40 CFR 471.60 - Applicability; description of the titanium forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the titanium forming...
40 CFR 471.60 - Applicability; description of the titanium forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the titanium forming...
40 CFR 471.60 - Applicability; description of the titanium forming subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the...
40 CFR 471.60 - Applicability; description of the titanium forming subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the...
40 CFR 471.60 - Applicability; description of the titanium forming subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the...
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2010-01-01
An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high titanium content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of titanium and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of titanium alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is studied.
Hirota, Makoto; Hayakawa, Tohru; Shima, Takaki; Ametani, Akihiro; Tohnai, Iwai
2015-04-01
We compared osteoblast and osteoclast differentiation when using beta-tricalcium phosphate (βTCP) and titanium scaffolds by investigating human mesenchymal stem cells (hMSCs) and osteoclast progenitor cell activities. hMSCs were cultured for 7, 14, and 21days on titanium scaffolds with 60%, 73%, and 87% porosity and on βTCP scaffolds with 60% and 75% porosity. Human osteoclast progenitor cells were cultured with osteoblast for 14 and 21days on 87% titanium and 75% βTCP scaffolds. Viable cell numbers with 60% and 73% titanium were higher than with 87% titanium and βTCP scaffolds (P<0.05). An 87% titanium scaffold resulted in the highest osteocalcin production with calcification on day 14 (P<0.01) in titanium scaffolds. All titanium scaffolds resulted in higher osteocalcin production on days 7 and 14 compared to βTCP scaffolds (P<0.01). Osteoblasts cultured on 87% titanium scaffolds suppressed osteoclast differentiation on day 7 but enhanced osteoclast differentiation on day 14 compared to 75% βTCP scaffolds (P<0.01). These findings concluded that high porosity titanium scaffolds could enhance progression of hMSC/osteoblast differentiation and regulated osteoclast differentiation cooperating with osteoblast differentiation for calcification as compared with lower porous βTCP. Copyright © 2015 Elsevier B.V. All rights reserved.
Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.
2009-01-01
An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.
Prospects of using titanium nickelide implants with modified surface in dental implantology.
Razdorsky, V V
2008-06-01
Corrosion resistance and biocompatibility of 60 specimens of titanium nickelide with modified surfaces implanted into spongy bone were studied in rabbit experiments. Specimens modified by molybdenum ions exhibited high inertness and favorable tissue reaction. No accumulation of nickel and titanium ions in animal organs was detected.
Production of Lunar Oxygen Through Vacuum Pyrolysis
2006-01-26
bars Titanium Dioxide Titanium forms a number of oxides: TiO2, Ti3O5, Ti2O3, and TiO. Titanium oxide is commonly found as ilmenite ( FeTiO3 ) in...1 10-Jan Zn 5m - < 1x10-4 5 ~900 - 2a 7-Mar FeTiO3 10 min 800 < 1x10-4 1.1x10-1 620 - 2b 7-Mar FeTiO3 15 min 945 < 1x10-4 2x10-2 >800 0.16% 3 18...Apr FeTiO3 ~20 min 890 6.0x10-1 8x10-1 700 0.37% 4 3-May MgSiO3 əmin 955 4.4x10-2 4.4x10-2 548 0.05% 5 6-Jun MgSiO3 ~30 min 940 1.4x10-1 2.3x10-1
Ghasemi, Tania; Arash, Valiollah; Rabiee, Sayed Mahmood; Rajabnia, Ramazan; Pourzare, Amirhosein; Rakhshan, Vahid
2017-06-01
Nano-silver and nano-titanium oxide films can be coated over brackets in order to reduce bacterial aggregation and friction. However, their antimicrobial efficacy, surface roughness, and frictional resistance are not assessed before. Fifty-five stainless-steel brackets were divided into 5 groups of 11 brackets each: uncoated brackets, brackets coated with 60 µm silver, 100 µm silver, 60 µm titanium, and 100 µm titanium. Coating was performed using physical vapor deposition method. For friction test, three brackets from each group were randomly selected and tested. For scanning electron microscopy and atomic-force microscopy assessments, one and one brackets were selected from each group. For antibacterial assessment, six brackets were selected from each group. Of them, three were immediately subjected to direct contact with S. mutans. Colonies were counted 3, 6, 24, and 48 h of contact. The other three were stored in water for 3 months. Then were subjected to a similar direct contact test. Results pertaining to both subgroups were combined. Groups were compared statistically. Mean (SD) friction values of the groups 'control, silver-60, silver-100, titanium-60, and titanium-100' were 0.55 ± 0.14, 0.77 ± 0.08, 0.82 ± 0.11, 1.52 ± 0.24, and 1.57 ± 0.41 N, respectively (p = .0004, Kruskal-Wallis). Titanium frictions were significantly greater than control (p < .05), but silver groups were not (p > .05, Dunn). In the uncoated group, colony count increased exponentially within 48 h. The coated groups showed significant reductions in colony count (p < .05, two-way-repeated-measures ANOVA). In conclusions, all four explained coatings reduce surface roughness and bacterial growth. Nano-titanium films are not suitable for friction reduction. Nano-silver results were not conclusive and need future larger studies. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lv, Chao; Yang, Kun; Wen, Shu-ming; Bai, Shao-jun; Feng, Qi-cheng
2017-10-01
This paper proposes a new technique for preparation of high-grade titanium slag from Panzhihua vanadium titanomagnetite concentrate by reduction-melting-magnetic separation processing. Chemical analysis, x-ray diffraction, and scanning electron microscopy in conjunction with energy-dispersive spectroscopy were used to characterize the samples. The effective separation of iron and titanium slag could be realized by melting metallized pellets at 1550°C for 60 min with the addition of 1% CaO (basicity of 1.1) and 2% graphite powder. The small iron particles embedded in the slag could be removed by fine grinding and magnetic separation process. The grade of TiO2 in the obtained high-grade titanium slag reached 60.68% and the total recovery of TiO2 was 91.25%, which could be directly applied for producing titanium white by the sulfuric acid process. This technique provides an alternative method to use vanadium titanomagnetite concentrate of the Panzhihua area in China.
2013-07-01
countries” currently are exempt from the specialty metals domestic source restriction and are permitted to use non-domestic produced titanium to...industry is the largest consumer of titanium metals in the world. DOD estimates that the aerospace industry accounts for 60 to 75 percent of the U.S...DOD, the specialty metals domestic source restriction limits the U.S. prime contractors’ and aircraft component manufacturers’ purchase of titanium
Thermo-Mechanical Fatigue of a Fiber Reinforced Titanium Aluminide Composite
1991-03-01
Puiitr]on Air Foic. Base, Oiio 91 10 25 038 DTIC 4E L L E C :i<. THERMO- MECHAN I CAL FAT I GUE OF A FIBER REINFORCED TITANIUM ALUMINIDE COMPOSITE Thesis...reinforced titanium aluminide composite was investigated. Three test specimens were subjected to in-phase thermo- mechanical cycling and four to out-of...Unclassified UL ............................... AFIT/GAE/ENY/91S-1 THERMO- MECHANICAL FATIGUE OF A FIBER REINFORCED TITANIUM ALUMINIDE COMPOSITE THESIS
Titanium: light, strong, and white
Woodruff, Laurel; Bedinger, George
2013-01-01
Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.
NASA Astrophysics Data System (ADS)
Bi, Xiaoguo; Dong, Yingnan; Li, Yingjie; Niu, Wei; Tang, Jian; Ding, Shuang; Li, Meiyang
2017-09-01
Oxalate coprecipitation is applied in this paper, high purity titanium tetrachloride, and after the purification of strontium chloride, match with a certain concentration of solution, oxalate and strontium chloride and titanium tetrachloride in 1.005:1.000 make strontium titanium mixture ratio, slowly under 60°C to join in oxalic acid solution, aging around 4 h, get oxygen titanium strontium oxalate (SrTiO(C2O4)2 • 4H2 ) precipitation, after washing, drying and other process made oxygen titanium strontium oxalate powder.
Formation of low resistivity titanium silicide gates in semiconductor integrated circuits
Ishida, Emi [Sunnyvale, CA
1999-08-10
A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.
NASA Technical Reports Server (NTRS)
Lee, R. E.
2016-01-01
In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2010-01-01
An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.
A New Ferroelectric Varactor from Water Based Inorganic Precursors
2003-04-03
See Equation 2). 0 0 4 OH +-)4T H13< Equation 2. Idealized Reaction of Titanium Isopropoxide with 2-ethylhexanoic acid. Inconsistent results with the...Equation 3). Equation 3. Reaction of 2-ethylhexanoic anhydride with Titanium Isopropoxide We have made over one hundred batches of both BST and SBTN MOD...aliphatic acids used in the more common MOD precursors. Equation 4 shows a comparison of the decomposition products of Titanium MOD precursors made from 2
Boyle, Timothy J [Albuquerque, NM
2007-08-14
A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.
Extraction of titanium from low-iron nitrided Malaysian ilmenite by chlorination
NASA Astrophysics Data System (ADS)
Ibrahim, Najwa; Ahmadi, Eltefat; Rahman, Shaik Abdul; Fauzi, M. N. Ahmad; Rezan, Sheikh Abdul
2017-01-01
In this paper, production of TiCl4 from low-iron nitrided ilmenite samples at relatively low temperature using chlorine gas generated from the reaction between KMnO4 and HCl has been investigated. The effects of chlorination soaking time, potassium permanganate (KMnO4) to hydrochloric acid (HCl) molar ratio and aluminium powder catalyst in chlorine gas generation on titanium extraction from nitrided Malaysian ilmenite were examined. The low-iron nitrided Malaysian ilmenite contained titanium oxycarbonitride (TiOxCyNz) after carbothermal reduction and nitridation with subsequent leaching. Chlorination process was performed at 500°C for 30 - 60 minutes. Statistical analysis of the data was done by Design of Experiment (DOE) to identify the significant variables and their interactions. The results achieved in this study showed that the highest extent of chlorination was about 98.34% at 500°C for 60 minutes. The lowest extent of chlorination was about 68.51% obtained in KMnO4 to HCl molar ratio of 2.0 and 0.35 g of aluminium powder. The chlorinated titanium oxycarbonitride powders and TiCl4 solutions were analyzed by X-ray diffraction (XRD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. The purpose of this study was to explore the relationship between the processing parameters on extracting titanium via pyrometallurgical technique.
Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan
2014-01-01
As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056
1960-01-01
Title Agenda and AV^stracts - Watertown Arsenal, Watnrtovm, Mass. llj April i960 - Producers Coordination Meeting, "Titanium Materials for Davy...u.nd J.i’.l~.Jhr!l’ Scicnti~’ic Comp::1.~1y1 Chlc::-.~~o, IJ~~nois. oth :r c~tUl’ll~nt and 1Jl’Occ1t.G.~cn !.Jn.y be uoed if :J..CCC:t.> td )le to
Synthesis of embedded titanium dioxide nanoparticles by oxygen ion implantation in titanium films
NASA Astrophysics Data System (ADS)
Rukade, Deepti. A.; Desai, C. A.; Kulkarni, Nilesh; Tribedi, L. C.; Bhattacharyya, Varsha
2013-02-01
Thin films of titanium of 100nm thickness are deposited on fused silica substrates. These films are implanted by oxygen ions with implantation energy of 60keV obtained from ECR based highly charged ion accelerator. The implanted films are later annealed in a tube furnace to establish nanophase formation. The post implanted annealed films are characterized by UV-Visible Spectroscopy and Glancing Angle X-ray Diffraction technique (GAXRD). The phase formed and particle size is determined by GAXRD. Nanoparticle formation is confirmed by the UV-VIS spectroscopic analysis that shows quantum size effects in the form of a blue shift in the band-gap energy of titanium-oxide.
PLUTONIUM-URANIUM-TITANIUM ALLOYS
Coffinberry, A.S.
1959-07-28
A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.
A Review on High-Speed Machining of Titanium Alloys
NASA Astrophysics Data System (ADS)
Rahman, Mustafizur; Wang, Zhi-Gang; Wong, Yoke-San
Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.
Fullerene-like Polyoxotitanium Cage with High Solution Stability.
Gao, Mei-Yan; Wang, Fei; Gu, Zhi-Gang; Zhang, De-Xiang; Zhang, Lei; Zhang, Jian
2016-03-02
We present the formation of the largest titanium-oxo cluster, [Ti42(μ3-O)60(OiPr)42(OH)12)](6-), with the first fullerene-like Ti-O shell structure. The {Ti42O60} core of this compound exemplifies the same icosahedral (Ih) symmetry as C60, the highest possible symmetry for molecules. According to the coordination environments, the Ti centers in this cluster can be arranged into a Platonic {Ti12} icosahedron and an Archimedean {Ti30} icosidodecahedron. The solution stability of this cluster was confirmed by electrospray ionization mass spectrometry. The spherical body of the {Ti42O60} core has an inside diameter of 1.05 nm and an outside diameter of 1.53 nm, which could be directly visualized by high-resolution transmission electron microscopy. Our results demonstrate that titanium oxide can also form fullerene-like shell structures.
Initial stability of a highly porous titanium cup in an acetabular bone defect model.
Yoshimoto, Kensei; Nakashima, Yasuharu; Wakiyama, Miyo; Hara, Daisuke; Nakamura, Akihiro; Iwamoto, Mikio
2018-04-12
The purpose of this study was to quantify the initial stability of a highly porous titanium cup using an acetabular bone defect model. The maximum torque of a highly porous titanium cup, with a pore size of 640 μm and porosity of 60%, was measured using rotational and lever-out torque testing and compared to that of a titanium-sprayed cup. The bone models were prepared using a polyurethane foam block and had three levels of bone coverage: 100, 70, and 50%. The highly porous titanium cup demonstrated significantly higher maximum torque than the titanium-sprayed cups in the three levels of bone defects. On rotational torque testing, it was found to be 1.5, 1.3, and 1.3 times stronger than the titanium-sprayed cups with 100, 70 and 50% bone coverage, respectively. Furthermore, it was found to be 2.2, 2.3, and 1.5 times stronger on lever-out testing than the titanium-sprayed cup. No breakage in the porous layers was noted during the testing. This study provides additional evidence of the initial stability of highly porous titanium cup, even in the presence of acetabular bone defects. Copyright © 2018. Published by Elsevier B.V.
Baltag, Ioana; Watanabe, Kouichi; Miyakawa, Osamu
2005-06-01
The behavior of molten titanium in molds of complicated shape is still insufficiently understood; consequently, definite spruing criteria are not yet available for titanium RPD frameworks. This study investigated the influence of sprue design on porosity in pressure-cast titanium circumferential clasps. The patterns of 90 circumferential clasps were sprued with three directions (0, 30 and 60 degrees , as measured between the sprue and the symmetry plane of the clasp assembly) and three sprue diameters (1.5, 2.0 and 2.5mm). CPTi was cast in a one-chamber pressure casting machine. Pore number and size were assessed on radiographs of the castings. Statistical analysis was done by two-way analysis of variance (ANOVA), followed by Fisher's PLSD post hoc test. The porosity in lingual arms increased significantly with increase of sprue diameter and sprue angle, while the porosity in minor connectors had an inversely proportional distribution. Very low porosity, uninfluenced by sprue design, was found in buccal arms. In conclusion, internal porosity in titanium circumferential clasp arms can be minimized through sprue design: the 0 degrees sprue direction produced the least porosity, while for the 30 and 60 degrees directions, 1.5mm diameter sprues produced lower porosity than 2.0 and 2.5mm diameter sprues. In this study, the lowest porosity in titanium circumferential clasp arms was obtained with sprues attached perpendicularly to the minor connectors, regardless of sprue diameter. Conventional sprue directions produced significantly higher porosity in clasp lingual arms, the amount of porosity increasing with sprue diameter.
Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian
2015-06-01
Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rempel, А А; Van Renterghem, W; Valeeva, А А; Verwerft, M; Van den Berghe, S
2017-09-07
The superlattice and domain structures exhibited by ordered titanium monoxide Ti 5 O 5 are disrupted by low energy electron beam irradiation. The effect is attributed to the disordering of the oxygen and titanium sublattices. This disordering is caused by the displacement of both oxygen and titanium atoms by the incident electrons and results in a phase transformation of the monoclinic phase Ti 5 O 5 into cubic B1 titanium monoxide. In order to determine the energies required for the displacement of titanium or oxygen atoms, i.e. threshold displacement energies, a systematic study of the disappearance of superstructure reflections with increasing electron energy and electron bombardment dose has been performed in situ in a transmission electron microscope (TEM). An incident electron energy threshold between 120 and 140 keV has been observed. This threshold can be ascribed to the displacements of titanium atoms with 4 as well as with 5 oxygen atoms as nearest neighbors. The displacement threshold energy of titanium atoms in Ti 5 O 5 corresponding with the observed incident electron threshold energy lies between 6.0 and 7.5 eV. This surprisingly low value can be explained by the presence of either one or two vacant oxygen lattice sites in the nearest neighbors of all titanium atoms.
Vostrikov, O V; Zotov, V A; Nikitenko, E V
2004-01-01
Tissue reactions to titanium-nickelide and polypropylen and caprone implants used in surgical treatment of anterior aldomen wall hernias were studied in experiment. Digital density of leukocytes, fibroblasts, vessels, thickness of the capsule were studied. Pronounced inflammatory reaction was observed on day 3 which attenuated on day 14 in case of titanium nickelide and on day 30-60 in case of polypropylene and caprone. Fibroplastic processes start in the first group after 7 days while in the second group only after 30 days of the experiment. Thickness of the capsule around titanium-nickelide was 2-3 times less than around polypropylene and caprone. Thus, titanium-nickelide material is biologically more inert than caprone and polypropylen which are widely used in surgery of hernias.
Höhne, Julius; Werzmirzowsky, Korbinian; Ott, Christian; Hohenberger, Christoph; Hassanin, Bahaa Ghareb; Brawanski, Alexander; Schebesch, Karl-Michael
2018-05-01
Cranioplasty reshapes the neurocranium and viscerocranium after craniectomy. Different materials have been used for cranioplasty. However, no consistent data are yet available comparing these different materials regarding indications, complications, and outcome. We report our experience with preformed titanium implants and freehand molded polymethylmethacrylate (PMMA) implants for cranioplasty. This retrospective single-center analysis included 120 consecutive cranioplasty patients who had been operated between 2006 and 2013. A total of 60 patients (27 women, 33 men; mean age: 54 years) had received a preformed titanium implant and 60 patients (22 women, 38 men; mean age: 46 years) a freehand molded PMMA implant. We evaluated all demographic and procedure-related data, indications, and outcome. The longest follow-up was 5.5 years. The most frequent indications for cranioplasty were trauma ( n = 48 [40%]), malignant infarction ( n = 27 [23%]), tumor ( n = 22 [18%]), spontaneous intracerebral or aneurysmal subarachnoid hemorrhage ( n = 16 [13%]), revision surgery ( n = 5 [4%]), and empyema ( n = 2 [2%]). PMMA implants were more often associated with wound-healing disorders ( p < 0.023; odds ratio [OR]: 10.53) and epidural hematoma ( p < 0.03; OR: 8.46), resulting in a significantly higher re-operation rate ( p < 0.005). Precise fitting was radiologically confirmed in 98% of titanium implants but in only 71% of PMMA implants ( p < 0.001). Magnetic resonance imaging of patients with titanium implants ( n = 4) did not show any relevant artifacts. Cranioplasty with preformed titanium implants seems to be superior to freehand molded PMMA implants regarding surgical morbidity, revision rate, and aesthetic results. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang
2014-06-01
This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.
Titanium Nitride: An Oxidizable Coating for the High-Temperature Protection of Graphite
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.
1961-01-01
A titanium nitride coating for graphite, prepared by deposition process, protected test specimens for 60 seconds the vapors in a supersonic ceramic-heated air jet with a stagnation temperature of approximately 2,250 K. For the same test conditions, coated specimens showed no damage to the graphite body for the 60-second test, whereas uncoated specimens were very severely damaged after 20 seconds and were destroyed toward the end of the test. A discussion of the coating of these graphite specimens and of some of the conditions necessary for the utilization of oxidizable substances as oxidation-protective coatings for bodies facing high convective heat transfer in the atmosphere is presented.
Water-soluble titanium alkoxide material
Boyle, Timothy J.
2010-06-22
A water soluble, water stable, titanium alkoxide composition represented by the chemical formula (OC.sub.6H.sub.6N).sub.2Ti(OC.sub.6H.sub.2(CH.sub.2N(CH.sub.3).sub.2).sub- .3-2,4,6).sub.2 with a theoretical molecular weight of 792.8 and an elemental composition of 63.6% C, 8.1% H, 14.1% N, 8.1% O and 6.0% Ti.
Experimental and Modeling Damage Limits Study for Straight Ti-3A1-2.5V Tubes
2007-05-15
Titanium Tubes used in V-22 Osprey Tilt-rotor Aircraft ………………………………………………………………………………………..60 Appendix A. Project Presentation Slides – 1. Summary of...removed from the aircraft. By laboratory testing, finite element analysis and fracture mechanics study, damage limit curves of the titanium tubes have...OD) and 0.032” tube wall thickness (TWT) were studied, the impulse pressure test results for laser micromachining notched straight titanium tubes
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Wozniak, Walter A.
2012-01-01
An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is a promising tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, easily lubricated and is non-magnetic. It also falls within the class of superelastic alloys and can elastically endure large strains (beyond 5 percent) making it highly resistant to excessive and unexpected (shock) loads. Key material properties and characteristics such as elastic modulus, tensile fracture sensitivity and residual stress behavior, however, differ from conventional alloys such as steel and this significantly affects bearing design and manufacturing. In this paper, the preliminary design and manufacture of ball bearings made from 60NiTi are considered for a highly corrosive, lightly loaded, low speed bearing application found inside the International Space Station s water recycling system. The information presented is expected to help guide more widespread commercialization of this new technology into space mechanism and other applications.
NASA Astrophysics Data System (ADS)
Sanz, Ruy; Buccheri, Maria Antonietta; Zimbone, Massimo; Scuderi, Viviana; Amiard, Guillaume; Impellizzeri, Giuliana; Romano, Lucia; Privitera, Vittorio
2017-03-01
TiO2 nanotubes demonstrated to be a versatile nanostructure for biomaterials, clean energy and water remediation applications. However, the cost of titanium and the poor mechanical properties of the nanotubes hinder their adoption at large scale. This work presents a straightforward and scalable method for transferring photoactive anodic TiO2 nanotubes from titanium foils to commodity thermoplastic polymers, polypropylene, polyethylene terephthalate, polycarbonate, and polymethylmetacrylate, allowing the reusing of the remaining titanium. The obtained flexible nanocomposites reach a maximum photonic efficiencies of 0.038% (ISO-10678:2010) representing the 93% of photonic efficiency of TiO2 nanotubes on titanium. In addition, the nanocomposites and TiO2 nanotubes on titanium present similar antibacterial properties under 1 mW cm-2 UV-A, 60% of Escherichia coli survival after 1 h of exposition. The final objective of this work is to point out main concepts and key parameters for a low-cost fabrication of a photoactive nanocomposite material.
Dosimetric evaluation of the effect of dental implants in head and neck radiotherapy.
Ozen, Julide; Dirican, Bahar; Oysul, Kaan; Beyzadeoglu, Murat; Ucok, Ozlem; Beydemir, Bedri
2005-06-01
The aim of the study was to examine the dose enhancement from scattered radiation at bone-dental implant interfaces during simulated head and neck radiotherapy. Four cylindrical titanium dental implants with 3 different sizes and lengths were implanted into a human mandible in 4 different positions. Ionization measurements for 6 MV X, 25 MV X, and Co-60 gamma rays were done. Thermoluminescent dosimeter (TLD 100 ) chips were used to measure radiation dose enhancement due to the scattered electrons from titanium and electronic disequilibrium at the tissue-metal interface. The results showed that for Co-60, there is a 21% maximum increase in dose to alveolar mandibular bone at the close proximity to the titanium. For 6-MV x-rays the dose enhancement increase was almost the same or slightly lower than for Co-60, while for 25-MV high-energy x-rays, dose enhancement was lower than that of others. This increase in dose enhancement fell off rapidly and became insignificant at 2 mm from the interface. Total dose that may lead to osteoradionecrosis risk of the mandible is slightly but not significantly affected by the scattered dose of the dental implants of lower jaw in the radiation field exposed to 3 different radiation beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khidirov, I., E-mail: khidirov@inp.uz; Parpiev, A. S.
2013-05-15
A series of superstructural reflections (described within the sp. gr. Fd3m) are found to be split into three symmetric parts in the neutron powder diffraction pattern of titanium carbide TiC{sub 0.60} annealed at a temperature of 600 Degree-Sign C. No splitting of superstructural reflections is observed in the neutron diffraction pattern of TiC{sub 0.60} annealed at relatively high temperatures (780 Degree-Sign C). This phenomenon can be explained by that fact that the ordering of carbon atoms at relatively high temperatures (780 Degree-Sign C) is accompanied by the formation of randomly oriented rather large antiphase domains (APDs) (450 A). At relativelymore » low temperatures (600 Degree-Sign C), stacking faults arise in the arrangement of partially ordered carbon atoms. In this case, relatively small ordered APDs (290 A) are formed, along with disordered ones.« less
Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto
2017-01-01
Titanium implants coated with a 500nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p<0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p<0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p<0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. Copyright © 2016. Published by Elsevier B.V.
Surface characterization of nickel titanium orthodontic arch wires
Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal
2015-01-01
Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749
In vivo performance of selective electron beam-melted Ti-6Al-4V structures.
Ponader, Sabine; von Wilmowsky, Cornelius; Widenmayer, Martin; Lutz, Rainer; Heinl, Peter; Körner, Carolin; Singer, Robert F; Nkenke, Emeka; Neukam, Friedrich W; Schlegel, Karl A
2010-01-01
Highly porous titanium structures are widely used for maxillofacial and orthopedic surgery because of their excellent mechanical properties similar to those of human bone and their facilitation of bone ingrowth. In contrast to common methods, the generation of porous titaniumproducts by selective electron beam melting (SEBM), an additive manufacturing technology, overcomes difficulties concerning the extreme chemical affinity of liquid titanium to atmospheric gases which consequently leads to strongly reduced ductility of the metal. The purpose of this study was to assess the suitability of a smooth compact and a porous Ti-6Al-4V structure directly produced by the SEBM process as scaffolds for bone formation. SEBM-processed titanium implants were placed into defects in the frontal skull of 15 domestic pigs. To evaluate the direct contact between bone and implant surfaces and to assess the ingrowth of osseous tissue into the porous structure, microradiographs and histomorphometric analyses were performed 14, 30, and 60 days after surgery. Bone ingrowth increased significantly during the period of this study. After 14 days the most outer regions of the implants were already filled with newly formed bone tissue (around 14%). After 30 days the bone volume inside the implants reached almost 30% and after 60 days abundant bone formation inside the implants attained 46%. During the study only scarce bone-implant contact was found around all implants, which did not exceed 9% around compact specimens and 6% around porous specimens after 60 days. This work demonstrates that highly porous titanium implants with excellent interconnectivity manufactured using the SEBM method are suitable scaffolds for bone ingrowth. This technique is a good candidate for orthopedic and maxillofacial applications.
Effect of fluoride sodium mouthwash solutions on cpTI: evaluation of physicochemical properties.
Toniollo, Marcelo Bighetti; Galo, Rodrigo; Macedo, Ana Paula; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; Mattos, Maria da Gloria Chiarello de
2012-01-01
The effects of fluoride, which is present in different oral hygiene products, deserve more investigation because little is known about their impact on the surface of titanium, which is largely used in Implantology. This study evaluated the surface of commercially pure titanium (cpTi) after exposure to different concentrations of sodium fluoride (NaF). The hypothesis tested in this study was that different concentrations of NaF applied at different time intervals can affect the titanium surface in different ways. The treatments resulted in the following groups: GA (control): immersion in distilled water; GB: immersion in 0.05% NaF for 3 min daily; GC: immersion in 0.2% NaF for 3 min daily; GD: immersion in 0.05% NaF for 3 min every 2 weeks; and GE: immersion in 0.2% NaF for 3 min every 2 weeks. The experiment lasted 60 days. Roughness was measured initially and every 15 days subsequently up to 60 days. After 60 days, corrosion analysis and anodic polarization were done. The samples were examined by scanning electron microscopy (SEM). The roughness data were analyzed by ANOVA and there was no significant difference among groups and among time intervals. The corrosion data (i(corr)) were analyzed by the Mann-Whitney test, and significant differences were found between GA and GC, GB and GC, GC and GD, GC and GE. SEM micrographs showed that the titanium surface exposed to NaF presented corrosion that varied with the different concentrations. This study suggests that the use of 0.05% NaF solution on cpTi is safe, whereas the 0.2% NaF solution should be carefully evaluated with regard to its daily use.
Behzadnia, Amir; Montazer, Majid; Rashidi, Abousaeid; Rad, Mahnaz Mahmoudi
2014-09-01
This study presents a novel idea to prepare nanocrystalline structure of TiO2 under ambient pressure at 60-65 °C using in situ sonochemical synthesis by hydrolysis of either titanium isopropoxide or titanium butoxide in an acidic aqueous solution. The nano titanium dioxide coated wool fabrics possess significant antibacterial/antifungal activity and self-cleaning property by discoloring Methylene blue stain under sunlight irradiation. This process has no negative effect on cytotoxicity and tensile strength of the sonotreated fabric even reduces alkaline solubility and photoyellowing and improves hydrophilicity. More titanium isopropoxide or titanium butoxide as a precursor led to higher photocatalytic activities of the treated fabrics. Also introducing more ethanol improved the adsorption of TiO2 on the wool fabric surface leading to enhanced photocatalytic activity. EDS and XRD patterns, SEM images, X-ray mapping confirmed the presence of nano TiO2 particles on the fabric surface. The role of both solvent and precursor concentrations on the various properties of the fabric was investigated and the optimized conditions were obtained using response surface methodology. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of titanium and Robinson stainless steel stapes piston prostheses.
Lippy, William H; Burkey, John M; Schuring, Arnold G; Berenholz, Leonard P
2005-09-01
Although stainless steel stapes prostheses have generally been considered magnetic resonance imaging safe, there is concern that this may change with the development of more powerful imaging systems. The objective of the study was to determine whether a titanium piston stapes prosthesis would be audiometrically and surgically equivalent to a Robinson stainless steel piston for stapedectomy. Retrospective chart review. Private otology practice. In all, 50 patients underwent stapedectomy with a Gyrus titanium piston prosthesis. These patients were matched on the basis of age and preoperative bone-conduction scores with patients who underwent stapedectomy with a Robinson stainless steel piston prosthesis. Audiometric results are analyzed, and surgical complications noted. There was no significant difference between groups in hearing improvement or postoperative air-bone gap. The mean four-frequency hearing improvement was 27.7 dB for the stainless steel group and 27.8 dB for the titanium group. The mean postoperative air-bone gap was 2.65 dB for the stainless steel group and 2.60 for the titanium group. Neither group had a surgical complication. The titanium stapes prosthesis is a good alternative to a stainless steel prosthesis.
Low void content autoclave molded titanium alloy and polyimide graphite composite structures.
NASA Technical Reports Server (NTRS)
Vaughan, R. W.; Jones, R. J.; Creedon, J. F.
1972-01-01
This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.
Acid etching of titanium for bonding with veneering composite resins.
Ban, Seiji; Taniki, Toshio; Sato, Hideo; Kono, Hiroshi; Iwaya, Yukari; Miyamoto, Motoharu
2006-06-01
Commercially pure titanium (cpTi) was etched using three concentrated acids: 18% HCl, 43% H3PO4, and 48% H2SO4. The bond strengths between five types of veneering composite resin and eight cpTi treatments (involving combinations of sandblasting, acid etching in 48% H2SO4, and vacuum firing) were determined before and after 10,000 and 20,000 thermal cycles. There were no significant differences in the bond strength of resin to cpTi after etching in 48% H2SO4 at 90 degrees C for 15 minutes, at 60 degrees C for 15, 30, or 60 minutes, and after sandblasting with and without vacuum firing (p > 0.05); moreover, these treatments yielded the highest values. As for vacuum firing, it had no significant effect on resin bond strength to cpTi before or after 10,000 and 20,000 thermal cycles. We therefore concluded that acid etching in concentrated H2SO4 is a simple and effective surface modification method of titanium for bonding to veneering composite resins.
Preliminary structural design of composite main rotor blades for minimum weight
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1987-01-01
A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials.
Shot-Peening Sensitivity of Aerospace Materials
2007-05-01
19. The beta-STOA titanium , Kt = 1 cyclic fatigue data. 41 Beta-STOA Ti- 6 - 4 Kt = 1.75 - Stress versus Cycles to Failure 80 85 90 95 100 105...The beta-STOA titanium , Kt = 1.75 cyclic fatigue data. Beta-STOA Ti- 6 - 4 Kt = 2.5 - Stress versus Cycles to Failure 60 65 70 75 80 85 90 1.E+03 1... 4 4.2 Phase 2. Fatigue/XRD-RSA/Surface Roughness Assessment ....................................... 6 4.2.1 Fatigue
Osteal integration of porous implants from titanium nickelide.
Kelmakov, V P; Itin, V I; Epifancev, A G; Lepakova, O K; Kitler, V D; Bulgakov, V N
2009-10-01
The microstructure of preparations from porous titanium nickelide was studied 4.5 months and 1.5 years after operations on the anterior compartments of the spine. Organic tissues of different morphology, compactness, and thickness occupied 100% of analyzed surface 1.5 years after implantation, while after 4.5 months the pores were filled by 60%. The content of calcium and phosphorus elements in surface pores after 1.5 years was close to their concentrations in human bones.
NASA Astrophysics Data System (ADS)
Zhang, Dawei; Zhou, Feichi; Xiao, Kui; Cui, Tianyu; Qian, Hongchong; Li, Xiaogang
2015-07-01
Microbially induced corrosion (MIC) poses significant threats to reliability and safety of engineering materials and structures. While most MIC studies focus on prokaryotic bacteria such as sulfate-reducing bacteria, the influence of fungi on corrosion behaviors of metals has not been adequately reported. In this study, 304 stainless steel and titanium were exposed to two very common fungi, Paecilomyces variotii, Aspergillus niger and their mixtures under highly humid atmosphere. The initial corrosion behaviors within 28 days were studied via scanning Kelvin probe, which showed marked surface ennoblement and increasingly heterogeneous potential distribution upon prolonged fungus exposure. Using stereomicroscopy, fungus growth as well as corrosion morphology of 304 stainless steel and titanium were also evaluated after a long-term exposure for 60 days. The presence of fungi decreased the corrosion resistance for both 304 stainless steel and titanium. Titanium showed higher resistance to fungus growth and the induced corrosion. Exposure to the mixed strains resulted in the highest fungus growth rate but the mildest corrosion, possibly due to the decreased oxygen level by increased fungal activities.
Effect of alkali treatment on surface morphology of titanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my
2015-07-22
Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed usingmore » Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.« less
NASA Astrophysics Data System (ADS)
Franco, Staub; Kondoh, Katsuyoshi; Umeda, Junko; Imai, Hisashi
In this experiment, TILOP-45 commercially pure titanium powder was mixed with vapor grown carbon fibers (VGCF) to form a 200 g 0.5 wt. % VGCF solution. After adding 0.15 grams of cle-safe oil, a rocking mill shook the sample at 60.0 Hz for 2 hours, resulting in satisfactory dispersion of VGCF on the titanium powder surface. The powder solution was compacted by spark plasma sintering (SPS) and hot extruded. The SPS temperature was set to either 800 °C or 1,000 °C and the pressure to 35 kN. Using an extrusion ratio of 13:1 and ram speed of 3 mm/s, the titanium billet, preheated to either 800 °C or 1,000 °C, was deformed to a 10 mm diameter rod. All four permutations of SPS and extrusion temperatures were tested. Microstructure, grain size, hardness, and oxygen/nitrogen/carbon content were observed. Also, a UTS experiment was done followed by SEM observations of the fractured surfaces.
Using Hysteretic Energy to Evaluate Damping Characteristics of Hard Coating on Titanium
2013-03-21
Ivancic, Frank T. The Effect of a Hard Coating on the Damping and Fatigue Life of Titanium. Air Force Institute of Technology (AU), Wright-Patterson AFB... aluminum specimens to determine the effects of losses for different grip mechanisms, a suspected problem in previous work with this method. Peak...done in a vacuum, and the nature of the free-decay test also confines strain to relatively low values for coated specimens (< 1000 µε) (Reed 2007
NASA Astrophysics Data System (ADS)
Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur
2017-12-01
The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.
Titanium Aluminide Technologies Successfully Transferred From HSR Program to RLV VentureStar Program
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.
2000-01-01
Through a cost-share contract, BFGoodrich Aerostructures group successfully fabricated three titanium aluminide (gamma TiAl) truss core structures using technologies pioneered in the High-Speed Research (HSR) program at the NASA Glenn Research Center at Lewis Field. The truss core subelement is approximately 60-cm (24-in.) long by 14-cm (5.5-in.) wide by 6-cm (2.5-in.) deep. To fabricate this subelement, BFGoodrich first obtained gamma TiAl sheets from Plansee (Austria) which produced the sheets using techniques developed collaboratively by Glenn, Pratt & Whitney, and Plansee. This new gamma TiAl production technology has significantly lowered the cost of gamma TiAl sheet (approx. 75-percent decrease) and has made the production of larger gamma TiAl sheets possible (approx. 60-percent increase).
Enhancement of entangled porous titanium by BisGMA for load-bearing biomedical applications.
Liu, Yan; Jiang, Guofeng; He, Guo
2016-04-01
The Bisphenol A glycidyl methacrylate (BisGMA) was used as binder to fix the free cross wire nodes in the entangled porous titanium for enhancement. The entangled titanium with 60% porosity after infiltrated with 5-20 vol.% BisGMA had the pore size in the range of 100 μm-400 μm. The enhanced materials with the real porosity of 40-55% exhibited the elastic modulus in the range of 0.4-1.4 GPa and the yielding strength in the range of 12.9-52.5 MPa. Such mechanical properties were comparable with those of cancellous bones, suggesting potentials for load-bearing bio applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced Cellular Adhesion on Titanium by Silk Functionalized with titanium binding and RGD peptides
Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J.; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L.; Egles, Christophe
2012-01-01
Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. Quartz Crystal Microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived RGD peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by Scanning Electron Microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk-peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. PMID:22975628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arifvianto, B., E-mail: b.arifvianto@tudelft.nl; L
The present research was aimed at gaining an understanding of the porous structure changes from the green body through water leaching and sintering to titanium scaffolds. Micro-computed tomography (micro-CT) was performed to generate 3D models of titanium scaffold preforms containing carbamide space-holding particles and sintered scaffolds containing macro- and micro-pores. The porosity values and structural parameters were determined by means of image analysis. The result showed that the porosity values, macro-pore sizes, connectivity densities and specific surface areas of the titanium scaffolds sintered at 1200 °C for 3 h did not significantly deviate from those of the green structures withmore » various volume fractions of the space holder. Titanium scaffolds with a maximum specific surface area could be produced with an addition of 60–65 vol% carbamide particles to the matrix powder. The connectivity of pores inside the scaffold increased with rising volume fraction of the space holder. The shrinkage of the scaffolds prepared with > 50 vol% carbamide space holder, occurring during sintering, was caused by the reductions of macro-pore sizes and micro-pore sizes as well as the thickness of struts. In conclusion, the final porous structural characteristics of titanium scaffolds could be estimated from those of the green body. - Highlights: •Porous structures of green body and sintered titanium scaffolds was studied. •Porous structures of both samples were quantitatively characterized with micro-CT. •Porous structures of scaffolds could be controlled from the green body. •Shrinkage mechanisms of titanium scaffolds during sintering was established.« less
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
2018-01-01
The dependence of the lifetimes of small quantities of a Multiply Alkylated Cyclopentane (MAC) lubricant oil, Pennzane (Registered Trademark) 2001A (Nye Lubricants, Inc.), in rolling and sliding contact with different metals was evaluated with a vacuum spiral orbit tribometer. The metals were the bearing alloys 52100 steel, 440C steel, 17-4 PH steel and Nitinol 60 and the elements chromium, vanadium and titanium. The lifetimes of the lubricant oil on different metals fell into distinct groups with 52100 greater than 440C approx. Nitinol 60 greater than 17-4 PH for the order of the lifetimes of the steels and chromium greater than vanadium greater than titanium for the order of the lifetimes for the elements. The limited life of the small quantities of oil is assumed to be due to its consumption by the tribochemical reaction of the oil with the different metal bearing materials. The lifetimes are then inversely related to the reaction rates of the oil molecules with the various metals: the longest life of 52100 steel having the lowest reaction rate and the shortest life of titanium having the highest reaction rate. Mechanisms for the tribochemical reactions are discussed.
