, J.; Zhang, C.; Lux-Zeplin (LZ) Collaboration

    2017-11-01

    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238Ue < 1.6 mBq/kg, 238Ul < 0.09 mBq/kg, 232The = 0.28 ± 0.03 mBq/kg, 232Thl = 0.25 ± 0.02 mBq/kg, 40K < 0.54 mBq/kg, and 60Co < 0.02 mBq/kg (68% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160 ± 0.001(stat) ± 0.030(sys) counts.

  1. Induction Bonding of Prepreg Tape and Titanium Foil

    NASA Technical Reports Server (NTRS)

    Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.

    1998-01-01

    Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.

  2. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  3. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  4. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  5. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  6. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  7. 40 CFR Appendix I to Part 264 - Recordkeeping Instructions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...

  8. 40 CFR Appendix I to Part 264 - Recordkeeping Instructions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...

  9. 40 CFR Appendix I to Part 264 - Recordkeeping Instructions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...

  10. 40 CFR Appendix I to Part 264 - Recordkeeping Instructions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...

  11. Diagnosis of warm dense conditions in foil targets heated by intense femtosecond laser pulses using Kα imaging spectroscopy

    DOE PAGES

    Bae, L. J.; Zastrau, U.; Chung, H. -K.; ...

    2018-03-01

    Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less

  12. Comparative bone tissue integration of nanostructured and microroughened dental implants.

    PubMed

    Salou, Laëtitia; Hoornaert, Alain; Stanovici, Julien; Briand, Sylvain; Louarn, Guy; Layrolle, Pierre

    2015-01-01

    The aim was to compare osteointegration of nanostructured implants to a microsurface widely used for titanium dental implants. Commercial titanium dental implants with smooth or microroughened surfaces were nanostructured. Implants were inserted into the femoral condyles of rabbits. After 2 and 4 weeks, histomorphometry calculation was performed. Nanotubes measuring 60 nm in diameter were observed on both S-NANO (roughness: 0.05 μm) and R-NANO (roughness: 0.40 μm) surfaces. The MICRO surface exhibited typical random cavities (roughness: 2.09 μm). At 4 weeks, bone-to-implant contact values were significantly higher for the R-NANO than for the MICRO surface while no differences were observed at 2 weeks. Overall, this study shows that the nanostructured surfaces improved osteointegration similar or higher than the MICRO.

  13. Diagnosis of warm dense conditions in foil targets heated by intense femtosecond laser pulses using Kα imaging spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, L. J.; Zastrau, U.; Chung, H. -K.

    Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less

  14. Titanium recycling in the United States in 2004, chap. Y of Sibley, S.F., ed., Flow studies for recycling metal commodities in the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2010-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the titanium metal fraction of the titanium economy, which generates and uses titanium metal scrap in its operations. Data for 2004 were selected to demonstrate the titanium flows associated with these operations. This report includes a description of titanium metal supply and demand in the United States to illustrate the extent of titanium recycling and to identify recycling trends. In 2004, U.S. apparent consumption of titanium metal (contained in various titanium-bearing products) was 45,000 metric tons (t) of titanium, which was distributed as follows: 25,000 t of titanium recovered as new scrap, 9,000 t of titanium as titanium metal and titanium alloy products delivered to the U.S. titanium products reservoir, 7,000 t of titanium consumed by steelmaking and other industries, and 4,000 t of titanium contained in unwrought and wrought products exported. Titanium recycling is concentrated within the titanium metals sector of the total titanium market. The titanium market is otherwise dominated by pigment (titanium oxide) products, which generate dissipative losses instead of recyclable scrap. In 2004, scrap (predominantly new scrap) was the source of roughly 54 percent of the titanium metal content of U.S.-produced titanium metal products.

  15. Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.

    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities ofmore » $$^{238}$$U$$_{e}$$~$<$1.6~mBq/kg, $$^{238}$$U$$_{l}$$~$<$0.09~mBq/kg, $$^{232}$$Th$$_{e}$$~$$=0.28\\pm 0.03$$~mBq/kg, $$^{232}$$Th$$_{l}$$~$$=0.25\\pm 0.02$$~mBq/kg, $$^{40}$$K~$<$0.54~mBq/kg, and $$^{60}$$Co~$<$$0.02~mBq/kg (68\\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $$0.160\\pm0.001$(stat)$$\\pm0.030$$(sys) counts.« less

  16. Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    DOE PAGES

    Akerib, D. S.

    2017-09-25

    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities ofmore » $$^{238}$$U$$_{e}$$~$<$1.6~mBq/kg, $$^{238}$$U$$_{l}$$~$<$0.09~mBq/kg, $$^{232}$$Th$$_{e}$$~$$=0.28\\pm 0.03$$~mBq/kg, $$^{232}$$Th$$_{l}$$~$$=0.25\\pm 0.02$$~mBq/kg, $$^{40}$$K~$<$0.54~mBq/kg, and $$^{60}$$Co~$<$$0.02~mBq/kg (68\\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $$0.160\\pm0.001$(stat)$$\\pm0.030$$(sys) counts.« less

  17. Titanium based flat heat pipes for computer chip cooling

    NASA Astrophysics Data System (ADS)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  18. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.

    PubMed

    Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett

    2016-03-03

    The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Soft tissues stability of cad-cam and stock abutments in anterior regions: 2-year prospective multicentric cohort study.

    PubMed

    Lops, Diego; Bressan, Eriberto; Parpaiola, Andrea; Sbricoli, Luca; Cecchinato, Denis; Romeo, Eugenio

    2015-12-01

    Aim of this study was to verify if the type of implant abutment manufacturing, stock or cad-cam, could influence the maintenance of stable gingival margins around single restorations in anterior areas. After 16 weeks of healing, implants (Osseospeed, Astra Tech Dental Implant) were positioned. Depending on the different fixture inclination and the thickness of buccal peri-implant soft tissue, abutment selection resulted in four groups: Group 1 (patients with zirconia ZirDesign(®) stock abutments), Group 2 (titanium stock TiDesign(®) abutments), Group 3 (zirconia cad-cam abutments), and Group 4 (titanium cad-cam abutments). The following parameters were assessed: buccal gingival margin modification (BGM). The modification of the implant gingival margin was followed at 1 and 2 years of follow-up. A computerized analysis was performed for measurements. Differences between soft tissue margin at baseline and after 2 years measured the gingival margin recession. A general linear model was used to evaluate each group in relation to gingival recession after two years. Tukey's post hoc test was used to compare the mean REC indexes of each group of abutments. Seventy-two healthy patients (39 males and 33 females; mean age of 46 years) scheduled for single gap rehabilitation in anterior areas were enrolled. A 100% of implant survival rate was observed after 24 months of function. One failure occurred due to fracture of a Zirconia cad-cam abutment. Moreover, two abutment screw unscrewing were observed. Both for zirconia and titanium stock abutments (Group 1 and 2), the mean recession of implant buccal soft tissue was of 0.3 mm (SD of 0.3 and 0.4 mm, respectively). Soft tissue mean recession of zirconia and titanium cad-cam abutments (Group 3 and 4) was of 0.1 and -0.3 mm, respectively (SD of 0.3 and 0.4 mm, respectively). REC values of cad-cam titanium abutments (Group 4) were significantly lower than that of Group 1 (-0.57 mm), Group 2 (-0.61 mm), and Group 3 (-0.40 mm), respectively (Table 4). In the anterior area, the use of cad-cam abutments is related to a better soft tissue stability. Such a relationship is significant if cad-cam titanium abutments are compared to both titanium and zirconia stock abutments. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. [Reliable fixation of cochlear implant electrode mountings in children and adults--initial experiences with a new titanium clip].

    PubMed

    Müller, J; Schön, F; Helms, J

    1998-04-01

    There is a reported 1% incidence of delayed migration of extrusions of the electrode arrays out of the cochlea. A titanium clip to fix the electrode array of the MED EL Combi 40 Cochlear Implant System is described. The clip is designed and shaped in a double U configuration. The clip material allows easy adaption to the individual anatomical situation. The clip is fixed to a bony bridge at the incus bar and fixes the electrode in a plane parallel to the chorda facial angle. It is closed around the electrode similarly to a stapes piston around the incus. Additional tests which examined the possible risk of damaging the electrode carrier and clinical findings are described. The clip was used in 23 cases with a follow-up period up to 1 year. No signs for dislocation of the electrode were found. In one revision case the clip was covered with a thin mucosal layer. The electrode array showed no signs of damage. Intraoperative findings confirmed the experimental tests on the electrode fixation. The titanium clip facilitates safe and quick fixation of the electrode array and prevents dislocation. its flexibility and shape minimizes the risk of damage.

  1. Clinical Outcome of Hydroxyapatite Coated, Bioactive Glass Coated, and Machined Ti6Al4V Threaded Dental Implant in Human Jaws: A Short-Term Comparative Study.

    PubMed

    Mistry, Surajit; Roy, Rajiv; Kundu, Biswanath; Datta, Someswar; Kumar, Manoj; Chanda, Abhijit; Kundu, Debabrata

    2016-04-01

    Growing aspect of endosseous implant research is focused on surface modification of dental implants for the purpose of improving osseointegration. The aim of this study was to evaluate and compare the clinical outcome (ie, osseointegration) of hydroxyapatite coated, bioactive glass coated and machined titanium alloy threaded dental implants in human jaw bone after implantation. One hundred twenty-six implants (45 hydroxyapatite coated, 41 bioactive glass coated, and 40 machined titanium implants) have been placed in incisor areas of 62 adult patients. Outcome was assessed up to 12 months after prosthetic rehabilitation using different clinical and radiological parameters. Surface roughness of failed implants was analyzed by laser profilometer. Hydroxyapatite and bioactive glass coating materials were nontoxic and biocompatible. Least marginal bone loss in radiograph, significantly higher (P < 0.05) interface radiodensity, and less interfacial gaps were observed in computed tomography with bioactive glass coated implants at anterior maxilla compared to other 2 types. Bioactive glass coated implants are equally safe and effective as hydroxyapatite coated and machined titanium implants in achieving osseointegration; therefore, can be effectively used as an alternative coating material for dental implants.

  2. 40 CFR 421.306 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed the following values: (a) Chlorination off-gas wet air pollution control. PSNS for the Primary and... average mg/kg (pounds per million pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496 0.215 (b) Chlorination area-vent wet air pollution control. PSNS for...

  3. 40 CFR 421.306 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed the following values: (a) Chlorination off-gas wet air pollution control. PSNS for the Primary and... average mg/kg (pounds per million pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496 0.215 (b) Chlorination area-vent wet air pollution control. PSNS for...

  4. 40 CFR 471.63 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... times. (p) Alkaline cleaning spent baths. Subpart F—NSPS Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of titanium alkaline... grease 4.80 2.88 TSS 9.84 4.68 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (q) Alkaline...

  5. The influence of distal-end heat treatment on deflection of nickel-titanium archwire.

    PubMed

    Silva, Marcelo Faria da; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. There were no statistically significant differences between the tested groups with the same size and brand of wire. Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  6. The influence of distal-end heat treatment on deflection of nickel-titanium archwire

    PubMed Central

    da Silva, Marcelo Faria; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions. PMID:27007766

  7. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs.

    PubMed

    Wikesjö, Ulf M E; Xiropaidis, Andreas V; Qahash, Mohammed; Lim, Won Hee; Sorensen, Rachel G; Rohrer, Michael D; Wozney, John M; Hall, Jan

    2008-11-01

    Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. TPO implants coated with rhBMP-2 exhibited dose-dependent bone remodelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3+/-10.8%versus 71.7+/-7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4+/-10.6%versus 68.2+/-11.0%, p<0.03]. rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.

  8. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  9. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  10. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    NASA Astrophysics Data System (ADS)

    Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.

    2016-03-01

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  11. Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.

    2017-10-01

    An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.

  12. Analysis of Potential for Titanium Liner Buckling after Proof in a Large Kevlar/Epoxy COPV

    NASA Technical Reports Server (NTRS)

    Phoenix, S. Leigh; Kezirian, Michael T.

    2009-01-01

    We analyze the potential for liner buckling in a 40-in Kevlar49/epoxy overwrapped spherical pressure vessel (COPV) due to long, local depressions or valleys in the titanium liner, which appeared after proof testing (autofrettage). We begin by presenting the geometric characteristics of approximately 20 mil (0.02 in.) deep depressions measured by laser profilometry in several vessels. While such depths were more typical, depths of more than 40 mils (0.02 in.) were seen near the equator in one particular vessel. Such depressions are largely the result of overlap of the edges of overwrap bands (with rectangular cross-section prepreg tows) from the first or second wrap patterns particularly where they start and end. We then discuss the physical mechanisms of formation of the depressions during the autofrettage process in terms of uneven void compaction in the overwrap around the tow overlap lines and the resulting 10-fold increase in through-thickness stiffness of the overwrap. We consider the effects of liner plastic yielding mechanisms in the liner on residual bending moments and interface pressures with the overwrap both at the peak proof pressure (approx.6500 psi) and when reducing the pressure to 0 psi. During depressurization the Bauschinger phenomenon becomes very important whereby extensive yielding in tension reduces the magnitude of the yield threshold in compression by 30 to 40%, compared to the virgin annealed state of the liner titanium. In the absence of a depression, the liner is elastically stable in compression even at liner overwrap interface pressures nominally 6 times the approx. 1000 psi interface pressure that exists at 0 psi. Using a model based on a plate-on-an-elastic-foundation, we develop an extensive analysis of the possible destabilizing effects of a frozen-in valley. The analysis treats the modifying effects of the residual bending moments and interface pressures remaining after the proof hold as well as the Bauschinger effect on the compressive yield threshold. The key result is that depression depths of up to 40 mils can be tolerated, but above 40 mils, the Bauschinger effect drives destabilization, and buckling becomes increasingly likely depending on the details of depression formation during autofrettage. It is almost certain that destabilization and buckling will occur for depression depths beyond 55 mils. The main equations and formulas for treating the various phases of depression development and potential buckling, are only briefly outlined in the paper, but are available from the authors.

  13. Production of Titanium Metal by an Electrochemical Molten Salt Process

    NASA Astrophysics Data System (ADS)

    Fatollahi-Fard, Farzin

    Titanium production is a long and complicated process. What we often consider to be the standard method of primary titanium production (the Kroll process), involves many complex steps both before and after to make a useful product from titanium ore. Thus new methods of titanium production, especially electrochemical processes, which can utilize less-processed feedstocks have the potential to be both cheaper and less energy intensive than current titanium production processes. This project is investigating the use of lower-grade titanium ores with the electrochemical MER process for making titanium via a molten salt process. The experimental work carried out has investigated making the MER process feedstock (titanium oxycarbide) with natural titanium ores--such as rutile and ilmenite--and new ways of using the MER electrochemical reactor to "upgrade" titanium ores or the titanium oxycarbide feedstock. It is feasible to use the existing MER electrochemical reactor to both purify the titanium oxycarbide feedstock and produce titanium metal.

  14. Tensile properties of titanium electrolytically charged with hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1971-01-01

    Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.

  15. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  16. The Evaluation of High Temperature Adhesive Bonding Processes for Rocket Engine Combustion Chamber Applications

    NASA Technical Reports Server (NTRS)

    McCray, Daniel; Smith, Jeffrey; Rice, Brian; Blohowiak, Kay; Anderson, Robert; Shin, E. Eugene; McCorkle, Linda; Sutter, James

    2003-01-01

    NASA Glenn Research Center is currently evaluating the possibility of using high- temperature polymer matrix composites to reinforce the combustion chamber of a rocket engine. One potential design utilizes a honeycomb structure composed of a PMR-II- 50/M40J 4HS composite facesheet and titanium honeycomb core to reinforce a stainless steel shell. In order to properly fabricate this structure, adhesive bond PMR-II-50 composite. Proper prebond surface preparation is critical in order to obtain an acceptable adhesive bond. Improperly treated surfaces will exhibit decreased bond strength and durability, especially in metallic bonds where interface are susceptible to degradation due to heat and moisture. Most treatments for titanium and stainless steel alloys require the use of strong chemicals to etch and clean the surface. This processes are difficult to perform due to limited processing facilities as well as safety and environmental risks and they do not consistently yield optimum bond durability. Boeing Phantom Works previously developed sol-gel surface preparations for titanium alloys using a PETI-5 based polyimide adhesive. In support of part of NASA Glenn Research Center, UDRI and Boeing Phantom Works evaluated variations of this high temperature sol-gel surface preparation, primer type, and primer cure conditions on the adhesion performance of titanium and stainless steel using Cytec FM 680-1 polyimide adhesive. It was also found that a modified cure cycle of the FM 680-1 adhesive, i.e., 4 hrs at 370 F in vacuum + post cure, significantly increased the adhesion strength compared to the manufacturer's suggested cure cycle. In addition, the surface preparation of the PMR-II-50 composite was evaluated in terms of surface cleanness and roughness. This presentation will discuss the results of strength and durability testing conducted on titanium, stainless steel, and PMR-II-50 composite adherends to evaluate possible bonding processes.

  17. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com; Simchi, A.; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase.more » The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.« less

  18. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    PubMed

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  19. Thin magnesium layer confirmed as an antibacterial and biocompatible implant coating in a co‑culture model.

    PubMed

    Zaatreh, Sarah; Haffner, David; Strauss, Madlen; Dauben, Thomas; Zamponi, Christiane; Mittelmeier, Wolfram; Quandt, Eckhard; Kreikemeyer, Bernd; Bader, Rainer

    2017-04-01

    Implant-associated infections commonly result from biofilm‑forming bacteria and present severe complications in total joint arthroplasty. Therefore, there is a requirement for the development of biocompatible implant surfaces that prevent bacterial biofilm formation. The present study coated titanium samples with a thin, rapidly corroding layer of magnesium, which were subsequently investigated with respect to their antibacterial and cytotoxic surface properties using a Staphylococcus epidermidis (S. epidermidis) and human osteoblast (hOB) co‑culture model. Primary hOBs and S. epidermidis were co‑cultured on cylindrical titanium samples (Ti6Al4V) coated with pure magnesium via magnetron sputtering (5 µm thickness) for 7 days. Uncoated titanium test samples served as controls. Vital hOBs were identified by trypan blue staining at days 2 and 7. Planktonic S. epidermidis were quantified by counting the number of colony forming units (CFU). The quantification of biofilm‑bound S. epidermidis on the surfaces of test samples was performed by ultrasonic treatment and CFU counting at days 2 and 7. The number of planktonic and biofilm‑bound S. epidermidis on the magnesium‑coated samples decreased by four orders of magnitude when compared with the titanium control following 7 days of co‑culture. The number of vital hOBs on the magnesium‑coated samples was observed to increase (40,000 cells/ml) when compared with the controls (20,000 cells/ml). The results of the present study indicate that rapidly corroding magnesium‑coated titanium may be a viable coating material that possesses antibacterial and biocompatible properties. A co‑culture test is more rigorous than a monoculture study, as it accounts for confounding effects and assesses additional interactions that are more representative of in vivo situations. These results provide a foundation for the future testing of this type of surface in animals.

  20. Thin magnesium layer confirmed as an antibacterial and biocompatible implant coating in a co-culture model

    PubMed Central

    Zaatreh, Sarah; Haffner, David; Strauss, Madlen; Dauben, Thomas; Zamponi, Christiane; Mittelmeier, Wolfram; Quandt, Eckhard; Kreikemeyer, Bernd; Bader, Rainer

    2017-01-01

    Implant-associated infections commonly result from biofilm-forming bacteria and present severe complications in total joint arthroplasty. Therefore, there is a requirement for the development of biocompatible implant surfaces that prevent bacterial biofilm formation. The present study coated titanium samples with a thin, rapidly corroding layer of magnesium, which were subsequently investigated with respect to their antibacterial and cytotoxic surface properties using a Staphylococcus epidermidis (S. epidermidis) and human osteoblast (hOB) co-culture model. Primary hOBs and S. epidermidis were co-cultured on cylindrical titanium samples (Ti6Al4V) coated with pure magnesium via magnetron sputtering (5 µm thickness) for 7 days. Uncoated titanium test samples served as controls. Vital hOBs were identified by trypan blue staining at days 2 and 7. Planktonic S. epidermidis were quantified by counting the number of colony forming units (CFU). The quantification of biofilm-bound S. epidermidis on the surfaces of test samples was performed by ultrasonic treatment and CFU counting at days 2 and 7. The number of planktonic and biofilm-bound S. epidermidis on the magnesium-coated samples decreased by four orders of magnitude when compared with the titanium control following 7 days of co-culture. The number of vital hOBs on the magnesium-coated samples was observed to increase (40,000 cells/ml) when compared with the controls (20,000 cells/ml). The results of the present study indicate that rapidly corroding magnesium-coated titanium may be a viable coating material that possesses antibacterial and biocompatible properties. A co-culture test is more rigorous than a monoculture study, as it accounts for confounding effects and assesses additional interactions that are more representative of in vivo situations. These results provide a foundation for the future testing of this type of surface in animals. PMID:28260022

  1. 40 CFR 437.11 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662 Zinc 2.87 0.641 1 mg/L (ppm). 2 Within the range 6 to 9. (b) The following in-plant limitations apply to metal-bearing wastewater containing cyanide: In-Plant Limitations Regulatedparameter Maximum daily 1 Maximum...

