Sample records for titanium ti substrates

  1. Bioengineered titanium surfaces affect the gene-expression and phenotypic response of osteoprogenitor cells derived from mouse calvarial bones.

    PubMed

    Isaac, J; Galtayries, A; Kizuki, T; Kokubo, T; Berda, A; Sautier, J-M

    2010-09-28

    This study investigated the in vitro effects of bioactive titanium surfaces on osteoblast differentiation. Three titanium substrates were tested: a commercially pure titanium (Cp Ti), an alkali- and heat-treated titanium (AH Ti), and an apatite-formed titanium (Ap Ti) generated by soaking AH Ti in a simulated body fluid. Chemical evaluation of the surface reactivity was analysed at nanometre scale by X-ray photoelectron spectroscopy (XPS), and at micrometre scale by energy dispersive X-ray microanalysis (EDX). It showed that the estimated proportion of the surface covered by adsorbed serum proteins differed between the three substrates and confirmed the bioactivity of AH Ti, illustrated by surface calcium and phosphate deposition when immersed in biological fluids. Mouse calvaria osteoblasts were cultured on the substrates for 15 days with no sign of cytotoxicity. Enzyme immunoassay and Real-Time RT-PCR were used to follow osteoblast differentiation through the production of osteocalcin (OC) and expression of several bone markers. At day 15, a significant up-regulation of Runx2, Osx, Dlx5, ALP, BSP, OC and DMP1 mRNA levels associated with an increase of OC production were observed on AH Ti and Ap Ti when compared to Cp Ti. These results suggest that bioengineered titanium has a great potential for dental applications in enhancing osseointegration.

  2. Proliferation and differentiation of osteoblastic cells on titanium modified by ammonia plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Li, Bin; Sun, Junying; Li, Hongwei; Wang, Bing; Zhang, Shailin

    2012-03-01

    We report here a new method of titanium surface modification through ammonia (NH3) plasma immersion ion implantation (PIII) technique and its effect on the cellular behaviors of MC3T3-E1 osteoblastic cells. The NH3 PIII-treated titanium substrates (NH3-Ti) were characterized by X-ray photoelectron (XPS), which showed that NH3-Ti had a nitrogen-rich surface. However, there was no significant difference between the surface morphology of NH3-Ti and unmodified Ti. When MC3T3-E1 cells were cultured on NH3-Ti substrates, it was found that cell proliferation was accelerated at 4 and 7 days of culture. Meanwhile, cell differentiation was evaluated using type I collagen (COL I), osteocalcin (OC) and bone sialoprotein (BSP) as differentiation markers. It was found that expression of COL I and OC genes was up-regulated on NH3-Ti substrates. However, no significant difference was found in BSP gene expression between NH3-Ti and unmodified Ti substrates. Therefore, findings from this study indicate that surface modification of titanium through NH3 PIII favors osteoblastic proliferation and differentiation and as a result, it may be used to improve the biocompatibility of Ti implants in vivo.

  3. Laser engineered multilayer coating of biphasic calcium phosphate/titanium nanocomposite on metal substrates.

    PubMed

    Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J

    2011-02-01

    In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.

  4. Biofunctionalization of a “Clickable” Organic Layer Photochemically Grafted on Titanium Substrates

    PubMed Central

    Li, Yan; Zhao, Meirong; Wang, Jun; Liu, Kai; Cai, Chengzhi

    2011-01-01

    We have developed a general method combining photochemical grafting and copper-catalyzed click chemistry for biofunctionalization of titanium substrates. The UV-activated grafting of an α,ω-alkenyne onto TiO2/Ti substrates provided a “clickable” thin film platform. The selective attachment of the vinyl end of the molecule to the surface was achieved by masking the alkynyl end with a trimethylgermanyl (TMG) protecting group. Subsequently, various oligo(ethylene glycol) (OEG) derivatives terminated with an azido group were attached to the TMG-alkynyl modified titanium surface via a one-pot deprotection/click reaction. The films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, ellipsometry, and atomic force microscopy (AFM). We showed that the titanium surface presenting click-immobilized OEG substantially suppressed the nonspecific attachment of protein and cells as compared to the unmodified titanium substrate. Furthermore, glycine-arginine-glycine-aspartate (GRGD), a cell adhesion peptide, was coimmobilized with OEG on the platform. We demonstrated that the resultant GRGD-presenting thin film on Ti substrates can promote the specific adhesion and spreading of AsPC-1 cells. PMID:21417429

  5. Scale-Up of a Titanium Carbonitride Coating System for Titanium Alloys.

    DTIC Science & Technology

    1980-07-01

    Ti-Cote C on JT12 Compressor 7th-Stage Airfoil -Optical Photomicrograph Porosity in Ti-Cote C Titanium 6AI- 4V Substrate - -- Mag: 1000OX FD 171506...30 21 TiCN Coating on Titanium 6A1- 4V ...indication of any corrosive damage to the titanium 6A1- 4V . This had been a matter of concern due to the corrosive nature of the reactive gases and

  6. Visible-Light-Induced Bactericidal Activity of a Nitrogen-Doped Titanium Photocatalyst against Human Pathogens

    PubMed Central

    Wong, Ming-Show; Chu, Wen-Chen; Sun, Der-Shan; Huang, Hsuan-Shun; Chen, Jiann-Hwa; Tsai, Pei-Jane; Lin, Nien-Tsung; Yu, Mei-Shiuan; Hsu, Shang-Feng; Wang, Shih-Lien; Chang, Hsin-Hou

    2006-01-01

    The antibacterial activity of photocatalytic titanium dioxide (TiO2) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO2 substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO2 and carbon-doped TiO2 substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO2 substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO2 substrates than by pure TiO2 substrates. These findings suggest that nitrogen-doped TiO2 has potential application in the development of alternative disinfectants for environmental and medical usages. PMID:16957236

  7. Method and apparatus for coating substrates using a laser

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I. (Inventor)

    1984-01-01

    Metal substrates, preferably of titanium and titanium alloys, are coated by alloying or forming TiN on a substrate surface. A laser beam strikes the surface of a moving substrate in the presence of purified nitrogen gas. A small area of the substrate surface is quickly heated without melting. This heated area reacts with the nitrogen to form a solid solution. The alloying or formation of TiN occurs by diffusion of nitrogen into the titanium. Only the surface layer of the substrate is heated because of the high power density of the laser beam and short exposure time. The bulk of the substrate is not affected, and melting of the substrate is avoided because it would be detrimental.

  8. Surface XPS characterization of NiTi shape memory alloy after advanced oxidation processes in UV/H 2O 2 photocatalytic system

    NASA Astrophysics Data System (ADS)

    Wang, R. M.; Chu, C. L.; Hu, T.; Dong, Y. S.; Guo, C.; Sheng, X. B.; Lin, P. H.; Chung, C. Y.; Chu, P. K.

    2007-08-01

    Surface structure of NiTi shape memory alloy (SMA) was modified by advanced oxidation processes (AOP) in an ultraviolet (UV)/H 2O 2 photocatalytic system, and then systematically characterized with x-ray photoelectron spectroscopy (XPS). It is found that the AOP in UV/H 2O 2 photocatalytic system leads to formation of titanium oxides film on NiTi substrate. Depth profiles of O, Ni and Ti show such a film possesses a graded interface structure to NiTi substrate and there is no intermediate Ni-rich layer like that produced in conventional high temperature oxidation. Except TiO 2 phase, some titanium suboxides (TiO, Ti 2O 3) may also exist in the titanium oxides film. Oxygen mainly presents in metal oxides and some chemisorbed water and OH - are found in titanium oxides film. Ni nearly reaches zero on the upper surface and relatively depleted in the whole titanium oxides film. The work indicates the AOP in UV/H 2O 2 photocatalytic system is a promising way to favor the widespread application of biomedical NiTi SMA by improving its biocompatibility.

  9. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...

  10. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...

  11. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...

  12. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...

  13. [Cr-Ti-Al-N complex coating on titanium to strengthen Ti/porcelain bonding].

    PubMed

    Zhang, Hui; Guo, Tian-wen; Li, Jun-ming; Pan, Jing-guang; Dang, Yong-gang; Tong, Yu

    2006-02-01

    To study the feasibility of magnetron sputtering Cr-Ti-Al-N complex coating as an interlayer on titanium to enhance the titanium-ceramic binding strength. With a three-point bending test according to ISO 9693, the binding strength of Duceratin (Degussa) to titanium substrate prepared with 4 different surface treatments (polishing, polishing and megnetron sputtering Cr, Ti, Al, and N complex coating, sandblasting, sandblasting and coating) was evaluated. Ti/porcelain interface and fractured Ti surface were examined using scanning electron microscopy with energy-dispersive spectrometry (EDS). The binding strength of polished and coated titanium/Duceratin was significantly higher than polished titanium group (P<0.05). The binding strength of sandblasted and coated titanium/Duceratin did not differ significantly from that of sandblasted titanium group (P>0.05), and the strength in the two sandblasted titanium groups was significantly higher than that in polished and coated titanium group (P<0.05). Megnetron sputtering Cr-Ti-Al-N complex on polished titanium can increase the titanium/porcelain binding strength. Megnetron sputtering coating is a promising Ti/porcelain interlayer.

  14. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    PubMed

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  15. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  16. Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu

    2008-10-01

    Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.

  17. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  18. A bioactive coating with submicron-sized titania crystallites fabricated by induction heating of titanium after tensile deformations.

    PubMed

    Li, Ning-Bo; Xu, Wen-Hua; Xiao, Gui-Yong; Zhao, Jun-Han; Lu, Yu-Peng

    2017-11-01

    Thermal oxidation technology was widely investigated as one of effective surface modification method for improving the bioactivity and biocompatibility of titanium and its alloys. In this work, the induction heat oxidization method, a fast, efficient, economical and environmental protective technology, was applied to prepare the submicron-morphological oxide coating with variable rutile TiO 2 equiaxed crystallites on the surface of pure Ti substrates after cold-drawing with 10-20% deformations. The results showed the plastic-deformed Ti cylinders recrystallized during induction heating treatment (IHT) for 10-20s which resulted in evolution of microstructures as well as slight improvement of microhardness. The surface characteristics of TiO 2 crystallites in oxidation layers were determined by the microstructural evolutions of Ti substrate in terms of the nucleation and growth of TiO 2 crystallites. Specially, the oxidized surface with 50-75nm roughness and more uniform and finer equiaxed oxide grains remarkablely improved the apatite deposition after bioactive evaluation in 1.5 × SBF for 7 days. This work provided a potential method to create controlled bioactive oxide coatings with submicro-/nano-scaled TiO 2 crystallites on titanium substrate in terms of the role of metallographic microstructure in the formation process of titanium oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films

    DOE PAGES

    Yu, Ing-Song; Cheng, Hsyi-En; Chang, Chun-Chieh; ...

    2017-02-06

    The plasmonic properties of titanium nitride (TiN) films depend on the type of substrate when using typical deposition methods such as sputtering. We show atomic layer deposition (ALD) of TiN films with very weak dependence of plasmonic properties on the substrate, which also suggests the prediction and evaluation of plasmonic performance of TiN nanostructures on arbitrary substrates under a given deposition condition. Our results also observe that substrates with more nitrogen-terminated (N-terminated) surfaces will have significant impact on the deposition rate as well as the film plasmonic properties. Furthermore, we illustrate that the plasmonic properties of ALD TiN films canmore » be tailored by simply adjusting the deposition and/or post-deposition annealing temperatures. These characteristics and the capability of conformal coating make ALD TiN films on templates ideal for applications that require the fabrication of complex 3D plasmonic nanostructures.« less

  20. Effect of Ti Substrate Ion Implantation on the Physical Properties of Anodic TiO2 Nanotubes

    NASA Astrophysics Data System (ADS)

    Jedi-Soltanabadi, Zahra; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-03-01

    The influence of nitrogen-ion implantation on the titanium (Ti) surface is studied. The nontreated Ti and the Ti treated with ion implantation were anodized in an ethylene-glycol-based electrolyte solution containing 0.3 wt% ammonium fluoride (NH4F) and 3 vol% deionized (DI) water at a potential of 60 V for 1 h at room temperature. The current density during the growth of the TiO2 nanotubes was monitored in-situ. The surface roughnesses of the Ti substrates before and after the ion implantation were investigated with atomic force microscopy (AFM). The surface roughness was lower for the treated Ti substrate. The morphology of the anodic TiO2 nanotubes was studied by using field-emission scanning electron microscopy (FESEM). Clearly, the titanium nanotubes grown on the treated substrate were longer. In addition, some ribs were observed on their walls. The optical band gap of the anodic TiO2 nanotubes was characterized by using a diffuse reflection spectral (DRS) analysis. The anodic TiO2 nanotubes grown on the treated Ti substrate revealed a band gap energy of approximately 3.02 eV.

  1. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  2. Highly efficient TiO2-based microreactor for photocatalytic applications.

    PubMed

    Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran

    2013-09-25

    A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.

  3. Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates.

    PubMed

    Ji, Xiaoli; Lou, Weiwei; Wang, Qi; Ma, Jianfeng; Xu, Haihong; Bai, Qing; Liu, Chuantong; Liu, Jinsong

    2012-01-01

    In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO(2)) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO(2) coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO(2) coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO(2) double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO(2) coatings on Ti substrates might be a promising material for bone replacement.

  4. Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN

    NASA Astrophysics Data System (ADS)

    Anand, Akrity; Das, Mitun; Kundu, Biswanath; Balla, Vamsi Krishna; Bodhak, Subhadip; Gangadharan, S.

    2017-12-01

    Plasma spraying was used to deposit premixed Ti6Al4V + 15 wt.% BN powder on titanium substrate to fabricate Ti6Al4V matrix composite coatings reinforced with in situ synthesized TiB-TiN. The formation of in situ TiB-TiN reinforcements increased with plasma power. The in situ reaction appears to be complete under present experimental conditions but with considerable oxidation of Ti in the composite coatings. The hardness of composite coatings was 7 times higher (855HV), and the in vitro wear rate (2.4 × 10-5 mm3/N m) was one order of magnitude less than that of titanium substrate. However, the microstructural non-uniformity decreased the corrosion resistance of these composite coatings in Hank's balanced salt solution.

  5. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  6. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  7. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  8. Waterless TiO{sub 2} atomic layer deposition using titanium tetrachloride and titanium tetraisopropoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Virginia R.; Cavanagh, Andrew S.; Abdulagatov, Aziz I.

    2014-01-15

    The surface chemistry for TiO{sub 2} atomic layer deposition (ALD) typically utilizes water or other oxidants that can oxidize underlying substrates such as magnetic disks or semiconductors. To avoid this oxidation, waterless or oxidant-free surface chemistry can be used that involves titanium halides and titanium alkoxides. In this study, waterless TiO{sub 2} ALD was accomplished using titanium tetrachloride (TiCl{sub 4}) and titanium tetraisopropoxide (TTIP). In situ transmission Fourier transform infrared (FTIR) studies were employed to study the surface species and the reactions during waterless TiO{sub 2} ALD. At low temperatures between 125 and 225  °C, the FTIR absorbance spectra revealed thatmore » the isopropoxide species remained on the surface after TTIP exposures. The TiCl{sub 4} exposures then removed the isopropoxide species and deposited additional titanium species. At high temperatures between 250 and 300  °C, the isopropoxide species were converted to hydroxyl species by β-hydride elimination. The observation of propene gaseous reaction product by quadrupole mass spectrometry (QMS) confirmed the β-hydride elimination reaction pathway. The TiCl{sub 4} exposures then easily reacted with the hydroxyl species. QMS studies also observed the 2-chloropropane and HCl gaseous reaction products and monitored the self-limiting nature of the TTIP reaction. Additional studies examined the waterless TiO{sub 2} ALD growth at low and high temperature. Quartz crystal microbalance measurements observed growth rates of ∼3 ng/cm{sup 2} at a low temperature of 150  °C. Much higher growth rates of ∼15 ng/cm{sup 2} were measured at a higher temperature of 250  °C under similar reaction conditions. X-ray reflectivity analysis measured a growth rate of 0.55 ± 0.05 Å/cycle at 250  °C. X-ray photoelectron depth-profile studies showed that the TiO{sub 2} films contained low Cl concentrations <1 at. %. This waterless TiO{sub 2} ALD process using TiCl{sub 4} and TTIP should be valuable to prevent substrate oxidation during TiO{sub 2} ALD on oxygen-sensitive substrates.« less

  9. Electronic and Optical Properties of Titanium Nitride Bulk and Surfaces from First Principles Calculations (Postprint)

    DTIC Science & Technology

    2015-11-18

    thickness of the film, or substrate. In this work, we report calculations for titanium nitride ( TiN ), a promising material for plasmonic applications...stoichiometric bulk TiN , as well as of the TiN (100), TiN (110), and TiN (111) outermost surfaces. Density functional theory (DFT) and many-body GW methods...and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity

  10. In vitro apatite formation on nano-crystalline titania layer aligned parallel to Ti6Al4V alloy substrates with sub-millimeter gap.

    PubMed

    Hayakawa, Satoshi; Matsumoto, Yuko; Uetsuki, Keita; Shirosaki, Yuki; Osaka, Akiyoshi

    2015-06-01

    Pure titanium substrates were chemically oxidized with H2O2 and subsequent thermally oxidized at 400 °C in air to form anatase-type titania layer on their surface. The chemically and thermally oxidized titanium substrate (CHT) was aligned parallel to the counter specimen such as commercially pure titanium (cpTi), titanium alloy (Ti6Al4V) popularly used as implant materials or Al substrate with 0.3-mm gap. Then, they were soaked in Kokubo's simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days. XRD and SEM analysis showed that the in vitro apatite-forming ability of the contact surface of the CHT specimen decreased in the order: cpTi > Ti6Al4V > Al. EDX and XPS surface analysis showed that aluminum species were present on the contact surface of the CHT specimen aligned parallel to the counter specimen such as Ti6Al4V and Al. This result indicated that Ti6Al4V or Al specimens released the aluminum species into the SBF under the spatial gap. The released aluminum species might be positively or negatively charged in the SBF and thus can interact with calcium or phosphate species as well as titania layer, causing the suppression of the primary heterogeneous nucleation and growth of apatite on the contact surface of the CHT specimen under the spatial gap. The diffusion and adsorption of aluminum species derived from the half-sized counter specimen under the spatial gap resulted in two dimensionally area-selective deposition of apatite particles on the contact surfaces of the CHT specimen.

  11. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base.

    PubMed

    Rokita, M

    2011-08-15

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base

    NASA Astrophysics Data System (ADS)

    Rokita, M.

    2011-08-01

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.

  13. Adherence of sputtered titanium carbides

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    The study searches for interface treatment that would increase the adhesion of TiC coating to nickel- and titanium-base alloys. Rene 41 (19 wt percent Cr, 11 wt percent Mo, 3 wt percent Ti, balance Ni) and Ti-6Al-4V (6 wt percent Al, 4 wt percent V, balance Ti) are considered. Adhesion of the coatings is evaluated in pin-and disk friction tests. The coatings and interface regions are examined by X-ray photoelectron spectroscopy. Results suggest that sputtered refractory compound coatings adhere best when a mixed compound of coating and substrate metals is formed in the interfacial region. The most effective type of refractory compound interface appears to depend on both substrate and coating material. A combination of metallic interlayer deposition and mixed compound interface formation may be more effective for some substrate coating combinations than either alone.

  14. Cathodic cage plasma deposition of TiN and TiO{sub 2} thin films on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousa, Romulo R. M. de; Sato, Patricia S.; Nascente, Pedro A. P., E-mail: nascente@ufscar.br

    2015-07-15

    Cathodic cage plasma deposition (CCPD) was used for growing titanium nitride (TiN) and titanium dioxide (TiO{sub 2}) thin films on silicon substrates. The main advantages of the CCPD technique are the uniformity, tridimensionality, and high rate of the film deposition that occurs at higher pressures, lower temperatures, and lower treatment times than those used in conventional nitriding treatments. In this work, the influence of the temperature and gas atmosphere upon the characteristics of the deposited films was investigated. The TiN and TiO{sub 2} thin films were characterized by x-ray diffraction, scanning electron microscopy, and Raman spectroscopy to analyze their chemical,more » structural, and morphological characteristics, and the combination of these results indicates that the low-cost CCPD technique can be used to produce even and highly crystalline TiN and TiO{sub 2} films.« less

  15. Inherent substrate-dependent growth initiation and selective-area atomic layer deposition of TiO{sub 2} using “water-free” metal-halide/metal alkoxide reactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanasov, Sarah E.; Kalanyan, Berç; Parsons, Gregory N., E-mail: gnp@ncsu.edu

    2016-01-15

    Titanium dioxide atomic layer deposition (ALD) is shown to proceed selectively on oxidized surfaces with minimal deposition on hydrogen-terminated silicon using titanium tetrachloride (TiCl{sub 4}) and titanium tetra-isopropoxide [Ti(OCH(CH{sub 3}){sub 2}){sub 4}, TTIP] precursors. Ex situ x-ray photoelectron spectroscopy shows a more rapid ALD nucleation rate on both Si–OH and Si–H surfaces when water is the oxygen source. Eliminating water delays the oxidation of the hydrogen-terminated silicon, thereby impeding TiO{sub 2} film growth. For deposition at 170 °C, the authors achieve ∼2 nm of TiO{sub 2} on SiO{sub 2} before substantial growth takes place on Si–H. On both Si–H and Si–OH, themore » surface reactions proceed during the first few TiCl{sub 4}/TTIP ALD exposure steps where the resulting products act to impede subsequent growth, especially on Si–H surfaces. Insight from this work helps expand understanding of “inherent” substrate selective ALD, where native differences in substrate surface reaction chemistry are used to promote desired selective-area growth.« less

  16. High power RF window deposition apparatus, method, and device

    DOEpatents

    Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel

    2017-07-04

    A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S. K.; Mohan, S.; Bysakh, S.

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletionmore » of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.« less

  18. Corrosion resistance of nanostructured titanium.

    PubMed

    Garbacz, H; Pisarek, M; Kurzydłowski, K J

    2007-11-01

    The present work reports results of studies of corrosion resistance of pure nano-Ti-Grade 2 after hydrostatic extrusion. The grain size of the examined samples was below 90 nm. Surface analytical technique including AES combined with Ar(+) ion sputtering, were used to investigate the chemical composition and thicknesses of the oxides formed on nano-Ti. It has been found that the grain size of the titanium substrate did not influence the thickness of oxide formed on the titanium. The thickness of the oxide observed on the titanium samples before and after hydrostatic extrusion was about 6 nm. Tests carried out in a NaCl solution revealed a slightly lower corrosion resistance of nano-Ti in comparison with the titanium with micrometric grain size.

  19. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    PubMed

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Inorganic fullerene-like tungsten disulfide nanocoating for friction reduction of nickel-titanium alloys.

    PubMed

    Samorodnitzky-Naveh, Gili R; Redlich, Meir; Rapoport, Lev; Feldman, Yishay; Tenne, Reshef

    2009-12-01

    To fabricate a friction-reducing coating onto different nickel-titanium (NiTi) substrates using inorganic fullerene-like tungsten disulfide (IF-WS(2)) nanoparticles and to estimate in vitro friction reducing extent of the coating. Different NiTi substrates were coated with cobalt and IF-WS(2) nanoparticles film by the electrodeposition procedure. Coating composition analyses was made by scanning-electron microscopy, energy dispersive x-ray spectroscopy, x-ray powder diffractometry and x-ray photoelectron spectroscopy. Friction evaluation was carried out using standard tribological tests and an Instron system. Stable and well-adhered cobalt + IF-WS(2) coating of the NiTi substrates was obtained. Friction tests presented up to 66% reduction of the friction coefficient. NiTi alloy is widely used for many medical appliances; hence, this unique friction-reducing coating could be implemented to provide better manipulation and lower piercing rates.

  1. Surface modification of titanium nitride film by a picosecond Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Gakovic, B.; Trtica, M.; Batani, D.; Desai, T.; Panjan, P.; Vasiljevic-Radovic, D.

    2007-06-01

    The interaction of a picosecond Nd:YAG laser (wavelength 532 nm, pulse duration 40 ps) with a polycrystalline titanium nitride (TiN) film was studied. The TiN thin film was deposited by physical vapour deposition on a silicon substrate. The titanium nitride/silicon system was modified with an energy fluence from 0.2 to 5.9 J cm-2. Multi-pulse irradiation was performed in air by a focused laser beam. Surface modifications were analysed after 1 100 successive laser pulses. Depending on the laser pulse energy and pulse count, the following phenomena were observed: (i) increased surface roughness, (ii) titanium nitride film cracking, (iii) silicon substrate modification, (iv) film exfoliation and (v) laser-induced periodical surface structures on nano- (NPSS) and micro-dimensions (MPSS).

  2. Fabrication and deformation behaviour of multilayer Al2O3/Ti/TiO2 nanotube arrays.

    PubMed

    Baradaran, S; Basirun, W J; Zalnezhad, E; Hamdi, M; Sarhan, Ahmed A D; Alias, Y

    2013-04-01

    In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Kirner, S. V.; Koter, R.; Pentzien, S.; Spaltmann, D.; Krüger, J.

    2017-10-01

    Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces.

  4. Fe-C-Si ternary composite coating on CP-titanium and its tribological properties

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Saffina, W.; Ahmed, A. S.; Ali, M. Y.

    2017-03-01

    This study focused on the development of ternary composite coating through incorporation of Fe-C-Si ternary powder mixtures on CP-Ti substrate and characterizes the microstructure, hardness and wears behavior in presence of Jatropha oil. In this work, the surface of commercial purity titanium (CP-Ti) was modified using a tungsten inert gas (TIG) surface melting technique. The wear behavior of coated CP-titanium was performed using pin-on-disk machine. The results showed that the melt track has dendritic microstructure which was homogenously distributed throughout the melt pool. This Fe-C-Si ternary composite coating enhanced the surface hardness of CP-Ti significantly from 175 HV for the untreated substrate to ∼800 HV for the Fe-C-Si coated CP-Ti due to the formation of intermetallic compounds.. The wear results showed that less wear volume loss was observed on the composite coated CP-Ti in presence of Jatropha-biodiesel compared to uncoated CP-Ti. The achievement of this hard Fe-C-Si composite coating on the surface of CP-Ti can broadened new prospect for many engineering applications that use biodiesel under different tribological variables.

  5. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    NASA Astrophysics Data System (ADS)

    Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.

    2012-12-01

    Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  6. Structural characterization of oxidized titanium surfaces

    NASA Astrophysics Data System (ADS)

    Jobin, M.; Taborelli, M.; Descouts, P.

    1995-05-01

    Oxidized titanium surfaces resulting from various processes have been structurally characterized by means of scanning force microscopy, x-ray photoemission spectroscopy (XPS), x-ray diffraction, and electron energy-loss spectroscopy (EELS) with losses in the 0-100 eV range. It has been found that the surface morphology has a granular structure for electropolished titanium and for titanium evaporated on mica at low substrate temperature (570 K), but changes to flat terraces for the films evaporated at higher temperature (770 K). Angular-dependent XPS has revealed the presence of a Ti2O3 suboxide at the Ti/TiO2 interface for electropolished titanium. Dry oxidation has been performed at 770 and 970 K on both weakly and highly crystallized evaporated titanium films oriented along (0001). In the case of underlying crystallized metallic titanium, the resulting TiO2 films are crystallized with the anatase (004) orientation for oxidation at 770 K and with rutile (200) orientation for oxidation at 970 K. EELS spectra interpreted in terms of the molecular orbitals of a (TiO6)8- cluster show that the local octahedral environment of titanium atoms is preserved on native oxides, even if these oxides are not crystallized.