Wu, JC; Lai, LC; Sheets, CG; Earthman, J; Newcomb, R
2011-01-01
Statement of problem A new fabrication process has been developed where a titanium coping, which has a gold colored titanium nitride outer layer can be reliably fused to porcelain, but the marginal adaptation characteristics are still undetermined. Purpose The primary purpose of this study is to compare the rate of Clinically Acceptable Marginal Adaptation (CAMA-defined as a marginal gap mean ≤60 μm) of cathode-arc vapor-deposited titanium with the CAMA rate for the cast base metal copings. In addition, the study will evaluate the marginal gap scores themselves to assess their mean difference between the two study groups. Finally, the study will present two analyses of group differences in variability to support the contention that the titanium copings perform more consistently than their base metal counterparts. Material and methods Thirty-seven cathode-arc vapor-deposited titanium copings and 40 cast base metal copings were evaluated by computer-based image analysis using an optical microscope. The conventional lost wax technique was used to fabricate the 40 cast base metal copings that were 0.3 mm thick. The titanium copings were 0.3 mm thick and were formed by a collection of atomic titanium vapor onto a refractory die duplicate in a high vacuum chamber. Fifty vertical marginal gap measurements were collected from each of the 77 copings and the mean of these measurements was computed to form a gap score for each coping. Next, the gap score was compared to the 60 μm criterion to classify each coping as to whether it did or did not achieve Clinically Acceptable Marginal Adaption (CAMA). A comparison of the CAMA rates for each type of coping was used to address the primary purpose of this study. In addition, the gap scores themselves were used to test the (one-sided) hypothesis that the mean of the titanium gap scores is smaller than the mean of the base metal gap scores. Finally, the assertion that the titanium copings provide more consistency in their marginal gap performance was tested in two ways. First, the means of the titanium gap scores were compared to the means of the marginal gap scores for the base metal copings. Second, the standard deviations of the marginal gap scores for the titanium copings were compared with those for the base metal copings. Results Statistical comparison of the CAMA rates for each type of coping showed that the CAMA criterion was achieved by 24 of the 37 (64.86%) titanium copings, while 19 of the 40 (47.50%) base metal copings met this same standard. Noninferiority of the titanium copings was established by the 2-sided 90% Confidence Interval for the 17.36% difference in these rates (−0.95%, 35.68%) and noninferiority of titanium coping adaption was also demonstrated by the Wald Test rejection of the tentative hypothesis of inferiority (Z-score=1.9191, one-sided p=0.0275). The mean of the vertical marginal gap scores for the titanium copings (56.9025) was significantly less than the mean of the marginal gap scores for the base metal copings (71.9041) as shown by the Satterthwaite t-score=−2.29 (one-sided p=0.0126). To compare the adaption consistency of the titanium copings to the base metal counterparts the difference between the variance of the marginal gap scores for the titanium copings (594.843) and the variance of the marginal gap scores for the base metal copings (1510.901) was found to be statistically significant (Folded-F test score=2.63, p=0.0042). Our second method for showing that the titanium copings performed more consistently than the base metal comparisons was to use a one-sided test to show that the mean of the standard deviations of the vertical gap measurements for each titanium coping (29.9835) was significantly lower than the mean of the standard deviations of the vertical gap measurements for each base metal coping (36.1332). This test produced a Satterthwaite’s t-score of −2.24 (one-sided p=0.0141), indicating the titanium adaption was significantly more consistent. Conclusions Cathode-arc vapor deposited titanium copings exhibited a higher rate of Clinically Acceptable Marginal Adaption (CAMA) than the comparison base metal copings. Comparison of the coping marginal adaption score variances and direct assessment of the coping marginal adaption scores provided additional evidence that the titanium copings performed better and with more consistency than their base metal counterparts. PMID:21640242
Nanotubular topography enhances the bioactivity of titanium implants.
Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan
2017-08-01
Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.
Detection of tightly closed flaws by nondestructive testing (NDT) methods in steel and titanium
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Tedrow, T. L.; Mullen, S. J.
1976-01-01
X-radiographic, liquid penetrant, ultrasonic, eddy current and magnetic particle testing techniques were optimized and applied to the evaluation of 4340 steel (180 KSI-UTS) and 6Al-4V titanium (STA) alloy specimens. Sixty steel specimens containing a total of 176 fatigue cracks and 60 titanium specimens containing a total of 135 fatigue cracks were evaluated. The cracks ranged in length from .043 cm (0.017 inch) to 1.02 cm (.400 inch) and in depth from .005 cm (.002 inch) to .239 cm (.094 inch) for steel specimens. Lengths ranged from .048 cm (0.019 inch) to 1.03 cm (.407 inch) and depths from 0.010 cm (.004 inch) to .261 cm (0.103 inch) for titanium specimens. Specimen thicknesses were nominally .152 cm (0.060 inch) and 0.635 cm (0.250 inch) and surface finishes were nominally 125 rms. Specimens were evaluated in the "as machined" surface condition, after etch surface and after proof loading in a randomized inspection sequence.
Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui; ...
2017-08-24
Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g -1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less
Szep, S; Gerhardt, T; Leitzbach, C; Lüder, W; Heidemann, D
2001-03-01
This in vitro study evaluated the efficacy and safety of six different nickel-titanium engine-driven instruments used with a torque-controlled engine device and nickel-titanium hand and stainless steel hand instruments in preparation of curved canals. A total of 80 curved (36 degrees) simulated root canals were prepared. Images before and after were superimposed, and instrumentation areas were observed. Time of instrumentation, instrument failure, change in working length and weight loss were also recorded. Results show that stainless steel hand instruments cause significantly less transportation towards the inner wall of the canal than do nickel-titanium hand instruments. No instrument fracture occurred with hand instruments, but 30-60% breakage of instruments was recorded during instrumentation with the engine-driven devices. The working length was maintained by all types of instruments. Newly developed nickel-titanium rotary files were not able to prevent straightening of the severely curved canals when a torque-controlled engine-driven device was used.
Titanium distribution in swimming pool water is dominated by dissolved species.
David Holbrook, R; Motabar, Donna; Quiñones, Oscar; Stanford, Benjamin; Vanderford, Brett; Moss, Donna
2013-10-01
The increased use of titanium dioxide nanoparticles (nano-TiO2) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (<1 kDa), with only a minor fraction of total [Ti] being considered either particulate or microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal. Published by Elsevier Ltd.
Modification of electrochemically deposited apatite using supercritical water.
Ban, S; Hasegawa, J
2001-12-01
Supercritical water was used as a modification method of electrochemically deposited apatite on pure titanium. The apatites were coated on a commercially pure titanium plate using a hydrothermal-electrochemical method. A constant direct current at 12.5 mA/cm2 was loaded for 1 hr at 25, 60, 100, 150 and 200 degrees C in an electrolyte containing calcium and phosphate ions. The deposited apatite on the titanium substrate was stored in supercritical water at 450 degrees C under 45 MPa for 8 hr. With this treatment, the crystallinity of the apatites increased, sharp edges of the deposited apatites were rounded off, and the bonding strength of the titanium substrate to the deposited apatites significantly increased. On the other hand, weight loss in 0.01 N HCl decreased and the weight gain rate in a simulated body fluid also decreased with this treatment. It is suggested that the modification using supercritical water improved the mechanical strength of the deposited apatite, but worsened its bioactivity.
Optical and hydrophobic properties of co-sputtered chromium and titanium oxynitride films
NASA Astrophysics Data System (ADS)
Rawal, Sushant K.; Chawla, Amit Kumar; Jayaganthan, R.; Chandra, Ramesh
2011-08-01
The chromium and titanium oxynitride films on glass substrate were deposited by using reactive RF magnetron sputtering in the present work. The structural and optical properties of the chromium and titanium oxynitride films as a function of power variations are investigated. The chromium oxynitride films are crystalline even at low power of Cr target (≥60 W) but the titanium oxynitride films are amorphous at low target power of Ti target (≤90 W) as observed from glancing incidence X-ray diffraction (GIXRD) patterns. The residual stress and strain of the chromium oxynitride films are calculated by sin 2 ψ method, as the average crystallite size decreases with the increase in sputtering power of the Cr target, higher stress and strain values are observed. The chromium oxynitride films changes from hydrophilic to hydrophobic with the increase of contact angle value from 86.4° to 94.1°, but the deposited titanium oxynitride films are hydrophilic as observed from contact angle measurements. The changes in surface energy were calculated using contact angle measurements to substantiate the hydrophobic properties of the films. UV-vis and NIR spectrophotometer were used to obtain the transmission and absorption spectra, and the later was used for determining band gap values of the films, respectively. The refractive index of chromium and titanium oxynitride films increases with film packing density due to formation of crystalline chromium and titanium oxynitride films with the gradual rise in deposition rate as a result of increase in target powers.
NASA Astrophysics Data System (ADS)
Hung, Kun Ming; Hsieh, Ching Shieh; Yang, Wein Duo; Tsai, Hui Ju
2007-03-01
Nanometric-sized barium titanate powders were prepared by using titanium isopropoxid as the raw material and acetylacetone as a chelating agent, in a strong alkaline solution (pH > 13) through the sol-precipitation method. The preparatory variables affect the extent of cross-linking in the structure, change the mode of condensation of the gels, and even control the particle size of the powder. The reaction rate of forming powder, at a higher temperature such as 100°C and more water content (the molar ratio of water to titanium isopropoxide is 25) or fewer acetylacetone (the molar ratio of acetylacetone to titanium isopropoxide is 1), is rapid and the particle size formed is finer at 60 80 nm. On the contrary, that of forming powder, at lower temperature (40°C) and less water content (molar ratio of water/titanium isopropoxide = 5) or higher acetylacetone (acetylacetone/titanium isopropoxide = 7), is slow and the particle size of the powder is larger. The optimal preparatory conditions were obtained by using the experimental statistical method; as a result, nanometric-sized BaTiO3 powder with an average particle size of about 50 nm was prepared.
Zhang, Ya-li; Luo, Xiao-ping; Zhou, Li
2012-05-01
To study the effect of sintering gold paste coating of pure titanium on the adhesion of three porcelains following the protocol ISO 9693, and to investigate the titanium-porcelains interfaces. Sixty machined pure titanium samples were prepared in a rectangular shape according to ISO 9693 and divided equally into six groups. Half of the strips were coated with gold paste (Deckgold) and sintered. Three ultra-low-fusing dental porcelains (I: Initial Ti, S: Super porcelain Ti-22, T: TitanKeramik) were fused onto the titanium surfaces. A thin layer of bonding agent was only applied on the surfaces of uncoated gold specimens. The interface of the porcelain and titanium was observed with a field emission scanning electron microscope (FE-SEM) after metallographic preparation and sputtered with a very thin carbon layer of the embedded titanium-porcelain interface. After three-point bending test was performed, optical stereomicroscope was used to characterize the titanium-porcelains adhesion and determine the mode of failure. FE-SEM illustrated intermetallic compounds of Au-Ti formed with some visible microcracks in the gold layer and the interface of gold layer and ceramic. All the uncoated gold titanium-porcelain system showed predominately adhesive fracture at the titanium oxidation, whereas the failure modes in all gold coated systems were cohesive and adhesive, mainly cohesive. The three-point-bending test showed that the bonding strength of GS and GI groups [(37.08 ± 4.32) and (36.20 ± 2.40) MPa] were higher than those in uncoated groups [(31.56 ± 3.74) and (30.88 ± 2.60) MPa, P < 0.05], while no significant difference was found between T group and GT group (P > 0.05). The gold paste intermediate coatings can improve bond strengths of Super porcelain Ti-22 system and Initial Ti system, which have potential applications in clinical fields.
Improved superconducting qubit coherence using titanium nitride
NASA Astrophysics Data System (ADS)
Chang, Josephine B.; Vissers, Michael R.; Córcoles, Antonio D.; Sandberg, Martin; Gao, Jiansong; Abraham, David W.; Chow, Jerry M.; Gambetta, Jay M.; Beth Rothwell, Mary; Keefe, George A.; Steffen, Matthias; Pappas, David P.
2013-07-01
We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ˜60 μs, by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to qubits made with lift-off aluminum deposited simultaneously with the Josephson junction, this represents as much as a six-fold improvement and provides evidence that surface losses from two-level system (TLS) defects residing at or near interfaces contribute to decoherence. Concurrently, we observe an anomalous temperature dependent frequency shift of TiN resonators, which is inconsistent with the predicted TLS model.
Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka
2014-04-01
It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Zwitter; Phillip Nash; Xiaoyan Xu
2011-03-31
This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.« less
Ballistic Experiments with Titanium and Aluminum Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogolewski, R.; Morgan, B.R.
1999-11-23
During the course of the project we conducted two sets of fundamental experiments in penetration mechanics in the LLNL Terminal Ballistics Laboratory of the Physics Directorate. The first set of full-scale experiments was conducted with a 14.5mm air propelled launcher. The object of the experiments was to determine the ballistic limit speed of 6Al-4V-alloy titanium, low fineness ratio projectiles centrally impacting 2024-T3 alloy aluminum flat plates and the failure modes of the projectiles and the targets. The second set of one-third scale experiments was conducted with a 14.5mm powder launcher. The object of these experiments was to determine the ballisticmore » limit speed of 6Al-4V alloy titanium high fineness ratio projectiles centrally impacting 6Al-4V alloy titanium flat plates and the failure modes of the projectiles and the target. We employed radiography to observe a projectile just before and after interaction with a target plate. Early on, we employed a non-damaging ''soft-catch'' technique to capture projectiles after they perforated targets. Once we realized that a projectile was not damaged during interaction with a target, we used a 4-inch thick 6061-T6-alloy aluminum witness block with a 6.0-inch x 6.0-inch cross-section to measure projectile residual penetration. We have recorded and tabulated below projectile impact speed, projectile residual (post-impact) speed, projectile failure mode, target failure mode, and pertinent comments for the experiments. The ballistic techniques employed for the experiments are similar to those employed in an earlier study.« less
Biocompatibility of Plastic Clip in Neurocranium - Experimental Study on Dogs.
Delibegovic, Samir; Dizdarevic, Kemal; Cickusic, Elmir; Katica, Muhamed; Obhodjas, Muamer; Ocus, Muhamed
2016-01-01
A potential advantage of the use of the plastic clips in neurosurgery is their property of causing fewer artifacts than titanium clips as assessed by computed tomography and magnetic resonance scans. The biocompatibility of plastic clips was demonstrated in the peritoneal cavity, but their behavior in the neurocranium is not known. Twelve aggressive stray dogs designated for euthanasia were taken for this experimental study. The animals were divided into two groups. In all cases, after anesthesia, a craniotomy was performed, and after opening the dura, a proximal part titanium clip was placed on the isolated superficial Sylvian vein (a permanent Yasargil FT 746 T clip at a 90° angle, while a plastic Hem-o-lok clip ML was placed on another part of the vein). The first group of animals was sacrificed on the 7 < sup > th < /sup > postoperative day and the second group on the 60 < sup > th < /sup > postoperative day. Samples of tissue around the clips were taken for a histopathological evaluation. The plastic clip caused a more intensive tissue reaction than the titanium clip on the 7 < sup > th < /sup > postoperative day, but there was no statistical difference. Even on the 60 < sup > th < /sup > postoperative day there was no significant difference in tissue reaction between the titanium and plastic clips. These preliminary results confirm the possibility for the use of plastic clips in neurosurgery. Before their use in human neurosurgery, further studies are needed to investigate the long-term effects of the presence of plastic clips in the neurocranium, as well as studies of the aneurysmal model.
2015-05-07
The plot of data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR (right), amounts to a "smoking gun" of evidence in the mystery of how massive stars explode. The observations indicate that supernovae belonging to a class called Type II or core-collapse blast apart in a lopsided fashion, with the core of the star hurtling in one direction, and the ejected material mostly expanding the other way (see diagram in Figure 1). NuSTAR made the most precise measurements yet of a radioactive element, called titanium-44, in the supernova remnant called 1987A. NuSTAR sees high-energy X-rays, as shown here in the plot ranging from 60 to more than 80 kiloelectron volts. The spectral signature of titanium-44 is apparent as the two tall peaks. The white line shows where one would expect to see these spectral signatures if the titanium were not moving. The fact that the spectral peaks have shifted to lower energies indicates that the titanium has "redshifted," and is moving way from us. This is similar to what happens to a train's whistle as the train leaves the station. The whistle's sound shifts to lower frequencies. NuSTAR's detection of redshifted titanium reveals that the bulk of material ejected in the 1987A supernova is flying way from us at a velocity of 1.6 million miles per hour (2.6 million kilometers per hour). Had the explosion been spherical in nature, the titanium would have been seen flying uniformly in all directions. This is proof that this explosion occurred in an asymmetrical fashion. http://photojournal.jpl.nasa.gov/catalog/PIA19335
Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells.
Atienzar, Pedro; Valencia, Susana; Corma, Avelino; García, Hermenegildo
2007-05-14
Four titanium-containing zeolites and microporous molecular sieves differing on the crystal structure and particle size (Ti/Beta, Ti/Beta-60, TS-1 and ETS-10) are prepared, and their activity for solar cells after incorporating N3 (a commercially available ruthenium polypyridyl dye) is tested. All the zeolites exhibit photovoltaic activity, and the photoresponse is quite independent of the zeolite pore dimensions or particle size. The photoresponse increases with titanium content in the range 1-7% wt. In this way, cells are obtained that have open-circuit voltage Voc=560 mV and maximum short-circuit photocurrent density Isc=100 microA, measured for 1x1 cm2 surfaces with a solar simulator at 1000 W through and AM 1.5 filter. These values are promising and comparable to those obtained for current dye-sensitized titania solar cells.
NASA Astrophysics Data System (ADS)
Khidirov, I.
2015-09-01
The kinetics of formation and growth of ordered antiphase domains (APDs) in titanium carbohydride TiC0.50H0.21 has been investigated by neutron diffraction. A model of ordered APDs is proposed. It is established that the pronounced ordering of interstitial atoms and APDs begin at 450°C. It is shown that the period of ordered APDs ( Р ≈ 10-12) is independent of the exposure time at a constant temperature. It is found that the temperature of ordered APDs, T OAPD, increases nonlinearly with an increase in the carbon concentration in the range 0.50 ≤ C/Ti ≤ 0.70. The formation temperature of ordered APDs is found to correlate with the concentration dependence of the order-disorder transition temperature and be 0.60 of the order-disorder transition temperature: T APD = 0.60 Т С.
Biological response on a titanium implant-grade surface functionalized with modular peptides☆
Yazici, H.; Fong, H.; Wilson, B.; Oren, E.E.; Amos, F.A.; Zhang, H.; Evans, J.S.; Snead, M.L.; Sarikaya, M.; Tamerler, C.
2015-01-01
Titanium (Ti) and its alloys are among the most successful implantable materials for dental and orthopedic applications. The combination of excellent mechanical and corrosion resistance properties makes them highly desirable as endosseous implants that can withstand a demanding biomechanical environment. Yet, the success of the implant depends on its osteointegration, which is modulated by the biological reactions occurring at the interface of the implant. A recent development for improving biological responses on the Ti-implant surface has been the realization that bifunctional peptides can impart material binding specificity not only because of their molecular recognition of the inorganic material surface, but also through their self-assembly and ease of biological conjugation properties. To assess peptide-based functionalization on bioactivity, the present authors generated a set of peptides for implant-grade Ti, using cell surface display methods. Out of 60 unique peptides selected by this method, two of the strongest titanium binding peptides, TiBP1 and TiBP2, were further characterized for molecular structure and adsorption properties. These two peptides demonstrated unique, but similar molecular conformations different from that of a weak binder peptide, TiBP60. Adsorption measurements on a Ti surface revealed that their disassociation constants were 15-fold less than TiBP60. Their flexible and modular use in biological surface functionalization were demonstrated by conjugating them with an integrin recognizing peptide motif, RGDS. The functionalization of the Ti surface by the selected peptides significantly enhanced the bioactivity of osteoblast and fibroblast cells on implant-grade materials. PMID:23159566
NASA Astrophysics Data System (ADS)
Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah
2014-04-01
The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10-6-1.0 × 10-2 M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 +/- 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.
The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.
Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan
2017-07-01
The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.
NASA Astrophysics Data System (ADS)
Yunus, M. Z. Mohd; Jamaludin, S. K.; Abd. Karim, S. F.; Gani, A. Abd; Sauki, A.
2018-05-01
Titanium dioxide and zeolite ZSM-5 are the commonly used heterogeneous catalysts in many chemical reactions. They have several advantages such as low cost and environmental friendly. In this study, titanium dioxide and zeolite ZSM-5 act as catalyst in the in-situ epoxidation of palm olein. Epoxidation of palm olein was carried out by using in-situ generated performic acid to produce epoxidized palm olein in a semi-batch reactor at different temperatures (45°C and 60°C) and agitation speed of 400 rpm. The effects of both catalysts are studied to compare their efficiency in catalyzing the in-situ epoxidation. Epoxidized palm olein was analyzed by using percent of relative conversion to oxirane (RCO%) and fourier transform infrared spectroscopy (FTIR). Surface area of the catalysts used were then characterized by using BET. The results indicated that titanium dioxide is a better catalyst in the in-situ epoxidation of palm olein since it provides higher RCO% compared to Zeolite ZSM-5 at 45°C.
Research on Deep Hardening Titanium Alloy for Large Airframe Structural Members. Volume 2
1975-09-01
A 4 m 4 * n ^ <« •* < ftA ^mr^4 4 «n-» M<J j ^j ^ i*i m ^j <r •* ^ -* -t ^ •* ^ 3 •* •* -*-» 532«i25S23222aS23»a33...DC 30220 HQ USAF/FASP0I Attn: W. Martin Pentagon Building Washington, DC 20330 IIT Rsch Institute Metals Rsch Division 10 West 35th St...3000 Ocean Park Blvd Santa Monica, CA 90405 Mechanical Properties Data Ctr 13919 West Bay Shore Drive Traverse City, MI 49684 MI Iron Rsch & Dev
Research and Development on Plastic Deformation and Directional Properties of Titanium
1952-08-15
REORYSTALLIZATION OF ALPIIA TITANIUM Introduction It iu important to the study of any new metal or alloy that information be sought on the response to cold work...tations called a tuxture. Thie otudy of the textAurva developed in a now metal or alloy by various d.:orwations auid heat treat- mentu is an...705 44200 50 32 55,-2 44200 56 33 56i -3 44500 60 32 56" 4 44300 52 36 57-5 _ 44300 5S- _34.-.. 5_6 _Average 55 33 ,56 Ti-i16 PH294T-I I1 30
NASA Technical Reports Server (NTRS)
Robins, Leonard; Grala, Edward M
1957-01-01
Specimens of a nickel-bonded titanium carbide cermet were given the following surface treatments: (1) grinding, (2) lapping, (3) blast cleaning, (4) acid roughening, (5) oxidizing, and (6) oxidizing and refinishing. Room-temperature modulus-of-rupture and impact strength varied with the different surface treatments. Considerable strength losses resulted from the following treatments: (1) oxidation at 1600 F for 100 hours, (2) acid roughening, and (3) severe grinding with 60-grit silicon carbide abrasive. The strength loss after oxidation was partially recovered by grit blasting or diamond grinding.
Cost and size estimates for an electrochemical bulk energy storage concept
NASA Technical Reports Server (NTRS)
Warshay, M.; Wright, L. O.
1975-01-01
Preliminary capital cost and size estimates were made for a titanium trichloride, titanium tetrachloride, ferric chloride, ferrous chloride redox-flow-cell electric power system. On the basis of these preliminary estimates plus other important considerations, this electrochemical system emerged as having great promise as a bulk energy storage system for power load leveling. The size of this system is less than two per cent of that of a comparable pumped hydroelectric plant. The estimated capital cost of a 10 MW, 60- and 85-MWh redox-flow system compared well with that of competing systems.
Manufacturing techniques for titanium aluminide based alloys and metal matrix composites
NASA Astrophysics Data System (ADS)
Kothari, Kunal B.
Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.
Chen, Desheng; Zhao, Longsheng; Liu, Yahui; Qi, Tao; Wang, Jianchong; Wang, Lina
2013-01-15
A novel process for recovering iron, titanium, and vanadium from titanomagnetite concentrates has been developed. In the present paper, the treatment of rich titanium-vanadium slag by NaOH molten salt roasting and water leaching processes is investigated. In the NaOH molten salt roasting process, the metallic iron is oxidized into ferriferous oxide, MgTi(2)O(5) is converted to NaCl-type structure of Na(2)TiO(3), and M(3)O(5) (M=Ti, Mg, Fe) is converted to α-NaFeO(2)-type structure of NaMO(2), respectively. Roasting temperature and NaOH-slag mass ratio played a considerable role in the conversion of titanium in the rich titanium-vanadium slag during the NaOH molten salt roasting process. Roasting at 500 °C for 60 min and a 1:1 NaOH-slag mass ratio produces 96.3% titanium conversion. In the water leaching process, the Na(+) was exchanged with H(+), Na(2)TiO(3) is converted to undefined structure of H(2)TiO(3), and NaMO(2) is converted to α-NaFeO(2)-type structure of HMO(2). Under the optimal conditions, 87.3% of the sodium, 42.3% of the silicon, 43.2% of the aluminum, 22.8% of the manganese, and 96.6% of the vanadium are leached out. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining.
Ramulu, M; Spaulding, Mathew
2016-09-01
An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.
Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining
Ramulu, M.; Spaulding, Mathew
2016-01-01
An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application. PMID:28773866
Karjalainen, T; He, M; Chong, A K S; Lim, A Y T; Ryhanen, J
2010-07-01
Nickel-titanium (NiTi) has been proposed as an alternative material for flexor tendon core suture. To our knowledge, its suitability as a circumferential suture of flexor tendon repair has not been investigated before. The purpose of this ex vivo study was to investigate the biomechanical properties of NiTi circumferential repairs and to compare them with commonly used polypropylene. Forty porcine flexor tendons were cut and repaired by simple running or interlocking mattress technique using 100 microm NiTi wire or 6-0 polypropylene. The NiTi circumferential repairs showed superior stiffness, gap resistance, and load to failure when compared to polypropylene repairs with both techniques. Nickel-titanium wire seems to be a potential material for circumferential repair of flexor tendons. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui
Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g -1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less
[Effect of surface modification using laser on wear resistance of titanium].
Sato, Yohei
2005-02-01
Severe wear of cast commercial pure (CP) titanium teeth was observed in a clinical survey. This study evaluated the wear resistance of cast CP titanium and titanium alloy teeth after the surface was modified using laser technology. Teeth patterns were duplicated from artificial first molars (Livdent FB30, GC, Japan). All teeth specimens were cast with CP Ti grade 3 (T-Alloy H, GC) and Ti-6Al-7Nb (T-Alloy Tough, GC). After the occlusal surface was blasted with Al(2)O(3), the occlusal contact points were modified using a laser (Neo laser L, Girrbach, Germany) at the following irradiation conditions (voltage: 260 V; pulse: 7 ms; focus: 1.5 mm). These parameters were determined by preliminary study. As a control, Type IV gold alloy (PGA-3, Ishifuku, Japan) was also cast conventionally. Both maxillary and mandibular teeth were worn using an in vitro two-body wear testing apparatus that simulated chewing function (60 strokes/min; grinding distance: 2 mm under flowing water). Wear resistance was assessed as volume loss (mm(3)) at 5 kgf (grinding force) after 50,000 strokes. The results (n=5) were analyzed by ANOVA/Scheffé's test (alpha=0.05). The gold alloy showed the best wear resistance of all the metals tested. Of all the titanium specimens tested, the modified surface indicated significantly greater wear resistance than did conventional titanium teeth without surface modification (p<0.05). Wear resistance was increased by modification of the surface using a laser. If severe wear of titanium teeth was observed clinically, little wear occurred when the occlusal facets were irradiated using a laser.
Oxide Ceramic Films Grown on 60 Nitinol for NASA and Department of Defense Applications
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Street, Kenneth W.; Lukco, Dorothy; Cytron, Sheldon J.
2005-01-01
Both the NASA Glenn Research Center and the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) have worked to develop oxide ceramic films grown on 60 nitinol (60-wt% nickel and 40-wt% titanium) to decrease friction and increase wear resistance under unlubricated conditions. In general, oxide and nonoxide ceramic films have unique capabilities as mechanical-, chemical-, and thermal-barrier materials in diverse applications, including high-temperature bearings and gas bearings requiring low friction, wear resistance, and chemical stability. All oxide ceramic films grown on 60 nitinol were furnished by ARDEC, and materials and surface characterization and tribological experiments were conducted at Glenn.
Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah
2014-01-01
The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10−6–1.0 × 10−2 M and pH range from 1–2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10−7 M, and 20 s, respectively. The direct determination of 4–39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out. PMID:24722576
Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio
2017-09-01
Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).
Electrical characterization of TiO2 nanotubes synthesized through electrochemical anodizing method
NASA Astrophysics Data System (ADS)
Manescu Paltanea, Veronica; Paltanea, Gheorghe; Popovici, Dorina; Jiga, Gabriel
2016-05-01
In the present paper, the electrochemical anodizing method was used for the obtaining of TiO2 nanotube layers, developed on titanium surface. Self-organized titanium nanotubes were obtained when an aqueous solution of 49.5 wt % H2O - 49.5 wt % glycerol - 1 wt % HF was used as electrolyte, the anodizing time being equal to 8 hours and the applied voltage to 25 V. Scanning electron microscopy shows that the one-dimensional nanostructure has a tubular configuration with an inner diameter of approximately 60 nm and an outer diameter of approximately 100 nm. The electrical properties of these materials were analyzed through dielectric spectroscopy method.
Sharma, Manab; Yameen, Haneen Simaan; Tumanskii, Boris; Filimon, Sabina-Alexandra; Tamm, Matthias; Eisen, Moris S
2012-10-17
The use of bis(1,3-di-tert-butylimidazolin-2-iminato) titanium dichloride (1) and dimethyl (2) complexes in the polymerization of propylene is presented. The complexes were activated using different amounts of methylalumoxane (MAO), giving in each case a very active catalytic mixture and producing polymers with a narrow molecular weight distribution (polydispersity = 1.10). The use of the cocatalyst triphenylcarbenium (trityl) tetra(pentafluorophenyl)borate totally inhibits the reaction, producing the corresponding bis(1,3-di-tert-butylimidazolin-2-iminato) titanium(III) methyl complex, the trityl radical ((•)CPh(3)), the anionic MeB(C(6)F(5))(4)(-), B(C(6)F(5))(3), and the bis(1,3-di-tert-butylimidazolin-2-iminato) titanium(IV) dimethyl·B(C(6)F(5))(3) complex. The use of a combination of physical methods such as NMR, ESR-C(60), and MALDI-TOF analyses enabled us to propose a plausible mechanism for the polymerization of propylene, presenting that the polymerization is mainly carried out in a living fashion. In addition, we present a slow equilibrium toward a small amount of a dormant species responsible for 2,1-misinsertions and chain transfer processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khidirov, I., E-mail: khidirov@inp.uz
2015-09-15
The kinetics of formation and growth of ordered antiphase domains (APDs) in titanium carbohydride TiC{sub 0.50}H{sub 0.21} has been investigated by neutron diffraction. A model of ordered APDs is proposed. It is established that the pronounced ordering of interstitial atoms and APDs begin at 450°C. It is shown that the period of ordered APDs (P ≈ 10–12) is independent of the exposure time at a constant temperature. It is found that the temperature of ordered APDs, T{sub OAPD}, increases nonlinearly with an increase in the carbon concentration in the range 0.50 ≤ C/Ti ≤ 0.70. The formation temperature of orderedmore » APDs is found to correlate with the concentration dependence of the order–disorder transition temperature and be 0.60 of the order–disorder transition temperature: T{sub APD} = 0.60Τ{sub C}.« less
Souza, Jose Everaldo de Aquino; Silva, Nelson Renato Franca Alves da; Coelho, Paulo Guilherme; Zavanelli, Adriana Cristina; Ferracioli, Renata Cristina Silveira Rodrigues; Zavanelli, Ricardo Alexandre
2011-05-01
There is little information considering the framework association between cast clasps and attachments. The aim of this study was to evaluate the retention strength of frameworks match circumferential clasps and extra resilient attachment cast in three different alloys (cobalt-chromium, nickel-chromium titanium and commercially pure titanium), using two undercut (0.25 and 0.75 mm) and considering different period of time (0, 1/2, 1, 2, 3, 4 and 5 years). Using two metallic matrices, representing a partially edentulous mandibular right hemiarch with the first molar crown, canine root and without premolars, 60 frameworks were fabricated. Three groups (n = 20) of each metal were cast and each group was divided into two subgroups (n = 10), corresponding the molar undercut of 0.25 mm and 0.75 mm. The nylon male was positioned at the matrix and attached to the acrylic resin of the prosthetic base. The samples were subjected to an insertion and removal test under artificial saliva environment. The data were analyzed and compared with ANOVAs and Tukey's test at 95% of probability. The groups cast in cobaltchromium and nickel-chromium-titanium had the highest mean retention strength (5.58 N and 6.36 N respectively) without significant difference between them, but statistically different from the group cast in commercially pure titanium, which had the lowest mean retention strength in all the periods (3.46 N). The association frameworks using nickel-chromium- titanium and cobalt-chromium could be used with 0.25 mm and 0.75 mm of undercut, but the titanium samples seems to decrease the retention strength, mainly in the 0.75 mm undercut. The circumferential clasps cast in commercially pure titanium used in 0.75 mm undercuts have a potential risk of fractures, especially after the 2nd year of use. This in vitro study showed that the framework association between cast clasp and an extra resilient attachment are suitable to the three metals evaluated, but strongly suggest extra care with commercially pure titanium in undercut of 0.75 mm. Frameworks fabricated in Cp Ti tend to decrease in retentive strength over time and have a potential risk of fracture in less than 0.75 mm of undercut.
A geologic assessment of potential lunar ores
NASA Technical Reports Server (NTRS)
Mckay, D. S.; Williams, R. J.
1979-01-01
Although bulk lunar soil is not a suitable feedstock for extracting metals, certain minerals such as anorthite and ilmenite can be separated and concentrated. These minerals can be considered as potential ores of aluminum, silicon, titanium, andiron. A separation and metal extraction plant could also extract large amounts of oxygen and perhaps hydrogen from these minerals. Anorthie containing 19 percent aluminum and 20 percent silicon can be concentrated from some highland soils where it is present in amounts up to 60 percent. Ilmenite containing 32 percent titanium and 37 percent iron can be concentrated from some mare soils where it is present in amounts up to 10 percent. The ideal mining site would be located at the boundary between a high-titanium mare and a high-aluminum highlands. Such area may exist around the rims of some eastern maria, particularly Tranquilitatis. A location on Earth with raw materials as described above would be considered an economically valuable ore deposit if conventional terrestrial resources were not available.
Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi
2018-03-13
Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Evaluation of Wind Tunnel and Scaling Effects with the UH-60A Airloads Rotor
2011-05-01
V! free-stream velocity, ft/s x chordwise distance from leading edge, ft #c, #s corrected/geometric shaft angles, deg $1c, $1s cos/sin components...attached to spindles that were retained by elastomeric bearings to a one-piece titanium hub. These bearings permitted blade flap, lead-lag, and...Figure 3. UH-60A small-scale rotor installed in DNW. Main rotor dampers were installed between each of the main rotor spindles and the hub to
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; DellaCorte, Christopher; Glennon, Glenn
2010-01-01
The mechanical properties of Nitinol 60, 60 wt% Ni, 40 wt% Ti (55 at.% Ni, 45 at.% Ti) are sufficiently attractive to warrant its consideration as a lubricated triboelement. Triboelements are always run lubricated. The ability to lubricate Nitinol 60 by the oils usually used on spacecraft mechanisms--Pennzane 2001A, Krytox 143AC and Castrol 815Z--was experimentally determined. These oils were run in the boundary lubrication regime for Nitinol 60 balls running against Nitinol 60 counterfaces in the vacuum spiral orbit tribometer. Test results consisting of the coefficient of friction versus time (friction traces) and relative degradation rates of the oils are presented. Contrary to the inability to successfully lubricate other metal alloys with high titanium content, it was found that Nitinol 60 is able to be lubricated by these oils. Overall, the results presented here indicate that Nitinol 60 is a credible candidate material for bearing applications.
Choi, Hae Won; Park, Young Seok; Chung, Shin Hye; Jung, Min Ho; Moon, Won; Rhee, Sang Hoon
2017-07-01
The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of 0°, 10°, 20°, 30°, and 40°. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was 56.88 ± 6.72%. Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.
Taira, Yohsuke; Egoshi, Takafumi; Kamada, Kohji; Sawase, Takashi
2014-02-01
The purpose of this study was to investigate the effect of an experimental surface treatment with alumina blasting and acid etching on the bond strengths between each of two resin composites and commercially pure titanium. The titanium surface was blasted with alumina and then etched with 45wt% H2SO4 and 15wt% HCl (H2SO4-HCl). A light- and heat-curing resin composite (Estenia) and a light-curing resin composite (Ceramage) were used with adjunctive metal primers. Veneered specimens were subjected to thermal cycling between 4 and 60°C for 50,000 cycles, and the shear bond strengths were determined. The highest bond strengths were obtained for Blasting/H2SO4-HCl/Estenia (30.2 ± 4.5 MPa) and Blasting/Etching/Ceramage (26.0 ± 4.5 MPa), the values of which were not statistically different, followed by Blasting/No etching/Estenia (20.4 ± 2.4 MPa) and Blasting/No etching/Ceramage (0.8 ± 0.3 MPa). Scanning electron microscopy observations revealed that alumina blasting and H2SO4-HCl etching creates a number of micro- and nanoscale cavities on the titanium surface, which contribute to adhesive bonding. © 2013 Eur J Oral Sci.
Nitinol 60 as a Material For Spacecraft Triboelements
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; DellaCorte, Christopher; Noebe, Ronald D.; Hall, David R.; Glennon, Glenn
2009-01-01
The mechanical properties of Nitinol 60, 60 w/o Ni, 40 w/oTi (55 a/o Ni, 45 a/o Ti) are sufficiently attractive to warrant its consideration as a lubricated spacecraft triboelement. The ability to lubricate Nitinol 60 by the oils usually used on spacecraft mechanisms--Pennzane 2001A, Krytox 143AC and Castrol 815Z - was experimentally determined. These oils were run in the boundary lubrication regime for Nitinol 60 balls running against a 440C steel counterface in the vacuum spiral orbit tribometer. Test results consisting of the coefficient of friction versus time (friction traces) and relative degradation rates are presented. Contrary to the inability to successfully lubricate other metal alloys with high titanium content, it was found that Nitinol 60 is able to be lubricated by these oils. Overall, the results presented here indicate that Nitinol 60 is a credible candidate material for spacecraft bearing applications.
NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Hosler, E. Ramon (Editor); Armstrong, Dennis W. (Editor)
1989-01-01
The contractor's report contains all sixteen final reports prepared by the participants in the 1989 Summer Faculty Fellowship Program. Reports describe research projects on a number of different topics. Interface software, metal corrosion, rocket triggering lightning, automatic drawing, 60-Hertz power, carotid-cardiac baroreflex, acoustic fields, robotics, AI, CAD/CAE, cryogenics, titanium, and flow measurement are discussed.
Evaluation of centrifuged bone marrow on bone regeneration around implants in rabbit tibia.
Betoni, Walter; Queiroz, Thallita P; Luvizuto, Eloá R; Valentini-Neto, Rodolpho; Garcia-Júnior, Idelmo R; Bernabé, Pedro F E
2012-12-01
To evaluate the bone regeneration of cervical defects produced around titanium implants filled with blood clot and filled with centrifuged bone marrow (CBM) by means of histomorphometric analysis. Twelve rabbits received 2 titanium implants in each right tibia, with the upper cortical prepared with a 5-mm drill and the lower cortex with a 3-mm-diameter drill. Euthanasia was performed to allow analysis at 7, 21, and 60 days after operation. The samples were embedded in light curing resin, cut and stained with alizarin red and Stevenel blue for a histomorphometric analysis of the bone-to-implant contact (BIC) and the bone area around implant (BA). The values obtained were statistically analyzed using the nonparametric Kruskal-Wallis test (P = 0.05). At 60 days postoperation, the groups had their cervical defects completely filled by neoformed bone tissue. There was no statistically significant difference between the groups regarding BIC and BA during the analyzed periods. There was no difference in the bone repair of periimplant cervical defects with or without the use of CBM.
Palaniswamy, Udayakumar; Habeeb, Aisha; Mohsin, Mohammed
2018-01-01
The objectives of this study were to determine the bacterial contamination of the mobile phones that were used by the endodontist in comparison with the general dentist and also to determine the usefulness of titanium dioxide nanospray (TiO 2 NS) in mobile phone decontamination. Samples from the 60 mobile phones were taken using moist sterile swabs before, 10 min, and 1 week after the use of TiO 2 NS. Before collection of the swabs, the participants' informed consent was obtained. Samples obtained were cultured on blood agar to identify bacterial isolates. All 60 mobile phone cultures were found to be culture positive. There was a significant reduction in the mean number of colony-forming units after decontamination with TiO 2 NS ( P < 0.001). The results from this study showed that the mobile phones may act as an important source of nosocomial pathogens and TiO 2 NS would be an effective decontaminant. Therefore, it is important for dental professionals to practice routine mobile phone disinfection protocol to reduce the chances of occurrence of nosocomial infections.
Surface Modification of Porous Titanium Granules for Improving Bioactivity.
Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab
The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.