  2. 40 CFR 437.46 - Pretreatment standards for existing sources (PSES)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....218 0.0662 Zinc 2.87 0.641 Organic Parameters Bis(2-ethylhexyl) phthalate 0.267 0.158 Carbazole 0.392... Titanium 0.0947 0.0618 Vanadium 0.218 0.0662 Zinc 2.87 0.641 Organic Parameters Bis(2-ethylhexyl) phthalate... Tin 0.249 0.146 Zinc 6.95 4.46 Organic Parameters Bis (2-ethylhexyl) phthalate 0.267 0.158 Carbazole 0...

  3. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  4. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE PAGES

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; ...

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  5. Preformed titanium cranioplasty after resection of skull base meningiomas - a technical note.

    PubMed

    Schebesch, Karl-Michael; Höhne, Julius; Gassner, Holger G; Brawanski, Alexander

    2013-12-01

    Meningiomas of the fronto-basal skull are difficult to manage as the treatment usually includes extensive resection of the lesion, consecutive reconstruction of the meninges and of the skull. Especially after removal of spheno-orbital and sphenoid-wing meningiomas, the cosmetic result is of utmost importance. In this technical note, we present our institutional approach in the treatment of skull base meningiomas, focussing on the reconstruction of the neurocranium with individually preformed titanium cranioplasty (CRANIOTOP(®), CL Instruments, Germany). Two female patients (40 years, 64 years) are presented. Both patients presented with skull base lesions suggestive of meningiomas. The preoperative thin-sliced CT scan was processed to generate a 3D-model of the skull. On it, the resection was mapped and following a simulated resection, the cranioplasty was manufactured. Intra-operatively, the titanium plate served as a template for the skull resection and was implanted after microsurgical tumour removal, consecutively. The cosmetic result was excellent. Immediate postoperative CT scan revealed accurate fitting and complete tumour removal. Control Magnetic Resonance Imaging (MRI) within 12 weeks was possible without any artifacts. The comprehensive approach described indicates only one surgical procedure for tumour removal and for reconstruction of the skull. The titanium plate served as an exact template for complete resection of the osseous parts of the tumour. Cosmetic outcome was excellent and control MRI was possible post operatively. CRANIOTOP(®) cranioplasty is a safe and practical tool for reconstruction of the skull after meningioma surgery. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Postoperative magnetic resonance imaging artifact with cobalt-chromium versus titanium spinal instrumentation: presented at the 2013 Joint Spine Section Meeting. Clinical article.

    PubMed

    Ahmad, Faiz U; Sidani, Charif; Fourzali, Roberto; Wang, Michael Y

    2013-11-01

    Cobalt-chromium alloy (CoCr) rods haves some preferred biomechanical properties over titanium rods for spinal fixation. The use of CoCr rods in spinal fusion is relatively new, and there is no study in the existing world literature assessing the artifact caused by these rods in patients undergoing postoperative MRI. The purpose of this study is to compare the amount of imaging artifact caused by these implants and to assess its impact on the visualization of neighboring neural structures. This study investigated MR images in patients who underwent implantation of thoracolumbar instrumentation using 5.5-mm-diameter CoCr rods between November 2009 and March 2011 and images obtained in a comparison group of patients who had 5.5-mm titanium rods implanted during the same time period. Axial measurements of the artifact created by the rods between the screw heads were compared between the groups. Two blinded board-certified radiologists performed the measurements independently. They scored the visualization of the spinal canal using a subjective scoring system of 1-3, with 1 representing very good visualization and 2 and 3 representing reduced (good or suboptimal, respectively) visualization as a result of rod-related artifact. All measurements and scores were independently provided for T1-weighted and T2-weighted fast spin echo sequences (1.5-T magnet, 5-mm slice thickness). A total of 40 levels from the CoCr group (6 patients) and 30 levels from the titanium group (9 patients) were included in the analysis. Visualization of the canal at all levels was rated a score of 1 (very good) by both evaluators for both the CoCr and titanium groups. The average artifact on T1-weighted images measured 11.8 ± 1.8 mm for the CoCr group and 8.5 ± 1.2 mm for the titanium group (p < 0.01). The corresponding measurements on T2-weighted images were 11.0 ± 2.3 mm and 8.3 ± 1.7 mm (p < 0.01), respectively. In a mixed regression model, the mean artifact measurement for the CoCr group was, on average, 3.5 mm larger than for the control group. There was no significant difference between the measurements of the 2 evaluators (p = 0.99). The artifact caused by CoCr rods is approximately 3.5 mm larger than that caused by titanium rods on axial T1- and T2-weighted MRI. However, artifact from either CoCr or titanium was not found to interfere with the evaluation of the spinal canal and surrounding neural elements.

  7. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  8. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOEpatents

    Collins, J.L.

    1998-10-13

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.

  9. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOEpatents

    Collins, Jack L.

    1998-01-01

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics.

  10. Efficacy of CM-Wire, M-Wire, and Nickel-Titanium Instruments for Removing Filling Material from Curved Root Canals: A Micro-Computed Tomography Study.

    PubMed

    Rodrigues, Clarissa Teles; Duarte, Marco Antonio Hungaro; de Almeida, Marcela Milanezi; de Andrade, Flaviana Bombarda; Bernardineli, Norberti

    2016-11-01

    The aim of this ex vivo study was to evaluate the removal of filling material after using CM-wire, M-wire, and nickel-titanium instruments in both reciprocating and rotary motions in curved canals. Thirty maxillary lateral incisors were divided into 9 groups according to retreatment procedures: Reciproc R25 followed by Mtwo 40/.04 and ProDesign Logic 50/.01 files; ProDesign R 25/.06 followed by ProDesign Logic 40/.05 and ProDesign Logic 50/.01 files; and Gates-Glidden drills, Hedström files, and K-files up to apical size 30 followed by K-file 40 and K-file 50 up to the working length. Micro-computed tomography scans were performed before and after each reinstrumentation procedure to evaluate root canal filling removal. Statistical analysis was performed with Kruskal-Wallis, Friedman, and Wilcoxon tests (P < .05). No significant differences in filling material removal were found in the 3 groups of teeth. The use of Mtwo and ProDesign Logic 40/.05 rotary files did not enhance filling material removal after the use of reciprocating files. The use of ProDesign Logic 50/.01 files significantly reduced the amount of filling material at the apical levels compared with the use of reciprocating files. Association of reciprocating and rotary files was capable of removing a large amount of filling material in the retreatment of curved canals, irrespective of the type of alloy of the instruments. The use of a ProDesign Logic 50/.01 file for apical preparation significantly reduced the amount of remnant material in the apical portion when compared with reciprocating instruments. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    PubMed

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  12. A new corrective technique for adolescent idiopathic scoliosis: convex manipulation using 6.35 mm diameter pure titanium rod followed by concave fixation using 6.35 mm diameter titanium alloy

    PubMed Central

    2015-01-01

    Background It has been thought that corrective posterior surgery for adolescent idiopathic scoliosis (AIS) should be started on the concave side because initial convex manipulation would increase the risk of vertebral malrotation, worsening the rib hump. With the many new materials, implants, and manipulation techniques (e.g., direct vertebral rotation) now available, we hypothesized that manipulating the convex side first is no longer taboo. Methods Our technique has two major facets. (1) Curve correction is started from the convex side with a derotation maneuver and in situ bending followed by concave rod application. (2) A 6.35 mm diameter pure titanium rod is used on the convex side and a 6.35 mm diameter titanium alloy rod on the concave side. Altogether, 52 patients were divided into two groups. Group N included 40 patients (3 male, 37 female; average age 15.9 years) of Lenke type 1 (23 patients), type 2 (2), type 3 (3), type 5 (10), type 6 (2). They were treated with a new technique using 6.35 mm diameter different-stiffness titanium rods. Group C included 12 patients (all female, average age 18.8 years) of Lenke type 1 (6 patients), type 2 (3), type 3 (1), type 5 (1), type 6 (1). They were treated with conventional methods using 5.5 mm diameter titanium alloy rods. Radiographic parameters (Cobb angle/thoracic kyphosis/correction rates) and perioperative data were retrospectively collected and analyzed. Results Preoperative main Cobb angles (groups N/C) were 56.8°/60.0°, which had improved to 15.2°/17.1° at the latest follow-up. Thoracic kyphosis increased from 16.8° to 21.3° in group N and from 16.0° to 23.4° in group C. Correction rates were 73.2% in group N and 71.7% in group C. There were no significant differences for either parameter. Mean operating time, however, was significantly shorter in group N (364 min) than in group C (456 min). Conclusion We developed a new corrective surgical technique for AIS using a 6.35 mm diameter pure titanium rod initially on the convex side. Correction rates in the coronal, sagittal, and axial planes were the same as those achieved with conventional methods, but the operation time was significantly shorter. PMID:25815053

  13. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  14. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    NASA Astrophysics Data System (ADS)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  15. Spin forming development

    NASA Astrophysics Data System (ADS)

    Gates, W. G.

    1982-05-01

    Bendix product applications require the capability of fabricating heavy gage, high strength materials. Five commercial sources have been identified that have the capability of spin forming metal thicknesses greater than 9.5 mm and four equipment manufacturers produce machines with this capability. Twelve assemblies selected as candidates for spin forming applications require spin forming of titanium, 250 maraging steel, 17-4 pH stainless steel, Nitronic 40 steel, 304 L stainless steel, and 6061 aluminum. Twelve parts have been cold spin formed from a 250 maraging steel 8.1 mm wall thickness machine preform, and six have been hot spin formed directly from 31.8-mm-thick flat plate. Thirty-three Ti-6Al-4V titanium alloy parts and 26 17-4 pH stainless steel parts have been hot spin formed directly from 31.8-mm-thick plate. Hot spin forming directly from plate has demonstrated the feasibility and favorable economics of this fabrication technique for Bendix applications.

  16. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru; Klechkovskaya, V. V.

    2016-03-15

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibitmore » the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.« less

  17. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    NASA Technical Reports Server (NTRS)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  18. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.

    PubMed

    Jiang, Wei; Mashayekhi, Hamid; Xing, Baoshan

    2009-05-01

    Toxicity of nano-scaled aluminum, silicon, titanium and zinc oxides to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles but titanium oxide showed higher toxicity (at 20 mg/L) than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three nanoparticles, causing 100% mortality to the three tested bacteria. Al(2)O(3) nanoparticles had a mortality rate of 57% to B. subtilis, 36% to E. coli, and 70% to P. fluorescens. SiO(2) nanoparticles killed 40% of B. subtilis, 58% of E. coli, and 70% of P. fluorescens. TEM images showed attachment of nanoparticles to the bacteria, suggesting that the toxicity was affected by bacterial attachment. Bacterial responses to nanoparticles were different from their bulk counterparts; hence nanoparticle toxicity mechanisms need to be studied thoroughly.

  19. Chemistry and properties of poly(arylene ether 1,3,4-oxadiazole)s and poly(arylene ether 1,2,4-triazole)s

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.; Wolf, P.

    1992-01-01

    Poly(arylene ether)s containing l,3,4-oxadiazole and 1,2,4-triazole units were prepared by the aromatic nucleophilic displacement reaction of bisphenol oxadiazole and bisphenol triazole compounds with activated aromatic dihalides. The polymers exhibited glass transition temperatures (Tg) ranging from 182 to 242 C, and several polymers exhibited melting transitions (Tm) ranging from 265 to 390 C. Inherent viscosities ranged from 1.02 to 3.40 dl/g, indicating relatively high molecular weights. Thin films exhibited tensile strengths, moduli, and elongations at 23 C of 90-110 MPa, 2.7-3.6 GPa, and 4-7 percent, respectively. Titanium-to-titanium tensile shear specimens of a poly(arylene ether 1,3,4-oxadiazole) exhibited tensile shear strengths at 23 and 150 C of 22.1 and 17.9 MPa, respectively.

  20. Micro- and nanostructure of a titanium surface electric-spark-doped with tantalum and modified by high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomin, A. A.; Fomina, M. A.; Koshuro, V. A.; Rodionov, I. V.; Voiko, A. V.; Zakharevich, A. M.; Aman, A.; Oseev, A.; Hirsch, S.; Majcherek, S.

    2016-09-01

    We have studied the characteristics of the porous microstructure of tantalum coatings obtained by means of electric spark spraying on the surface of commercial grade titanium. It is established that, at an electric spark current within 0.8-2.2 A, a mechanically strong tantalum coating microstructure is formed with an average protrusion size of 5.1-5.4 µm and pore sizes from 3.5 to 9.2 µm. On the nanoscale, a structurally heterogeneous state of coatings has been achieved by subsequent thermal modification at 800-830°C with the aid of high-frequency currents. A metal oxide nanostructure with grain sizes from 40 to 120 nm is formed by short-time (~30 s) thermal modification. The coating hardness reaches 9.5-10.5 GPa at an elastic modulus of 400-550 GPa.

  1. Rough titanium alloys regulate osteoblast production of angiogenic factors.

    PubMed

    Olivares-Navarrete, Rene; Hyzy, Sharon L; Gittens, Rolando A; Schneider, Jennifer M; Haithcock, David A; Ullrich, Peter F; Slosar, Paul J; Schwartz, Zvi; Boyan, Barbara D

    2013-11-01

    Polyether-ether-ketone (PEEK) and titanium-aluminum-vanadium (titanium alloy) are used frequently in lumbar spine interbody fusion. Osteoblasts cultured on microstructured titanium generate an environment characterized by increased angiogenic factors and factors that inhibit osteoclast activity mediated by integrin α2β1 signaling. It is not known if this is also true of osteoblasts on titanium alloy or PEEK. The purpose of this study was to determine if osteoblasts generate an environment that supports angiogenesis and reduces osteoclastic activity when grown on smooth titanium alloy, rough titanium alloy, or PEEK. This in vitro study compared angiogenic factor production and integrin gene expression of human osteoblast-like MG63 cells cultured on PEEK or titanium-aluminum-vanadium (titanium alloy). MG63 cells were grown on PEEK, smooth titanium alloy, or rough titanium alloy. Osteogenic microenvironment was characterized by secretion of osteoprotegerin and transforming growth factor beta-1 (TGF-β1), which inhibit osteoclast activity and angiogenic factors including vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), and angiopoietin-1 (ANG-1). Expression of integrins, transmembrane extracellular matrix recognition proteins, was measured by real-time polymerase chain reaction. Culture on titanium alloy stimulated osteoprotegerin, TGF-β1, VEGF-A, FGF-2, and angiopoietin-1 production, and levels were greater on rough titanium alloy than on smooth titanium alloy. All factors measured were significantly lower on PEEK than on smooth or rough titanium alloy. Culture on titanium alloy stimulated expression of messenger RNA for integrins that recognize Type I collagen in comparison with PEEK. Rough titanium alloy stimulated cells to create an osteogenic-angiogenic microenvironment. The osteogenic-angiogenic responses to titanium alloy were greater than PEEK and greater on rough titanium alloy than on smooth titanium alloy. Surface features regulated expression of integrins important in collagen recognition. These factors may increase bone formation, enhance integration, and improve implant stability in interbody spinal fusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Neutral beam dump with cathodic arc titanium gettering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features amore » new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.« less

  3. On the influence of DC electric fields on the aerosol assisted chemical vapor deposition growth of photoactive titanium dioxide thin films.

    PubMed

    Romero, Luz; Binions, Russell

    2013-11-05

    Titanium dioxide thin films were deposited on fluorine doped tin oxide glass substrate from the electric field assisted aerosol chemical vapor deposition (EACVD) reaction of titanium isopropoxide (TTIP, Ti(OC3H7)4) in toluene on glass substrates at a temperature of 450 °C. DC electric fields were generated by applying a potential difference between the electrodes of the transparent coated oxide coated glass substrates during the deposition. The deposited films were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and UV-vis spectroscopy. The photoactivity and hydrophilicity of the deposited films were also analyzed using a dye-ink test and water-contact angle measurements. The characterization work revealed that the incorporation of DC electric fields produced significant reproducible changes in the film microstructure, preferred crystallographic orientation, roughness, and film thickness. Photocatalytic activity was calculated from the half-time (t1/2) or time taken to degrade 50% of the initial resazurin dye concentration. A large improvement in photocatalytic activity was observed for films deposited using an electric field with a strong orientation in the (004) direction (t1/2 17 min) as compared to a film deposited with no electric field (t1/2 40 min).

  4. Porous material based on spongy titanium granules: structure, mechanical properties, and osseointegration.

    PubMed

    Rubshtein, A P; Trakhtenberg, I Sh; Makarova, E B; Triphonova, E B; Bliznets, D G; Yakovenkova, L I; Vladimirov, A B

    2014-02-01

    A porous material has been produced by pressing spongy titanium granules with subsequent vacuum sintering. The material with porosity of more than 30% has an open system of interconnecting pores. The Young's modulus and 0.2% proof strength have been measured for the samples having 20-55% porosity. If the porosity is between 30 and 45%, the mechanical properties are determined by irregular shape of pores, which is due to spongy titanium granules. The experiment in vivo was performed on adult rabbits. Before surgery the implants were saturated with adherent autologous bone marrow cells. The implants were introduced into the defects formed in the condyles of tibias and femurs. Investigations of osseointegration of implants having 40% porosity showed that the whole system of pores was filled with mature bone tissue in 16 weeks after surgery. Neogenic bone tissue has an uneven surface formed by lacunas and craters indicative of active resorption and subsequent rearrangement (SEM examination). The bone tissue is pierced by neoformed vessels. Irregular-shaped pores with tortuous walls and numerous lateral channels going through the granules provide necessary conditions for the formation of functional bone tissue in the implant volume and the periimplant region. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Are clinical findings of systemic titanium dispersion following implantation explained by available in vitro evidence? An evidence-based analysis.

    PubMed

    Curtin, Justin Paul; Wang, Minji

    2017-08-01

    Although the presence of titanium wear particles released into tissues is known to induce local inflammation following the therapeutic implantation of titanium devices into humans, the role that titanium ions play in adverse tissue responses has received little attention. Support that ongoing titanium ion release occurs is evidenced by the presence of ionic titanium bound to transferrin in blood, and ongoing excretion in the urine of patients with titanium devices. However, as reports documenting the presence of titanium within tissues do not distinguish between particulate and ionic forms due to technical challenges, the degree to which ionic titanium is released into tissues is unknown. To determine the potential for titanium ion release into tissues, this study evaluates available in vitro evidence relating to the release of ionic titanium under physiological conditions. This is a systematic literature review of studies reporting titanium ion release into solutions from titanium devices under conditions replicating the interstitial pH and constituents. Inclusion and exclusion criteria were defined. Of 452 articles identified, titanium ions were reported in nine media relevant to human biology in seventeen studies. Only one study, using human serum replicated both physiological pH and the concentration of constituents while reporting the presence of titanium ions. While there is insufficient information to explain the factors that contribute to the presence of titanium ions in serum of humans implanted with titanium devices, currently available information suggests that areas of future inquiry include the role of transferrin and organic acids.