  7. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang

    2016-11-01

    TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.

  8. Effect of substrate surface treatment on electrochemically assisted photocatalytic activity of N-S co-doped TiO2 films

    NASA Astrophysics Data System (ADS)

    Parada-Gamboa, N. J.; Pedraza-Avella, J. A.; Meléndez, A. M.

    2017-01-01

    To investigate whether different metal surface treatments, performed on meshes of stainless steel 304 and titanium, affect the photocatalytic activity (PCA) of supported modified anodic TiO2 films, metallic substrates were coated with titanium isopropoxide sol-gel precursor modified with thiourea. Substrates were pretreated by some of the following techniques: a) sandblasting, b) pickling, c) hydroxylation and d) passivation. The as-prepared electrode materials were characterized by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and voltammetry in the dark and under light UVA irradiation. PCA of modified N-S-TiO2 electrodes was evaluated by electrochemically assisted photocatalytic degradation of methyl orange. The results of XPS revealed that N and S were incorporated into the lattice of TiO2. FESEM showed that surface roughness and thickness of films varies depending on surface treatment. Voltammetric and XPS characterization of N-S co-doped TiO2 films supported on stainless steel revealed that their surface contains alpha-Fe2O3/FeOOH. Accordingly, iron contamination of the films coming from stainless steel was detrimental to the degradation of methyl orange. Prior to sol-gel coating process, sandblasting followed by nitric acid passivation for stainless steel or hydrofluoric acid pickling process in the case of titanium improved the PCA of N-S co-doped TiO2 films.

  9. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  10. NASA Astrophysics Data System (ADS)

    Mohanty, M.; Smith, R. W.

    1995-12-01

    Lightweight coatings based on titanium and titanium carbides produced by plasma spraying can be used to improve and modify the tribomechanical properties of aerospace structural materials. Although plasma-sprayed WC/Co coatings have been applied with success in many cases, such as primary wear-re-sistant materials, their high densities preclude their use in applications that mandate reduction in weight. In the present investigation, the sliding wear resistance of plasma-sprayed, metal-bonded TiC coatings on AI 7075 substrates was studied. Coatings containing 50, 70, and 90 vol% TiC in a Ti matrix produced from physically blended powders of Ti and TiC were compared. Metallographie evaluations showed that dense coatings with good bonding to AI 7075 substrates can be obtained. Coatings from commercial pu-rity (CP) Ti powders sprayed in air under atmospheric conditions, however, indicated considerable oxi-dation of the particles. Under dry sliding conditions, the coefficient of friction (COF) values of the Ti/TiC containing/Al 7075 substrate system were lower than high-velocity oxygen fuel (HVOF) sprayed 75% Cr3C2/25%NiCr coatings on steel and were comparable to coatings of WC/Co. Vacuum plasma-sprayed TiC/Ti coatings with 90 vol% TiC also exhibited better wear resistance than HVOF sprayed 75%Cr3C2/25%NiCr.

  11. Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells.

    PubMed

    Lu, Ran; Wang, Caiyun; Wang, Xin; Wang, Yuji; Wang, Na; Chou, Joshua; Li, Tao; Zhang, Zhenting; Ling, Yunhan; Chen, Su

    2018-01-01

    Modified titanium (Ti) substrates with titanium dioxide (TiO 2 ) nanotubes have broad usage as implant surface treatments and as drug delivery systems. To improve drug-loading capacity and accelerate bone integration with titanium, in this study, we hydrogenated anodized titanium dioxide nanotubes (TNTs) by a thermal treatment. Three groups were examined, namely: hydrogenated TNTs (H 2 -TNTs, test), unmodified TNTs (air-TNTs, control), and Ti substrates (Ti, control). Our results showed that oxygen vacancies were present in all the nanotubes. The quantity of -OH groups greatly increased after hydrogenation. Furthermore, the protein adsorption and loading capacity of the H 2 -TNTs were considerably enhanced as compared with the properties of the air-TNTs ( P <0.05). Additionally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to investigate the interactions of TNTs with proteins. During the protein-loading process, the H 2 -TNTs not only enabled rapid protein adsorption, but also decreased the rate of protein elution compared with that of the air-TNTs. We found that the H 2 -TNTs exhibited better biocompatibility than the air-TNT and Ti groups. Both cell adhesion activity and alkaline phosphatase activity were significantly improved toward MG-63 human osteoblast-like cells as compared with the control groups ( P <0.05). We conclude that hydrogenated TNTs could greatly improve the loading capacity of bioactive molecules and MG-63 cell proliferation.

  12. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    PubMed

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the early stage.

  13. Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications.

    PubMed

    Hung, Wei-Chiang; Chang, Fang-Mo; Yang, Tzu-Sen; Ou, Keng-Liang; Lin, Che-Tong; Peng, Pei-Wen

    2016-11-01

    Titanium dioxide (TiO2) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti(4+) chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO2 with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Kinetic and microstructural study of titanium nitride deposited by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Egland, Keith Maynard

    Titanium nitride (TiN) films were deposited onto Ti-6Al-4V substrates by laser chemical vapor deposition using a cw COsb2 laser and TiClsb4,\\ Nsb2, and Hsb2 reactant gases. In-situ laser induced fluorescence (LIF) and multi-wavelength pyrometry determined relative titanium gas phase atomic number density and deposition temperature, respectively. Deposited films were yellow to gold in color. Transmission electron microscopy on one sample revealed a face-centered cubic structure with a lattice parameter (0.4237 nm) expected for TiN. Auger electron spectroscopy found substoichiometric compositions with a N/Ti ratio between 0.7 and 0.9. Variables decreasing grain size (lower temperature, higher TiClsb4 input) decreased the N/Ti ratio. Higher Nsb2 input increased stoichiometry, while larger Hsb2 input decreased stoichiometry. The deposit substoichiometry is believed to be caused by diffusion of nitrogen through TiN grain boundaries to the titanium alloy substrate. The morphology starts as a dense polycrystalline structure evolving into a columnar structure having facets or nodules at the surface with crystallite sizes ranging from 10-1000 nm. TiClsb4 input had a inverse correlation with crystallite size, while Nsb2:Hsb2 ratio had minimal effect; the crystallite size (G) varied exponentially with temperature (T) for a given irradiation time, i.e., G = C exp (-28000/T), with constant C reflecting substrate roughness and gas composition. Microhardness tests revealed substrate contributions; nevertheless, films appeared to have a minimum hardness of 2000 Hsbv. The deposition apparent activation energy was calculated as 122 ± 9 kJ/mole using growth rates measured by film height and 117 ± 23 kJ/mole using growth rates measured by LIF signals. This puts the process in the surface kinetic growth regime over the temperature range 1370-1610 K. Above Nsb2 and Hsb2 levels of 1.25% and below TiClsb4 input of 4.5%, the growth rate has a half-order dependence on nitrogen and a linear dependence on hydrogen and is approximated by$r = {{kPsb{TiClsb4}Psb{Hsb2}Psbsp{Nsb2}{1/2}exp≤ft({{-}Esb{a}/ {RT}right)}/{1 + Psb{Ar}}}}.Since nitrogen positively affects growth rate (when added to a TiClsb4+Hsb2 mixture), stepwise reduction of TiClsb4 to Ti by hydrogen does not occur. NHsb{x} complexes are clearly involved in the growth mechanism; a likely combination of rate determining steps is the formation of NH and the initial reduction of TiClsb4$ by hydrogen.

  15. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  16. Excimer laser decoating of chromium titanium aluminium nitride to facilitate re-use of cutting tools

    NASA Astrophysics Data System (ADS)

    Sundar, M.; Whitehead, D.; Mativenga, P. T.; Li, L.; Cooke, K. E.

    2009-11-01

    This work reports on the technical feasibility and establishment of a process window for removing chromium titanium aluminium nitride (CrTiAlN) coating from steel substrates by laser irradiation. CrTiAlN coating has high hardness and oxidation resistance, with applications for use with cutting tools. The motivation for removing such coatings is to facilitate re-use of tooling by enabling regrinding or reshaping of a worn tool and hence promote sustainable material usage. In this work, laser decoating was performed using an excimer laser. The effect of laser fluence, number of pulses, frequency, scanning speed and laser beam overlap on the decoating performance was investigated in detail. The minimum threshold laser fluence for removing the CrTiAlN coating was lower than that of the steel substrate and this factor is beneficial in controlling the decoating process. Successful laser removal of CrTiAlN coating without noticeable damage to the steel substrate was demonstrated.

  17. Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.

    2017-01-01

    Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.

  18. Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.

    2009-12-01

    Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.

  19. Porous titanium obtained by a new powder metallurgy technique: Preliminary results of human osteoblast adhesion on surface polished substrates.

    PubMed

    Biasotto, M; Ricceri, R; Scuor, N; Schmid, C; Sandrucci, M A; Di Lenarda, R; Matteazzi, P

    2003-01-01

    This study concerns a novel powder metallurgy method for producing porous titanium (pTi) exhibiting high mechanical properties. The preparation procedure consisted of the following stages: first, the preparation of Ti and titanium hydride (TiH2) powder mixtures and their consolidation with a cold isostatic press, followed by a sintering of the green bodies performed with hot isostatic press (HIP) equipment. Thermal decomposition in controlled environment of the TiH2 phase results in the foam structure. The resulting porosity percolates with a volume fraction of approximately 20%. The final material exhibits interesting mechanical properties, comparable to those of full density titanium (between grade 2 and grade 3), with the advantage of a minor density. The samples produced were tested to verify their biological response by studying the effectiveness of osteoblast adhesion and growth. In this preliminary study, osteoblastic cell morphology was investigated and compared to that observed on fully dense commercially pure titanium (Ti-cp) (ASTM, grade 3). The preliminary results were promising regarding cellular adhesion and spreading. (Journal of Applied Biomaterials & Biomechanics 2003; 1: 172-7).

  20. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    PubMed

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Sputtering characteristics, crystal structures, and transparent conductive properties of TiOxNy films deposited on α-Al2O3(0 0 0 1) and glass substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2012-12-01

    Adding N2 gas during reactive sputtering of a Ti target prevented the target surface from being severely poisoned by oxygen atoms and sustained a high deposition rate for titanium oxynitride films under metal-mode-like sputtering conditions. With progress in the degree of oxidization, films deposited onto a glass substrate varied from TiO1-xNx having a face-centered cubic (fcc) structure to TiO2-xNx having an anatase structure. Titanium oxynitride films deposited on an Al2O3(0 0 0 1) substrate were epitaxial with major orientations toward the (1 1 1) and (2 0 0) directions for fcc-TiO1-xNx and (1 1 2) for anatase-TiO2-xNx. Intermediately oxidized films between TiO1-xNx and TiO2-xNx were amorphous on the glass substrate but crystallized into a Magneli phase, TinO(N)2n-1, on the Al2O3(0 0 0 1) substrate. Partially substituting oxygen in TiO2 with nitrogen as well as continuously irradiating the growing film surface with a Xe plasma stream preferentially formed anatase rather than rutile. However, the occupation of anion sites with enough oxygen rather than nitrogen was the required condition for anatase crystals to form. The transparent conductive properties of epitaxial TiO2-xNx films on Al2O3(0 0 0 1) were superior to those of microcrystalline films on the glass substrate. Since resistivity and optical transmittance of TiOxNy films vary continuously with changing N2 flow rate, their transparent conductive properties can be controlled more easily than TiOx. Nb5+ ions could be doped as donors in TiO2-xNx anatase crystals.

  2. Optical, electrical and dielectric properties of TiO2-SiO2 films prepared by a cost effective sol-gel process.

    PubMed

    Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S

    2011-12-01

    Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Ultraviolet-Diode Pump Solid State Laser Removal of Titanium Aluminium Nitride Coating from Tungsten Carbide Substrate

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar

    2017-09-01

    This paper presents an investigation on the titanium aluminium nitride (TiAlN) coating removal from tungsten carbide (WC-Co) substrate using a diode pump solid state (DPSS) ultraviolet (UV) laser with maximum average power of 90 W, wavelength of 355 nm and pulse width of 50 ns. The TiAlN coating of 1.5 μm thickness is removed from the WC-Co substrate with laser fluence of 2.71 J/cm2 at 285.6 number of pulses (NOP) and with NOP of 117.6 at 3.38 J/cm2 fluence. Titanium oxide formation was observed on the ablated surface due to the re-deposition of ablated titanium residue and also attributed to the high temperature observed during the laser ablation process. Crack width of around 0.2 μm was observed over both TiAlN coating and WC-Co substrate. The crack depth ranging from 1 to 10 μm was observed and is related to the thickness of the melted carbide. The crack formation is a result of the thermal induced stresses caused by the laser beam interaction with the material as well as the higher thermal conductivity of cobalt compared to WC. Two cleaning regions are observed and is a consequence of the Gaussian distribution of the laser beam energy. The surface roughness of the ablated WC-Co increased with increasing laser fluence and NOP.

  4. Thermally Oxidized C, N Co-Doped ANATASE-TiO2 Coatings on Stainless Steel for Tribological Properties

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Shu, Xuefeng; Li, Xiuyan; Tang, Bin; Lin, Naiming

    2013-07-01

    Ti(C, N) coatings were prepared on stainless steel (SS) substrates by plasma surface alloying technique. Carbon-nitrogen co-doped titanium dioxide (C-N-TiO2) coatings were fabricated by oxidative of the Ti(C, N) coatings in air. The prepared C-N-TiO2 coatings were characterized by SEM, XPS and XRD. Results reveal that the SS substrates were entirely shielded by the C-N-TiO2 coatings. The C-N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The tribological behavior of the coatings was tested with ball-on-disc sliding wear and compared with substrate. Such a C-N-TiO2 coatings showed good adhesion with the substrate and tribological properties of the SS in terms of much reduced friction coefficient and increased wear resistance.

  5. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal

    2017-03-01

    Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

  6. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Go

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgymore » (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions •External TiN and internal a Mo-rich layer on all alloy substrates •Titanium aluminides and Ti-Al mixed nitrides are formed on Ti-6Al-4V •The presence of Al and V alloying elements modifies the diffusion of Mo.« less

  7. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  8. Porous TiO₂ surface formed on nickel-titanium alloy by plasma electrolytic oxidation: a prospective polymer-free reservoir for drug eluting stent applications.

    PubMed

    Huan, Zhiguang; Fratila-Apachitei, Lidy E; Apachitei, Iulian; Duszczyk, Jurek

    2013-07-01

    In this study, a porous oxide layer was formed on the surface of nickel-titanium alloy (NiTi) by plasma electrolytic oxidation (PEO) with the aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanostatically in concentrated phosphoric acid electrolyte at low temperature. It was found that the response of NiTi substrate during the PEO process was different from that of bulk Ti, since the presence of large amount of Ni delayed the initial formation of a compact oxide layer that is essential for the PEO to take place. Under optimized PEO conditions, the resultant surface showed porosity, pore density and oxide layer thickness of 14.11%, 2.40 × 10⁵ pores/mm² and 0.8 μm, respectively. It was additionally noted that surface roughness after PEO did not significantly increase as compared with that of original NiTi substrate and the EDS analyses revealed a decrease in Ni/Ti ratio on the surface after PEO. The cross-section morphology showed no discontinuity between the PEO layer and the NiTi substrate. Furthermore, wettability and surface free energy of the NiTi substrate increased significantly after PEO treatment. The PEO process could be successfully translated to NiTi stent configuration proving for the first time its feasibility for such a medical device and offering potential for development of alternative, polymer-free drug carriers for NiTi DES. Copyright © 2013 Wiley Periodicals, Inc.

  9. Grafting strategy to develop single site titanium on an amorphous silica surface.

    PubMed

    Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G

    2009-06-16

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.

  10. Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J

    2009-01-01

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less

  11. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    NASA Astrophysics Data System (ADS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-09-01

    In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  12. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion.

    PubMed

    Hu, Xuefeng; Neoh, Koon-Gee; Shi, Zhilong; Kang, En-Tang; Poh, Chyekhoon; Wang, Wilson

    2010-12-01

    The long-term success of orthopedic implants may be compromised by defective osseointegration and bacterial infection. An effective approach to minimize implant failure would be to modify the surface of the implant to make it habitable for bone-forming cells and anti-infective at the same time. In this in vitro study, the surfaces of titanium (Ti) substrates were functionalized by first covalently grafting either dopamine followed by carboxymethyl chitosan (CMCS) or hyaluronic acid-catechol (HAC). Vascular endothelial growth factor (VEGF) was then conjugated to the polysaccharide-grafted surface. Antibacterial assay with Staphylococcus aureus (S. aureus) showed that the polysaccharide-modified substrates significantly decrease bacterial adhesion. The CMCS-functionalized Ti demonstrated better antibacterial property than the HAC-functionalized Ti since CMCS is bactericidal while HA only inhibits the adhesion of bacteria without killing them. Osteoblast attachment, as well as alkaline phosphatase (ALP) activity and calcium deposition were enhanced by the immobilized VEGF on the polysaccharide-grafted Ti. Thus, Ti substrates modified with polysaccharides conjugated with VEGF can promote osteoblast functions and concurrently reduce bacterial adhesion. Since VEGF is also known to enhance angiogenesis, the VEGF-polysaccharide functionalized substrates will have promising applications in the orthopedic field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  14. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  15. Conversion treatment of thin titanium layer deposited on carbon steel

    NASA Astrophysics Data System (ADS)

    Benarioua, Younes; Wendler, Bogdan; Chicot, Didier

    2018-05-01

    The present study has been conducted in order to obtain titanium carbide layer using a conversion treatment consisting of two main steps. In the first step a thin pure titanium layer was deposited on 120C4 carbon steel by PVD. In the second step, the carbon atoms from the substrate diffuse to the titanium coating due to a vacuum annealing treatment and the Ti coating transforms into titanium carbide. Depending on the annealing temperature a partial or complete conversion into TiC is obtained. The hardness of the layer can be expected to differ depending on the processing temperatures. By a systematic study of the hardness as a function of the applied load, we confirm the process of growth of the layer.

  16. Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Han, Yong

    2010-02-01

    To understand the effect of substrate microstructure on the formation of TiO2 nanotubes, anodic oxidizations of commercially pure titanium subjected to surface mechanical attrition treatment (SMATed-Ti) and unSMATed-Ti in a glycol solution containing NH4F and small amounts of water were investigated. The SMATed-Ti exhibit a nanocrystallized surface layer containing a high density of grain boundaries compared with unSMATed-Ti. The anodization results show that the formed TiO2 nanotube layer on the SMATed-Ti is much thicker than that on the unSMATed-Ti. It is indicated that nanocrystallized Ti is propitious to the growth of TiO2 nanotubes; grain boundaries and dislocations play the leading role in accelerating the reaction rate and ion diffusion coefficient during anodization. In addition, nanocrystallization of Ti does not change surface morphologies and phase components of the TiO2 nanotubes.

  17. Microstructure, nickel suppression and mechanical characteristics of electropolished and photoelectrocatalytically oxidized biomedical nickel titanium shape memory alloy.

    PubMed

    Chu, C L; Guo, C; Sheng, X B; Dong, Y S; Lin, P H; Yeung, K W K; Chu, Paul K

    2009-07-01

    A new surface modification protocol encompassing an electropolishing pretreatment (EP) and subsequent photoelectrocatalytic oxidation (PEO) has been developed to improve the surface properties of biomedical nickel titanium (NiTi) shape memory alloy (SMA). Electropolishing is a good way to improve the resistance to localized breakdown of NiTi SMA whereas PEO offers the synergistic effects of advanced oxidation and electrochemical oxidation. Our results indicate that PEO leads to the formation of a sturdy titania film on the EP NiTi substrate. There is an Ni-free zone near the top surface and a graded interface between the titania layer and NiTi substrate, which bodes well for both biocompatibility and mechanical stability. In addition, Ni ion release from the NiTi substrate is suppressed, as confirmed by the 10-week immersion test. The modulus and hardness of the modified NiTi surface increase with larger indentation depths, finally reaching plateau values of about 69 and 3.1GPa, respectively, which are slightly higher than those of the NiTi substrate but much lower than those of a dense amorphous titania film. In comparison, after undergoing only EP, the mechanical properties of NiTi exhibit an inverse change with depth. The deformation mechanism is proposed and discussed. Our results indicate that surface modification by dual EP and PEO can notably suppress Ni ion release and improve the biocompatibility of NiTi SMA while the surface mechanical properties are not compromised, making the treated materials suitable for hard tissue replacements.

  18. The fabrication and in vitro properties of antibacterial polydopamine-LL-37-POPC coatings on micro-arc oxidized titanium.

    PubMed

    He, Ye; Zhang, Yangyang; Shen, Xinkun; Tao, Bailong; Liu, Ju; Yuan, Zhang; Cai, Kaiyong

    2018-05-31

    Bacterial infection commonly occurs in clinical settings when the procedure involves a medical implant. Thus, the fabrication of antimicrobial medical materials has attracted much attention in recent years. To improve the antibacterial properties of titanium (Ti)-based biomedical materials, surface microporous structures, with antimicrobial peptide coatings, were employed in this study. Native Ti substrates were endowed with a certain level of antibacterial activity after treatment with the micro-arc oxidation (MAO). A multilayer consisting of polydopamine, cationic antimicrobial peptides LL-37, and phospholipid (POPC) was coated onto MAO substrates, leading to antibacterial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The combination of polydopamine-LL-37-POPC was found to alleviate the burst release of LL-37 in the initial phase. This multilayer coated onto microporous Ti substrates also showed favorable cytocompatibility to both mesenchymal stem cells (MSCs) and osteoblasts. These findings illustrate a novel strategy for the development of antibacterial Ti-based implants. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation.

    PubMed

    Chen, Hongjie; Wang, Chunli; Yang, Xiao; Xiao, Zhanwen; Zhu, Xiangdong; Zhang, Kai; Fan, Yujiang; Zhang, Xingdong

    2017-01-01

    A simple approach to fabricating hydroxyxapatite/titanium dioxide (HA/TiO 2 ) coating on porous titanium (Ti) scaffolds was developed in the present study. Surface TiO 2 layer was firstly formed on porous Ti scaffolds with multi-scale pores by acid-alkali (AA) treatment. The outer HA layer was then formed on the TiO 2 layer by subsequent pulse electrochemical deposition (ED) technique. All the three main process parameters, i.e. deposition times, current density and mass transfer mode affected the properties of the HA coating notably. Under the conditions of 90 deposition cycles, -10mA/cm 2 of pulse current density and stirring, a thin layer of homogeneous and nanorod-like HA sediments was formed on the substrate surface of porous Ti scaffolds. The results of protein adsorption and cellular experiments showed that compared to the single TiO 2 surface, the HA/TiO 2 surface allowed more adsorption of serum proteins and further enhanced the alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    NASA Astrophysics Data System (ADS)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  1. X-ray photoelectron spectroscopy characterization of composite TiO 2-poly(vinylidenefluoride) films synthesised for applications in pesticide photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Losito, I.; Amorisco, A.; Palmisano, F.; Zambonin, P. G.

    2005-02-01

    X-ray photoelectron spectroscopy (XPS) was adopted for the analytical characterization of composite titanium dioxide-poly(vinylidenefluoride) (TiO 2-PVDF) films developed for applications in the photocatalytic degradation of pollutants. The composites were deposited on glass substrates by casting or spin coating from TiO 2-PVDF suspensions in dimethylformamide (DMF). XPS data on the TiO 2-PVDF surface composition were used to optimize preparation conditions (composition of the TiO 2/PVDF suspension, deposition technique) in terms of titanium dioxide surface amount and film stability. The use of spin-coating deposition and the increase of TiO 2 amount in the DMF suspensions were found to improve the titanium surface content, although high TiO 2/PVDF ratios led to film instability. PVDF-TiO 2 films were also used in preliminary photocatalytic degradation tests on isoproturon, a phenylurea herbicide, under solar UV irradiation; the results were compared to direct photolysis to evaluate the catalytic efficiency of immobilized TiO 2 and the role played by the PVDF film during the degradation process.

  2. Reaction layer characterization of the braze joint of silicon nitride to stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, R.; Indacochea, J. E.

    1994-10-01

    This investigation studies the role of titanium in the development of the reaction layer in braze joining silicon nitride to stainless steel using titanium-active copper-silver filler metals. This reaction layer formed as a result of titanium diffusing to the filler metal/silicon nitride interface and reacting with the silicon nitride to form the intermetallics, titanium nitride (TiN) and titanium suicide (Ti 5Si3). This reaction layer, as recognized in the literature, allows wetting of the ceramic substrate by the molten filler metal. The reaction layer thickness increases with temperature and time. Its growth rate obeys the parabolic relationship. Activation energies of 220.1 and 210.9 kj/mol were calculated for growth of the reaction layer for the two filler metals used. These values are close to the activation energy of nitrogen in TiN (217.6 kj/mol). Two filler metals were used in this study, Ticusil (68.8 wt% Ag, 26.7 wt% Cu, 4.5 wt% Ti) and CB4 (70.5 wt% Ag, 26.5 wt% Cu, 3.0 wt% Ti). The joints were processed in vacuum at temperatures of 840 to 900 °C at various times. Bonding strength is affected by reaction layer thickness in the absence of Ti-Cu intermetallics in the filler metal matrix.

  3. Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates

    NASA Astrophysics Data System (ADS)

    Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2009-12-01

    In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.

  4. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    NASA Astrophysics Data System (ADS)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  5. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    PubMed

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  6. Microstructure and Wear Resistance of Composite Coating by Laser Cladding Al/TiN on the Ti-6Al-4V Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.

    2015-05-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.

  7. Epitaxial titanium diboride films grown by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Zhai, H. Y.; Christen, H. M.; Cantoni, C.; Goyal, A.; Lowndes, D. H.

    2002-03-01

    Epitaxial, smooth, and low-resistivity titanium diboride (TiB2) films have been grown on SiC substrates using pulsed-laser deposition. Combined studies from ex situ x-ray diffraction and in situ reflection high-energy electron diffraction indicate the crystallographic alignment between TiB2 and SiC both parallel and normal to the substrate. Atomic force microscopy and scanning electron microscopy studies show that these epitaxial films have a smooth surface, and the resistivity of these films is comparable to that of single-crystal TiB2. Growth of these films is motivated by this material's structural and chemical similarity and lattice match to the newly discovered superconductor MgB2, both to gain further insight into the physical mechanisms of diborides in general and, more specifically, as a component of MgB2-based thin-film heterostructures.

  8. The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts

    NASA Astrophysics Data System (ADS)

    Olson, David H.; Freedy, Keren M.; McDonnell, Stephen J.; Hopkins, Patrick E.