2013-01-01
Background Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Methods Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Results Significant difference between control and microwave treatment group at peak temperatures (Tpeak) and temperature gap (Tgap= Tpeak-Tvally) were observed in deep muscles (Tpeak, 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P < 0.01; Tgap, 5.33 ± 0.21°C vs. 8.10 ± 0.36°C, P < 0.01) and superficial muscles (Tpeak, 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; Tgap, 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (Tpeak, 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; Tgap, 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Conclusion Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant. PMID:24365389
Besinis, Alexandros; De Peralta, Tracy
2014-01-01
Metal-containing nanomaterials have the potential to be used in dentistry for infection control, but little is known about their antibacterial properties. This study investigated the toxicity of silver (Ag), titanium dioxide and silica nanoparticles (NPs) against the oral pathogenic species of Streptococcus mutans, compared to the routine disinfectant, chlorhexidine. The bacteria were assessed using the minimum inhibitory concentration assay for growth, fluorescent staining for live/dead cells, and measurements of lactate. All the assays showed that Ag NPs had the strongest antibacterial activity of the NPs tested, with bacterial growth also being 25-fold lower than that in chlorhexidine. The survival rate of bacteria under the effect of 100 mg l−1 Ag NPs in the media was 2% compared to 60% with chlorhexidine, while the lactate concentration was 0.6 and 4.0 mM, respectively. Silica and titanium dioxide NPs had limited effects. Dialysis experiments showed negligible silver dissolution. Overall, Ag NPs were the best disinfectant and performed better than chlorhexidine. Improvements to the MIC assay are suggested. PMID:23092443
Improved bonding strength of bioactive cermet Cold Gas Spray coatings.
Gardon, M; Concustell, A; Dosta, S; Cinca, N; Cano, I G; Guilemany, J M
2014-12-01
The fabrication of cermet biocompatible coatings by means Cold Gas Spray (CGS) provides prosthesis with outstanding mechanical properties and the required composition for enhancing the bioactivity of prosthetic materials. In this study, hydroxyapatite/Titanium coatings were deposited by means of CGS technology onto titanium alloy substrates with the aim of building-up well-bonded homogeneous coatings. Powders were blended in different percentages and sprayed; as long as the amount of hydroxyapatite in the feedstock increased, the quality of the coating was reduced. Besides, the relation between the particle size distribution of ceramic and metallic particles is of significant consideration. Plastic deformation of titanium particles at the impact eased the anchoring of hard hydroxyapatite particles present at the top surface of the coating, which assures the looked-for interaction with the cells. Coatings were immersed in Hank's solution for 1, 4 and 7 days; bonding strength value was above 60 MPa even after 7 days, which enhances common results of HAp coatings obtained by conventional thermal spray technologies. Copyright © 2014 Elsevier B.V. All rights reserved.
The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO2), silver (nAg) and fullerene (nC60) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca2+ induced...
NASA Astrophysics Data System (ADS)
Na, Jong H.; Kitamura, M.; Arakawa, Y.
2007-11-01
We fabricated high mobility, low voltage n-channel transistors on plastic substrates by combining an amorphous phase C60 film and a high dielectric constant gate insulator titanium silicon oxide (TiSiO2). The transistors exhibited high performance with a threshold voltage of 1.13V, an inverse subthreshold swing of 252mV/decade, and a field-effect mobility up to 1cm2/Vs at an operating voltage as low as 5V. The amorphous phase C60 films can be formed at room temperature, implying that this transistor is suitable for corresponding n-channel transistors in flexible organic logic devices.
Triphasic Tooling with Small Oriented Diamond Tip for Turning and Smoothing Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Voronov, O. A.; Tompa, G. S.; Kear, B. H.; Veress, V.
2004-01-01
We are developing a new method for the growth of small diamond crystals at very high temperatures and pressures directly from a carbon melt. A prototype "Supercell" has been developed for this purpose. This system is capable of high rate crystal growth in relatively large working volumes. The resulting high quality diamond crystals will be incorporated into a triphasic diamond/titanium carbide/titanium composite tool, with an oriented diamond crystal at its tip. High pressure is needed to prevent degradation of diamond at high temperature, and to ensure the formation of a crack & composite structure. After grinding and polishing, the composite material will be joined to a steel holder, thus forming a diamond-tipped tool for turning and smoothing of a mirror surface. A properly oriented single-crystal diamond cuts and smoothes much better than a conventional polycrystalline diamond crystal. This is because the hardness depends on crystallographic orientation-the difference corresponds to 60-100 GPa on the Knoop scale. Our goal is to achieve surface roughness of about 1 nm, which will be accomplished by precision cutting and smoothing. The hardness of the functionally-graded diamond/titanium carbide/titanium composite tool varies from 100 GPa at its tip to 15 GPa at its base. Previous work has shown that the mass of machined material using an oriented-diamond tool is much larger than that for a standard diamond-metal composite tool.
Catauro, M; Papale, F; Bollino, F
2016-01-01
The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0
Experimental and numeric stress analysis of titanium and zirconia one-piece dental implants.
Mobilio, Nicola; Stefanoni, Filippo; Contiero, Paolo; Mollica, Francesco; Catapano, Santo
2013-01-01
To compare the stress in bone around zirconia and titanium implants under loading. A one-piece zirconia implant and a replica of the same implant made of commercially pure titanium were embedded in two self-curing acrylic resin blocks. To measure strain, a strain gauge was applied on the surface of the two samples. Loads of 50, 100, and 150 N, with orientations of 30, 45, and 60 degrees with respect to the implant axis were applied on the implant. Strain under all loading conditions on both samples was measured. Three-dimensional virtual replicas of both the implants were reproduced using the finite element method and inserted into a virtual acrylic resin block. All the materials were considered isotropic, linear, and elastic. The same geometry and loading conditions of the experimental setup were used to realize two new models, with the implants embedded within a virtual bone block. Very close values of strain in the two implants embedded in acrylic resin were obtained both experimentally and numerically. The stress states generated by the implants embedded in virtual bone were also very similar, even if the two implants moved differently. Moreover, the stress levels were higher on cortical bone than on trabecular bone. The stress levels in bone, generated by the two implants, appeared to be very similar. From a mechanical point of view, zirconia is a feasible substitute for titanium.
Intermetallic communication in titanium(IV) ferrocenyldiketonates.
Dulatas, Lea T; Brown, Seth N; Ojomo, Edema; Noll, Bruce C; Cavo, Matthew J; Holt, Paul B; Wopperer, Matthew M
2009-11-16
A tetradentate bis(ferrocenyldiketonate) ligand, Fc(2)BobH(2), is prepared via Claisen condensation of acetylferrocene and 2,2'-biphenyldiacetyl chloride, and is metalated with titanium(IV) isopropoxide to give (Fc(2)Bob)Ti(O(i)Pr)(2) in good yield. The isopropoxide groups are replaced with di(4-nitrophenyl)phosphate groups on treatment with the corresponding acid, and with chlorides on treatment with trimethylsilyl chloride. Metathesis with catechol leads to the bis(o-hydroxyphenoxide) complex rather than the chelating catecholate complex. Hydrolysis selectively gives the mu-oxo trimer (Delta,Delta,Delta)/(Lambda,Lambda,Lambda)-{(Fc(2)Bob)Ti(mu-O)}(3). The solid-state structures of the mu-oxo trimer and the bis(o-hydroxyphenoxide) complex show that the ferrocene substituents are oriented proximal to the biphenyl backbone rather than pointed out toward the exogenous groups. The complexes show dramatic changes in color depending on the bound anions, ranging from the red isopropoxide (lambda(max) = 489 nm) to the green bis(di(4-nitrophenyl)phosphate) (lambda(max) = 653 nm). The oxidation potentials of the ferrocenes show modest shifts based on the titanium environment, but the redox potentials of the two ferrocenes are never separated by more than 60 mV. These results and those of density-functional theory (DFT) calculations indicate that the titanium interacts principally with the lowest unoccupied molecular orbital (LUMO) of the ferrocenyldiketonate and very little with its highest occupied molecular orbital (HOMO).
Nickel-titanium alloys: stress-related temperature transitional range.
Santoro, M; Beshers, D N
2000-12-01
The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Akerlof, C. W.; Akimov, D. Yu.; Alsum, S. K.; Araújo, H. M.; Arnquist, I. J.; Arthurs, M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Balashov, S.; Barry, M. J.; Belle, J.; Beltrame, P.; Benson, T.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boast, K. E.; Bolozdynya, A.; Boxer, B.; Bramante, R.; Brás, P.; Buckley, J. H.; Bugaev, V. V.; Bunker, R.; Burdin, S.; Busenitz, J. K.; Carels, C.; Carlsmith, D. L.; Carlson, B.; Carmona-Benitez, M. C.; Chan, C.; Cherwinka, J. J.; Chiller, A. A.; Chiller, C.; Cottle, A.; Coughlen, R.; Craddock, W. W.; Currie, A.; Dahl, C. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edberg, T. K.; Edwards, W. R.; Emmet, W. T.; Faham, C. H.; Fiorucci, S.; Fruth, T.; Gaitskell, R. J.; Gantos, N. J.; Gehman, V. M.; Gerhard, R. M.; Ghag, C.; Gilchriese, M. G. D.; Gomber, B.; Hall, C. R.; Hans, S.; Hanzel, K.; Haselschwardt, S. J.; Hertel, S. A.; Hillbrand, S.; Hjemfelt, C.; Hoff, M. D.; Holbrook, B.; Holtom, E.; Hoppe, E. W.; Hor, J. Y.-K.; Horn, M.; Huang, D. Q.; Hurteau, T. W.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kaboth, A.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Khazov, A.; Khromov, A. V.; Konovalov, A. M.; Korolkova, E. V.; Koyuncu, M.; Kraus, H.; Krebs, H. J.; Kudryavtsev, V. A.; Kumpan, A. V.; Kyre, S.; Lee, C.; Lee, H. S.; Lee, J.; Leonard, D. S.; Leonard, R.; Lesko, K. T.; Levy, C.; Liao, F.-T.; Lin, J.; Lindote, A.; Linehan, R. E.; Lippincott, W. H.; Liu, X.; Lopes, M. I.; Lopez Paredes, B.; Lorenzon, W.; Luitz, S.; Majewski, P.; Manalaysay, A.; Manenti, L.; Mannino, R. L.; Markley, D. J.; Martin, T. J.; Marzioni, M. F.; McConnell, C. T.; McKinsey, D. N.; Mei, D.-M.; Meng, Y.; Miller, E. H.; Mizrachi, E.; Mock, J.; Monzani, M. E.; Morad, J. A.; Mount, B. J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; Nikkel, J. A.; O'Dell, J.; O'Sullivan, K.; Olcina, I.; Olevitch, M. A.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Piepke, A.; Powell, S.; Preece, R. M.; Pushkin, K.; Ratcliff, B. N.; Reichenbacher, J.; Reichhart, L.; Rhyne, C. A.; Richards, A.; Rodrigues, J. P.; Rose, H. J.; Rosero, R.; Rossiter, P.; Saba, J. S.; Sarychev, M.; Schnee, R. W.; Schubnell, M.; Scovell, P. R.; Shaw, S.; Shutt, T. A.; Silva, C.; Skarpaas, K.; Skulski, W.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sosnovtsev, V. V.; Stancu, I.; Stark, M. R.; Stephenson, S.; Stiegler, T. M.; Stifter, K.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Temples, D.; Terman, P. A.; Thomas, K. J.; Thomson, J. A.; Tiedt, D. R.; Timalsina, M.; To, W. H.; Tomás, A.; Tope, T. E.; Tripathi, M.; Tvrznikova, L.; Va'Vra, J.; Vacheret, A.; van der Grinten, M. G. D.; Verbus, J. R.; Vuosalo, C. O.; Waldron, W. L.; Wang, R.; Watson, R.; Webb, R. C.; Wei, W.-Z.; While, M.; White, D. T.; Whitis, T. J.; Wisniewski, W. J.; Witherell, M. S.; Wolfs, F. L. H.; Woodward, D.; Worm, S.; Xu, J.; Yeh, M.; Yin, J.; Zhang, C.; Lux-Zeplin (LZ) Collaboration
2017-11-01
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238Ue < 1.6 mBq/kg, 238Ul < 0.09 mBq/kg, 232The = 0.28 ± 0.03 mBq/kg, 232Thl = 0.25 ± 0.02 mBq/kg, 40K < 0.54 mBq/kg, and 60Co < 0.02 mBq/kg (68% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160 ± 0.001(stat) ± 0.030(sys) counts.
Nogueira-Filho, Getulio da R; Cadide, Tiago; Rosa, Bruno T; Neiva, Tiago G; Tunes, Roberto; Peruzzo, Daiane; Nociti, Francisco Humberto; César-Neto, João B
2008-12-01
Although the harmful effect of tobacco smoking on titanium implants has been documented, no studies have investigated the effects of cannabis sativa (marijuana) smoking. Thus, this study investigated whether marijuana smoke influences bone healing around titanium implants. Thirty Wistar rats were used. After anesthesia, the tibiae surface was exposed and 1 screw-shaped titanium implant was placed bilaterally. The animals were randomly assigned to one of the following groups: control (n = 15) and marijuana smoke inhalation (MSI) 8 min/d (n = 15). Urine samples were obtained to detect the presence of tetra-hidro-cannabinoid. After 60 days, the animals were killed. The degree of bone-to-implant contact and the bone area within the limits of the threads of the implant were measured in the cortical (zone A) and cancellous bone (zone B). Tetra-hidro-cannabinoid in urine was positive only for the rats of MSI group. Intergroup analysis did not indicate differences in zone A-cortical bone (P > 0.01), however, a negative effect of marijuana smoke (MSI group) was observed in zone B-cancellous bone for bone-to-implant contact and bone area (Student's t test, P < 0.01) values. Considering the limitations of the present study, the deleterious impact of cannabis sativa smoke on bone healing may represent a new concern for implant success/failure.
Shimizu, Wataru; Nakamura, Satoshi; Sato, Takaaki; Murakami, Yasushi
2012-08-21
Amorphous titanium dioxide (TiO(2)) thin films exhibiting high refractive indices (n ≈ 2.1) and high transparency were fabricated by spin-coating titanium oxide liquid precursors having a weakly branched polymeric structure. The precursor solution was prepared from titanium tetra-n-butoxide (TTBO) via the catalytic sol-gel process with hydrazine monohydrochloride used as a salt catalyst, which serves as a conjugate acid-base pair catalyst. Our unique catalytic sol-gel technique accelerated the overall polycondensation reaction of partially hydrolyzed alkoxides, which facilitated the formation of liner polymer-like titanium oxide aggregates having a low fractal dimension of ca. (5)/(3), known as a characteristic of the so-called "expanded polymer chain". Such linear polymeric features are essential to the production of highly dense amorphous TiO(2) thin films; mutual interpenetration of the linear polymeric aggregates avoided the creation of void space that is often generated by the densification of high-fractal-dimension (particle-like) aggregates produced in a conventional sol-gel process. The mesh size of the titanium oxide polymers can be tuned either by water concentration or the reaction time, and the smaller mesh size in the liquid precursor led to a higher n value of the solid thin film, thanks to its higher local electron density. The reaction that required no addition of organic ligand to stabilize titanium alkoxides was advantageous to overcoming issues from organic residues such as coloration. The dense amorphous film structure suppressed light scattering loss owing to its extremely smooth surface and the absence of inhomogeneous grains or particles. Furthermore, the fabrication can be accomplished at a low heating temperature of <80 °C. Indeed, we successfully obtained a transparent film with a high refractive index of n = 2.064 (at λ = 633 nm) on a low-heat-resistance plastic, poly(methyl methacrylate), at 60 °C. The result offers an efficient route to high-refractive-index amorphous TiO(2) films as well as base materials for a wider range of applications.
Borys, Jan; Maciejczyk, Mateusz; Krȩtowski, Adam J.; Antonowicz, Bozena; Ratajczak-Wrona, Wioletta; Jabłońska, Ewa; Załęski, Piotr; Waszkiel, Danuta; Ładny, Jerzy R.; Żukowski, Piotr; Zalewska, Anna
2017-01-01
Titanium miniplates and screws are commonly used for fixation of jaw fractured or osteotomies. Despite the opinion of their biocompatibility, in clinical practice symptoms of chronic inflammation around the fixation develop in some patients, even many years after the application of miniplates and screws. The cause of these complications is still an unanswered question. Taking into account that oxidative stress is one of the toxic action of titanium, we have evaluated the antioxidant barrier as well as oxidative stress in the erythrocytes, plasma and periosteum covering the titanium fixation of the jaw. The study group was composed of 32 patients aged 20–30 with inserted miniplates and screws. The antioxidant defense: catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase-1 (SOD1), uric acid (UA), total antioxidant capacity (TAC), as well as oxidative damage products: advanced oxidation protein products (AOPP), advanced glycation end products (AGE), dityrosine, kynurenine, N-formylkynurenine, tryptophan, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), total oxidant status (TOS), and oxidative status index (OSI) were evaluated. SOD1 activity (↓37%), and tryptophan levels (↓34%) showed a significant decrease while AOPP (↑25%), TOS (↑80%) and OSI (↑101%) were significantly elevated in maxillary periosteum of patients who underwent bimaxillary osteotomies as compared to the control group. SOD-1 (↓55%), TAC (↓58.6%), AGE (↓60%) and N-formylkynurenine (↓34%) was statistically reduced while AOPP (↑38%), MDA (↑29%), 4-HNE (↑114%), TOS (↑99%), and OSI (↑381%) were significantly higher in the mandibular periosteum covering miniplates/screw compared with the control tissues. There were no correlations between antioxidants and oxidative stress markers in the periosteum of all patients and the blood. As exposure to the Ti6Al4V titanium alloy leads to disturbances of redox balance in the periosteum surrounding titanium implants of the maxilla and the mandible so antioxidant supplementation should be recommended to the patients undergoing treatment of dentofacial deformities with the use of titanium implants. The results we obtained may also indicate a need to improve the quality of titanium jaw fixations through increase of TiO2 passivation layer thickness or to develop new, the most highly biodegradable materials for their production. PMID:28638348
Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslova, Marina V.; Rusanova, Daniela; Naydenov, Valeri
2008-12-15
Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formationmore » of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.« less
NASA Astrophysics Data System (ADS)
Sorge, Judith D.
As the world's energy needs continue to grow, next generation photovoltaic cells are in high demand because they offer the possibility of an inexpensive alternative to current energy production techniques. Dye sensitized solar cells (DSSC's), utilize common materials and low cost commercialization techniques, which make them a compelling choice for research in this area. This research focuses on the titanium dioxide coating, which transfers electrons from the photoactive dye to the electrode. 3-4% efficient DSSC's using doctor bladed titanium dioxide coatings with a specific surface area of 55-60m2/g have been demonstrated in our laboratory. To enhance the efficiency of these cells, both the surface area and the electron conduction of the titania layer must be optimized. This has been done by utilizing high aspect ratio nanoparticles of titania instead of mesoporous layers formed with spherical particles. Anodization of titanium metal or anodic alumina membrane templating are common ways to produce nanorods, but involve complex processes leading toward expensive commercialization. This research instead focuses on the hydrothermal growth of nanofibrous titania on a titanium metal substrate, removing the need for dispersion and deposition procedures as well as using a low temperature processing method. Depending upon the formulation utilized, a variety of structures can be produced, from thick carpets of nanofiber strands to large platelets. The composition and morphology of the products have been characterized with respect to the growth conditions using electron microscopy, energy dispersive spectroscopy and x-ray diffraction. The compositional analysis is used to investigate the complicated reaction mechanisms in the system. Coatings of titania nanotubes were then tested in the DSSC's, as were those with the titanium metal substrate acting as the photo anode. Modeling the geometric parameters of the different pore structures of the coatings helps us to understand the advantages afforded by these new cells.
Comparative bone tissue integration of nanostructured and microroughened dental implants.
Salou, Laëtitia; Hoornaert, Alain; Stanovici, Julien; Briand, Sylvain; Louarn, Guy; Layrolle, Pierre
2015-01-01
The aim was to compare osteointegration of nanostructured implants to a microsurface widely used for titanium dental implants. Commercial titanium dental implants with smooth or microroughened surfaces were nanostructured. Implants were inserted into the femoral condyles of rabbits. After 2 and 4 weeks, histomorphometry calculation was performed. Nanotubes measuring 60 nm in diameter were observed on both S-NANO (roughness: 0.05 μm) and R-NANO (roughness: 0.40 μm) surfaces. The MICRO surface exhibited typical random cavities (roughness: 2.09 μm). At 4 weeks, bone-to-implant contact values were significantly higher for the R-NANO than for the MICRO surface while no differences were observed at 2 weeks. Overall, this study shows that the nanostructured surfaces improved osteointegration similar or higher than the MICRO.
Novel Phenylethynyl Imide Silanes as Coupling Agents for Titanium Alloy
NASA Technical Reports Server (NTRS)
Park, C.; Lowther, S. E.; Smith, J. G., Jr.; Conell, J. W.; Hergenrother, P. M.; SaintClair, T. L.
2004-01-01
The durability of titanium (Ti) alloys bonded with high temperature adhesives such as polyimides has failed to attain the level of performance required for many applications. The problem to a large part is attributed to the instability of the surface treatment on the Ti substrate. Although Ti alloy adhesive specimens with surface treatments such as chromic acid anodization, Pasa-Jell, Turco, etc. have provided high initial mechanical properties, these properties have decreased as a function of aging at ambient temperature and faster, when aged at elevated temperatures or in a hot-wet environment. As part of the High Speed Civil Transport program where Ti honeycomb sandwich structure must perform for 60,000 hours at 177 C, work was directed to the development of environmentally safe, durable Ti alloy surface treatments.
Yanagida, Hiroaki; Tanoue, Naomi; Ide, Takako; Matsumura, Hideo
2009-07-01
We evaluated the effects of two dual-functional primers and a tribochemical surface modification system on the bond strength between an indirect composite resin and gold alloy or titanium. Disk specimens (diameter, 10 mm; thickness, 2.5 mm) were cast from type 4 gold alloy and commercially pure titanium. The specimens were wetground to a final surface finish using 600-grit silicone carbide paper. The specimens were then air-dried and treated using the following four bonding systems: (1) air-abrasion with 50-70 mum alumina, (2) system 1 + alloy primer, (3) system 1 + metal link primer, and (4) tribochemical silica/silane coating (Rocatec). A light-polymerizing indirect composite resin (Ceramage) was applied to each metal specimen and polymerized according to the manufacturer's specifications. Shear bond strengths (MPa) were determined both before and after thermocycling (4 degrees C and 60 degrees C for 1 min each for 20 000 cycles). The values were compared using analysis of variance, post hoc Scheffe tests, and Mann-Whitney U tests (alpha = 0.05). The strengths decreased after thermocycling for all combinations. For both gold alloy and titanium, the bond strength with air-abrasion only was statistically lower than that with the other three modification methods after thermocycling. Titanium exhibited a significantly higher value (13.4 MPa) than gold alloy (10.5 MPa) with the air. abrasion and alloy primer system. Treatment with the tribochemical system or air abrasion followed by treatment with dual-functional priming agents was found to be effective for enhancement of the bonding between the indirect composite and gold alloy or titanium.
Effect of laser welding on the titanium ceramic tensile bond strength.
Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Pagnano, Valéria de Oliveira; Mattos, Maria da Glória Chiarello de
2011-08-01
Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi) substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3) conditions was also studied. Forty CpTi cylindrical rods (3 mm x 60 mm) were cast and divided into 2 groups: with laser welding (L) and without laser welding (WL). Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm); B - Al2O3 (180 µm); C - Al2O3 (110 µm); D - Al2O3 (50 µm). Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p<0.05). Significant differences were found among all subgroups (p<0.05). The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa) and LD (24.02 MPa), respectively. Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.
Ortiz, Antonio José; Fernández, Esther; Vicente, Ascensión; Calvo, José L; Ortiz, Clara
2011-09-01
The aims of this study were to determine the amounts of metallic ions that stainless steel, nickel-free, and titanium alloys release to a culture medium, and to evaluate the cellular viability and DNA damage of cultivated human fibroblasts with those mediums. The metals were extracted from 10 samples (each consisting of 4 buccal tubes and 20 brackets) of the 3 orthodontic alloys that were submerged for 30 days in minimum essential medium. Next, the determination of metals was performed by using inductively coupled plasma mass spectrometry, cellular viability was assessed by using the tetrazolium reduction assay (MTT assay) (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide), and DNA damage was determined with the Comet assay. The metals measured in all the samples were Ti(47), Cr(52), Mn(55), Co(59), Ni(60), Mo(92), Fe(56), Cu(63), Zn(66), As(75), Se(78), Cd(111), and Pb(208). The cellular viability of the cultured fibroblasts incubated for 7 days with minimum essential medium, with the stainless steel alloy submerged, was close to 0%. Moreover, high concentrations of titanium, chromium, manganese, cobalt, nickel, molybdenum, iron, copper, and zinc were detected. The nickel-free alloy released lower amounts of ions to the medium. The greatest damage in the cellular DNA, measured as the olive moment, was also produced by the stainless steel alloy followed by the nickel-free alloy. Conversely, the titanium alloy had an increased cellular viability and did not damage the cellular DNA, as compared with the control values. The titanium brackets and tubes are the most biocompatible of the 3 alloys studied. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Alavi, Shiva; Sinaee, Neda
2012-01-01
Background: Sterilization techniques could affect the characteristics of orthodontic wires. The aim of the present study was to evaluate the effect of steam and dry heat sterilization techniques on load-deflection behavior of five types of β-titanium alloy wires. Materials and Methods: The samples consisted of 30 straight lengths of five types of β-titanium alloy wires: Titanium Molybdenum Alloy (TMA) Low Friction (TMAL), TMA Low Friction Colored (HONE), Resolve (RES), BetaForce (BETA), and BETA CNA (CNA). Thirty wire segments were divided into three groups of 10. Group 1 was the control group and the group 2 samples were sterilized by dry heat in an oven (60 minutes at 160°C) and group 3 by steam in an autoclave (15 minutes at 121°C). Then all the wire samples underwent a three-point bending test in a testing machine to evaluate load-deflection properties. Data was analyzed by repeated measures ANOVA and Scheffé's test (α = 0.05). Results: The results showed that dry heat sterilization significantly increased force levels during both loading and unloading of CNA, BETA and RES and during loading of HONE (P < 0.05). Steam sterilization significantly increased force levels during both loading and unloading of BETA and during unloading of HONE (P < 0.05), with no effects on the load-deflection characteristics of TMAL, CNA and RES (P > 0.05). Conclusion: It appears dry heat sterilization increases stiffness of RES, BETA, CNA and HONE but autoclave sterilization did not have any effect on load-deflection characteristics of most of the β-titanium wires tested, indicating that clinicians who want to provide maximum safety for their patients can autoclave TMAL, RES and CNA before applying them. PMID:23559917
Influence of stress corrosion on the mechanical properties of laser-welded titanium.
de Assis Ferreira, Nancy; Senna, Plinio Mendes; do Lago, Dalva Cristina Baptista; de Senna, Lilian Ferreira; Sampaio-Filho, Helio Rodrigues
2016-03-01
Whether laser-welded (LW) titanium can resist the stress corrosion produced by the combination of fluoride ions and stress in the oral environment is unknown. The purpose of this in vitro study was to investigate the influence of stress corrosion on the mechanical properties of LW titanium. Twenty-seven titanium bars (25×2 mm) with a circular cross-section were cut in half and laser-welded, while another 27 nonwelded (NW) bars were used as the control. Thirty bars were submitted to a flexural load of 480 N at 1 Hz and immersed in artificial saliva at pH 6 (S1) or in 1000 ppm fluoride-containing saliva at pH 6.0 (S2) or 2.0 (S3) at room temperature for up to 4000 cycles. After the stress corrosion simulation, the tensile strength and Vickers microhardness were determined (n=5). Twelve LW and NW bars were submitted to the corrosion immersion test media for 51 days (n=2) to determine polarization curves (n=2) in an artificial saliva media. The corroded surface was examined with scanning electron microscopy (SEM). The combination of fluoride and low pH significantly decreased the tensile strength of LW (P<.05). Stress corrosion did not affect the hardness of LW or NW (P>.05). NW bars immersed in S3 exhibited progressive surface dissolution, while LW bars spontaneously fractured at the welded area after 25 days of immersion in the same medium. SEM images demonstrated pitting corrosion without the presence of cracks in both groups immersed in S3. Stress corrosion caused by acidic fluoride-containing saliva and flexural load cycling decreased the tensile strength and hardness of LW titanium bars. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerib, D. S.
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities ofmore » $$^{238}$$U$$_{e}$$~$<$1.6~mBq/kg, $$^{238}$$U$$_{l}$$~$<$0.09~mBq/kg, $$^{232}$$Th$$_{e}$$~$$=0.28\\pm 0.03$$~mBq/kg, $$^{232}$$Th$$_{l}$$~$$=0.25\\pm 0.02$$~mBq/kg, $$^{40}$$K~$<$0.54~mBq/kg, and $$^{60}$$Co~$<$$0.02~mBq/kg (68\\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $$0.160\\pm0.001$(stat)$$\\pm0.030$$(sys) counts.« less
Akerib, D. S.
2017-09-25
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities ofmore » $$^{238}$$U$$_{e}$$~$<$1.6~mBq/kg, $$^{238}$$U$$_{l}$$~$<$0.09~mBq/kg, $$^{232}$$Th$$_{e}$$~$$=0.28\\pm 0.03$$~mBq/kg, $$^{232}$$Th$$_{l}$$~$$=0.25\\pm 0.02$$~mBq/kg, $$^{40}$$K~$<$0.54~mBq/kg, and $$^{60}$$Co~$<$$0.02~mBq/kg (68\\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $$0.160\\pm0.001$(stat)$$\\pm0.030$$(sys) counts.« less
NASA Astrophysics Data System (ADS)
Belkin, P. N.; Kusmanov, S. A.; Dyakov, I. G.; Silkin, S. A.; Smirnov, A. A.
2017-05-01
In our previous studies, we have shown that anode plasma electrolytic saturation of titanium alloys with nitrogen and carbon can improve their tribological properties. Obtained structure containing oxide layer and solid solution of diffused element in titanium promotes the enhancement of running-in ability and the decrease in the wear rate in some special cases. In this paper, further investigations are reported regarding the tribological properties of alpha- and beta-titanium alloys in wear test against hardened steel (50 HRC) disk using pin-on-disk geometry and balls of Al2O3 (6.25 mm in diameter) or bearing steel (9.6 mm in diameter) with ball-on-plate one and normal load from 5 to 209 N. Reproducible results were obtained under testing samples treated by means of the plasma electrolytic nitriding (PEN) with the mechanical removal of the oxide layer. Friction coefficient of nitrided samples is 0.5-0.9 which is somewhat higher than that for untreated one (0.48-0.75) during dry sliding against Al2O3 ball. An increase in the sliding speed results in the polishing of nitrided samples and reduction of their wear rate by 60 times. This result is obtained for 5 min at 850 °C using PEN in electrolyte containing 5 wt.% ammonia and 10 wt.% ammonium chloride followed by quenching in solution. Optical microscope was employed to assist in the evaluation of the wear behavior. Sizes of wear tracks were measured by profilometer TR200.
Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett
2016-03-03
The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanism of Hydrophilicity by Radiation-Induced Surface Activation
NASA Astrophysics Data System (ADS)
Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji
When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.
Numerical Study of Mechanical Response of Pure Titanium during Shot Peening
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Cheng, J. P.; Yang, H. P.; Zhang, C. H.
2018-05-01
Mechanical response of pure titanium impacted by a steel ball was simulated using finite element method to investigate stress and strain evolution during shot peening. It is indicated that biaxial residual stress was obtained in the surface layer while in the interior triaxial residual stress existed because the S33 was comparable to S11 and S22. With decreasing the depth from the top surface, the stress was higher during impacting, but the stress relief extent became more significant when the ball rebounded. Therefore the maximum residual stress was formed in the subsurface layer with depth of 130 μm. As for the residual strain, it is shown that the maximum residual strain LE33 was obtained at the depth of 60 μm corresponding to the maximum shear stress during impacting.
Optical properties of titanium di-oxide thin films prepared by dip coating method
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar
2018-05-01
Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.
Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide
NASA Astrophysics Data System (ADS)
Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.
2016-03-01
Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Marcia A.; Oliver, Michael S.
2012-08-01
A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burningmore » within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.« less
NASA Astrophysics Data System (ADS)
Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.
2018-03-01
Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.
Study of heat sink thermal protection systems for hypersonic research aircraft
NASA Technical Reports Server (NTRS)
Vahl, W. A.; Edwards, C. L. W.
1978-01-01
The feasibility of using a single metallic heat sink thermal protection system (TPS) over a projected flight test program for a hypersonic research vehicle was studied using transient thermal analyses and mission performance calculations. Four materials, aluminum, titanium, Lockalloy, and beryllium, as well as several combinations, were evaluated. Influence of trajectory parameters were considered on TPS and mission performance for both the clean vehicle configuration as well as with an experimental scramjet mounted. From this study it was concluded that a metallic heat sink TPS can be effectively employed for a hypersonic research airplane flight envelope which includes dash missions in excess of Mach 8 and 60 seconds of cruise at Mach numbers greater than 6. For best heat sink TPS match over the flight envelope, Lockalloy and titanium appear to be the most promising candidates
Ollivier, M; Parratte, S; Galland, A; Lunebourg, A; Flecher, X; Argenson, J-N
2015-04-01
Although they have been in use since the end of the 1980s, modular titanium neck components are associated with a risk of wear or fracture, and their safety has recently become a subject of debate and has never been evaluated in a consecutive series of patients. The goal of this study was to evaluate: revision-free survival of these implants after a minimum follow-up of 5 years; clinical and radiographic results; and the potential complications associated with the use of modular titanium neck components. The use of titanium modular neck on cemented titanium THA is safe at a minimum follow-up of 5 years. Between January 2006 and December 2008, we prospectively followed 170 patients (170 hips) who underwent primary anatomical THA with a modular cemented titanium stem design implant. The indications were unilateral THA for primary (n=160) or secondary (n=10) hip osteoarthritis (aseptic osteonecrosis of the femoral head or hip dysplasia). Mean age of patients was 75.4±5.8 years old (52-85), and mean BMI was 26.1±4.5 kg/m(2) (16.6-42.1). Patients were operated on by a modified Watson-Jones anterolateral approach based on preoperative 2D planning. All patients underwent annual clinical and radiological follow-up by an independent observer. At a mean follow-up of 71±8 months (60-84), 5 patients died and 7 were lost to follow-up. There was no revision of THA after a maximum follow-up of 84 months. The Harris score improved significantly from 50.4±11.3 (0-76) preoperatively to 84.5±15.2 (14-100) at the final follow-up. There was no difference in postoperative femoral offset or the position of the center of rotation compared to the opposite side. On the other hand, the neck-shaft angle (NSA) and limb length were corrected (2±5° [-11 to +14°] and 2.16±3.6 mm [-7.4 to +12.7 mm]) respectively. Fifteen patients (9%) had limb length discrepancies of more than 5 mm and 4 patients (2%) of more than 10 mm. There were no complications due to the modular implant design. Our study suggests that the use of cemented titanium implants with a modular titanium stem is safe at a follow-up of 5 years. The modular design does not prevent limb length discrepancies but restores femoral offset. IV: prospective, non-comparative study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Monogarov, K. A.; Pivkina, A. N.; Grishin, L. I.; Frolov, Yu. V.; Dilhan, D.
2017-06-01
Analytical and experimental studies conducted at Semenov Institute of Chemical Physics for investigating the use of pyrotechnic compositions, i.e., thermites, to reduce the risk of the fall of thermally stable parts of deorbiting end-of-life LEO satellites on the Earth are described. The main idea was the use of passive heating during uncontrolled re-entry to ignite thermite composition, fixed on the titanium surface, with the subsequent combustion energy release to be sufficient to perforate the titanium cover. It is supposed, that thus destructed satellite parts will lose their streamline shape, and will burn out being aerodynamically heated during further descending in atmosphere (patent FR2975080). On the base of thermodynamic calculations the most promising thermite compositions have been selected for the experimental phase. The unique test facilities have been developed for the testing of the efficiency of thermite charges to perforate the titanium TA6V cover of 0.8 mm thickness under temperature/pressure conditions duplicated the uncontrolled re-entry of titanium tank after its mission on LEO. Experiments with the programmed laser heating inside the vacuum chamber revealed the only efficient thermite composition among preliminary selected ones to be Al/Co3O4. Experimental searching of the optimal aluminum powder between spherical and flaked nano- and micron-sized ones revealed the possibility to adjust the necessary ignition delay time, according to the titanium cover temperature dependency on deorbiting time. For the titanium tank the maximum temperature is 1100 °C at altitude 68 km and pressure 60 Pa. Under these conditions Al/Co3O4 formulations with nano-Al spherical particles provide the ignition time to be 13.3 s, and ignition temperature as low as 592±5 °C, whereas compositions with the micron-sized spherical Al powder reveal these values to be much higher, i.e., 26.3 s and 869±5 °C, respectively. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of pyrotechnic device to reduce the risk of the fall of thermally stable parts of deorbiting end-of-life LEO satellites on the Earth.
Kusy, Robert P; Whitley, John Q
2007-02-01
In recent years, nickel-titanium (Ni-Ti) archwires have been developed that undergo thermal transitions. Before the practitioner can fully utilize these products, the effect of those transitions within the clinical application must be understood. The transitional temperatures and mechanical stiffnesses of 3 archwire alloys--stainless steel, beta-titanium, and Ni-Ti--were investigated were for 7 products. Among the nickel-titanium alloys, 2 were thought to represent classic Ni-Ti products and 3 copper (Cu)-Ni-Ti products. By using 2 techniques, differential scanning calorimetry to measure heat flow and dynamic mechanical analysis to measure storage modulus, transition temperatures were evaluated from -30 degrees C to +80 degrees C. With regard to the first technique, no transitions were observed for the stainless steel alloy, the beta-titanium alloy, and 1 of the 2 classic Ni-Ti products. For the other classic Ni-Ti product, however, a martensitic-austenitic transition was suggested on heating, and a reverse transformation was suggested on cooling. As expected, the Cu-Ni-Ti 27, 35, and 40 products manifested austenitic finish temperatures of 29.3 degrees C, 31.4 degrees C, and 37.3 degrees C, respectively, as the enthalpy increased from 2.47 to 3.18 calories per gram. With regard to the second technique, the storage modulus at a low frequency of 0.1 Hz paralleled static mechanical tests for the stainless steel alloy (183 gigapascal [GPa]), the beta-titanium alloy (64 GPa), and the Nitinol Classic (3M Unitek, Monrovia, Calif) product that represented a stable martensitic phase (41 GPa). The remaining 4 Ni-Ti products generally varied from 20 to 35 GPa when the low-temperature or martensitic phase was present and from 60 to 70 GPa after the high-temperature or austenitic phase had formed. From the clinical viewpoint, the Orthonol (Rocky Mountain Orthodontics, Denver, Colo), Cu-Ni-Ti 27, Cu-Ni-Ti 35, and Cu-Ni-Ti 40 (SDS/Ormco, Glendora, Calif) products increased at least twofold in stiffness as temperature increased, best emulating the stiffness of Nitinol Classic below the transformational temperature and the stiffness of TMA (SDS/Ormco, Glendora, Calif) above the transformational temperature. Of the 3 Cu-Ni-Ti products, the least differences were found between Cu-Ni-Ti 27 and Cu-Ni-Ti 35, thereby questioning the justification for 3 similar products.