  6. 40 CFR 471.65 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Zinc 0.713 0.298 Ammonia 65.1 28.6 Fluoride 29.1 12.9 (c) Drawing spent neat oils—Subpart F—PSNS. There... Ammonia 9.59 4.22 Fluoride 4.28 1.90 (f) Extrusion press hydraulic fluid leakage. Subpart F—PSNS Pollutant... off-pounds) of titanium extruded Cyanide 0.052 0.022 Lead 0.075 0.036 Zinc 0.260 0.109 Ammonia 23.7 10...

  7. 40 CFR 471.65 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Zinc 0.713 0.298 Ammonia 65.1 28.6 Fluoride 29.1 12.9 (c) Drawing spent neat oils—subpart F—PSNS. There... Ammonia 9.59 4.22 Fluoride 4.28 1.90 (f) Extrusion press hydraulic fluid leakage. Subpart F—PSNS Pollutant... off-pounds) of titanium extruded Cyanide 0.052 0.022 Lead 0.075 0.036 Zinc 0.260 0.109 Ammonia 23.7 10...

  8. 40 CFR 421.302 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Chlorination off-gas wet air pollution control. BPT Limitations for the Primary and Secondary Titanium... per million pounds) of TiCl4 produced Chromium (total) 0.412 0.168 Lead 0.393 0.187 Nickel 1.797 1.189... Within the range of 7.5 to 10.0 at all times. (b) Chlorination area-vent wet air pollution control. BPT...

  9. 40 CFR 421.302 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Chlorination off-gas wet air pollution control. BPT Limitations for the Primary and Secondary Titanium... per million pounds) of TiCl4 produced Chromium (total) 0.412 0.168 Lead 0.393 0.187 Nickel 1.797 1.189... Within the range of 7.5 to 10.0 at all times. (b) Chlorination area-vent wet air pollution control. BPT...

  10. 40 CFR 471.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Within the range of 7.5 to 10.0 at all times. (p) Alkaline cleaning spent baths. Subpart F—BPT Pollutant... off-pounds) of titanium alkaline cleaned Cyanide 0.070 0.029 Lead 0.101 0.048 Zinc 0.351 0.147 Ammonia....5 to 10.0 at all times. (q) Alkaline cleaning rinse. Subpart F—BPT Pollutant or pollutant property...

  11. 40 CFR 421.305 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496.../kg (pounds per million pounds) of TiCl4 produced Chromium (total) 0.385 0.156 Lead 0.291 0.135 Nickel... monthly average mg/kg (pounds per million pounds) of TiCl4 handled Chromium (total) 0.069 0.028 Lead 0.052...

  12. 40 CFR 421.305 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496.../kg (pounds per million pounds) of TiCl4 produced Chromium (total) 0.385 0.156 Lead 0.291 0.135 Nickel... monthly average mg/kg (pounds per million pounds) of TiCl4 handled Chromium (total) 0.069 0.028 Lead 0.052...

  13. 40 CFR 421.305 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496.../kg (pounds per million pounds) of TiCl4 produced Chromium (total) 0.385 0.156 Lead 0.291 0.135 Nickel... monthly average mg/kg (pounds per million pounds) of TiCl4 handled Chromium (total) 0.069 0.028 Lead 0.052...

  14. Titanium

    USGS Publications Warehouse

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium mining are minimal; however, the processes required to extract titanium from titanium feedstock can produce industrial waste.

  15. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Hirakuri, K. K.; Masuzawa, T.

    2011-04-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.

  16. Grafting strategy to develop single site titanium on an amorphous silica surface.

    PubMed

    Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G

    2009-06-16

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.

  17. Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J

    2009-01-01

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less

  18. Can MRI-only replace MRI-CT planning with a titanium tandem and ovoid applicator?

    PubMed

    Harkenrider, Matthew M; Patel, Rakesh; Surucu, Murat; Chinsky, Bonnie; Mysz, Michael L; Wood, Abbie; Ryan, Kelly; Shea, Steven M; Small, William; Roeske, John C

    2018-06-23

    To evaluate dosimetric differences between MRI-only and MRI-CT planning with a titanium tandem and ovoid applicator to determine if all imaging and planning goals can be achieved with MRI only. We evaluated 10 patients who underwent MRI-CT-based cervical brachytherapy with a titanium tandem and ovoid applicator. High-risk clinical target volume and organs at risk were contoured on the 3D T2 MRI, which were transferred to the co-registered CT, where the applicator was identified. Retrospectively, three planners independently delineated the applicator on the axial 3D T2 MRI while blinded to the CT. Identical dwell position times in the delivered plan were loaded. Dose-volume histogram parameters were compared to the previously delivered MRI-CT plan. There were no significant differences in dose to D 90 or D 98 of the high-risk clinical target volume with MRI vs. MRI-CT planning. MRI vs. MRI-CT planning resulted in mean D 0.1cc bladder of 8.8 ± 3.4 Gy vs. 8.5 ± 3.2 Gy (p = 0.29) and D 2cc bladder of 6.2 ± 1.4 Gy vs. 6.0 ± 1.4 Gy (p = 0.33), respectively. Mean D 0.1cc rectum was 5.7 ± 1.2 Gy vs. 5.3 ± 1.2 Gy (p = 0.03) and D 2cc rectum 4.0 ± 0.8 Gy vs. 4.2 ± 1.0 Gy (p = 0.18), respectively. Mean D 0.1cc sigmoid was 5.2 ± 1.3 Gy vs. 5.4 ± 1.6 Gy (p = 0.23) and D 2cc sigmoid 3.9 ± 1.0 Gy vs. 4.0 ± 1.1 Gy (p = 0.18), respectively. There were no clinically significant dosimetric differences between the MRI and MRI-CT plans. This study demonstrates that cervical brachytherapy with a titanium applicator can be planned with MRI alone, which is now our clinical standard. Copyright © 2018. Published by Elsevier Inc.

  19. Computer Simulation Studies of Sputtering and Multimer Formation from Clean and Oxygen Reacted Surfaces of Titanium, Vanadium and Niobium.

    DTIC Science & Technology

    1983-12-01

    100 - - 75 IP - - - Ti TFB 64 - - 92 100 100 - - - Ti TF(A+B) 82 - - 84 50 100 - - - C(2x2) Ti ATOP - - - 98 50 - - - V ATOP 56 - - 81 67 iP - 100 100...Nb ATOP 100 100 - 74 40 - X X - Ti BR 40 - - 92 100 100 IP IP - Ti TRA 33 - - 80 50 - - - Ti TFB 86 X - 73 100 - 50 - - Ti TR(A+B) 60 x - 77 75 - 50...NOTE: A tack (-) indicates that the species was not formed, while "X" indicates that none were formed by frag- mentation. IP indicates that only

  20. Research on tool wearing on milling of TC21 titanium alloy

    NASA Astrophysics Data System (ADS)

    Guilin, Liu

    2017-06-01

    Titanium alloys are used in aircraft widely, but the efficiency is a problem for machining titanium alloy. In this paper, the cutting experiment of TC21 titanium alloy was studied. Cutting parameters and test methods for TC21 titanium alloy were designed. The wear behavior of TC21 titanium alloy was studied based on analysis of orthogonal test results. It provides a group of cutting parameters for TC21 titanium alloy processing.

  1. [Cr-Ti-Al-N complex coating on titanium to strengthen Ti/porcelain bonding].

    PubMed

    Zhang, Hui; Guo, Tian-wen; Li, Jun-ming; Pan, Jing-guang; Dang, Yong-gang; Tong, Yu

    2006-02-01

    To study the feasibility of magnetron sputtering Cr-Ti-Al-N complex coating as an interlayer on titanium to enhance the titanium-ceramic binding strength. With a three-point bending test according to ISO 9693, the binding strength of Duceratin (Degussa) to titanium substrate prepared with 4 different surface treatments (polishing, polishing and megnetron sputtering Cr, Ti, Al, and N complex coating, sandblasting, sandblasting and coating) was evaluated. Ti/porcelain interface and fractured Ti surface were examined using scanning electron microscopy with energy-dispersive spectrometry (EDS). The binding strength of polished and coated titanium/Duceratin was significantly higher than polished titanium group (P<0.05). The binding strength of sandblasted and coated titanium/Duceratin did not differ significantly from that of sandblasted titanium group (P>0.05), and the strength in the two sandblasted titanium groups was significantly higher than that in polished and coated titanium group (P<0.05). Megnetron sputtering Cr-Ti-Al-N complex on polished titanium can increase the titanium/porcelain binding strength. Megnetron sputtering coating is a promising Ti/porcelain interlayer.

  2. Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching

    NASA Astrophysics Data System (ADS)

    Zhao, Longsheng; Wang, Lina; Qi, Tao; Chen, Desheng; Zhao, Hongxin; Liu, Yahui; Wang, Weijing

    2018-05-01

    Acid-leaching behaviors of the titanium slag obtained by selective reduction of vanadium-bearing titanomagnetite concentrates were investigated. It was found that the optimal leaching of titanium and silicon were 0.7% and 1.5%, respectively. The titanium and silicon in the titanium slag were firstly dissolved in the acidic solution to form TiO2+ and silica sol, and then rapidly reprecipitated, forming hydrochloric acid (HCl) leach residue. Most of the silicon presented in the HCl leach residue as floccules-like silica gel, while most of the titanium was distributed in the nano-sized rod-like clusters with crystallite refinement and intracrystalline defects, and, as such, 94.3% of the silicon was leached from the HCl leach residue by alkaline desilication, and 96.5% of the titanium in the titanium-rich material with some rutile structure was then digested by the concentrated sulfuric acid. This provides an alternative route for the comprehensive utilization of titanium and silicon in titanium slag.

  3. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A., E-mail: aelmusta@odu.edu; Taus, Rhys

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  4. Effect of plasma welding parameters on the flexural strength of Ti-6Al-4V alloy.

    PubMed

    Lyra e Silva, João Paulo; Fernandes Neto, Alfredo Júlio; Raposo, Luís Henrique Araújo; Novais, Veridiana Resende; de Araujo, Cleudmar Amaral; Cavalcante, Luisa de Andrade Lima; Simamoto Júnior, Paulo Cezar

    2012-01-01

    The aim of this study was to assess the effect of different plasma arc welding parameters on the flexural strength of titanium alloy beams (Ti-6Al-4V). Forty Ti-6Al-4V and 10 NiCr alloy beam specimens (40 mm long and 3.18 mm diameter) were prepared and divided into 5 groups (n=10). The titanium alloy beams for the control group were not sectioned or subjected to welding. Groups PL10, PL12, and PL14 contained titanium beams sectioned and welded at current 3 A for 10, 12 or 14 ms, respectively. Group NCB consisted of NiCr alloy beams welded using conventional torch brazing. After, the beams were subjected to a three-point bending test and the values obtained were analyzed to assess the flexural strength (MPa). Statistical analysis was carried out by one-way ANOVA and Tukey's HSD test at 0.05 confidence level. Significant difference was verified among the evaluated groups (p<0.001), with higher flexural strength for the control group (p<0.05). No significant differences was observed among the plasma welded groups (p>0.05). The NCB group showed the lowest flexural strength, although it was statistically similar to the PL 14 group (p>0.05). The weld depth penetration was not significantly different among the plasma welded groups (p=0.05). Three representative specimens were randomly selected to be evaluated under scanning electron microcopy. The composition of the welded regions was analyzed by energy dispersive X-ray spectroscopy. This study provides an initial set of parameters supporting the use of plasma welding during fabrication of titanium alloy dental frameworks.

  5. Effect of Bonding Agent Application Method on Titanium-Ceramic Bond Strength.

    PubMed

    Curtis, Joseph G; Dossett, Jon; Prihoda, Thomas J; Teixeira, Erica C

    2015-07-01

    Although milled titanium may be used as a substructure in fixed and implant prosthodontics, the application of the veneering porcelain presents particular challenges compared to traditional alloys. To address these challenges, some Ti ceramic systems incorporate the application of a bonding agent prior to the opaque layer. Vita Titankeramik's bonding agent is available as a powder, paste, and spray-on formulation. We examined the effect of these three application methods on the bond strength. Four titanium bars were milled from each of 11 wafers cut from grade II Ti using the Kavo Everest milling unit and a custom-designed milling toolpath. An experienced technician prepared the 25 × 3 × 0.5 mm(3) metal bars and applied bonding agent using one of three application methods, and then applied opaque, dentin, and enamel porcelains according to manufacturer's instructions to a 8 × 3 × 1 mm(3) porcelain. A control group received no bonding agent prior to porcelain application. The four groups (n = 11) were blindly tested for differences in bond strength using a universal testing machine in a three-point bend test configuration, based on ISO 9693-1:2012. The average (SD) bond strengths for the control, powder, paste, and spray-on groups, respectively, were: 24.8 (2.6), 24.6 (2.6), 25.3 (4.0), and 24.1 (3.9) MPa. One-way ANOVA and Tukey's multiple comparison tests were performed between all groups. There were no statistically significant differences among groups (p = 0.951). Titanium-porcelain bond strength was not affected by the use of a bonding agent or its application method when tested by ISO 9693-1 standard. © 2014 by the American College of Prosthodontists.

  6. Conduction mechanism in bismuth silicate glasses containing titanium

    NASA Astrophysics Data System (ADS)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  7. Heating of metallic implants and instruments induced by gradient switching in a 1.5-Tesla whole-body unit.

    PubMed

    Graf, Hansjörg; Steidle, Günter; Schick, Fritz

    2007-11-01

    To examine gradient switching-induced heating of metallic parts. Copper and titanium frames and sheets ( approximately 50 x 50 mm(2), 1.5 mm thick, frame width = 3 mm) surrounded by air were positioned in the scanner perpendicular to the static field horizontally 20 cm off-center. During the execution of a sequence (three-dimensional [3D] true fast imaging with steady precession [True-FISP], TR = 6.4 msec) exploiting the gradient capabilities (maximum gradient = 40 mT/m, maximum slew rate = 200 T/m/second), heating was measured with an infrared camera. Radio frequency (RF) amplitude was set to zero volts. Heating of a copper frame with a narrowing to 1 mm over 20 mm at one side was examined in air and in addition surrounded by several liters of gelled saline using fiber-optic thermography. Further heating studies were performed using an artificial hip made of titanium, and an aluminum replica of the hip prosthesis with the same geometry. For the copper specimens, considerable heating (>10 degrees C) in air and in gelled saline (>1.2 degrees C) could be observed. Heating of the titanium specimens was markedly less ( approximately 1 degrees C in air). For the titanium artificial hip no heating could be detected, while the rise in temperature for the aluminum replica was approximately 2.2 degrees C. Heating of more than 10 degrees C solely due to gradient switching without any RF irradiation was demonstrated in isolated copper wire frames. Under specific conditions (high gradient duty cycle, metallic loop of sufficient inductance and low resistance, power matching) gradient switching-induced heating of conductive specimens must be considered.

  8. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal B.

    Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.

  9. Preparation of metal diboride powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  10. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  11. The hydrogen embrittlement of titanium-based alloys

    NASA Astrophysics Data System (ADS)

    Tal-Gutelmacher, Ervin; Eliezer, Dan

    2005-09-01

    Titanium-based alloys provide an excellent combination of a high strength/weight ratio and good corrosion behavior, which makes these alloys among the most important advanced materials for a variety of aerospace, marine, industrial, and commercial applications. Although titanium is considered to be reasonably resistant to chemical attack, severe problems can arise when titanium-based alloys come in contact with hydrogen-containing environments, where they can pick up large amounts of hydrogen, especially at elevated temperatures. The severity and the extent of the hydrogen interaction with titanium-based alloys are directly related to the microstructure and composition of the titanium alloys. This paper addresses the hydrogen embrittlement of titanium-based alloys. The hydrogen-titanium interaction is reviewed, including the solubility of hydrogen in α and β phases of titanium and hydride formation. Also, the paper summarizes the detrimental effects of hydrogen in different titanium alloys.

  12. Facile one-pot synthesis of nickel-incorporated titanium dioxide/graphene oxide composites: Enhancement of photodegradation under visible-irradiation

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Truc; Nguyen-Huy, Chinh; Shin, Eun Woo

    2016-07-01

    Nickel (Ni)-incorporated titanium dioxide (TiO2)/graphene oxide composite photocatalysts were prepared by anchoring the TiO2 and Ni onto the surface of graphene oxide (GO) sheets by a straightforward microwave-assisted, one-pot method for the first time. The as-prepared composite photocatalysts with high Ni content (40-50 wt%) showed good adsorption capacity in the dark and high reaction rate constants under visible illumination while the composite photocatalysts with low Ni content (5-10 wt%) exhibited weak activity. An anatase phase, a small amount of rutile phase and Ni metal were detected using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Raman measurements identified a small fraction of NiTiO3 only at high Ni content. The formation of NiTiO3 and the increase in the specific surface area (SSA) for 40 and 50 wt% Ni-loaded catalysts improved the adsorption capacity and photocatalytic activity upon exposure to visible light, resulting in very effective removal of dye contaminants under visible light irradiation. Increasing the Ni content up to 40 and 50 wt% induced not only a structural change affording high porosity but also a narrowing of the band gap to 2.51 eV. Meanwhile, the presence of GO in the composite photocatalysts inhibited the agglomeration of Ni particles even at high Ni content, resulting in similar Ni particle sizes regardless of the Ni content. At the same time, Ni metal accelerated the reduction of the GO sheets, as evidenced by the Raman data.

  13. Implant Fixture Heat Transfer During Abutment Preparation.

    PubMed

    Aleisa, Khalil; Alkeraidis, Abdullah; Al-Dwairi, Ziad Nawaf; Altahawi, Hamdi; Lynch, Edward

    2015-06-01

    The purpose of the study was to evaluate the effect of water flow rate on the heat transmission in implants during abutment preparation using a diamond bur in a high-speed dental turbine. Titanium-alloy abutments (n = 32) were connected to a titanium-alloy implant embedded in an acrylic resin within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each) according to the water flow rate used during the preparation phase. Group 1 had a water flow rate of 24 mL/min, and group 2 had a water flow rate of 40 mL/min. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute with a coarse tapered diamond bur using a high-speed dental handpiece. Thermocouples embedded at the cervix of the implant surface were used to record the temperature of heat transmission from the abutment preparation. Heat generation was measured at 3 distinct times (immediately and 30 seconds and 60 seconds after the end of preparation). Statistical analyses were carried out using 2-way analysis of variance and the Student t test. Water flow rates (24 mL vs 40 mL) and time interval had no statistically significant effect on the implant's temperature change during the abutment preparation stage (P = .431 and P = .064, respectively). Increasing the water flow rate from 24 to 40 mL/min had no influence on the temperature of the implant fixture recorded during preparation of the abutment.

  14. Air Augmented Rocket Propulsion Concepts

    DTIC Science & Technology

    1988-04-01

    T’S systems is hybrid lrPS systems which are a combination of external insulation with the two remaining types of TPS systems. The key considerations...atmosphere. HYBRID SYSTEMS are systems which employ high temperature external insulation in the stagnation regior of the vehicle and a metallic system...good possibility of reducing weight by up to 40% in selective high temperature areas by using the SuperA~loy and hybrid SuperAlloy/Titanium multiwall TPS

  15. Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh

    PubMed Central

    Rostampour, Masoumeh; Roayaei, Mahnaz

    2014-01-01

    Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a 16% decrease in dose. For both 6 and 10 MeV, before the titanium mesh, there was always an increase in dose. If titanium mesh is placed in buildup region, it causes an increase of the dose and could lead to overdose of the adjacent tissue, whereas if titanium mesh is placed beyond the buildup region, it would lead to a decrease in dose compared to the homogenous tissue. PACS number: 87.53.Bn PMID:25207397

  16. Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content

    NASA Astrophysics Data System (ADS)

    Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.

    2015-02-01

    The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.

  17. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    PubMed Central

    Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro

    2016-01-01

    Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite deposition may be a novel method to effectively enhance micro-roughened titanium surfaces without altering their microscale morphology. PMID:26834469

  18. [The surface roughness analysis of the titanium casting founding by a new titanium casting investment material].

    PubMed

    Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng

    2012-04-01

    To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P < 0.05]. The surfaces of titanium cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.

  19. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    PubMed

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  20. The crevice corrosion of cathodically modified titanium in chloride solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingen, E. van der

    1995-12-01

    The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less

  1. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    PubMed

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  2. Comparison of titanium mesh implants with PLA-hydroxyapatite coatings for maxillofacial cancer reconstruction

    NASA Astrophysics Data System (ADS)

    Tverdokhlebov, S. I.; Choinzonov, E. L.; Kolokolova, O. V.; Cherdyntseva, N. V.