    2018-04-01

    We experimentally demonstrate the role of oxygen stoichiometry on the thermal boundary conductance across Au/TiOx/substrate interfaces. By evaporating two different sets of Au/TiOx/substrate samples under both high vacuum and ultrahigh vacuum conditions, we vary the oxygen composition in the TiOx layer from 0 ≤ x ≤ 2.85. We measure the thermal boundary conductance across the Au/TiOx/substrate interfaces with time-domain thermoreflectance and characterize the interfacial chemistry with x-ray photoemission spectroscopy. Under high vacuum conditions, we speculate that the environment provides a sufficient flux of oxidizing species to the sample surface such that one essentially co-deposits Ti and these oxidizing species. We show that slower deposition rates correspond to a higher oxygen content in the TiOx layer, which results in a lower thermal boundary conductance across the Au/TiOx/substrate interfacial region. Under the ultrahigh vacuum evaporation conditions, pure metallic Ti is deposited on the substrate surface. In the case of quartz substrates, the metallic Ti reacts with the substrate and getters oxygen, leading to a TiOx layer. Our results suggest that Ti layers with relatively low oxygen compositions are best suited to maximize the thermal boundary conductance.

  9. Formation of Titania Submicron-Scale Rod Arrays on Titanium Substrate and In Vitro Biocompatibility

    DTIC Science & Technology

    2005-01-01

    vitro bioactivity. INTRODUCTION Commercially available pure titanium (c.p. Ti) and its alloys are widely used for dental and orthopedic implants because...days. DISCUSSION The submicron-scale rod arrays of rutile can be obtained on titanium surfaces after the heat treatment when the alkali- borate glass ...modification of titanium implants have been already developed or proposed to provide them with the ability of direct bonding to bone tissues. Note

  10. In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Fan, Ailan; Qin, Lin; Tang, Bin

    2012-07-01

    TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.

  11. Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity.

    PubMed

    Lilja, Mirjam; Genvad, Axel; Astrand, Maria; Strømme, Maria; Enqvist, Håkan

    2011-12-01

    Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO(2) has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO(2) on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O(2) gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.

  12. Microstructure and corrosion behavior of porous coatings on titanium alloy by vacuum-brazed method.

    PubMed

    Lee, T M; Chang, E; Yen, C H

    2006-05-01

    The microstructural evolution and electrochemical characteristics of brazed porous-coated Ti-6Al-4V alloy were analyzed and compared with respect to the conventionally 1300 degrees C sintering method. The titanium filler metal of low-melting-point (934 degrees C) Ti-15Cu-15Ni was used to braze commercially pure (CP) titanium beads onto the substrate of Ti-6Al-4V alloy at 970 degrees C for 2 and 8 h. Optical microscopy, scanning and transmission electron microscopy, and X-ray diffractometry (XRD) were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that the bead/substrate contact interface of the 970 degrees C brazed specimens show larger contact area and higher radius curvature in comparison with 1300 degrees C sintering method. The microstructure of brazed specimens shows the Widmanstätten structure in the brazed zone and equiaxed alpha plus intergranular beta in the Ti-6Al-4V substrate. The intermetallic Ti2Ni phase existing in the prior filler metal diminishes, while the Ti2Cu phase can be identified for the substrate at 970 for 2 h, but the latter phase decrease with time. In Hank's solution at 37 degrees C, the corrosion rates of the 1300 degrees C sintering and the 970 degrees C brazed samples are similar at corrosion potential (E(corr)) in potentiodynamic test, and the value of E(corr) for the brazed sample is noble to the sintering samples. The current densities of the brazed specimens do not exceed 100 microA/cm2 at 3.5 V (SCE). These results suggest that the vacuum-brazed method exhibits the potentiality to manufacture the porous-coated specimens for biomedical application. (c) 2005 Wiley Periodicals, Inc.

  13. Surface Modifications with Laser Synthesized Mo Modified Coating

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Chen, Hao; Liu, Bo

    2013-01-01

    Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.

  14. Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu

    Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three tested approaches for reducing the wear damage in Ti and Co based were successful. These approaches and the associated research investigations could pave the way for future work in alleviating wear and corrosion related damage, especially via the additive manufacturing route.

  15. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    PubMed

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  16. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    NASA Astrophysics Data System (ADS)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  17. Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates.

    PubMed

    Ochsenbein, Anne; Chai, Feng; Winter, Stefan; Traisnel, Michel; Breme, Jürgen; Hildebrand, Hartmut F

    2008-09-01

    In order to improve the osseointegration of endosseous implants made from titanium, the structure and composition of the surface were modified. Mirror-polished commercially pure (cp) titanium substrates were coated by the sol-gel process with different oxides: TiO(2), SiO(2), Nb(2)O(5) and SiO(2)-TiO(2). The coatings were physically and biologically characterized. Infrared spectroscopy confirmed the absence of organic residues. Ellipsometry determined the thickness of layers to be approximately 100nm. High resolution scanning electron microscopy (SEM) and atomice force microscopy revealed a nanoporous structure in the TiO(2) and Nb(2)O(5) layers, whereas the SiO(2) and SiO(2)-TiO(2) layers appeared almost smooth. The R(a) values, as determined by white-light interferometry, ranged from 20 to 50nm. The surface energy determined by the sessile-drop contact angle method revealed the highest polar component for SiO(2) (30.7mJm(-2)) and the lowest for cp-Ti and 316L stainless steel (6.7mJm(-2)). Cytocompatibility of the oxide layers was investigated with MC3T3-E1 osteoblasts in vitro (proliferation, vitality, morphology and cytochemical/immunolabelling of actin and vinculin). Higher cell proliferation rates were found in SiO(2)-TiO(2) and TiO(2), and lower in Nb(2)O(5) and SiO(2); whereas the vitality rates increased for cp-Ti and Nb(2)O(5). Cytochemical assays showed that all substrates induced a normal cytoskeleton and well-developed focal adhesion contacts. SEM revealed good cell attachment for all coating layers. In conclusion, the sol-gel-derived oxide layers were thin, pure and nanostructured; consequent different osteoblast responses to those coatings are explained by the mutual action and coadjustment of different interrelated surface parameters.

  18. In vitro study of electrodeposited fluoridated hydroxyapatite coating on G-II titanium with a nanostructured TiO2 interlayer.

    PubMed

    Lin, Jin-Shyong; Tsai, Tzung-Bau; Say, Wen-Ching; Chiu, Chun; Chen, Shih-Hsun

    2017-04-04

    Titanium and its alloys have been widely used as orthopedic and dental implants for several decades due to their superior mechanical properties, corrosion resistance and biocompatibility. Recently, many researches revealed that the hydroxyapatite coatings on biomedical materials can further improve their biocompatibility and bioactivity. However, hydroxyapatite coatings are easily decomposed, weakening the bonding between implants and bone tissues and resulting in a high dissolution rate in the biological environment. Prolonging the lifetime of hydroxyapatite in implants is valuable for improving postoperative quality. Hydroxyapatite is the primary inorganic component of bones and teeth. A suitable amount of fluoride ions would be beneficial for the formation of fluoridated hydroxyapatite, which can enhance bone-cell response and the acid resistance of enamel. In this study, G-II titanium substrate was anodized to form a TiO 2 interlayer with a nanotube structure. An electrolyte composed of fluoride, calcium and phosphorus ions was prepared for electroplating fluoridated hydroxyapatite (FHA) coatings onto anodized G-II titanium substrates at a constant voltage. The obtained coatings were examined for their microstructure, mechanical properties; moreover, the changes of apatite structure, surface morphology and corrosion resistance were further investigated after immersion in simulated body fluid (SBF) for a number of weeks. The results show that FHA coatings have a higher surface roughness and hardness than plain hydroxyapatite. After immersion in SBF, the FHA coatings induced the nucleation and growth of apatite on the surface and increased their crystallinity. In a potentiodynamic polarization test, FHA coatings exhibited a better anti-corrosion ability than bare G-II titanium substrate in SBF. Additionally, the anodized TiO 2 nanotube improved the adhesion and corrosion resistance of FHA as well.

  19. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-11-01

    necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi

  20. Fabrication of Ti substrate grain dependent C/TiO2 composites through carbothermal treatment of anodic TiO2.

    PubMed

    Rüdiger, Celine; Favaro, Marco; Valero-Vidal, Carlos; Calvillo, Laura; Bozzolo, Nathalie; Jacomet, Suzanne; Hejny, Clivia; Gregoratti, Luca; Amati, Matteo; Agnoli, Stefano; Granozzi, Gaetano; Kunze-Liebhäuser, Julia

    2016-04-07

    Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure. The chemical and structural properties of the composite on top of individual Ti substrate grains are examined by scanning photoelectron microscopy and micro-Raman spectroscopy. Through comparison of these data with electron backscatter diffraction, it is found that the amount of generated carbon and the grade of anodic film crystallinity correlate with the crystallographic orientation of the Ti substrate grains. On top of Ti grains with ∼(0001) orientations the anodic TiO2 exhibits the highest grade of crystallinity, and the composite contains the highest fraction of graphitic carbon compared to Ti grains with other orientations. This indirect effect of the Ti substrate grain orientation yields new insights into the activity of TiO2 towards the decomposition of carbon precursors.

  1. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    NASA Astrophysics Data System (ADS)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  2. Electrical transport properties of epitaxial titanium nitride nanowire

    NASA Astrophysics Data System (ADS)

    Makise, K.; Shinozaki, B.

    2018-03-01

    We have measured the transport properties of epitaxial titanium nitride (TiN) nanowires. Epitaxial TiN layer, deposited by dc magnetron sputtering on MgO(100) substrates at growth temperature T = 1073 K. Samples of nanowire were fabricated by e-beam lithography and reactive ion etching. Although TiN films with 100 nm-thickness have superconducting transition temperature T C ∼ 5 K, nanowires does not appear resistive transition until 0.15 K. The magnetoresistance (MR) are always negative. Furthermore for MR experimental results, we attempt to fit the data using one-dimensional weak localization theory. In addition we observed oscillations of magnetoresistance below 5 K.

  3. Manufacturing of composite titanium-titanium nitride coatings by reactive very low pressure plasma spraying (R-VLPPS)

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-11-01

    Very Low Pressure Plasma Spraying (VLPPS) is an emerging spray process nowadays intensively studied by many research centers in the World. To date, studies are mostly focused on the manufacturing of ceramic or metallic coatings. None refers to composite coatings manufacturing by reactive plasma spraying under very low pressure (i.e., ~150 Pa). This paper aims at presenting the carried-out developments and some results concerning the manufacturing of composite coatings by reactive spraying. Titanium was selected as metallic material in order to deposit titanium-nitride titanium coatings (Ti-TiN). Nitrogen was used as plasma gas and was injected along an Ar-H2-N2 plasma jet via a secondary injector in order to reach the nitrogen content on the substrate surface. Thus, different kind of reactive mechanisms were highlighted. Resulting coatings were characterized by Scanning Electron Microscopy (SEM) observations. Porous microstructures are clearly identified and the deposits exhibit condensed vapours and molten particles. Glow Discharge Optical Emission Spectroscopy (GDOES) analysis evidenced nitrogen inside the deposits and X-Ray Diffraction (XRD) analysis confirmed the formation of titanium nitride phases, such as TiN and Ti2N, depending upon the location of the nitrogen injection. Microhardness values as high as 800 VHN were measured on manufactured samples (to be compared to 220 VHN for pure titanium VLPPS-manufactured coatings).

  4. Novel Phenylethynyl Imide Silanes as Coupling Agents for Titanium Alloy

    NASA Technical Reports Server (NTRS)

    Park, C.; Lowther, S. E.; Smith, J. G., Jr.; Conell, J. W.; Hergenrother, P. M.; SaintClair, T. L.

    2004-01-01

    The durability of titanium (Ti) alloys bonded with high temperature adhesives such as polyimides has failed to attain the level of performance required for many applications. The problem to a large part is attributed to the instability of the surface treatment on the Ti substrate. Although Ti alloy adhesive specimens with surface treatments such as chromic acid anodization, Pasa-Jell, Turco, etc. have provided high initial mechanical properties, these properties have decreased as a function of aging at ambient temperature and faster, when aged at elevated temperatures or in a hot-wet environment. As part of the High Speed Civil Transport program where Ti honeycomb sandwich structure must perform for 60,000 hours at 177 C, work was directed to the development of environmentally safe, durable Ti alloy surface treatments.

  5. Application of hard coatings to substrates at low temperatures

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1993-01-01

    BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.

  6. The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte

    NASA Astrophysics Data System (ADS)

    Han, Jun-xiang; Cheng, Yu-lin; Tu, Wen-bin; Zhan, Ting-Yan; Cheng, Ying-liang

    2018-01-01

    Black TiO2 has triggered scientific interest due to its unique properties such as enhanced solar-driven photocatalytic activity. In this paper, plasma electrolytic oxidation (PEO) treatment of Ti-6Al-4V alloy has been carried out in concentrated sodium silicate electrolyte. Silica-based black and white TiO2 coatings respectively have been obtained by controlling the oxidation time. The black coating, which was formed with a short treatment time, shows good corrosion resistance and the black appearance can be attributed to the presence of Ti2+ and Ti3+ in the coating. The lower valence titanium ions are absent in the white coatings and they also contain relatively higher Na content compared to the black coatings. The white coatings have great surface roughnesses and super hydrophilicity. The bonding strengths of the black and white coatings on the Ti-6Al-4V alloy are ∼14.4 and 4.3 MPa, respectively. The vanadium contributes little to the black appearance of the coating on Ti6Al4V alloy, since the same phenomena occur for the PEO of a pure titanium substrate.

  7. Optimization of amino group density on surfaces of titanium dioxide nanoparticles covalently bonded to a silicone substrate for antibacterial and cell adhesion activities.

    PubMed

    Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu

    2006-01-01

    A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc

  8. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    NASA Astrophysics Data System (ADS)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  9. Calcium Phosphate Growth at Electropolished Titanium Surfaces

    PubMed Central

    Ajami, Elnaz; Aguey-Zinsou, Kondo-Francois

    2012-01-01

    This work investigated the ability of electropolished Ti surface to induce Hydroxyapatite (HA) nucleation and growth in vitro via a biomimetic method in Simulated Body Fluid (SBF). The HA induction ability of Ti surface upon electropolishing was compared to that of Ti substrates modified with common chemical methods including alkali, acidic and hydrogen peroxide treatments. Our results revealed the excellent ability of electropolished Ti surfaces in inducing the formation of bone-like HA at the Ti/SBF interface. The chemical composition, crystallinity and thickness of the HA coating obtained on the electropolished Ti surface was found to be comparable to that achieved on the surface of alkali treated Ti substrate, one of the most effective and popular chemical treatments. The surface characteristics of electropolished Ti contributing to HA growth were discussed thoroughly. PMID:24955535

  10. New deposition technique for metal films containing inorganic fullerene-like (IF) nanoparticles.

    PubMed

    Goldbart, Ohad; Yoffe, Alexander; Cohen, Sidney R; Rosentsveig, Rita; Feldman, Yishay; Rapoport, Lev; Tenne, Reshef

    2013-07-22

    This study describes a new method for fabrication of thin composite films using physical vapor deposition (PVD). Titanium (Ti) and hybrid films of titanium containing tungsten disulphide nanoparticles with inorganic fullerene-like structure (Ti/IF-WS2) were fabricated with a modified PVD machine. The evaporation process includes the pulsed deposition of IF-WS2 by a sprayer head. This process results in IF-WS2 nanoparticles embedded in a Ti matrix. The layers were characterized by various techniques, which confirm the composition and structure of the hybrid film. The Ti/IF-WS2 shows better wear resistance and a lower friction coefficient when compared to the Ti layer or Ti substrate. The Ti/IF films show very good antireflective properties in the visible and near-IR region. Such films may find numerous applications, for example, in the aerospace and medical technology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao

    2018-06-01

    Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.

  12. Palladium-directed self-assembly of multi-titanium(IV)-porphyrin arrays on the substrate surface as sensitive ultrathin films for hydrogen peroxide sensing, photocurrent generation, and photochromism of viologen

    NASA Astrophysics Data System (ADS)

    He, Wen-Li; Fang, Fang; Ma, Dong-Mei; Chen, Meng; Qian, Dong-Jin; Liu, Minghua

    2018-01-01

    Multiporphyrin arrays are large, π-conjugated chromophores with high absorption efficiency and strong chemical stability that play an important role in supramolecular and advanced material sciences. Palladium-directed self-assembly of multiporphyrin array ultrathin films was achieved on substrate surfaces using oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium (IV) complex [TiO(TPyP)] as a linker and sodium tetrachloropalladate (Na2PdCl4) as a connector. The Pd-TiOTPyP films as prepared were characterized by using UV-vis absorption and X-ray photoelectron spectroscopy, as well as by atomic force and scanning electron microscopy. The Soret absorption band of TiOTPyP was observed to red shift by 6 nm when the Pd-TiOTPyP multilayer-modified quartz substrate was immersed in an aqueous solution containing hydrogen peroxide. This was attributed to the formation of a TiO2TPyP monoperoxo complex. This oxidation reaction could be accelerated in an acidic solution. Furthermore, the immobilized Pd-TiOTPyP multilayers could act as light-harvesting units for photocurrent generation and photochromism of viologens, with strong stability, reproducibility, and recyclability. The photocurrent density could be enhanced in electrolyte solutions containing electron donors such as triethanolamine, or electron acceptors such as viologens. Finally, photoinduced reduction (photochromism) of viologens was investigated using the Pd-TiOTPyP multilayers as light sensitizers and EDTA as the electron donors.

  13. Electrical response of electron selective atomic layer deposited TiO2‑x heterocontacts on crystalline silicon substrates

    NASA Astrophysics Data System (ADS)

    Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit

    2018-04-01

    Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2‑x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2‑x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2‑x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2‑x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2‑x was revealed.

  14. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  15. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.

    PubMed

    Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos

    2003-10-01

    Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on the elemental composition. The CTE of titanium can be considerably changed by alloying. Two-phase alloys were developed when alloying elements were added in concentrations greater than the maximum solubility limit in alpha-titanium phase.

  16. Correlation of Critical Temperatures and Electrical Properties in Titanium Films

    NASA Astrophysics Data System (ADS)

    Gandini, C.; Lacquaniti, V.; Monticone, E.; Portesi, C.; Rajteri, M.; Rastello, M. L.; Pasca, E.; Ventura, G.

    Recently transition-edge sensors (TES) have obtained an increasing interest as light detectors due to their high energy resolution and broadband response. Titanium (Ti), with transition temperature up to 0.5 K, is among the suitable materials for TES application. In this work we investigate Ti films obtained from two materials of different purity deposited by e-gun on silicon nitride. Films with different thickness and deposition substrate temperature have been measured. Critical temperatures, electrical resistivities and structural properties obtained from x-ray are related to each other.

  17. Effect of alloy chemistry and exposure conditions on the oxidation of titanium

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Shenoy, R. N.; Clark, R. K.

    1984-01-01

    Multiwall is a new thermal protection system concept for advanced space transportation vehicles. The system consists of discrete panels made up of multiple layers of foil gage metal. Titanium is the proposed candidate metal for multiwall panels in the reentry temperature range up to 675 C. Oxidation and embrittlement are the principal concerns related to the use of Ti in heat shield applications. The results of a broad study on the oxidation kinetics of several titanium alloys subjected to different exposure conditions are described. The alloys include commercially pure titanium, Ti-6Al-4V, and Ti-6Al-2Sn-4Zr-2Mo. Oxidation studies were performed on these alloys exposed at 704 C in 5-760 torr air pressure and 0 to 50% relative humidity. The resulting weight gains were correlated with oxide thickness and substrate contamination. The contamination depth and weight gains due to solid solutioning were obtained from microhardness depth profiles and hardness versus weight percent oxygen calibration data.

  18. A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca-P-based electrolyte.

    PubMed

    dos Santos, Amanda; Araujo, Joyce R; Landi, Sandra M; Kuznetsov, Alexei; Granjeiro, José M; de Sena, Lidia Ágata; Achete, Carlos Alberto

    2014-07-01

    In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca-P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating-substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.

  19. Titanium oxide as substrate for neural cell growth.

    PubMed

    Carballo-Vila, Mónica; Moreno-Burriel, Berta; Chinarro, Eva; Jurado, José R; Casañ-Pastor, Nieves; Collazos-Castro, Jorge E

    2009-07-01

    Titanium oxide has antiinflammatory activity and tunable electrochemical behavior that make it an attractive material for the fabrication of implantable devices. The most stable composition is TiO2 and occurs mainly in three polymorphs, namely, anatase, rutile, and brookite, which differ in its crystallochemical properties. Here, we report the preparation of rutile surfaces that permit good adherence and axonal growth of cultured rat cerebral cortex neurons. Rutile disks were obtained by sinterization of TiO2 powders of commercial origin or precipitated from hydrolysis of Ti(IV)-isopropoxide. Commercial powders sintered at 1300-1600 degrees C produced rutile surfaces with abnormal grain growth, probably because of impurities of the powders. Neurons cultured on those surfaces survived in variable numbers and showed fewer neurites than on control materials. On the other hand, rutile sintered from precipitated powders had less contaminants and more homogenous grain growth. By adjusting the thermal treatment it was possible to obtain surfaces performing well as substrate for neuron survival for at least 10 days. Some surfaces permitted normal axonal elongation, whereas dendrite growth was generally impaired. These findings support the potential use of titanium oxide in neuroprostheses and other devices demanding materials with enhanced properties in terms of biocompatibility and axon growth promotion.

  20. Effect of Thickness on the Structure, Composition and Properties of Titanium Nitride Nano-Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Gustavo; Shutthanandan, V.; Thevuthasan, Suntharampillai

    2014-05-05

    Titanium nitride (TiNx) coatings were grown by magnetron sputtering onto Si(1 0 0) substrates by varying time of deposition to produce coatings with variable thickness (dTiN) in the range of 20-120 nm. TiNx coatings were characterized by studying their structure, composition, and mechanical properties. Nuclear reaction analysis (NRA) combined with Rutherford backscattering spectrometry (RBS) analyses indicate that the grown coatings were stoichiometric TiN. Grazing incidence X-ray diffraction (GIXRD) measurements indicate that the texturing of TiN coatings changes as a function of dTiN. The (1 1 1) and (0 0 2) peaks appear initially; (1 1 1) becomes intense while (0more » 0 2) disappears with increasing dTiN. Dense, columnar grain structure was evident for all the coatings in electron microscopy analyses. The residual stress for TiN coatings with dTiN~120 nm was 1.07 GPa in compression while thinner samples exhibit higher values of stress.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korol, A.A.; Korol, Y.A.; Kasich-Pilipenko, I.Y.

    Melted slip coatings were obtained and the structural changes in the coatings and their substrates upon simultaneous heating by concentrated solar radiant energy fluxes were studied. Well known wear and corrosion resistant TiC-Ni-B and WC-Ni-B coatings 50 to 300 microns thick applied by the slip method to flat or cylindrical stainless steel and titanium specimens were examined. The specimens were heated in an SGU-5 solar heating installation with a 2 m diameter parabolic mirror concentrator in a process chamber with a quartz window under a vacuum. Metallographic analysis revealed a finely dispersed heterogeneous structure with no visible porosity, good bondingmore » of coating to substrate, and uniform distribution of carbide phase in the metal matrix of the TiC-Ni-B coatings on titanium. Results were similar for the other coatings, indicating that concentrated solar energy can produce coatings with satisfactory surface quality, good density, and a framework structure. The coating interacted with the substrate by diffusion. Most of the volume of the substrate underwent no significant changes, indicating good bond strength between coatings and substrate.« less

  2. Electrospinning Titanium Dioxide (TiO2) nanofiber for dye sensitized solar cells based on Bryophyta as a sensitizer

    NASA Astrophysics Data System (ADS)

    Asma Ilahi, Novita; Suryana, Risa; Nurrosyid, Fahru; Kusuma, N. T. Linda

    2017-01-01

    From an engineering and economic perspective, immobilized TiO2 nanocatalysts are preferred in a variety of applications. In this study, TiO2 polymer solution was synthesized using ethanol, acetic acid, polyvinylpyrrolidone (PVP), and titanium tetra isopropoxide (TTIP). TiO2 solution was deposited on the FTO substrate by electrospinning method to obtain nano-sized layer. Capillary of syringes given a positive DC voltage of 6 kV to produce nanofiber, then annealed at 450 °C for 3 hours. Chlorophyll has obtained from extracted moss through a chromatographic process to used for dye. TiO2 nanofiber layer manufactured with varied by time and characterized by UV-Vis and IV-meter. The result exhibited a maximum efficiency of 0,0036% and significant absorption at 350 nm-500 nm wavelength.

  3. Positron annihilation studies on the behaviour of vacancies in LaAlO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Yuan, Guoliang; Li, Chen; Yin, Jiang; Liu, Zhiguo; Wu, Di; Uedono, Akira

    2012-11-01

    The formation and diffusion of vacancies are studied in LaAlO3/SrTiO3 heterostructures. Oxygen vacancies (VOS) appear easily in the SrTiO3 substrate during LaAlO3 film growth at 700 °C and 10-4 Pa oxygen pressure rather than at 10-3-10-1 Pa, thus the latter two-dimensional electron gas should come from the polarity discontinuity at the (LaO)+/(TiO2)0 interface. For SrTiO3-δ/LaAlO3/SrTiO3, high-density VOS of the SrTiO3-δ film can pass through the LaAlO3 film and then diffuse to 1.7 µm depth in the SrTiO3 substrate, suggesting that LaAlO3 has VOS at its middle-deep energy levels within the band gap. Moreover, high-density VOS may combine with a strontium/titanium vacancy (VSr/Ti) to form VSr/Ti-O complexes in the SrTiO3 substrate at 700 °C.

  4. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  5. Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application

    NASA Astrophysics Data System (ADS)

    Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.

  6. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    NASA Astrophysics Data System (ADS)

    Chen, Huiqing; Li, Xiaojing; Zhao, Yuancong; Li, Jingan; Chen, Jiang; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2015-08-01

    A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  7. Mechanical properties of titanium-hydroxyapatite (Ti-HA) composite coating on stainless steel prepared by thermal spraying

    NASA Astrophysics Data System (ADS)

    Rosmamuhamadani, R.; Azhar, N. H.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.

    2017-09-01

    Addition of hydroxyapatite (HA) can enhance the bioactivity of the common metallic implant due to its similarity with natural bones and teeth. In this investigation, high velocity oxy-fuel (HVOFT) technique was used to deposit titanium-hydroxyapatite (Ti-HA) composite on stainless steel substrate plate with different percentage of HA for biomedical applications. The aim of this research is to investigate the mechanical properties of Ti-HA coating such as hardness, adhesion strength and wear behaviour. The hardness and strength was determined by using SHIMADZU-microhardness Vickers tester and PosiTest AT portable adhesion tester respectively. The wear test was performed by using pin-on-disk equipment and field emission scanning electron microscope (FESEM) used to determine the extent of surface damage. From the results obtained, mechanical properties such as hardness and adhesion strength of titanium (Ti) coating decreased with the increased of HA contents. Meanwhile, the coefficient of friction of Ti-10% HA coating shows the highest value compare to others as three-body abrasion had occurred during the test.