Hatamleh, Muhanad M; Wu, Xiaohong; Alnazzawi, Ahmad; Watson, Jason; Watts, David
2018-04-01
Surface and mechanical properties of titanium alloys are integral for their use in restoring bone defects of skull and face regions. These properties are affected by the method of constructing and surface treatment of the titanium implant. This study aimed to investigate the effects of titanium finishing protocols on the surface morphology, hardness and biocompatibility of TiAl6V4. Square shaped TiAl6V4 specimens (ASTM F68) (10×10×0.5mm) were divided into seven groups of different surface treatments (n=10). The treatments included mechanical polishing, sandblasting with AL 2 O 3 (50μm), immersion in different acids, and/or electro-chemical anodization. Weight loss %; 3D micro-roughness; Knoop micro-hardness, and osteoblast cell attachment and proliferation (after 3 days) were determined for each specimen. Data was analysed using one way ANOVA and Dunett T3 post-hoc tests, and t-test (p<0.05). Weight loss % was in the range of 1.70-5.60 as mechanical polishing produced the highest weight loss, followed by sandblasting, and combined protocol of mechanical polishing and acid treatment (p<0.05). Micro-roughness values (μm) were in the range of 2.81-16.68. It was the highest for control specimens (p<0.05), and smoothest surfaces after combined mechanical polishing and acid treatment; or after electro-chemical treatment (p<0.05). Micro-hardness values (MPa) ranged 170.90-442.15 as sandblasting with/without acid treatment caused statically significantly the highest values (p<0.05) while control and mechanically polished specimens had the lowest values (p<0.05). All treatments produced equally biocompatible surfaces (p>0.05) after 1h or 3 days. Furthermore, osteoblast cell proliferation statistically significantly increased after 3days among each surface treatment (p<0.05). Different finishing treatments have variable effect on cranioplasty titanium surface loss, micro-roughness and micro-hardness but constant improved biocompatibility effect. Electro-chemical treatment caused less material loss and produced biocompatible smoothest surface of comparable hardness; hence it can be suitable for cranioplasty titanium surface finishing. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
2017-01-01
Controlled synthesis of a hybrid nanomaterial based on titanium oxide and single-layer graphene (SLG) using atomic layer deposition (ALD) is reported here. The morphology and crystallinity of the oxide layer on SLG can be tuned mainly with the deposition temperature, achieving either a uniform amorphous layer at 60 °C or ∼2 nm individual nanocrystals on the SLG at 200 °C after only 20 ALD cycles. A continuous and uniform amorphous layer formed on the SLG after 180 cycles at 60 °C can be converted to a polycrystalline layer containing domains of anatase TiO2 after a postdeposition annealing at 400 °C under vacuum. Using aberration-corrected transmission electron microscopy (AC-TEM), characterization of the structure and chemistry was performed on an atomic scale and provided insight into understanding the nucleation and growth. AC-TEM imaging and electron energy loss spectroscopy revealed that rocksalt TiO nanocrystals were occasionally formed at the early stage of nucleation after only 20 ALD cycles. Understanding and controlling nucleation and growth of the hybrid nanomaterial are crucial to achieving novel properties and enhanced performance for a wide range of applications that exploit the synergetic functionalities of the ensemble. PMID:28356613
Kumar, Sanjay; Roy, Sandip Kumar; Jha, Amrish Kumar; Chatterjee, Debdutta; Banerjee, Debabrata; Garg, Anant Kumar
2011-06-01
Sixty-two femoral shaft fractures in 60 patients treated by elastic intramedullary nailing with mean age of the patients being 9.2 years (range 5 years to 12 years) and average follow-up of 15 months (range 7 months to 60 months) are evaluated. Twenty-eight fractures were fixed with titanium elastic nail while 34 fractures were fixed with Enders nail. There were 40 midshaft fractures, 18 proximal femoral and 4 were fractures of distal third. Fracture patterns were transverse in 35, short oblique in 14 cases and 13 were spiral fractures. Mean age of union in this series was 17 weeks (range 12 weeks to 28 weeks). Ten cases had complications, 5 had nail tip irritation, 3 varus or valgus malalignment and 2 had delayed union. In this series, we did not have any non-union, refracture, limb length discrepancy or any major infection. The result demonstrates 100% union rate irrespective of the age, weight and height of the patient. Regardless of the site of fracture and their pattern, it united every time with elastic nail fixation. We did not find and mismatch in the results of fractures stabilised with titanium elastic nail with that of elastic stainless steel nail.
Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru; Klechkovskaya, V. V.
2016-03-15
Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibitmore » the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.« less
Shin, Jin-Ho; Kim, Jung-Hwa; Koh, Jeong-Tae; Lim, Hyun-Pil; Oh, Gye-Jeong; Lee, Seok-Woo; Lee, Kwang-Min; Yun, Kwi-Dug; Park, Sang-Won
2015-08-01
Hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotubular surface has been developed to complement the defects of both TiO2 and HA. A sol-gel processing technique was used to coat HA on TiO2 nanotubular surface. All the titanium discs were blasted with resorbable blast media (RBM). RBM-blasted Ti surface, anodized Ti surface, and sol-gel HA coating on the anodized Ti surface were prepared. The characteristics of samples were observed using scanning electron microscopy and X-ray photoemission spectroscopy. Biologic responses were evaluated with human osteosarcoma MG63 cells in vitro. The top of the TiO2 nanotubes was not completely covered by HA particles when the coating time was less than 60 sec. It was demonstrated the sol-gel derived HA film was well-crystallized and this enhanced biologic responses in early stage cell response.
Tseng, Hsi-Ching; Chen, Hsing-Yin; Huang, Yen-Tzu; Lu, Wei-Yi; Chang, Yu-Lun; Chiang, Michael Y; Lai, Yi-Chun; Chen, Hsuan-Ying
2016-02-15
A series of titanium (Ti) complexes bearing hydrazine-bridging Schiff base ligands were synthesized and investigated as catalysts for the ring-opening polymerization (ROP) of L-lactide (LA). Complexes with electron withdrawing or steric bulky groups reduced the catalytic activity. In addition, the steric bulky substituent on the imine groups reduced the space around the Ti atom and then reduced LA coordination with Ti atom, thereby reducing catalytic activity. All the dinuclear Ti complexes exhibited higher catalytic activity (approximately 10-60-fold) than mononuclear L(Cl-H)-TiOPr2 did. The strategy of bridging dinuclear Ti complexes with isopropoxide groups in the ROP of LA was successful, and adjusting the crowded heptacoordinated transition state by the bridging isopropoxide groups may be the key to our successful strategy.
Erosion-resistant coatings for gas turbine engine compressor blades
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Muboyadzhyan, S. A.
2017-06-01
The erosion-resistant ZrN and Cr3C2 coatings intended for the protection of the titanium and steel blades in a GTE compressor are studied. The erosion resistance of the substrate-coating composition is shown to depend on the coating thickness, the deposition conditions, and the coating texture. Ion-assisted deposition changes the structure-phase state of a coating and substantially increases its erosion resistance. It is found that a nanolayer 2D TiN/CrN coating with an average nanolayer thickness of 60 nm is the best erosion- corrosion-resistant coating for titanium alloys and that a (NiCrTiAlHf)C + CrC coating formed by ionassisted deposition is the best coating for steels. The testing of alloy VT8 compressor blades in an engine supported high protective properties of the nanolayer TiN/CrN coating.
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Kar, Asit Kumar
2018-02-01
Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.
Comparative study of the effect of ultrasound on the removal of intracanal posts.
Braga, Neilor Mateus Antunes; Resende, Leandro Marques; Vasconcellos, Walisom Arthuso; Paulino, Silvana Maria; Sousa-Neto, Manoel Damiao
2009-01-01
This study sought to evaluate how ultrasound affected the removal of stainless steel and titanium posts that had been attached with two different resin cements. The crowns of 32 maxillary canines were removed, the roots were embedded in acrylic resin blocks, and the canals were treated endodontically. The specimens were randomly distributed into two groups (n = 16) according to the brand of cement and subdivided (n = 8) according to the type of post. The specimens were submitted to ultrasonic vibration applied perpendicularly to the long axis of the tooth for 60 seconds. Data were submitted to ANOVA and showed no significant statistical difference among the groups (p > 0.05). It may be concluded that the effects of ultrasonic vibration used to remove intraradicular posts were not significantly different when applied to stainless steel or titanium posts cemented with chemically or dual-activated resin cements.
NASA Astrophysics Data System (ADS)
Ahmadi, Eltefat; Rezan, Sheikh Abdul; Baharun, Norlia; Ramakrishnan, Sivakumar; Fauzi, Ahmad; Zhang, Guangqing
2017-10-01
The kinetics of chlorination of titanium nitride (TiN) was investigated in the temperature range of 523 K to 673 K (250 °C to 400 °C). The results showed that the extent of chlorination slightly increased with increasing temperature and decreasing particle size of titanium nitride at constant flow rate of N2-Cl2 gas mixture. At 523 K (250 °C), the extent of chlorination was 85.6 pct in 60 minutes whereas at 673 K (400 °C), it was 97.7 pct investigated by weight loss measurement and confirmed by ICP analyses. The experimental results indicated that a shrinking unreacted core model with mixed-control mechanism governed the chlorination rate. It was observed that the surface chemical reaction of chlorine gas on the surface of TiN particles was rate controlling in the initial stage and, during later stage, internal (pore) diffusion through the intermediate product layer was rate controlling step. Overall the process follows the mixed-control model incorporating both chemical reaction and internal diffusion control. The activation energy for the chlorination of TiN was found to be about 10.97 kJ mol-1. In processing TiCl4 from TiN and TiO0.02C0.13N0.85, the solids involved in the chlorination process were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectrometer (EDX). The SEM/EDX results demonstrated the consumption of TiN particles with extent of chlorination that showed shrinking core behavior.
Wright, Margaret L; Skaggs, David L; Matsumoto, Hiroko; Woon, Regina P; Trocle, Ashley; Flynn, John M; Vitale, Michael G
2016-05-01
Retrospective cohort study. To determine the association of implant metal composition with the risk of surgical site infection (SSI) following pediatric spine surgery. SSI is a well-described complication following pediatric spine surgery. Many risk factors have been identified in the literature, but controversy remains regarding metal composition as a risk factor. This was a retrospective study of patients who underwent posterior spinal instrumentation procedures between January 1, 2006, and December 31, 2008, at three large children's hospitals for any etiology of scoliosis and had at least 1 year of postoperative follow-up. Procedures included posterior spinal fusion, growth-friendly instrumentation, and revision of spinal instrumentation. The Centers for Disease Control and Prevention definition of SSI was used. A chi-squared test was performed to determine the relationship between type of metal instrumentation and development of an SSI. The study included 874 patients who underwent 1,156 total procedures. Overall, 752 (65%) procedures used stainless steel instrumentation, 238 (21%) procedures used titanium instrumentation, and the remaining 166 (14%) procedures used cobalt chrome and titanium hybrid instrumentation. The overall risk of infection was 6.1% (70/1,156) per procedure, with 5.9% (44/752) for stainless steel, 6.7% (12/238) for titanium, and 6.0% (10/166) for cobalt chrome. The multiple regression analysis found no significant differences in the metal type used between patients with and without infection (p = .886) adjusting for etiology, instrumentation to pelvis, and type of procedures. When stratified based on etiology, the multiple regression analyses also found no significant difference in SSI between two metal type groups. This study found no difference in risk of infection with stainless steel, titanium, or cobalt chrome/titanium instrumentation and is adequately powered to detect a true difference in risk of SSI. Level II, prognostic. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Goonan, Thomas G.
2010-01-01
As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the titanium metal fraction of the titanium economy, which generates and uses titanium metal scrap in its operations. Data for 2004 were selected to demonstrate the titanium flows associated with these operations. This report includes a description of titanium metal supply and demand in the United States to illustrate the extent of titanium recycling and to identify recycling trends. In 2004, U.S. apparent consumption of titanium metal (contained in various titanium-bearing products) was 45,000 metric tons (t) of titanium, which was distributed as follows: 25,000 t of titanium recovered as new scrap, 9,000 t of titanium as titanium metal and titanium alloy products delivered to the U.S. titanium products reservoir, 7,000 t of titanium consumed by steelmaking and other industries, and 4,000 t of titanium contained in unwrought and wrought products exported. Titanium recycling is concentrated within the titanium metals sector of the total titanium market. The titanium market is otherwise dominated by pigment (titanium oxide) products, which generate dissipative losses instead of recyclable scrap. In 2004, scrap (predominantly new scrap) was the source of roughly 54 percent of the titanium metal content of U.S.-produced titanium metal products.
Ye, Jia; Gao, Yong
2012-01-01
Rotary instruments made of a new nickel-titanium (NiTi) alloy (M-Wire) have shown improved cyclic fatigue resistance and mechanical properties compared with those made of conventional superelastic NiTi wires. The objective of this study was to characterize microstructural changes of M-Wire throughout the cyclic fatigue process under controlled strain amplitude. The average fatigue life was calculated from 30 M-Wire samples that were subjected to a strain-controlled (≈ 4%) rotating bend fatigue test at room temperature and rotational speed of 300 rpm. Microstructural evolution of M-Wire has been investigated by different metallurgical characterization techniques, including differential scanning calorimetry, Vickers microhardness, and transmission electron microscopy at 4 different stages (as-received state, 30%, 60%, and 90% of average fatigue life). During rotating bend fatigue test, no statistically significant difference (P > .05) was found on austenite finish temperatures between as-received M-Wire and fatigued samples. However, significant differences (P < .05) were observed on Vickers microhardness for samples with 60% and 90% fatigue life compared with as-received and 30% fatigue life. Coincidentally, substantial growth of martensite grains and martensite twins was observed in microstructure under transmission electron microscopy after 60% fatigue life. The results of the present study suggested that endodontic instruments manufactured with M-Wire are expected to have higher strength and wear resistance than similar instruments made of conventional superelastic NiTi wires because of its unique nano-crystalline martensitic microstructure. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
60NiTi Alloy for Tribological and Biomedical Surface Engineering Applications
NASA Astrophysics Data System (ADS)
Ingole, Sudeep
2013-06-01
60NiTi is an alloy with 60 wt% of nickel (Ni) and 40 wt% of titanium (Ti). This alloy was developed in the 1950s at the Naval Ordnance Laboratory (NOL) along with 55NiTi (55 wt% of Ni and 45 wt% of Ti). Both of these alloys exhibit the shape memory effect to different extents. The unique properties of 60NiTi, which are suitable for surface engineering (tribological) applications, are enumerated here. With appropriate heat treatment, this alloy can achieve high hardness (between Rc 55 and Rc 63). It has very good corrosion resistance and is resilient. Machinable before its final heat treatment, this alloy can be ground to fine surface finish and to tight dimensions. At one time, due to the popularity and wider applications of 55NiTi, the study of 60NiTi suffered. Recently, 60NiTi alloy gained some technological advantages due to advanced materials synthesis processes and progress in surface engineering. A feasibility study of 60NiTi bearings for space application has shown promise for its further development and suitability for other tribological applications. This report focuses on an overview of the properties and potential tribological and biomedical applications of 60NiTi.
Highly efficient TiO2-based microreactor for photocatalytic applications.
Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran
2013-09-25
A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.
Jaatinen, Jarkko J P; Korhonen, Rami K; Pelttari, Alpo; Helminen, Heikki J; Korhonen, Hannu; Lappalainen, Reijo; Kröger, Heikki
2011-08-01
Amorphous diamond (AD) is a durable and compatible biomaterial for joint prostheses. Knowledge regarding bone growth on AD-coated implants and their early-stage osseointegration is poor. We investigated bone growth on AD-coated cementless intramedullary implants implanted in rats. Titanium was chosen as a reference due to its well-known performance. We placed AD-coated and non-coated titanium implants (R(a) ≈ 0.2 μm) into the femoral bone marrow of 25 rats. The animals were divided in 2 groups according to implant coating and they were killed after 4 or 12 weeks. The osseointegration of the implants was examined from hard tissue specimens by measuring the new bone formation on their surface. 4 weeks after the operation, the thickness of new bone in the AD-coated group was greater than that in the non-coated group (15.3 (SD 7.1) μm vs. 7.6 (SD 6.0) μm). 12 weeks after the operation, the thickness of new bone was similar in the non-coated group and in the AD-coated group. We conclude that AD coating of femoral implants can enhance bone ongrowth in rats in the acute, early stage after the operation and might be an improvement over earlier coatings.
The Design and Testing of a High-Temperature Graphite Dilatometer
1992-06-24
characterization of its CTE is of little significance. Practical candidates are silica (fused quartz glass), Zerodur -type glass ceramics (5 x 10- 8 C-1 ), and...titanium silicates (< 5 x IO17 *C-1 ). Partially crystallized glasses, such as Zerodur , are limited to about 6006C. Silica can be subjected to almost...electronics, solid-state lasers , optical propagation and communications; cw and pulsed chemical laser development, optical resonators, beam control
Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions
Shah, Rahul C.; Haines, Brian Michael; Wysocki, Frederick Joseph; ...
2017-03-30
Here, we present narrow-band self-emission x-ray images from a titanium tracer layer placed at the fuel-shell interface in 60-laser-beam implosion experiments at the OMEGA facility. The images are acquired during deceleration with inferred convergences of ~9-14. Novel here is that a systematically observed asymmetry of the emission is linked, using full sphere 3D implosion modeling, to performance-limiting low mode asymmetry of the drive.
2015-01-01
Background It has been thought that corrective posterior surgery for adolescent idiopathic scoliosis (AIS) should be started on the concave side because initial convex manipulation would increase the risk of vertebral malrotation, worsening the rib hump. With the many new materials, implants, and manipulation techniques (e.g., direct vertebral rotation) now available, we hypothesized that manipulating the convex side first is no longer taboo. Methods Our technique has two major facets. (1) Curve correction is started from the convex side with a derotation maneuver and in situ bending followed by concave rod application. (2) A 6.35 mm diameter pure titanium rod is used on the convex side and a 6.35 mm diameter titanium alloy rod on the concave side. Altogether, 52 patients were divided into two groups. Group N included 40 patients (3 male, 37 female; average age 15.9 years) of Lenke type 1 (23 patients), type 2 (2), type 3 (3), type 5 (10), type 6 (2). They were treated with a new technique using 6.35 mm diameter different-stiffness titanium rods. Group C included 12 patients (all female, average age 18.8 years) of Lenke type 1 (6 patients), type 2 (3), type 3 (1), type 5 (1), type 6 (1). They were treated with conventional methods using 5.5 mm diameter titanium alloy rods. Radiographic parameters (Cobb angle/thoracic kyphosis/correction rates) and perioperative data were retrospectively collected and analyzed. Results Preoperative main Cobb angles (groups N/C) were 56.8°/60.0°, which had improved to 15.2°/17.1° at the latest follow-up. Thoracic kyphosis increased from 16.8° to 21.3° in group N and from 16.0° to 23.4° in group C. Correction rates were 73.2% in group N and 71.7% in group C. There were no significant differences for either parameter. Mean operating time, however, was significantly shorter in group N (364 min) than in group C (456 min). Conclusion We developed a new corrective surgical technique for AIS using a 6.35 mm diameter pure titanium rod initially on the convex side. Correction rates in the coronal, sagittal, and axial planes were the same as those achieved with conventional methods, but the operation time was significantly shorter. PMID:25815053
Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride
Koc, Rasit; Glatzmaier, Gregory C.
1995-01-01
A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.
Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride
Koc, R.; Glatzmaier, G.C.
1995-05-23
A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.
Production of Titanium Metal by an Electrochemical Molten Salt Process
NASA Astrophysics Data System (ADS)
Fatollahi-Fard, Farzin
Titanium production is a long and complicated process. What we often consider to be the standard method of primary titanium production (the Kroll process), involves many complex steps both before and after to make a useful product from titanium ore. Thus new methods of titanium production, especially electrochemical processes, which can utilize less-processed feedstocks have the potential to be both cheaper and less energy intensive than current titanium production processes. This project is investigating the use of lower-grade titanium ores with the electrochemical MER process for making titanium via a molten salt process. The experimental work carried out has investigated making the MER process feedstock (titanium oxycarbide) with natural titanium ores--such as rutile and ilmenite--and new ways of using the MER electrochemical reactor to "upgrade" titanium ores or the titanium oxycarbide feedstock. It is feasible to use the existing MER electrochemical reactor to both purify the titanium oxycarbide feedstock and produce titanium metal.
Manikandan, M; Gopal, Judy; Hasan, Nazim; Wu, Hui-Fen
2014-12-01
We developed a cancer chip by nano-patterning a highly sensitive SAM titanium surface capable of capturing and sensing concentrations as low as 10 cancer cells/mL from the environment by Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). The current approach evades any form of pretreatment and sample preparation processes; it is time saving and does not require the (expensive) conventional MALDI target plate. The home made aluminium (Al) target holder cost, on which we loaded the cancer chips for MALDI-TOF MS analysis, is about 60 USD. While the conventional stainless steel MALDI target plate is more than 700 USD. The SAM surface was an effective platform leading to on-chip direct MALDI-MS detection of cancer cells. We compared the functionality of this chip with the unmodified titanium surfaces and thermally oxidized (TO) titanium surfaces. The lowest detectable concentration of the TO chip was 10(3) cells/mL, while the lowest detectable concentration of the control or unmodified titanium chips was 10(6) cells/mL. Compared to the control surface, the SAM cancer chip showed 100,000 times of enhanced sensitivity and compared with the TO chip, 1000 times of increased sensitivity. The high sensitivity of the SAM surfaces is attributed to the presence of the rutile SAM, surface roughness and surface wettability as confirmed by AFM, XRD, contact angle microscope and FE-SEM. This study opens a new avenue for the potent application of the SAM cancer chip for direct cancer diagnosis by MALDI-TOF MS in the near future. Copyright © 2014. Published by Elsevier B.V.
Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M
2012-12-01
To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.
Khlusov, Igor; Litvinova, Larisa; Shupletsova, Valeria; Khaziakhmatova, Olga; Melashchenko, Elena; Yurova, Kristina; Leitsin, Vladimir; Khlusova, Marina; Pichugin, Vladimir; Sharkeev, Yurii
2018-02-28
The response of the human Jurkat T cell leukemia-derived cell line (Jurkat T cells) after 24 h of in vitro exposure to a titanium substrate (12 × 12 × 1 mm³) with a bilateral rough ( R a = 2.2-3.7 μm) titanium oxide coating (rTOC) applied using the micro-arc method in a 20% orthophosphoric acid solution was studied. A 1.5-fold down-regulation of hTERT mRNA expression and decreases in CD3, CD4, CD8, and CD95 presentation and IL-4 and TNFα secretion were observed. Jurkat T cell inactivation was not correlated with the generation of intracellular reactive oxygen species (ROS) and was not mediated by TiO₂ nanoparticles with a diameter of 14 ± 8 nm at doses of 1 mg/L or 10 mg/L. The inhibitory effect of the rTOC ( R a = 2.2-3.7 μm) on the survival of Jurkat T cells (Spearman's coefficient r s = -0.95; n = 9; p < 0.0001) was demonstrated by an increase in the necrotic cell count among the cell population. In turn, an elevation of the Ra index of the rTOC was accompanied by a linear increase ( r = 0.6; p < 0.000001, n = 60) in the magnitude of the negative electrostatic potential of the titanium oxide surface. Thus, the roughness of the rTOC induces an electrostatic potential and decreases the viability of the immortalized Jurkat T cells through mechanisms unrelated to ROS generation. This may be useful for replacement surgery applications of rough TiO₂ implants in cancer patients.
Khlusov, Igor; Shupletsova, Valeria; Khaziakhmatova, Olga; Melashchenko, Elena; Yurova, Kristina; Khlusova, Marina; Pichugin, Vladimir; Sharkeev, Yurii
2018-01-01
The response of the human Jurkat T cell leukemia-derived cell line (Jurkat T cells) after 24 h of in vitro exposure to a titanium substrate (12 × 12 × 1 mm3) with a bilateral rough (Ra = 2.2–3.7 μm) titanium oxide coating (rTOC) applied using the micro-arc method in a 20% orthophosphoric acid solution was studied. A 1.5-fold down-regulation of hTERT mRNA expression and decreases in CD3, CD4, CD8, and CD95 presentation and IL-4 and TNFα secretion were observed. Jurkat T cell inactivation was not correlated with the generation of intracellular reactive oxygen species (ROS) and was not mediated by TiO2 nanoparticles with a diameter of 14 ± 8 nm at doses of 1 mg/L or 10 mg/L. The inhibitory effect of the rTOC (Ra = 2.2–3.7 μm) on the survival of Jurkat T cells (Spearman’s coefficient rs = −0.95; n = 9; p < 0.0001) was demonstrated by an increase in the necrotic cell count among the cell population. In turn, an elevation of the Ra index of the rTOC was accompanied by a linear increase (r = 0.6; p < 0.000001, n = 60) in the magnitude of the negative electrostatic potential of the titanium oxide surface. Thus, the roughness of the rTOC induces an electrostatic potential and decreases the viability of the immortalized Jurkat T cells through mechanisms unrelated to ROS generation. This may be useful for replacement surgery applications of rough TiO2 implants in cancer patients. PMID:29495627
Conduction mechanism in bismuth silicate glasses containing titanium
NASA Astrophysics Data System (ADS)
Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.
2014-11-01
Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.
Vasconcelos, R A; Arias, A; Peters, O A
2018-05-01
To isolate the effect of metallurgy in lateral and axial cutting efficacy against plastic and bovine dentine substrates by comparing two rotary systems with identical design but manufactured with either conventional nickel-titanium or heat-treated gold alloy. A total of 258 ProTaper Universal (PTU) and ProTaper Gold (PTG) Shaping instruments were used. Bending behaviour was assessed to determine the appropriate displacement associated with a 2 N force in lateral cutting. Ten instruments of each type were used in lateral action for 60 s against bovine dentine or plastic substrates four consecutive times producing four notches in each specimen. Ten further instruments of each type were used in on axial action in four standardized simulated root canals fabricated from 4-mm thick plastic or dentine discs. Both tests were performed at 300 rpm in a computer-controlled testing platform. Notch area and torsional load were compared with Student's t-tests. Repeated measures ANOVA was used to compare cutting efficiency across the four different time-points. Pearson correlation coefficients between substrates were also determined. For lateral action, all three PTG instruments cut significantly more effectively (P < 0.05) than PTU on the plastic substrate. S1 and S2 PTG cut significantly more after 120 and 180 s (P < 0.05) on bovine dentine substrate. For axial action, S1 and S2 PTG were significantly more efficient in cutting at 180 s on plastic and 120 s on bovine dentine (P < 0.05). Instruments made from heat-treated nickel-titanium gold alloy had equal or greater cutting efficiency when compared to those made from conventional nickel-titanium. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Ayubianmarkazi, Nader; Karimi, Mohammadreza; Koohkan, Shima; Sanasa, Armand; Foroutan, Tahereh
2015-11-01
Bacterial biofilms have been identified as the primary etiological factor for the development and progression of peri-implantitis. Lasers have been shown to remove bacterial plaque from titanium surfaces effectively and can restore its biocompatibility without damaging these surfaces. Therefore, the aim of this study was to evaluate the responses (i.e., the cell viability and morphology) of human osteoblast-like SaOs-2 cells to sandblasted, large grit, and acid-etched (SLA) titanium surfaces irradiated by CO2 lasers at two different power outputs. A total of 24 SLA disks were randomly radiated by CO2 lasers at either 6 W (group 1, 12 disks) or 8 W (group 2, 12 disks). Non-irradiated disks were used as a control group (four disks). The cell viability rates of the SaOs-2 cells in the control and study groups (6 and 8 W) were 0.33 ± 0.00, 0.24 ± 0.11, and 0.2372 ± 0.09, respectively (P < 0.6). Cells with cytoplasmic extensions and spreading morphology were most prominent in the control group (141.00 ± 29.00), while in the study groups (6 and 8 W), the number of cells with such morphology was 60.40 ± 26.00 and 35.20 ± 5.40, respectively (P < 0.005). Within the limits of this study, it may be concluded that the use of CO2 lasers with the aforementioned setting parameters could not be recommended for decontamination of SLA titanium surfaces.
Katica, Muhamed; Celebicic, Mirza; Gradascevic, Nedzad; Obhodzas, Muamer; Suljić, Enra; Ocuz, Muhamed; Delibegovic, Samir
2017-04-01
Various studies confirm the biocompatibility and efficacy of clips for certain target tissues, but without any comparative analysis of hematological parameters. Therefore, we conducted a study to assess the possible association of the implantation of titanium and plastic clips in the neurocranium with possible morphological changes in the blood cells of experimental animals. As a control, the peripheral blood smears were taken before surgery from 12 adult dogs that were divided into two experimental groups. After placing titanium and plastic clips in the neurocranium, the peripheral blood of the first group was analyzed on the seventh postoperative day, while the peripheral blood of the second group was analyzed on the sixtieth day. By microscopy of the blood smears, the following parameters were analyzed: the presence of poikilocytosis of the red blood cells, degenerative changes in the leukocytes and leukogram. There were no statistically significant differences between the mean values of the groups. Monocytosis was detected (first group 22.83 % and second 16.30 %), as well as neutropenia (46.80 %, in the second group). Degenerative changes to neutrophils and the occurrence of atypical lymphocytes were observed in the second experimental group (60 th postoperative day). A mild adverse effect from the biomaterials present in the neurocranium of dogs was detected, affecting the majority of leukocytic cells. A chronic recurrent inflammatory process was caused by the presence of the plastic and titanium clips in the brain tissue. No adverse effect of biomaterials on erythrocytes in the neurocranium was detected in the dogs studied. Further studies are necessary to explain the occurrence of degenerative changes in the neutrophils and lymphocytes.
Katica, Muhamed; Celebicic, Mirza; Gradascevic, Nedzad; Obhodzas, Muamer; Suljić, Enra; Ocuz, Muhamed; Delibegovic, Samir
2017-01-01
Introduction: Various studies confirm the biocompatibility and efficacy of clips for certain target tissues, but without any comparative analysis of hematological parameters. Therefore, we conducted a study to assess the possible association of the implantation of titanium and plastic clips in the neurocranium with possible morphological changes in the blood cells of experimental animals. Materials and Methods: As a control, the peripheral blood smears were taken before surgery from 12 adult dogs that were divided into two experimental groups. After placing titanium and plastic clips in the neurocranium, the peripheral blood of the first group was analyzed on the seventh postoperative day, while the peripheral blood of the second group was analyzed on the sixtieth day. By microscopy of the blood smears, the following parameters were analyzed: the presence of poikilocytosis of the red blood cells, degenerative changes in the leukocytes and leukogram. Results: There were no statistically significant differences between the mean values of the groups. Monocytosis was detected (first group 22.83 % and second 16.30 %), as well as neutropenia (46.80 %, in the second group). Degenerative changes to neutrophils and the occurrence of atypical lymphocytes were observed in the second experimental group (60th postoperative day). Conclusion: A mild adverse effect from the biomaterials present in the neurocranium of dogs was detected, affecting the majority of leukocytic cells. A chronic recurrent inflammatory process was caused by the presence of the plastic and titanium clips in the brain tissue. No adverse effect of biomaterials on erythrocytes in the neurocranium was detected in the dogs studied. Further studies are necessary to explain the occurrence of degenerative changes in the neutrophils and lymphocytes. PMID:28790535
Tensile properties of titanium electrolytically charged with hydrogen
NASA Technical Reports Server (NTRS)
Smith, R. J.; Otterson, D. A.
1971-01-01
Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.
Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys
NASA Technical Reports Server (NTRS)
Gray, H. R.
1975-01-01
Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.
Cyclic fatigue behavior of nickel-titanium dental rotary files in clinical simulated root canals.
Chi, Chih-Wen; Li, Chun-Chieh; Lin, Chun-Pin; Shin, Chow-Shing
2017-04-01
Dental rotary instruments can be applied in multiple conditions of canals, but unpredictable fatigue fracture may happen. This study evaluated the fatigue lives of two batches of nickel-titanium (NiTi) dental rotary files operating in clinically simulated root canals. Single-step cyclic fatigue tests were carried out to assess the performance of two batches of NiTi files (ProTaper and ProFile) in nine combinations of simulated canals (cylinder radii 5 mm, 7.5 mm, and 10 mm, and insertion angles 20°, 40°, and 60°). Two-step cyclic fatigue tests were carried out in simulated root canals with the same radius by using the following two sets of insertion angles: (20°, 40°), (20°, 60°), (40°, 20°), and (60°, 20°). Fracture surfaces were observed by scanning electron microscopy. The single-step cyclic fatigue results showed that cyclic fatigue lives of the files decreased with increasing insertion angles or decreasing cylinder radius. The ProFile #25 .04 file was more fatigue resistant than the ProTaper F2 file. In two-step cyclic fatigue tests, the total fatigue lives were usually more than 100% when the files operated at a lower strain and then at a higher strain. By scanning electron microscopy, a larger area of fatigue striation corresponded to a longer fatigue life. Cyclic fatigue life can be influenced by the strains and geometries of files. The fatigue life was prolonged when the files operated at a lower strain and then at a higher strain. However, the fatigue life was shortened if the loading sequence was reversed. Copyright © 2016. Published by Elsevier B.V.
Stress Corrosion Evaluation of Nitinol 60 for the International Space Station Water Recycling System
NASA Technical Reports Server (NTRS)
Torres, P. D.
2016-01-01
A stress corrosion cracking (SCC) evaluation of Nitinol 60 was performed because this alloy is considered a candidate bearing material for the Environmental Control and Life Support System (ECLSS), specifically in the Urine Processing Assembly of the International Space Station. An SCC evaluation that preceded this one during the 2013-2014 timeframe included various alloys: Inconel 625, Hastelloy C-276, titanium (Ti) commercially pure (CP), Ti 6Al-4V, extra-low interstitial (ELI) Ti 6Al-4V, and Cronidur 30. In that evaluation, most specimens were exposed for a year. The results of that evaluation were published in NASA/TM-2015-218206, entitled "Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System,"1 available at the NASA Scientific and Technical Information program web page: http://www.sti.nasa.gov. Nitinol 60 was added to the test program in 2014.
Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E
2018-04-01
There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p < .05). Titanium abutments (C) had significantly higher bending moments than identical zirconia abutments (T1) (p < .05). Zirconia abutments (T1) with internal connection had higher bending moments than zirconia abutments with external connection (T2) (p < .05). For all test groups, the bending moments were significantly reduced when restored with all-ceramic crowns. For narrow diameter abutments, the fracture strength of 2-piece internal connected zirconia abutments fixed on titanium resin bases was similar to those obtained for 1-piece titanium abutments. Narrow diameter zirconia abutments with internal connection exhibited higher fracture strength than zirconia abutments with an external connection. Titanium abutments with an internal connection were significantly stronger than identical zirconia abutments. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vera, R; Fontàs, C; Anticó, E
2017-04-01
We have evaluated a new titanium dioxide (Adsorbsia As600) for the adsorption of both inorganic As (V) and As (III) species. In order to characterize the sorbent, batch experiments were undertaken to determine the capacities of As (III) and As (V) at pH 7.3, which were found to be 0.21 and 0.14 mmol g -1 , respectively. Elution of adsorbed species was only possible using basic solutions, and arsenic desorbed under batch conditions was 50 % when 60 mg of loaded titanium dioxide was treated with 0.5 M NaOH solution. Moreover, its use as a sorbent for solid-phase extraction and preconcentration of arsenic species from well waters has been investigated, without any previous pretreatment of the sample. Solid-phase extraction was implemented by packing several minicolumns with Adsorbsia As600. The method has been validated showing good accuracy and precision. Acceptable recoveries were obtained when spiked waters at 100-200 μg L -1 were measured. The presence of major anions commonly found in waters did not affect arsenic adsoption, and only silicate at 100 mg L -1 level severely competed with arsenic species to bind to the material. Finally, the measured concentrations in water samples containing arsenic from the Pyrinees (Catalonia, Spain) showed good agreement with the ICP-MS results.
NASA Astrophysics Data System (ADS)
Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh
2016-08-01
In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.
Feng, Guo-Hua; Lee, Kuan-Yi
2017-12-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.
Lee, Kuan-Yi
2017-01-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal–oxide–semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air. PMID:29308260
NASA Astrophysics Data System (ADS)
Feng, Guo-Hua; Lee, Kuan-Yi
2017-12-01
This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.
Preparation of titanium diboride powder
Brynestad, Jorulf; Bamberger, Carlos E.
1985-01-01
Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.
Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2012-01-01
The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.
Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments.
Capar, Ismail Davut; Ertas, Huseyin; Arslan, Hakan
2015-04-01
New files (ProTaper Next/HyFlex/OneShape) are made from novel nickel-titanium (NiTi) alloys/treatments. The purpose of this study was to compare the cyclic fatigue resistance of these new instruments with that of Revo-S instruments. Four groups of 20 NiTi endodontic instruments were tested in steel canals with a 3 mm radius and a 60° angle of curvature. The cyclic fatigue of the following NiTi instruments with a tip size 25 and 0.06 taper that were manufactured with different alloys was tested: ProTaper Next X2 (M-Wire), OneShape (conventional NiTi), Revo-S Shaping Universal (conventional NiTi) and HyFlex 25/0.6 (controlled memory NiTi wire). A one-way anova and post-hoc Tukey's test (α = 0.05) revealed that the HyFlex files had the highest fatigue resistance and the Revo-S had the least fatigue resistance among the groups (P < 0.001). © 2014 Australian Society of Endodontology.
Effect of grinding conditions on the fatigue life of titanium 5Al-2.5Sn alloy
NASA Technical Reports Server (NTRS)
Rangaswamy, P.; Terutung, H.; Jeelani, S.
1991-01-01
An investigation into the effect of grinding conditions on the fatigue life of titanium 5Al-2.5Sn is presented. Damage to surface integrity and changes in the residual stresses distribution are studied to assess changes in fatigue life. A surface grinding machine, operating at speeds ranging from 2000 to 6000 fpm and using SiC wheels of grit sizes 60 and 120, was used to grind flat subsize specimens of 0.1-in. thickness. After grinding, the specimens were fatigued at a chosen stress and compared with the unadulterated material. A standard profilometer, a microhardness tester, and a scanning electron microscope were utilized to examine surface characteristics and measure roughness and hardness. Increased grinding speed in both wet and dry applications tended to decrease the fatigue life of the specimens. Fatigue life increased markedly at 2000 fpm under wet conditions, but then decreased at higher speeds. Grit size had no effect on the fatigue life.
NASA Astrophysics Data System (ADS)
Wu, Ray Chun Tung; Chung, C. Y.
2012-12-01
To determine the variation of A f along the axial length of rotary nickel-titanium endodontic files (RNEF). Three commercial brands of 4% taper RNEF: GTX (#20, 25 mm, Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), K3 (#25, 25 mm) and TF (Twisted File #25, 27 mm) (Sybron Kerr, Orange, CA, USA) were cut into segments at 4 mm increment from the working tip. Regional specimens were measured for differential heat-flow over thermal cycling, generally with continuous heating or cooling (5 °C/min) and 5 min hold at set temperatures (start, finish temperatures): GTX: -55, 90 °C; K3: -55, 45 °C; TF: -55, 60 °C; using differential scanning calorimeter. This experiment demonstrated regional differences in A f along the axial length of GTX and K3 files. Similar variation was not obvious in the TF samples. A contributory effect of regional difference in strain-hardening due to grinding and machining during manufacturing is proposed.
Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite
NASA Astrophysics Data System (ADS)
Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.
2012-12-01
Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.
Containerless high temperature property measurements
NASA Technical Reports Server (NTRS)
Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.
1991-01-01
Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.
Including Magnetostriction in Micromagnetic Models
NASA Astrophysics Data System (ADS)
Conbhuí, Pádraig Ó.; Williams, Wyn; Fabian, Karl; Nagy, Lesleis
2016-04-01
The magnetic anomalies that identify crustal spreading are predominantly recorded by basalts formed at the mid-ocean ridges, whose magnetic signals are dominated by iron-titanium-oxides (Fe3-xTixO4), so called "titanomagnetites", of which the Fe2.4Ti0.6O4 (TM60) phase is the most common. With sufficient quantities of titanium present, these minerals exhibit strong magnetostriction. To date, models of these grains in the pseudo-single domain (PSD) range have failed to accurately account for this effect. In particular, a popular analytic treatment provided by Kittel (1949) for describing the magnetostrictive energy as an effective increase of the anisotropy constant can produce unphysical strains for non-uniform magnetizations. I will present a rigorous approach based on work by Brown (1966) and by Kroner (1958) for including magnetostriction in micromagnetic codes which is suitable for modelling hysteresis loops and finding remanent states in the PSD regime. Preliminary results suggest the more rigorously defined micromagnetic models exhibit higher coercivities and extended single domain ranges when compared to more simplistic approaches.
Preparation of TiN films by reactive high-power pulsed sputtering Penning discharges
NASA Astrophysics Data System (ADS)
Kimura, Takashi; Yoshida, Ryo; Mishima, Toshihiko; Azuma, Kingo; Nakao, Setsuo
2018-06-01
Titanium nitride (TiN) films are prepared by reactive high-power pulsed sputtering Penning discharges at a total pressure of 0.7 Pa and an average power of 60 W, where the nitrogen fraction is varied up to 15%. The peak value of the instantaneous power ranges between 3 and 14 kW, and the peak power density ranges between 0.3 and 1.2 kW cm‑2. The hardness of TiN films is higher than 22 GPa at the nitrogen fractions lower than 10% and it reaches 31 GPa at a nitrogen fraction of 5%. The X-ray diffraction peak of TiN(111) texture is observed for all prepared films, showing the grain size of about 10 nm. In X-ray photoelectron spectroscopy, oxygen is mainly bonded to titanium, but the intensity of the TiN bond is dominant in the entire Ti 2p spectrum. The intensity ratio of N 1s to Ti 2p ranges between 0.85 and 0.95.
Method for preparing hydrous titanium oxide spherules and other gel forms thereof
Collins, J.L.
1998-10-13
The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.
Method for preparing hydrous titanium oxide spherules and other gel forms thereof
Collins, Jack L.
1998-01-01
The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics.
Superior Ballistic Impact Resistance Achieved by the Co-Base Alloy Haynes 25
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.