    2016-08-01

    Since 2013 physics of TPU and oncologists from the TCRI with participation of the "ConMet" company (Moscow) and the "Sintel" company (Tomsk Special Economic Zone resident) have been working on the theme entitled "Development of the composite implants for reconstructive surgery of a craniofacial areas of the traumatological and oncological patients" supported with the Federal Program "R&D, part 1.3". The goal was to develop the maxillo-facial implants on the basis of the transformable titanium mesh with PLA & hydroxyapatite coating. According to the Contract No. 14.578.21.0031, the team of developers had to start supplying these advanced implants to the industrial partners up to 2017. This research was supported with the preliminary market researches by the ISPMS SB RAS and the TP "MF". The stages of preliminary market researches were: 1) research of the Worldwide CMF market; 2) forecasting the BRIC CMF market up to 2020; 3) the total Russian market (epidemiology) estimation as a sum of official calculations and statistics; 4) looking for the best foreign analogue prices, comparing their and our implant properties; 5) search for the best Russian analogues; 6) the investigation of the world patent database Espacenet for the last years, and finding the owners and applicants of patents of CMF osteosynthesis plates on the basis of titanium coated with PLA & hydroxyapatite; 7) comparison of the domestic implants, and making conclusions. Several variants of the meshes have got the equal quality with the best foreign and Russian implants. The closest analogues were titanium, polyethylene, PEEK composite meshes suited to the patient shape by the Synthes company in 2014, and the only hybrid titanium "Grey" implant with layers of gelatin, dextran, collagen, HAP & BMP-2 was found. This implant was produced by Russian institution, and it was mentioned in the report on clinical trials by L.A. Pavlova et al., 2014 [1]. There are no manufacturers of the coated implants in Russia. The average price of the similar foreign implants varies from 12 up to 40 USA per 1 cm2. It may be concluded that our implant is of the same quality as the best Russian and foreign implants.

  3. Comparison of the amount of transportation when using a precurved instrument in a sonic handpiece vs. nickel-titanium rotary files.

    PubMed

    Spradley, James W; Eleazer, Paul D

    2010-01-01

    Three-dimensional cleaning of the root canal system along its basic shape is one of the main goals in endodontics. A sonic handpiece is a helpful adjunct that can aid in accomplishing this goal; however, its use has been limited due to the risk of transporting the apices' original position. Precurving sonic files may reduce transportation. For this study, 35 plastic blocks were randomly assigned to two groups, one of which (n = 16) was instrumented by nickel-titanium rotary files (to a size 40), while the second group (n = 18) was instrumented by a sonic handpiece with precurved files. Similar blocks were instrumented with noncurved sonic files and used as controls. Radiographs taken before and after instrumentation were compared. Of the 18 apices instrumented by the sonic handpiece with precurved files, seven were not transported. By comparison, 8 of the 16 apices instrumented by nickel-titanium files did not transport. When transportation did occur, it was less than 0.5 mm for either technique. The control blocks instrumented by the sonic handpiece with straight files were transported significantly. An ANOVA with a post hoc Tukey's test showed no statistically significant difference between the file systems. Based on the results, precurving sonic files to match the canal contour may allow for efficient cleaning without undue transportation.

  4. Coating with a Modular Bone Morphogenetic Peptide Promotes Healing of a Bone-Implant Gap in an Ovine Model

    PubMed Central

    Lu, Yan; Lee, Jae Sung; Nemke, Brett; Graf, Ben K.; Royalty, Kevin; Illgen, Richard; Vanderby, Ray; Markel, Mark D.; Murphy, William L.

    2012-01-01

    Despite the potential for growth factor delivery strategies to promote orthopedic implant healing, there is a need for growth factor delivery methods that are controllable and amenable to clinical translation. We have developed a modular bone growth factor, herein termed “modular bone morphogenetic peptide (mBMP)”, which was designed to efficiently bind to the surface of orthopedic implants and also stimulate new bone formation. The purpose of this study was to coat a hydroxyapatite-titanium implant with mBMP and evaluate bone healing across a bone-implant gap in the sheep femoral condyle. The mBMP molecules efficiently bound to a hydroxyapatite-titanium implant and 64% of the initially bound mBMP molecules were released in a sustained manner over 28 days. The results demonstrated that the mBMP-coated implant group had significantly more mineralized bone filling in the implant-bone gap than the control group in C-arm computed tomography (DynaCT) scanning (25% more), histological (35% more) and microradiographic images (50% more). Push-out stiffness of the mBMP group was nearly 40% greater than that of control group whereas peak force did not show a significant difference. The results of this study demonstrated that mBMP coated on a hydroxyapatite-titanium implant stimulates new bone formation and may be useful to improve implant fixation in total joint arthroplasty applications. PMID:23185610

  5. Effects of pore size, implantation time and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants

    PubMed Central

    Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2013-01-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all 3 types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4–6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p<0.05). Only one case of infection was observed (infection rate 2.9%). Small and Nano groups showed the same implant extrusion rate which was lower than the Large group rate (0.06±0.01 vs. 0.16 ± 0.02 cm/week; p<0.05). Ingrowth area was comparable in the Small, Large and Nano implants. However, qualitatively, the Nano implants showed greatest cellular inhabitation within first three weeks. We concluded that percutaneous porous titanium implants allow for skin integration with the potential for a safe seal. PMID:23703928

  6. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    PubMed

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  7. SURFACE HARDENING OF TITANIUM BY TREATMENT IN MOLTEN BORAX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minkevich, A.N.; Shul'ga, Yu.N.

    1957-01-01

    The surface hardening of titanium and titanium alloys by treatment in molten borax was investigated. Commercial titanium, a titanium-tungsten alloy, and an aluminum-chromium-titanium alloy were used for the experiments. To prevent oxidation of the titanium and to protect the surface, electro-chemical protection was applied, the current density being 0.1 amp/cm/sup 2/ and the the specimens were coated with a thin layer of borax. The results showed that treatment in molten borax is an effective method of increasing surface hardness. However, the strength, mmalleabiltiy, and toughness of the hardness increase is discussed. (J.S.R.)

  8. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  9. Method for Surface Texturing Titanium Products

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1998-01-01

    The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.

  10. Formation of low resistivity titanium silicide gates in semiconductor integrated circuits

    DOEpatents

    Ishida, Emi [Sunnyvale, CA

    1999-08-10

    A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.

  11. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    PubMed Central

    Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David

    2014-01-01

    While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165

  12. Electrical characteristic of the titanium mesh electrode for transcutaneous intrabody communication to monitor implantable artificial organs.

    PubMed

    Okamoto, Eiji; Kikuchi, Sakiko; Mitamura, Yoshinori

    2016-09-01

    We have developed a tissue-inducing electrode using titanium mesh to obtain mechanically and electrically stable contact with the tissue for a new transcutaneous communication system using the human body as a conductive medium. In this study, we investigated the electrical properties of the titanium mesh electrode by measuring electrode-tissue interface resistance in vivo. The titanium mesh electrode (Hi-Lex Co., Zellez, Hyogo, Japan) consisted of titanium fibers (diameter of 50 μm), and it has an average pore size of 200 μm and 87 % porosity. The titanium mesh electrode has a diameter of 5 mm and thickness of 1.5 mm. Three titanium mesh electrodes were implanted separately into the dorsal region of the rat. We measured the electrode-electrode impedance using an LCR meter for 12 weeks, and we calculated the tissue resistivity and electrode-tissue interface resistance. The electrode-tissue interface resistance of the titanium mesh electrode decreased slightly until the third POD and then continuously increased to 75 Ω. The electrode-tissue interface resistance of the titanium mesh electrode is stable and it has lower electrode-tissue interface resistance than that of a titanium disk electrode. The extracted titanium mesh electrode after 12 weeks implantation was fixed in 10 % buffered formalin solution and stained with hematoxylin-eosin. Light microscopic observation showed that the titanium mesh electrode was filled with connective tissue, inflammatory cells and fibroblasts with some capillaries in the pores of the titanium mesh. The results indicate that the titanium mesh electrode is a promising electrode for the new transcutaneous communication system.

  13. Titanium Brazing for Structures and Survivability

    DTIC Science & Technology

    2007-05-01

    materials, such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of...such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of processing...Suzumura, and Onzawa, reported the joining of Ti- 6Al - 4V and CP titanium alloys with zirconium-rich braze alloys.5 They found that these alloys could

  14. Laminate armor and related methods

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M

    2013-02-26

    Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.

  15. Titanium: Industrial Base, Price Trends, and Technology Initiatives

    DTIC Science & Technology

    2009-01-01

    respectively.3 All titanium metal production begins with rutile (titanium oxide, or TiO2). High-titania slag , produced by ilmen- ite smelting, is the first...Ilmenite ores are used in iron production. They leave a TiO2-rich slag , which is usually upgraded to be used in titanium production. 4 According to the...and least expensive process for producing titanium sponge, has four major steps. First, rutile con- centrate or synthetic rutile (titanium slag ) is

  16. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    PubMed

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1999-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  18. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1998-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  19. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, S.J.; White, J.C.

    1998-08-04

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

  20. Ball bearings comprising nickel-titanium and methods of manufacture thereof

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2012-01-01

    Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.

  1. Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muth, T. R.; Mayer, R.

    2012-05-04

    Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supplymore » of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.« less

  2. Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer.

    PubMed

    Luo, Yong; Ge, Shirong; Liu, Hongtao; Jin, Zhongmin

    2009-12-11

    Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.

  3. Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base.

    PubMed

    Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2001-02-01

    The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.

  4. 40 CFR 421.303 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496... average mg/kg (pounds per million pounds) of TiCl4 produced Chromium (total) 0.385 0.156 Lead 0.291 0.135... Maximum for monthly average mg/kg (pounds per million pounds) of TiCl4 handled Chromium (total) 0.069 0...

  5. 40 CFR 421.303 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496... average mg/kg (pounds per million pounds) of TiCl4 produced Chromium (total) 0.385 0.156 Lead 0.291 0.135... Maximum for monthly average mg/kg (pounds per million pounds) of TiCl4 handled Chromium (total) 0.069 0...

  6. 40 CFR 421.303 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pounds) of TiCl4 produced Chromium (total) 0.346 0.140 Lead 0.262 0.122 Nickel 0.515 0.346 Titanium 0.496... average mg/kg (pounds per million pounds) of TiCl4 produced Chromium (total) 0.385 0.156 Lead 0.291 0.135... Maximum for monthly average mg/kg (pounds per million pounds) of TiCl4 handled Chromium (total) 0.069 0...

  7. Metal/Dielectric Multilayers for High Resolution Imaging

    DTIC Science & Technology

    2012-08-07

    of a silicon waveguide coated by thin metal film. The proposed PWG structure consists of narrow silicon waveguide clad by gold film without top...where the waveguide thickness is 220nm and the lower oxide cladding is 2μm. The device consists of main waveguide (of waveguide width WSOI=450nm...evaporation, where 3nm thick titanium was used as adhesion layer before 40nm gold deposition took place. Finally, the samples were spun coated with

  8. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy. Number 40.

    DTIC Science & Technology

    1976-11-01

    means of increasing the deformability of two- phase martensite - ferrite steels during subsequent cold rolling, as well as austenite- ferrite steels ...carbon steel , VT-4 titanium alloy and M-l copper . The specimens were placed in July 1972 and removed in April 1974. Tables are given summarizing...between the degree of development of the a -*• y conversion at the deformation focus in steels of the martensite - ferrite class and the position of

  9. Bactericidal effect of the photocatalystic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm.

    PubMed

    Kim, Chan-Hee; Lee, Eun-Song; Kang, Si-Mook; de Josselin de Jong, Elbert; Kim, Baek-Il

    2017-06-01

    The aim of this study was to determine the effect of titanium dioxide (TiO 2 ) photocatalysis induced by the application of clinically acceptable visible light at 405nm on the growth of Streptococcus mutans biofilms. S. mutans biofilms were grown on a hydroxyapatite (HA) disk and deposited in a rutile-type TiO 2 solution at a concentration of 0.1mg/mL. TiO 2 photocatalysis was measured for exposure to visible light (405nm) and ultraviolet (UV) light (254nm) produced by light-emitting diodes for 10, 20, 30, and 40min. After two treatments, the number of colonies formed in the final S. mutans biofilm on the HA disk were measured to confirm their viability, and the morphological changes of S. mutans were evaluated using scanning electronic microscopy. The bactericidal effects of 254- and 405-nm light resulted in > 5-log and 4-log reductions, respectively (p<0.05), after 20min of treatment and a>7-log reduction after 40min of treatment in both treatment groups relative to the control group. It was confirmed that the antibacterial effect could be shown by causing the photocatalytic reaction of TiO 2 in S. mutans biofilm even at the wavelength of visible light (405nm) as at the wavelength of ultraviolet light (254nm). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Healing at the Interface Between Autologous Block Bone Grafts and Recipient Sites Using n-Butyl-2-Cyanoacrylate Adhesive as Fixation: Histomorphometric Study in Rabbits.

    PubMed

    De Santis, Enzo; Silva, Erick Ricardo; Martins, Evandro Neto Carneiro; Favero, Riccardo; Botticelli, Daniele; Xavier, Samuel Porfirio

    2017-12-01

    The aim of the present split-mouth (split-plot) study was to describe the sequential healing in the interface between autologous bone grafts and recipient parent bone, fixed using an n-butyl-2-cyanoacrylate adhesive with or without an additional titanium fixation screw. Bone grafts were collected from the calvaria and fixed to the lateral aspect of the mandible in 24 rabbits. The cortical layers of the recipient sites were perforated, and the grafts were randomly fixed using an n-butyl-2-cyanocrylate adhesive, either alone or in conjunction with a 1.5 mm × 6.0 mm titanium fixation screw. The animals were sacrificed after 3, 7, 20, and 40 days, and histomorphometric evaluations of the interface between graft and parent bone were performed. Only 2 of 6 grafts in each group were partially incorporated to the parent bone after 40 days of healing. The remaining grafts were separated from the parent bone by adhesive and connective tissue. It was concluded that the use of n-butyl-2-cyanoacrylate as fixation of an autologous bone graft to the lateral aspect of the mandible was able to maintain the fixation over time but did not incorporate the graft to the recipient sites. Use of fixation screws did not improve the healing.

  11. Improving the Cell Viability and Isolating Precision of Laser-induced Forward Transfer Process by Maintaining a Proper Environment with a Microchip.

    PubMed

    Deng, Yu; Huang, Zhigang; Wang, Wenbing; Chen, Yinghuai; Guo, Zhongning; Chen, Ying

    2017-01-01

    Aiming to improve the laser-induced forward transfer (LIFT) cell isolation process, a polydimethylsiloxane (PDMS) layer with micro-hole arrays was employed to improve the cell separation precision, and a microchip with heater was developed to maintain the working area at 100% humidity and 37°C with the purpose to preserve the viability of the isolated cells. A series of experiments were conducted to verify the contributions of the optimization to LIFT cell isolation process as well as to study the effect of laser pulse energy, laser spot size and the titanium thickness on cell isolation. With 40µm laser spot size and 40nm thick of titanium, laser energy threshold for 100% single cell isolating succeed ratio is 7µJ. According to the staining images and proliferation ratios, the chip did help to improve the cell availability and the cells can recover from the juries at least a day earlier comparing to the samples processed without the chip. With a Lattice Boltzmann model, the cell isolation process is numerically studied and it turns out that the micro-hole makes the isolation process shift to a micro-syringe injection model leading to the lower laser energy threshold for cell separation and fewer injuries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. [Values of the micronucleus test on animal epithelial cells exposed to titanium dioxide].

    PubMed

    Iurchenko, V V; Krivtsova, E K; Iuretseva, N A; Tul'skaia, E A; Mamonov, R A; Zholdakova, Z I; Sinitsyna, O O; Mal'tseva, M M; Pankratova, G P; Sycheva, L P

    2011-01-01

    The genetic safety of titanium dioxide (TD)-containing foods and cosmetic products has been little investigated. The study evaluated the mutagenic activity of TD in the micronucleus test with animal visceral mucosal epithelial cells. Two simethicone-coated anatase samples (mean size 160 and 33.2 nm) were inserted into the mouse stomach in doses of 40-200-1000 mg/kg seven times and applied as an ingredient of 10 and 25% cream (doses 250 and 625 mg/kg, respectively) to the hair-sheared rat skin once for 4 hours. Analysis of cytogenetic disorders (micronuclei, protrusions, and the atypical form of the nucleus) revealed no mutagenic properties of TD on the mucosal epithelium of the mouse and rat intestine, mouse prostomach, and rat uterine bladder. Enhanced mitotic activity was observed in all the study tissues after exposure of both samples to TD given in some or in all (in the rat urinary bladder mucosal epithelium) doses.

  13. Titanium Mesh Reconstruction of Orbital Roof Fracture with Traumatic Encephalocele: A Case Report and Review of Literature

    PubMed Central

    Mokal, Nitin J.; Desai, Mahinoor F.

    2012-01-01

    Orbital roof fractures are rare. Traumatic encephaloceles in the orbital cavity are even rarer, with only 21 cases published to date. Orbital roof fractures are generally encountered in males between 20 and 40 years of age following automobile collision. We report a case of an orbital roof fracture with traumatic encephalocele into the left orbit. Early diagnosis and treatment are very important because the raised intraorbital pressure may irreversibly damage the optic nerve. Computed tomography with 3-D reconstruction, the imaging modality of choice, showed the displaced fracture fragment deep into the orbit. Reconstruction of the orbital roof should be performed in every case. We used an extracranial approach to elevate the fracture with titanium mesh to stabilize the fragment. The cosmetic results were excellent but delay in treatment was responsible for delayed recovery of vision. The case report is followed by a brief overview of orbital roof fractures including pertinent review of literature. PMID:23450105

  14. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    NASA Astrophysics Data System (ADS)

    Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.

    2012-12-01

    Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  15. An improved polymeric sponge replication method for biomedical porous titanium scaffolds.

    PubMed

    Wang, Chunli; Chen, Hongjie; Zhu, Xiangdong; Xiao, Zhanwen; Zhang, Kai; Zhang, Xingdong

    2017-01-01

    Biomedical porous titanium (Ti) scaffolds were fabricated by an improved polymeric sponge replication method. The unique formulations and distinct processing techniques, i.e. a mixture of water and ethanol as solvent, multiple coatings with different viscosities of the Ti slurries and centrifugation for removing the extra slurries were used in the present study. The optimized porous Ti scaffolds had uniform porous structure and completely interconnected macropores (~365.1μm). In addition, two different sizes of micropores (~45.4 and ~6.2μm) were also formed in the skeleton of the scaffold. The addition of ethanol to the Ti slurry increased the compressive strength of the scaffold by improving the compactness of the skeleton. A compressive strength of 83.6±4.0MPa was achieved for a porous Ti scaffold with a porosity of 66.4±1.8%. Our cellular study also revealed that the scaffolds could support the growth and proliferation of mesenchymal stem cells (MSCs). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures

    DTIC Science & Technology

    2005-03-01

    size of the interphase [22-24]. Yang and Jeng [45], in a study of the titanium aluminides Ti-24-11 and Ti-25-10, and a metastable beta titanium Ti-15-3... Titanium Aluminide Matrix Composites," Workshop proceedings on Titanium Matrix Components, P.R. Smith and W.C. Revelos, eds., Wright-Patterson AFB...Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures Final Report

  17. Titanium disilicide formation by sputtering of titanium on heated silicon substrate

    NASA Astrophysics Data System (ADS)

    Tanielian, M.; Blackstone, S.

    1984-09-01

    We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated

  18. Utilization of gas-atomized titanium and titanium-aluminide powder

    NASA Astrophysics Data System (ADS)

    Moll, John H.

    2000-05-01

    A gas-atomization process has been developed producing clean, high-quality, prealloyed spherical titanium and titanium-aluminide powder. The powder is being used to manufacture hot-isostatically pressed consolidated shapes for aerospace and nonaerospace allocations. These include gamma titanium-aluminide sheet and orthorhombic titanium-aluminide wire as well as niche markets, such as x-ray drift standards and sputtering targets. The powder is also being used in specialized processes, including metal-matrix composites, laser forming, and metal-injection molding.