  8. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarycheva, Asia; Makaryan, Taron; Maleski, Kathleen

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti 3C 2T x, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factorsmore » reaching ~10 6. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.« less

  9. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  10. Thickness Influence on In Vitro Biocompatibility of Titanium Nitride Thin Films Synthesized by Pulsed Laser Deposition

    PubMed Central

    Duta, Liviu; Stan, George E.; Popa, Adrian C.; Husanu, Marius A.; Moga, Sorin; Socol, Marcela; Zgura, Irina; Miculescu, Florin; Urzica, Iuliana; Popescu, Andrei C.; Mihailescu, Ion N.

    2016-01-01

    We report a study on the biocompatibility vs. thickness in the case of titanium nitride (TiN) films synthesized on 410 medical grade stainless steel substrates by pulsed laser deposition. The films were grown in a nitrogen atmosphere, and their in vitro cytotoxicity was assessed according to ISO 10993-5 [1]. Extensive physical-chemical analyses have been carried out on the deposited structures with various thicknesses in order to explain the differences in biological behavior: profilometry, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction and surface energy measurements. XPS revealed the presence of titanium oxynitride beside TiN in amounts that vary with the film thickness. The cytocompatibility of films seems to be influenced by their TiN surface content. The thinner films seem to be more suitable for medical applications, due to the combined high values of bonding strength and superior cytocompatibility. PMID:28787846

  11. Electrochemical depositing rGO-Ti-rGO heterogeneous substrates with higher thermal conductivity and heat transfer performance compared to pure Ti.

    PubMed

    Wang, Jing; Wang, Huatao; Zhang, Wenying; Yang, Xinyi; Wen, Guangwu; Wang, Yijie; Zhou, Weiwei

    2017-02-17

    Titanium (Ti) and its alloys are widely applied in many high strength, light weight applications, but their thermal conductivity is lower compared to that of other metals, which limits their further applications. In this paper, we demonstrated experimentally that rGO-Ti-rGO heterogeneous substrates with higher thermal conductivity, up to ∼38.8% higher than Ti, could be fabricated by electrochemical depositing rGO on their surface. The rGO layers are grown on the surface of Ti substrates, with appearance of bedclothes on the beds. The thickness of rGO layers is around 300-500 nm and around 600-1000 nm when deposited for 5 cycles and 10 cycles, respectively. According to the cooling experiment results, as-prepared Ti + rGO substrates can present excellent thermal conduction performance, and reduce the chip temperature close to 3.2 °C-13.1 °C lower than Ti alloy substrates with the heat flow density of 0.4-3.6 W cm -2 . Finally, the approach to electro-chemically deposit hundreds of nanometer rGO layers on the surface of Ti substrates can improve their thermal conductivity and heat transfer performance, which may have further application in the increasing thermal conduction of other metal-alloys, ceramics and polymers.

  12. TiO2 -enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2011-06-01

    Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO(2) (nTiO(2)) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P < 0.05) higher on the cpTi controls than on the PPC surfaces. Furthermore, spreading and differentiation were consistently higher on the titanium-enriched PPC-2, -3 and -4 than on the titanium-free PPC-1. Therefore, despite the presence of complex micro-topographies and nano-features, titanium-enrichment enhanced the cellular response, and pure titanium still provided the best substrate. These findings confirm the cytocompatibility of these novel polymeric coatings and suggest that titanium-enrichment and nTiO(2) additives may enhance their performance.

  13. Study of nanoparticles TiO{sub 2} thin films on p-type silicon substrate using different alcoholic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muaz, A. K. M.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-06

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films. The prepared TiO{sub 2} sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO{sub 2}) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO{sub 2} thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO{sub 2} films were examined with X-raymore » Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO{sub 2} thin films were measured using two-point-probe technique.« less

  14. Correlation between surface properties and wettability of multi-scale structured biocompatible surfaces

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.

    2015-11-01

    The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.

  15. Tea Polyphenol-Reduced Graphene Oxide Deposition on Titanium Surface Enhances Osteoblast Bioactivity.

    PubMed

    Liu, Mengting; Hao, Liying; Huang, Qian; Zhao, Dan; Li, Qianshun; Cai, Xiaoxiao

    2018-05-01

    Graphene, a novel carbon-based material, has been widely used as osteogenic agent for the potential effect on the promotion of osteoblast proliferation. Tea polyphenol-reduced graphene oxide (TPG) is a simple and environmental-friendly raw material to obtain graphene. In this study, TPG was deposited on the Ti substrate to promote the bone regeneration. We prepared a honeycomb-like structure by acid and alkali pretreatment and immobilized the TPG layer (Ti-TPG) on the surface via electrochemical deposition. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) were used to identify the immobilization of TPG on the titanium (Ti) successfully. Furthermore, the biological response of the Ti-TPG surface to rat osteoblast was evaluated. We also studied the cell adhesion, proliferation and expression of ossification genes on the sample. The results revealed that Ti-TPG had an advantage over Ti alloys in modulating cellular activity and Ti-TPG may be a promising coating for biological materials.

  16. Growth behaviors and biocidal properties of titanium dioxide films depending on nucleation duration in liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Park, Sohyeon; Park, Joohee; Heo, Jiwoong; Hong, Bo Young; Hong, Jinkee

    2017-12-01

    Liquid phase deposition (LPD), which is a method to directly form a titanium dioxide (TiO2) film on a substrate, is the most practical method for applying TiO2 films to medical devices because it is performed at lower temperatures than other methods. The TiO2 films to be applied to medical devices should offer excellent antibacterial effect, but should be stable to normal cells and have appropriate strength. In this research, we observed that the size, shape, and density of TiO2 particles varied with the nucleation duration in LPD and confirmed that these results caused changes in several properties including the mechanical properties, cytotoxicity and antibacterial effect of TiO2 films. From the analysis of these results, we established the conditions for the preparation of TiO2 films that are suitable for medical devices and suggest a new approach to the study of TiO2 films prepared by LPD.

  17. Electrophilic activation of alkynes for enyne cycloisomerization reactions with in situ generated early/late heterobimetallic Pt-Ti catalysts.

    PubMed

    Talley, Michael R; Stokes, Ryjul W; Walker, Whitney K; Michaelis, David J

    2016-06-14

    In situ formation of heterobimetallic Pt-Ti catalysts enables rapid room temperature catalysis in enyne cycloisomerization reactions. The Lewis acidic titanium atom in the ligand framework is shown to be essential for fast catalysis. A range of enyne substrates are efficiently cyclized to carbocycles and heterocycles in high yield.

  18. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of <200 nm mainly composed of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  19. a Study on Microstructure Characteristics of IN SITU Formed TiC Reinforced Composite Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Luo, Hui

    2012-04-01

    In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrate, and the micro-hardness of the Al-Ni-Cr-C laser-cladded coating was in the range of 1200-1450 HV0.2, which was 3-4 times higher than that of Ti-6Al-4V substrate. Furthermore, the reinforcement of theAl-Ni-Cr-C laser-cladded coating were mainly contributed to the action of the TiC, Ti3Al, Cr7C3, Al8Cr5 phases and the solution strengthening.

  20. Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands.

    PubMed

    Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W

    2015-12-15

    Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Wide Tunability of Magnetron Sputtered Titanium Nitride and Titanium Oxynitride for Plasmonic Applications

    NASA Astrophysics Data System (ADS)

    Zgrabik, Christine Michelle

    Transition metal nitrides have recently garnered much interest as alternative materials for robust plasmonic device architecture including potential applications in solar absorbers, photothermal medical therapy, and heat-assisted magnetic recording. Titanium nitride (TiN) is one such potential candidate. One advantage of the transition metal nitrides is that their optical properties are tunable according to the deposition conditions. The controlled achievement of tunability, however, is also a challenge. Although the formation of TiN has been the subject of numerous previous studies, a thorough analysis of the deposition parameters necessary to form metallic TiN films optimized for plasmonic applications had not been demonstrated. Similarly, such TiN films had not been subjected to detailed optical measurements which could be used in FDTD device simulations to optimize plasmonic device designs. To be able to design, simulate and build robust and optimal device structures, in this work a systematic and thorough examination of the effect of varied substrates, temperatures, and reactive gas compositions on magnetron sputtered TiN was conducted. In addition, the effects of application of an additional substrate bias were studied. The resulting optical properties at visible to near-infrared frequencies were the focus of this thesis. The optical properties of each film were measured via spectroscopic ellipsometry with more "metallic" films demonstrating a larger negative value of the real part of the permittivity. These optical measurements were correlated with both the films' deposition conditions and microstructural measurements including x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) measurements; the different deposition conditions resulted in TiN and TiOxNy films with widely tunable optical responses. By sputtering under different conditions, the value of the real part of the permittivity was tuned from small positive values, through small and moderate negative values, and finally all of the way to large negative values which are comparable to those measured in gold. It was determined that both the chemical composition as well as the film crystallinity had a significant effect on the resulting properties with the most metallic films in general exhibiting a Ti:N ratio close to 1:1, low oxygen incorporation, more N bound as TiN rather than in oxynitride form, and better crystallinity. Increased substrate temperature in general increased the metallic character while application of a substrate bias reduced crystalline order, however also reduced oxygen incorporation and allowed for deposition of metallic TiN at room temperature. The close lattice match of TiN and MgO allowed for heteroepitaxial growth on this substrate under carefully controlled conditions. Finally, to demonstrate the viability of the optimized TiN thin films for plasmonic applications, three benchmark plasmonic structures were simulated using the measured, optimized optical properties including a plasmonic grating coupler, infrared nanoantennas, and a nanopyramidal array. The devices were successfully fabricated and preliminary measurements show promise for plasmonic applications for example in solar conversion and photothermal medical therapy.

  2. Development of Titanium-Sputtered Anodized Aluminum Substrates for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Côté, Marie-Pier; Parsi Benehkohal, Nima; Alpay, Neslihan; Demopoulos, George P.; Brochu, Mathieu

    2014-12-01

    In this study, anodized aluminum coupons are sputtered with titanium and successfully demonstrated as dye-sensitized solar cell (DSC) electrode substrates in both anode [back-illumination (BI)] and cathode [front-illumination (FI)] configurations. The FI DSCs were found to be significantly more efficient than the BI devices registering an average efficiency of 5.7 vs 2.6 pct. By comparison, the efficiency of benchmark cells built with fluorine-tin oxide-glass was 6.7 and 4.6 pct, respectively. The thickness of the titanium-sputtered film was varied from 0.85 to 1.1 μm with the latter providing a better average efficiency when used as a counter electrode. According to preliminary stability testing, the Ti-sputtered anodized aluminum-based DSC devices exhibited a significant reduction of their efficiency over a period of 10 days that was partly attributed to triiodide redox electrolyte reaction with the aluminum substrate. This points to the need for optimization of the sputtered-titanium coating microstructure in order to completely isolate the aluminum substrate from the liquid electrolyte.

  3. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.

    2005-05-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances andmore » surface mechanical properties and possible mechanisms are suggested.« less

  4. Air Purification Pavement Surface Coating by Atmospheric Pressure Cold Plasma

    NASA Astrophysics Data System (ADS)

    Westergreen, Joe; Pedrow, Patrick; Shen, Shihui; Jobson, Bertram

    2011-10-01

    This study develops an atmospheric pressure cold plasma (APCP) reactor to produce activated radicals from precursor molecules, and to immobilize nano titanium dioxide (TiO2) powder to substrate pavement materials. TiO2 has photocatalytic properties and under UV light can be used to oxidize and remove volatile organic compounds (VOCs) and nitrogen oxides (NOx) from the atmosphere. Although TiO2 treated paving materials have great potential to improve air quality, current techniques to adhere TiO2 to substrate materials are either not durable or reduce direct contact of TiO2 with UV light, reducing the photocatalytic effect. To solve this technical difficulty, this study introduces APCP techniques to transportation engineering to coat TiO2 to pavement. Preliminary results are promising and show that TiO2 can be incorporated successfully into an APCP environment and can be immobilized at the surface of the asphalt substrate. The TiO2 coated material with APCP shows the ability to reduce nitrogen oxides when exposed to UV light in an environmental chamber. The plasma reactor utilizes high voltage streamers as the plasma source.

  5. RF magnetron sputtering of a hydroxyapatite target: A comparison study on polytetrafluorethylene and titanium substrates

    NASA Astrophysics Data System (ADS)

    Surmenev, Roman A.; Surmeneva, Maria A.; Grubova, Irina Yu.; Chernozem, Roman V.; Krause, Bärbel; Baumbach, Tilo; Loza, Kateryna; Epple, Matthias

    2017-08-01

    A pure hydroxyapatite (HA) target was used to prepare the biocompatible coating of HA on the surface of a polytetrafluorethylene (PTFE) substrate, which was placed on the same substrate holder with technically pure titanium (Ti) in the single deposition runs by radio-frequency (RF) magnetron sputtering. The XPS, XRD and FTIR analyses of the obtained surfaces showed that for all substrates, instead of the HA coating deposition, the coating of a mixture of calcium carbonate and calcium fluoride was grown. According to SEM investigations, the surface of PTFE was etched, and the surface topography of uncoated Ti was preserved after the depositions. The FTIR results reveal no phosphate bonds; only calcium tracks were observed in the EDX-spectra on the surface of the coated PTFE substrates. Phosphate oxide (V), which originated from the target, could be removed using a vacuum pump system, or no phosphate-containing bonds could be formed on the substrate surface because of the severe substrate bombardment process, which prevented the HA coating deposition. The observed results may be connected with the surface re-sputtering effect of the growing film by high-energy negatively charged ions (most probably oxygen or fluorine), which are accelerated in the cathode dark sheath.

  6. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  7. Anodized porous titanium coated with Ni-CeO2 deposits for enhancing surface toughness and wear resistance

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Ouyang, Chun

    2017-05-01

    In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.

  8. Lateral hydrogen microsensors prepared on-chip by local oxidation of platinum-decorated titanium films

    NASA Astrophysics Data System (ADS)

    Herbertz, S.; Welk, D.; Heinzel, T.

    2018-05-01

    Titanium microstripes on silicon dioxide substrates are oxidized locally by applying voltages on-chip to lateral electrodes under ambient conditions. This technique enables profound modifications of the electronic circuit. As an example, we transform Ti films decorated by a sub-monolayer of platinum into hydrogen gas microsensors in an otherwise completed device by a silicon-MOS compatible process.

  9. In vitro color evaluation of esthetic coatings for metallic dental implants and implant prosthetic appliances.

    PubMed

    Pecnik, Christina M; Roos, Malgorzata; Muff, Daniel; Spolenak, Ralph; Sailer, Irena

    2015-05-01

    The aim of this study was to characterize the optical properties of newly developed esthetic coatings for metallic implants and components for an improved peri-implant soft tissue appearance. Pig maxillae (n = 6) were used for the in vitro color evaluation of coated and uncoated samples. Three different coating systems (Ti-ZrO(2), Ti-Al-ZrO(2), and Ti-Ag-ZrO(2)) were deposited on titanium substrates, which exhibited different roughness (polished, machined, and sand-blasted) and interference colors (pink, yellow, and white). Spectrophotometric measurements were made of samples below three different mucosa thicknesses (1 mm, 2 mm, and 3 mm) and titanium served as negative control. Color difference ΔE was calculated using ΔL, Δa, and Δb values for each sample (in total 30 samples). ΔE values were significantly above the threshold value of 3.70 for sand-blasted Ti and Ti-ZrO(2) samples when tested below 1 mm thick soft tissue, hence resulted in a dark appearance of the soft tissues. In contrast, Ti-Al-ZrO(2) and Ti-Ag-ZrO(2) samples showed significant ΔL values below 1 mm, which indicates a brightening of the covering tissue. In general, ΔE values decreased with increasing thickness of the tissue. At 3 mm thick tissue, ΔE values were significantly below 3.70 for Ti-Al-ZrO(2) and Ti-Ag-ZrO(2) samples. The preferable substrate surface should be machined due increased color brightness, good soft tissue integration and improved adhesion between coating and substrates. Improvement of the optical appearance of the metal was achieved with the coating systems Ti-Al-ZrO(2) and Ti-Ag-ZrO(2). Darkening effects could not be observed for these systems, and partially light brightening of the tissue was observed. Advantageous colors were suggested to be pink and yellow. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Sol-gel synthesis and optical properties of titanium dioxide thin film

    NASA Astrophysics Data System (ADS)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  11. The influence of coating solution and calcination condition on the durability of Ir1-xSnxO2/Ti anodes for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Kato, Zenta; Kashima, Ryo; Tatsumi, Kohei; Fukuyama, Shinnosuke; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji

    2016-12-01

    For oxygen formation without forming chlorine in seawater electrolysis for hydrogen production we have been using the anode consisting of three layers of MnO2-type multiple oxide catalyst, intermediate layer and titanium substrate. The intermediate layer was used for prevention of oxidation of the titanium substrate during anodic polarization for oxygen evolution and was prepared by calcination of butanol solutions of H2IrCl6 and SnCl4 coated on titanium. The protectiveness of Ir1-xSnxO2 layer formed was directly examined using Ir1-xSnxO2/Ti anodes in H2SO4 solution changing the preparation conditions of the layer. When the sum of Ir4+ and Sn4+ was 0.1 M, the highest protectiveness was observed at 0.06 M Sn4+. Although an increase in calcination temperature led to the formation of Ir1-x-ySnxTiyO2 triple oxide with a slightly lower catalytic activity for oxygen evolution, the anode calcined at 450 °C showed the highest protectiveness.

  12. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    PubMed

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    PubMed Central

    Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J

    2015-01-01

    In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. PMID:25609958

  14. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    NASA Astrophysics Data System (ADS)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol-gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  15. Seebeck coefficient of synthesized Titanium Dioxide thin film on FTO glass substrate

    NASA Astrophysics Data System (ADS)

    Usop, R.; Hamed, N. K. A.; Megat Hasnan, M. M. I.; Ikeda, H.; Sabri, M. F. M.; Ahmad, M. K.; Said, S. M.; Salleh, F.

    2018-04-01

    In order to fabricate a thermoelectric device on glass substrate for harvesting waste heat energy through house appliances, the Seebeck coefficient of translucent TiO2 thin film was investigated. The TiO2 thin film was synthesized by using hydrothermal method with F-SnO2 coated glass as substrate. From scanning electron microscopy analysis, the synthesized TiO2 thin film was found to be in nanometer-scale rod structure with a thickness of 4 µm. The Seebeck coefficient was measured in the temperature range of 300 – 400 K. The Seebeck coefficient is found to be in negative value which shows that synthesized film is an n-type semiconductor material, and is lower than the value of bulk-size material. This reduction in Seebeck coefficient of TiO2 thin film is likely due to the low dimensional effect and the difference of carrier concentration.

  16. Flux Growth of Highly Crystalline Photocatalytic BaTiO3 Particle Layers on Porous Titanium Sponge Substrate and Insights into the Formation Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Li, B.

    2017-09-01

    A unique architecture of idiomorphic and highly crystalline BaTiO3 particle layers directly grown on a porous titanium sponge substrate was successfully achieved for the first time using a facile molten salt method at a relatively low temperature of 700 °C. Specifically, the low-melting KCl-NaCl eutectic salts and barium hydroxide octahydrate were employed as the reaction medium and barium source, respectively. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectrophotometry were used to characterize the structure, morphology and optical property of the obtained samples. The results revealed that the flux-grown tetragonal BaTiO3 products had well-defined and uniform morphology with an average size of 300 nm and a band gap of ∼3.16 eV. Based on XRD, EDS, SEM, and TEM, the possible formation mechanism responsible for the well-developed architecture of BaTiO3 particle layers was proposed and discussed. Furthermore, the photocatalytic activity of the flux-grown BaTiO3 products for organic pollutant degradation under simulated sunlight irradiation was also investigated.

  17. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    PubMed

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  18. Hydroxyapatite synthesis on solid surfaces using a biological approach

    NASA Astrophysics Data System (ADS)

    Wang, A.; Mei, J.; Tse, Y. Y.; Jones, I. P.; Sammons, R. L.

    2012-12-01

    Many naturally occurring mineralisation processes yield hydroxyapatite (HA) or related salts, but biological routes to calcification have not generally been exploited for production of hydroxyapatite for clinical and industrial applications. Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium which is capable of growing as a biofilm on many surfaces and can be used to form HA coatings on a variety of polymeric and metallic materials, including titanium. Here we review previous work and report the results of more recent studies on the influence of titanium compositional and surface properties on Serratia adherence and proliferation and biomineralisation on commercially pure titanium (cp Ti) discs and a Ti mesh. Bacterial adherence was equivalent on cpTi and Ti6Al4V, and biofilms formed on both rough and mirror-polished cpTi surfaces. Embedded alumina particles and alkali treatment did not noticeably alter the precipitation of Serratia HA, nor the structure of the coating in comparison with non-treated substrates. Coatings were retained after sintering at 800°C in argon, although the original curved plate-like crystals changed to nano-scale β-tricalcium phosphate particles. A phosphorous-rich diffusion zone formed at the coating-titanium interface. Bacterial mineralisation may have applications as a method for producing coatings on implants in non load-bearing sites, and non-clinical applications where a high surface area is the major concern.

  19. Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation

    PubMed Central

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899

  20. Enhancement of Ti-containing hydrogenated carbon (Tisbnd C:H) films by high-power plasma-sputtering

    NASA Astrophysics Data System (ADS)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-02-01

    Ti-containing amorphous hydrogenated carbon (Tisbnd C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C2H2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Tisbnd TiCsbnd DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Tisbnd C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  1. Investigation of thermal spray coatings on austenitic stainless steel substrate to enhance corrosion protection

    NASA Astrophysics Data System (ADS)

    Rogers, Daniel M.

    The research is aimed to evaluate thermal spray coatings to address material issues in supercritical and ultra-supercritical Rankine cycles. The primary purpose of the research is to test, evaluate, and eventually implement a coating to improve corrosion resistance and increase efficiency of coal fired power plants. The research is performed as part of a comprehensive project to evaluate the ability of titanium, titanium carbide, or titanium diboride powders to provide fireside corrosion resistance in supercritical and ultra-supercritical steam boilers, specifically, coal driven boilers in Illinois that must utilize high sulfur and high chlorine content coal. [1] The powder coatings that were tested are nano-sized titanium carbide (TiC) and titanium di-boride (TiB2) powders that were synthesized by a patented process at Southern Illinois University. The powders were then sent to Gas Technology Institute in Chicago to coat steel coupons by HVOF (High Velocity Oxy-Fuel) thermal spray technique. The powders were coated on an austenitic 304H stainless steel substrate which is commonly found in high temperature boilers, pipelines, and heat exchangers. The samples then went through various tests for various lengths of time under subcritical, supercritical, and ultra-supercritical conditions. The samples were examined using a scanning electron microscope and x-ray diffraction techniques to study microstructural changes and then determined which coating performed best.

  2. Structure and mechanical properties of a two-layered material produced by the E-beam surfacing of Ta and Nb on the titanium base after multiple rolling

    NASA Astrophysics Data System (ADS)

    Bataev, V. A.; Golkovski, M. G.; Samoylenko, V. V.; Ruktuev, A. A.; Polyakov, I. A.; Kuksanov, N. K.

    2018-04-01

    The study has been conducted in line with the current approach to investigation of materials obtained by considerably deep surface alloying of the titanium substrate with Ta, Nb, and Zr. The thickness of the resulting alloyed layer was equal to 2 mm. The coating was formed through weld deposition of a powder with the use of a high-voltage electron beam in the air. It has been lately demonstrated that manufactured such a way alloyed layers possess corrosion resistance which is significantly higher than the resistance of titanium substrates. It has already been shown that such two-layered materials are weldable. The study objective is to investigate the feasibility of rolling for necking the sheets with the Ti-Ta-Nb anticorrosion coating with further fourfold decrease in their thickness. The research is also aimed at investigation of the material properties after rolling. Anticorrosion layers were formed both on CP-titanium and on VT14 (Ti-4Al-3Mo-1 V) durable titanium alloy. The results of chemical composition determination, structure examination, X-ray phase analysis and mechanical properties observations (including bending properties of the alloyed layers) are presented in the paper. The combination of welding, rolling, and bending enables the manufacture of corrosion-resistant vessels and process pipes which are made from the developed material and find technological application.

  3. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    PubMed

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  4. In Situ TiC-Reinforced Ni-Based Composite Coating Prepared by Flame Spraying Using Sucrose as the Source of Carbon

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhang, Shouquan; Zhu, Jinglei; Huang, Jihua; Liu, Huiyuan; Zhang, Hua

    2009-03-01

    A Ni-Ti-C composite powder for Reactive Thermal Spraying is made by heating a mixture of titanium, nickel, and sucrose to carbonize the sucrose, which is used as the source of carbon. The carbon obtained by pyrolysis of sucrose is a reactive constituent as well as the binder in the composite powder. The titanium and nickel particles are bound by the carbon to form granules of the composite powder. This powder feedstock was used to prepare in situ TiC-reinforced Ni-based composite coating by oxyacetylene flame spraying. The TiC-Ni composite coating is made of TiC, Ni, and some Ni3Ti. In the coating, a mass of fine TiC particles is uniformly distributed within the metallic matrix. The microhardness and surface hardness of the coating are, respectively, 1433 HV0.2kg and 62 ± 6 (HR30N). The wear resistance is much better for the TiC-Ni composite coating than for the substrate and Ni60 coating.

  5. Microstructure characteristics and properties of in-situ formed TiC/Ni based alloy composite coating by laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Sen; Liu, Wenjin; Zhong, Minlin

    2003-03-01

    Different weight ratio of nickel based alloy, titanium and graphite powders were mixed and then laser cladded onto carbon steel substrate to produce a surface metal matrix composite layer. The experimental results showed that the coating was uniform, continuous and free of cracks. An excellent bonding between the coating and the carbon steel substrate was ensured by the strong metallurgical interface. The microstructures of the coating were mainly composed of γ-Ni dendrite, M23C6, a small amount of CrB, and dispersed TiC particles, and the in-situ generated TiCp/matrix interfaces were clean and free from deleterious surface reaction. The morphologies of TiC particles changed from the global, cluster to flower-like shape, the volume fraction of TiCp and the microhardness gradually increased from the bottom to the top of the coating layer, and the maximum microhardness of the coating was about HV0.2850, 3 times larger than that of steel substrate. The volume fraction of TiC particles increased with increasing of volume fraction of Ti and C too.

  6. Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; García-Cuenca, M. V.; Clèries, L.; Sardin, G.; Morenza, J. L.

    2002-07-01

    Hydroxyapatite (HA) coatings were deposited on Ti-6Al-4V substrates by laser ablation with a KrF excimer laser. Depositions were performed at 45 Pa of water vapour and at a substrate temperature of 575 °C. After 7 min of deposition, coatings were left at this temperature for different times before cooling down. The samples morphology and structure were characterised by scanning electron microscopy, X-ray diffractometry and Raman spectroscopy. The mechanical performance of the coatings was evaluated through the scratch-test technique. The coatings do not present important differences between them. However, there is an interface layer between the coating and the substrate that indeed presents an evolution with the heating time. This interface layer is constituted by two different species: titanium oxide and Ti-6Al-4V with oxygen diffused in its lattice. Its thickness increases during the first minutes of heating after deposition. An evolution of the titanium oxide phases with the time of heating has been detected by Raman spectroscopy. The samples fail at lower loads in the scratch-test as longer is the time that they remained at high temperature. The mode of failure of the samples suggests that failure occurs at the interface.