2003-01-01
The fan case in a jet engine is required to contain a fan blade in the rare event of a blade loss during operation. Because of its function, the fan case is the largest structural component in high-bypass-ratio turbofan engines used in commercial aircraft. Therefore, the use of lighter and stronger materials would be advantageous in most engines and is practically a necessity in the latest generation of high-bypass engines. Small panels, 7 in. wide by 7 in. long, of a number of metallic alloys were impact tested at room temperature with a 0.50-caliber blunt-nose titanium alloy projectile at the NASA Glenn Research Center (ref. 1). These metallic systems included several high-strength aluminum (Al) alloys, Al-based laminates, aluminum metal matrix composites (Al-MMCs), nickel-base superalloys (Inconel 718 and 625), several titanium (Ti) alloys in different heat treated conditions, 304L stainless steel, a stainless-steel-based laminate, and a high strength steel (Nitronic 60). It was determined that a simple Co-base alloy (Haynes 25) had the best impact resistance on an areal weight basis. Haynes 25 was at least 10 percent better than IMI 550, the best titanium alloy tested to date, and it was far superior to other metals, especially at higher impact velocities (greater than 1100 ft/sec). Because this material could be ideal for fan containment applications in supersonic aircraft as a replacement for titanium, impact tests were also conducted at 371 oC and compared with results from alloys tested at elevated temperature under previous programs (i.e., Inconel 718, Ti-6242, M-152, Timetal 21S, and Aeromet 100). Although cobalt-base alloys are used in some high-temperature engine applications, to our knowledge they are not used in any containment systems. Advantages of cobalt over titanium include lower cost, easier processing, better high-temperature strength, and no fire hazard if tip rub occurs. Future plans include testing of lightweight sandwich panels with Haynes 25 as a core material in the form of a foam or lattice block structure and scaling up the current tests by using blade-simulating projectiles impacting large plates and half rings.
Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne
2017-02-01
To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.
Quick Reaction Evaluation of Materials for Systems Applications.
1980-04-01
The six slack-quenched aluminum alloy plates used in this program were: (1) 2024 -T851; 2.75 inches (60 mm) thick, (2) 2024 - T351 ; 2.00 inches (51 mm...compact (CT) specimen machined from aluminum alloys 7075-T6 and 2024 - T351 , titanium 6A1-4V, and 4340 steel. Deviation between the two curves is small...1.6 Complete Fatigue Crack Growth Rate Curves for Aluminum Alloy 2124-T851 Including Crack Growth Modeling 44 1.7 Crack Length Determination for the
Investigation of novel material for effective photodegradation of bezafibrate in aqueous samples.
Regulska, Elżbieta; Karpińska, Joanna
2014-04-01
A novel composite with an enhanced photocatalytic activity was prepared and applied to study the removal of bezafibrate (BZF), a hypolypemic pharmaceutical, from an aqueous environment. For the enhancement of titanium dioxide photoactivity a fullerene derivative, 2-(ferrocenyl) fulleropyrrolidine (FcC60), was synthesized and applied. Obtained composite was found to show a higher catalytic activity than pristine TiO2. Therefore, high hopes are set in composites that are based on carbonaceous nanomaterials and TiO2 as a new efficient photocatalysts.
A Source Manual for Information on NITINOL and NiTi
1978-02-13
NSWC/WOL TR 78-26/ A SOURCE MANUAL FOR INFORMATION ON <z NITINOL AND NiTi BY DAVID GOLDSTEIN RESEARCH AND TECHNOLOGY DEPARTMENT 13 FEBRUARY 1978 C...Conthinua owevess, side it necessary and identity by bWeck ammmber) NITINOL Nickel-Titanium Alloys NiTi Shape Memory Effect Heat Engines W0. A WRACT...Conshnue an reverse Wde Ifftoeseat and Identify by Weoek nmmer) This manual is a current listing of most of the published literature on NITINOL and NiTi
1986-01-01
cooling, but in disagreement with Newtonian cooling [28.311, where ! <D-1S* Sch deiation cannot be accounted for, since sufficient information in not...industrialized applications. It has been shown that general scientific principles involved in rapid solidification technology are also applicable to Ti alloy...formed, in principle , by continuous feeding of the fresh alloy into the crucible. In qC a H C * (T -T r (2 this case, preferably the feed alloy shoulb P T
Bioavailability of Lead in Small Arms Range Soils
2007-09-01
minerals, and may also exist inside particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and...Abbreviations: Fe=iron, Pb=lead, Cu=copper, Ti=titanium, Zn= zinc , Sb=antimony, Rb=rubidium, Zr=zirconium, As=arsenic. Values are mean of three...20 30 40 50 60 70 80 FeOOH Cerussite Organic Phosphate PbMO PbAsO MnOOH Anglesite PbOOH PbCl4 Slag FeSO4 PbO Frequency of Occurrence Relative Pb
1983-03-01
120] hypothesized a linear summation model to predict the corrosion -fatigue behavior above Kjscc for a high-strength steel . The model considers the...120] could satisfactorily predict the rates of corrosion -fatigue-crack growth for 18-Ni Maraging steels tested in several gaseous and aqueous...NADC-83126-60 Vol. II 6. The corrosion fatigue behavior of titanium alloys is very complex. Therefore, a better understanding of corrosion fatigue
Rough titanium alloys regulate osteoblast production of angiogenic factors.
Olivares-Navarrete, Rene; Hyzy, Sharon L; Gittens, Rolando A; Schneider, Jennifer M; Haithcock, David A; Ullrich, Peter F; Slosar, Paul J; Schwartz, Zvi; Boyan, Barbara D
2013-11-01
Polyether-ether-ketone (PEEK) and titanium-aluminum-vanadium (titanium alloy) are used frequently in lumbar spine interbody fusion. Osteoblasts cultured on microstructured titanium generate an environment characterized by increased angiogenic factors and factors that inhibit osteoclast activity mediated by integrin α2β1 signaling. It is not known if this is also true of osteoblasts on titanium alloy or PEEK. The purpose of this study was to determine if osteoblasts generate an environment that supports angiogenesis and reduces osteoclastic activity when grown on smooth titanium alloy, rough titanium alloy, or PEEK. This in vitro study compared angiogenic factor production and integrin gene expression of human osteoblast-like MG63 cells cultured on PEEK or titanium-aluminum-vanadium (titanium alloy). MG63 cells were grown on PEEK, smooth titanium alloy, or rough titanium alloy. Osteogenic microenvironment was characterized by secretion of osteoprotegerin and transforming growth factor beta-1 (TGF-β1), which inhibit osteoclast activity and angiogenic factors including vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), and angiopoietin-1 (ANG-1). Expression of integrins, transmembrane extracellular matrix recognition proteins, was measured by real-time polymerase chain reaction. Culture on titanium alloy stimulated osteoprotegerin, TGF-β1, VEGF-A, FGF-2, and angiopoietin-1 production, and levels were greater on rough titanium alloy than on smooth titanium alloy. All factors measured were significantly lower on PEEK than on smooth or rough titanium alloy. Culture on titanium alloy stimulated expression of messenger RNA for integrins that recognize Type I collagen in comparison with PEEK. Rough titanium alloy stimulated cells to create an osteogenic-angiogenic microenvironment. The osteogenic-angiogenic responses to titanium alloy were greater than PEEK and greater on rough titanium alloy than on smooth titanium alloy. Surface features regulated expression of integrins important in collagen recognition. These factors may increase bone formation, enhance integration, and improve implant stability in interbody spinal fusions. Copyright © 2013 Elsevier Inc. All rights reserved.
Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E
2016-01-01
The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.
Curtin, Justin Paul; Wang, Minji
2017-08-01
Although the presence of titanium wear particles released into tissues is known to induce local inflammation following the therapeutic implantation of titanium devices into humans, the role that titanium ions play in adverse tissue responses has received little attention. Support that ongoing titanium ion release occurs is evidenced by the presence of ionic titanium bound to transferrin in blood, and ongoing excretion in the urine of patients with titanium devices. However, as reports documenting the presence of titanium within tissues do not distinguish between particulate and ionic forms due to technical challenges, the degree to which ionic titanium is released into tissues is unknown. To determine the potential for titanium ion release into tissues, this study evaluates available in vitro evidence relating to the release of ionic titanium under physiological conditions. This is a systematic literature review of studies reporting titanium ion release into solutions from titanium devices under conditions replicating the interstitial pH and constituents. Inclusion and exclusion criteria were defined. Of 452 articles identified, titanium ions were reported in nine media relevant to human biology in seventeen studies. Only one study, using human serum replicated both physiological pH and the concentration of constituents while reporting the presence of titanium ions. While there is insufficient information to explain the factors that contribute to the presence of titanium ions in serum of humans implanted with titanium devices, currently available information suggests that areas of future inquiry include the role of transferrin and organic acids.
Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium mining are minimal; however, the processes required to extract titanium from titanium feedstock can produce industrial waste.
Grafting strategy to develop single site titanium on an amorphous silica surface.
Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G
2009-06-16
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.
Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J
2009-01-01
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less
Research on tool wearing on milling of TC21 titanium alloy
NASA Astrophysics Data System (ADS)
Guilin, Liu
2017-06-01
Titanium alloys are used in aircraft widely, but the efficiency is a problem for machining titanium alloy. In this paper, the cutting experiment of TC21 titanium alloy was studied. Cutting parameters and test methods for TC21 titanium alloy were designed. The wear behavior of TC21 titanium alloy was studied based on analysis of orthogonal test results. It provides a group of cutting parameters for TC21 titanium alloy processing.
[Cr-Ti-Al-N complex coating on titanium to strengthen Ti/porcelain bonding].
Zhang, Hui; Guo, Tian-wen; Li, Jun-ming; Pan, Jing-guang; Dang, Yong-gang; Tong, Yu
2006-02-01
To study the feasibility of magnetron sputtering Cr-Ti-Al-N complex coating as an interlayer on titanium to enhance the titanium-ceramic binding strength. With a three-point bending test according to ISO 9693, the binding strength of Duceratin (Degussa) to titanium substrate prepared with 4 different surface treatments (polishing, polishing and megnetron sputtering Cr, Ti, Al, and N complex coating, sandblasting, sandblasting and coating) was evaluated. Ti/porcelain interface and fractured Ti surface were examined using scanning electron microscopy with energy-dispersive spectrometry (EDS). The binding strength of polished and coated titanium/Duceratin was significantly higher than polished titanium group (P<0.05). The binding strength of sandblasted and coated titanium/Duceratin did not differ significantly from that of sandblasted titanium group (P>0.05), and the strength in the two sandblasted titanium groups was significantly higher than that in polished and coated titanium group (P<0.05). Megnetron sputtering Cr-Ti-Al-N complex on polished titanium can increase the titanium/porcelain binding strength. Megnetron sputtering coating is a promising Ti/porcelain interlayer.
Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching
NASA Astrophysics Data System (ADS)
Zhao, Longsheng; Wang, Lina; Qi, Tao; Chen, Desheng; Zhao, Hongxin; Liu, Yahui; Wang, Weijing
2018-05-01
Acid-leaching behaviors of the titanium slag obtained by selective reduction of vanadium-bearing titanomagnetite concentrates were investigated. It was found that the optimal leaching of titanium and silicon were 0.7% and 1.5%, respectively. The titanium and silicon in the titanium slag were firstly dissolved in the acidic solution to form TiO2+ and silica sol, and then rapidly reprecipitated, forming hydrochloric acid (HCl) leach residue. Most of the silicon presented in the HCl leach residue as floccules-like silica gel, while most of the titanium was distributed in the nano-sized rod-like clusters with crystallite refinement and intracrystalline defects, and, as such, 94.3% of the silicon was leached from the HCl leach residue by alkaline desilication, and 96.5% of the titanium in the titanium-rich material with some rutile structure was then digested by the concentrated sulfuric acid. This provides an alternative route for the comprehensive utilization of titanium and silicon in titanium slag.
Experimental models for contamination of titanium surfaces and disinfection protocols.
Sousa, Vanessa; Mardas, Nikos; Spratt, David; Boniface, David; Dard, Michel; Donos, Nikolaos
2016-10-01
The aim of this pilot study was to describe an in vitro model of peri-implantitis microcosm for contamination of titanium surfaces and an in vivo model for evaluating different disinfection strategies of titanium surfaces. Biofilms were grown in vitro for 30 days on sandblasted large-grit acid-etched (SLA) Ti discs (n = 69) in a constant depth film fermentor (CDFF) associated with peri-implantitis conditions. Four Swedish loop rabbits were randomly allocated in three test groups (T 1 , T 2 , T 3 ) and one control group (C). In group C, two sterile SLA Ti discs were implanted/fixed in each tibia. In the test groups (to evaluate the potential of different surface disinfection techniques), one sterile and three previously disinfected SLA Ti discs were placed following different disinfection protocols: group T 1 : the discs were treated with a titanium brush - TiB; group T 2 : the discs were treated with the combination of TiB and photodynamic therapy; and group T 3 : the discs were treated with TiB and 1%NaOCl plus 0.2%CHX. Tensile strength test and qualitative histological analysis were performed on all 16 discs after 4 weeks of healing. Thirty days following CDFF emulating peri-implantitis microcosm, all SLA Ti discs had a mean total viable aerobes and facultative anaerobes count of 8.06 log 10 CFU/biofilm and anaerobes 8.32 log 10 CFU/biofilm. Before implantation/fixation on the tibia, differences of log 10 CFU/biofilm counts between control and test groups after post hoc adjustment were highly significant (P < 0.001). In the in vivo analysis, group C exhibited the highest tensile strength (67.60 N [25.64-127.02]) and the histological sections revealed the presence of dense mature bone in direct contact with the disc surface. The analysis at the test groups showed that T 2 presented with the highest tensile strength in comparison with the other two test groups. The in vitro model used in this study provides a valuable and reproducible tool for evaluating the in vitro dynamics of the peri-implantitis microcosm biofilm and for contaminating in a reproducible manner titanium surfaces. At the same time, the in vivo model used in this study provides a standardised mode of evaluating disinfection modalities of previously infected titanium surfaces. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Preparation of metal diboride powders
Brynestad, J.; Bamberger, C.E.
Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.
Cytotoxicity of titanium and titanium alloying elements.
Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C
2010-05-01
It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.
The hydrogen embrittlement of titanium-based alloys
NASA Astrophysics Data System (ADS)
Tal-Gutelmacher, Ervin; Eliezer, Dan
2005-09-01
Titanium-based alloys provide an excellent combination of a high strength/weight ratio and good corrosion behavior, which makes these alloys among the most important advanced materials for a variety of aerospace, marine, industrial, and commercial applications. Although titanium is considered to be reasonably resistant to chemical attack, severe problems can arise when titanium-based alloys come in contact with hydrogen-containing environments, where they can pick up large amounts of hydrogen, especially at elevated temperatures. The severity and the extent of the hydrogen interaction with titanium-based alloys are directly related to the microstructure and composition of the titanium alloys. This paper addresses the hydrogen embrittlement of titanium-based alloys. The hydrogen-titanium interaction is reviewed, including the solubility of hydrogen in α and β phases of titanium and hydride formation. Also, the paper summarizes the detrimental effects of hydrogen in different titanium alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca
In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples withmore » nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.« less
Cyclic fatigue resistance of four nickel-titanium rotary instruments: a comparative study.
Pedullà, Eugenio; Plotino, Gianluca; Grande, Nicola Maria; Pappalardo, Alfio; Rapisarda, Ernesto
2012-04-01
The aim of this study is to investigate cyclic fatigue resistance of four nickel - titanium rotary (NTR) instruments produced by a new method or traditional grinding processes. FOUR NTR INSTRUMENTS FROM DIFFERENT BRANDS WERE SELECTED: group 1. Twisted File produced by a new thermal treatment of nickel - titanium alloy; group 2. Revo S SU; group 3. Mtwo and group 4. BioRaCe BR3 produced by traditional grinding processes. A total of 80 instruments (20 for each group) were tested for cyclic fatigue resistance inside a curved artificial canal with a 60 degree angle of curvature and 5 mm radius of curvature. Time to fracture (TtF) from the start of the test until the moment of file breakage and the length of the fractured tip was recorded for each instrument. Means and standard deviations (SD) of TtF and fragment length were calculated. Data were subjected to one-way analysis of variance (ANOVA). Group 1 (Twisted File) showed the highest value of TtF means. Cyclic fatigue resistance of Twisted File and Mtwo was significantly higher than group 2 (Revo S SU) and 4 (BioRace BR3), while no significant differences were found between group 1 (Twisted File) and 3 (Mtwo) or group 2 (Revo S SU) and 4 (BioRaCe BR3). The cyclic fatigue resistance of Twisted File was significantly frigher than instruments produced with traditional grinding process except of Mtwo files.
NASA Astrophysics Data System (ADS)
Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.
2018-05-01
Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.
Titanium clip ball joint: a partial ossicular reconstruction prosthesis.
Beutner, Dirk; Luers, Jan Christoffer; Bornitz, Matthias; Zahnert, Thomas; Huttenbrink, Karl-Bernd
2011-06-01
To describe a new titanium clip prosthesis for partial ossicular reconstruction with a micro ball joint in the headplate for compensation of tympanic membrane displacements. Laboratory experiments followed by 18 consecutive patients. A micro ball joint was implemented into a headplate of titanium middle ear prosthesis. First, the new prosthesis was tested in the laboratory in temporal bone experiments. Second, the new prosthesis was clinically installed in 18 patients. Results of laser Doppler vibrometry and force measurements in the laboratory experiments, analysis of a questionnaire, and preoperative and postoperative pure tone audiometry. The frictional resistance in the joint was measured to be 12 mN that should allow for adequate mobility under physiologic conditions. The effective sound transmission of the prosthesis was demonstrated by laser Doppler vibrometry. Intraoperatively, the installation of the prosthesis was always straightforward with headplate prosthesis shaft angles between 60 and 90 degrees. Postoperatively, pure tone audiometry revealed satisfying hearing results with a remaining average air-bone gap of 18.2 dB over the frequencies 500, 1,000, 2,000, and 3,000 Hz. No signs of prosthesis dislocation were discovered within the follow-up period of approximately 6 months. The experimental data show that the new modified prosthesis headplate fulfills the requirements necessary for sound transmission. The joint allows the plate to follow movements of the tympanic membrane. This characteristic in conjunction with the proven clip design ensure for optimal prosthesis placement and effectiveness.
Siddiqi, A; Duncan, W J; De Silva, R K; Zafar, S
2016-01-01
Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) ( p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) ( p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions.
Cyclic fatigue resistance of four nickel-titanium rotary instruments: a comparative study
Pedullà, Eugenio; Plotino, Gianluca; Grande, Nicola Maria; Pappalardo, Alfio; Rapisarda, Ernesto
2012-01-01
Summary Aims The aim of this study is to investigate cyclic fatigue resistance of four nickel – titanium rotary (NTR) instruments produced by a new method or traditional grinding processes. Methods Four NTR instruments from different brands were selected: group 1. Twisted File produced by a new thermal treatment of nickel – titanium alloy; group 2. Revo S SU; group 3. Mtwo and group 4. BioRaCe BR3 produced by traditional grinding processes. A total of 80 instruments (20 for each group) were tested for cyclic fatigue resistance inside a curved artificial canal with a 60 degree angle of curvature and 5 mm radius of curvature. Time to fracture (TtF) from the start of the test until the moment of file breakage and the length of the fractured tip was recorded for each instrument. Means and standard deviations (SD) of TtF and fragment length were calculated. Data were subjected to one-way analysis of variance (ANOVA). Results Group 1 (Twisted File) showed the highest value of TtF means. Cyclic fatigue resistance of Twisted File and Mtwo was significantly higher than group 2 (Revo S SU) and 4 (BioRace BR3), while no significant differences were found between group 1 (Twisted File) and 3 (Mtwo) or group 2 (Revo S SU) and 4 (BioRaCe BR3). Conclusions The cyclic fatigue resistance of Twisted File was significantly frigher than instruments produced with traditional grinding process except of Mtwo files. PMID:23087787
De Silva, R. K.; Zafar, S.
2016-01-01
Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) (p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) (p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions. PMID:28058261
Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh
Rostampour, Masoumeh; Roayaei, Mahnaz
2014-01-01
Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a 16% decrease in dose. For both 6 and 10 MeV, before the titanium mesh, there was always an increase in dose. If titanium mesh is placed in buildup region, it causes an increase of the dose and could lead to overdose of the adjacent tissue, whereas if titanium mesh is placed beyond the buildup region, it would lead to a decrease in dose compared to the homogenous tissue. PACS number: 87.53.Bn PMID:25207397
Ortorp, Anders; Jemt, Torsten
2008-09-01
Comparative long-term knowledge of different framework materials in the partially edentulous implant patient is not available. To report and compare 10-year data on free-standing implant-supported partial prostheses with laser-welded titanium (test) and conventional gold alloy (control) frameworks. Altogether, 52 partially edentulous patients were consecutively provided with laser-welded prostheses (n = 60) in the partially edentulous lower jaw (test group). A control group of 52 randomly selected patients with gold alloy castings (n = 60) was used for comparison. Clinical and radiographic 10-year data were retrospectively collected and evaluated for both groups. The overall 10-year implant cumulative survival rate (CSR) was 93.0% (loaded implants, 96.4%), with a 10-year implant CSR of 91.5 and 94.7% for test and control implants, respectively (p > .05). Out of a total of 22 lost implants, 17 implants (77.3%) were shorter than 10 mm. The overall 10-year prosthesis CSR was 93.7%, with a corresponding 10-year CSR of 88.4 and 100% for test and control groups, respectively (p < .05). Average 10-year bone loss was 0.46 mm (SD 0.47) and 0.69 mm (SD 0.53) for the test and control groups (p < .001), respectively. Only 1% of the implants had >3 mm accumulated bone loss after 10 years. Altogether, 10 of the prostheses in both groups had implant component mechanical problems (8.3%). None of the frameworks or implants fractured, but more fractures of porcelain veneers were observed in the test group (p < .05). The protocol of implant treatment in the partially edentulous jaw functioned well during 10 years, although prosthodontic maintenance was required. However, laser-welded titanium frameworks presented more problems as compared with gold alloy frameworks. More loaded implants were lost (p < .05), and higher incidence of porcelain chipping was noted in the test group (p < .05). However, bone loss was on an average lower for the test group during the 10 years of follow-up (p < .001).
NASA Astrophysics Data System (ADS)
Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.
2015-02-01
The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.
UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium
Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro
2016-01-01
Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite deposition may be a novel method to effectively enhance micro-roughened titanium surfaces without altering their microscale morphology. PMID:26834469
Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng
2012-04-01
To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P < 0.05]. The surfaces of titanium cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.
[Effects of laser welding on bond of porcelain fused cast pure titanium].
Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi
2006-04-01
To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.
The crevice corrosion of cathodically modified titanium in chloride solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingen, E. van der
1995-12-01
The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less
Carradò, A; Perrin-Schmitt, F; Le, Q V; Giraudel, M; Fischer, C; Koenig, G; Jacomine, L; Behr, L; Chalom, A; Fiette, L; Morlet, A; Pourroy, G
2017-03-01
The aim of this study was to improve the strength and quality of the titanium-hydroxyapatite interface in order to prevent long-term failure of the implanted devices originating from coating delamination and to test it in an in-vivo model. Ti disks and dental commercial implants were etched in Kroll solution. Thermochemical treatments of the acid-etched titanium were combined with sol-gel hydroxyapatite (HA) coating processes to obtain a nanoporous hydroxyapatite/sodium titanate bilayer. The sodium titanate layer was created by incorporating sodium ions onto the Ti surface during a NaOH alkaline treatment and stabilized using a heat treatment. HA layer was added by dip-coating in a sol-gel solution. The bioactivity was assessed in vitro with murine MC3T3-E1 and human SaOs-2 cells. Functional and histopathological evaluations of the coated Ti implants were performed at 22, 34 and 60days of implantation in a dog lower mandible model. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants was sensitive neither to crack propagation nor to layer delamination. The in vitro results on murine MC3T3-E1 and human SaOs-2 cells confirm the advantage of this coating regarding the capacity of cell growth and differentiation. Signs of progressive bone incorporation, such as cancellous bone formed in contact with the implant over the existing compact bone, were notable as early as day 22. Overall, osteoconduction and osteointegration mean scores were higher for test implants compared to the controls at 22 and 34 days. Nanoporous hydroxyapatite/sodium titanate bilayer improves the in-vivo osteoconduction and osteointegration. It prevents the delamination during the screwing and it could increase HA-coated dental implant stability without adhesive failures. The combination of thermochemical treatments with dip coating is a low-cost strategy. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Development of High Throughput Process for Constructing 454 Titanium and Illumina Libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, Shweta; Hack, Christopher; Tang, Eric
2010-05-28
We have developed two processes with the Biomek FX robot to construct 454 titanium and Illumina libraries in order to meet the increasing library demands. All modifications in the library construction steps were made to enable the adaptation of the entire processes to work with the 96-well plate format. The key modifications include the shearing of DNA with Covaris E210 and the enzymatic reaction cleaning and fragment size selection with SPRI beads and magnetic plate holders. The construction of 96 Titanium libraries takes about 8 hours from sheared DNA to ssDNA recovery. The processing of 96 Illumina libraries takes lessmore » time than that of the Titanium library process. Although both processes still require manual transfer of plates from robot to other work stations such as thermocyclers, these robotic processes represent about 12- to 24-folds increase of library capacity comparing to the manual processes. To enable the sequencing of many libraries in parallel, we have also developed sets of molecular barcodes for both library types. The requirements for the 454 library barcodes include 10 bases, 40-60percent GC, no consecutive same base, and no less than 3 bases difference between barcodes. We have used 96 of the resulted 270 barcodes to construct libraries and pool to test the ability of accurately assigning reads to the right samples. When allowing 1 base error occurred in the 10 base barcodes, we could assign 99.6percent of the total reads and 100percent of them were uniquely assigned. As for the Illumina barcodes, the requirements include 4 bases, balanced GC, and at least 2 bases difference between barcodes. We have begun to assess the ability to assign reads after pooling different number of libraries. We will discuss the progress and the challenges of these scale-up processes.« less
Cyclic fatigue testing of nickel-titanium endodontic instruments.
Pruett, J P; Clement, D J; Carnes, D L
1997-02-01
Cyclic fatigue of nickel-titanium, engine-driven instruments was studied by determining the effect of canal curvature and operating speed on the breakage of Lightspeed instruments. A new method of canal curvature evaluation that addressed both angle and abruptness of curvature was introduced. Canal curvature was simulated by constructing six curved stainless-steel guide tubes with angles of curvature of 30, 45, or 60 degrees, and radii of curvature of 2 or 5 mm. Size #30 and #40 Light-speed instruments were placed through the guide tubes and the heads secured in the collet of a Mangtrol Dynamometer. A simulated operating load of 10 g-cm was applied. Instruments were able to rotate freely in the test apparatus at speeds of 750, 1300, or 2000 rpm until separation occurred. Cycles to failure were determined. Cycles to failure were not affected by rpm. Instruments did not separate at the head, but rather at the point of maximum flexure of the shaft, corresponding to the midpoint of curvature within the guide tube. The instruments with larger diameter shafts, #40, failed after significantly fewer cycles than did #30 instruments under identical test conditions. Multivariable analysis of variance indicated that cycles to failure significantly decreased as the radius of curvature decreased from 5 mm to 2 mm and as the angle of curvature increased greater than 30 degrees (p < 0.05, power = 0.9). Scanning electron microscopic evaluation revealed ductile fracture as the fatigue failure mode. These results indicate that, for nickel-titanium, engine-driven rotary instruments, the radius of curvature, angle of curvature, and instrument size are more important than operating speed for predicting separation. This study supports engineering concepts of cyclic fatigue failure and suggests that standardized fatigue tests of nickel-titanium rotary instruments should include dynamic operation in a flexed state. The results also suggest that the effect of the radius of curvature as an independent variable should be considered when evaluating studies of root canal instrumentation.
Temperature-modulated DSC provides new insight about nickel-titanium wire transformations.
Brantley, William A; Iijima, Masahiro; Grentzer, Thomas H
2003-10-01
Differential scanning calorimetry (DSC) is a well-known method for investigating phase transformations in nickel-titanium orthodontic wires; the microstructural phases and phase transformations in these wires have central importance for their clinical performance. The purpose of this study was to use the more recently developed technique of temperature-modulated DSC (TMDSC) to gain insight into transformations in 3 nickel-titanium orthodontic wires: Neo Sentalloy (GAC International, Islandia, NY), 35 degrees C Copper Ni-Ti (Ormco, Glendora, Calif) and Nitinol SE (3M Unitek, Monrovia, Calif). In the oral environment, the first 2 superelastic wires have shape memory, and the third wire has superelastic behavior but not shape memory. All wires had cross-section dimensions of 0.016 x 0.022 in. Archwires in the as-received condition and after bending 135 degrees were cut into 5 or 6 segments for test specimens. TMDSC analyses (Model 2910 DSC, TA Instruments, Wilmington, Del) were conducted between -125 degrees C and 100 degrees C, using a linear heating and cooling rate of 2 degrees C per min, an oscillation amplitude of 0.318 degrees C with a period of 60 seconds, and helium as the purge gas. For all 3 wire alloys, strong low-temperature martensitic transformations, resolved on the nonreversing heat-flow curves, were not present on the reversing heat-flow curves, and bending appeared to increase the enthalpy change for these peaks in some cases. For Neo Sentalloy, TMDSC showed that transformation between martensitic and austenitic nickel-titanium, suggested as occurring directly in the forward and reverse directions by conventional DSC, was instead a 2-step process involving the R-phase. Two-step transformations in the forward and reverse directions were also found for 35 degrees C Copper Ni-Ti and Nitinol SE. The TMDSC results show that structural transformations in these wires are complex. Some possible clinical implications of these observations are discussed.
Novel antioxidant capability of titanium induced by UV light treatment.
Ueno, Takeshi; Ikeda, Takayuki; Tsukimura, Naoki; Ishijima, Manabu; Minamikawa, Hajime; Sugita, Yoshihiko; Yamada, Masahiro; Wakabayashi, Noriyuki; Ogawa, Takahiro
2016-11-01
The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.
Nemati, Sima Hashemi; Hadjizadeh, Afra
2017-08-01
Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, B; Sajo, E; Ouyang, Z
2016-06-15
Purpose: A recent publication has shown that by delivering titanium dioxide nanoparticles (titania) as a photosensitizer into tumors, Cerenkov radiation (CR) produced by radionuclides could be used for substantially boosting damage to cancer cells. The present work compares CR production by various clinically relevant radiation sources including internal radionuclides and external beam radiotherapy (EBRT), and provides preliminarily computational results of CR absorption by titania. Methods: 1) Geant4.10.1 was used to simulate ionizing radiation-induced CR production in a 1cm diameter spherical volume using external radiotherapy sources: Varian Clinac IX 6MV and Eldorado {sup 60}Co, both with 10*10 cm{sup 2} field size.more » In each case the volume was placed at the maximum dose depth (1.5cm for 6MV source and 0.5cm for {sup 60}Co). In addition, {sup 18}F, {sup 192}Ir and {sup 60}Co were simulated using Geant4 radioactive decay models as internal sources. Dose deposition and CR production spectra in 200nm-400nm range were calculated as it is the excitation range of titania. 2) Using 6MV external source, the absorption by titania was calculated via the track length of CR in the spherical volume. The nanoparticle concentration was varied from 0.25 to 5µg/g. Results: Among different radioactive sources, results showed that {sup 18}F induced the highest amount of CR per disintegration, but {sup 60}Co had the highest yield per unit dose. When compared with external sources, 6MV source was shown to be the most efficient for the the same delivered dose. Simulations indicated increased absorption for increasing concentrations, with up to 68% absorption of generated CR for 5µg/g titania concentration. Conclusion: The results demonstrate that 6MV beam is favored with a higher CR yield, compared to radionuclides, and that the use of higher concentrations of titania may increase photosensitization. From the findings, we propose that if sufficiently potent concentrations of titania are delivered to tumors this could substantially boost EBRT.« less
Recent advances in lightweight, filament-wound composite pressure vessel technology
NASA Technical Reports Server (NTRS)
Lark, R. F.
1977-01-01
A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.
1994-02-15
Solutions [49] A-Etch 25 (mL) Hydrofluoric Acid (HF 50%) 25 Nitric Acid Cone (HN03) 50 Glycerine R-Etch 18.5 gm (17 mL) Benzalkonium Chloride 35 (mL... Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 1994 3. REPORT TYPE AND DATES COVERED Final 4...K and a 60% reduction in area was given for all of the alloys. This work was found to be sufficient to recrystallize all of the alloys within 12
Walsh, William Robert; Pelletier, Matthew H; Christou, Chris; He, Jiawei; Vizesi, Frank; Boden, Scott D
2018-02-26
Increasing bone ongrowth and ingrowth of polyether ether ketone (PEEK) interbody fusion devices has the potential to improve clinical outcomes. This study evaluated the in vivo response of promoting new bone growth and bone apposition with NanoMetalene (NM) compared with PEEK alone in a cancellous implantation site with an empty aperture. This is a randomized control animal study. Implants and funding for this study were provided by SeaSpine (60,000 USD). Cylindrical dowels with two apertures were prepared as PEEK with a sub-micron layer of the titanium (NM). The titanium coating was applied over the entire implant (Group 1) or just the apertures (Group 2). Polyether ether ketone implants with no coating served as controls (Group 3). Implants were placed in the cancellous bone of the distal femur or proximal tibia with no graft material placed in the apertures in eight adult sheep. Bone ongrowth to the surface of the implant and ingrowth into the apertures was assessed at 4 and 8 weeks after surgery with micro-computed tomography (CT) and undecalcified histology. The apertures in the implants were notably empty in the PEEK group at 4 and 8 weeks. In contrast, new bone formation into the apertures was found in samples coated with NM even though no graft material was placed into the defect. The bone growing into the aperture tracked along the titanium layer. Apertures with the titanium coating demonstrated significantly more bone by micro-CT qualitative grading compared with PEEK with average bone coverage scores of Group 1 (NM) 1.62±0.89, Group 2 (NM apertures only) 1.62±0.77, and Group 3 (PEEK) 0.43±0.51, respectively, at 4 weeks (p<.01) and Group 1 (NM) 1.79±1.19, Group 2 (NM apertures only) 1.98±1.18, and Group 3 (PEEK) 0.69±0.87, respectively, at 8 weeks (p<.05). The amount of bone in the apertures (ingrowth) quantified using the volumetric data from the micro-CT supported an overall increase in bone volume inside the apertures with the titanium coating compared with PEEK. Histology showed newly formed woven bone tracked along the surface of the titanium in the apertures. The PEEK interface presented the typical nonreactive fibrous tissue inside the apertures at 4 weeks and some focal contact with bone on the outside at 4 weeks and 8 weeks. Micro-CT and histology demonstrated bone ongrowth to the surfaces coated with NM where the newly formed bone tracked along the thin titanium-coated surfaces. Polyether ether ketone surfaces presented the nonreactive fibrous tissue at the interface as previously reported in preclinical scenarios. Copyright © 2018. Published by Elsevier Inc.
Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.
Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto
2015-12-01
Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.
SURFACE HARDENING OF TITANIUM BY TREATMENT IN MOLTEN BORAX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minkevich, A.N.; Shul'ga, Yu.N.
1957-01-01
The surface hardening of titanium and titanium alloys by treatment in molten borax was investigated. Commercial titanium, a titanium-tungsten alloy, and an aluminum-chromium-titanium alloy were used for the experiments. To prevent oxidation of the titanium and to protect the surface, electro-chemical protection was applied, the current density being 0.1 amp/cm/sup 2/ and the the specimens were coated with a thin layer of borax. The results showed that treatment in molten borax is an effective method of increasing surface hardness. However, the strength, mmalleabiltiy, and toughness of the hardness increase is discussed. (J.S.R.)
Surface modification of titanium and titanium alloys by ion implantation.
Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han
2010-05-01
Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.
Method for Surface Texturing Titanium Products
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1998-01-01
The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.
Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.
Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco
2017-01-26
Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.
NASA Astrophysics Data System (ADS)
Liu, Zhiyong; Wang, Ning; Fu, Yan
2016-12-01
The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO3/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO2 as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Tidbnd O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.
Sakamoto, Harumi; Hirohashi, Yohei; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao
2008-01-01
The objective of this study was to investigate the effect of UV irradiation on shear bond strength between a titanium (Ti) and a segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). To this end, the shear bond strength of Ti/SPU interface of Ti-SPU composite under varying conditions of ultraviolet ray (UV) irradiation was evaluated by a shear bond test. The glass transition temperatures of SPU with and without UV irradiation were also determined using differential scanning calorimetry. It was found that the shear bond strength of Ti/SPU interface increased with UV irradiation. However, excessive UV irradiation decreased the shear bond strength of Ti/SPU interface. Glass transition temperature was found to increase during 40-60 seconds of UV irradiation. In terms of durability after immersion in water at 37 degrees C for 30 days, shear bond strength was found to improve with UV irradiation. In conclusion, UV irradiation to a Ti-SPU composite was clearly one of the means to improve the shear bond strength of Ti/SPU interface.
How, Gregory Thien Soon; Pandikumar, Alagarsamy; Ming, Huang Nay; Ngee, Lim Hong
2014-05-23
Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2-60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications.
NASA Astrophysics Data System (ADS)
How, Gregory Thien Soon; Pandikumar, Alagarsamy; Ming, Huang Nay; Ngee, Lim Hong
2014-05-01
Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2-60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications.
How, Gregory Thien Soon; Pandikumar, Alagarsamy; Ming, Huang Nay; Ngee, Lim Hong
2014-01-01
Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2–60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications. PMID:24853929
Iacob, Mihail; Bele, Adrian; Patras, Xenia; Pasca, Sorin; Butnaru, Maria; Alexandru, Mihaela; Ovezea, Dragos; Cazacu, Maria
2014-10-01
Some films based on electromechanically active polymer composites have been prepared. Polydimethylsiloxane-α,ω-diols (PDMSs) having different molecular masses (Mv=60 700 and Mv=44 200) were used as matrix in which two different active fillers were incorporated: titanium dioxide in situ generated from its titanium isopropoxide precursor and silica particles functionalized with polar aminopropyl groups on surface. A reference sample based on simple crosslinked PDMS was also prepared. The composites processed as films were investigated to evaluate their ability to act as efficient electromechanical actuators for potential biomedical application. Thus, the surface morphology of interest for electrodes compliance was analysed by atomic force microscopy. Mechanical and dielectric characteristics were evaluated by tensile tests and dielectric spectroscopy, respectively. Electromechanical actuation responses were measured by interferometry. The biocompatibility of the obtained materials has been verified through tests in vitro and, for valuable films, in vivo. The experimental, clinical and anatomopathological evaluation of the in vivo tested samples did not reveal significant pathological modifications. Copyright © 2014 Elsevier B.V. All rights reserved.
A rapid tool for determination of titanium dioxide content in white chickpea samples.
Sezer, Banu; Bilge, Gonca; Berkkan, Aysel; Tamer, Ugur; Hakki Boyaci, Ismail
2018-02-01
Titanium dioxide (TiO 2 ) is a widely used additive in foods. However, in the scientific community there is an ongoing debate on health concerns about TiO 2 . The main goal of this study is to determine TiO 2 content by using laser induced breakdown spectroscopy (LIBS). To this end, different amounts of TiO 2 was added to white chickpeas and analyzed by using LIBS. Calibration curve was obtained by following Ti emissions at 390.11nm for univariate calibration, and partial least square (PLS) calibration curve was obtained by evaluating the whole spectra. The results showed that Ti calibration curve at 390.11nm provides successful determination of Ti level with 0.985 of R 2 and 33.9ppm of limit of detection (LOD) value, while PLS has 0.989 of R 2 and 60.9ppm of LOD. Furthermore, commercial white chickpea samples were used to validate the method, and validation R 2 for simple calibration and PLS were calculated as 0.989 and 0.951, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hammond, J.P.; David, S.A.; Woodhouse, J.J.
1984-12-04
This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750/sup 0/C, and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750/sup 0/C to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal expansion compatible with the coefficient of thermal expansion of the ceramic, such as titanium.
Hammond, Joseph P.; David, Stan A.; Woodhouse, John J.
1986-01-01
This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750.degree. C., and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750.degree. C. to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal compatible with the coefficient of thermal expansion of the ceramic, such as titanium.
NASA Astrophysics Data System (ADS)
Wang, Haitao; Zhang, Shouquan; Zhu, Jinglei; Huang, Jihua; Liu, Huiyuan; Zhang, Hua
2009-03-01
A Ni-Ti-C composite powder for Reactive Thermal Spraying is made by heating a mixture of titanium, nickel, and sucrose to carbonize the sucrose, which is used as the source of carbon. The carbon obtained by pyrolysis of sucrose is a reactive constituent as well as the binder in the composite powder. The titanium and nickel particles are bound by the carbon to form granules of the composite powder. This powder feedstock was used to prepare in situ TiC-reinforced Ni-based composite coating by oxyacetylene flame spraying. The TiC-Ni composite coating is made of TiC, Ni, and some Ni3Ti. In the coating, a mass of fine TiC particles is uniformly distributed within the metallic matrix. The microhardness and surface hardness of the coating are, respectively, 1433 HV0.2kg and 62 ± 6 (HR30N). The wear resistance is much better for the TiC-Ni composite coating than for the substrate and Ni60 coating.