  19. Investigation on the Oxidation and Reduction of Titanium in Molten Salt with the Soluble TiC Anode

    NASA Astrophysics Data System (ADS)

    Wang, Shulan; Wan, Chaopin; Liu, Xuan; Li, Li

    2015-12-01

    To reveal the oxidation process of titanium from TiC anode and the reduction mechanism of titanium ions in molten NaCl-KCl, the polarization curve of TiC anode in molten NaCl-KCl and cyclic voltammograms of the molten salt after polarization were studied. Investigation on the polarization curve shows that titanium can be oxidized and dissociated from the TiC anode at very low potential. The cyclic voltammograms demonstrated that the reduction reaction of titanium ions in the molten salt is a one-step process. By potentiostatic electrolysis, dendritic titanium is obtained on the steel plate. The work promotes the understanding on the process of electrochemical oxidization/dissociation of titanium from TiC anode and the reduction mechanism of titanium ions in molten salt.

  20. Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-08-01

    Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.

  1. Molecular genetic and biochemical responses in human airway epithelial cell cultures exposed to titanium nanoparticles in vitro.

    PubMed

    Aydın, Elanur; Türkez, Hasan; Hacımüftüoğlu, Fazıl; Tatar, Abdulgani; Geyikoğlu, Fatime

    2017-07-01

    Titanium nanoparticles (NPs) have very wide application areas such as paint, cosmetics, pharmaceuticals, and biomedical applications. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly titanium (as titanium carbide, titanium carbo-nitride, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, titanium silicon oxide) NPs in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these NPs. HPAEpiC and HPPC cells were treated with titanium (0-100 µg/mL), NPs for 24 and 48 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT), uptake of neutral red (NR) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT, NR and LDH assays, all tested NPs induced cytotoxicity on both HPAEpiC and HPPC cells in a time- and dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, titanium NPs showed more changes in genes related to DNA damage or repair, oxidative stress, and apoptosis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2056-2064, 2017. © 2017 Wiley Periodicals, Inc.

  2. In-vitro assessment of oxidative stress generated by orthodontic archwires.

    PubMed

    Spalj, Stjepan; Mlacovic Zrinski, Magda; Tudor Spalj, Vedrana; Ivankovic Buljan, Zorana

    2012-05-01

    Several metals undergo redox cycling, producing free radicals and generating oxidative stress. The purpose of this study was to investigate in-vitro oxidative stress of orthodontic archwires made of various alloys. Mouse fibroblast cells L929 were exposed to 6 types of archwires, and the concentration of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine in DNA was evaluated. Trypan blue dye was used in the determination of cell viability and numbers. Standard nickel-titanium archwires generated the highest oxidative stress, significantly higher than all other wires and the controls (P <0.05), and coated nickel-titanium, copper-nickel-titanium, and cobalt-chromium were lower than nickel-titanium (P <0.05), but higher than titanium-molybdenum and the negative and absolute controls (P <0.05). Titanium-molybdenum and stainless steel generated the lowest stress. Nickel-titanium induced the lowest viability, lower than the negative and absolute controls and all other wires (P <0.05) except titanium-molybdenum. Stainless steel showed the highest viability. Nickel-titanium produced the highest inhibition of cell growth, higher than all samples (P <0.05) except the positive control and cobalt-chromium. The lowest inhibition was observed in stainless steel and titanium-molybdenum, lower than nickel-titanium, cobalt-chromium, and the positive control (P <0.05). All orthodontic archwires generate oxidative stress in vitro. Stainless steel archwires have the highest and nickel-titanium the lowest biocompatibility. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. The effects of an airborne-particle abrasion and silica-coating on the bond strength between grooved titanium alloy temporary cylinders and provisional veneering materials.

    PubMed

    Wei, Ann Yu-Chieh; Sharma, Arun B; Watanabe, Larry G; Finzen, Frederick C

    2011-03-01

    Even though mechanical retentive features, such as grooves, are incorporated into the surface of titanium alloy temporary cylinders, a reliable bond to veneering provisional materials is not always achievable for screw-retained provisional implant restorations. There is insufficient information about the effect of tribochemical silica coating on the bond strength between provisional materials and grooved titanium alloy temporary cylinders. The purpose of this study was to evaluate, in vitro, the effect of an airborne-particle abrasion and silica-coating technique on the bond strength between grooved titanium alloy temporary cylinders and provisional veneering bisphenol-A glycidyl methacrylate and polymethyl methacrylate materials. Forty grooved titanium alloy (Ti-6Al-4V) internal connection implant temporary cylinders were used. A disc of veneering material (7.1 × 3.4 mm) was created around the midsection of each cylinder. Forty specimens were divided into 4 groups (n=10): group NoTxPMMA, no surface treatment and polymethyl methacrylate veneering material; group NoTxBisGMA, no surface treatment and BisGMA veneering material; group AbPMMA, airborne-particle abrasion, silica-coating surface treatment (Rocatec), and polymethyl methacrylate; and group AbBisGMA, airborne-particle abrasion, silica-coating surface treatment (Rocatec), and BisGMA. Each specimen was subjected to ultimate shear load testing at the interface of the veneering material and the temporary cylinder in a universal testing machine at a constant crosshead speed of 5 mm/min. Data were analyzed with a 1-way ANOVA (α=.05) followed by post hoc Student-Newman-Keuls test. Each specimen underwent surface observation with a light microscope at ×40 magnification to compare fracture patterns. Airborne-particle abrasion and silica-coating surface treatment significantly lowered the shear bond strength (P<.05). The type of provisional material did not significantly affect the shear bond strength, with or without surface treatment. Group AbBisGMA demonstrated the lowest mean value (3.49 MPa) compared to the other groups. Airborne-particle abrasion and silica-coating treatment did not improve the bond between grooved titanium alloy temporary cylinders and provisional veneering materials. It weakened the provided mechanical retention, especially when it was used with BisGMA veneering material. Material choice, whether it was polymethyl methacrylate or BisGMA, did not make a statistically significant difference. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. Mechanical properties of nickel-titanium archwire used in the final treatment phase of Tip-Edge Plus technique: an in vitro study.

    PubMed

    Shen, Xiao; Sun, Xin-hua; Tian, Hua; Zhang, Chun-bo; Yan, Kuo; Guo, Yong-liang

    2013-01-01

    As the only active component in final treatment phase of Tip-Edge Plus technique, the activation of nickel-titanium orthodontic archwires is one of the factors that affect the torque expression. It is necessary to evaluate the mechanical properties of the nickel-titanium wire used in the final treatment phase in simulated oral environments to forecast the treatment outcomes. The mechanical properties of 171 thermal nickel-titanium wires of 0.35 mm (0.014-in) in diameters with different deflection of 40 mm in length were investigated with three-point bending test. The samples were divided into 2 groups: as-received and bended groups. In the bended group, samples were divided into 7 subgroups according to the amounts of deflection and named by the canine angulations (-25°, -19°, -13°, -7°, -1°, +5°, +11°). The deflection of wires was made by inserting the wires into the deep tunnel of Tip-Edge Plus brackets positioned in plaster casts with different canine angulations to mimic the use of nickel-titanium wires in the final treatment phase. Immersed the bended group in artificial saliva (pH 6.8) and preserved at 37.0°C. Eight durations of incubation were tested: 1 to 8 weeks. Three analogous samples of each group and subgroups were tested per week. Stiffness (YS:E) and the load-deflection characteristics of unloading plateau section were obtained. Significant changes in specific mechanical properties were observed in long-term immersed and large deflected wires compared with as-received groups. Both immersion time and deflection affected the mechanical properties of wires in the simulated oral environment, and the two factors had synergistic effect. In groups -25°, -19° and -13°, stiffness (YS:E) increased then decreased and average plateau force and ratio of variance decreased then increased correspondingly at specific time. In the final treatment phase of Tip-Edge Plus technique, the mechanical properties of nickel-titanium wire are associated with the using time and amounts of deflection and it may affect treatment outcomes. As the main reason for wire deflection, canine crown angulation plays an important role in the wire performance. It may be wise to focus on the canine crown angulations and using time in clinic with Tip-Edge Plus technique and make proper adjustment to help to make sure the treatment outcomes.

  5. Evaluation of the sealing capability of implants to titanium and zirconia abutments against Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum under different screw torque values.

    PubMed

    Smith, Nicole A; Turkyilmaz, Ilser

    2014-09-01

    When evaluating long-term implant success, clinicians have always been concerned with the gap at the implant-abutment junction, where bacteria can accumulate and cause marginal bone loss. However, little information regarding bacterial leakage at the implant-abutment junction, or microgap, is available. The purpose of this study was to evaluate sealing at 2 different implant-abutment interfaces under different screw torque values. Twenty sterile zirconia abutments and 20 sterile titanium abutments were screwed into 40 sterile implants and placed in test tubes. The ability of a bacterial mixture of Prevotella intermedia, Porphyromonas gingivalis, and Fusobacterium nucleatum to leak through an implant-titanium abutment seal under 20 and 35 Ncm torque values and an implant-zirconia abutment seal under 20 and 35 Ncm torque values was evaluated daily until leakage was noted. Once a unit demonstrated leakage, a specimen was plated. After 4 days, the number of colonies on each plate was counted with an electronic colony counter. Plating was used to verify whether or not bacterial leakage occurred and when leakage first occurred. The implant-abutment units were removed and rinsed with phosphate buffered saline solution and evaluated with a stereomicroscope. The marginal gap between the implant and the abutment was measured and correlated with the amount of bacterial leakage. The data were analyzed with ANOVA. Bacterial leakage was noted in all specimens, regardless of material or screw torque value. With titanium abutments, changing the screw torque value from 20 to 35 Ncm did not significantly affect the amount of bacterial leakage. However, with zirconia abutments, changing the screw torque value from 20 to 35 Ncm was statistically significant (P<.017). Overall, the marginal gap noted was larger at the zirconia-abutment interface (5.25 ±1.99 μm) than the titanium-abutment interface (12.38 ±3.73 μm), irrespective of the screw torque value. Stereomicroscopy revealed a nonuniform marginal gap in all specimens. The results of this study showed that, over time, bacteria will leak through the implant-abutment microgap at the implant-abutment interface. Implants with a titanium abutment demonstrate a smaller microgap than implants with a zirconia abutment. Tightening the zirconia abutment screw from 20 to 35 Ncm decreases the size of the microgap, which suggests a more intimate fit between the implant and the abutment. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-07-04

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  7. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  8. Adhesive-Bonded Tab Attaches Thermocouples to Titanium

    NASA Technical Reports Server (NTRS)

    Cook, C. F.

    1982-01-01

    Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.

  9. Allergic contact dermatitis caused by titanium screws and dental implants.

    PubMed

    Hosoki, Maki; Nishigawa, Keisuke; Miyamoto, Youji; Ohe, Go; Matsuka, Yoshizo

    2016-07-01

    Titanium has been considered to be a non-allergenic material. However, several studies have reported cases of metal allergy caused by titanium-containing materials. We describe a 69-year-old male for whom significant pathologic findings around dental implants had never been observed. He exhibited allergic symptoms (eczema) after orthopedic surgery. The titanium screws used in the orthopedic surgery that he underwent were removed 1 year later, but the eczema remained. After removal of dental implants, the eczema disappeared completely. Titanium is used not only for medical applications such as plastic surgery and/or dental implants, but also for paints, white pigments, photocatalysts, and various types of everyday goods. Most of the usage of titanium is in the form of titanium dioxide. This rapid expansion of titanium-containing products has increased percutaneous and permucosal exposure of titanium to the population. In general, allergic risk of titanium material is smaller than that of other metal materials. However, we suggest that pre-implant patients should be asked about a history of hypersensitivity reactions to metals, and patch testing should be recommended to patients who have experienced such reactions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  11. Real-time assessment of surface interactions with titanium passivation layer by surface plasmon resonance

    PubMed Central

    Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki

    2011-01-01

    The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862

  12. [The influences of crystallized compositions in the porcelain on bonding strength of titanium to porcelain].

    PubMed

    Mo, A; Wang, J; Liao, Y; Cen, Y; Shi, X

    2001-12-01

    Sufficient porcelain-titanium bond is a vital factor determining the clinical performance of titanium-porcelain restorations. The purpose of this study was to investigate the effects of self-preparation La-porcelain composition on the porcelain-titanium bonding strength and to compare with the Vita Titankeramik. The present study examines 5 different recipes of porcelain by weight%: SiO2, 12%-17%; LaO2, 7%-10%; Al2O3, 9%-14%; B2O3, 23%-31%; CaO, 6%-8%; K2O, 2%-3%; SrO, 2%-4%; Na2O, 1%-3%; SnO2, 8%-10%; ZrO2, 3%-5%; TiO2, 6%-8%. Specimens were tested in push type shear with a universal testing machine. Scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) were employed to reveal the microstructures and diffusion of elements in the interfacial regions between the porcelain coating and titanium to the bond strength when fired at 800 degrees C. The ratios of crystallized compositions had significant influences on the porcelain-titanium bond strength (P < 0.05). La-porcelain had the highest shear bond strength (37.76 MPa). The shear bond strength of the Vita Titankeramik to titanium was 20.18 MPa. The results of SEM revealed integrity of porcelain-titanium joints in La-porcelain and a greater amount of porosity in the interface of Vita Titankeramik to titanium. EPMA analysis demonstrated the aggregation of Si and Sn in the interfacial regions and their diffusion into the titanium. Chemical compositions of porcelain and ratios of crystallized compositions play the important role in the titanium porcelain bond. La-porcelain had the highest shear bond strength and good porcelain-titanium joints. La-porcelain is a new-style low fusing porcelain/titanium system.

  13. Deep drawability of Ti/resin/Ti laminated sheet

    NASA Astrophysics Data System (ADS)

    Hardada, Yasunroi; Hattori, Shuji

    2017-10-01

    Aiming to enhance functionality of titanium cup, the formability of titanium/resin/titanium laminated sheet by deep drawing was investigated. Although pure titanium has excellent corrosion resistance, the density of titanium is higher than that of light metals, such as aluminum and magnesium. Part of the titanium cup made of resin allows for weight reduction of the cup. Furthermore, the clad cup is more likely to have heat retention and protection against vibration characteristics. In the experiment, the materials were pure titanium and polycarbonate. The initial thickness of the sheet was 0.2 to 0.5 mm in thickness. A total plate thickness of the blank was 1.0 to 1.5 mm in thickness. The blank diameter is 70 mm. The laminated sheet was constituted by interposing resin between two titanium sheets. Each sheet in stacked condition was not joined each other. In the deep drawing process, the laminated sheet was employed and a flat sheet blank was formed into a circle by a punch. For the prevention of seizure in contact area between a drawing tool and titanium, titanium blank was treated by oxide coating. By this method, the fresh and clean titanium is not in direct contact with the die during the forming due to the existence of the oxide layer. The deep drawing was carried out to investigate the formability. The laminated sheet was successfully drawn without the cracks. The section of the drawn cup was observed to examine a formability of the resin sheet. The reduction rate of the thickness was less than 10%. It was found that the titanium/resin/titanium clad cup was successfully drawn.

  14. Cyclic fatigue behavior of nickel-titanium dental rotary files in clinical simulated root canals.

    PubMed

    Chi, Chih-Wen; Li, Chun-Chieh; Lin, Chun-Pin; Shin, Chow-Shing

    2017-04-01

    Dental rotary instruments can be applied in multiple conditions of canals, but unpredictable fatigue fracture may happen. This study evaluated the fatigue lives of two batches of nickel-titanium (NiTi) dental rotary files operating in clinically simulated root canals. Single-step cyclic fatigue tests were carried out to assess the performance of two batches of NiTi files (ProTaper and ProFile) in nine combinations of simulated canals (cylinder radii 5 mm, 7.5 mm, and 10 mm, and insertion angles 20°, 40°, and 60°). Two-step cyclic fatigue tests were carried out in simulated root canals with the same radius by using the following two sets of insertion angles: (20°, 40°), (20°, 60°), (40°, 20°), and (60°, 20°). Fracture surfaces were observed by scanning electron microscopy. The single-step cyclic fatigue results showed that cyclic fatigue lives of the files decreased with increasing insertion angles or decreasing cylinder radius. The ProFile #25 .04 file was more fatigue resistant than the ProTaper F2 file. In two-step cyclic fatigue tests, the total fatigue lives were usually more than 100% when the files operated at a lower strain and then at a higher strain. By scanning electron microscopy, a larger area of fatigue striation corresponded to a longer fatigue life. Cyclic fatigue life can be influenced by the strains and geometries of files. The fatigue life was prolonged when the files operated at a lower strain and then at a higher strain. However, the fatigue life was shortened if the loading sequence was reversed. Copyright © 2016. Published by Elsevier B.V.

  15. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque.

    PubMed

    Magesh, Varadaraju; Harikrishnan, Pandurangan; Kingsly Jeba Singh, Devadhas

    2018-04-01

    Torque applied on anterior teeth is vital for root positioning and stability. The aim of this study was to evaluate the detailed slot wall deformation in stainless steel (SS) and titanium (Ti) edgewise brackets during palatal root torque using finite element analysis. A finite element model was developed from a maxillary central incisor SS bracket (0.022 in). The generated torque values from an SS rectangular archwire (0.019 × 0.025 in) while twisting from 5° to 40° were obtained experimentally by a spine tester, and the calculated torque force was applied in the bracket slot. The deformations of the slot walls in both SS and Ti brackets were measured at various locations. There were gradual increases in the deformations of both bracket slot walls from the bottom to top locations. In the SS bracket slot for the 40° twist, the deformations were 9.28, 36.8, and 44.8 μm in the bottom, middle, and top slot wall locations, respectively. Similarly, in the Ti bracket slot for the 40° twist, the deformations were 39.2, 62.4, and 76.2 μm in the bottom, middle, and top slot wall locations, respectively. The elastic limits were reached at 28° for SS and at 37° for Ti. Both SS and Ti bracket slots underwent deformation during torque application. There are variations in the deformations at different locations in the slot walls and between the materials. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    PubMed

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM brackets, more precise manufacturing technique should be improved to get a more smoother surface finish.

  17. Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.

  18. High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation.

    PubMed

    Hirota, Makoto; Hayakawa, Tohru; Shima, Takaki; Ametani, Akihiro; Tohnai, Iwai

    2015-04-01

    We compared osteoblast and osteoclast differentiation when using beta-tricalcium phosphate (βTCP) and titanium scaffolds by investigating human mesenchymal stem cells (hMSCs) and osteoclast progenitor cell activities. hMSCs were cultured for 7, 14, and 21days on titanium scaffolds with 60%, 73%, and 87% porosity and on βTCP scaffolds with 60% and 75% porosity. Human osteoclast progenitor cells were cultured with osteoblast for 14 and 21days on 87% titanium and 75% βTCP scaffolds. Viable cell numbers with 60% and 73% titanium were higher than with 87% titanium and βTCP scaffolds (P<0.05). An 87% titanium scaffold resulted in the highest osteocalcin production with calcification on day 14 (P<0.01) in titanium scaffolds. All titanium scaffolds resulted in higher osteocalcin production on days 7 and 14 compared to βTCP scaffolds (P<0.01). Osteoblasts cultured on 87% titanium scaffolds suppressed osteoclast differentiation on day 7 but enhanced osteoclast differentiation on day 14 compared to 75% βTCP scaffolds (P<0.01). These findings concluded that high porosity titanium scaffolds could enhance progression of hMSC/osteoblast differentiation and regulated osteoclast differentiation cooperating with osteoblast differentiation for calcification as compared with lower porous βTCP. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    PubMed

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  20. Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, A.M.; Merritt, K.; Brown, S.A.

    1994-02-01

    The use of titanium and titanium-6% aluminum-4% vanadium alloy for dental and orthopedic implants has increased in the last decade. The implants are presumed to be compatible because oseointegration, bony apposition, and cell attachment are known. However, the cellular association of titanium and vanadium have remained unknown. This study examined the uptake of salts or fretting corrosion products. Titanium was not observed to be toxic to the cells. Vanadium was toxic at levels greater than 10[mu]g/mL. The percentage of cellular association of titanium was shown to be about 10 times that of vanadium. The percentage of cellular association of eithermore » element was greater from fretting corrosion than from the addition of salts. The presence of vanadium did not affect the cellular uptake of titanium. The presence of titanium decreased the cell association of vanadium.« less

  1. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder-Metallurgy-Produced Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.