  7. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials.

    PubMed

    Murphy, M; Walczak, M S; Thomas, A G; Silikas, N; Berner, S; Lindsay, R

    2017-01-01

    Targeting understanding enhanced osseointegration kinetics, the goal of this study was to characterize the surface morphology and composition of Ti and TiZr dental implant substrates subjected to one of two surface treatments developed by Straumann. These two treatments are typically known as SLA and SLActive, with the latter resulting in more rapid osseointegration. A range of techniques was applied to characterize four different substrate/surface treatment combinations (Ti SLA , Ti SLActive , TiZr SLA , and TiZr SLActive ). Contact angle measurements established their hydrophilic/hydrophobic nature. Surface morphology was probed with scanning electron microscopy. X-ray diffraction, Raman μ-spectroscopy, and X-ray photoelectron spectroscopy were used to elucidate the composition of the near-surface region. Consistent with previous work, surface morphology was found to differ only at the nanoscale, with both SLActive substrates displaying nano-protrusions. Spectroscopic data indicate that all substrates exhibit surface films of titanium oxide displaying near TiO 2 stoichiometry. Raman μ-spectroscopy reveals that amorphous TiO 2 is most likely the only phase present on Ti SL A , whilst rutile-TiO 2 is also evidenced on Ti SLActive , TiZr SLA , and TiZr SLActive . For TiZr alloy substrates, there is no evidence of discrete phases of oxidized Zr. X-ray photoelectron spectra demonstrate that all samples are terminated by adventitious carbon, with it being somewhat thicker (∼1nm) on Ti SL A and TiZr SLA . Given previous in vivo studies, acquired data suggest that both nanoscale protrusions, and a thinner layer of adventitious carbon contribute to the more rapid osseointegration of SLActive dental implants. Composition of the surface oxide layer is apparently less important in determining osseointegration kinetics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Characterization of W-Ti-O thin films for application in photovoltaics

    NASA Astrophysics Data System (ADS)

    Christmas, Amanda P.

    Photovoltaic (PV) devices consist of the conversion of light energy into electricity. Nearly all PV technologies employ transparent conducting oxides (TCO) as an integral part of the de-vice structure so that the light can reach the semiconductor. The predominant transparent conducting oxide (TCO) that is currently being used in industry is indium tin oxide (ITO). However, Indium (In) is high in cost and becoming scarce in the world. This work is focused towards Titanium doped Tungsten oxide (WO3) for TCO application. The ultimate goal is making novel, cheaper, and efficient TCOs based on W-Ti-O films. Titanium will enhance the conductivity of the film. In addition, Ti is more abundant than In thus leading to low-cost TCO. Ti-doped WO3 (W-Ti-O) films were grown by co-sputter deposition onto silicon, Si (100), and optical grade quartz wafers. Co-sputtering of Ti and W metal targets was per-formed in a wide growth temperature range (room temperature (RT)-500 °C). The Ti sputter-ing power varied from 50 watts-100 watts in order to gain an understanding of the Ti effect. The structure and optical properties were characterized by the X-ray diffraction (XRD), scan-ning electron microscopy (SEM) and the spectrophotometry measurements. The films are op-tically transparent and a correlation between the growth conditions and optical properties is derived. The XRD results show W-Ti-O films grown at RT are amorphous and the films crys-tallize at 200°C. A decrease in the peak intensity implies that the crystallinity decreases with an increase in titanium (Ti) along with a phase change at higher substrate growth tempera-tures. The optical results show the transparency of the films is well above 80%. The energy band gap decreases from 4.0 eV to 3.9 eV with an increase in substrate temperature and in-creases from 3.85 eV to 3.95 eV with an increase of Ti. These results meet the criteria of two essential TCO parameters.

  9. Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo

    2016-03-15

    Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{supmore » −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.« less

  10. The effects of a SiO2 coating on the corrosion parameters cpTi and Ti-6Al-7Nb alloy

    PubMed Central

    Basiaga, Marcin; Walke, Witold; Paszenda, Zbigniew; Karasiński, Paweł; Szewczenko, Janusz

    2014-01-01

    The aim of this paper was to evaluate the usefulness of the sol-gel method application, to modificate the surface of the Ti6Al7Nb alloy and the cpTi titanium (Grade 4) with SiO2 oxide, applied on the vascular implants to improve their hemocompatibility. Mechanical treatment was followed by film deposition on surface of the titanium samples. An appropriate selection of the process parameters was verified in the studies of corrosion, using potentiodynamic and impedance method. A test was conducted in the solution simulating blood vessels environment, in simulated body fluid at t = 37.0 ± 1 °C and pH = 7.0 ± 0.2. Results showed varied electrochemical properties of the SiO2 film, depending on its deposition parameters. Correlations between corrosion resistance and layer adhesion to the substrate were observed, depending on annealing temperature. PMID:25482412

  11. Characterization of N3 dye adsorption on TiO2 using quartz-crystal microbalance with dissipation monitoring

    NASA Astrophysics Data System (ADS)

    Wayment-Steele, Hannah K.; Johnson, Lewis E.; Dixon, Matthew C.; Johal, Malkiat S.

    2013-09-01

    Understanding the kinetics of dye adsorption on semiconductors is crucial for designing dye-sensitized solar cells (DSSCs) with enhanced efficiency. Harms et al. recently applied the Quartz-Crystal Microbalance with Dissipation Monitoring (QCM-D) to study in situ dye adsorption on flat TiO2 surfaces. QCM-D measures adsorption in real time and therefore allows one to determine the kinetics of the process. In this work, we characterize the adsorption of N3, a commercial RuBipy dye, using the native oxide layer of a titanium sensor to simulate the TiO2 substrate of a DSSC. We report equilibrium constants that are in agreement with previous absorbance studies of N3 adsorption, and therefore demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption.

  12. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  13. Properties of ordered titanium templates covered with Au thin films for SERS applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Sokołowski, Michał; Karczewski, Jakub; Szkoda, Mariusz; Śliwiński, Gerard

    2016-12-01

    Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5-20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO2 nanotubes on a flat Ti surface (2 × 2 cm2) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (107-108) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  14. Determination of the Mass Absorption Coefficient in Two-Layer Ti/V and V/Ti Thin Film Systems by the X-Ray Fluorescence Method

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.

    2016-03-01

    A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.

  15. Influence of TiN coating on the biocompatibility of medical NiTi alloy.

    PubMed

    Jin, Shi; Zhang, Yang; Wang, Qiang; Zhang, Dan; Zhang, Song

    2013-01-01

    The biocompatibility of TiN coated nickel-titanium shape memory alloy (NiTi-SMA) was evaluated to compare with that of the uncoated NiTi-SMA. Based on the orthodontic clinical application, the surface properties and biocompatibility were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), wettability test, mechanical test and in vitro tests including MTT, cell apoptosis and cell adhesion tests. It was observed that the bonding between the substrate and TiN coating is excellent. The roughness and wettability increased as for the TiN coating compared with the uncoated NiTi-SMA. MTT test showed no significant difference between the coated and uncoated NiTi-SMA, however the percentage of early cell apoptosis was significantly higher as for the uncoated NiTi alloy. SEM results showed that TiN coating could enhance the cell attachment, spreading and proliferation on NiTi-SMA. The results indicated that TiN coating bonded with the substrate well and could lead to a better biocompatibility. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.

    PubMed

    Zhong, Lexuan; Lee, Chang-Seo; Haghighat, Fariborz

    2012-12-01

    The photocatalytic oxidation (PCO) technology as an alternative method for air purification has been studied for decades and a variety of PCO models indicate that the adsorption of reactants on the catalyst surface is one of the major physical and chemical processes occurring at a heterogeneous photocatalytic reaction. However, limited study explored the adsorption effect of a photocatalyst. This study carried out a systematic evaluation of adsorption performance of titanium dioxide (TiO(2)) coated fiberglass fibers (FGFs), TiO(2) coated carbon cloth fibers (CCFs), and original CCFs air filters at various relative humidity conditions for nine volatile organic compounds. TiO(2)/FGFs, TiO(2)/CCFs, and CCFs were characterized by SEM for morphology and N(2) adsorption isotherm for BET surface area and pore structure. A bench-scale adsorption test setup was constructed and adsorption tests were performed at various relative humidity conditions and four different injected concentrations for each compound. The isothermal adsorption curves at low concentration levels were obtained and they were well described by Langmuir isotherm model. It was noticed that there were significant differences between the adsorption behaviors and photocatalytic activities of TiO(2)/FGFs and TiO(2)/CCFs. It was concluded that adsorption performance is closely related to the characteristics of substrates and therefore, the development of a substrate with high adsorption ability is a promising trend for improving the performance of the UV-PCO technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Bioactive borate glass coatings for titanium alloys.

    PubMed

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  18. Surface-enhanced Raman scattering of amorphous TiO2 thin films by gold nanostructures: Revealing first layer effect with thickness variation

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A.-M.; Bessueille, F.; Coulm, J.; Champagnon, B.; Vouagner, D.

    2013-12-01

    In this paper, amorphous titanium dioxide (TiO2) thin films have been deposited on a commercially available Klarite substrate using the sol-gel process to produce surface-enhanced Raman scattering (SERS). The substrate consists of square arrays of micrometer-sized pyramidal pits in silicon with a gold coating. Several thin TiO2 layers have been deposited on the surface to study the influence of film thickness. Ultimately, we obtained information on SERS of an amorphous TiO2 layer by gold nanostructures, whose range is less than a few nanometers. Mechanisms responsible for the enhancement are the product of concomitant chemical and electromagnetic effects with an important contribution from plasmon-induced charge transfer.

  19. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  20. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    NASA Astrophysics Data System (ADS)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  1. Tribological characterization of TiN coatings prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.

  2. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    PubMed

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  3. Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment

    NASA Astrophysics Data System (ADS)

    Hamedi, M. J.; Torkamany, M. J.; Sabbaghzadeh, J.

    2011-04-01

    Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.

  4. Rutile titanium dioxide films deposited with a vacuum arc at different temperatures

    NASA Astrophysics Data System (ADS)

    Arias, L. Franco; Kleiman, A.; Heredia, E.; Márquez, A.

    2012-06-01

    Rutile crystalline phase of TiO2 has been one of the most investigated materials for medical applications. Its implementation as a surface layer on biomedical implants has shown to improve hemocompatibility and biocompatibility. In this work, titanium dioxide coatings were deposited on glass and steel 316L substrates using cathodic arc deposition. The coatings were obtained at different substrate temperatures; varying from room temperature to 600°C. The crystalline structure of the films was identified by glancing angle X-ray diffraction. Depending on the substrate material and on its temperature during the deposition process, anatase, anatse+rutile and rutile structures were observed. It was determined that rutile films can be obtained below 600 °C with this deposition method.

  5. Laser surface modification of Ti and TiC coatings on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Lee, S. G.; Park, J. S.; Kim, H. G.

    2014-12-01

    In order to enhance the surface properties of magnesium alloy, a highly intense laser surface melting process following plasma spraying of Ti or TiC on AZ31 alloy were employed. When laser surface melting was applied to Ti coated magnesium alloy, the formation of fine Ti particle dispersed surface layer on the substrate occurred. The corrosion potential of the AZ31 alloy with Ti dispersed surface was significantly increased in 3.5 wt % NaCl solution. Additionally, an improved hardness was observed for the laser treated specimens as compared to the untreated AZ31 alloy. Laser melting process following plasma thermal deposition was also applied for obtaining in situ TiC coating layer on AZ31 alloy. The TiC coating layer could be successfully formed via in situ reaction between pure titanium and carbon powders. Incomplete TiC formation was observed in the plasma sprayed specimen, while completely transformed TiC layer was found after post laser melting process. It was also confirmed that the laser post treatment induced enhanced adhesion strength between the coating and the substrate.

  6. Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol-gel layers.

    PubMed

    Burnat, B; Dercz, G; Blaszczyk, T

    2014-03-01

    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol-gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 °C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode's physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 °C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate-layer interaction. From the point of view of corrosion, the best TiO2 sol-gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 °C.

  7. Apatite-forming PEEK with TiO2 surface layer coating.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2015-01-01

    Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.

  8. Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics.

    PubMed

    Farsinezhad, Samira; Mohammadpour, Arash; Dalrymple, Ashley N; Geisinger, Jared; Kar, Piyush; Brett, Michael J; Shankar, Karthik

    2013-04-01

    Exploitation of anodically formed self-organized TiO2 nanotube arrays in mass-manufactured, disposable biosensors, rollable electrochromic displays and flexible large-area solar cells would greatly benefit from integration with transparent and flexible polymeric substrates. Such integration requires the vacuum deposition of a thin film of titanium on the desired substrate, which is then anodized in suitable media to generate TiO2 nanotube arrays. However the challenges associated with control of Ti film morphology, nanotube array synthesis conditions, and film adhesion and transparency, have necessitated the use of substrate heating during deposition to temperatures of at least 300 degrees C and as high as 500 degrees C to generate highly ordered open-pore nanotube arrays, thus preventing the use of polymeric substrates. We report on a film growth technique that exploits atomic peening to achieve high quality transparent TiO2 nanotube arrays with lengths up to 5.1 microm at room temperature on polyimide substrates without the need for substrate heating or substrate biasing or a Kauffman ion source. The superior optical quality and uniformity of the nanotube arrays was evidenced by the high specular reflectivity and the smooth pattern of periodic interferometric fringes in the transmission spectra of the nanotube arrays, from which the wavelength-dependent effective refractive index was extracted for the air-TiO2 composite medium. A fluorescent immunoassay biosensor constructed using 5.1 microm-long transparent titania nanotube arrays (TTNAs) grown on Kapton substrates detected human cardiac troponin I at a concentration of 0.1 microg ml(-1).

  9. Microstructures of plasma-sprayed hydroxyapatite-coated Ti-6Al-4V dental implants.

    PubMed

    Tufekci, E; Brantley, W A; Mitchell, J C; McGlumphy, E A

    1997-01-01

    The purpose of this study was to investigate the microstructure of plasma-sprayed hydroxyapatite coatings and the elemental composition near the coating-substrate interface for two commercial implants, using the scanning electron microscope. Both coating surfaces and cross-sectioned specimens were examined. The results indicated that while the surface microstructures of both implants were consistent with the plasma-spraying process, the scale of the constituents was much finer for one product. In cross-section, both coatings exhibited minimal porosity and intimate contact with the titanium alloy substrate. It was found that limited interdiffusion of titanium and calcium occurred near the interface.

  10. Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Li, Baoe; Liang, Chunyong; Wang, Hongshui; Qiao, Zhixia

    2016-01-01

    A hydroxyapatite (HA)/TiO2 composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca-P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca2+ ions which diffused into the coating decreased more rapidly than that of PO43- or HPO42-. The adhesive strength between the apatite and TiO2 coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO2 layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  11. Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua

    2008-04-01

    A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.

  12. Effect of growth time on the structure, morphology and optical properties of hydrothermally synthesized TiO2 nanorod thin films

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Nayak, J.

    2018-05-01

    Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.

  13. Structure and optical properties of TiO2 thin films deposited by ALD method

    NASA Astrophysics Data System (ADS)

    Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz

    2017-12-01

    This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.

  14. Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.

  15. Optical properties of titanium di-oxide thin films prepared by dip coating method

    NASA Astrophysics Data System (ADS)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  16. Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Arias-González, Felipe; del Val, Jesús; Comesaña, Rafael; Penide, Joaquín; Lusquiños, Fernando; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Gil, Francisco Javier; Pou, Juan

    2018-01-01

    In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.

  17. Nanostructured titanium-silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bai, Long; Hang, Ruiqiang; Gao, Ang; Zhang, Xiangyu; Huang, Xiaobo; Wang, Yueyue; Tang, Bin; Zhao, Lingzhou; Chu, Paul K.

    2015-11-01

    Bacterial infection and loosing are serious complications for biomedical implants in the orthopedic, dental, and other biomedical fields and the ideal implants should combine good antibacterial ability and bioactivity. In this study, nanostructured titanium-silver (Ti-Ag) coatings with different Ag contents (1.2 to 21.6 at%) are prepared on Ti substrates by magnetron sputtering. As the Ag concentration is increased, the coatings change from having dense columnar crystals to sparse ones and eventually no columnar structure. The Ti-Ag coatings can effectively kill Staphylococcus aureus during the first few days and remain moderately antibacterial after immersion for 75 days. Compared to pure Ti, the Ti-Ag coatings show good cytocompatibility as indicated by good osteoblast adhesion, proliferation, intracellular total protein synthesis, and alkaline phosphatase (ALP) activity. In addition, cell spreading, collagen secretion, and extracellular matrix mineralization are promoted on the coatings with the proper Ag contents due to the nanostructured morphological features. Our results indicate that favorable antibacterial activity and osseointegration ability can be simultaneously achieved by regulating the Ag contents in Ti-Ag coatings.

  18. Optimization of TiO{sub 2} photoelectrode with titanium isopropoxide for flexible dye sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggraini, Putri Nur, E-mail: putr014@lipi.go.id; Retnaningsih, Lilis; Muliani, Lia

    2016-04-19

    Flexible DSSC uses plastic substrate such as polyethylene terephthalate (PET) to deposit photoelectrode, resulting in poor photoconversion efficiency of the solar cell due to the low temperature applied in the fabrication process. In this research, optimization process was examined in order to optimize the performance of flexible DSSC by adding titanium isopropoxide (TTIP) as a binder to TiO{sub 2} paste for DSSC photoelectrode. Small portion of TTIP with molar percentages of 0%, 5%, and 10% were added to a mixture of TiO{sub 2} nanocrystaline, butanol, DI water, and reflector powder. The mixtures were stirred using a magnetic stirrer for 24more » hours. Each of various pastes was then deposited on a plastic substrate with doctor blade method on 1 cm{sup 2} area. The films were sintered at temperature of 150 °C for 4 hours and soaked in dye solution for 24 hours. Furthermore, TiO{sub 2} photoelectrode and Pt counter electrode were assembled and injected by electrolyte. Flexible DSSCs were characterized by SEM and XRD to determine their morphological structures. J-V measurement was performed by sun simulator to calculate DSSC photoconversion efficiency. The optimum performance of flexible DSSC was achieved by DSSC with 10 mol% TTIP content.« less

  19. Study on Relationships between Internal Stress and Photodecomposition Properties of Thin Film Titanium Dioxide Photocatalyst

    NASA Astrophysics Data System (ADS)

    Miyamura, Amica; Kaneda, Kenji; Sato, Yasushi; Shigesato, Yuzo

    Photocatalytic activities of titanium dioxide (TiO2) films deposited by rf sputtering were investigated from view points of their internal stress. TiO2 films were deposited on fused quartz glass or 100 μm thick micro-sheet glass substrates at room temperature, 200 or 400°C under various total gas pressures (Ptot) of 0.3~5.0 Pa with oxygen flow ratio [O2/(O2+Ar)] of 60% using a Ti metal target. Photocatalytic activity was evaluated by photodecomposition of acetaldehyde (CH3CHO) under UV illumination (black light lamp, 0.4 mW/cm2). Compressive internal stress was estimated by cantilever method using the micro-sheet glass, which clearly decreased from -2.1 to -0.1 GPa with the increase in the Ptot from 0.3 to 3.0 Pa. The films with the compressive stress less than -0.5 GPa performed the photocatalytic activity. Furthermore, compressive or tensile stress was applied by external force on the TiO2 films deposited on the curved micro sheet glasses by flattening these substrates after the deposition. The photodecomposition activity of the films with the slight compressive stress improved clearly, whereas the one of the films with the tensile stress degraded.

  20. Tribological coating of titanium alloys by laser processing

    NASA Astrophysics Data System (ADS)

    Pang, Wang

    Titanium-based alloys have been used for aerospace materials for many years. Recently, these alloys are now being increasingly considered for automotive, industrial and consumer applications. Their excellent creep resistance, corrosion resistance and relative higher specific strength ratio are attractive for many applications. However, the main obstacle for the wide adoption of Ti alloys in various industries is their poor tribological properties. In slide wear, Ti deforms and adhesive wear readily occurs. Their poor tribological properties are mainly due to low hardness and absolute values of tensile and shear strength. Different surface modification techniques have been studied in order to improve the tribological characteristics of Ti alloys, i.e. PVD, nitrding, carburizing, boriding, plating etc. Coatings produced by these techniques have their own limitations such as thermal distortion and grain growth. A different approach is to introduce hard particles in the Ti alloy matrix to form a MMC coating, which has tailor-made hardness and wear resistance properties. Laser cladding or laser alloying techniques facilitate the fabrication of surface MMC on Ti alloys without thermal distortion to the substrate. In this project, the fabrication of hard and wear resistant layers of metal matrix composite on titanium alloys substrate by laser surface alloying was investigated. Powder mixtures of Mo and WC were used to form the MMC layer. By optimizing the processing parameters and pre-placed powder mixture compositions, surface MMC of different properties have been successfully fabricated on CP-Ti and Ti6A14V respectively. The structure and characteristics of the MMC surface were investigated by metallography, SEM, XRD, and E-DAX. It was found that the hardness of the laser alloyed Mo/WC MMC surface was 300% higher than that of the CP-Ti substrate Excellent metallurgical bonding with the MMC layer of the substrate has been achieved. The relative kinetic frictional tests were carried out and the results showed that the kinetic coefficient of friction of the laser fabricated Ti-Mo-WC MMC coatings was much lower than that of the CP-Ti and Ti6A14V substrate. The wear resistance of this Ti-Mo-WC MMC was found to be between 60 to 150 times better than those of CP-Ti. The experimental results also identified a key issue of mixing efficiency that the density of WC was much higher than that of Ti and Mo and this rendered poor mixing between the different constituents. This resulted in a relatively poor repeatability of the coating quality. To solve this issue, a lower density carbide phase, TiC, was used. The hardness and dry sliding wear resistance of the Ti-Mo-TiC MMC was found to be lower than those of Ti-Mo-WC MMC. The mixing efficiency of the TiC in the Ti-Mo-MMC was found to be better than the WC in Ti-Mo-WC MMC. This combination gave a harder and more wear resistant MMC with more uniform properties across the width and depth of the alloyed layer formed. A mathematical model for predicting the melt depth of the alloyed MMC layer was developed together with a heat transfer mechanism between layers of powders under the laser irradiation. The model facilitates the prediction of melt depth of the alloyed layer and the dilution ratio of the MMC layer. It thus enabled the composition of the MMC layer to be predicted and tailor made. The project results contribute significantly to the knowledge of improving the wear and frictional properties of one of the most important engineering metals for the automobile and aerospace industries.

  1. Surface initiated atom transfer radical polymerization grafting of sodium styrene sulfonate from titanium and silicon substrates.

    PubMed

    Foster, Rami N; Keefe, Andrew J; Jiang, Shaoyi; Castner, David G

    2013-11-01

    This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone.

  2. Surface initiated atom transfer radical polymerization grafting of sodium styrene sulfonate from titanium and silicon substrates

    PubMed Central

    Foster, Rami N.; Keefe, Andrew J.; Jiang, Shaoyi; Castner, David G.

    2013-01-01

    This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone. PMID:24482558

  3. Effect of sputtered titanium interlayers on the properties of nanocrystalline diamond films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Cuiping, E-mail: licp226@126.com, E-mail: limingji@163.com; Li, Mingji, E-mail: licp226@126.com, E-mail: limingji@163.com; Wu, Xiaoguo

    2016-04-07

    Ti interlayers with different thicknesses were sputtered on Si substrates and then ultrasonically seeded in a diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet chemical vapor deposition system on the seeded Ti/Si substrates. Atomic force microscopy and scanning electron microscopy tests showed that the roughness of the prepared Ti interlayer increased with increasing thickness. The effects of Ti interlayers with various thicknesses on the properties of NCD films were investigated. The results show nucleation, growth, and microstructure of the NCD films are strongly influenced by the Ti interlayers. The addition of a Timore » interlayer between the Si substrate and the NCD films can significantly enhance the nucleation rate and reduce the surface roughness of the NCD. The NCD film on a 120 nm Ti interlayer possesses the fastest nucleation rate and the smoothest surface. Raman spectra of the NCD films show trans-polyacetylene relevant peaks reduce with increasing Ti interlayer thickness, which can owe to the improvement of crystalline at grain boundaries. Furthermore, nanoindentation measurement results show that the NCD film on a 120 nm Ti interlayer displays a higher hardness and elastic modulus. High resolution transmission electron microscopy images of a cross-section show that C atoms diffuse into the Ti layer and Si substrate and form TiC and SiC hard phases, which can explain the enhancement of mechanical properties of NCD.« less

  4. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  5. Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Giovanardi, R; Veronesi, P

    2014-10-01

    Organic-inorganic hybrid coatings based on zirconia and poly (ε-caprolactone) (PCL) were prepared by means of sol-gel dip-coating technique and used to coat titanium grade 4 implants (Ti-4) in order to improve their wear and corrosion resistance. The coating chemical composition has been analysed by ATR-FTIR. The influence of the PCL amount has been investigated on the microstructure, mechanical properties of the coatings and their ability to inhibit the corrosion of titanium. SEM analysis has shown that all coatings have a nanostructured nature and that the films with high PCL content are crack-free. Mechanical properties of the coatings have been studied using scratch and nano-indentation tests. The results have shown that the Young's modulus of the coatings decreases in presence of large amounts of the organic phase, and that PCL content affects also the adhesion of the coatings to the underlying Ti-4 substrate. However, the presence of cracks on the PCL-free coatings affects severely the mechanical response of the samples at high loads. The electrochemical behavior and corrosion resistance of the coated and uncoated substrate has been investigated by polarization tests. The results have shown that both the coatings with or without PCL don't affect significantly the already excellent passivation properties of titanium. Copyright © 2014. Published by Elsevier B.V.

  6. IN SITU Deposition of Fe-TiC Nanocomposite on Steel by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Razavi, Mansour; Rahimipour, Mohammad Reza; Ganji, Mojdeh; Ganjali, Mansoreh; Gangali, Monireh

    The possibility of deposition of Fe-TiC nanocomposite on the surface of carbon steel substrate with the laser coating method had been investigated. Mechanical milling was used for the preparation of raw materials. The mixture of milled powders was used as a coating material on the substrate steel surface and a CO2 laser was used in continuous mode for coating. Microstructural studies were performed by scanning electron microscopy. Determinations of produced phases, crystallite size and mean strain have been done by X-ray diffraction. The hardness and wear resistance of coated samples were measured. The results showed that the in situ formation of Fe-TiC nanocomposite coating using laser method is possible. This coating has been successfully used to improve the hardness and wear resistance of the substrate so that the hardness increased by about six times. Coated iron and titanium carbide crystallite sizes were in the nanometer scale.

  7. Flexible anodized aluminum oxide membranes with customizable back contact materials

    NASA Astrophysics Data System (ADS)

    Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.

    2016-12-01

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  8. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys.

    PubMed

    Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K

    2016-02-01

    Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.