Rapid prototyped porous nickel–titanium scaffolds as bone substitutes
Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David
2014-01-01
While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165
Okamoto, Eiji; Kikuchi, Sakiko; Mitamura, Yoshinori
2016-09-01
We have developed a tissue-inducing electrode using titanium mesh to obtain mechanically and electrically stable contact with the tissue for a new transcutaneous communication system using the human body as a conductive medium. In this study, we investigated the electrical properties of the titanium mesh electrode by measuring electrode-tissue interface resistance in vivo. The titanium mesh electrode (Hi-Lex Co., Zellez, Hyogo, Japan) consisted of titanium fibers (diameter of 50 μm), and it has an average pore size of 200 μm and 87 % porosity. The titanium mesh electrode has a diameter of 5 mm and thickness of 1.5 mm. Three titanium mesh electrodes were implanted separately into the dorsal region of the rat. We measured the electrode-electrode impedance using an LCR meter for 12 weeks, and we calculated the tissue resistivity and electrode-tissue interface resistance. The electrode-tissue interface resistance of the titanium mesh electrode decreased slightly until the third POD and then continuously increased to 75 Ω. The electrode-tissue interface resistance of the titanium mesh electrode is stable and it has lower electrode-tissue interface resistance than that of a titanium disk electrode. The extracted titanium mesh electrode after 12 weeks implantation was fixed in 10 % buffered formalin solution and stained with hematoxylin-eosin. Light microscopic observation showed that the titanium mesh electrode was filled with connective tissue, inflammatory cells and fibroblasts with some capillaries in the pores of the titanium mesh. The results indicate that the titanium mesh electrode is a promising electrode for the new transcutaneous communication system.
Titanium Brazing for Structures and Survivability
2007-05-01
materials, such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of...such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of processing...Suzumura, and Onzawa, reported the joining of Ti- 6Al - 4V and CP titanium alloys with zirconium-rich braze alloys.5 They found that these alloys could
Laminate armor and related methods
Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M
2013-02-26
Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.
Titanium: Industrial Base, Price Trends, and Technology Initiatives
2009-01-01
respectively.3 All titanium metal production begins with rutile (titanium oxide, or TiO2). High-titania slag , produced by ilmen- ite smelting, is the first...Ilmenite ores are used in iron production. They leave a TiO2-rich slag , which is usually upgraded to be used in titanium production. 4 According to the...and least expensive process for producing titanium sponge, has four major steps. First, rutile con- centrate or synthetic rutile (titanium slag ) is
The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.
Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C
2013-04-01
A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.
2012-11-15
In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, Stephen J.; White, Jack C.
1999-01-01
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, Stephen J.; White, Jack C.
1998-01-01
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, S.J.; White, J.C.
1998-08-04
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.
Ball bearings comprising nickel-titanium and methods of manufacture thereof
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)
2012-01-01
Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.
Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, T. R.; Mayer, R.
2012-05-04
Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supplymore » of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.« less
Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer.
Luo, Yong; Ge, Shirong; Liu, Hongtao; Jin, Zhongmin
2009-12-11
Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.
Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y
2001-02-01
The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.
2005-03-01
size of the interphase [22-24]. Yang and Jeng [45], in a study of the titanium aluminides Ti-24-11 and Ti-25-10, and a metastable beta titanium Ti-15-3... Titanium Aluminide Matrix Composites," Workshop proceedings on Titanium Matrix Components, P.R. Smith and W.C. Revelos, eds., Wright-Patterson AFB...Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures Final Report
Titanium disilicide formation by sputtering of titanium on heated silicon substrate
NASA Astrophysics Data System (ADS)
Tanielian, M.; Blackstone, S.
1984-09-01
We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated
Utilization of gas-atomized titanium and titanium-aluminide powder
NASA Astrophysics Data System (ADS)
Moll, John H.
2000-05-01
A gas-atomization process has been developed producing clean, high-quality, prealloyed spherical titanium and titanium-aluminide powder. The powder is being used to manufacture hot-isostatically pressed consolidated shapes for aerospace and nonaerospace allocations. These include gamma titanium-aluminide sheet and orthorhombic titanium-aluminide wire as well as niche markets, such as x-ray drift standards and sputtering targets. The powder is also being used in specialized processes, including metal-matrix composites, laser forming, and metal-injection molding.
Investigation on the Oxidation and Reduction of Titanium in Molten Salt with the Soluble TiC Anode
NASA Astrophysics Data System (ADS)
Wang, Shulan; Wan, Chaopin; Liu, Xuan; Li, Li
2015-12-01
To reveal the oxidation process of titanium from TiC anode and the reduction mechanism of titanium ions in molten NaCl-KCl, the polarization curve of TiC anode in molten NaCl-KCl and cyclic voltammograms of the molten salt after polarization were studied. Investigation on the polarization curve shows that titanium can be oxidized and dissociated from the TiC anode at very low potential. The cyclic voltammograms demonstrated that the reduction reaction of titanium ions in the molten salt is a one-step process. By potentiostatic electrolysis, dendritic titanium is obtained on the steel plate. The work promotes the understanding on the process of electrochemical oxidization/dissociation of titanium from TiC anode and the reduction mechanism of titanium ions in molten salt.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2015-08-01
Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.
Aydın, Elanur; Türkez, Hasan; Hacımüftüoğlu, Fazıl; Tatar, Abdulgani; Geyikoğlu, Fatime
2017-07-01
Titanium nanoparticles (NPs) have very wide application areas such as paint, cosmetics, pharmaceuticals, and biomedical applications. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly titanium (as titanium carbide, titanium carbo-nitride, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, titanium silicon oxide) NPs in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these NPs. HPAEpiC and HPPC cells were treated with titanium (0-100 µg/mL), NPs for 24 and 48 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT), uptake of neutral red (NR) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT, NR and LDH assays, all tested NPs induced cytotoxicity on both HPAEpiC and HPPC cells in a time- and dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, titanium NPs showed more changes in genes related to DNA damage or repair, oxidative stress, and apoptosis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2056-2064, 2017. © 2017 Wiley Periodicals, Inc.
In-vitro assessment of oxidative stress generated by orthodontic archwires.
Spalj, Stjepan; Mlacovic Zrinski, Magda; Tudor Spalj, Vedrana; Ivankovic Buljan, Zorana
2012-05-01
Several metals undergo redox cycling, producing free radicals and generating oxidative stress. The purpose of this study was to investigate in-vitro oxidative stress of orthodontic archwires made of various alloys. Mouse fibroblast cells L929 were exposed to 6 types of archwires, and the concentration of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine in DNA was evaluated. Trypan blue dye was used in the determination of cell viability and numbers. Standard nickel-titanium archwires generated the highest oxidative stress, significantly higher than all other wires and the controls (P <0.05), and coated nickel-titanium, copper-nickel-titanium, and cobalt-chromium were lower than nickel-titanium (P <0.05), but higher than titanium-molybdenum and the negative and absolute controls (P <0.05). Titanium-molybdenum and stainless steel generated the lowest stress. Nickel-titanium induced the lowest viability, lower than the negative and absolute controls and all other wires (P <0.05) except titanium-molybdenum. Stainless steel showed the highest viability. Nickel-titanium produced the highest inhibition of cell growth, higher than all samples (P <0.05) except the positive control and cobalt-chromium. The lowest inhibition was observed in stainless steel and titanium-molybdenum, lower than nickel-titanium, cobalt-chromium, and the positive control (P <0.05). All orthodontic archwires generate oxidative stress in vitro. Stainless steel archwires have the highest and nickel-titanium the lowest biocompatibility. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Brow, Richard K.; Watkins, Randall D.
1995-07-04
Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.
Brow, Richard K.; Watkins, Randall D.
1995-01-01
Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.
Adhesive-Bonded Tab Attaches Thermocouples to Titanium
NASA Technical Reports Server (NTRS)
Cook, C. F.
1982-01-01
Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.
Allergic contact dermatitis caused by titanium screws and dental implants.
Hosoki, Maki; Nishigawa, Keisuke; Miyamoto, Youji; Ohe, Go; Matsuka, Yoshizo
2016-07-01
Titanium has been considered to be a non-allergenic material. However, several studies have reported cases of metal allergy caused by titanium-containing materials. We describe a 69-year-old male for whom significant pathologic findings around dental implants had never been observed. He exhibited allergic symptoms (eczema) after orthopedic surgery. The titanium screws used in the orthopedic surgery that he underwent were removed 1 year later, but the eczema remained. After removal of dental implants, the eczema disappeared completely. Titanium is used not only for medical applications such as plastic surgery and/or dental implants, but also for paints, white pigments, photocatalysts, and various types of everyday goods. Most of the usage of titanium is in the form of titanium dioxide. This rapid expansion of titanium-containing products has increased percutaneous and permucosal exposure of titanium to the population. In general, allergic risk of titanium material is smaller than that of other metal materials. However, we suggest that pre-implant patients should be asked about a history of hypersensitivity reactions to metals, and patch testing should be recommended to patients who have experienced such reactions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing
NASA Astrophysics Data System (ADS)
MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.
2017-04-01
Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.
Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki
2011-01-01
The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862
Mo, A; Wang, J; Liao, Y; Cen, Y; Shi, X
2001-12-01
Sufficient porcelain-titanium bond is a vital factor determining the clinical performance of titanium-porcelain restorations. The purpose of this study was to investigate the effects of self-preparation La-porcelain composition on the porcelain-titanium bonding strength and to compare with the Vita Titankeramik. The present study examines 5 different recipes of porcelain by weight%: SiO2, 12%-17%; LaO2, 7%-10%; Al2O3, 9%-14%; B2O3, 23%-31%; CaO, 6%-8%; K2O, 2%-3%; SrO, 2%-4%; Na2O, 1%-3%; SnO2, 8%-10%; ZrO2, 3%-5%; TiO2, 6%-8%. Specimens were tested in push type shear with a universal testing machine. Scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) were employed to reveal the microstructures and diffusion of elements in the interfacial regions between the porcelain coating and titanium to the bond strength when fired at 800 degrees C. The ratios of crystallized compositions had significant influences on the porcelain-titanium bond strength (P < 0.05). La-porcelain had the highest shear bond strength (37.76 MPa). The shear bond strength of the Vita Titankeramik to titanium was 20.18 MPa. The results of SEM revealed integrity of porcelain-titanium joints in La-porcelain and a greater amount of porosity in the interface of Vita Titankeramik to titanium. EPMA analysis demonstrated the aggregation of Si and Sn in the interfacial regions and their diffusion into the titanium. Chemical compositions of porcelain and ratios of crystallized compositions play the important role in the titanium porcelain bond. La-porcelain had the highest shear bond strength and good porcelain-titanium joints. La-porcelain is a new-style low fusing porcelain/titanium system.
Deep drawability of Ti/resin/Ti laminated sheet
NASA Astrophysics Data System (ADS)
Hardada, Yasunroi; Hattori, Shuji
2017-10-01
Aiming to enhance functionality of titanium cup, the formability of titanium/resin/titanium laminated sheet by deep drawing was investigated. Although pure titanium has excellent corrosion resistance, the density of titanium is higher than that of light metals, such as aluminum and magnesium. Part of the titanium cup made of resin allows for weight reduction of the cup. Furthermore, the clad cup is more likely to have heat retention and protection against vibration characteristics. In the experiment, the materials were pure titanium and polycarbonate. The initial thickness of the sheet was 0.2 to 0.5 mm in thickness. A total plate thickness of the blank was 1.0 to 1.5 mm in thickness. The blank diameter is 70 mm. The laminated sheet was constituted by interposing resin between two titanium sheets. Each sheet in stacked condition was not joined each other. In the deep drawing process, the laminated sheet was employed and a flat sheet blank was formed into a circle by a punch. For the prevention of seizure in contact area between a drawing tool and titanium, titanium blank was treated by oxide coating. By this method, the fresh and clean titanium is not in direct contact with the die during the forming due to the existence of the oxide layer. The deep drawing was carried out to investigate the formability. The laminated sheet was successfully drawn without the cracks. The section of the drawn cup was observed to examine a formability of the resin sheet. The reduction rate of the thickness was less than 10%. It was found that the titanium/resin/titanium clad cup was successfully drawn.
Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra
2013-05-01
The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM brackets, more precise manufacturing technique should be improved to get a more smoother surface finish.
Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster
NASA Technical Reports Server (NTRS)
Soulas, George C.
2001-01-01
The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.
Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit
2015-05-01
The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.
Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, A.M.; Merritt, K.; Brown, S.A.
1994-02-01
The use of titanium and titanium-6% aluminum-4% vanadium alloy for dental and orthopedic implants has increased in the last decade. The implants are presumed to be compatible because oseointegration, bony apposition, and cell attachment are known. However, the cellular association of titanium and vanadium have remained unknown. This study examined the uptake of salts or fretting corrosion products. Titanium was not observed to be toxic to the cells. Vanadium was toxic at levels greater than 10[mu]g/mL. The percentage of cellular association of titanium was shown to be about 10 times that of vanadium. The percentage of cellular association of eithermore » element was greater from fretting corrosion than from the addition of salts. The presence of vanadium did not affect the cellular uptake of titanium. The presence of titanium decreased the cell association of vanadium.« less
NASA Astrophysics Data System (ADS)
Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.
2013-05-01
An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.
Cheng, Yicheng; Wu, Jiang; Gao, Bo; Zhao, Xianghui; Yao, Junyan; Mei, Shenglin; Zhang, Liang; Ren, Huifang
2012-01-01
Background Dental implants have become increasingly common for the management of missing teeth. However, peri-implant infection remains a problem, is usually difficult to treat, and may lead eventually to dental implant failure. The aim of this study was to fabricate a novel antibacterial coating containing a halogenated furanone compound, ie, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone (BBF)-loaded poly(L-lactic acid) (PLLA) nanoparticles on microarc-oxidized titanium and to evaluate its release behavior in vitro. Methods BBF-loaded PLLA nanoparticles were prepared using the emulsion solvent-evaporation method, and the antibacterial coating was fabricated by cross-linking BBF-loaded PLLA nanoparticles with gelatin on microarc-oxidized titanium. Results The BBF-loaded PLLA nanoparticles had a small particle size (408 ± 14 nm), a low polydispersity index (0.140 ± 0.008), a high encapsulation efficiency (72.44% ± 1.27%), and a fine spherical shape with a smooth surface. The morphology of the fabricated antibacterial coating showed that the BBF-loaded PLLA nanoparticles were well distributed in the pores of the microarc oxidation coating, and were cross-linked with each other and the wall pores by gelatin. The release study indicated that the antibacterial coating could achieve sustained release of BBF for 60 days, with a slight initial burst release during the first 4 hours. Conclusion The novel antibacterial coating fabricated in this study is a potentially promising method for prevention of early peri-implant infection. PMID:23152682
Bacterial adherence to anodized titanium alloy
NASA Astrophysics Data System (ADS)
Pérez-Jorge Peremarch, C.; Pérez Tanoira, R.; Arenas, M. A.; Matykina, E.; Conde, A.; De Damborenea, J. J.; Gómez Barrena, E.; Esteban, J.
2010-11-01
The aim of this study was to evaluate Staphylococcus sp adhesion to modified surfaces of anodized titanium alloy (Ti-6Al-4V). Surface modification involved generation of fluoride-containing titanium oxide nanotube films. Specimens of Ti-6Al-4V alloy 6-4 ELI-grade 23- meets the requirements of ASTM F136 2002A (AMS 2631B class A1) were anodized in a mixture of sulphuric/hydrofluoric acid at 20 V for 5 and 60 min to form a 100 nm-thick porous film of 20 nm pore diameter and 230 nm-thick nanotube films of 100 nm in diameter. The amount of fluorine in the oxide films was of 6% and of 4%, respectively. Collection strains and six clinical strains each of Staphylococcus aureus and Staphylococcus epidermidis were studied. The adherence study was performed using a previously published protocol by Kinnari et al. The experiments were performed in triplicates. As a result, lower adherence was detected for collection strains in modified materials than in unmodified controls. Differences between clinical strains were detected for both species (p<0.0001, Kruskal-Wallis test), although global data showed similar results to that of collection strains (p<0.0001, Kruskal-Wallis test). Adherence of bacteria to modified surfaces was decreased for both species. The results also reflect a difference in the adherence between S. aureus and S. epidermidis to the modified material. As a conclusion, not only we were able to confirm the decrease of adherence in the modified surface, but also the need to test multiple clinical strains to obtain more realistic microbiological results due to intraspecies differences.
Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire
NASA Astrophysics Data System (ADS)
Ng, Ching Wei; Mahmud, Abdus Samad
2017-12-01
Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.
Microstructural Evolution in Friction Stir Welding of Ti-5111
2010-08-01
titanium and titanium aluminide alloys—an overview.” Materials Science and Engineering A243 (1998) 1-24 [Semiatin 1999] S.L. Semiatin, V...ABSTRACT Titanium and titanium alloys have shown excellent mechanical, physical, and corrosion properties. To address the needs of future naval...Texture; Phase Transformation Ti-5111 Titanium 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 174 19a
Process for reproducibly preparing titanium subhydride
Carlson, Richard S.
1982-01-01
Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium-hydrogen composition.
NASA Astrophysics Data System (ADS)
Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.
2017-01-01
Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.
[The bonding characteristic of titanium and RG experiment porcelain].
Ren, Wei-hong; Guo, Tian-wen; Tian, Jie-mo; Zhang, Yun-long
2003-07-01
To study the bonding characteristic of Titanium and RG experiment porcelain. 5 specimens with a size of 10 mm x 5 mm x 1.4 mm were cast from pure titanium. Then 1 mm of RG experiment opaque and body porcelain were fused on the surface of the titanium specimens. The interface of titanium and porcelain was analyzed with a scanning electron microscope with energy-despersive spectrometry; 6 metal specimens with the size of 25 mm x 3 mm x 0.5 mm were cast from Ni-Cr alloy and a uniform thickness of 1 mm of VMK 99 porcelain was veneered on the central area of 8 mm x 3 mm 18 metal specimens as the same size were cast from pure titanium. The uniform thickness of 1 mm of VITA TITANKERAMIK porcelain, of Noritake super porcelain Ti-22 and of RG experiment porcelain were veneered on every 6 specimens respectively in the central area of 8 mm x 3 mm. The specimens were subjected to a three-point bending test on a load-test machine with a span of 20 mm, then the failure loads were recorded and statistically analysised. The RG porcelain/titanium crown was fabricated by fusing RG opaque porcelain and body porcelain to cast titanium substrate crown. The SEM results show no porosity and crackle were found in the interface. The energy-dispersive spectrometry show that there are Si, Ti and O in the 1 micro m layer between porcelain and titanium, which suggesting titanium and experiment porcelain bonding well. The three point test showed the fracture force for the combinations of titanium/VITA TITANKERAMIK porcelain, titanium/Noritake super porcelain Ti-22 and titanium/RG experiment porcelain were (7.233 +/- 2.539) N, (5.533 +/- 1.199) N and (6.316 +/- 1.433) N respectively. There were not statistically significant differences among them (t test, P < 0.01). The fracture force for the Ni-Cr alloy/VMK99 porcelain combination (12.733 +/- 3.297) N was significantly greater than those of the cast titanium/porcelain (t test, P > 0.05). The crown was translucent with no crack. RG porcelain is well compatible with titanium.
Baskaran, Suresh; Graff, Gordon L.; Song, Lin
1998-01-01
The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.
Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.
Park, Ju-Young; Lee, In-Hwa
2010-05-01
Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.
Ovarian blood vessel occlusion as a surgical sterilization method in rats.
Murakami, Eduardo; Sartori de Camargo, Laíza; Freitas Cardoso, Karym Christine de; Miguel, Marina Pacheco; Tavares, Denise Cláudia; Santos Honsho, Cristiane dos; Ferreira de Souza, Fabiana
2014-04-01
To evaluate the female sterilization by occlusion of the ovarian blood flow, using the rat as experimental model. Fifty-five females rats were divided into four groups: I (n=10), bilateral ovariectomy, euthanized at 60 or 90 days; II (n=5), opening the abdominal cavity, euthanized at 90 days; III (n=20), bilateral occlusion of the ovarian blood supply using titanium clips, euthanized at 60 or 90 days; and IV (n=20), bilateral occlusion of the ovarian blood supply using nylon thread, euthanized at 60 or 90 days. The estrous cycle was monitored by vaginal cytology. After euthanasia, the reproductive tissues were evaluated histologically. Ovarian atresia was identified macroscopically at 60 days after surgery in the rats in groups III and IV; however, most of the rats in group III maintained cyclicity. Histology of the tissues from group IV revealed that the ovarian tissue was replaced by dense fibrous connective tissue that was slightly vascularized and that intact follicles were absent by 90 days. Ovarian blood vessels occluded caused ischemia, leading to progressive tissue necrosis, and bilateral occlusion using a nylon ligature is a viable method for surgical sterilization.
Removal of titanium plates coated with anodic titanium oxide ceramic: retrospective study.
Velich, Norbert; Németh, Zsolt; Suba, Csongor; Szabó, György
2002-09-01
Transformation of the surface of metallic titanium with titanium oxides prepared in various ways is a modern procedure. For more than 15 years, the authors have been utilizing fixing elements coated with titanium oxide ceramics, prepared by anodic oxidation and thermal treatment, for purposes of jawbone osteosynthesis. The aim of the authors' work was to assess the extent to which the titanium oxide ceramic coating influences the fate of the plates used for osteosynthesis within the human organism, in regard to the possible need for their removal. During a 5-year period, 108 of 1,396 plates coated with anodic titanium oxide had to be removed for various reasons: plate exposure (47), osteomyelitis (25), palpable swelling and tenderness (21), patient request for psychological reasons (13), or fracture of the plate (2). In none of these 108 cases was metallosis observed, which otherwise is reported relatively frequently in the vicinity of traditional titanium fixing elements, nor was any tissue damage connected with the surface of the plates. The results indicate the favorable properties of the titanium oxide ceramic surface.
Mineral of the month: titanium
Gambogi, Joseph
2004-01-01
From paint to airplanes, titanium is important in a number of applications. Commercial production comes from titanium-bearing ilmenite, rutile and leucoxene (altered ilmenite). These minerals are used to produce titanium dioxide pigment, as well as an assortment of metal and chemical products.
Synthesis of Titanium Oxycarbide from Titanium Slag by Methane-Containing Gas
NASA Astrophysics Data System (ADS)
Dang, Jie; Fatollahi-Fard, Farzin; Pistorius, Petrus Christiaan; Chou, Kuo-Chih
2018-02-01
In this study, reaction steps of a process for synthesis of titanium oxycarbide from titanium slag were demonstrated. This process involves the reduction of titanium slag by a methane-hydrogen-argon mixture at 1473 K (1200 °C) and the leaching of the reduced products by hydrofluoric acid near room temperature to remove the main impurity (Fe3Si). Some iron was formed by disproportionation of the main M3O5 phase before gaseous reduction started. Upon reduction, more iron formed first, followed by reduction of titanium dioxide to suboxides and eventually oxycarbide.
Method of making multilayered titanium ceramic composites
Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.
1998-08-25
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.
Method of making multilayered titanium ceramic composites
Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.
1998-08-25
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
Method of making multilayered titanium ceramic composites
Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.
1998-01-01
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
Effects of an AST program on US titanium story
NASA Technical Reports Server (NTRS)
Fitzsimmons, R. D.
1980-01-01
The singular importance of titanium as the primary structural material for an efficient advanced supersonic transport (AST) is outlined. The advantages of titanium over other metals are shown to apply to future subsonic aircraft as well as for supersonic designs. The cost problem of titanium is addressed and shown to be markedly reduced by the emerging technologies of superplastic forming/diffusion bonding sandwich, hot isostatic pressing of titanium powders, and isothermal forgings if demonstration programs should validate preliminary findings. The impact of a U.S. AST program on the United States titanium supply and demand picture is postulated.
Iowa Powder Atomization Technologies
Ricken, Joel and Heidloff, Andrew
2018-05-07
The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.
Li, Jiaming; Wang, Decheng; He, Zhiliang; Shi, Hao
2018-01-08
To determine the efficacy of modified titanium tension band plus patellar tendon tunnel steel 8 "reduction band" versus titanium cable tension band fixation for the treatment of patellar lower pole fracture. 58 patients with lower patella fracture were enrolled in this study, including 30 patients treated with modified titanium cable tension band plus patellar tibial tunnel wire "8" tension band internal fixation (modified group), and 28 patients with titanium cable tension band fixation. All patients were followed up for 9∼15 months with an average of 11.6 months. Knee flexion was significantly improved in the modified group than in the titanium cable tension band group (111.33 ± 13 degrees versus 98.21 ± 21.70 degrees, P = 0.004). The fracture healing time showed no significant difference. At the end of the follow-up, the improvement excellent rate was 93.33% in the modified group, and 82.14% in the titanium cable tension band group. Titanium cable tension band internal fixation loosening was found in 2 cases, including 1 case of treatment by two surgeries without loose internal fixation. The modified titanium cable tension band with "8" tension band fixation showed better efficacy for lower patella fractures than titanium cable tension band fixation.
Present status of titanium removable dentures--a review of the literature.
Ohkubo, C; Hanatani, S; Hosoi, T
2008-09-01
Although porcelain and zirconium oxide might be used for fixed partial dental prostheses instead of conventional dental metals in the near future, removable partial denture (RPD) frameworks will probably continue to be cast with biocompatible metals. Commercially pure (CP) titanium has appropriate mechanical properties, it is lightweight (low density) compared with conventional dental alloys, and has outstanding biocompatibility that prevents metal allergic reactions. This literature review describes the laboratory conditions needed for fabricating titanium frameworks and the present status of titanium removable prostheses. The use of titanium for the production of cast RPD frameworks has gradually increased. There are no reports about metallic allergy apparently caused by CP titanium dentures. The laboratory drawbacks still remain, such as the lengthy burn-out, inferior castability and machinability, reaction layer formed on the cast surface, difficulty of polishing, and high initial costs. However, the clinical problems, such as discoloration of the titanium surfaces, unpleasant metal taste, decrease of clasp retention, tendency for plaque to adhere to the surface, detachment of the denture base resin, and severe wear of titanium teeth, have gradually been resolved. Titanium RPD frameworks have never been reported to fail catastrophically. Thus, titanium is recommended as protection against metal allergy, particularly for large-sized prostheses such as RPDs or complete dentures.
Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures
NASA Astrophysics Data System (ADS)
Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.
2011-12-01
The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.
Does titanium in ionic form display a tissue-specific distribution?
Golasik, Magdalena; Wrobel, Pawel; Olbert, Magdalena; Nowak, Barbara; Czyzycki, Mateusz; Librowski, Tadeusz; Lankosz, Marek; Piekoszewski, Wojciech
2016-06-01
Most studies have focused on the biodistribution of titanium(IV) oxide as nanoparticles or crystals in organism. But several reports suggested that titanium is released from implant in ionic form. Therefore, gaining insight into toxicokinetics of Ti ions will give valuable information, which may be useful when assessing the health risks of long-term exposure to titanium alloy implants in patients. A micro synchrotron radiation-induced X-ray fluorescence (µ-SRXRF) was utilized to investigate the titanium distribution in the liver, spleen and kidneys of rats following single intravenous or 30-days oral administration of metal (6 mg Ti/b.w.) in ionic form. Titanium was mainly retained in kidneys after both intravenous and oral dosing, and also its compartmentalization in this organ was observed. Titanium in the liver was non-uniformly distributed-metal accumulated in single aggregates, and some of them were also enriched in calcium. Correlation analysis showed that metal did not displace essential elements, and in liver titanium strongly correlated with calcium. Two-dimensional maps of Ti distribution show that the location of the element is characteristic for the route of administration and time of exposure. We demonstrated that µ-SRXRF can provide information on the distribution of titanium in internal structures of whole organs, which helps in enhancing our understanding of the mechanism of ionic titanium accumulation in the body. This is significant due to the popularity of titanium implants and the potential release of metal ions from them to the organism.
Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin
2016-03-01
Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards the titanium beads and fibroblast proliferation was significantly higher in hybrids compared to gel only controls. The MMP (Matrix Metalloproteinase)-sensitive hydrogels induced sprouting by cells in co-culture configuration which was quantified by fluorescence microscopy, confocal microscopy and qRT-PCR (Quantitative Reverse transcription polymerase chain reaction). When the microhybrid up-scaled to 3D thick structures, cellular localisation in specific areas of the 3D titanium structures was achieved, without decreasing overall cell proliferation compared to titanium only scaffolds. Microhybrids of titanium and hydrogels are useful models for deciding the necessary modifications of metallic implants and they can be used as a modelling system for the study of tissue/titanium implant interactions. This article demonstrates a method to apply cell-laden hydrogels to porous titanium implants and a model of titanium/hydrogel interaction at micro-level using titanium microbeads. The feasibility of site-specific modification of titanium implants with cell-laden microgels has been demonstrated. Use of titanium microbeads in combination with hydrogels with conventional analysis techniques as described in the article can facilitate the characterisation of surface modification of titanium in a relevant model system. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Oxidation resistant coating for titanium alloys and titanium alloy matrix composites
NASA Technical Reports Server (NTRS)
Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)
1992-01-01
An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.
40 CFR 180.1195 - Titanium dioxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...
40 CFR 180.1195 - Titanium dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...
40 CFR 180.1195 - Titanium dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...
The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching
NASA Astrophysics Data System (ADS)
Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.
2018-05-01
Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.
Corrosive effects of fluoride on titanium under artificial biofilm.
Fukushima, Azusa; Mayanagi, Gen; Sasaki, Keiichi; Takahashi, Nobuhiro
2018-01-01
This study aimed to investigate the effect of sodium fluoride (NaF) on titanium corrosion using a biofilm model, taking environmental pH into account. Streptococcus mutans cells were used as the artificial biofilm, and pH at the bacteria-titanium interface was monitored after the addition of 1% glucose with NaF (0, 225 or 900ppmF) at 37°C for 90min. In an immersion test, the titanium samples were immersed in the NaF solution (0, 225 or 900ppm F; pH 4.2 or 6.5) for 30 or 90min. Before and after pH monitoring or immersion test, the electrochemical properties of the titanium surface were measured using a potentiostat. The amount of titanium eluted into the biofilm or the immersion solution was measured using inductively coupled plasma mass spectrometry. The color difference (ΔE*ab) and gloss of the titanium surface were determined using a spectrophotometer. After incubation with biofilm, pH was maintained at around 6.5 in the presence of NaF. There was no significant change in titanium surface and elution, regardless of the concentration of NaF. After immersion in 900ppm NaF solution at pH 4.2, corrosive electrochemical change was induced on the surface, titanium elution and ΔE*ab were increased, and gloss was decreased. NaF induces titanium corrosion in acidic environment in vitro, while NaF does not induce titanium corrosion under the biofilm because fluoride inhibits bacterial acid production. Neutral pH fluoridated agents may still be used to protect the remaining teeth, even when titanium-based prostheses are worn. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M
2017-06-01
The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.
Scale-Up of a Titanium Carbonitride Coating System for Titanium Alloys.
1980-07-01
Ti-Cote C on JT12 Compressor 7th-Stage Airfoil -Optical Photomicrograph Porosity in Ti-Cote C Titanium 6AI- 4V Substrate - -- Mag: 1000OX FD 171506...30 21 TiCN Coating on Titanium 6A1- 4V ...indication of any corrosive damage to the titanium 6A1- 4V . This had been a matter of concern due to the corrosive nature of the reactive gases and
International Workshop on Gamma Aluminide Alloy Technology. Section Four
1997-04-18
a «—■ i— Q. O C (N i < 00 i H B £ 32 £ M U XI c o L. 4-» 5 Autogenous keyhole plasma weld in Ti-48Al-2Mn-2Nb casting, xlO...34: -, Sl Overview of joining gamma alloys P Threadgill J Lee, W A Baeslack and T J Kelly: Weld fusion zone phenomena in Ti (45-48)A1-Nb-Cr y...titanium aluminides, submitted to Welding Journal. a c 9 "" o « JL ° V GO I ■ CO ’ V ** K _ L
Theoretical Studies in Nondestructive Evaluation (NDE)
1985-04-01
estimated radii of various flaws in a titanium alloy (Ti-6Al-4V) and in a ceramic material ( Si3 N4). The first column defines the flaw, the second coli...quantities, i.e., they wT &wirm ’.^M-.-rwr.- rrv" *r~Tirv* W^TT-J trnr t VR^ U» ■ ^■rs^Br^.TTP:rw? iwru" n^; are the strength of the inhomogeneities...with interacting crack faces.may be a poor reflector, and thus difficult 6 IM^ ni :’¥T MI’TWTM "mi%t^ir\\<i!.TR.^ci:i to detect and characterize. In
Trammell, Terry R; Flint, Kathy; Ramsey, Curtis J
2012-08-15
Magnetic resonance imaging (MRI) and computed tomography (CT) imaging are important postoperative diagnostic and evaluation tools, particularly in patients who have undergone spinal fusions. Advancements in materials and imaging techniques have lessened artifact and improved overall imaging results. Systems that combine titanium alloy and cobalt-chromium components have been introduced to reduce implant profile while maintaining strength. The objective of this study was to determine if there were any differences in the clarity of imaging between two types of implant materials in a lumbar spine construct model. One of two lumbar spine stabilization implant systems, titanium alloy (titanium) or titanium alloy with cobalt-chromium alloy (titanium-cobalt), was placed to simulate a four-level fusion construct in two human cadaveric spine segments, followed by MRI and CT imaging. The implant systems were then removed from each cadaver and implanted in the other cadaver. Nine physician graders from three subspecialties scored the images using a 5-point scale, with higher imaging scores indicating greater clarity of the region of interest. Physician-rated scores were compared across systems and between physician groups. There were no significant differences in the overall mean total scores on the basis of construct material. Overall mean scores were 18.16 for titanium and 17.45 for titanium-cobalt (p = 0.275). Among images of the titanium-cobalt constructs, no significant differences in mean scores were found between specimens with use of MRI (p = 0.883) or with use of CT only (p = 0.274). Among images of the titanium system, a slightly significant difference was found between specimens with use of MRI (p = 0.044) but not with CT imaging (p = 0.837). Overall image clarity scores were not significantly different between titanium and titanium-cobalt implant systems in the lumbar spine. Observation of pertinent anatomy in the regions of interest was not degraded by the presence of either system.
Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium
2011-09-01
nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...
Detection of titanium in human tissues after craniofacial surgery.
Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N
1997-04-01
Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.
Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection
NASA Astrophysics Data System (ADS)
Wang, C.; Hu, J.; Wang, F.; Jiang, J.; Zhang, Z. Z.; Yang, Y.; Ding, J. X.; Jiang, H. C.; Wang, Y. M.; Wei, H. Y.
2018-04-01
Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.
[A study on the bond interface between low-fusing dental porcelain and pure titanium].
Mo, A; Cen, Y; Liao, Y; Wang, J; Shi, X
2001-09-01
To evaluate the bond interface between low fusing dental porcelain and pure titanium by observing the topography and detecting the ionic diffusion in the interface area. The low fusing-porcelain La-porcelain produced by the authors or Vita Titankeramik porcelain was fused to the surfaces of pure titanium. The topography of the interface between pure titanium and porcelain, and the structure of experimental materials were observed with SEM. The state of ionic diffusion in the interface area was investigated with EPMA. Excellent permeation and diffusion of La-porcelain were observed on the surfaces of pure titanium. The diffusion of ions of stannum and silicon was discovered in the interface area. The microstructure of La-porcelain to pure titanium bond interface was finer than that of Vita Titankeramik porcelain. Excellent bond can be produced in the interface between La-porcelain and pure titanium. The bonding mechanism may involve mechanical bond and chemical bond. The ionic diffusion of stannum plays an important role in the bonding of porcelain to pure titanium.
Yao, Chang; Webster, Thomas J
2006-01-01
Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.
Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly
Shi, Quan; Qian, Zhiyong; Liu, Donghua; Liu, Hongchen
2017-01-01
In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized. PMID:28824462
Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng
2013-10-01
Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel
NASA Astrophysics Data System (ADS)
Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.
2011-02-01
14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.
Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection.
Wang, C; Hu, J; Wang, F; Jiang, J; Zhang, Z Z; Yang, Y; Ding, J X; Jiang, H C; Wang, Y M; Wei, H Y
2018-04-01
Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.
NASA Astrophysics Data System (ADS)
Malyutina, Yu. N.; Bataev, A. A.; Mali, V. I.; Anisimov, A. G.; Shevtsova, L. I.
2015-10-01
A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.
REDUCING TITANIUM TETRACHLORIDE WITH HIGH-SURFACE SODIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleck, D.C.; Wong, M.M.; Baker, D.H. Jr.
1960-01-01
A method of using sodium for reducing titanium tetrachloride, developed to improve the extractive metallurgy of titunium, is described. Finely divided titanium metal, titanium lower chlorides, or a mixture thereof was produced in a continuous operation at temperatures between 105 and 205 deg C by the reaction of molten sodium and vaporized titanium tetrachloride in an agitated bed of finely divided inert solids (powdered sodium chloride or the reaction products). Composition of the product was controlled by varying the relative quantities of sodium and titanium tetrachloride used. A description of the operations and analytical data of the reaction products aremore » given. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru
A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.
Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion
NASA Astrophysics Data System (ADS)
Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning
2016-12-01
Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.
Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi
2011-01-01
Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.
21 CFR 73.1575 - Titanium dioxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The provisions of this...
21 CFR 73.1575 - Titanium dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...
21 CFR 73.1575 - Titanium dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...
21 CFR 73.1575 - Titanium dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...
2014-01-01
Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.
Bedinger, G.M.
2013-01-01
Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.
Passive Films, Surface Structure and Stress Corrosion and Crevice Corrosion Susceptibility.
1980-08-01
with pure titanium ( 4 ], it is of interest to pursue the effects on titanium -palladium alloys, to evaluate their susceptibility to stress corrosion...cracking due to hydrogen embrittlement with the field ion microscope, and to compare the results with those previously obtained with pure titanium [ 4 ...characterized as 99.99+ percent pure, and was used in the previous field ion microscopy study of titanium [ 4 ], where it was found that strain annealing titanium
1996-05-01
at San Antonio Supervising Professors: Barbara D. Boyan, Ph.D. David L. Cochran, D.D.S., Ph.D. Placement of endosseous dental implants requires the...titanium substratum was chosen for these studies since most medical and dental implants are fabricated from titanium The titanium was cut into uniform...electron microscopy to evaluate the histomorphometry of the implant-bone interface of various titanium and ceramic dental implants placed in dog mandibles
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.
Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace
2015-01-01
Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.
Preparation of bioactive titania films on titanium metal via anodic oxidation.
Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T
2009-01-01
To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.
Saruwatari, Lei; Aita, Hideki; Butz, Frank; Nakamura, Hiromi K; Ouyang, Jianyong; Yang, Yang; Chiou, Wen-An; Ogawa, Takahiro
2005-11-01
This study revealed that osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on the tissue culture polystyrene, associated with modulated gene expression, uniform mineralization, well-crystallized interfacial calcium-phosphate layer, and intensive collagen deposition. Knowledge of this titanium-induced alteration of osteogenic potential leading to enhanced intrinsic biomechanical properties of mineralized tissue provides novel opportunities and implications for understanding and improving bone-titanium integration and engineering physiomechanically tolerant bone. Bone-titanium integration is a biological phenomenon characterized by continuous generation and preservation of peri-implant bone and serves as endosseous anchors against endogenous and exogenous loading, of which mechanisms are poorly understood. This study determines the intrinsic biomechanical properties and interfacial strength of cultured mineralized tissue on titanium and characterizes the tissue structure as possible contributing factors in biomechanical modulation. Rat bone marrow-derived osteoblastic cells were cultured either on a tissue culture-grade polystyrene dish or titanium-coated polystyrene dish having comparable surface topography. Nano-indentation and nano-scratch tests were undertaken on mineralized tissues cultured for 28 days to evaluate its hardness, elastic modulus, and critical load (force required to delaminate tissue). Gene expression was analyzed using RT-PCR. The tissue structural properties were examined by scanning electron microscopy (SEM), collagen colorimetry and localization with Sirius red stain, mineral quantification, and localization with von Kossa stain and transmission electron microscopy (TEM). Hardness and elastic modulus of mineralized tissue on titanium were three and two times greater, respectively, than those on the polystyrene. Three times greater force was required to delaminate the tissue on titanium than that on the polystyrene. SEM of the polystyrene culture displayed a porous structure consisting of fibrous and globular components, whereas the titanium tissue culture appeared to be uniformly solid. Cell proliferation was remarkably reduced on titanium. Microscopic observations revealed that the mineralized tissue on titanium was composed of uniform collagen-supported mineralization from the titanium interface to the outer surface, with intensive collagen deposition at tissue-titanium interface. In contrast, tissue on the polystyrene was characterized by collagen-deficient mineralization at the polystyrene interface and calcium-free collagenous matrix formation in the outer tissue area. Such characteristic microstructure of titanium-associated tissue was corresponded with upregulated gene expression of collagen I and III, osteopontin, and osteocalcin mRNA. Cross-sectional TEM revealed the apposition of a high-contrast and well-crystallized calcium phosphate layer at the titanium interface but not at the polystyrene interface. Culturing osteoblasts on titanium, compared with polystyrene, enhances the hardness, elastic modulus, and interfacial strength of mineralized tissue to a higher degree. Titanium per se possesses an ability to alter cellular phenotypes and tissue micro- and ultrastructure that result in enhanced intrinsic biomechanical properties of mineralized tissue.
Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.
Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar
2016-12-01
Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.
48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.
Code of Federal Regulations, 2012 CFR
2012-10-01
... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...