    2013-05-01

    An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  2. Microstructural Evolution in Friction Stir Welding of Ti-5111

    DTIC Science & Technology

    2010-08-01

    titanium and titanium aluminide alloys—an overview.” Materials Science and Engineering A243 (1998) 1-24 [Semiatin 1999] S.L. Semiatin, V...ABSTRACT Titanium and titanium alloys have shown excellent mechanical, physical, and corrosion properties. To address the needs of future naval...Texture; Phase Transformation Ti-5111 Titanium 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 174 19a

  3. Process for reproducibly preparing titanium subhydride

    DOEpatents

    Carlson, Richard S.

    1982-01-01

    Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium-hydrogen composition.

  4. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    NASA Astrophysics Data System (ADS)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  5. [The bonding characteristic of titanium and RG experiment porcelain].

    PubMed

    Ren, Wei-hong; Guo, Tian-wen; Tian, Jie-mo; Zhang, Yun-long

    2003-07-01

    To study the bonding characteristic of Titanium and RG experiment porcelain. 5 specimens with a size of 10 mm x 5 mm x 1.4 mm were cast from pure titanium. Then 1 mm of RG experiment opaque and body porcelain were fused on the surface of the titanium specimens. The interface of titanium and porcelain was analyzed with a scanning electron microscope with energy-despersive spectrometry; 6 metal specimens with the size of 25 mm x 3 mm x 0.5 mm were cast from Ni-Cr alloy and a uniform thickness of 1 mm of VMK 99 porcelain was veneered on the central area of 8 mm x 3 mm 18 metal specimens as the same size were cast from pure titanium. The uniform thickness of 1 mm of VITA TITANKERAMIK porcelain, of Noritake super porcelain Ti-22 and of RG experiment porcelain were veneered on every 6 specimens respectively in the central area of 8 mm x 3 mm. The specimens were subjected to a three-point bending test on a load-test machine with a span of 20 mm, then the failure loads were recorded and statistically analysised. The RG porcelain/titanium crown was fabricated by fusing RG opaque porcelain and body porcelain to cast titanium substrate crown. The SEM results show no porosity and crackle were found in the interface. The energy-dispersive spectrometry show that there are Si, Ti and O in the 1 micro m layer between porcelain and titanium, which suggesting titanium and experiment porcelain bonding well. The three point test showed the fracture force for the combinations of titanium/VITA TITANKERAMIK porcelain, titanium/Noritake super porcelain Ti-22 and titanium/RG experiment porcelain were (7.233 +/- 2.539) N, (5.533 +/- 1.199) N and (6.316 +/- 1.433) N respectively. There were not statistically significant differences among them (t test, P < 0.01). The fracture force for the Ni-Cr alloy/VMK99 porcelain combination (12.733 +/- 3.297) N was significantly greater than those of the cast titanium/porcelain (t test, P > 0.05). The crown was translucent with no crack. RG porcelain is well compatible with titanium.

  6. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  7. Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.

    PubMed

    Park, Ju-Young; Lee, In-Hwa

    2010-05-01

    Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.

  8. Removal of titanium plates coated with anodic titanium oxide ceramic: retrospective study.

    PubMed

    Velich, Norbert; Németh, Zsolt; Suba, Csongor; Szabó, György

    2002-09-01

    Transformation of the surface of metallic titanium with titanium oxides prepared in various ways is a modern procedure. For more than 15 years, the authors have been utilizing fixing elements coated with titanium oxide ceramics, prepared by anodic oxidation and thermal treatment, for purposes of jawbone osteosynthesis. The aim of the authors' work was to assess the extent to which the titanium oxide ceramic coating influences the fate of the plates used for osteosynthesis within the human organism, in regard to the possible need for their removal. During a 5-year period, 108 of 1,396 plates coated with anodic titanium oxide had to be removed for various reasons: plate exposure (47), osteomyelitis (25), palpable swelling and tenderness (21), patient request for psychological reasons (13), or fracture of the plate (2). In none of these 108 cases was metallosis observed, which otherwise is reported relatively frequently in the vicinity of traditional titanium fixing elements, nor was any tissue damage connected with the surface of the plates. The results indicate the favorable properties of the titanium oxide ceramic surface.

  9. Vibration Analysis of Commercial Thermal Barrier Coatings

    DTIC Science & Technology

    2008-06-01

    Twenty-six beam specimens were cut by Kerf Waterjet in Dayton, OH. All specimens were cut from a single sheet of 1.6 mm thick Ti- 6Al - 4V . The beams...strain range, as measured at the center of the beam, for the mag spinel ranged from 874με to 905με. The yield stress for Ti- 6Al - 4V is 980 MPa (MatWeb...40  Figure 14: SEM Image of Mag Spinel and Bond Coat on Titanium ............................... 42  Figure 15: Beam

  10. Graph-cut Based Interactive Segmentation of 3D Materials-Science Images

    DTIC Science & Technology

    2014-04-26

    which is available to authorized users. J . Waggoner · Y. Zhou · S. Wang (B) University of South Carolina, Columbia, USA e-mail: songwang@cec.sc.edu... J . Waggoner e-mail: waggonej@email.sc.edu J . Simmons Materials and Manufacturing Directorate, Air Force Research Labs, Dayton, USA M. De Graef...sample slices 123 Author’s personal copy J . Waggoner et al. Fig. 1 Two adjacent slices of a titanium image volume [40]. Image intensity inverted for

  11. Ocean Engineering Studies Compiled 1991. Volume 11. Pressure-Resistant Glass Light Enclosures

    DTIC Science & Technology

    1991-01-01

    resting on this gasket than when they were resting on bare type 316 stainless steel end closures, aluminum gasket, or glass fiber- phenolic laminate ...316 2.58 inches thick Brass (naval) 2.58 inches thick Titanium (Ti-6AI-4V) 1.82 inches thick Phenolic resin-glass fiber laminate 4.40 inches thick...The 6061-T6 aluminum and the 94 spcimen s phenolic resin-impregnated glass fiber 18,000 imploded at -- /- laminate materials performed the best 18,000

  12. Bioavailability of Lead in Small Arms Range Soils

    DTIC Science & Technology

    2007-09-01

    minerals, and may also exist inside particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and...Abbreviations: Fe=iron, Pb=lead, Cu=copper, Ti=titanium, Zn= zinc , Sb=antimony, Rb=rubidium, Zr=zirconium, As=arsenic. Values are mean of three...20 30 40 50 60 70 80 FeOOH Cerussite Organic Phosphate PbMO PbAsO MnOOH Anglesite PbOOH PbCl4 Slag FeSO4 PbO Frequency of Occurrence Relative Pb

  13. [Characteristics of hydroxyapatite/PMMA nanocomposites for provisional restoration and its biocompatibility with human gingival fibroblasts].

    PubMed

    Zhang, Jing-chao; Mo, An-chun; Li, Ji-dong; Wang, Xue-jiang; Li, Yu-bao

    2014-05-01

    To formulate hydroxyapatite (HA)/polymethyl methacrylate (PMMA) composites with improved cytocompatibility for provisional restoration. Nanocomposites with 20 wt%, 30 wt%, 40 wt%, and 50 wt% HA/PMMA (H/P) were developed and examined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). Human gingival fibroblasts were cultured on those HA/PMMA discs and investigated by fluorescent staining on 24 h and MTT assay at 1 d, 3 d, 5 d and 7 d. Chemical integration of HA/PMMA interface was confirmed by XPS. Typical fusiform cells with adhesion spots were detected on 40 wt% and 50 wt% H/P discs. MTT results showed insignificant differences in cell growth between 40 wt% H/P and pure titanium (Ti, P > 0.05), while the other H/P discs showed significantly lower cell growth than pure Ti (P < 0.05). 40 wt% H/P might be a promising candidate for provisional dental implant restoration and for esthetic gingival contour.

  14. Validation of an LDH Assay for Assessing Nanoparticle Toxicity

    PubMed Central

    Han, Xianglu; Gelein, Robert; Corson, Nancy; Wade-Mercer, Pamela; Jiang, Jingkun; Biswas, Pratim; Finkelstein, Jacob N.; Elder, Alison; Oberdörster, Günter

    2014-01-01

    Studies showed that certain cytotoxicity assays were not suitable for assessing nanoparticle (NP) toxicity. We evaluated a lactate dehydrogenase (LDH) assay for assessing copper (Cu-40, 40 nm), silver (Ag-35, 35 nm; Ag-40, 40 nm), and titanium dioxide (TiO2-25, 25 nm) NPs by examining their potential to inactivate LDH and interference with β-nicotinamide adenine dinucleotide (NADH), a substrate for the assay. We also performed a dissolution assay for some of the NPs. We found that the copper NPs, because of their high dissolution rate, could interfere with the LDH assay by inactivating LDH. Ag-35 could also inactivate LDH probably because of the carbon matrix used to cage the particles during synthesis. TiO2-25 NPs were found to adsorb LDH molecules. In conclusion, NP interference with the LDH assay depends on the type of NPs and the suitability of the assay for assessing NP toxicity should be examined case by case. PMID:21722700

  15. Mineral of the month: titanium

    USGS Publications Warehouse

    Gambogi, Joseph

    2004-01-01

    From paint to airplanes, titanium is important in a number of applications. Commercial production comes from titanium-bearing ilmenite, rutile and leucoxene (altered ilmenite). These minerals are used to produce titanium dioxide pigment, as well as an assortment of metal and chemical products.

  16. Synthesis of Titanium Oxycarbide from Titanium Slag by Methane-Containing Gas

    NASA Astrophysics Data System (ADS)

    Dang, Jie; Fatollahi-Fard, Farzin; Pistorius, Petrus Christiaan; Chou, Kuo-Chih

    2018-02-01

    In this study, reaction steps of a process for synthesis of titanium oxycarbide from titanium slag were demonstrated. This process involves the reduction of titanium slag by a methane-hydrogen-argon mixture at 1473 K (1200 °C) and the leaching of the reduced products by hydrofluoric acid near room temperature to remove the main impurity (Fe3Si). Some iron was formed by disproportionation of the main M3O5 phase before gaseous reduction started. Upon reduction, more iron formed first, followed by reduction of titanium dioxide to suboxides and eventually oxycarbide.

  17. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  18. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  19. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  20. Effects of an AST program on US titanium story

    NASA Technical Reports Server (NTRS)

    Fitzsimmons, R. D.

    1980-01-01

    The singular importance of titanium as the primary structural material for an efficient advanced supersonic transport (AST) is outlined. The advantages of titanium over other metals are shown to apply to future subsonic aircraft as well as for supersonic designs. The cost problem of titanium is addressed and shown to be markedly reduced by the emerging technologies of superplastic forming/diffusion bonding sandwich, hot isostatic pressing of titanium powders, and isothermal forgings if demonstration programs should validate preliminary findings. The impact of a U.S. AST program on the United States titanium supply and demand picture is postulated.

  1. Iowa Powder Atomization Technologies

    ScienceCinema

    Ricken, Joel and Heidloff, Andrew

    2018-05-07

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  2. Treatment of Patellar Lower Pole Fracture with Modified Titanium Cable Tension Band Plus Patellar Tibial Tunnel Steel "8" Reduction Band.

    PubMed

    Li, Jiaming; Wang, Decheng; He, Zhiliang; Shi, Hao

    2018-01-08

    To determine the efficacy of modified titanium tension band plus patellar tendon tunnel steel 8 "reduction band" versus titanium cable tension band fixation for the treatment of patellar lower pole fracture. 58 patients with lower patella fracture were enrolled in this study, including 30 patients treated with modified titanium cable tension band plus patellar tibial tunnel wire "8" tension band internal fixation (modified group), and 28 patients with titanium cable tension band fixation. All patients were followed up for 9∼15 months with an average of 11.6 months. Knee flexion was significantly improved in the modified group than in the titanium cable tension band group (111.33 ± 13 degrees versus 98.21 ± 21.70 degrees, P = 0.004). The fracture healing time showed no significant difference. At the end of the follow-up, the improvement excellent rate was 93.33% in the modified group, and 82.14% in the titanium cable tension band group. Titanium cable tension band internal fixation loosening was found in 2 cases, including 1 case of treatment by two surgeries without loose internal fixation. The modified titanium cable tension band with "8" tension band fixation showed better efficacy for lower patella fractures than titanium cable tension band fixation.

  3. Present status of titanium removable dentures--a review of the literature.

    PubMed

    Ohkubo, C; Hanatani, S; Hosoi, T

    2008-09-01

    Although porcelain and zirconium oxide might be used for fixed partial dental prostheses instead of conventional dental metals in the near future, removable partial denture (RPD) frameworks will probably continue to be cast with biocompatible metals. Commercially pure (CP) titanium has appropriate mechanical properties, it is lightweight (low density) compared with conventional dental alloys, and has outstanding biocompatibility that prevents metal allergic reactions. This literature review describes the laboratory conditions needed for fabricating titanium frameworks and the present status of titanium removable prostheses. The use of titanium for the production of cast RPD frameworks has gradually increased. There are no reports about metallic allergy apparently caused by CP titanium dentures. The laboratory drawbacks still remain, such as the lengthy burn-out, inferior castability and machinability, reaction layer formed on the cast surface, difficulty of polishing, and high initial costs. However, the clinical problems, such as discoloration of the titanium surfaces, unpleasant metal taste, decrease of clasp retention, tendency for plaque to adhere to the surface, detachment of the denture base resin, and severe wear of titanium teeth, have gradually been resolved. Titanium RPD frameworks have never been reported to fail catastrophically. Thus, titanium is recommended as protection against metal allergy, particularly for large-sized prostheses such as RPDs or complete dentures.

  4. Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures

    NASA Astrophysics Data System (ADS)

    Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.

    2011-12-01

    The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.

  5. Does titanium in ionic form display a tissue-specific distribution?

    PubMed

    Golasik, Magdalena; Wrobel, Pawel; Olbert, Magdalena; Nowak, Barbara; Czyzycki, Mateusz; Librowski, Tadeusz; Lankosz, Marek; Piekoszewski, Wojciech

    2016-06-01

    Most studies have focused on the biodistribution of titanium(IV) oxide as nanoparticles or crystals in organism. But several reports suggested that titanium is released from implant in ionic form. Therefore, gaining insight into toxicokinetics of Ti ions will give valuable information, which may be useful when assessing the health risks of long-term exposure to titanium alloy implants in patients. A micro synchrotron radiation-induced X-ray fluorescence (µ-SRXRF) was utilized to investigate the titanium distribution in the liver, spleen and kidneys of rats following single intravenous or 30-days oral administration of metal (6 mg Ti/b.w.) in ionic form. Titanium was mainly retained in kidneys after both intravenous and oral dosing, and also its compartmentalization in this organ was observed. Titanium in the liver was non-uniformly distributed-metal accumulated in single aggregates, and some of them were also enriched in calcium. Correlation analysis showed that metal did not displace essential elements, and in liver titanium strongly correlated with calcium. Two-dimensional maps of Ti distribution show that the location of the element is characteristic for the route of administration and time of exposure. We demonstrated that µ-SRXRF can provide information on the distribution of titanium in internal structures of whole organs, which helps in enhancing our understanding of the mechanism of ionic titanium accumulation in the body. This is significant due to the popularity of titanium implants and the potential release of metal ions from them to the organism.

  6. Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

    PubMed

    Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin

    2016-03-01

    Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards the titanium beads and fibroblast proliferation was significantly higher in hybrids compared to gel only controls. The MMP (Matrix Metalloproteinase)-sensitive hydrogels induced sprouting by cells in co-culture configuration which was quantified by fluorescence microscopy, confocal microscopy and qRT-PCR (Quantitative Reverse transcription polymerase chain reaction). When the microhybrid up-scaled to 3D thick structures, cellular localisation in specific areas of the 3D titanium structures was achieved, without decreasing overall cell proliferation compared to titanium only scaffolds. Microhybrids of titanium and hydrogels are useful models for deciding the necessary modifications of metallic implants and they can be used as a modelling system for the study of tissue/titanium implant interactions. This article demonstrates a method to apply cell-laden hydrogels to porous titanium implants and a model of titanium/hydrogel interaction at micro-level using titanium microbeads. The feasibility of site-specific modification of titanium implants with cell-laden microgels has been demonstrated. Use of titanium microbeads in combination with hydrogels with conventional analysis techniques as described in the article can facilitate the characterisation of surface modification of titanium in a relevant model system. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  8. The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching

    NASA Astrophysics Data System (ADS)

    Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.

    2018-05-01

    Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.

  9. Corrosive effects of fluoride on titanium under artificial biofilm.

    PubMed

    Fukushima, Azusa; Mayanagi, Gen; Sasaki, Keiichi; Takahashi, Nobuhiro

    2018-01-01

    This study aimed to investigate the effect of sodium fluoride (NaF) on titanium corrosion using a biofilm model, taking environmental pH into account. Streptococcus mutans cells were used as the artificial biofilm, and pH at the bacteria-titanium interface was monitored after the addition of 1% glucose with NaF (0, 225 or 900ppmF) at 37°C for 90min. In an immersion test, the titanium samples were immersed in the NaF solution (0, 225 or 900ppm F; pH 4.2 or 6.5) for 30 or 90min. Before and after pH monitoring or immersion test, the electrochemical properties of the titanium surface were measured using a potentiostat. The amount of titanium eluted into the biofilm or the immersion solution was measured using inductively coupled plasma mass spectrometry. The color difference (ΔE*ab) and gloss of the titanium surface were determined using a spectrophotometer. After incubation with biofilm, pH was maintained at around 6.5 in the presence of NaF. There was no significant change in titanium surface and elution, regardless of the concentration of NaF. After immersion in 900ppm NaF solution at pH 4.2, corrosive electrochemical change was induced on the surface, titanium elution and ΔE*ab were increased, and gloss was decreased. NaF induces titanium corrosion in acidic environment in vitro, while NaF does not induce titanium corrosion under the biofilm because fluoride inhibits bacterial acid production. Neutral pH fluoridated agents may still be used to protect the remaining teeth, even when titanium-based prostheses are worn. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    PubMed

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  11. Shaping ability of ProFile.04 Taper Series 29 rotary nickel-titanium instruments in simulated root canals. Part 1.

    PubMed

    Thompson, S A; Dummer, P M

    1997-01-01

    The aim of this study was to determine the shaping ability of ProFile.04 Taper Series 29 nickel-titanium instruments in simulated canals. A total of 40 simulated root canals made up of four different shapes in terms of angle and position of curvature were prepared by ProFile instruments using a step-down approach. Part 1 of this two-part report describes the efficacy of the instruments in terms of preparation time, instrument failure, canal blockages, loss of canal length and three-dimensional canal form. The time necessary for canal preparation was not influenced significantly by canal shape. No instrument fractures occurred but a total of 52 instruments deformed. Size 6 instruments deformed the most followed by sizes 5, 3 and 4. Canal shape did not influence significantly instrument deformation. None of the canals became blocked with debris and loss of working distance was on average 0.5 mm or less. Intracanal impressions of canal form demonstrated that most canals had definite apical stops, smooth canal walls and good flow and taper. Under the conditions of this study, ProFile.04 Taper Series 29 rotary nickel-titanium instruments prepared simulated canals rapidly and created good three-dimensional form. A substantial number of instruments deformed but it was not possible to determine whether this phenomenon occurred because of the nature of the experimental model or through an inherent design weakness in the instruments.

  12. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  13. Chemomechanical preparation by hand instrumentation and by Mtwo engine-driven rotary files, an ex vivo study.