  9. Effects of 200 keV argon ions irradiation on microstructural properties of titanium nitride films

    NASA Astrophysics Data System (ADS)

    Popović, M.; Novaković, M.; Šiljegović, M.; Bibić, N.

    2012-05-01

    This paper reports on a study of microstructrual changes in TiN/Si bilayers due to 200 keV Ar+ ions irradiation at room temperature. The 240 nm TiN/Si bilayers were prepared by d.c. reactive sputtering on crystalline Si (1 0 0) substrates. The TiN films were deposited at the substrate temperature of 150 °C. After deposition the TiN/Si bilayers were irradiated to the fluences of 5 × 1015 and 2 × 1016 ions/cm2. The structural changes induced by ion irradiation in the TiN/Si bilayers were analyzed by Rutherford Backscattering Spectroscopy (RBS), X-ray diffraction analyses (XRD) and Transmission Electron Microscopy (TEM). The irradiations caused the microstructrual changes in TiN layers, but no amorphization even at the highest argon fluence of 2 × 1016 ions/cm2. It is also observed that the mean crystallite size decreases with the increasing ion fluence.

  10. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    PubMed

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-19

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  11. The Interface Structure of High-Temperature Oxidation-Resistant Aluminum-Based Coatings on Titanium Billet Surface

    NASA Astrophysics Data System (ADS)

    Xu, Zhefeng; Rong, Ju; Yu, Xiaohua; Kun, Meng; Zhan, Zhaolin; Wang, Xiao; Zhang, Yannan

    2017-10-01

    A new type of high-temperature oxidation-resistant aluminum-based coating, on a titanium billet surface, was fabricated by the cold spray method, at a high temperature of 1050°C, for 8 h, under atmospheric pressure. The microstructure of the exposed surface was analyzed via optical microscopy, the microstructure of the coating and elemental diffusion was analyzed via field emission scanning electron microscopy, and the interfacial phases were identified via x-ray diffraction. The Ti-Al binary phase diagram and Gibbs free energy of the stable phase were calculated by Thermo-calc. The results revealed that good oxidation resistant 50-μm-thick coatings were successfully obtained after 8 h at 1050°C. Two layers were obtained after the coating process: an Al2O3 oxidation layer and a TiAl3 transition layer on the Ti-based substrate. The large and brittle Al2O3 grains on the surface, which can be easily spalled off from the surface after thermal processing, protected the substrate against oxidation during processing. In addition, the thermodynamic calculation results were in good agreement with the experimental data.

  12. Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate

    NASA Astrophysics Data System (ADS)

    Zhou, He; Zhang, Yanrong

    2014-12-01

    The deposition of MnO2 spheres on a TiO2 nanotube arrays substrate are achieved via a sequential chemical bath deposition (SCBD) method for an application of anode materials in supercapacitors. The electrochemical performance of the MnO2-TiO2 composite electrode is observed to show a strong dependence on the MnO2 loading mass, which could be adjusted by repeating the SCBD treatment for several cycles. The optimized doses of MnO2 loaded MnO2-TiO2 and MnO2-Ti samples are compared in terms of their areal capacitance studies and the former is of 175 and 101 mF cm-2 at a scan rate of 10 and 100 mV s-1, respectively, which are 1.52-fold and 1.51-fold of that of the latter sample at corresponding scan rates. The enhancement in areal capacitance has been accounted to the progressive effect of the TiO2 tubular substrate on the capacitive behavior of the loaded MnO2 rather than the different MnO2 loading mass on these two substrates. Impedance analysis reveals this enhanced electrochemical activity is owing to the tubular structure of the TiO2 substrate provides an increased reaction area and facilitates the contact of electrolyte with the active MnO2 material. This work justified the suitability of using the TiO2 nanotube arrays for constructing high-performance supercapacitors.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, Mitsuhiro; Saito, Yuika, E-mail: yuika@ap.eng.osaka-u.ac.jp; Kawata, Satoshi

    We report plasmonic nanoparticle enhanced photocatalysis on titanium dioxide (TiO{sub 2}) in the deep-UV range. Aluminum (Al) nanoparticles fabricated on TiO{sub 2} film increases the reaction rate of photocatalysis by factors as high as 14 under UV irradiation in the range of 260–340 nm. The reaction efficiency has been determined by measuring the decolorization rate of methylene blue applied on the TiO{sub 2} substrate. The enhancement of photocatalysis shows particle size and excitation wavelength dependence, which can be explained by the surface plasmon resonance of Al nanoparticles.

  14. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  15. Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions.

    PubMed

    Li, Xiang; Ma, Xiang-Yu; Feng, Ya-Fei; Ma, Zhen-Sheng; Wang, Jian; Ma, Tian-Cheng; Qi, Wei; Lei, Wei; Wang, Lin

    2015-01-01

    Chitosan coated porous titanium alloy implant (CTI) is demonstrated a promising approach to improve osseointegration capacity of pure porous titanium alloy implant (TI). Since chitosan has been demonstrated to exhibit antioxidant activity, we propose CTI may ameliorate the ROS overproduction, thus reverse the poor osseointegration under diabetic conditions, and investigate the underlying mechanisms. Primary rat osteoblasts incubated on the TI and the CTI were subjected to normal serum (NS), diabetic serum (DS), DS + NAC (a potent ROS inhibitor) and DS + LY294002 (a PI3K/AKT-specific inhibitor). In vivo study was performed on diabetic sheep implanted with TI or CTI into the bone defects on crista iliaca. Results showed that diabetes-induced ROS overproduction led to osteoblast dysfunction and apoptosis, concomitant with the inhibition of AKT in osteoblasts on the TI substrate. While CTI stimulated AKT phosphorylation through ROS attenuation, thus reversed osteoblast dysfunction evidenced by improved osteoblast adhesion, increased proliferation and ALP activity, and decreased cytotoxicity and apoptotic rate, which exerted same effect to NAC treatment on the TI. These effects were further confirmed by the improved osseointegration within the CTI in vivo evidenced by Micro-CT and histological examinations. In addition, the aforementioned promotive effects afforded by CTI were abolished by blocking PI3K/AKT pathway with addition of LY294002. These results demonstrate that the chitosan coating markedly ameliorates diabetes-induced impaired bio-performance of TI via ROS-mediated reactivation of PI3K/AKT pathway, which elicits a new surface functionalization strategy for better clinical performance of titanium implant in diabetic patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    PubMed Central

    Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks

    2017-01-01

    Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331

  17. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation.

    PubMed

    Lai, Min; Jin, Ziyang; Su, Zhiguo

    2017-04-01

    To investigate the influence of surface-biofunctionalized substrates on osteoblast behavior, a layer of aligned TiO 2 nanotubes with a diameter of around 70nm was fabricated on titanium surface by anodization, and then osteogenic growth peptide (OGP) was conjugated onto TiO 2 nanotubes through the intermediate layer of polydopamine. The morphology, composition and wettability of different surfaces were characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements, respectively. The effects of OGP-modified TiO 2 nanotube substrates on the morphology, proliferation and differentiation of osteoblasts were examined in vitro. Immunofluorescence staining revealed that the OGP-functionalized TiO 2 nanotubes were favorable for cell spreading. However, there was no significant difference in cell proliferation observed among the different groups. Cells grown onto OGP-functionalized TiO 2 nanotubes showed significantly higher (p<0.05 or p<0.01) levels of alkaline phosphatase (ALP) and mineralization after 4, 7 and 14days of culture, respectively. Cells grown on OGP-functionalized TiO 2 nanotubes had significantly higher (p<0.05 or p<0.01) expression of osteogenic-related genes including runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN) and osteocalcin (OC) after 14days of culture. These data suggest that surface functionalization of TiO 2 nanotubes with OGP was beneficial for cell spreading and differentiation. This study provides a novel platform for the development and fabrication of titanium-based implants that enhance the propensity for osseointegration between the native tissue and implant interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Metallic biomaterials TiN-coated: corrosion analysis and biocompatibility.

    PubMed

    Paschoal, André Luís; Vanâncio, Everaldo Carlos; Canale, Lauralice de Campos Franceschini; da Silva, Orivaldo Lopes; Huerta-Vilca, Domingos; Motheo, Artur de Jesus

    2003-05-01

    Corrosion processes due to contact with the physiological environment should be avoided or minimized in orthopedic implants. Four metallic substrates frequently used as biomaterials: pure Ti, Ti-6Al-4V alloy, ASTM F138 stainless steel, and Co-Cr-Mo alloy, were coated with TiN using the physical vapor deposition (PVD) technique. These coatings have been screened by polarization curves in physiological solutions. TiN prepared by PVD is efficient as coating for stainless steel. On titanium and alloy there are no benefits concerning the corrosion resistance compared to the bare Ti-materials. TiN coatings have been screened according to ISO 10993 standard tests for biocompatibility and exhibited no cytotoxicity, dermal irritation, or acute systemic toxicity response.

  19. Wettability of Thin Silicate-Containing Hydroxyapatite Films Formed by RF-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.; Gribennikov, M. V.; Pichugin, V. F.; Sharonova, A. A.; Pustovalova, A. A.; Prymack, O.; Epple, M.; Wittmar, A.; Ulbricht, M.; Gogolinskii, K. V.; Kravchuk, K. S.

    2014-02-01

    Using the methods of electron and atomic force microscopy, X-ray structural analysis and measurements of the wetting angle, the features of morphology, structure, contact angle and free surface energy of silicon-containing calcium-phosphate coatings formed on the substrates made from titanium VT1-0 and stainless steel 12Cr18Ni10Ti are investigated. It is shown that the coating - substrate system possesses bimodal roughness formed by the substrate microrelief and coating nanostructure, whose principal crystalline phase is represented by silicon-substituted hydroxiapatite with the size of the coherent scattering region (CSR) 18-26 nm. It is found out that the formation of a nanostructured coating on the surface of rough substrates makes them hydrophilic. The limiting angle of water wetting for the coatings formed on titanium and steel acquires the values in the following ranges: 90-92 and 101-104°, respectively, and decreases with time.

  20. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: optimisation of coating properties.

    PubMed

    Tsui, Y C; Doyle, C; Clyne, T W

    1998-11-01

    Heat treatment and the introduction of a Ti bond coat have been applied to hydroxyapatite (HA) coatings sprayed using different plasma powers and gas mixtures. Attempts were made in this way to achieve optimal coating properties for orthopaedic implants. In particular, the effects on the degree of crystallinity, the adhesion, the OH ion content and the purity were evaluated. Heat treatment at 700 C for 1 h in air proved to be effective in increasing the crystallinity, regaining the OH- ion and removing other non-HA compounds, although it caused a significant decrease in the degree of adhesion (interfacial fracture toughness) for those specimens sprayed at high powers. This heat treatment was found to induce significant transformation of amorphous HA to the crystalline form, while not detrimentally changing the properties of the underlying Ti-6Al-4V substrates. Precoating with a 100 microm Ti layer increased the adhesion of the HA coatings on Ti-6Al-4V substrates, primarily by providing a rougher surface and promoting better mechanical interlocking. Changes in coating properties during immersion in biological fluids were also studied and were found to depend critically on the chemical composition of the fluids. Small precipitates formed on the coating surfaces when immersed in Ringers solution. These might account for the apparent drop in the degree of crystallinity when measured using X-ray diffraction. A significant drop in the interfacial adhesion was found for those coatings sprayed at high powers. This could be offset by prior precoating with a titanium bond coat and suitable heat treatment. In summary, the following processing sequence is suggested in order to achieve optimum coating properties: precoating the substrate with a layer of Ti (approximately 100 microm), spraying HA at a sufficiently high-power level (depending on particle size and gas mixture) and heat treatment at 700 degrees C for 1 h in air.

  1. Fully CMOS-compatible titanium nitride nanoantennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Justin A., E-mail: jabriggs@stanford.edu; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305; Naik, Gururaj V.

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements onmore » plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.« less

  2. Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Huang, Jung-Jie; Chiu, Shih-Ping; Wu, Menq-Jion; Hsu, Chun-Fa

    2016-11-01

    In this study, titanium dioxide films were deposited on indium tin oxide glass substrates by liquid-phase deposition (LPD) for application as the compact layer in dye-sensitized solar cells (DSSCs). A deposition solution of ammonium hexafluorotitanate and boric acid was used for TiO2 deposition. Compact layer passivation can improve DSSC performance by decreasing carrier losses from recombination at the ITO/electrolyte interface and improving the electrical contact between the ITO and the TiO2 photo-electrode. The optimum thickness of the compact layer was found to be 48 nm, which resulted in a 50 % increase in the conversion efficiency compared with cells without compact layers. The conversion efficiency can be increased from 3.55 to 5.26 %. Therefore, the LPD-TiO2 compact layer inhibits the dark current and increases the short-circuit current density effectively.

  3. Erosion-resistant coatings for gas turbine engine compressor blades

    NASA Astrophysics Data System (ADS)

    Kablov, E. N.; Muboyadzhyan, S. A.

    2017-06-01

    The erosion-resistant ZrN and Cr3C2 coatings intended for the protection of the titanium and steel blades in a GTE compressor are studied. The erosion resistance of the substrate-coating composition is shown to depend on the coating thickness, the deposition conditions, and the coating texture. Ion-assisted deposition changes the structure-phase state of a coating and substantially increases its erosion resistance. It is found that a nanolayer 2D TiN/CrN coating with an average nanolayer thickness of 60 nm is the best erosion- corrosion-resistant coating for titanium alloys and that a (NiCrTiAlHf)C + CrC coating formed by ionassisted deposition is the best coating for steels. The testing of alloy VT8 compressor blades in an engine supported high protective properties of the nanolayer TiN/CrN coating.

  4. Deposition of TiOxNy Thin Films with Various Nitrogen Flow Rate:. Growth Behavior and Structural Properties

    NASA Astrophysics Data System (ADS)

    Cho, S.-J.; Jung, C.-K.; Bae, I.-S.; Song, Y.-H.; Boo, J.-H.

    2011-06-01

    We have deposited TiOxNy thin films on Si(100) substrates at 500 °C using RF PECVD system. Titanium iso-propoxide was used as precursor with different nitrogen flow rate to control oxygen and nitrogen contents in the films. Changes of chemical states of constituent elements in the deposited films were examined by XPS analysis. The data showed that with increasing nitrogen flow rate, the total amounts of nitrogen and titanium were increased while that of oxygen was decreased, resulting in a binding energy shift toward high energy side. The characteristics of film growth orientation and structure as well as morphology change behavior were also analyzed by XRD, TED, FT-IR, TEM, and SEM. Deposition at higher nitrogen flow rate results in finer clusters with a nanograin size and more effective photocatalytic TiOxNy thin films with hydrophilic surface.

  5. TiO2 coatings via atomic layer deposition on polyurethane and polydimethylsiloxane substrates: Properties and effects on C. albicans growth and inactivation process

    NASA Astrophysics Data System (ADS)

    Pessoa, R. S.; dos Santos, V. P.; Cardoso, S. B.; Doria, A. C. O. C.; Figueira, F. R.; Rodrigues, B. V. M.; Testoni, G. E.; Fraga, M. A.; Marciano, F. R.; Lobo, A. O.; Maciel, H. S.

    2017-11-01

    Atomic layer deposition (ALD) surges as an attractive technology to deposit thin films on different substrates for many advanced biomedical applications. Herein titanium dioxide (TiO2) thin films were successful obtained on polyurethane (PU) and polydimethylsiloxane (PDMS) substrates using ALD. The effect of TiO2 films on Candida albicans growth and inactivation process were also systematic discussed. TiCl4 and H2O were used as precursors at 80 °C, while the reaction cycle number ranged from 500 to 2000. Several chemical, physical and physicochemical techniques were used to evaluate the growth kinetics, elemental composition, material structure, chemical bonds, contact angle, work of adhesion and surface morphology of the ALD TiO2 thin films grown on both substrates. For microbiological analyses, yeasts of standard strains of C. albicans were grown on non- and TiO2-coated substrates. Next, the antifungal and photocatalytic activities of the TiO2 were also investigated by counting the colony-forming units (CFU) before and after UV-light treatment. Chlorine-doped amorphous TiO2 films with varied thicknesses and Cl concentration ranging from 2 to 12% were obtained. In sum, the ALD TiO2 films suppressed the yeast-hyphal transition of C. albicans onto PU, however, a high adhesion of yeasts was observed. Conversely, for PDMS substrate, the yeast adhesion did not change, as observed in control. Comparatively to control, the TiO2-covered PDMS had a reduction in CFU up to 59.5% after UV treatment, while no modification was observed to TiO2-covered PU. These results pointed out that ALD chlorine-doped amorphous TiO2 films grown on biomedical polymeric surfaces may act as fungistatic materials. Furthermore, in case of contamination, these materials may also behave as antifungal materials under UV light exposure.

  6. Effect of Atmospheric Plasma Treatment to Titanium Surface on Initial Osteoblast-Like Cell Spreading. .

    PubMed

    Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han

    2015-01-01

    Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, M.D.; Arsenlis, A.; Bastasz, R.

    Titanium nitride (TiN) films deposited by chemical vapor deposition (CVD) techniques are of interest for a wide range of commercial applications. In this report, the authors describe a mechanism that predicts Tin film growth rates from TiCl{sub 4}/NH{sub 3} mixtures as a function of process parameters, including inlet reactant concentrations, substrate temperatures, reactor pressures, and total gas flow rates. Model predictions were verified by comparison with the results of TiN deposition experiments in the literature and with measurements made in a new stagnation-flow reactor developed for the purpose of testing deposition mechanisms such as this. In addition, they describe abmore » initio calculations that predict thermodynamic properties for titanium-containing compounds. The results of calculations using Moeller-Plesset perturbation theory, density functional theory, and coupled cluster theory are encouraging and suggest that these methods can be used to estimate thermodynamic data that are essential for the development of CVD models involving transition-metal compounds. Finally, measurements of the adsorption and desorption kinetics of NH{sub 3} on TiN films using temperature-programmed desorption are described and their relevance to TiN CVD and mechanism development are discussed.« less

  8. [The bonding characteristic of titanium and RG experiment porcelain].

    PubMed

    Ren, Wei-hong; Guo, Tian-wen; Tian, Jie-mo; Zhang, Yun-long

    2003-07-01

    To study the bonding characteristic of Titanium and RG experiment porcelain. 5 specimens with a size of 10 mm x 5 mm x 1.4 mm were cast from pure titanium. Then 1 mm of RG experiment opaque and body porcelain were fused on the surface of the titanium specimens. The interface of titanium and porcelain was analyzed with a scanning electron microscope with energy-despersive spectrometry; 6 metal specimens with the size of 25 mm x 3 mm x 0.5 mm were cast from Ni-Cr alloy and a uniform thickness of 1 mm of VMK 99 porcelain was veneered on the central area of 8 mm x 3 mm 18 metal specimens as the same size were cast from pure titanium. The uniform thickness of 1 mm of VITA TITANKERAMIK porcelain, of Noritake super porcelain Ti-22 and of RG experiment porcelain were veneered on every 6 specimens respectively in the central area of 8 mm x 3 mm. The specimens were subjected to a three-point bending test on a load-test machine with a span of 20 mm, then the failure loads were recorded and statistically analysised. The RG porcelain/titanium crown was fabricated by fusing RG opaque porcelain and body porcelain to cast titanium substrate crown. The SEM results show no porosity and crackle were found in the interface. The energy-dispersive spectrometry show that there are Si, Ti and O in the 1 micro m layer between porcelain and titanium, which suggesting titanium and experiment porcelain bonding well. The three point test showed the fracture force for the combinations of titanium/VITA TITANKERAMIK porcelain, titanium/Noritake super porcelain Ti-22 and titanium/RG experiment porcelain were (7.233 +/- 2.539) N, (5.533 +/- 1.199) N and (6.316 +/- 1.433) N respectively. There were not statistically significant differences among them (t test, P < 0.01). The fracture force for the Ni-Cr alloy/VMK99 porcelain combination (12.733 +/- 3.297) N was significantly greater than those of the cast titanium/porcelain (t test, P > 0.05). The crown was translucent with no crack. RG porcelain is well compatible with titanium.

  9. Structure and mechanical properties of coatings fabricated by nonvacuum electron beam cladding of Ti-Ta-Zr powder mixtures

    NASA Astrophysics Data System (ADS)

    Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.

    2015-10-01

    In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.

  10. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast.

    PubMed

    Yin, Chengcheng; Zhang, Yanjing; Cai, Qing; Li, Baosheng; Yang, Hua; Wang, Heling; Qi, Hua; Zhou, Yanmin; Meng, Weiyan

    2017-03-01

    In clinical applications, osseointegration is essential for the long-term stability of dental implants. Inspired by the hierarchical structure of natural bone, we applied the electrochemical etching (EC) technique to form a micro-nano structure on a titanium alloy (Ti6Al4V) substrate, called EC surface. Sand blasting and acid etching (SLA) and machined (M) methods were employed to generate micro and smooth textures, respectively, as the control groups. The surface topographies of the three substrates were characterized using scanning electron microscopy (SEM). Then, human osteoblast-like cells (MG63) were cultured on substrates, and adhesion, proliferation, morphology, alkaline phosphatase activity (ALP), and gene expression levels of Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COLIA 1) were analyzed. MG63 cells cultured on the EC Ti alloy substrates displayed better cell adhesion, significant proliferation, and a higher production level of ALP, gene expressions of RUNX2, OCN, OPN and COLIA 1 (p < 0.01 or p < 0.05) compared with those of SLA and M substrates. These results indicate that the micro-nano structure fabricated by electrochemical etching method is beneficial for the biological functions of MG63 cells and may be a promising candidate in dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 757-769, 2017. © 2016 Wiley Periodicals, Inc.

  11. Effect of modification substrate on the microstructure of hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Realpe-Jaramillo, J.; Morales-Morales, J. A.; González-Sánchez, J. A.; Cabanzo, R.; Mejía-Ospino, E.; Rodríguez-Pereira, J.

    2017-01-01

    Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications.

  12. The influence of boron doping level on quality and stability of diamond film on Ti substrate

    NASA Astrophysics Data System (ADS)

    Wei, J. J.; Li, Ch. M.; Gao, X. H.; Hei, L. F.; Lvun, F. X.

    2012-07-01

    In this study, we investigate the influence of boron doping level on film quality and stability of boron doped diamond (BDD) film deposited on titanium substrate (Ti/BDD) using microwave plasma chemical vapor deposition system. The results demonstrate that high boron concentration will improve the film conductivity, whereas the diamond film quality and adhesion are deteriorated obviously. The increase of total internal stress in the film and the variation of components within the interlayer will weaken the coating adhesion. According to the analysis of electrode inactivation mechanism, high boron doping level will be harmful to the electrode stability in the view of diamond quality and adhesion deterioration. In this study, 5000 ppm B/C ratio in the reaction gas is optimized for Ti/BDD electrode preparation.

  13. Influence of substrate material and surface finishing on the morphology of the calcium-phosphate coating.

    PubMed

    Leitão, E; Barbosa, M A; de Groot, K

    1997-07-01

    The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.

  14. Characterization of surface roughness of laser deposited titanium alloy and copper using AFM

    NASA Astrophysics Data System (ADS)

    Erinosho, M. F.; Akinlabi, E. T.; Johnson, O. T.

    2018-03-01

    Laser Metal Deposition (LMD) is the process of using the laser beam of a nozzle to produce a melt pool on a metal surface usually the substrate and metal powder is been deposited into it thereby creating a fusion bond with the substrate to form a new material layer against the force gravity. A good metal laminate is formed when the wettability between the dropping metal powder and the substrate adheres. This paper reports the surface roughness of laser deposited titanium alloy and copper (Ti6Al4V + Cu) using the Atomic Force Microscopy (AFM). This AFM is employed in order to sense the surface and produce different manipulated images using the micro-fabricated mechanical tip under a probe cartridge of high resolution. The process parameters employed during the deposition routine determines the output of the deposit. A careful attention is given to the laser deposited Ti6Al4V + Cu samples under the AFM probe because of their single tracked layers with semi-circular pattern of deposition. This research work can be applicable in the surface modification of laser deposited samples for the marine industry.

  15. Fast plasma sintering delivers functional graded materials components with macroporous structures and osseointegration properties.

    PubMed

    Godoy, R F; Coathup, M J; Blunn, G W; Alves, A L; Robotti, P; Goodship, A E

    2016-04-13

    We explored the osseointegration potential of two macroporous titanium surfaces obtained using fast plasma sintering (FPS): Ti macroporous structures with 400-600 µmØ pores (TiMac400) and 850-1000 µmØ pores (TiMac850). They were compared against two surfaces currently in clinical use: Ti-Growth® and air plasma spray (Ti-Y367). Each surface was tested, once placed over a Ti-alloy and once onto a CoCr bulk substrate. Implants were placed in medial femoral condyles in 24 sheep. Samples were explanted at four and eight weeks after surgery. Push-out loads were measured using a material-testing system. Bone contact and ingrowth were assessed by histomorphometry and SEM and EDX analyses. Histology showed early osseointegration for all the surfaces tested. At 8 weeks, TiMac400, TiMac850 and Ti-Growth® showed deep bone ingrowth and extended colonisation with newly formed bone. The mechanical push-out force was equal in all tested surfaces. Plasma spray surfaces showed greater bone-implant contact and higher level of pores colonisation with new bone than FPS produced surfaces. However, the void pore area in FPS specimens was significantly higher, yet the FPS porous surfaces allowed a deeper osseointegration of bone to implant. FPS manufactured specimens showed similar osseointegration potential to the plasma spray surfaces for orthopaedic implants. FPS is a useful technology for manufacturing macroporous titanium surfaces. Furthermore, its capability to combine two implantable materials, using bulk CoCr with macroporous titanium surfaces, could be of interest as it enables designers to conceive and manufacture innovative components. FPS delivers functional graded materials components with macroporous structures optimised for osseointegration.

  16. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  17. Patterned titania nanostructures produced by electrochemical anodization of titanium sheet

    NASA Astrophysics Data System (ADS)

    Dong, Junzhe; Ariyanti, Dessy; Gao, Wei; Niu, Zhenjiang; Weil, Emeline

    2017-07-01

    A two-step anodization method has been used to produce patterned arrays of TiO2 on the surface of Ti sheet. Hexagonal ripples were created on Ti substrate after removing the TiO2 layer produced by first-step anodization. The shallow concaves were served as an ideal position for the subsequent step anodization due to their low electrical resistance, resulting in novel hierarchical nanostructures with small pits inside the original ripples. The mechanism of morphology evolution during patterned anodization was studied through changing the anodizing voltages and duration time. This work provides a new idea for controlling nanostructures and thus tailoring the photocatalytic property and wettability of anodic TiO2.

  18. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    PubMed

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.