48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...
48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.
Code of Federal Regulations, 2011 CFR
2011-10-01
... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10553 - Potassium titanium oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No. 12673-69...
40 CFR 721.10553 - Potassium titanium oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No. 12673-69...
Process for preparing fine grain titanium carbide powder
Janney, M.A.
1985-03-12
A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.
Process for preparing fine grain titanium carbide powder
Janey, Mark A.
1986-01-01
A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.
Titanium fasteners. [for aircraft industry
NASA Technical Reports Server (NTRS)
Phillips, J. L.
1972-01-01
Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.
Root canal centering ability of rotary cutting nickel titanium instruments: A meta-analysis
Gundappa, Mohan; Bansal, Rashmi; Khoriya, Sarvesh; Mohan, Ranjana
2014-01-01
Aim: To systematically review articles on canal centering ability of endodontic rotary cutting Nickel-Titanium (Ni-Ti) instruments and subject results to meta-analysis. Materials and Methods: A comprehensive search was initiated on canal centering ability of different rotary cutting Ni-Ti files such as Protaper, Hero Shaper, K3, Mtwo, Race, Wave One by selecting articles published in peer reviewed journals during 1991-2013 using “Pub Med” database. Inclusion and exclusion criteria were established. A data was created by tabulating: Author name, publication year, sample size, number of experimental groups, methods to evaluate canal centering ability, instrument cross section, taper, tip design, rake angle, mean and standard deviation. The data generated was subjected to meta-analysis. Results: Maximum studies were found to be conducted on mesiobuccal canal of mandibular 1st molar with curvature ranging from 15-60°. The difference in canal centering ability of different rotary cutting Ni-Ti instruments was not statistically significant. Conclusion: All endodontic rotary cutting Ni-Ti instruments are capable of producing centered preparations. Protaper depicted the best centering ability. Computed tomography is an effective method of evaluating canal centering ability. PMID:25506134
Di Silvestre, Mario; Bakaloudis, Georgeous; Ruosi, Carlo; Pipola, Valerio; Colella, Gianluca; Greggi, Tiziana; Ruffilli, Alberto; Vommaro, Francesco
2017-10-01
The aim of this study is to understand how many anchor sites are necessary to obtain maximum posterior correction of idiopathic scoliotic curve and if the alloy of instrumentation, stainless steel or titanium, may have a role in the percent of scoliosis correction. We reviewed 143 consecutive patients, affected by AIS (Lenke 1-2), who underwent a posterior spinal fusion with pedicle screw-only instrumentation between 2002 and 2005. According to the implant density and alloy used we divided the cohort in four groups. All 143 patients were reviewed at an average follow-up of 7, 2 years, the overall final main thoracic curve correction averaged 61.4%, whereas the implant density within the major curve averaged 71%. A significant correlation was observed between final% MT correction and preoperative MT flexibility and implant density. When stainless steel instrumentation is used non-segmental pedicle screw constructs seem to be equally effective as segmental instrumentations in obtaining satisfactory results in patients with main thoracic AIS. When the implant alloy used is titanium one, an implant density of ≥60% should be guaranteed to achieve similar results.
Cd/In-Codoped TiO2 nanochips for high-efficiency photocatalytic dye degradation.
Liu, Dongliang; Huang, Peng; Liu, Yong; Wu, Zhou; Li, Dongsheng; Guo, Jun; Wu, Tao
2018-05-01
Titanium dioxide has been widely investigated in the field of photocatalysis research. However, the wide bandgap (3.2 eV) greatly limits its practical applications because only ultraviolet light can be absorbed by bare TiO2. Herein, we report a facile approach to prepare Cd/In-codoped TiO2 nanochips with the capability of visible light absorption. Such bimetallic-doped TiO2 was synthesized through a two-step process: Cd/In/S-TiO2 gels were first synthesized by mixing the preformed Cd-In-S supertetrahedral nanoclusters with a titanium source, and the subsequent pyrolytic process effectively converted the gels into Cd/In-TiO2 nanochips with a thickness of ∼2.19 nm and a uniform diameter of ∼10.60 nm. Interestingly, the absorption band of Cd/In-TiO2 nanochips was adjusted by pyrolysis temperature, which further regulated the photocatalytic efficiency of dye degradation under visible light. Current research demonstrates that doping TiO2 by multimetallic sulfide nanoclusters opens up a new door to further enrich the dopants in TiO2 and broaden their potential applications.
COMPRESSIVE FATIGUE IN TITANIUM DENTAL IMPLANTS SUBMITTED TO FLUORIDE IONS ACTION
Ribeiro, Ana Lúcia Roselino; Noriega, Jorge Roberto; Dametto, Fábio Roberto; Vaz, Luís Geraldo
2007-01-01
The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures. PMID:19089148
Effect of Ti Substrate Ion Implantation on the Physical Properties of Anodic TiO2 Nanotubes
NASA Astrophysics Data System (ADS)
Jedi-Soltanabadi, Zahra; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein
2018-03-01
The influence of nitrogen-ion implantation on the titanium (Ti) surface is studied. The nontreated Ti and the Ti treated with ion implantation were anodized in an ethylene-glycol-based electrolyte solution containing 0.3 wt% ammonium fluoride (NH4F) and 3 vol% deionized (DI) water at a potential of 60 V for 1 h at room temperature. The current density during the growth of the TiO2 nanotubes was monitored in-situ. The surface roughnesses of the Ti substrates before and after the ion implantation were investigated with atomic force microscopy (AFM). The surface roughness was lower for the treated Ti substrate. The morphology of the anodic TiO2 nanotubes was studied by using field-emission scanning electron microscopy (FESEM). Clearly, the titanium nanotubes grown on the treated substrate were longer. In addition, some ribs were observed on their walls. The optical band gap of the anodic TiO2 nanotubes was characterized by using a diffuse reflection spectral (DRS) analysis. The anodic TiO2 nanotubes grown on the treated Ti substrate revealed a band gap energy of approximately 3.02 eV.
NASA Astrophysics Data System (ADS)
Bég, O. Anwar; Espinoza, D. E. Sanchez; Kadir, Ali; Shamshuddin, MD.; Sohail, Ayesha
2018-04-01
An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of nano-particles into working drilling fluids may resolve a number of issues including borehole instability, lost circulation, torque and drag, pipe sticking problems, bit balling and reduction in drilling speed. The aim of this article is, therefore, to evaluate the rheological characteristics and lubricity of different nano-particles in water-based mud, with the potential to reduce costs via a decrease in drag and torque during the construction of highly deviated and ERD wells. Extensive results are presented for percentage in torque variation and coefficient of friction before and after aging. Rheology is evaluated via apparent viscosity, plastic viscosity and gel strength variation before and after aging for water-based muds (WBM). Results are included for silica and titanium nano-particles at different concentrations. These properties were measured before and after aging the mud samples at 80 °C during 16 h at static conditions. The best performance was shown with titanium nano-particles at a concentration of 0.60% (w/w) before aging.
Study on Thermal Deformation Behavior of TC4 – ELI Titanium Alloy
NASA Astrophysics Data System (ADS)
Song, Y.; Zhang, F. S.; Huang, T.; Song, K. X.
2018-05-01
The TC4-ELI titanium alloy was subjected to hot compression deformation test by the Gleeble-1500D thermal simulation test machine. The thermal deformation behavior of the TC4-ELI titanium alloy was studied under the condition of 850°C-1050°C, 0.001s-1-10s-1 strain rate and 50% deformation. The constitutive equation of TC4-ELI titanium alloy was established based on the hyperbolic sine model of Arrhenius equation. The results show that the flow stress of TC4-ELI titanium alloy decreases with the increase of temperature at high temperature. The calculated heat activation energy of TC4-ELI titanium alloy is 300367.5807J / mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Paul Elliott; Cooper, Marcia A.
The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25°C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052more » glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300° C.« less
Rapid plasma quenching for the production of ultrafine metal and ceramic powders
NASA Astrophysics Data System (ADS)
Donaldson, Alan; Cordes, Ronald A.
2005-04-01
The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.
A novel approach to fabrication of three-dimensional porous titanium with controllable structure.
Wang, Dong; Li, Qiuyan; Xu, Mingqin; Jiang, Guofeng; Zhang, Yunxia; He, Guo
2017-02-01
A new approach to fabrication of porous titanium by using the molybdenum wire as space holder was developed, in which titanium liquid was cast into the entangled molybdenum wires in a vacuum environment, and followed by etching off the space holder material in an aqua regia solution. This infiltration casting and acid corrosion method fabricated the porous titanium with different porosities with a pore diameter of 0.4mm. The porous titanium with the porosity of 32-47% exhibited the Young's modulus in the range of 23-62GPa and the yielding strength in the range of 76-192MPa. The adhesion and spreadability of the bovine osteoblast cells on the porous titanium were also evaluated in vitro. The porous titanium with 47% porosity has great potential for implant applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanical properties and grindability of dental cast Ti-Nb alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu
2003-09-01
Aiming at developing a dental titanium alloy with better mechanical properties and machinability than unalloyed titanium, a series of Ti-Nb alloys with Nb concentrations up to 30% was made. They were cast into magnesia-based molds using a dental casting machine and the mechanical properties and grindability of the castings were examined. The hardness of the alloys with Nb concentrations of 5% and above was significantly higher than that of titanium. The yield strength and tensile strength of the alloys with Nb concentrations of 10% and above were significantly higher than those of titanium, while the elongation was significantly lower. A small addition of niobium to titanium did not contribute to improving the grindability of titanium. The Ti-30% Nb alloy exhibited significantly better grindability at low grinding speed with higher hardness, strength, and Young's modulus than titanium, presumably due to precipitation of the omega phase in the beta matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan
ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders priormore » to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.« less
NASA Astrophysics Data System (ADS)
Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki
2018-05-01
The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.
De Palma, Angela; Sollitto, Francesco; Loizzi, Domenico; Di Gennaro, Francesco; Scarascia, Daniele; Carlucci, Annalisa; Giudice, Giuseppe; Armenio, Andrea; Ludovico, Rossana; Loizzi, Michele
2016-03-01
We report short and long-term results with the dedicated Synthes(®) titanium plates system, introduced 5 years ago, for chest wall stabilization and reconstruction. We retrospectively analyzed (January 2010 to December 2014) 27 consecutive patients (22 males, 5 females; range 16-83 years, median age 60 years), treated with this system: primary [3] and secondary [8] chest wall tumor; flail chest [5]; multiple ribs fractures [5]; sternal dehiscence-diastasis [3]; sternal fracture [1]; sternoclavicular joint dislocation [1]; Poland syndrome [1]. Short-term results were evaluated as: operating time, post-operative morbidity, mortality, hospital stay; long-term results as: survival, plates-related morbidity, spirometric values, chest pain [measured with Verbal Rating Scale (VRS) and SF12 standard V1 questionnaire]. Each patient received from 1 to 10 (median 2) titanium plates/splints; median operating time was 150 min (range: 115-430 min). Post-operative course: 15 patients (55.6%) uneventful, 10 (37%) minor complications, 2 (7.4%) major complications; no post-operative mortality. Median post-operative hospital stay was 13 days (range: 5-129 days). At a median follow-up of 20 months (range: 1-59 months), 21 patients (78%) were alive, 6 (22%) died. Three patients presented long-term plates-related morbidity: plates rupture [2], pin plate dislodgment [1]; two required a second surgical look. One-year from surgery median spirometric values were: FVC 3.31 L (90%), FEV1 2.46 L (78%), DLCO 20.9 mL/mmHg/min (76%). On 21 alive patients, 7 (33.3%) reported no pain (VRS score 0), 10 (47.6%) mild (score 2), 4 (19.1%) moderate (score 4), no-one severe (score >4); 15 (71.5%) reported none or mild, 6 (28.5%) moderate pain influencing quality of life. An optimal chest wall stabilization and reconstruction was achieved with the Synthes(®) titanium plates system, with minimal morbidity, no post-operative mortality, acceptable operating time and post-operative hospital stay. Long-term restoration of a normal respiratory function was achieved, with minimal plates-related morbidity and chest pain.
Sealing glasses for titanium and titanium alloys
Brow, Richard K.; Watkins, Randall D.
1992-01-01
Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.
Sealing glasses for titanium and titanium alloys
Brow, R.K.; Watkins, R.D.
1988-01-21
Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.
Titanium-nitrogen reaction investigated for application to gettering systems
NASA Technical Reports Server (NTRS)
Arntzen, J. D.; Coleman, L. F.; Kyle, M. L.; Pierce, R. D.
1968-01-01
Titanium is one of several gettering materials available for removing nitrogen from inert gases. The reaction rate of titanium-metal sponge and nitrogen in argon-nitrogen mixtures was studied at 900 degrees C. The rate was found to depend upon the partial pressure of nitrogen in the gas phase. Mathematical relationships simulate titanium systems.
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
Producing Foils From Direct Cast Titanium Alloy Strip
NASA Technical Reports Server (NTRS)
Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.
1996-01-01
This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meredith, S.E.; Benjamin, J.F.
1993-07-13
A method is described of manufacturing corrosion resistant tubing from seam welded stock of a titanium or titanium based alloy, comprising: cold pilgering a seam welded tube hollow of titanium or titanium based alloy in a single pass to a final sized tubing, the tube hollow comprising a strip which has been bent and welded along opposed edges thereof to form the tube hollow, the tube hollow optionally being heat treated prior to the cold pilgering step provided the tube hollow is not heated to a temperature which would transform the titanium or titanium alloy into the beta phase, themore » cold pilgering effecting a reduction in cross sectional area of the tube hollow of at least 50% and a reduction of wall thickness of at least 50%, in order to achieve a radially oriented crystal structure; and annealing the final sized tubing at a temperature and time sufficient to effect complete recrystallization and reform grains in a weld area along the seam into smaller, homogeneous grains.« less
Sonochemical method for producing titanium metal powder.
Halalay, Ion C; Balogh, Michael P
2008-07-01
We demonstrate a sonochemical method for producing titanium metal powder. The method uses low intensity ultrasound in a hydrocarbon solvent at near-ambient temperatures to first create a colloidal suspension of liquid sodium-potassium alloy in the solvent and then to reduce liquid titanium tetrachloride to titanium metal under cavitation conditions. XRD data collected for the reaction products after the solvent removal show only NaCl and KCl, with no diffraction peaks attributable to titanium metal or other titanium compounds, indicating either the formation of amorphous metal or extremely small crystallite size. TEM micrographs show that hollow spheres formed of halide salts and titanium metal, with diameters with diameters ranging from 100 to 500 nm and a shell thickness of 20 to 40 nm form during the synthesis, suggesting that the sonochemical reaction occurs inside the liquid shell surrounding the cavitation bubbles. Metal particle sizes are estimated to be significantly smaller than 40 nm from TEM data. XRD data of the powder after annealing and prior to removal of the alkali chloride salts provides direct evidence that titanium metal was formed during the sonochemical synthesis.
Ultrasonic effects on titanium tanning of leather.
Peng, Biyu; Shi, Bi; Sun, Danhong; Chen, Yaowen; Shelly, Dennis C
2007-03-01
The effects of ultrasound on titanium tanning of leather were investigated. Either 20 or 40 kHz ultrasound was applied to the titanium tanning of pigskins. Five different treatment conditions were carried out and the effects were examined, such as leather shrinkage temperature (T(s)), titanium content and titanium distribution in the leather. Overall heat loading was carefully controlled. Results showed that 20 kHz ultrasound effectively improves titanium agent penetration into the hide and increases the leather's shrinkage temperature. Doubling the frequency to 40 kHz produced negligible enhancements. An impressive 105.6 degrees C T(s) was achieved using 20 kHz ultrasound pretreatment of the tanning liquor followed by 20 kHz ultrasound in the tanning mixture (liquor plus pigskins) in a special salt-free medium. Finally, using a unique ultrasonic tanning drum with 26.5 kHz ultrasound, the T(s) reached a record level of 106.5 degrees C, a value not achieved in conventional (no ultrasound) titanium tanning. The ultrasonic effects on titanium tanning of leather are judged to make a superior mineral tanned leather.
NASA Astrophysics Data System (ADS)
Guo, Si-yao; Han, Song
2014-12-01
A novel nano/micro hierarchical structured titanium phosphate with unique 3D flower-like morphology has been prepared by a simple hydrothermal method without adding any surfactants. The shape of the titanium phosphate could be controlled by simply adjusting the concentration of phosphoric acid. The 3D flower-like titanium phosphate with diameter of 2-3 μm is characterized by the assembly of numerous porous and connected lamella structures. Interestingly, this novel hierarchical mesoporous 3D flower-like titanium exhibits enhanced hydrogen evolution from water splitting under xenon lamp irradiation in the presence of methanol as the sacrificial reagent, which is also the first example of 3D flower-like titanium phosphate with high photocatalytic activity for water splitting. Since the use of titanium phosphate as a photocatalyst has been mostly neglected up to now, this low-cost, simple procedure and large-scale yield of 3D nano/micro structure titanium phosphate could be expected to be applicable in the synthesis of controlled, reproducible and robust photocatalytic systems.
[Follow-up examinations after removal of titanium plates coated with anodic titanium oxide ceramic].
Velich, Norbert; Németh, Zsolt; Barabás, József; Szabó, György
2002-04-01
Transformation of the titanium metal surface with titanium oxides produced in various ways belongs among the most up-to-date procedures. The authors as pioneers in this field (e.g. Nobel Biocare TiUnite surface), have been utilizing for more than 15 years dental root implants and fixing elements (for mandibular osteosynthesis) coated with titanium oxide ceramics, produced by anodic oxidation and thermal treatment. The aim of this work was to assess the extent to which a titanium oxide ceramic coating influences the fate of plates applied for osteosynthesis within the human body. During a 5-year period (1995-1999), 108 of 1396 titanium oxide ceramic plates had to be removed for various reasons: loosening of the plate [47], osteomyelitis [25], a palpable swelling and tenderness [21] at the request of the patient for psychological reasons (13) or breaking of the plate [2]. When these 108 plates were removed, it was not possible to detect metallosis in even a single case; nor was there any tissue damage that could be attributed to the surface of the plates, whereas the literature data indicate that such damage is relatively frequent in the environment of traditional titanium fixing elements. The present investigation confirms the favourable properties of the titanium oxide ceramic surface.
Microwave assisted scalable synthesis of titanium ferrite nanomaterials
NASA Astrophysics Data System (ADS)
Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.
2018-04-01
Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.
Effects of silicon coating on bond strength of two different titanium ceramic to titanium.
Ozcan, Isil; Uysal, Hakan
2005-08-01
This study investigated the effect of silicon coating (SiO2) by magnetron sputtering on bond strength of two different titanium ceramics to titanium. Sixty cast titanium specimens were prepared following the protocol ISO 9693. Titanium specimens were divided into two test and control groups with 15 specimens in each. Test groups were silicon coated by the magnetron sputtering technique. Two titanium ceramics (Triceram and Duceratin) were applied on both test (coated) and control (uncoated) metal specimens. The titanium-ceramic specimens were subjected to a three point flexural test. The groups were compared for their bond strength. SEM and SEM/EDS analyses were performed on the delaminated titanium surfaces to ascertain bond failure. The mean bond strength of Ti-Duceratin, Ti-Triceram, Si-coated Ti-Duceratin and Si-coated Ti-Triceram were 17.22+/-2.43, 23.31+/-3.18, 23.21+/-3.81 and 24.91+/-3.70 MPa, respectively. While the improvement in bond strength was 30% for Duceratin, it was statistically insignificant for Triceram. An adhesive mode of failure was observed in the Duceratin control group. In the silicoated Duceratin specimen, the bonded ceramic boundaries were wider but less than in the silicoated Triceram specimen. In the coated Triceram specimen, the ceramic retained areas were frequent and the failure mode was generally cohesive. Silicon coating was significantly effective in both preventing titanium oxide layer formation and in improving bond strength for Duceratin. However, it was of less value for Triceram.
Evaluation of Titanium-Coated Pedicle Screws: In Vivo Porcine Lumbar Spine Model.
Kim, Do-Yeon; Kim, Jung-Ryul; Jang, Kyu Yun; Kim, Min Gu; Lee, Kwang-Bok
2016-07-01
Many studies have addressed the problem of loosening pedicle screws in spinal surgery, which is a serious concern. Titanium coating of medical implants (arthroplasty) is common, but few studies involving in vivo spine models have been reported. We evaluated the radiological, mechanical, and histological characteristics of titanium-coated pedicle screws compared with uncoated or hydroxyapatite-coated pedicle screws. Three different types of pedicle screws, i.e., uncoated, hydroxyapatite-coated, and titanium-coated, were implanted into the lumbar 3-4-5 levels of 9 mature miniature pigs. Radiological evaluation of loosening of pedicle screws was performed. Peak torsional extraction torque was tested in the 42 screws from 7 miniature pigs at 12 weeks postoperatively. The implant-bone interface of the remaining 12 pedicle screws from 2 miniature pigs in each group was assessed by micro-computed tomography and histologic studies. The incidence of loosening at 12 weeks postoperatively was not significantly different between the titanium-coated pedicle screw group and the other groups. The titanium-coated pedicle screw group exhibited the greatest mean extraction torsional peak torque at 12 weeks postoperatively (P < 0.05). Quantitative micro-computed tomography data were greatest in the titanium-coated pedicle screw group (P < 0.05). Histologic findings showed osteointegration with densely packed new bone formation at the screw coating-bone interface in the titanium-coated pedicle screw group. Fixation strength was greatest in the titanium-coated pedicle screw group. Osteointegration at the interface between the titanium-coated implant and bone produced prominent and firm bonding. The titanium-coated pedicle screw is a promising device for application in spinal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at; Loder, D.; Reip, T.
2015-02-15
Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an earlymore » process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information on inclusion formation.« less
Cavalcanti, Yuri Wanderley; Soare, Rodrigo Villamarim; Leite Assis, Marina Araújo; Zenóbio, Elton Gonçalves; Girundi, Francisco Mauro da Silva
2015-02-01
Some surface treatments performed on titanium can alter the composition of salivary pellicle formed on this abiotic surface. Such treatments modify the titanium's surface properties and can promote higher adsorption of proteins, which allow better integration of titanium to the biotic system. This study aimed to evaluate the interactions between salivary proteins and titanium disks with different surface treatments. Machined titanium disks (n = 48) were divided into four experimental groups (n = 12), according to their surface treatments: surface polishing (SP); acid etching (A); spot-blasting plus acid etching (SB-A); spot-blasting followed by acid etching and nano-functionalization (SB-A-NF). Titanium surfaces were characterized by surface roughness and scanning electron microscopy (SEM). Specimens were incubated with human saliva extracted from submandibular and sublingual glands. Total salivary protein adsorbed to titanium was quantified and samples were submitted to western blotting for mucin glycoprotein 2 (MG2) and lactoferrin identification. Surface roughness was statistically higher for SB-A and SB-A-NF groups. Scanning electron microscopy images confirmed that titanium surface treatments increased surface roughness with higher number of porous and scratches for SB-A and SB-A-NF groups. Total protein adsorption was significantly higher for SB-A and SB-A-NF groups (p < 0.05), which also presented higher interactions with MG2 and lactoferrin proteins. The roughing of titanium surface by spot-blasting plus acid etching treatments contribute to higher interaction with salivary proteins, such as MG2 and lactoferrin. Titanium surface roughing increases the interactions of the substratum with salivary proteins, which can influence the integration of dental implants and their components to the oral environment. However, those treatments should be used carefully intraorally, avoiding increase biofilm formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Go
Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgymore » (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions •External TiN and internal a Mo-rich layer on all alloy substrates •Titanium aluminides and Ti-Al mixed nitrides are formed on Ti-6Al-4V •The presence of Al and V alloying elements modifies the diffusion of Mo.« less
Wei, Zhao; Cui, Zhi; Yan, Ping; Jiang, Han
2017-01-09
Micro-CT (μCT) studies that combine simulated canals with meglucamine diatrizoate to evaluate the shaping ability of nickel-titanium (NiTi) rotary instruments are lacking in the literature. The purpose of this study was to evaluate the shaping ability of three new different nickel-titanium rotary instruments in simulated root canals using μCT. Thirty simulated root canals with a curvature of 60° were randomly allocated into the following 3 groups (n = 10): Group 1, ProTaper Universal (PTU) rotary system; Group 2, Reciproc single-file system; and Group 3, K3XF rotary system. Pre- and post-instrumented images of simulated canals were scanned with μCT via a radiopaque contrast technique to build a 3-dimensional (3D) model. Canal transportation, volumetric change and centring ability were evaluated in each group. Instrument failure and preparation time were also recorded. The Kruskal-Wallis test was used for statistical analysis and the significance level was set at p = 0.05. Reciproc produced greater volume change in the apical part of the canals compared with PTU and K3XF (p < 0.05). K3XF exhibited less transportation and better centring ability at the 2- and 3-mm levels from the apical foramen compared with PTU and Reciproc (p < 0.05). There were no significant differences in the centring ratio and transportation between PTU and Reciproc. Preparation time was significantly shorter in the Reciproc group (p < 0.05). Under the conditions of our study, all of the canals were 3D reconstructed successfully via the radiopaque contrast technique. Reciproc showed enhanced apical volume changes and K3XF exhibited better centring ability when compared with other groups.
Higuera, Oscar; Plotino, Gianluca; Tocci, Luigi; Carrillo, Gabriela; Gambarini, Gianluca; Jaramillo, David E
2015-06-01
The purpose of this study was to evaluate the cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments. A total of 45 nickel-titanium instruments were tested and divided into 3 experimental groups (n = 15): group 1, WaveOne Primary instruments; group 2, Reciproc R25 instruments; and group 3, Twisted File (TF) Adaptive M-L1 instruments. The instruments were then subjected to cyclic fatigue test on a static model consisting of a metal block with a simulated canal with 60° angle of curvature and a 5-mm radius of curvature. WaveOne Primary, Reciproc R25, and TF Adaptive instruments were activated by using their proprietary movements, WaveOne ALL, Reciproc ALL, and TF Adaptive, respectively. All instruments were activated until fracture occurred, and the time to fracture was recorded visually for each file with a 1/100-second chronometer. Mean number of cycles to failure and standard deviations were calculated for each group, and data were statistically analyzed (P < .05). Instruments were also observed through scanning electron microscopy to evaluate type of fracture. Cyclic fatigue resistance of Reciproc R25 and TF Adaptive M-L1 was significantly higher than that of WaveOne Primary (P = .009 and P = .002, respectively). The results showed no statistically significant difference between TF Adaptive M-L1 and Reciproc R25 (P = .686). Analysis of the fractured portion under scanning electron microscopy indicated that all instruments showed morphologic characteristics of ductile fracture that were due to accumulation of metal fatigue. No statistically significant differences were found between the instruments tested except for WaveOne Primary, which showed the lowest resistance to cyclic fatigue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Taboada-López, María Vanesa; Iglesias-López, Sara; Herbello-Hermelo, Paloma; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2018-08-14
Applicability of single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) using dwell times equal to or shorter than 100 μs has been tested for assessing titanium dioxide nanoparticles (TiO 2 NPs) in bivalve mollusks. TiO 2 NPs isolation from fresh mollusk tissues was achieved by ultrasound assisted enzymatic hydrolysis procedure using a pancreatin/lipase mixture. Optimum extraction conditions imply ultrasonication (60% amplitude) for 10 min, and 7.5 mL of a solution containing 3.0 g L -1 of pancreatin and lipase (pH 7.4). The developed method was found to be repeatable (repeatability of 17% for the over-all procedure, TiO 2 NPs concentration of 5.33 × 10 7 ± 8.89 × 10 6 , n = 11), showing a limit of detection of 5.28 × 10 6 NPs g -1 , and a limit of detection in size of 24.4-30.4 nm, based on the 3σ criteria, and on the 3σ/5 σ criteria, respectively. The analytical recovery within the 90-99% range (use of TiO 2 NPs standards of 50 nm at 7 and 14 μg L -1 as Ti). Several bivalve mollusks (clams, cockles, mussels, razor clams, oysters and variegated scallops) were analyzed for total titanium (ICP-MS after microwave assisted acid digestion), and for TiO 2 NPs by the proposed method. TiO 2 NPs concentrations were within the 2.36 × 10 7 -1.25 × 10 8 NPs g -1 range, and the most frequent sizes were from 50 to 70 nm. Copyright © 2018 Elsevier B.V. All rights reserved.
Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model.
Yao, James H; Schwartz, Scott A; Beeson, Thomas J
2006-01-01
The cyclic fatigue resistance of three types of nickel-titanium rotary files was compared in a model using reciprocating axial movement. The influence of file size and taper was also investigated and fracture patterns were examined under SEM. The 10 experimental groups consisted of ProFiles, K3s, and RaCe files, size 25 in .04 and .06 tapers, as well as ProFiles and K3s, size 40 in .04 and .06 tapers. Each file was rotated freely at 300 rpm inside a stainless steel tube with a 60 degree and 5 mm radius of curvature. A continuous 3 mm oscillating axial motion was applied at 1 cycle per second by attaching an electric dental handpiece to the most inferior load cell of an Instron machine using a custom-made jig. The number of rotations to failure was determined and analyzed using analysis of variance and Tukey's post hoc tests. Overall, K3 25/.04 files were significantly more resistant to cyclic fatigue compared to any other group in this study. In the 25/.04 category, K3s were significantly more resistant to failure than ProFiles and RaCe files. Also in the same category, ProFiles significantly outlasted RaCe files. In the 25/.06 group, K3s and ProFiles were significantly more resistant to failure than RaCe files, but K3s were not significantly different than ProFiles. In the 40/.04 and 40/.06 groups, K3s were significantly more resistant to cyclic fatigue than ProFiles. SEM observations demonstrated mostly a ductile mode of fracture. The results suggest that different cross-sectional designs, diameters, and tapers all contribute to a nickel-titanium instrument's vulnerability to cyclic failure.
Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files.
Plotino, Gianluca; Grande, Nicola M; Cotti, Elisabetta; Testarelli, Luca; Gambarini, Gianluca
2014-09-01
The aim of the present study was to evaluate the difference in cyclic fatigue resistance between Vortex Blue (Dentsply Tulsa Dental, Tulsa, OK) and Profile Vortex nickel-titanium (Dentsply Tulsa Dental) rotary instruments. Two groups of nickel-titanium endodontic instruments, ProFile Vortex and Vortex Blue, consisting of identical instruments in tip size and taper (15/.04, 20/.06, 25/.04, 25/.06, 30/.06, 35/.06, and 40/.04) were tested. Ten instruments from each system and size were tested for cyclic fatigue resistance, resulting in a total of 140 new instruments. All instruments were rotated in a simulated root canal with a 60° angle of curvature and a 5-mm radius of curvature of a specific cyclic fatigue testing device until fracture occurred. The number of cycles to failure and the length of the fractured tip were recorded for each instrument in each group. The mean values and standard deviation were calculated, and data were subjected to 1-way analysis of variance and a Bonferroni t test. Significance was set at the 95% confidence level. When comparing the same size of the 2 different instruments, a statistically significant difference (P < .05) was noted between all sizes of Vortex Blue and Profile Vortex instruments except for tip size 15 and .04 taper (P = 1.000). No statistically significant difference (P > .05) was noted among all groups tested in terms of fragment length. Vortex Blue showed a significant increase in cyclic fatigue resistance when compared with the same sizes of ProFile Vortex. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Peters, Ruud J B; van Bemmel, Greet; Herrera-Rivera, Zahira; Helsper, Hans P F G; Marvin, Hans J P; Weigel, Stefan; Tromp, Peter C; Oomen, Agnes G; Rietveld, Anton G; Bouwmeester, Hans
2014-07-09
Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.
Effect of investment type and mold temperature on casting accuracy and titanium-ceramic bond.
Leal, Mônica Barbosa; Pagnano, Valéria Oliveira; Bezzon, Osvaldo Luiz
2013-01-01
This study evaluated the casting accuracy of crown margins and metal-ceramic shear bond strength (SBS) of pure titanium injected into casting molds made using 2 investment types at 3 mold temperatures. Sixty crown (30-degree beveled finish line) and 60 cylinder (5mm diameter × 8mm high) patterns were divided into 6 groups (n=10), and cast using a phosphate-bonded investment (P) and a magnesium oxide-bonded investment (U), at 400°C (groups P400 and U400), 550°C (groups P550 and U550) and 700°C (groups P700 and U700) mold temperatures. Crown margins were recorded in impression material, the degree of marginal rounding was measured and margin length deficiencies (µm) were calculated. Titanium-ceramic specimens were prepared using Triceram ceramic (2mm high) and SBS was tested. Failure modes were assessed by optical microscopy. Data were subjected to two-way ANOVA and Tukey's HSD test (α=0.05). For casting accuracy, expressed by marginal deficiency (µm), investment U provided more accurate results (64 ± 11) than P (81 ± 23) (p<0.001). The increase in temperature resulted in different effects for the tested investments (p<0.001), as it provided better casting accuracy for U700 (55 ± 7) and worse for P700 (109 ± 18). Casting accuracy at 700°C (82 ± 31) was significantly different from 400°C (69 ± 9) and 550°C (68 ± 9) (p<0.05). For SBS, there was no significant differences among the groups for factors investment (p=0.062) and temperature (p=0.224), or for their interaction (p=0.149). Investment U provided better casting accuracy than investment P. The SBS was similar for all combinations of investments and temperatures.
Mechanical characteristics of plastic base Ports and impact on flushing efficacy.
Guiffant, Gérard; Flaud, Patrice; Royon, Laurent; Burnet, Espérie; Merckx, Jacques
2017-01-01
Three types of totally implantable venous access devices, Ports, are currently in use: titanium, plastic (polyoxymethylene, POM), and mixed (titanium base with a POM shell). Physics theory suggests that the interaction between a non-coring needle (NCN, made of stainless steel) and a plastic base would lead to the stronger material (steel) altering the more malleable material (plastic). To investigate whether needle impacts can alter a plastic base's surface, thus potentially reducing flushing efficacy. A Port made of POM was punctured 200 times with a 19-gauge NCN. Following the existing guidelines, the needle tip pricked the base with each puncture. The Port's base was then examined using a two-dimensional optical instrument, and a bi-dimensional numerical simulation using COMSOL ® was performed to investigate potential surface irregularities and their impact on fluid flow. Each needle impact created a hole (mean depth, 0.12 mm) with a small bump beside it (mean height, 0.02 mm) the Reynolds number Re k ≈10. A numerical simulation of the one hole/bump set showed that the flushing efficacy was 60% that of flushing along a flat surface. In clinical practice, the number of times a Port is punctured depends on patient and treatment characteristics, but each needle impact on the plastic base may increase the risk of decreased flushing effectiveness. Therefore, the more a plastic Port is accessed, the greater the risk of microorganisms, blood products, and medication accumulation. Multiple needle impacts created an irregular surface on the Port's base, which decreased flushing efficacy. Clinical investigation is needed to determine whether plastic base Ports are associated with an increased risk of Port infection and occlusion compared to titanium base Ports.
Hruska, A R; Borelli, P
1991-10-01
Procedures for casting, laboratory soldering, and intraoral welding of titanium for dental restorations are described and illustrated. Pure titanium and titanium 6A1-4Va alloy castings may be used for virtually any prosthodontic rehabilitation as well as for implants, with the proper equipment and technique.
Method for synthesis of titanium dioxide nanotubes using ionic liquids
Qu, Jun; Luo, Huimin; Dai, Sheng
2013-11-19
The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.
NASA Technical Reports Server (NTRS)
Siriwardane, R. V.; Wightman, J. P.
1982-01-01
The titanium dioxide surface is discussed. Polymer adhesive are also discussed. Titanium powders are considered. Characterization techniques are also considered. Interactions with polymers, water vapor, and HCl are reported. Adsorbents are characterized.
40 CFR 721.10602 - Lead niobium titanium zirconium oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...
40 CFR 721.10602 - Lead niobium titanium zirconium oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...
NASA Astrophysics Data System (ADS)
Anza, Inigo; Makhlouf, Makhlouf M.
2018-02-01
The Rotating Impeller In-Situ Gas-Liquid Reaction Method is employed for the production of Al-TiC composites. The method relies on injecting a carbon-bearing gas by means of a rotating impeller into a specially formulated molten aluminum-titanium alloy. Under the optimal conditions of temperature and composition, the gas reacts preferentially with titanium to form titanium carbide particles. The design of the apparatus, the process operation window, and the routes for forming titanium carbide particles with different sizes are elucidated.
NASA Astrophysics Data System (ADS)
Anza, Inigo; Makhlouf, Makhlouf M.
2017-12-01
The Rotating Impeller In-Situ Gas-Liquid Reaction Method is employed for the production of Al-TiC composites. The method relies on injecting a carbon-bearing gas by means of a rotating impeller into a specially formulated molten aluminum-titanium alloy. Under the optimal conditions of temperature and composition, the gas reacts preferentially with titanium to form titanium carbide particles. The design of the apparatus, the process operation window, and the routes for forming titanium carbide particles with different sizes are elucidated.
NASA Astrophysics Data System (ADS)
Yang, Fei; Raynova, Stella; Singh, Ajit; Zhao, Qinyang; Romero, Carlos; Bolzoni, Leandro
2018-02-01
Powder metallurgy is a very attractive method for producing titanium alloys, which can be near-net-shape formed and have freedom in composition selection. However, applications are still limited due to product affordability. In this paper, we will discuss a possible cost-effective route, combining fast heating and hot processing, to produce titanium alloys with similar or even better mechanical properties than that of ingot metallurgy titanium alloys. Two titanium alloys, Ti-5Al-5V-5Mo-3Cr (Ti-5553) and Ti-5Fe, were successfully produced from HDH titanium powder and other master alloy powders using the proposed processing route. The effect of the processing route on microstructural variation and mechanical properties have been discussed.
Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy
NASA Astrophysics Data System (ADS)
Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.
2009-12-01
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
NASA Astrophysics Data System (ADS)
Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.
2017-05-01
The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.
Titanium-nitride-oxide-coated coronary stents: insights from the available evidence.
Karjalainen, Pasi P; Nammas, Wail
2017-06-01
Coating of stent surface with a biocompatible material is suggested to improve stent safety profile. A proprietary process was developed to coat titanium-nitride-oxide on the stent surface, based on plasma technology that uses the nano-synthesis of gas and metal. Preclinical in vitro and in vivo investigation confirmed blood compatibility of titanium (nitride-) oxide films. Titanium-nitride-oxide-coated stents demonstrated a better angiographic outcome, compared with bare-metal stents at mid-term follow-up; however, they failed to achieve non-inferiority for angiographic outcome versus second-generation drug-eluting stents. Observational studies showed adequate clinical outcome at mid-term follow-up. Non-randomized studies showed an outcome of titanium-nitride-oxide-coated stents comparable to - or better than - first-generation drug-eluting stents at long-term follow-up. Two randomized controlled trials demonstrated comparable efficacy outcome, and a better safety outcome of titanium-nitride-oxide-coated stents versus drug-eluting stents at long-term follow-up. Evaluation by optical coherence tomography at mid-term follow-up revealed better neointimal strut coverage associated with titanium-nitride-oxide-coated stents versus drug-eluting stents; yet, neointimal hyperplasia thickness was greater. Key messages Stents coated with titanium-nitride-oxide demonstrated biocompatibility in preclinical studies: they inhibit platelet and fibrin deposition, and reduce neointimal growth. In observational and non-randomized studies, titanium-nitride-oxide-coated stents were associated with adequate safety and efficacy outcome. In randomized trials of patients with acute coronary syndrome, titanium-nitride-oxide-coated stents were associated with a better safety outcome, compared with drug-eluting stents; efficacy outcome was comparable.
Effect of surface reaction layer on grindability of cast titanium alloys.
Ohkubo, Chikahiro; Hosoi, Toshio; Ford, J Phillip; Watanabe, Ikuya
2006-03-01
The purpose of this study was to investigate the effect of the cast surface reaction layer on the grindability of titanium alloys, including free-machining titanium alloy (DT2F), and to compare the results with the grindability of two dental casting alloys (gold and Co-Cr). All titanium specimens (pure Ti, Ti-6Al-4V and DT2F) were cast using a centrifugal casting machine in magnesia-based investment molds. Two specimen sizes were used to cast the titanium metals so that the larger castings would be the same size as the smaller gold and Co-Cr alloy specimens after removal of the surface reaction layer (alpha-case). Grindability was measured as volume loss ground from a specimen for 1 min using a handpiece engine with a SiC abrasive wheel at 0.1 kgf and four circumferential wheel speeds. For the titanium and gold alloys, grindability increased as the rotational speed increased. There was no statistical difference (p>0.05) in grindability for all titanium specimens either with or without the alpha-case. Of the titanium metals tested, Ti-6 Al-4V had the greatest grindability at higher speeds, followed by DT2F and CP Ti. The grindability of the gold alloy was similar to that of Ti-6 Al-4V, whereas the Co-Cr alloy had the lowest grindability. The results of this study indicated that the alpha-case did not significantly affect the grindability of the titanium alloys. The free-machining titanium alloy had improved grindability compared to CP Ti.
Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John
2016-05-01
The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.
Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo
2014-11-01
Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Rees, Kelly; Lorusso, Emanuela; Cosham, Samuel D; Kulak, Alexander N; Hyett, Geoffrey
2018-02-14
In this paper we report on a novel chemical vapour deposition approach to the formation and control of composition of mixed anion materials, as applied to titanium oxynitride thin films. The method used is the aerosol assisted chemical vapour deposition (AACVD) of a mixture of single source precursors. To explore the titanium-oxygen-nitrogen system the single source precursors selected were tetrakis(dimethylamido) titanium and titanium tetraisopropoxide which individually are precursors to thin films of titanium nitride and titanium dioxide respectively. However, by combining these precursors in specific ratios in a series of AACVD reactions at 400 °C, we are able to deposit thin films of titanium oxynitride with three different structure types and a wide range of compositions. Using this precursor system we can observe films of nitrogen doped anatase, with 25% anion doping of nitrogen; a new composition of pseudobrookite titanium oxynitride with a composition of Ti 3 O 3.5 N 1.5 , identified as being a UV photocatalyst; and rock-salt titanium oxynitride in the range TiO 0.41 N 0.59 to TiO 0.05 N 0.95 . The films were characterised using GIXRD, WDX and UV-vis spectroscopy, and in the case of the pseudobrookite films, assessed for photocatalytic activity. This work shows that a so-called dual single-source CVD approach is an effective method for the deposition of ternary mixed anion ceramic films through simple control of the ratio of the precursors, while keeping all other experimental parameters constant.
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium
Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace
2015-01-01
Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327
Titanium dioxide in dental enamel as a trace element and its variation with bleaching
Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey
2018-01-01
Background Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Material and Methods Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance (p≤0.05) and Bonferroni pairwise comparisons. Results Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule (p≤0,05). Conclusions All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words:Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide. PMID:29930771
Titanium dioxide in dental enamel as a trace element and its variation with bleaching.
Vargas-Koudriavtsev, Tatiana; Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey
2018-06-01
Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule ( p ≤0,05). All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide.
Wu, Jinshuang; Wang, Xianli; Xing, Helin; Guo, Tianwen; Dong, Chaofang
2017-01-01
This study investigated the mechanical properties and single crown accuracy of the tailor-made Fourth University Stomatology investment (FUS-invest) for casting titanium. Background. Current investment for casting titanium is not optimal for obtaining high-quality castings, and the commercially available titanium investment is costly. Methods. Titanium specimens were cast using the tailor-made FUS-invest. The mechanical properties were tested using a universal testing machine. Fractured castings were characterized by energy-dispersive spectroscopy. 19 titanium crowns were produced using FUS-invest and another 19 by Symbion. The accuracy of crowns was evaluated. Results. The mechanical properties of the titanium cast by FUS-invest were elastic modulus 125.6 ± 8.8 GPa, yield strength 567.5 ± 11.1 MPa, tensile strength 671.2 ± 15.6 MPa, and elongation 4.6 ± 0.2%. For marginal fit, no significant difference (P > 0.05) was found at four marker points of each group. For internal fit, no significant difference (P > 0.05) was found between two groups, whereas significant difference (P < 0.01) was found at different mark point of each group. Conclusions. The mechanical properties of titanium casted using FUS-invest fulfilled the ISO 9693 criteria. The marginal and internal fit of the titanium crowns using either the FUS-invest or Symbion were similar. PMID:28913355
Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells.
Marcatti Amarú Maximiano, William; Marino Mazucato, Vivian; Tambasco de Oliveira, Paulo; Célia Jamur, Maria; Oliver, Constance
2017-08-01
Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017. © 2017 Wiley Periodicals, Inc.
Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide
Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo
2016-01-01
The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287
Research and Development on Titanium Alloys
1949-10-31
EVALUATION OF EPERIMENTAL TITANIUM-BASE ALLOYS• 65 Binary Alloys of Titanium . . . . .. 65 Titanium-Silver Alloys. . . . . ..... ... 68 Mechanical Properties...using a technique in melting designed to give more uniform distribution of the alloying additions. NMATTWLL MOMORIAL INSTITUTE 4...tc Dr. Derge for analysis. BATTELLE MEMORIAL INSTITUTE -107- 2TABLE 28. OXYGEN STANDARDS FOR ANALYSIS Wt fSapl Pein Cen Designation Sample lielting, 1
Ultrafine-grained titanium for medical implants
Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.
2002-01-01
We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.
Nickel-Titanium Wire as Suture Material: A New Technique for the Fixation of Skin.
Li, Haidong; Song, Tao
2018-01-29
To introduce nickel-titanium wire as suture material for closure of incisions in cleft lip procedures. Closure of skin incisions using nickel-titanium wire as suture material, with postoperative follow-up wound evaluation. There was excellent patient satisfaction and good cosmetic outcome. Nickel-titanium wire is an excellent alternative for suture closure of cleft lip surgical incisions.
Array of titanium dioxide nanostructures for solar energy utilization
Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu
2014-12-30
An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.
Custom-made laser-welded titanium implant prosthetic abutment.
Iglesia-Puig, Miguel A
2005-10-01
A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.
Corrosion behavior of Ti-39Nb alloy for dentistry.
Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav
2015-11-01
To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus-high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti-39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. Copyright © 2015 Elsevier B.V. All rights reserved.
Structural characterization of oxidized titanium surfaces
NASA Astrophysics Data System (ADS)
Jobin, M.; Taborelli, M.; Descouts, P.
1995-05-01
Oxidized titanium surfaces resulting from various processes have been structurally characterized by means of scanning force microscopy, x-ray photoemission spectroscopy (XPS), x-ray diffraction, and electron energy-loss spectroscopy (EELS) with losses in the 0-100 eV range. It has been found that the surface morphology has a granular structure for electropolished titanium and for titanium evaporated on mica at low substrate temperature (570 K), but changes to flat terraces for the films evaporated at higher temperature (770 K). Angular-dependent XPS has revealed the presence of a Ti2O3 suboxide at the Ti/TiO2 interface for electropolished titanium. Dry oxidation has been performed at 770 and 970 K on both weakly and highly crystallized evaporated titanium films oriented along (0001). In the case of underlying crystallized metallic titanium, the resulting TiO2 films are crystallized with the anatase (004) orientation for oxidation at 770 K and with rutile (200) orientation for oxidation at 970 K. EELS spectra interpreted in terms of the molecular orbitals of a (TiO6)8- cluster show that the local octahedral environment of titanium atoms is preserved on native oxides, even if these oxides are not crystallized.
NASA Astrophysics Data System (ADS)
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
'water splitting' by titanium exchanged zeolite A. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznicki, S.M.; Eyring, E.M.
1978-09-01
Visually detectable and chromatographically and mass spectrally identified hydrogen gas evolves from titanium (III) exchanged zeolite A immersed in water and illuminated with visible light. Titanium(III) exchanged zeolite X and zeolite Y do not produce this reaction. A photochemically produced, oxygenated titanium free radical (detected by electron spin resonance) not previously described is the species in the zeolite that reduces protons to molecular hydrogen. The other product of this reduction step is a nonradical, oxygenated titanium species of probable empirical formula TiO4. Heating the spent oxygenated titanium containing zeolite A under vacuum at 375 C restores over fifty percent ofmore » the free radical. Unlike previously reported systems, heating does not restore the original aquotitanium(III) species in the zeolite. Thus a means other than heating must be found to achieve a closed photochemical cycle that harnesses visible solar energy in the production of molecular hydrogen. The titanium exchanged zeolite A does, however, lend itself to a thermolysis of water previously described by Kasai and Bishop. (Author)« less
Effect of cathodic polarization on coating doxycycline on titanium surfaces.
Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J
2016-06-01
Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. Copyright © 2016 Elsevier B.V. All rights reserved.
Machinability of an experimental Ti-Ag alloy in terms of tool life in a dental CAD/CAM system.
Inagaki, Ryoichi; Kikuchi, Masafumi; Takahashi, Masatoshi; Takada, Yukyo; Sasaki, Keiichi
2015-01-01
Titanium is difficult to machine because of its intrinsic properties. In a previous study, the machinability of titanium was improved by alloying with silver. This study aimed to evaluate the durability of tungsten carbide burs after the fabrication of frameworks using a Ti-20%Ag alloy and titanium with a computer-aided design and computer-aided manufacturing system. There was a significant difference in attrition area ratio between the two metals. Compared with titanium, the ratio of the area of attrition of machining burs was significantly lower for the experimental Ti-20%Ag alloy. The difference in the area of attrition for titanium and Ti-20%Ag became remarkable with increasing number of machining operations. The results show that the same burs can be used for a longer time with Ti-20%Ag than with pure titanium. Therefore, in terms of tool life, the machinability of the Ti-20%Ag alloy is superior to that of titanium.
Hydrocarbon Deposition Attenuates Osteoblast Activity on Titanium
Hayashi, R.; Ueno, T.; Migita, S.; Tsutsumi, Y.; Doi, H.; Ogawa, T.; Hanawa, T.; Wakabayashi, N.
2014-01-01
Although the reported percentage of bone-implant contact is far lower than 100%, the cause of such low levels of bone formation has rarely been investigated. This study tested the negative biological effect of hydrocarbon deposition onto titanium surfaces, which has been reported to be inevitable. Osteogenic MC3T3-E1 cells were cultured on titanium disks on which the carbon concentration was experimentally regulated to achieve carbon/titanium (C/Ti) ratios of 0.3, 0.7, and 1.0. Initial cellular activities such as cell attachment and cell spreading were concentration-dependently suppressed by the amount of carbon on the titanium surface. The osteoblastic functions of alkaline phosphatase activity and calcium mineralization were also reduced by more than 40% on the C/Ti (1.0) surface. These results indicate that osteoblast activity is influenced by the degree of hydrocarbon contamination on titanium implants and suggest that hydrocarbon decomposition before implant placement may increase the biocompatibility of titanium. PMID:24868012
Khabiri, Masoud; Ebrahimi, Maziar; Saei, Mohammad Reza
2017-12-01
File fracture can interfere with cleaning and shaping of the canal and compromise periradicular healing. Autoclave sterilization may prone the files to fracture. The purpose of the present study was to determine the effect of autoclave sterilization on the cyclic fatigue resistance of Hero642 rotary instrument in two curvatures of 45 and 60 degrees. For this experimental in-vitro study, 90 Nickel-Titanium HERO 642 rotary files #30 with 0.06 taper were selected. They were divided into two groups (curvature of 45 and 60 degree) of 45 files. Each group was then subdivided into 3 subgroups; group I: no sterilization, group II: 5 cycles of sterilization and group III: 10 cycles of sterilization. Files were used in artificial canals until fracture. The cyclic fatigue was measured as the number of cycles before fracture. The data was statically analyzed by Student's t-test and two-way analysis of variance. There was a significant difference in cyclic fatigue of two curvature of 45 and 60 degrees ( p = 0.001). However, sterilization process has no significant effect on cyclic fatigue of HERO files ( p = 0.557). Sterilization had no effect on the cyclic fatigue of HERO 642 files when used in curvature of 45 or 60 degrees.
Adhesion of osteoblasts to a nanorough titanium implant surface
Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš
2011-01-01
This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478
NASA Astrophysics Data System (ADS)
Mehrpouya, Fahimeh; Tavanai, Hossein; Morshed, Mohammad; Ghiaci, Mehran
2012-08-01
Activated carbon (AC) can act as an important carrier for TiO2 nanoparticles. TiO2 nanoparticle can be fabricated by the hydrolysis and condensation of titanium alkoxides like titanium isopropoxide. This study showed that the formation of titanium dioxide crystallite nanoparticle during activation of PAN nanofibers containing titanium isopropoxide leads to the formation of mainly anatase crystal TiO2 nanoparticle in AC nanofibers, with a good dispersion in both the longitude and cross section of nanofibers. The TiO2 crystallite size lies in the range of 7.3-11.3 nm. The dispersion of TiO2 nanoparticles in the matrix of AC nanofibers is far superior to the direct mixing of TiO2 nanoparticles in the original electrospinning solution.
Welding and Joining of Titanium Aluminides
Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai
2014-01-01
Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113
Ao, Haiyong; Xie, Youtao; Qin, An; Ji, Heng; Yang, Shengbing; Huang, Liping; Zheng, Xuebin; Tang, Tingting
2014-01-01
In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.
Electrically conductive ceramic powders
NASA Astrophysics Data System (ADS)
Lu, Yanxia
1999-11-01
Electrically conductive ceramic powders were investigated in this project. There are three ways to produce those materials. The first is doping alkali metal into the titanium dioxides in an inert or reducing atmosphere. The second is reducing un-doped titanium dioxide, forming a non-stoichiometric composition in a hydrogen atmosphere. The third is to coat a conductive layer, reduced titanium dioxide, on an insulating core such as alumina. Highly conductive powders have been produced by all these processes. The conductivity of powder compacts ranged between 10-2 and 10° S/cm. A novel doping process was developed. All samples were doped by a solid-vapor reaction instead of a solid state reaction. Titanium dioxide was doped with alkali metals such as Na or Li in this study. The alkali metal atom contributes an electron to the host material (TiO2), which then creates Ti 3+ ion. The conductivity was enhanced by creating the donor level due to the presence of these Ti3+ ions. The conductivity of those alkali doped titanium oxides was dependent on the doping level and charge mobility. Non-stoichiometric titanium oxides were produced by reduction of titanium dioxide in a hydrogen atmosphere at 800°C to 1000°C for 2 to 6 hours. The reduced titanium oxides showed better stability with respect to conductivity at ambient condition when compared with the Na or Li doped samples. Conductive coatings were prepared by coating titanium precursors on insulating core materials like SiO2, Al2O3 or mica. The titania coating was made by hydrolysis of titanyl sulfate (TiOSO 4) followed by a reduction procedure to form reduced titanium oxide. The reduced titanium oxides are highly conductive. A uniform coating of titanium oxides on alumina cores was successfully produced. The conductivity of coated powder composites was a function of coating quantity and hydrolysis reaction temperature. The conductivity of the powder as a function of structure, composition, temperature, frequency and moisture was studied. Three classifications of structure were identified for alkali-doped titanium oxides: (1) Pure titanium dioxide phase with alkali ions located in interstitial positions. (2) The titanium bronze phases. (3) Alkali-doped titanium oxides. Highly conductive powders were obtained in the first and second classifications with conductivity of 10-2 to 10° S/cm. Materials in the third classification had poor conductivity below 10-3 S/cm. The conductivity of a powder was determined mainly by the grain conductivity and the grain contact conductivity. The present results of impedance spectroscopy suggested that the grain contact resistance was a major factor of the electrical resistance of the samples. The aging effect at different moisture conditions was also caused by an increase of the contact resistance. Both sodium-doped and reduced titanium oxides showed re-oxidation at elevated temperature (above 140°C) in air, which is most probably caused by oxidizing the Ti3+ ions under those conditions. Lithium doped titanium oxides did not show this re-oxidation at temperatures up to 200°C. Theoretical models were applied to describe the effects of porosity, contact configuration and grain surface on conductivity of powder compacts. Percolation theory was used in the present study to demonstrate the effect of mixtures of conductive and non-conductive powders, which is one of applications for conductive ceramic powders when they are used as filler materials in paper, paints or plastics.
Color Anodizing of Titanium Coated Rolled Carbon Steel Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarajan, Zohair; Mobarakeh, Hooman Nikbakht; Namiranian, Sohrab
As an important kind of structural materials, the titanium cladded steel plates have the advantages of both metals and have been applied in aviation, spaceflight, chemical and nuclear industries. In this study, the specimens which were prepared under soldering mechanism during rolling were anodized by electrochemical process under a given conditions. The color anodizing takes place by physical phenomenon of color interference. Part of incident light on the titanium oxide is reflected and the other part reflects inside coated titanium layer. Major part of the light which reflects from titanium-oxide interface, reflects again inside of the oxide layer.
In situ hydride formation in titanium during focused ion milling.
Ding, Rengen; Jones, Ian P
2011-01-01
It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.
Chang, Bei; Song, Wen; Han, Tianxiao; Yan, Jun; Li, Fuping; Zhao, Lingzhou; Kou, Hongchao; Zhang, Yumei
2016-03-01
The present work assesses the potential of three-dimensional (3D) porous titanium (pore size of 188-390 μm and porosity of 70%) fabricated by vacuum diffusion bonding of titanium meshes for applications in bone engineering. Rat bone marrow mesenchymal stem cells were used to investigate the proliferation and differentiation of cells on titanium scaffolds with different pore sizes at day 7, day 14 and day 21 based on DNA contents, alkaline phosphatase (ALP) activity, collagen (COL) secretion and osteogenic gene expressions including ALP, COL-1, bone morphogenetic protein-2 (BMP-2), osteopontin (OPN), runt-related transcription factor 2 (RUNX2), using smooth solid titanium plate as reference material. The rabbit models with distal femoral condyles defect were used to investigate the bone ingrowth into the porous titanium. All samples were subjected to Micro-CT and histological analysis after 4 and 12 weeks of healing. A one-way ANOVA followed by Tukey post hoc tests was used to analyze the data. It was found that the differentiation stage of cells on the porous titanium delayed compared with the smooth solid titanium plate and Ti 188 was more inclined to promote cell differentiation at the initial stage (day 14) while cell proliferation (day 1, 4, 7, 10, 14 and 21) and bone ingrowth (4 and 12 weeks) were biased to Ti 313 and Ti 390. The study indicates that the hybrid porous implant design which combines the advantages of different pore sizes may be meaningful and promising for bone defect restoration. One of the significant challenges in bone defect restoration is the integration of biomaterials and surrounding bone tissue. Porous titanium may be a promising choice for bone ingrowth and mineralization with appropriate mechanical and biological properties. In this study, based on porous titanium fabricated by vacuum diffusion bonding of titanium meshes, we have evaluated the influence of various pore sizes on rat bone marrow mesenchymal stem cells (rBMMSCs) penetration in vitro and bone ingrowth in vivo. It was interesting that we found the proliferation and differentiation abilities of rBMMSCs, as well as bone ingrowth were related to different pore sizes of such porous scaffolds. The results may provide guidance for porous titanium design for bone defect restoration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1983-12-01
100 - - 75 IP - - - Ti TFB 64 - - 92 100 100 - - - Ti TF(A+B) 82 - - 84 50 100 - - - C(2x2) Ti ATOP - - - 98 50 - - - V ATOP 56 - - 81 67 iP - 100 100...Nb ATOP 100 100 - 74 40 - X X - Ti BR 40 - - 92 100 100 IP IP - Ti TRA 33 - - 80 50 - - - Ti TFB 86 X - 73 100 - 50 - - Ti TR(A+B) 60 x - 77 75 - 50...NOTE: A tack (-) indicates that the species was not formed, while "X" indicates that none were formed by frag- mentation. IP indicates that only
Recent advances in lightweight, filament-wound composite pressure vessel technology
NASA Technical Reports Server (NTRS)
Lark, R. F.
1977-01-01
A review of recent advances is presented for lightweight, high-performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single-cycle burst and cyclic fatigue loading. Filament-wound fiber/epoxy composite vessels were made from S-glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessel structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all-titanium pressure vessels. Significant findings in each area are summarized including data from current NASA-Lewis Research Center contractual and in-house programs.
Observation of sub-100-fs optical response from spin-coated films of squarylium dye J aggregates
NASA Astrophysics Data System (ADS)
Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Pu, Lyong Sun; Kawashima, Hitoshi; Tatsuura, Satoshi; Wada, Osamu
2001-04-01
For spin-coated films of squarylium dye J aggregates, ultrafast nonlinear optical responses were investigated by pump-probe measurements. By using a broadband mode-locked titanium:sapphire laser, we succeeded in observing the optical response with a time resolution of better than 60 fs. Time-resolved transmission data are shown for different excitation wavelengths, resonant to the excitonic absorption band and off-resonant. Relaxation times of the absorption saturation were evaluated to be 140 fs (fast component) and 950 fs (slow component) in the case of resonant excitation and 98 fs in the case of off-resonant excitation.
Synthesizing alkali ferrates using a waste as a raw material
NASA Astrophysics Data System (ADS)
Kanari, N.; Ostrosi, E.; Ninane, L.; Neveux, N.; Evrard, O.
2005-08-01
This study focused on the potential to transform a waste, hydrated iron sulfate, into a useful product. The waste was generated from titanium dioxide production and from the surface treatment of steel. Its disposal is restricted by environmental regulations, and consequently, it has to be recycled and/or treated. The described recycling was achieved through synthesis of potassium ferrate, which contains iron in a hexavalent state (FeVI). The synthesis process was achieved in a rotary reactor at room temperature using chlorine as an oxidant. The efficiency of potassium ferrate synthesis was about 60%. This paper presents details of the kinetics of the potassium ferrate synthesis.
A New Construction Material-Titanium
1974-01-01
results of studying the electrochemical behavior of titanium and its alloys in aggressive media, and also the oxidizability of the most important...are the following properties of titanium and especially its alloys: low specific weight, high strength, corrosion resistance in many agressive media...resistance or complete immunity of titanium to a number of agressive media. 3. Operational directions: a) lengthening the service life of the articles, b
2006-06-24
crystals and assume same yield stress in tension and compression. Some anisotropic models have been proposed and used in the literature for HCP poly...2006), etc. These criteria dealt with the modeling of cubic crystals and assume same yield stress in tension an compression. Some anisotropic...Constitutive/Damage Modeling of Titanium and Titanium Alloys Principal Investigator: Akhtar S. Khan
Nanodesigning of Hierarchical Multifunctional Ceramics
1993-09-28
transformations were determined by XRD. As in previous studies, the final particle size of BaTiO 3, obtair-0 trom either the titanium isopropoxide ...conditions by reacting nanosized titanium oxide or titanium alkoxides with a solution of barium hydroxide. The powders produced by this approach range in...optical ceramic-polymer composites using colloidal dispersion techniques. In our experiments, we used either a high purity titania sood or titanium
Photorefractive Effect in Barium Titanate Crystals
1988-08-15
photorefractivity. The titanium dioxide feed material was prepared by the hydrolysis of titanium isopropoxide , Ti(ioc3H7 )4 , according to the reaction...reduced pressure fractional distillation. This purification technique was based on the observation that titanium isopropoxide has a much lower boiling...Starting materials A major effort in this research was devoted to the synthesis of high-purity starting materials, since titanium dioxide and barium
Consolidation of Surface Coatings by Friction Stir Techniques
2010-09-01
alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments
Surface modification of porous titanium with rice husk as space holder
NASA Astrophysics Data System (ADS)
Wang, Xinsheng; Hou, Junjian; Liu, Yanpei
2018-06-01
Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.
Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. David M. Bowden; Dr. William H. Peter
2012-03-31
The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Chu, W., E-mail: chuwei65@yahoo.com.cn; Huang, Y.Y.
Graphical abstract: Porous N-doped TiO{sub 2} microspheres were prepared for the first time via plasma technique. The sample exhibited better photocatalytic activity, photoinduced inactivation activity and better electrochemical activity than those of TiO{sub 2} microspheres and P25. Display Omitted Highlights: ► Porous N-doped TiO{sub 2} microspheres were prepared via nitrogen plasma technique. ► Plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. ► With the plasma treatment, the N contents in the samples increased. ► Their photocatalytic, antibacterial and electrochemical activities were studied. -- Abstract: Nitrogen-doped titanium dioxide (N-doped TiO{sub 2}) microspheres with porous structure weremore » prepared via the nitrogen-assisted glow discharge plasma technique at room temperature for the first time. The samples were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption–desorption measurement, UV–Vis diffuse reflectance spectra, photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The results indicated that the plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. With the plasma treatment, the N contents in the samples increased. During the photocatalytic degradation of methylene blue under simulative sunlight irradiation, the sample after plasma treatment for 60 min (N-TiO{sub 2}-60) exhibited higher photocatalytic activity than those of the TiO{sub 2} microspheres, P25 and other N-doped TiO{sub 2} microspheres. Furthermore, the N-TiO{sub 2}-60 showed excellent antibacterial activities towards Escherichia coli under visible irradiation. These should be attributed to the enhancement of the visible light region absorption for TiO{sub 2} after N-doping. Electrochemical data demonstrated that the N-doping not only enhanced the electrochemical activity of TiO{sub 2}, but also improved the reversibility of Li insertion/extraction reactions and the rate behavior of TiO{sub 2} during charge–discharge cycles.« less
Pijls, B G; Sanders, I M J G; Kuijper, E J; Nelissen, R G H H
2017-05-01
Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro ? Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa ; spore-forming Bacillus cereus; and yeast Candida albicans . The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro . These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article : B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323-330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1. © 2017 Pijls et al.
PMMA versus titanium cage after anterior cervical discectomy - a prospective randomized trial.
Schröder, J; Grosse-Dresselhaus, F; Schul, C; Wassmann, H
2007-02-01
Nonautologous interbody fusion materials are utilised in increasing numbers after anterior cervical disc surgery to overcome the problem of donor site morbidity of autologous bone grafts. This study investigates the performance of two nonautologous materials, the bone cement Polymethylmethacrylate (PMMA) and titanium cages. This prospective randomised trial, with assessment of the results by an independent observer, evaluates whether a Polymethylmethacrylate (PMMA) spacer or a titanium cage provides a better fusion rate around the implant and a better clinical outcome. Between 2000 and 2002, 115 patients with monoradicular cervical nerve root compression syndrome caused by soft cervical disc herniation were eligible for this study. Myelopathy, excessive osteophyte formation, and adjacent level degeneration were exclusion criteria. A block-restricted randomisation was applied. The 2-year clinical outcome served as the primary endpoint of the study. Clinical outcome was assessed according to the Odom scale by an independent observer at the follow-up examination. Preoperative, postoperative, and follow-up radiographs were taken. The study was completed by 107 patients (53 with PMMA and 54 with titanium cage). No significant difference between the two groups could be established with respect to the clinical outcome. In each group, 26 patients scored excellent. Good results were found in 19 PMMA patients and 16 titanium cage patients; satisfactory results were found in 8 PMMA patients and 9 titanium cage patients; bad results were found in 3 titanium cage patients. In 47 titanium cage cases (87%), fusion occurred radiologically as bony bridging around the implant. The fusion rate was significantly lower (p=0.011) in the PMMA group, with 35 cases (66%) united at follow-up. The radiological result of the titanium cage is superior to that of PMMA with respect to the fusion rate. Although the titanium cage achieves a better fusion rate, there is no difference between titanium cages and PMMA with respect to the clinical outcome.
Villalobos-Hernández, J R; Müller-Goymann, C C
2006-09-28
Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).
Szmukler-Moncler, S; Bischof, M; Nedir, R; Ermrich, M
2010-09-01
Acid etching is a popular method to texture the surface of dental implants. During etching, the titanium oxide protective layer is dissolved and small native hydrogen ions diffuse into the unprotected implant surface. They enrich the implant surface with hydrogen and precipitate into titanium hydride (TiH). The aim of this study was to measure the concentration of TiH at the implant surface and the total concentration of Hydrogen at five commercially available implant systems, made of either commercially pure (cp) titanium or titanium alloy. X-Ray diffraction (XRD) was conducted on each implant system to determine the compounds present at the implant surface. Following a TiH(2)/Ti calibration curve, the concentration of TiH was determined. Concentration of hydrogen in the implants was measured by the inert gas fusion thermal conductivity/infrared detection method. XRD data showed that TiH was present on all cp titanium implants but not on the alloyed implants. TiH concentration varied between 5% and 37%. Hydrogen concentration varied between 43 and 108 ppm, no difference in uptake was found between the cp titanium and alloyed implants. Low solubility of hydrogen in alpha-titanium is responsible for precipitation into TiH. Stronger etching conditions led to higher concentration of TiH2-x. High solubility of hydrogen in the beta-phase of the alloy is preventing hydrogen from precipitating into TiH. All implants, even those lacking TiH at the surface, were enriched with hydrogen. In all implants, hydrogen concentration was within the normative limit of 130 ppm.
Formation of Titanium Sulfide from Titanium Oxycarbonitride by CS2 Gas
NASA Astrophysics Data System (ADS)
Ahmadi, Eltefat; Yashima, Yuta; Suzuki, Ryosuke O.; Rezan, Sheikh Abdul
2018-05-01
Previously this group reported that a good quality titanium metal powder can be produced from titanium sulfides by electrochemical OS process. In this study, the sulfurization procedure was examined to synthesize titanium sulfide from titanium oxycarbonitride by CS2 gas. The experiments were carried out in the temperature range of 1173 K to 1523 K (900 °C to 1250 °C) in a tube reactor with continuously flowing argon (Ar) as carrier gas of CS2. The formation of titanium sulfide phases from the commercial TiN, TiC, and TiO powders was studied as the initial step. Then, TiO0.02C0.13N0.85 coming from ilmenite was sulfurized to prepare single phase of titanium sulfide. The products were characterized by X-ray diffraction, and the morphology of the sulfides was rigorously investigated, and the sulfur, oxygen, and carbon contents in the products were analyzed. The process was remarkably dependent on the temperature and time. TiN and TiO0.02C0.13N0.85 powders could be fully converted to the single phase of Ti2.45S4 (Ti2+x S4) at 1473 K (1200 °C) in 3.6 ks. The maximum weight gain of TiN sample was 55.3 pct indicating a full conversion of TiN to Ti2S3 phase. The carbon and oxygen contents in this sulfide prepared from the oxycarbonitride were about 1.8 wt pct C and 1.4 wt pct O, respectively. Therefore, the titanium sulfide could be a promising feedstock for the production of commercial grade titanium powder.
Nie, Bin'en; Ao, Haiyong; Zhou, Jianliang; Tang, Tingting; Yue, Bing
2016-09-01
Titanium has been widely used in the orthopedic and dental fields, however, the inert nature of Ti makes it unsuitable for application in promoting bone cell growth,osteogenic differentiation and antibacterial ability. The aims of the current study were to investigate the antimicrobial activity and biofunction of the polypeptide antibiotic bacitracin, and obtain a multi-biofunctional titanium implant by covalently-immobilizing titanium with the bacitracin. The results showed that the bacitracin possessed low minimum inhibitory concentration (MIC) to both Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA), with the non-cytotoxicity concentration up to 500μg/mL to human bone marrow mesenchymal stem cells (hBMSCs), furthermore, the bacitracin could improve the osteogenic differentiation of hBMSCs. The results of Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) indicated that bacitracin had been covalently immobilized on the surface of titanium. Immobilized bacitracin could improve the hydrophilic of immobilized titanium. The results of antimicrobial assay demonstrated that the covalently-immobilized bacitracin also had excellent antimicrobial property, and the bacitracin immobilized titanium could inhibit bacterial adhesion and colonization. The results of cell biology experiments proved that the bacitracin immobilized titanium could improve hBMSCs' adhesion, proliferation and osteogenic differentiation. We also found that the macrophages were difficult to spread or activate on the surface of bacitracin immobilized titanium, and the secretion of inflammatory factors had been inhibited. In conclusion, the novel bacitracin immobilized titanium has multi-biofunctions including outstanding antibacterial properties, excellent cell biology performance, and restraining inflammation, which has exciting application prospect. Copyright © 2016 Elsevier B.V. All rights reserved.
Vis, Bradley; Pele, Laetitia C.; Faria, Nuno; Powell, Jonathan J.
2017-01-01
Abstract Pigment grade titanium dioxide is composed of sub‐micron sized particles, including a nanofraction, and is widely utilized in food, cosmetic, pharmaceutical, and biomedical industries. Oral exposure to pigment grade titanium dioxide results in at least some material entering the circulation in humans, although subsequent interactions with blood immune cells are unknown. Pigment grade titanium dioxide is employed for its strong light scattering properties, and this work exploited that attribute to determine whether single cell–particle associations could be determined in immune cells of human whole blood at “real life” concentrations. In vitro assays, initially using isolated peripheral blood mononuclear cells, identified titanium dioxide associated with the surface of, and within, immune cells by darkfield reflectance in imaging flow cytometry. This was confirmed at the population level by side scatter measurements using conventional flow cytometry. Next, it was demonstrated that imaging flow cytometry could quantify titanium dioxide particle‐bearing cells, within the immune cell populations of fresh whole blood, down to titanium dioxide levels of 10 parts per billion, which is in the range anticipated for human blood following titanium dioxide ingestion. Moreover, surface association and internal localization of titanium dioxide particles could be discriminated in the assays. Overall, results showed that in addition to the anticipated activity of blood monocytes internalizing titanium dioxide particles, neutrophil internalization and cell membrane adhesion also occurred, the latter for both phagocytic and nonphagocytic cell types. What happens in vivo and whether this contributes to activation of one or more of these different cells types in blood merits further attention. © 2017 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC. PMID:28941170
Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.
Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério
2013-10-01
Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants. Copyright © 2013 Elsevier B.V. All rights reserved.
Titanium tetrafluoride and dental caries: a systematic review.
Alves, Rubiane Diógenes; Souza, Tatyana Maria Silva de; Lima, Kenio Costa de
2005-12-01
The aim of this systematic review was to evaluate the effectiveness of titanium tetrafluoride as a preventive or cariostatic agent against caries. The databases used to find the articles analyzed were MEDLINE LILACS, and BBO. In MEDLINE and LILACS the search strategy utilized was "titanium" [Words] and "tetrafluoride" [Words] and Spanish or English or Portuguese [Language], whereas In BBO "titânio" [Words] and "tetrafluoreto" [Words] and Espanhol or Inglês or Português [Language]. Out of a total of 42 studies found, which assessed possible preventive/cariostatic effects of titanium tetrafluoride against caries in vivo, only 2 were selected. In both studies, titanium tetrafluoride was shown to be effective against caries. However, given that the quality and consequently the validity of these two clinical studies are questionable, their results do not allow to conclude that titanium tetrafluoride is effective against caries clinically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellakhal, N
2002-12-01
The exposure of a titanium sample to an NH{sub 3} low pressure plasma leads to the formation of a nitriding layer. The products formed at the titanium surface were identified by XRD spectroscopy. The modification of the corrosion resistance characteristics of titanium due to the NH{sub 3} plasma treatment were investigated by electrochemical tests. The recorded polarization curves of the treated titanium samples were used to determine the values of the corrosion potential E{sub corr}. This study confirms the increasing of the corrosion resistance as a function of the time exposure and the injected electric power in the silica reactor.more » The plasma treatment also induces drastic changes of the titanium target in hardness.« less
Banerjee, S
1986-04-01
A sensitive spectrophotometric method for the determination of titanium by formation of its complex with tannin and thioglycollic acid at pH 4 has been developed. The intense yellow colour is measured at 400 nm and the system obeys Beer's law over the range 0.2-5 ppm titanium in the solution measured. The method is applicable to titanium-treated steels, stainless steels, permanent magnet alloys and duralumin alloys. The interference of Co, Ni, Cr, Mn, V, Mo and W can be eliminated by prior separation of titanium by controlled addition of cupferron in the presence of thioglycollic acid (TGA). Copper can be quantitatively separated by precipitation with TGA and determined complexometrically with EDTA, with PAN as indicator. Niobium interferes even in traces.
Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T
2015-05-20
Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.
[The influence of surface conditioning on the shear bond strength of La-Porcelain and titanium].
Mo, Anchun; Cen, Yuankun; Liao, Yunmao
2003-04-20
To determine the influence of different surface conditioning methods on bonding strength of low fusing porcelain (La-Porcelain) and titanium. The surface of the samples were sandblasted for 2 min with 80-250 microns Al2O3 or coated for two times with Si-couple agent or conditioned by pre-oxidation. The shear bond strength was examined by push-type shear test with a speed of 0.5 mm/min in a universal testing machine. Scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA) were employed to explore the relationship between bonding strength and microstructures, as well as the element diffusion at the interface between porcelain coating and titanium when heated at 800 degrees C. Bonding strength was not statistically different (P > 0.05) after sandblasting with Al2O3 in particle size ranged from 80 microns to 250 microns. When a Si-couple agent was used, bond of porcelain to titanium was significantly lower (P < 0.05). The shear bond strength of the porcelain to the pre-oxidized titanium surface remained unchanged after heating (P > 0.05). The SEM results revealed integrity of porcelain and titanium. La-Porcelain showed a small effect of surface coarseness. Sandblasting the titanium surface with 150-180 microns Al2O3 can be recommended as a method for better bonding between La-Porcelain and titanium. The Si-couple agent coating and pre-oxidation of titanium surface is unnecessary.
Zhao, Ruiguo; Liu, Taotao; Wang, Liying; Ma, Haiyan
2014-09-07
A series of titanium trichloride complexes , ligated with claw-type tetradentate aminophenolate ligands were synthesized from the direct reaction of TiCl4(THF)2 with 1 equiv. of the corresponding aminophenol in the presence of triethylamine. For comparison purposes, titanium isopropoxide complexes were also synthesized via the reaction of Ti(O(i)Pr)4 and 1 equiv. of the proligand. Similar reactions of ZrCl4(THF)2 with the corresponding aminophenol ligands in the presence of triethylamine only allowed the isolation of zirconium complex . The X-ray diffraction studies reveal that titanium trichloride complexes , and titanium triisopropoxide complex all possess a distorted octahedral geometry with the tetradentate aminophenolate ligand in cis-O, N, N chelating mode, where the methoxy group of the aryl unit does not coordinate with the metal center in the solid state. Upon activation with MMAO, these titanium and zirconium(iv) complexes exhibited moderate to high catalytic activities for ethylene polymerization at 30-120 °C, producing high-molecular-weight polyethylenes with broad distributions (Mw/Mn = 10.2-34.8). The activities of titanium trichloride complexes are significantly higher than those of titanium isopropoxide and zirconium trichloride complexes at high temperatures. The highest activity of 15 456 kg (mol-Ti h)(-1) could be achieved by titanium trichloride complex with bromo groups on both ortho- and para-positions of the phenolate ring of the ligand at 120 °C.
Spark plasma sintering of titanium aluminide intermetallics and its composites
NASA Astrophysics Data System (ADS)
Aldoshan, Abdelhakim Ahmed
Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.
FY97 Materials & Processes Technology Area Plan
1996-09-01
Offices ess has Center Technology Coun- ings, the first use ever of gamma (SPOs). In addition, we provide cil (CTCs) technology needs Titanium Aluminide ...300,000 in form- structive evaluation (NDE). Four Agreements (CRDAs) with 7 ing of Titanium Aluminide with Data EAchange Agreements more in negotiation and...Systems Aircraft Range with r 50% Decrease in Fuel Propulsion Syste s =Consumption Titanium Aluminides Cast Titanium 25000F Ceramic Matrix Transition
1991-06-01
GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence
Joining of Gamma Titanium Aluminides
2002-09-01
AFRL-ML-WP-TR-2003-4036 JOINING OF GAMMA TITANIUM ALUMINIDES LTC William A. Baeslack, III Metals Branch (AFRL/MLLM) Metals, Ceramics, and...GAMMA TITANIUM ALUMINIDES 5c. PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER MO2R 5e. TASK NUMBER 10 6. AUTHOR(S) LTC William A...comparatively discusses the results of research and development performed on the joining of gamma titanium aluminides during the past two decades. Although
Manufacturing Techniques for Titanium Aluminide Based Alloys and Metal Matrix Composites
2010-01-01
aluminides are being used in the low pressure turbine (LPT) blades . In addition, titanium aluminides were also investigated for use in High Speed Civil... Titanium aluminides are also being used in General Electric’s GEnex gas turbine engine for the 6th and the 7th stage of the low pressure turbine blades ...ABSTRACT Title of Dissertation: MANUFACTURING TECHNIQUES FOR TITANIUM ALUMINIDE BASED ALLOYS AND METAL MATRIX COMPOSITES
Review: Microstructure Engineering of Titanium Alloys via Small Boron Additions (Preprint)
2011-07-01
small amount of boron to γ titanium aluminides (TiAl) has been found to improve room temperature ductility [12]. The principal effect of boron...AFRL-RX-WP-TP-2011-4298 REVIEW: MICROSTRUCTURE ENGINEERING OF TITANIUM ALLOYS VIA SMALL BORON ADDITIONS (Preprint) D.B. Miracle...2011 Journal Article Preprint 01 July 2011 – 01 July 2011 4. TITLE AND SUBTITLE REVIEW: MICROSTRUCTURE ENGINEERING OF TITANIUM ALLOYS VIA SMALL
Iron-titanium-mischmetal alloys for hydrogen storage
Sandrock, Gary Dale
1978-01-01
A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.
The effect of vacuum annealing on corrosion resistance of titanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikanov, V.N.; Peshkov, V.V.; Kireev, L.S.
1994-09-01
The effect of annealing on the corrosion resistance of OT4-1 sheet titanium in 25% HCl under various air pressures and self-evacuating conditions has been investigated. From the kinetic corrosion curves it follows that the least corrosion resistance of titanium is observed after vacuum annealing. Even low residual air pressure in a chamber improves corrosion resistance. The corrosion resistance of titanium decreases with vacuum-annealing time.
Active Materials for Photonic Systems (AMPS)
1998-04-13
titanium isopropoxide were used as metalorganic precursors. The PZT films grown on the (101) oriented Ru02 electrode layers are highly (001) oriented...fabrication it was noted mat adhesion loss occurred at the platinum/ titanium interface. This loss occurred during stripping of the photoresist layer used to...reveal that the titanium was present as titanium dioxide rather than as the original metal. This indicated that oxygen had diffused through the platinum