    PubMed

    Krajczár, Károly; Tigyi, Zoltán; Papp, Viktória; Marada, Gyula; Sára, Jeges; Tóth, Vilmos

    2012-07-01

    To compare the disinfecting efficacy of the sodium hypochlorite irrigation by root canal preparation with stainless steel hand files, taper 0.02 and nickel-titanium Mtwo files with taper 0.04-0.06. 40 extracted human teeth were sterilized, and then inoculated with Enterococcus faecalis (ATCC 29212). After 6 day incubation time the root canals were prepared by hand with K-files (n=20) and by engine-driven Mtwo files (VDW, Munich, Germany) (n=20). Irrigation was carried out with 2.5% NaOCl in both cases. Samples were taken and determined in colony forming units (CFU) from the root canals before and after the preparation with instruments #25 and #35. Significant reduction in bacterial count was determined after filing at both groups. The number of bacteria kept on decreasing with the extension of apical preparation diameter. There was no significant difference between the preparation sizes in the bacterial counts after hand or engine-driven instrumentation at the same apical size. Statistical analysis was carried out with Mann-Whitney test, paired t-test and independent sample t-test. Significant reduction in CFU was achieved after the root canal preparation completed with 2.5% NaOCl irrigation, both with stainless steel hand or nickel-titanium rotary files. The root canal remained slightly infected after chemo mechanical preparation in both groups. Key words:Chemomechanical preparation, root canal disinfection, nickel-titanium, conicity, greater taper, apical size.

  14. Chemomechanical preparation by hand instrumentation and by Mtwo engine-driven rotary files, an ex vivo study

    PubMed Central

    Krajczár, Károly; Tigyi, Zoltán; Papp, Viktória; Sára, Jeges; Tóth, Vilmos

    2012-01-01

    Objective: To compare the disinfecting efficacy of the sodium hypochlorite irrigation by root canal preparation with stainless steel hand files, taper 0.02 and nickel-titanium Mtwo files with taper 0.04-0.06. Study Design: 40 extracted human teeth were sterilized, and then inoculated with Enterococcus faecalis (ATCC 29212). After 6 day incubation time the root canals were prepared by hand with K-files (n=20) and by engine-driven Mtwo files (VDW, Munich, Germany) (n=20). Irrigation was carried out with 2.5% NaOCl in both cases. Samples were taken and determined in colony forming units (CFU) from the root canals before and after the preparation with instruments #25 and #35. Results: Significant reduction in bacterial count was determined after filing at both groups. The number of bacteria kept on decreasing with the extension of apical preparation diameter. There was no significant difference between the preparation sizes in the bacterial counts after hand or engine-driven instrumentation at the same apical size. Statistical analysis was carried out with Mann-Whitney test, paired t-test and independent sample t-test. Conclusions: Significant reduction in CFU was achieved after the root canal preparation completed with 2.5% NaOCl irrigation, both with stainless steel hand or nickel-titanium rotary files. The root canal remained slightly infected after chemo mechanical preparation in both groups. Key words:Chemomechanical preparation, root canal disinfection, nickel-titanium, conicity, greater taper, apical size. PMID:24558545

  15. Scale-Up of a Titanium Carbonitride Coating System for Titanium Alloys.

    DTIC Science & Technology

    1980-07-01

    Ti-Cote C on JT12 Compressor 7th-Stage Airfoil -Optical Photomicrograph Porosity in Ti-Cote C Titanium 6AI- 4V Substrate - -- Mag: 1000OX FD 171506...30 21 TiCN Coating on Titanium 6A1- 4V ...indication of any corrosive damage to the titanium 6A1- 4V . This had been a matter of concern due to the corrosive nature of the reactive gases and

  16. Development of High Throughput Process for Constructing 454 Titanium and Illumina Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Shweta; Hack, Christopher; Tang, Eric

    2010-05-28

    We have developed two processes with the Biomek FX robot to construct 454 titanium and Illumina libraries in order to meet the increasing library demands. All modifications in the library construction steps were made to enable the adaptation of the entire processes to work with the 96-well plate format. The key modifications include the shearing of DNA with Covaris E210 and the enzymatic reaction cleaning and fragment size selection with SPRI beads and magnetic plate holders. The construction of 96 Titanium libraries takes about 8 hours from sheared DNA to ssDNA recovery. The processing of 96 Illumina libraries takes lessmore » time than that of the Titanium library process. Although both processes still require manual transfer of plates from robot to other work stations such as thermocyclers, these robotic processes represent about 12- to 24-folds increase of library capacity comparing to the manual processes. To enable the sequencing of many libraries in parallel, we have also developed sets of molecular barcodes for both library types. The requirements for the 454 library barcodes include 10 bases, 40-60percent GC, no consecutive same base, and no less than 3 bases difference between barcodes. We have used 96 of the resulted 270 barcodes to construct libraries and pool to test the ability of accurately assigning reads to the right samples. When allowing 1 base error occurred in the 10 base barcodes, we could assign 99.6percent of the total reads and 100percent of them were uniquely assigned. As for the Illumina barcodes, the requirements include 4 bases, balanced GC, and at least 2 bases difference between barcodes. We have begun to assess the ability to assign reads after pooling different number of libraries. We will discuss the progress and the challenges of these scale-up processes.« less

  17. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires.

    PubMed

    Pompei-Reynolds, Renée C; Kanavakis, Georgios

    2014-08-01

    The manufacturing process for copper-nickel-titanium archwires is technique sensitive. The primary aim of this investigation was to examine the interlot consistency of the mechanical properties of copper-nickel-titanium wires from 2 manufacturers. Wires of 2 sizes (0.016 and 0.016 × 0.022 in) and 3 advertised austenite finish temperatures (27°C, 35°C, and 40°C) from 2 manufacturers were tested for transition temperature ranges and force delivery using differential scanning calorimetry and the 3-point bend test, respectively. Variations of these properties were analyzed for statistical significance by calculating the F statistic for equality of variances for transition temperature and force delivery in each group of wires. All statistical analyses were performed at the 0.05 level of significance. Statistically significant interlot variations in austenite finish were found for the 0.016 in/27°C (P = 0.041) and 0.016 × 0.022 in/35°C (P = 0.048) wire categories, and in austenite start for the 0.016 × 0.022 in/35°C wire category (P = 0.01). In addition, significant variations in force delivery were found between the 2 manufacturers for the 0.016 in/27°C (P = 0.002), 0.016 in/35.0°C (P = 0.049), and 0.016 × 0.022 in/35°C (P = 0.031) wires. Orthodontic wires of the same material, dimension, and manufacturer but from different production lots do not always have similar mechanical properties. Clinicians should be aware that copper-nickel-titanium wires might not always deliver the expected force, even when they come from the same manufacturer, because of interlot variations in the performance of the material. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Electron microscopic investigation and elemental analysis of titanium dioxide in sun lotion.

    PubMed

    Sysoltseva, M; Winterhalter, R; Wochnik, A S; Scheu, C; Fromme, H

    2017-06-01

    The objective of this research was to determine the size, shape and aggregation of titanium dioxide (TiO 2 ) particles which are used in sun lotion as UV-blocker. Overall, six sunscreens from various suppliers and two reference substances were analysed by electron microscopy (EM) techniques in combination with energy dispersive X-ray spectroscopy (EDS). Because of a high fat content in sun lotion, it was impossible to visualize the TiO 2 particles without previous EM sample preparation. Different defatting methods for TiO 2 from sun screens were tested. A novel sample preparation method was developed which allowed the characterization of TiO 2 particles with the help of EM and EDS. Aggregates of titanium dioxide with the size of primary particles varying between 15 and 40 nm were observed only in five products. In the sun lotion with the highest SPF, only few small aggregates were found. In the sun screen with the lowest SPF, the largest aggregates of TiO 2 particles were detected with sizes up to 1.6 μm. In one of the sun lotions, neither TiO 2 nor ZnO was found in spite of the labelling. Instead, approx. 500 nm large diamond-shaped particles were observed. These particles are composed of an organic material as only carbon was detected by EDS. A novel defatting method for sample preparation of titanium dioxide nanoparticles used in sun cosmetics was developed. This method was applied to six different sun lotions with SPF between 30 and 50+. TiO 2 particles were found in only five sunscreens. The sizes of the primary particles were below 100 nm and, according to the EU Cosmetic Regulation, have to be listed on the package with the term 'nano'. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Does partial coating with titanium improve the radiographic fusion rate of empty PEEK cages in cervical spine surgery? A comparative analysis of clinical data.

    PubMed

    Kotsias, Andreas; Mularski, Sven; Kühn, Björn; Hanna, Michael; Suess, Olaf

    2017-01-01

    Anterior cervical diskectomy and fusion (ACDF) is a well-established surgical treatment. Several types of intervertebral spacers can be used, but there is increasing evidence that PEEK cages yield insufficient fusion and thus less clinical improvement. The study aim was to assess the outcomes of single-level ACDF with an empty PEEK cage partially coated with titanium. This prospective multicenter single-arm clinical study collected follow-up data at 6, 12, and 18 months. A post hoc comparison was made to closely matched patients from another similar trial treated with identically designed, empty, uncoated PEEK cages. There were 49 of 50 patients (98%) who met the MCID of 3+ points of improvement on VAS pain or had an 18-month VAS ≤ 1. Yet even by 18 months post-op, only 40 of 50 (80%) PEEK + Ti patients achieved complete bony fusion. The PEEK + Ti group ( n  = 49) seemed to have somewhat better fusion scores and significantly better pain relief at 6 M than the matched controls ( n  = 49), but these differences did not persist at 12 M or 18 M. Patients (with either implant) who achieved complete bony fusion had significantly better improvement of pain at 6 M and disability at 6 M and 12 M than patients that remained unfused. ACDF is effective treatment for cervical myelopathy and radiculopathy. Although this and other studies show that titanium fuses better, partial coating of a PEEK cage does not improve the fusion rate sufficiently or confer other lasting clinical benefit. PEEK cages fully coated with titanium should be tested in prospective randomized comparative trials. Prospective, multicenter, single-arm clinical observational study without an individual Trial registration number. Study design and post hoc data analysis according to the "PIERCE-PEEK study", ISRCTN42774128, retrospectively registered 14 April 2009.

  20. A comparison of MRI and CT imaging clarity of titanium alloy and titanium alloy with cobalt-chromium-alloy pedicle screw and rod implants in the lumbar spine.

    PubMed

    Trammell, Terry R; Flint, Kathy; Ramsey, Curtis J

    2012-08-15

    Magnetic resonance imaging (MRI) and computed tomography (CT) imaging are important postoperative diagnostic and evaluation tools, particularly in patients who have undergone spinal fusions. Advancements in materials and imaging techniques have lessened artifact and improved overall imaging results. Systems that combine titanium alloy and cobalt-chromium components have been introduced to reduce implant profile while maintaining strength. The objective of this study was to determine if there were any differences in the clarity of imaging between two types of implant materials in a lumbar spine construct model. One of two lumbar spine stabilization implant systems, titanium alloy (titanium) or titanium alloy with cobalt-chromium alloy (titanium-cobalt), was placed to simulate a four-level fusion construct in two human cadaveric spine segments, followed by MRI and CT imaging. The implant systems were then removed from each cadaver and implanted in the other cadaver. Nine physician graders from three subspecialties scored the images using a 5-point scale, with higher imaging scores indicating greater clarity of the region of interest. Physician-rated scores were compared across systems and between physician groups. There were no significant differences in the overall mean total scores on the basis of construct material. Overall mean scores were 18.16 for titanium and 17.45 for titanium-cobalt (p = 0.275). Among images of the titanium-cobalt constructs, no significant differences in mean scores were found between specimens with use of MRI (p = 0.883) or with use of CT only (p = 0.274). Among images of the titanium system, a slightly significant difference was found between specimens with use of MRI (p = 0.044) but not with CT imaging (p = 0.837). Overall image clarity scores were not significantly different between titanium and titanium-cobalt implant systems in the lumbar spine. Observation of pertinent anatomy in the regions of interest was not degraded by the presence of either system.

  1. Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium

    DTIC Science & Technology

    2011-09-01

    nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3

  2. Detection of titanium in human tissues after craniofacial surgery.

    PubMed

    Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N

    1997-04-01

    Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.

  3. Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, J.; Wang, F.; Jiang, J.; Zhang, Z. Z.; Yang, Y.; Ding, J. X.; Jiang, H. C.; Wang, Y. M.; Wei, H. Y.

    2018-04-01

    Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.

  4. [A study on the bond interface between low-fusing dental porcelain and pure titanium].

    PubMed

    Mo, A; Cen, Y; Liao, Y; Wang, J; Shi, X

    2001-09-01

    To evaluate the bond interface between low fusing dental porcelain and pure titanium by observing the topography and detecting the ionic diffusion in the interface area. The low fusing-porcelain La-porcelain produced by the authors or Vita Titankeramik porcelain was fused to the surfaces of pure titanium. The topography of the interface between pure titanium and porcelain, and the structure of experimental materials were observed with SEM. The state of ionic diffusion in the interface area was investigated with EPMA. Excellent permeation and diffusion of La-porcelain were observed on the surfaces of pure titanium. The diffusion of ions of stannum and silicon was discovered in the interface area. The microstructure of La-porcelain to pure titanium bond interface was finer than that of Vita Titankeramik porcelain. Excellent bond can be produced in the interface between La-porcelain and pure titanium. The bonding mechanism may involve mechanical bond and chemical bond. The ionic diffusion of stannum plays an important role in the bonding of porcelain to pure titanium.

  5. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.

    PubMed

    Yao, Chang; Webster, Thomas J

    2006-01-01

    Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.

  6. Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly

    PubMed Central

    Shi, Quan; Qian, Zhiyong; Liu, Donghua; Liu, Hongchen

    2017-01-01

    In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized. PMID:28824462

  7. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    PubMed

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    NASA Astrophysics Data System (ADS)

    Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.

    2011-02-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  9. Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection.

    PubMed

    Wang, C; Hu, J; Wang, F; Jiang, J; Zhang, Z Z; Yang, Y; Ding, J X; Jiang, H C; Wang, Y M; Wei, H Y

    2018-04-01

    Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.

  10. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    NASA Astrophysics Data System (ADS)

    Malyutina, Yu. N.; Bataev, A. A.; Mali, V. I.; Anisimov, A. G.; Shevtsova, L. I.

    2015-10-01

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  11. REDUCING TITANIUM TETRACHLORIDE WITH HIGH-SURFACE SODIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleck, D.C.; Wong, M.M.; Baker, D.H. Jr.

    1960-01-01

    A method of using sodium for reducing titanium tetrachloride, developed to improve the extractive metallurgy of titunium, is described. Finely divided titanium metal, titanium lower chlorides, or a mixture thereof was produced in a continuous operation at temperatures between 105 and 205 deg C by the reaction of molten sodium and vaporized titanium tetrachloride in an agitated bed of finely divided inert solids (powdered sodium chloride or the reaction products). Composition of the product was controlled by varying the relative quantities of sodium and titanium tetrachloride used. A description of the operations and analytical data of the reaction products aremore » given. (auth)« less

  12. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  13. Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning

    2016-12-01

    Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.

  14. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    PubMed

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  15. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...

  16. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...

  17. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...

  18. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...

  19. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  20. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  1. Passive Films, Surface Structure and Stress Corrosion and Crevice Corrosion Susceptibility.

    DTIC Science & Technology

    1980-08-01

    with pure titanium ( 4 ], it is of interest to pursue the effects on titanium -palladium alloys, to evaluate their susceptibility to stress corrosion...cracking due to hydrogen embrittlement with the field ion microscope, and to compare the results with those previously obtained with pure titanium [ 4 ...characterized as 99.99+ percent pure, and was used in the previous field ion microscopy study of titanium [ 4 ], where it was found that strain annealing titanium

  2. The Effect of Titanium Surface Roughness on Growth, Differentiation, and Protein Synthesis of Cartilage and Bone Cells

    DTIC Science & Technology

    1996-05-01

    at San Antonio Supervising Professors: Barbara D. Boyan, Ph.D. David L. Cochran, D.D.S., Ph.D. Placement of endosseous dental implants requires the...titanium substratum was chosen for these studies since most medical and dental implants are fabricated from titanium The titanium was cut into uniform...electron microscopy to evaluate the histomorphometry of the implant-bone interface of various titanium and ceramic dental implants placed in dog mandibles

  3. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    PubMed

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  4. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  5. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.

    PubMed

    Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian

    2015-06-01

    Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.

    PubMed

    Saruwatari, Lei; Aita, Hideki; Butz, Frank; Nakamura, Hiromi K; Ouyang, Jianyong; Yang, Yang; Chiou, Wen-An; Ogawa, Takahiro

    2005-11-01

    This study revealed that osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on the tissue culture polystyrene, associated with modulated gene expression, uniform mineralization, well-crystallized interfacial calcium-phosphate layer, and intensive collagen deposition. Knowledge of this titanium-induced alteration of osteogenic potential leading to enhanced intrinsic biomechanical properties of mineralized tissue provides novel opportunities and implications for understanding and improving bone-titanium integration and engineering physiomechanically tolerant bone. Bone-titanium integration is a biological phenomenon characterized by continuous generation and preservation of peri-implant bone and serves as endosseous anchors against endogenous and exogenous loading, of which mechanisms are poorly understood. This study determines the intrinsic biomechanical properties and interfacial strength of cultured mineralized tissue on titanium and characterizes the tissue structure as possible contributing factors in biomechanical modulation. Rat bone marrow-derived osteoblastic cells were cultured either on a tissue culture-grade polystyrene dish or titanium-coated polystyrene dish having comparable surface topography. Nano-indentation and nano-scratch tests were undertaken on mineralized tissues cultured for 28 days to evaluate its hardness, elastic modulus, and critical load (force required to delaminate tissue). Gene expression was analyzed using RT-PCR. The tissue structural properties were examined by scanning electron microscopy (SEM), collagen colorimetry and localization with Sirius red stain, mineral quantification, and localization with von Kossa stain and transmission electron microscopy (TEM). Hardness and elastic modulus of mineralized tissue on titanium were three and two times greater, respectively, than those on the polystyrene. Three times greater force was required to delaminate the tissue on titanium than that on the polystyrene. SEM of the polystyrene culture displayed a porous structure consisting of fibrous and globular components, whereas the titanium tissue culture appeared to be uniformly solid. Cell proliferation was remarkably reduced on titanium. Microscopic observations revealed that the mineralized tissue on titanium was composed of uniform collagen-supported mineralization from the titanium interface to the outer surface, with intensive collagen deposition at tissue-titanium interface. In contrast, tissue on the polystyrene was characterized by collagen-deficient mineralization at the polystyrene interface and calcium-free collagenous matrix formation in the outer tissue area. Such characteristic microstructure of titanium-associated tissue was corresponded with upregulated gene expression of collagen I and III, osteopontin, and osteocalcin mRNA. Cross-sectional TEM revealed the apposition of a high-contrast and well-crystallized calcium phosphate layer at the titanium interface but not at the polystyrene interface. Culturing osteoblasts on titanium, compared with polystyrene, enhances the hardness, elastic modulus, and interfacial strength of mineralized tissue to a higher degree. Titanium per se possesses an ability to alter cellular phenotypes and tissue micro- and ultrastructure that result in enhanced intrinsic biomechanical properties of mineralized tissue.

  7. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.

    PubMed

    Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar

    2016-12-01

    Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.

  8. 48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...

  9. 48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...

  10. 48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...

  11. Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2005-05-01

    The purpose of this study was to characterize carrier systems for inorganic sunscreens based on a matrix composed of carnauba wax and decyl oleate. Ultraviolet radiation attenuators like barium sulfate, strontium carbonate and titanium dioxide were tested. The lipid matrices were used either as capsules or as accompanying vehicles for the pigments in aqueous dispersions. Manufacturing was performed using high pressure homogenization at 300bar and a temperature of 75 degrees C. To evaluate the effect of the pigments on the crystalline structure of the wax-oil mixture, X-ray diffraction and differential scanning calorimetry were used. Further parameters determined were particle size, polydispersity index, z-potential, viscosity and sun protection factor (SPF). Transmission electron microscopy was also applied for visualization of nanoparticles. The X-ray diffraction patterns and the melting points of the lipid mixtures remained unchanged after the pigments were added. The particle sizes of the encapsulated species ranged from 239 to 749.9nm showing polydispersity values between 0.100 and 0.425. Surface charge measurements comprising values up to -40.8mV denoted the presence of stable dispersions. The formulations could be described as ideal viscous presenting viscosities in a range of 1.40-20.5mPas. Significant increases in SPF up to about 50 were reported after the encapsulation of titanium dioxide. Freeze fracture micrographs confirmed the presence of encapsulated inorganic crystals.

  12. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janney, M.A.