  19. Rational Catalyst Design of Titanium-Silica Materials Aided by Site-Specific Titration Tools

    NASA Astrophysics Data System (ADS)

    Eaton, Todd Robert

    Silica-supported titanium materials are widely used for thermocatalytic applications such as hydroxylation of alkanes and aromatics, oxidation of alcohols and ethers, ammoximation of carbonyls, and sulfoxidations, while Ti-based materials are widely studied for photocatalytic applications such as photo-oxidation of organic substrates and photo-reduction of CO 2. However, the underlying phenomena of how to synthesize, identify, and control the active structures in these materials is not well understood because of the narrow scope of previous work. Studies of titanium-based catalysts typically focus on materials where the metal is present as either highly-dispersed Ti cations or in bulk crystalline TiO2 form, neglecting the numerous and potentially useful intermediate structures. Furthermore, these works typically focus on a single synthesis technique and rely upon bulk characterization techniques to understand the materials. Here rigorous titanium-silica synthesis-structure-function relationships are established by examining several different synthetic method and utilizing characterization techniques that enable an atomic-level understanding of the materials. The materials studied span the range from isolated Ti cations to clustered TiOx domains, polymeric TiO x domains, anatase-like 2D TiO2 domains, and 3D crystalline TiO2. Tools to quantify accessible TiO x and tetrahedral Ti sites are developed, utilizing the selective titration of titanium with phenylphosphonic acid (PPA). Catalytic properties are probed with the photocatalytic oxidation of benzyl alcohol and the thermocatalytic epoxidation of cis-cyclooctene with H2O2 . PPA titration data indicate that the rate of benzyl alcohol photo-oxidation is independent of titanium coordination, while the rate of alkene epoxidation with H2O2 is proportional to the number of tetrahedral titanium sites on the catalyst. PPA titration data also enables the estimation of TiO2 particle size and reveals an important distinction between particle and crystal size, as obtained from XRD. In the course of establishing these relationships we've gained the knowledge of how to control TiO x structure, which enables the design of new and better catalysts. Understanding the synthesis-structure-function relationships allow for the design of a tandem photo/thermocatalytic reaction system for producing and consuming H2O2. By partially overcoating a TiO 2 photocatalyst with a ˜2 nm silica layer we observe a 56-fold rate improvement compared to bare-TiO2 for H2O2 synthesis from the proton-assisted reduction of O2. Addition of metal-SiO2 thermocatalysts (metal=Ti, Nb, or Ta) with sites needed for H2O2 activation creates a tandem system wherein the H2O2 produced in situ is utilized for alkene epoxidation. Compared to a thermocatalytic-only system, the tandem system accelerates epoxidation for cis-cyclooctene(11x faster), styrene(20x) and 1-octene(30x). This approach demonstrates a means for epoxidation with O2 that avoids H2O2 purification and transport, simplifies the total process, provides new opportunities for control by independent H2O2 production and consumption in the same reactor, and enhances rates relative to thermocatalytic-only epoxidation by intimately coupling H2O2 generation and consumption. Critically, establishment of titanium-silica synthesis-structure-function relationships enables the design of new catalysts and systems that are less energy- and material-intensive, leading towards more sustainable chemistry.

  20. Nanofabrication technique based on localized photocatalytic reactions using a TiO2-coated atomic force microscopy probe

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Iio, Naohiro; Furukawa, Hiromi; Nagai, Moeto

    2017-02-01

    We performed a fundamental study on the photocatalytic degradation of fluorescently labeled DNA molecules immobilized on titanium dioxide (TiO2) thin films under ultraviolet irradiation. The films were prepared by the electrochemical anodization of Ti thin films sputtered on silicon substrates. We also confirmed that the photocurrent arising from the photocatalytic oxidation of DNA molecules can be detected during this process. We then demonstrated an atomic force microscopy (AFM)-based nanofabrication technique by employing TiO2-coated AFM probes to penetrate living cell membranes under near-physiological conditions for minimally invasive intracellular delivery.

  1. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface.

    PubMed

    Verraedt, Els; Braem, Annabel; Chaudhari, Amol; Thevissen, Karin; Adams, Erwin; Van Mellaert, Lieve; Cammue, Bruno P A; Duyck, Joke; Anné, Jozef; Vleugels, Jef; Martens, Johan A

    2011-10-31

    Amorphous microporous silica (AMS) serving as a reservoir for controlled release of a bioactive agent was applied in the open porosity of a titanium coating on a Ti-6Al-4V metal substrate. The pores of the AMS emptied by calcination were loaded with chlorhexidine diacetate (CHX) via incipient wetness impregnation with CHX solution, followed by solvent evaporation. Using this CHX loaded AMS system on titanium substrate sustained release of CHX into physiological medium was obtained over a 10 day-period. CHX released from the AMS coating was demonstrated to be effective in killing planktonic cultures of the human pathogens Candida albicans and Staphylococcus epidermidis. This surface modification of titanium bodies with AMS controlled release functionality for a bioactive compound potentially can be applied on dental and orthopaedic implants to abate implant-associated microbial infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    NASA Astrophysics Data System (ADS)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-05-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  3. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    NASA Astrophysics Data System (ADS)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  4. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet

    NASA Astrophysics Data System (ADS)

    Guo, Jianchao; Li, Chengming; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Hua, Chenyi; Yan, Xiongbo

    2016-05-01

    The addition of titanium (Ti) interlayer was verified to reduce the residual stress of diamond films by self-fracturing and facilitate the harvest of a crack-free free-standing diamond film prepared by direct current (DC) arc plasma jet. In this study, the evolution of the Ti interlayer between large-area diamond film and substrate was studied and modeled in detail. The evolution of the interlayer was found to be relevant to the distribution of the DC arc plasma, which can be divided into three areas (arc center, arc main, and arc edge). The formation rate of titanium carbide (TiC) in the arc main was faster than in the other two areas and resulted in the preferred generation of crack in the diamond film in the arc main during cooling. Sandwich structures were formed along with the growth of TiC until the complete transformation of the Ti interlayer. The interlayer released stress via self-fracture. Avoiding uneven fragile regions that formed locally in the interlayer and achieving cooperatively released stress are crucial for the preparation of large crack-free diamond films.

  5. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method.

    PubMed

    Ning, C Q; Zhou, Y

    2002-07-01

    Traditionally, hydroxyapatite was used as a coating material on titanium substrate by various techniques. In the present work, a biocomposite was successfully fabricated from hydroxyapatite and titanium powders by powder metallurgy method. Bioactivity of the composite in a simulated body fluid (SBF) was investigated. Main crystal phases of the as-fabricated composite are found to be Ti2O, CaTiO3, CaO, alpha-Ti and a TiP-like phase. When the composite is immersed in the simulated body fluid for a certain time, a poor-crystallized, calcium-deficient, carbonate-containing apatite film will form on the surface of the composite. The time required to induce apatite nucleation is within 2 h. In addition, the apatite is also incorporated with a little magnesium and chlorine element. It is found that Ti2O has the ability to induce the formation of bone-like apatite in the SBF. And a dissolve of the CaO phase could also provide favorable conditions for the apatite formation, by forming open pores on the surface of the composite and increasing the degree of supersaturation of the SBF with respect to the apatite.

  6. Mode-splitting of a non-polarizing guided mode resonance filter by substrate overetching effect

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad Rizwan; Honkanen, Seppo; Turunen, Jari

    2014-03-01

    We investigate substrate overetch effect on resonance properties of sub-wavelength titanium oxide (TiO2) Guided Mode Resonance Filters (TiO2-GMRFs). The TiO2-GMRF is designed and fabricated to possess a non-polarizing behavior, which is strongly dependent on substrate (fused silica) overetch depth. For non-polarizing gratings at resonance, TE- and TM-modes have the same propagation constants. However, an overetch substrate effect results in splitting of the degenerate modes, which is studied theoretically and experimentally. The TiO2-SiO2 GMRFs are designed by Fourier Modal method (FMM) based on the rigorous calculation of electromagnetic diffraction theory at a designed wavelength of 850 nm. The TiO2-SiO2 gratings are fabricated by Atomic Layer Deposition (ALD), Electron Beam Lithography (EBL), and Reactive Ion Etching (RIE), and they are subsequently characterized structurally by Scanning Electron Microscopy (SEM) and optically by a spectroscopic ellipsometer. Several grating samples are fabricated by gradually increasing the overetch depth into fused silica and measuring the extent of TE- and TM-mode-splitting. A close agreement between the calculated and experimentally measured resonance wavelength spectral shift is found to describe the mode splitting of non-polarizing gratings.

  7. A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Xuehong; Wu, Yun; Shen, Yuhua; Sun, Yan; Yang, Ying; Xie, Anjian

    2018-01-01

    Three-dimensional inverse opal photonic microarray (IOPM) structure exhibits good qualities in structural regularity and interconnectivity, such as high specific surface area, large pore volume, uniform pore size, and ordered periodic construction. Here, a novel nickel-doped titanium dioxide IOPM (Ni-TiO2 IOPM) was fabricated for the first time as a bifunctional material for the applications of surface-enhanced Raman scattering (SERS) substrate and photocatalyst. The Ni doping could change the defect concentration of the substrate to enhance the SERS effect, and could increase the light absorption of the substrate in visible region. The synergistic effect of Ni doping and the periodically ordered porous structure enhanced both SERS sensitivity and photocatalytic activity. As a SERS substrate, the Ni-TiO2 IOPM exhibited highly sensitive detection capability for 4-mercaptobenzoic acid (4-MBA) at a concentration as low as 1 × 10-11 M. Under simulated sunlight, about 95% of the methylene blue (MB) was degraded within 90 min when Ni-TiO2 IOPM was used as the photocatalytst. The Ni-TiO2 IOPM prepared in this work may be a promising bifunctional SERS substrate candidate for organic sewage detection and environment protection. In addition, the fabrication strategy can be extended to synthesize other nanomaterials with orderly and porous structure.

  8. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  9. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.

    PubMed

    Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério

    2013-10-01

    Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. TEM Observation of the Ti Interlayer Between SiC Substrates During Diffusion Bonding

    NASA Technical Reports Server (NTRS)

    Tsuda, Hiroshi; Mori, Shigeo; Halbig, Michael C.; Singh, Mori

    2012-01-01

    Diffusion bonding was carried out to join SiC to SiC substrates using titanium interlayers. In this study, 10 m and 20 m thick physical vapor deposited (PVD) Ti surface coatings, and 10 and 20 m thick Ti foils were used. Diffusion bonding was performed at 1250 C for PVD Ti coatings and 1200 C for Ti foil. This study investigates the microstructures of the phases formed during diffusion bonding through TEM and selected-area diffraction analysis of a sample prepared with an FIB, which allows samples to be taken from the reacted area. In all samples, Ti3SiC2, Ti5Si3Cx and TiSi2 phases were identified. In addition, TiC and unknown phases also appeared in the samples in which Ti foils were used as interlayers. Furthermore, Ti3SiC2 phases show high concentration and Ti5Si3Cx formed less when samples were processed at a higher temperature and thinner interlayer samples were used. It appears that the formation of microcracks is caused by the presence of intermediate phase Ti5Si3Cx, which has anisotropic thermal expansion, and by the presence of an unidentified Ti-Si-C ternary phase with relatively low Si content.

  11. Polarization-Dependent Raman Spectroscopy of Epitaxial TiO 2 (B) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokisaari, Jacob R.; Bayerl, Dylan; Zhang, Kui

    2015-12-08

    The bronze polymorph of titanium dioxide, known as TiO 2(B), has promising photochemical and electronic properties for potential applications in Li-ion batteries, photocatalysis, chemical sensing, and solar cells. In contrast to previous studies performed with powder samples, which often suffer from impurities and lattice water, here we report Raman spectra from highly crystalline TiO 2(B) films epitaxially grown on Si substrates with a thin SrTiO 3 buffer layer. The reduced background from the Si substrate significantly benefits acquisition of polarization-dependent Raman spectra collected from the high-quality thin films, which are compared to nanopowder results reported in the literature. The experimentalmore » spectra were compared with density functional theory calculations to analyze the atomic displacements associated with each Raman-active vibrational mode. These results provide a standard reference for further investigation of the crystallinity, structure, composition, and properties of TiO 2(B) materials with Raman spectroscopy.« less

  12. Performance analysis of flexible DSSC with binder addition

    NASA Astrophysics Data System (ADS)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur

    2016-04-01

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  13. The effect of current reversal on coated titanium electrodes

    NASA Astrophysics Data System (ADS)

    Elnathan, Francis

    Coated titanium electrodes have applications in the electrochemical industry, including water treatment and swimming pool chlorination. Current/polarity reverse electrolysis is a technique used for "self-cleaning" of the coated titanium anodes employed in water disinfection and treatment. However, the literature holds very little information about the effects of polarity reversal on these anodes. The present work appears to be the first to investigate coated titanium anodes in polarity reversal in a systematic method. Two commercial titanium electrodes (RuTi and IrTa) were studied. Polarity reversal was the main electrochemical technique employing a current density of 1200 A/m 2, except when current density was studied. The effects of NO 3-, SO42-, ClO4 -, HPO42-, CO32-, Mg2+ and Ca2+ on electrode lifetime were examined. Analysis of the electrochemical results showed that plateau time (tau p), for gas evolution, is highly important to the lifetime of the coated titanium anodes. The effects of three electrolysis variables on the coated titanium anode life were examined. Current density was observed to have an inverse relationship with anode life while reversal cycle time had a direct relation with lifetime. NaCl concentration had no discernible effect. In general, the RuTi electrode exhibited longer lifetimes than IrTa except for a few specific conditions. The influence of the concentration of five anions (NO3-, SO42-, ClO 4-, HPO42-, and CO3 2-) was determined. Changing the composition and concentration of anions affected the lifetimes of the two electrodes, especially nitrate, hydrogen phosphate and carbonate. The lifetime of IrTa was highest in nitrate, and increased as a function of nitrate concentration. The service life of RuTi was highest in hydrogen phosphate, and increased with increasing hydrogen phosphate concentration. Lifetime of both anodes decreased with increasing carbonate ions. The effects of Mg2+ and Ca2+ on electrode lifetime were examined with three anions (NO3-, HPO42-, ClO4-) electrolytes. While there were numerous effects and interactions between Mg2+ or Ca2+ and anions on lifetime, these effects were found to mainly affect the amount of time the electrodes spent in the charging and discharging reactions. The times related to gas evolution (which is the plateau time, tau p) were found to be strikingly similar. The charging times (tau C) which are related to adsorption and desorption of species were not also any significantly different. Coating dissolution, substrate and/or coating passivation mechanisms were identified as being responsible for coated titanium anode failure in current reverse and hard water electrolysis. IrTa is believed to have failed predominantly by the dissolution mechanism in nitrate, hydrogen phosphate and perchlorate. RuTi failed predominantly by substrate and/or coating passivation in hydrogen phosphate, nitrate and carbonate. Anode failure is believed to be the result of plateau (taup) and charging (tauC)reactions occurring at the coating/electrolyte and/or substrate/coating interface. The tau p and tauC are useful determinants for the process of anode failure.

  14. Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Lei, Yongping; Fu, Hanguang; Lin, Jian

    2015-10-01

    Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content.

  15. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties

    NASA Astrophysics Data System (ADS)

    Mokhtari, H.; Ghasemi, Z.; Kharaziha, M.; Karimzadeh, F.; Alihosseini, F.

    2018-05-01

    Bacterial infection and insignificant osseointegration have been recognized as the main reasons of the failures of titanium based implants. The aim of this study was to apply titanium oxide nanotube (TNT) array on titanium using electrochemical anodization process as a more appropriate substrate for chitosan and chitosan-58S bioactive glass (BG) (58S-BG-Chitosan) nanocomposite coatings covered TNTs (TNT/Chiosan, TNT/58S-BG-Chitosan, respectively) through a conventional dip-coating process. Results showed that a TNT layer with average inner diameter of 82 ± 19 nm and wall's thickness of 23 ± 9 nm was developed on titanium surface using electrochemical anodization process. Roughness and contact angle measurement showed that TNT with Ra = 449 nm had highest roughness and hydrophilicity which then reduced to 86 nm and 143 nm for TNT/Chitosan and TNT/58S-BG-Chitosan, respectively. In vitro bioactivity evaluation in simulated buffer fluid (SBF) solution and antibacterial activity assay predicted that TNT/58S-BG-Chitosan was superior in bone like apatite formation and antibacterial activity against both gram-positive and gram-negative bacteria compared to Ti, TNT and TNT/Chitosan samples, respectively. Results revealed the noticeable MG63 cell attachment and proliferation on TNT/58S-BG-Chitosan coating compared to those of uncoated TNTs. These results confirmed the positive effect of using TNT substrate for natural polymer coating on improved bioactivity of implant.

  16. Functionalization of Ti99.2 substrates surface by hybrid treatment investigated with spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Jasinski, Jaroslaw Jan; Lubas, Malgorzata; Kurpaska, Lukasz; Napadlek, Wojciech; Sitarz, Maciej

    2018-07-01

    The article presents spectroscopic investigation of Ti 99.2 based functional substrates formed by hybrid oxidation process. Surface treatments were performed by combining methods of fluidized bed atmospheric diffusion treatment (FADT) with physical vapor deposition (PVD) - magnetron sputtering and laser surface texturing (LST) treatments. The processes were implemented to form a titanium diffusive layer saturated with oxygen in the substrate and a tight homogeneous oxide coating on Ti surface deposited with magnetron sputtering or laser texturing technique. The hybrid treatment was realized in Al2O3 fluidized bed reactor with air atmosphere, at 640 °C for 8 h and 12 h. At the same time, magnetron sputtering with the use of TiO2 target at a pressure of 3 × 102 mbar and laser surface texturing treatment with Nd:YAG λ = 1064 nm was performed. In order to investigate the effects of hybrid oxidation, microscopic (AFM, CLSM, SEM/SEM-EDX), spectroscopic (RS) and X-ray investigations (GID-XRD) were performed. Applied hybrid technique made possible to combine the effects of the generated layers and to reduce the stresses in the area of the PVD coating/oxidized Ti substrate interface. Furthermore, Raman spectroscopy results obtained at oxide layers manufactured with different variants of oxidation allowed detailed analysis of the created oxides. The coatings have shown structure with a Tiα(O) diffusion zone, a TiO2 rutile and anatase oxide zone deposited and textured on the substrate. Phase composition and morphology of these oxides is essential for the osseointegration process i.e. intensity of hydroxyapatite growing on the implant surface. Performed processes influenced the surface roughness parameter and cause the increase of substrate functional properties, which are important for biomedical applications.

  17. Shear strength of a three-dimensional capillary-porous titanium coating for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu; Alpatov, A. V.; Komlev, V. S.; Mamonov, V. I.; Sevostyanov, M. A.; Baikin, A. S.

    2018-04-01

    The effect of pretreatment and plasma preheating of Ti-substrate on shear strength of three-dimensional capillary porous Ti-coating was studied. After sandblasting the shear strength of the plasma sprayed coating was 200 ± 2 MPa, and after additional matting it was 68 ± 4 MPa. The use of plasma preheating of the substrates for 9 seconds decreased difference between values of the shear strength to 249 ± 17 MPa and 229 ± 16 MPa, respectively. After plasma spraying the microhardness of the surface layer of the substrate was 4.34 ± 0.35 GPa, the microhardness of the boundary between the coating and the substrate was 8.08 ± 0.45 GPa, and the microhardness of the coating was 3.48 ± 0.25 GPa. High shear strength of the coating was attributed to the activation of the substrate by means of plasma preheating and hardening of the boundary between the coating and the substrate by oxides and nitrides.

  18. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yansheng; Tu, Rong, E-mail: turong@whut.edu.cn; Goto, Takashi

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakismore » (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.« less

  19. Comparison of different substrates for laser-induced electron transfer desorption/ionization of metal complexes

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.

    2016-03-01

    Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.

  20. Interface and interaction of graphene layers on SiC(0001[combining macron]) covered with TiC(111) intercalation.

    PubMed

    Wang, Lu; Wang, Qiang; Huang, Jianmei; Li, Wei-Qi; Chen, Guang-Hui; Yang, Yanhui

    2017-10-11

    It is important to understand the interface and interaction between the graphene layer, titanium carbide [TiC(111)] interlayer, and silicon carbide [SiC(0001[combining macron])] substrates in epitaxial growth of graphene on silicon carbide (SiC) substrates. In this study, the fully relaxed interfaces which consist of up to three layers of TiC(111) coatings on the SiC(0001[combining macron]) as well as the graphene layers interactions with these TiC(111)/SiC(0001[combining macron]) were systematically studied using the density functional theory-D2 (DFT-D2) method. The results showed that the two layers of TiC(111) coating with the C/C-terminated interfaces were thermodynamically more favorable than one or three layers of TiC(111) on the SiC(0001[combining macron]). Furthermore, the bonding of the Ti-hollow-site stacked interfaces would be a stronger link than that of the Ti-Fcc-site stacked interfaces. However, the formation of the C/Ti/C and Ti/C interfaces implied that the first upper carbon layer can be formed on TiC(111)/SiC(0001[combining macron]) using the decomposition of the weaker Ti-C and C-Si interfacial bonds. When growing graphene layers on these TiC(111)/SiC(0001[combining macron]) substrates, the results showed that the interaction energy depended not only on the thickness of the TiC(111) interlayer, but also on the number of graphene layers. Bilayer graphene on the two layer thick TiC(111)/SiC(0001[combining macron]) was thermodynamically more favorable than a monolayer or trilayer graphene on these TiC(111)/SiC(0001[combining macron]) substrates. The adsorption energies of the bottom graphene layers with the TiC(111)/SiC(0001[combining macron]) substrates increased with the decrease of the interface vertical distance. The interaction energies between the bottom, second and third layers of graphene on the TiC(111)/SiC(0001[combining macron]) were significantly higher than that of the freestanding graphene layers. All of these findings provided insight into the growth of epitaxial graphene on TiC(111)/SiC(0001[combining macron]) substrates and the design of graphene/TiC/SiC-based electronic devices.

  1. PZT Films Fabricated by Metal Organic Decomposition Method

    NASA Astrophysics Data System (ADS)

    Sobolev, Vladimir; Ishchuk, Valeriy

    2014-03-01

    High quality lead zirconate titanate films have been fabricated on different substrates by metal organic decomposition method and their ferroelectric properties have been investigated. Main attention was paid to studies of the influence of the buffer layer with conditional composition Pb1.3(Zr0.5Ti0.5) O3 on the properties of Pb(Zr0.5Ti0.5) O3 films fabricated on the polycrystalline titanium and platinum substrates. It is found that in the films on the Pt substrate (with or without the buffer layer) the dependencies of the remanent polarization and the coercivity field on the number of switching cycles do not manifest fatigue up to 109 cycles. The remanent polarization dependencies for films on the Ti substrate with the buffer layer containing an excess of PbO demonstrate an fundamentally new feature that consists of a remanent polarization increase after 108 switching cycles. The increase of remanent polarization is about 50% when the number of cycles approaches 1010, while the increase of the coercivity field is small. A monotonic increase of dielectric losses has been observed in all cases.

  2. Influence of silver doping on surface defect characteristics of TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, S. K., E-mail: surya@pu.ac.in; Rani, Mamta; Department of Physics, DAV University Jalandhar, - 144 001, Punjab

    2015-08-28

    In the present work, we proposed a novel silver doped TiO{sub 2} polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO{sub 2} photoanodes. Silver doped titanium dioxide (TiO{sub 2}:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique atmore » 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO{sub 2} films are about 548 times more photosensitive as compare to the pure TiO{sub 2} sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO{sub 2} nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO{sub 2} and Ag-TiO{sub 2} films keeping intensity of light constant.« less

  3. Influence of TiCl4 post-treatment condition on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells.

    PubMed

    Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-10-01

    Titanium tetrachloride (TiCl4) treatment processed by chemical bath deposition is usually adopted as pre- and post-treatment for nanocrystalline titanium dioxide (TiO2) film deposition in the dye-sensitized solar cells (DSSCs) technology. TiCl4 post-treatment is a widely known method capable of improving the performance of dye-sensitized solar cells. In this work, the effect of TiCl4 post-treatment on the TiO2 electrode is proposed and compared to the untreated film. A TiO2 passivating layer was deposited on FTO glass by RF magnetron sputtering. The TiO2 sol prepared sol-gel method, nanoporous TiO2 upper layer was deposited by screen printing method on the passivating layer. TiCl4 post-treatment was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Crystalline structure was adjusted by various TiCl4 concentration and dipping time: 20 mM-150 mM and 30 min-120 min. The conversion efficiency was measured by solar simulator (100 mW/cm2). The dye-sensitized solar cell using TiCl4 post-treatment was measured the maximum conversion efficiency of 5.04% due to electron transport effectively. As a result, the DSSCs based on TiCl4 post-treatment showed better photovoltaic performance than cells made purely of TiO2 nanoparticles. The relative DSSCs devices are characterized in terms of short circuit current density, open circuit voltage, fill factor, conversion efficiency.

  4. Investigating the performance of nitrogen-doped graphene photoanode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Joseph, Easter; Singh, Balbir Singh Mahinder; Mohamed, Norani Muti; Kait, Chong Fai; Saheed, Mohamed Shuaib Mohamed; Khatani, Mehboob

    2016-11-01

    In this paper, the atmospheric pressure chemical vapor deposition (AP-CVD) is used to synthesize graphene on a copper substrate by utilizing methane as a precursor and N-doped graphene (NDG) in the presence of ammonia. The performance of pure titanium dioxide (TiO2), TiO2/graphene, and TiO2/NDG as photoanodes in dye-sensitized solar cell (DSSC) were compared. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed flakes of few layers with an interrupted layer in both graphene and NDG. DSSC consist of TiO2/NDG photoanode exhibits a better enhancement due to the high conductivity of donor N in graphene which enhances the electron transportation across nanoporous TiO2.

  5. Optical, Electrical, and Crystal Properties of TiO2 Thin Films Grown by Atomic Layer Deposition on Silicon and Glass Substrates

    NASA Astrophysics Data System (ADS)

    Kupa, I.; Unal, Y.; Cetin, S. S.; Durna, L.; Topalli, K.; Okyay, A. K.; Ates, H.

    2018-05-01

    TiO2 thin films have been deposited on glass and Si(100) by atomic layer deposition (ALD) technique using tetrakis(diethylamido)titanium(IV) and water vapor as reactants. Thorough investigation of the properties of the TiO2/glass and TiO2/Si thin films was carried out, varying the deposition temperature in the range from 100°C to 250°C while keeping the number of reaction cycles fixed at 1000. Physical and material property analyses were performed to investigate optical and electrical properties, composition, structure, and morphology. TiO2 films grown by ALD may represent promising materials for future applications in optoelectronic devices.

  6. Interaction of carbon nanotubes coatings with titanium substrate

    NASA Astrophysics Data System (ADS)

    Fraczek-Szczypta, Aneta; Wedel-Grzenda, Alicja; Benko, Aleksandra; Grzonka, Justyna; Mizera, Jaroslaw

    2017-02-01

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) after chemical surface functionalization on the interaction with a titanium surface. Two kinds of MWCNTs differing in terms of concentration of functional groups were deposited on the Ti surface using the electrophoretic deposition method (EPD). The study has shown the detailed analysis of the physicochemical properties of this form of carbon nanomaterial and received on their base coatings using various techniques, such as scanning electron microscopy (SEM), confocal microscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The adhesion of the MWCNTs coatings to the Ti surface was determined using the shear test method, according to standard ASTM F-1044-05. These results indicated that one type of MWCNTs characterized by a higher concentration of functional groups has better adhesion to the metal surface than the second type. Analysis of the MWCNT-metal interface using Raman spectroscopy and SEM and STEM indicates the presence of phase built of MWCNT and TiO2. This phase could be a type of nanocomposite that affects the improvement of the adhesion of MWCNT to the Ti surface.