    1985-03-12

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  13. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janey, Mark A.

    1986-01-01

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  14. Titanium fasteners. [for aircraft industry

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  15. Study on Thermal Deformation Behavior of TC4 – ELI Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Song, Y.; Zhang, F. S.; Huang, T.; Song, K. X.

    2018-05-01

    The TC4-ELI titanium alloy was subjected to hot compression deformation test by the Gleeble-1500D thermal simulation test machine. The thermal deformation behavior of the TC4-ELI titanium alloy was studied under the condition of 850°C-1050°C, 0.001s-1-10s-1 strain rate and 50% deformation. The constitutive equation of TC4-ELI titanium alloy was established based on the hyperbolic sine model of Arrhenius equation. The results show that the flow stress of TC4-ELI titanium alloy decreases with the increase of temperature at high temperature. The calculated heat activation energy of TC4-ELI titanium alloy is 300367.5807J / mol.

  16. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    NASA Astrophysics Data System (ADS)

    Bartle, S. J.; Thomson, D. U.; Gehring, R.; van der Merwe, D.

    2017-11-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas, and three from the white areas. Samples were randomized and assigned to four coating treatments: (1) white hide with no coating (White), (2) black hide with no coating (Black), (3) black hide with 50% coating (Mid), and (4) black hide with 100% coating (High). Coatings were applied to the black hide samples using a hand sprayer. Lux measurements were taken using a modified lux meter at three light intensities generated with a broad spectrum, cold halogen light source. Reflectance over a wavelength range of 380 to 900 nm was measured using a spectroradiometer. The transdermal transfer of heat derived from absorbed light was measured by applying a broad spectrum, cold halogen light source to the stratum corneum (coated) side of the sample and recording the temperature of the dermis-side using a thermal camera for 10 min at 30-s intervals. At the high light level, the White, Black, Mid, and High coating treatments had different ( P < 0.001) lux values of 64,945, 1741, 15,978, and 40,730 lx, respectively. In the visible wavelength range (400 to 750 nm), Black hides reflected 10 to 15% of the light energy, hides with the Mid coating treatment reflected 35 to 40%, and hides with the High coating treatment reflected 70 to 80% of the light energy. The natural White hide samples reflected 60 to 80% of the light energy. The average maximum temperatures at the dermis-side of the hides due to transferred heat were 34.5, 70.1, 55.0, and 31.7, for the White, Black, Mid, and High treatments, respectively. Reflective coatings containing titanium dioxide on cattle hides were effective in reducing light energy absorption and reduced light-derived heat transfer from the skin surface to deeper skin layers.

  17. Shaping ability of NT Engine and McXim rotary nickel-titanium instruments in simulated root canals. Part 2.

    PubMed

    Thompson, S A; Dummer, P M

    1997-07-01

    The aim of this laboratory-based study was to determine the shaping ability of NT Engine and McXim nickel-titanium rotary instruments in simulated root canals. A total of 40 canals with four different shapes in terms of angle and position of curve were prepared with NT Engine and McXim instruments, using the technique recommended by the manufacturer. Part 2 of this report describes the efficacy of the instruments in terms of prevalence of canal aberrations, the amount and direction of canal transportation and overall postoperative shape. Pre- and postoperative images of the canals were taken using a video camera attached to a computer with image analysis software. The pre- and postoperative views were superimposed to highlight the amount and position of material removed during preparation. No zips, elbows, perforations or danger zones were created during preparation. Forty-two per cent of canals had ledges on the outer aspect of the curve, the majority of which (16 out of 17) occurred in canals with short acute curves. There were significant differences (P < 0.001) between canal shapes in terms of the incidence of ledges. There were highly significant differences (P < 0.001) between the canal shapes in total canal width at specific points along the canal length and in the amount or resin removed from the inner and outer aspects of the curve. The direction of canal transportation at the end-point of preparation was most frequently towards the outer aspect of the curve, especially in canals with 40 degrees curves. At the beginning of the curve, transportation in the majority of canals was towards the inner aspect of the curve. Mean absolute transportation was less than 0.03 mm throughout the curve and towards the end-point, with significant differences between canal shapes occurring at the apex (P < 0.05) and at the beginning of the curve (P < 0.001). Under the conditions of this study, NT Engine and McXim rotary nickel-titanium instruments created no aberrations other than ledges and produced only minimal transportation. The overall shape of canals was good.

  18. Thermal Diffusivity and Specific Heat Measurements of Titanium Potassium Perchlorate Titanium Subhydride Potassium Perchlorate 9013 Glass 7052 Glass SB-14 Glass and C-4000 Muscovite Mica Using the Flash Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Paul Elliott; Cooper, Marcia A.

    The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25°C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052more » glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300° C.« less

  19. Rapid plasma quenching for the production of ultrafine metal and ceramic powders

    NASA Astrophysics Data System (ADS)

    Donaldson, Alan; Cordes, Ronald A.

    2005-04-01

    The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.

  20. A novel approach to fabrication of three-dimensional porous titanium with controllable structure.

    PubMed

    Wang, Dong; Li, Qiuyan; Xu, Mingqin; Jiang, Guofeng; Zhang, Yunxia; He, Guo

    2017-02-01

    A new approach to fabrication of porous titanium by using the molybdenum wire as space holder was developed, in which titanium liquid was cast into the entangled molybdenum wires in a vacuum environment, and followed by etching off the space holder material in an aqua regia solution. This infiltration casting and acid corrosion method fabricated the porous titanium with different porosities with a pore diameter of 0.4mm. The porous titanium with the porosity of 32-47% exhibited the Young's modulus in the range of 23-62GPa and the yielding strength in the range of 76-192MPa. The adhesion and spreadability of the bovine osteoblast cells on the porous titanium were also evaluated in vitro. The porous titanium with 47% porosity has great potential for implant applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mechanical properties and grindability of dental cast Ti-Nb alloys.

    PubMed

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2003-09-01

    Aiming at developing a dental titanium alloy with better mechanical properties and machinability than unalloyed titanium, a series of Ti-Nb alloys with Nb concentrations up to 30% was made. They were cast into magnesia-based molds using a dental casting machine and the mechanical properties and grindability of the castings were examined. The hardness of the alloys with Nb concentrations of 5% and above was significantly higher than that of titanium. The yield strength and tensile strength of the alloys with Nb concentrations of 10% and above were significantly higher than those of titanium, while the elongation was significantly lower. A small addition of niobium to titanium did not contribute to improving the grindability of titanium. The Ti-30% Nb alloy exhibited significantly better grindability at low grinding speed with higher hardness, strength, and Young's modulus than titanium, presumably due to precipitation of the omega phase in the beta matrix.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders priormore » to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.« less

  3. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  4. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  5. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  6. Titanium-nitrogen reaction investigated for application to gettering systems

    NASA Technical Reports Server (NTRS)

    Arntzen, J. D.; Coleman, L. F.; Kyle, M. L.; Pierce, R. D.

    1968-01-01

    Titanium is one of several gettering materials available for removing nitrogen from inert gases. The reaction rate of titanium-metal sponge and nitrogen in argon-nitrogen mixtures was studied at 900 degrees C. The rate was found to depend upon the partial pressure of nitrogen in the gas phase. Mathematical relationships simulate titanium systems.

  7. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  8. Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meredith, S.E.; Benjamin, J.F.

    1993-07-13

    A method is described of manufacturing corrosion resistant tubing from seam welded stock of a titanium or titanium based alloy, comprising: cold pilgering a seam welded tube hollow of titanium or titanium based alloy in a single pass to a final sized tubing, the tube hollow comprising a strip which has been bent and welded along opposed edges thereof to form the tube hollow, the tube hollow optionally being heat treated prior to the cold pilgering step provided the tube hollow is not heated to a temperature which would transform the titanium or titanium alloy into the beta phase, themore » cold pilgering effecting a reduction in cross sectional area of the tube hollow of at least 50% and a reduction of wall thickness of at least 50%, in order to achieve a radially oriented crystal structure; and annealing the final sized tubing at a temperature and time sufficient to effect complete recrystallization and reform grains in a weld area along the seam into smaller, homogeneous grains.« less

  9. Constructing a novel hierarchical 3D flower-like nano/micro titanium phosphate with efficient hydrogen evolution from water splitting

    NASA Astrophysics Data System (ADS)

    Guo, Si-yao; Han, Song

    2014-12-01

    A novel nano/micro hierarchical structured titanium phosphate with unique 3D flower-like morphology has been prepared by a simple hydrothermal method without adding any surfactants. The shape of the titanium phosphate could be controlled by simply adjusting the concentration of phosphoric acid. The 3D flower-like titanium phosphate with diameter of 2-3 μm is characterized by the assembly of numerous porous and connected lamella structures. Interestingly, this novel hierarchical mesoporous 3D flower-like titanium exhibits enhanced hydrogen evolution from water splitting under xenon lamp irradiation in the presence of methanol as the sacrificial reagent, which is also the first example of 3D flower-like titanium phosphate with high photocatalytic activity for water splitting. Since the use of titanium phosphate as a photocatalyst has been mostly neglected up to now, this low-cost, simple procedure and large-scale yield of 3D nano/micro structure titanium phosphate could be expected to be applicable in the synthesis of controlled, reproducible and robust photocatalytic systems.

  10. [Follow-up examinations after removal of titanium plates coated with anodic titanium oxide ceramic].

    PubMed

    Velich, Norbert; Németh, Zsolt; Barabás, József; Szabó, György

    2002-04-01

    Transformation of the titanium metal surface with titanium oxides produced in various ways belongs among the most up-to-date procedures. The authors as pioneers in this field (e.g. Nobel Biocare TiUnite surface), have been utilizing for more than 15 years dental root implants and fixing elements (for mandibular osteosynthesis) coated with titanium oxide ceramics, produced by anodic oxidation and thermal treatment. The aim of this work was to assess the extent to which a titanium oxide ceramic coating influences the fate of plates applied for osteosynthesis within the human body. During a 5-year period (1995-1999), 108 of 1396 titanium oxide ceramic plates had to be removed for various reasons: loosening of the plate [47], osteomyelitis [25], a palpable swelling and tenderness [21] at the request of the patient for psychological reasons (13) or breaking of the plate [2]. When these 108 plates were removed, it was not possible to detect metallosis in even a single case; nor was there any tissue damage that could be attributed to the surface of the plates, whereas the literature data indicate that such damage is relatively frequent in the environment of traditional titanium fixing elements. The present investigation confirms the favourable properties of the titanium oxide ceramic surface.

  11. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  12. Initial stability of a highly porous titanium cup in an acetabular bone defect model.

    PubMed

    Yoshimoto, Kensei; Nakashima, Yasuharu; Wakiyama, Miyo; Hara, Daisuke; Nakamura, Akihiro; Iwamoto, Mikio

    2018-04-12

    The purpose of this study was to quantify the initial stability of a highly porous titanium cup using an acetabular bone defect model. The maximum torque of a highly porous titanium cup, with a pore size of 640 μm and porosity of 60%, was measured using rotational and lever-out torque testing and compared to that of a titanium-sprayed cup. The bone models were prepared using a polyurethane foam block and had three levels of bone coverage: 100, 70, and 50%. The highly porous titanium cup demonstrated significantly higher maximum torque than the titanium-sprayed cups in the three levels of bone defects. On rotational torque testing, it was found to be 1.5, 1.3, and 1.3 times stronger than the titanium-sprayed cups with 100, 70 and 50% bone coverage, respectively. Furthermore, it was found to be 2.2, 2.3, and 1.5 times stronger on lever-out testing than the titanium-sprayed cup. No breakage in the porous layers was noted during the testing. This study provides additional evidence of the initial stability of highly porous titanium cup, even in the presence of acetabular bone defects. Copyright © 2018. Published by Elsevier B.V.

  13. Effects of silicon coating on bond strength of two different titanium ceramic to titanium.

    PubMed

    Ozcan, Isil; Uysal, Hakan

    2005-08-01

    This study investigated the effect of silicon coating (SiO2) by magnetron sputtering on bond strength of two different titanium ceramics to titanium. Sixty cast titanium specimens were prepared following the protocol ISO 9693. Titanium specimens were divided into two test and control groups with 15 specimens in each. Test groups were silicon coated by the magnetron sputtering technique. Two titanium ceramics (Triceram and Duceratin) were applied on both test (coated) and control (uncoated) metal specimens. The titanium-ceramic specimens were subjected to a three point flexural test. The groups were compared for their bond strength. SEM and SEM/EDS analyses were performed on the delaminated titanium surfaces to ascertain bond failure. The mean bond strength of Ti-Duceratin, Ti-Triceram, Si-coated Ti-Duceratin and Si-coated Ti-Triceram were 17.22+/-2.43, 23.31+/-3.18, 23.21+/-3.81 and 24.91+/-3.70 MPa, respectively. While the improvement in bond strength was 30% for Duceratin, it was statistically insignificant for Triceram. An adhesive mode of failure was observed in the Duceratin control group. In the silicoated Duceratin specimen, the bonded ceramic boundaries were wider but less than in the silicoated Triceram specimen. In the coated Triceram specimen, the ceramic retained areas were frequent and the failure mode was generally cohesive. Silicon coating was significantly effective in both preventing titanium oxide layer formation and in improving bond strength for Duceratin. However, it was of less value for Triceram.

  14. Evaluation of Titanium-Coated Pedicle Screws: In Vivo Porcine Lumbar Spine Model.

    PubMed

    Kim, Do-Yeon; Kim, Jung-Ryul; Jang, Kyu Yun; Kim, Min Gu; Lee, Kwang-Bok

    2016-07-01

    Many studies have addressed the problem of loosening pedicle screws in spinal surgery, which is a serious concern. Titanium coating of medical implants (arthroplasty) is common, but few studies involving in vivo spine models have been reported. We evaluated the radiological, mechanical, and histological characteristics of titanium-coated pedicle screws compared with uncoated or hydroxyapatite-coated pedicle screws. Three different types of pedicle screws, i.e., uncoated, hydroxyapatite-coated, and titanium-coated, were implanted into the lumbar 3-4-5 levels of 9 mature miniature pigs. Radiological evaluation of loosening of pedicle screws was performed. Peak torsional extraction torque was tested in the 42 screws from 7 miniature pigs at 12 weeks postoperatively. The implant-bone interface of the remaining 12 pedicle screws from 2 miniature pigs in each group was assessed by micro-computed tomography and histologic studies. The incidence of loosening at 12 weeks postoperatively was not significantly different between the titanium-coated pedicle screw group and the other groups. The titanium-coated pedicle screw group exhibited the greatest mean extraction torsional peak torque at 12 weeks postoperatively (P < 0.05). Quantitative micro-computed tomography data were greatest in the titanium-coated pedicle screw group (P < 0.05). Histologic findings showed osteointegration with densely packed new bone formation at the screw coating-bone interface in the titanium-coated pedicle screw group. Fixation strength was greatest in the titanium-coated pedicle screw group. Osteointegration at the interface between the titanium-coated implant and bone produced prominent and firm bonding. The titanium-coated pedicle screw is a promising device for application in spinal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at; Loder, D.; Reip, T.

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an earlymore » process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information on inclusion formation.« less

  16. Titanium Surface Roughing Treatments contribute to Higher Interaction with Salivary Proteins MG2 and Lactoferrin.

    PubMed

    Cavalcanti, Yuri Wanderley; Soare, Rodrigo Villamarim; Leite Assis, Marina Araújo; Zenóbio, Elton Gonçalves; Girundi, Francisco Mauro da Silva

    2015-02-01

    Some surface treatments performed on titanium can alter the composition of salivary pellicle formed on this abiotic surface. Such treatments modify the titanium's surface properties and can promote higher adsorption of proteins, which allow better integration of titanium to the biotic system. This study aimed to evaluate the interactions between salivary proteins and titanium disks with different surface treatments. Machined titanium disks (n = 48) were divided into four experimental groups (n = 12), according to their surface treatments: surface polishing (SP); acid etching (A); spot-blasting plus acid etching (SB-A); spot-blasting followed by acid etching and nano-functionalization (SB-A-NF). Titanium surfaces were characterized by surface roughness and scanning electron microscopy (SEM). Specimens were incubated with human saliva extracted from submandibular and sublingual glands. Total salivary protein adsorbed to titanium was quantified and samples were submitted to western blotting for mucin glycoprotein 2 (MG2) and lactoferrin identification. Surface roughness was statistically higher for SB-A and SB-A-NF groups. Scanning electron microscopy images confirmed that titanium surface treatments increased surface roughness with higher number of porous and scratches for SB-A and SB-A-NF groups. Total protein adsorption was significantly higher for SB-A and SB-A-NF groups (p < 0.05), which also presented higher interactions with MG2 and lactoferrin proteins. The roughing of titanium surface by spot-blasting plus acid etching treatments contribute to higher interaction with salivary proteins, such as MG2 and lactoferrin. Titanium surface roughing increases the interactions of the substratum with salivary proteins, which can influence the integration of dental implants and their components to the oral environment. However, those treatments should be used carefully intraorally, avoiding increase biofilm formation.

  17. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Go

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgymore » (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions •External TiN and internal a Mo-rich layer on all alloy substrates •Titanium aluminides and Ti-Al mixed nitrides are formed on Ti-6Al-4V •The presence of Al and V alloying elements modifies the diffusion of Mo.« less

  18. Effect of UV irradiation on the shear bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane.

    PubMed

    Sakamoto, Harumi; Hirohashi, Yohei; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao

    2008-01-01

    The objective of this study was to investigate the effect of UV irradiation on shear bond strength between a titanium (Ti) and a segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). To this end, the shear bond strength of Ti/SPU interface of Ti-SPU composite under varying conditions of ultraviolet ray (UV) irradiation was evaluated by a shear bond test. The glass transition temperatures of SPU with and without UV irradiation were also determined using differential scanning calorimetry. It was found that the shear bond strength of Ti/SPU interface increased with UV irradiation. However, excessive UV irradiation decreased the shear bond strength of Ti/SPU interface. Glass transition temperature was found to increase during 40-60 seconds of UV irradiation. In terms of durability after immersion in water at 37 degrees C for 30 days, shear bond strength was found to improve with UV irradiation. In conclusion, UV irradiation to a Ti-SPU composite was clearly one of the means to improve the shear bond strength of Ti/SPU interface.

  19. Effect of deflocculation on photo induced thin layer titanium dioxide disintegration of dairy waste activated sludge for cost and energy efficient methane production.

    PubMed

    Sharmila, V Godvin; Dhanalakshmi, P; Rajesh Banu, J; Kavitha, S; Gunasekaran, M

    2017-11-01

    In the present study, the deflocculated sludge was disintegrated through thin layer immobilized titanium dioxide (TiO 2 ) as photocatalyst under solar irradiation. The deflocculation of sludge was carried out by 0.05g/g SS of sodium citrate aiming to facilitate more surface area for subsequent TiO 2 mediated disintegration. The proposed mode of disintegration was investigated by varying TiO 2 dosage, pH and time. The maximum COD solubilization of 18.4% was obtained in the optimum 0.4g/L of TiO 2 dosage with 5.5 pH and exposure time of 40min. Anaerobic assay of disintegrated samples confirms the role of deflocculation as methane yield was found to be higher in deflocculated (235.6mL/gVS) than the flocculated sludge (146.8mL/gVS). Moreover, the proposed method (Net cost for control - Net cost for deflocculation) saves sludge management cost of about $132 with 53.8% of suspended solids (SS) reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Design and Manufacturing Considerations for Shockproof and Corrosion-Immune Superelastic Nickel-Titanium Bearings for a Space Station Application

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Wozniak, Walter A.

    2012-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is a promising tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, easily lubricated and is non-magnetic. It also falls within the class of superelastic alloys and can elastically endure large strains (beyond 5 percent) making it highly resistant to excessive and unexpected (shock) loads. Key material properties and characteristics such as elastic modulus, tensile fracture sensitivity and residual stress behavior, however, differ from conventional alloys such as steel and this significantly affects bearing design and manufacturing. In this paper, the preliminary design and manufacture of ball bearings made from 60NiTi are considered for a highly corrosive, lightly loaded, low speed bearing application found inside the International Space Station s water recycling system. The information presented is expected to help guide more widespread commercialization of this new technology into space mechanism and other applications.

Top