  7. Sputter deposited titanium disilicide at high substrate temperatures

    NASA Astrophysics Data System (ADS)

    Tanielian, M.; Blackstone, S.; Lajos, R.

    1984-08-01

    Titanium disilicide films were sputter deposited from a composite TiSi2.1 target on <111> bare silicon wafers both at room temperature and at 600 °C. The room temperature as-deposited films require a 900 °C sintering step to reduce their resistivity. On the other hand, the as-deposited 600 °C films are fully reacted, polycrystalline, have no oxygen contamination, large grain sizes, and are oxidation resistant. Further annealing of these films at 900 °C produces no changes in their crystal structure, composition, resistivity, or grain size.

  8. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wei, W.; Lankford, J.

    1987-01-01

    An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.J., E-mail: lixj@alum.imr.ac.cn

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of depositionmore » time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.« less

  10. [Preparation and Photocatalytic Properties of Supported TiO2 Photocatalytic Material].

    PubMed

    Guo, Yu; Jin, Yu-jia; Wu, Hong-mei; Li, Dong-xin

    2015-06-01

    Titanium dioxide (TiO2) supported on spherical alumina substrate was prepared by using sol-gel method combined with dip-coating process. The surface morphology and structure of the synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphology of the supported TiO2 composite material was obviously different from that of the original support. It reveals a layer formed by anatase TiO2 nanoparticles of 10-20 nm was deposited on the alumina substrate. Energy dispersive X-ray spectroscopy (EDX) analyses on the spherical alumina substrate and the resulting TiO2 composite catalyst were performed to determine the TiO2 loading content in the samples. It indicates that the TiO2 loading content on alumina substrate could be effectively increased by increasing the times of dip-coating alumina support in TiO2 sol. When dip-coating times increased to 5, the TiO2 loading content increased from 3.8 Wt. % to 15.7 Wt. %. In addition, the photocatalytic performances of the supported TiO2 materials prepared by different dip-coating times have been investigated by degrading methylene blue. It was found that the surface morphology of the supported TiO2 material was not only improved, but also the photocatalytic activity could be promoted significantly by increasing the dip-coating times. When the alumina substrate was dip-coated in TiO2 sol from 1 to 4 times, the degradation rate of methylene blue increased from 40% to 83.1%. However, after dip-coating the alumina support in TiO2 sol for 5 times, the degradation of methylene blue was only up to 85.6%. This indicates that the photocatalytic activity increased slowly when the TiO2 content in the supported catalyst was up to some extent. It is attributed to the continuous dip-coating resulted in less opportunities and weak intensity of illumination for the TiO2 nano-particles that under lower layer. The photocatalytic activity was relatively stable after repeated use of the supported TiO2 material for 5 times.

  11. Wettability, structural and optical properties investigation of TiO{sub 2} nanotubular arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalnezhad, E., E-mail: erfan@hanyang.ac.kr; Maleki, E.; Banihashemian, S.M.

    2016-06-15

    Graphical abstract: FESEM images of the TiO 2 nanotube layers formed at 0.5 wt% NH4F/ glycerol. - Highlights: • Structural property investigation of TiO{sub 2} nanotube. • Evaluation of wettability of TiO{sub 2} nanotube. • Study on optical properties of TiO{sub 2} nanotube. • The effect of anatase phase on optical and wettability properties of TiO{sub 2.} - Abstract: In this study, the effect of microstructural evolution of TiO{sub 2} nanotubular arrays on wettability and optical properties was investigated. Pure titanium was deposited on silica glass by PVD magnetron sputtering technique. The Ti coated substrates were anodized in an electrolytemore » containing NH{sub 4}F/glycerol. The structures of the ordered anodic TiO{sub 2} nanotubes (ATNs) as long as 175 nm were studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The result shows a sharp peak in the optical absorbance spectra around the band gap energy, 3.49–3.42 eV for annealed and non-annealed respectively. The thermal process induced growth of the grain size, which influence on the density of particles and the index of refraction. Furthermore, the wettability tests' result displays that the contact angle of intact substrate (θ = 74.7°) was decreased to 31.4° and 17.4° after anodization for amorphous and heat treated (450 °C) ANTs coated substrate, respectively.« less

  12. Preparation and Characterization of Ferroelectric BaTi0.91(Hf0.5, Zr0.5)0.09O3 Thin Films by Sol-Gel Process Using Titanium and Zirconium Alkoxides

    NASA Astrophysics Data System (ADS)

    Thongrueng, Jirawat; Nishio, Keishi; Nagata, Kunihiro; Tsuchiya, Toshio

    2000-09-01

    Sol-gel-derived BaTi0.91(Hf0.5, Zr0.5)0.09O3 (BTHZ-9) thin films have been successfully prepared on Pt and Pt(111)/Ti/SiO2/Si(100) substrates by spin-coating and sintering from 550 to 900°C for 2 h in oxygen ambient. X-ray diffraction measurement indicated that the single perovskite phase of the BTHZ-9 thin films was obtained at heat treatment above 650°C. The formation temperature of the double-alkoxy-derived BTHZ-9 thin films was lower by at least 80°C than that of the films prepared from only titanium alkoxide. The microstructure of the films was observed by atomic force microscopy and scanning electron microscopy. The grain size of the films increased from 70 to 200 nm with increasing sintering temperature ranging from 650 to 850°C. The maximum peak for the dielectric constant, corresponding to the Curie point (87°C), was broad and lower in magnitude compared with that of the BTHZ-9 bulk ceramics. Tensile stresses resulting from the differences between thermal expansion coefficients of the substrate and the film caused poor electrical properties. BTHZ-9 thin films exhibited a well-saturated polarization-electric field hysteresis loop. The polarization and coercive field for the 850-nm-thick BTHZ-9 thin film prepared on Pt/Ti/SiO2/Si substrate at 750°C were determined to be 8 μC/cm2 and 15 kV/cm, respectively. Those of the BTHZ-9 thin film prepared on Pt substrate at 850°C were found to be 9 μC/cm2 and 18 kV/cm, respectively.

  13. Ultrafine-grained commercially pure titanium and microstructure response to hydroxyapatite coating methods

    NASA Astrophysics Data System (ADS)

    Calvert, Kayla L.

    Commercially pure titanium (cp-Ti) is an ideal biomaterial as it does not evoke an inflammatory foreign body response in the body. However, the low strength of cp-Ti prevents the use in most orthopaedic load bearing applications. Therefore, many metal orthopaedic implants are commonly made of higher strength metal alloys that are less biocompatible. Nanostructured materials exhibit superior mechanical properties compared to their conventional grain sized counterparts. Severe plastic deformation (SPD) of metals has been shown to produce nanostructured materials. SPD by machining is a single-step deformation route that refines the grain microstructure, to develop an ultrafine grained (UFG) microstructure. UFG cp-Ti strips were developed with induced shear strains of up to 4.0 using a machining-based process. Both Vickers microhardness evaluation and microstructural analysis were used to characterize the as-received (annealed) and machined states. For induced shear strains between 1.9 and 4.0 in grade 2 cp-Ti the hardness was increased from 188 +/- 7 kg/mm2 in the as-received state to between 244 +/- 6 and 264 +/- 12 kg/mm 2 in the as-machined state, corresponding to an increase in hardness between 31 and 41%. The microstructural analysis revealed a grain size reduction from 34 +/- 11 mum in the as-received state to ˜ 100 nm for machined grade 2-Ti. A complete annealing study suggested that recovery/recrystallization occurs between 300 and 400°C, with a significant hardness drop between 400 and 600°C, while grain growth is continuous, starting at the lowest annealing temperature of 300°C. Hydroxyapatite (HA) is commonly applied to orthopaedic devices to promote bone growth. Machined Ti strips were coated with HA using conventional plasma spray as well as two alternative low-temperature application routes (sol-gel with calcination and anodization with hydrothermal treatment) to evaluate the thermal influence on the UFG-Ti substrate. Plasma spray produced a thick (20 to 70 mum) HA crystalline coating, sol-gel followed by calcination did not produce crystalline HA, while anodization with the proper hydrothermal treatment yielded a homogenous crystalline HA coating 5 to 15 mum thick based on the anodization condition. Mechanical and microstructural evaluation of the UFG-Ti substrates revealed that both the plasma spray and anodization followed by hydrothermal treatment (220 -- 225°C) did not affect the substrate grain size or hardness, while the thermal processing and calcination treatment at 313 -- 446°C for the sol-gel method caused recovery and grain growth, as well as a significant decrease in the hardness of the Ti-substrates.

  14. Characteristics and porcelain bond strength of (Ti,Al)N coating on dental alloys.

    PubMed

    Chung, Kwok-Hung; Duh, Jeng-Gong; Shin, Daehwan; Cagna, David R; Cronin, Robert J

    2002-01-01

    The effect of a novel titanium-aluminum nitride film, or (Ti,Al)N film, on the bond strength between a dental porcelain and two nickel-based dental alloy substrates was investigated. A thin layer of (Ti,Al)N film was deposited on flat metal samples using a reactive radio-frequency sputtering method. A uniform thickness of porcelain was applied to the film- coated metal samples. Metal-ceramic specimens were subjected to three-point bending, and failure loads were recorded. Bond strengths between the porcelain and (Ti,Al)N-coated metal alloys ranged from 159.0 +/- 11.7 N to 278.0 +/- 12.3 N. These values were significantly greater (p< 0.05) than bond strengths recorded for control samples that did not incorporate the (Ti,Al)N film. An electron probe microanalyzer with a line profile mode was used to characterize the interface between the (Ti,Al)N film and the porcelain. Results of this investigation suggest that the (Ti,Al)N film (1) increases the flexural bond strength between dental porcelain and nickel-based alloy substrates by permitting elemental diffusion, (2) interferes with the surface oxide formation that characteristically originates from the nickel-based metal alloy substrate, and (3) provides an appropriate oxide layer for porcelain application. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 516-521, 2002

  15. Electrical and morphological characterization of transfer-printed Au/Ti/TiO{sub x}/p{sup +}-Si nano- and microstructures with plasma-grown titanium oxide layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiler, Benedikt, E-mail: benedikt.weiler@nano.ei.tum.de; Nagel, Robin; Albes, Tim

    2016-04-14

    Highly-ordered, sub-70 nm-MOS-junctions of Au/Ti/TiO{sub x}/p{sup +}-Si were efficiently and reliably fabricated by nanotransfer-printing (nTP) over large areas and their functionality was investigated with respect to their application as MOS-devices. First, we used a temperature-enhanced nTP process and integrated the plasma-oxidation of a nm-thin titanium film being e-beam evaporated directly on the stamp before the printing step without affecting the p{sup +}-Si substrate. Second, morphological investigations (scanning electron microscopy) of the nanostructures confirm the reliable transfer of Au/Ti/TiO{sub x}-pillars of 50 nm, 75 nm, and 100 nm size of superior quality on p{sup +}-Si by our transfer protocol. Third, the fabricated nanodevices are alsomore » characterized electrically by conductive AFM. Fourth, the results are compared to probe station measurements on identically processed, i.e., transfer-printed μm-MOS-structures including a systematic investigation of the oxide formation. The jV-characteristics of these MOS-junctions demonstrate the electrical functionality as plasma-grown tunneling oxides and the effectivity of the transfer-printing process for their large-scale fabrication. Next, our findings are supported by fits to the jV-curves of the plasma-grown titanium oxide by kinetic-Monte-Carlo simulations. These fits allowed us to determine the dominant conduction mechanisms, the material parameters of the oxides and, in particular, a calibration of the thickness depending on applied plasma time and power. Finally, also a relative dielectric permittivity of 12 was found for such plasma-grown TiO{sub x}-layers.« less

  16. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.

    PubMed

    Liou, Je-Wen; Chang, Hsin-Hou

    2012-08-01

    This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases.

  17. Self-organized nickel nanoparticles on nanostructured silicon substrate intermediated by a titanium oxynitride (TiNxOy) interface

    NASA Astrophysics Data System (ADS)

    Morales, M.; Droppa, R., Jr.; de Mello, S. R. S.; Figueroa, C. A.; Zanatta, A. R.; Alvarez, F.

    2018-01-01

    In this work we report an experimental approach by combining in situ sequential top-down and bottom-up processes to induce the organization of nanosized nickel particles. The top-down process consists in xenon ion bombardment of a crystalline silicon substrate to generate a pattern, followed by depositing a ˜15 nm titanium oxynitride thin film to act as a metallic diffusion barrier. Then, metallic nanoparticles are deposited by argon ion sputtering a pure nickel target, and the sample is annealed to promote the organization of the nickel nanoparticles (a bottom-up process). According to the experimental results, the surface pattern and the substrate biaxial surface strain are the driving forces behind the alignment and organization of the nickel nanoparticles. Moreover, the ratio between the F of metallic atoms arriving at the substrate relative to its surface diffusion mobility determines the nucleation regime of the nickel nanoparticles. These features are presented and discussed considering the existing technical literature on the subject.

  18. Study of nitrogen ion doping of titanium dioxide films

    NASA Astrophysics Data System (ADS)

    Ramos, Raul; Scoca, Diego; Borges Merlo, Rafael; Chagas Marques, Francisco; Alvarez, Fernando; Zagonel, Luiz Fernando

    2018-06-01

    This study reports on the properties of nitrogen doped titanium dioxide (TiO2) thin films considering the application as a transparent conducting oxide (TCO). Sets of thin films were prepared by sputtering a titanium target under oxygen atmosphere on a quartz substrate at 400 or 500 °C. Films were then doped at the same temperature by 150 eV nitrogen ions. The films were prepared in Anatase phase which was maintained after doping. Up to 30 at% nitrogen concentration was obtained at the surface, as determined by in situ X-ray photoelectron spectroscopy (XPS). Such high nitrogen concentration at the surface lead to nitrogen diffusion into the bulk which reached about 25 nm. Hall measurements indicate that average carrier density reached over 1019 cm-3 with mobility in the range of 0.1-1 cm2 V-1 s-1. Resistivity about 3 · 10-1 Ω cm could be obtained with 85% light transmission at 550 nm. These results indicate that low energy implantation is an effective technique for TiO2 doping that allows an accurate control of the doping process independently from the TiO2 preparation. Moreover, this doping route seems promising to attain high doping levels without significantly affecting the film structure. Such approach could be relevant for preparation of N:TiO2 transparent conducting electrodes (TCE).

  19. Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO2 nanorod arrays: Effects of the light trapping and optimum charge transfer

    NASA Astrophysics Data System (ADS)

    An, Gil Woo; Mahadik, Mahadeo A.; Chae, Weon-Sik; Kim, Hyun Gyu; Cho, Min; Jang, Jum Suk

    2018-05-01

    The vertically aligned TiO2 nanorod arrays (NRA) with manipulated aspect ratio were hydrothermally synthesized by changing the amount of the titanium (Ti) precursor in the initial growth solution. FE-SEM images show the optimum morphology, density and aspect ratio of the well-aligned TB-1.2 NRs on the surface of the FTO substrate. The UV-vis-absorption measurements revealed that a sample prepared at TB-1.2 can provide an increased light trapping effect. PEC analyses demonstrated that the TiO2 nanorods deposited at TB-1.2 of Titanium butoxide show a relatively high PEC conversion efficiency (3.5 times) compared with the TB-0.8 prepared TiO2 at a 1.0 V versus RHE. The higher PEC performance is believed to be the result of an enhancement of the optimum aspect ratio, light trapping, an efficient charge separation, and the high carrier transport in the vertically aligned TiO2 NRs. Further, the PEC based organic dye degradation experiments showed 77% and 94% removal of Orange II and methylene blue respectively. Additionally, 109 μmol h-1 cm-2 hydrogen generations were attributed using optimized vertically aligned TiO2 NRA's. Thus, the appropriate morphology manipulated the TiO2 NRAs are useful for solar conversion applications.

  20. Selection of a novel peptide aptamer with high affinity for TiO2-nanoparticle through a direct electroporation with TiO2-binding phage complexes.

    PubMed

    Inoue, Ippei; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yasueda, Hisashi

    2016-11-01

    We have developed an easy and rapid screening method of peptide aptamers with high affinity for a target material TiO 2 using M13 phage-display and panning procedure. In a selection step, the phage-substrate complexes and Escherichia coli cells were directly applied by electric pulse for electroporation, without separating the objective phages from the TiO 2 nanoparticles. Using this simple and rapid method, we obtained a novel peptide aptamer (named ST-1 with the sequence AYPQKFNNNFMS) with highly strong binding activity for TiO 2 . A cage-shaped protein fused with both ST-1 and an available carbon nanotube-affinity peptide was designed and produced in E. coli. The multi-functional supraprotein could efficiently mineralize a titanium-compound around the surface of single-wall carbon nanotubes (SWNTs), indicating that the ST-1 is valuable in the fabrication of nano-composite materials with titanium-compounds. The structural analysis of ST-1 variants indicated the importance of the N-terminal region (as a motif of AXPQKX 6 S) of the aptamer in the TiO 2 -binding activity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  2. Immobilization of TiO 2 nanofibers on titanium plates for implant applications

    NASA Astrophysics Data System (ADS)

    Lim, Jin Ik; Yu, Bin; Woo, Kyung Mi; Lee, Yong-Keun

    2008-12-01

    Nanofibers have shown good biological performances such as improved cell adhesion and differentiation; therefore, nanofibrous modification of dental and bone implants might enhance osseo-integration. The purpose of this study was to investigate the nanofibrous modification of titanium implants. TiO 2 nanofibers were fabricated by the electrospinning method using a mixture of Ti(IV)isopropoxide and poly(vinyl pyrrolidone) (PVP) in acidic alcohol solution. Then the nanofibers were immobilized on the NaOH/HCl-treated titanium plates by inducing the alcohol condensation reaction of Ti(IV)isopropoxide with Ti-OH group on the titanium surface and subsequent calcination (500-1000 °C). The immobilized TiO 2 nanofibers were characterized by SEM, XRD and a simulated removal test. The diameter of the TiO 2 nanofibers could be controlled within the range of 20-350 nm by changing the amounts of Ti(IV)isopropoxide and PVP. Phase transformation from anatase to rutile was observed after calcination. After the simulated removal test, TiO 2 nanofibers remained on titanium surface. These TiO 2 nanofibers on titanium plates could be used for the surface modification of titanium implants to improve the osseo-integration.

  3. Optical and electrical properties of sol-gel spin coated titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Sahoo, Anusuya; Jayakrishnan, A. R.; Kamakshi, K.; Silva, J. P. B.; Sekhar, K. C.; Gomes, M. J. M.

    2017-08-01

    In this work; TiO2 thin films were deposited on glass and stainless steel substrates by sol-gel spin coating method. The films deposited on glass were annealed at different temperatures (Ta) in the range of 200 to 500 0C and that are deposited on steel substrate were annealed at 800 0C. The optical properties of TiO2 thin films were studied by using UV-VIS spectroscopy and photoluminescence (PL) spectroscopy. The transmittance on the average was found to ≥ 80 % and is found to sensitive to Ta. The PL spectra exhibited the strong emission band associated with band- to- band transition around 390 nm and the two weak bands at 480 and 510 nm associated to the oxygen defects and surface defects respectively. The current-voltage (I-V) characteristics of the Al/TiO2/steel capacitors were studied and analysed with application of various current mechanisms. Analysis reveals that the conduction in Al/TiO2/steel capacitors is governed by Poole-Frenkel mechanism.

  4. Effects of various oxygen partial pressures on Ti-doped ZnO thin film transistors fabricated on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Yu, Wen; Shi, Pan; Zhang, Yi; Huang, Lingling; Cong, Yingying; Zhou, Xiaoliang; Zhang, Xiaomi; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2016-04-01

    By applying a novel active layer of titanium zinc oxide (TiZO), we have successfully fabricated fully transparent thin-film transistors (TFTs) with a bottom gate structure fabricated on a flexible plastic substrate at low temperatures. The effects of various oxygen partial pressures during channel deposition were studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant impact on the performance of TiZO TFTs, and that the TFT developed under 10% oxygen partial pressure exhibits superior performance with a low threshold voltage (V th) of 2.37 V, a high saturation mobility (μsat) of 125.4 cm2 V-1 s-1, a steep subthreshold swing (SS) of 195 mV/decade and a high I on/I off ratio of 3.05 × 108. These results suggest that TiZO thin films are promising for high-performance fully transparent flexible TFTs and displays.

  5. The plasma electrolytic oxidation micro-discharge channel model and its microstructure characteristic based on Ti tracer

    NASA Astrophysics Data System (ADS)

    Gao, Fangyuan; Hao, Li; Li, Guang; Xia, Yuan

    2018-02-01

    This study focuses on the individual discharge channel of ceramic coating prepared by plasma electrolytic oxidation (PEO), and attempts to reveal the mechanism of breakdown discharge at low voltage. Titanium (Ti) was employed as a substrate with the layer of aluminum deposited on it (aluminized Ti). The shape and microstructure of the discharge channels in PEO coatings were investigated using transmission electron microscope (TEM) and scanning electron microscopy (SEM). A schematic model of the individual discharge channel was proposed based on Ti tracer method. The shape of the discharge channel was mainly cylinder-shaped in the compact coating, with a groove-like oxidation region existed at the coating/substrate interface. In the groove-like oxidation region, the phase composition mainly composed of amorphous and mixed polycrystalline (aluminum titanate and mullite). β-Al2O3 was found in the ceramic coating. TEM morphology showed that nanometer sized micro channels existed in the ceramic coatings.

  6. Influence of charged defects on the interfacial bonding strength of tantalum- and silver-doped nanograined TiO2.

    PubMed

    Azadmanjiri, Jalal; Wang, James; Berndt, Christopher C; Kapoor, Ajay; Zhu, De Ming; Ang, Andrew S M; Srivastava, Vijay K

    2017-05-17

    A nano-grained layer including line defects was formed on the surface of a Ti alloy (Ti alloy , Ti-6Al-4V ELI). Then, the micro- and nano-grained Ti alloy with the formation of TiO 2 on its top surface was coated with a bioactive Ta layer with or without incorporating an antibacterial agent of Ag that was manufactured by magnetron sputtering. Subsequently, the influence of the charged defects (the defects that can be electrically charged on the surface) on the interfacial bonding strength and hardness of the surface system was studied via an electronic model. Thereby, material systems of (i) Ta coated micro-grained titanium alloy (Ta/MGTi alloy ), (ii) Ta coated nano-grained titanium alloy (Ta/NGTi alloy ), (iii) TaAg coated micro-grained titanium alloy (TaAg/MGTi alloy ) and (iv) TaAg coated nano-grained titanium alloy (TaAg/NGTi alloy ) were formed. X-ray photoelectron spectroscopy was used to probe the electronic structure of the micro- and nano-grained Ti alloy , and so-formed heterostructures. The thin film/substrate interfaces exhibited different satellite peak intensities. The satellite peak intensity may be related to the interfacial bonding strength and hardness of the surface system. The interfacial layer of TaAg/NGTi alloy exhibited the highest satellite intensity and maximum hardness value. The increased bonding strength and hardness in the TaAg/NGTi alloy arises due to the negative core charge of the dislocations and neighbor space charge accumulation, as well as electron accumulation in the created semiconductor phases of larger band gap at the interfacial layer. These two factors generate interfacial polarization and enhance the satellite intensity. Consequently, the interfacial bonding strength and hardness of the surface system are improved by the formation of mixed covalent-ionic bonding structures around the dislocation core area and the interfacial layer. The bonding strength relationship by in situ XPS on the metal/TiO 2 interfacial layer may be examined with other noble metals and applied in diverse fields.

  7. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells.

    PubMed

    Ismail, F S Magdon; Rohanizadeh, R; Atwa, S; Mason, R S; Ruys, A J; Martin, P J; Bendavid, A

    2007-05-01

    The purpose of the present study was to determine in vitro the effects of different surface topographies and chemistries of commercially pure titanium (cpTi) and diamond-like carbon (DLC) surfaces on osteoblast growth and attachment. Microgrooves (widths of 2, 4, 8 and 10 microm and a depth of 1.5-2 microm) were patterned onto silicon (Si) substrates using microlithography and reactive ion etching. The Si substrates were subsequently vapor coated with either cpTi or DLC coatings. All surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Using the MG63 Osteoblast-Like cell line, we determined cell viability, adhesion, and morphology on different substrates over a 3 day culture period. The results showed cpTi surfaces to be significantly more hydrophilic than DLC for groove sizes larger than 2 microm. Cell contact guidance was observed for all grooved samples in comparison to the unpatterned controls. The cell viability tests indicated a significantly greater cell number for 8 and 10 microm grooves on cpTi surfaces compared to other groove sizes. The cell adhesion study showed that the smaller groove sizes, as well as the unpatterned control groups, displayed better cell adhesion to the substrate.

  8. Formation of Sol Gel Dried Droplets of Carbon Doped Titanium Dioxide (TiO2) at Low Temperature via Electrospraying

    NASA Astrophysics Data System (ADS)

    Halimi, S. U.; Hashib, S. Abd; Abu Bakar, N. F.; Ismail, S. N.; Nazli Naim, M.; Rahman, N. Abd; Krishnan, J.

    2018-05-01

    The high band gap energy of TiO2 and inconsistency in particles size has imposed a significant drawback on TiO2 applications. Dried droplets of carbon-doped TiO2 fine particles were produced by using electrospraying technique. The C-doped TiO2 particles were prepared by hydrolysis of titanium isopropoxide with the addition of carbon precursor followed by electrospraying the suspension in stable Taylor cone-jet mode. Coulomb fission of charged droplets from the electrospraying technique successfully transformed dispersed liquid C-doped TiO2 particles into solid. The deposited C-doped TiO2 droplets were collected on aluminium substrates placed at working distances of 10 to 20 cm from the tip of the electrospray needle. The collected C-doped TiO2 droplets were characterized by using FESEM, UV-Vis, FTIR and XRD. By increasing the working distance, the average droplets size of the deposited C-doped TiO2 was reduced from ±163.2 nm to ±147.56 nm. UV-Vis analysis showed a strong absorption in the visible-light region and about 93 nm red shift of the onset spectrum for C-doped TiO2. The red shift indicates an increase in photocatalytic efficiency by reducing the TiO2 band gap energy from 3.0 eV to 2.46 eV and shifting its activity to the visible-light region. FTIR analysis indicated the presence of Ti-C and C-O chemical bonding in the C-doped TiO2.

  9. Electrochemical in situ fabrication of titanium dioxide-nanosheets on a titanium wire as a novel coating for selective solid-phase microextraction.

    PubMed

    Li, Yi; Zhang, Min; Yang, Yaoxia; Wang, Xuemei; Du, Xinzhen

    2014-09-05

    A novel TiO2-nanosheets coated fiber for solid-phase microextraction (SPME) was fabricated by anodization of Ti wire substrates in ethylene glycol with concentrated NH4F. The in situ fabricated TiO2-nanosheets were densely embedded into Ti substrates with about 1μm long, 300nm wide and 80nm thick. The as-fabricated TiO2-nanosheets coating was employed to extract polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters in combination with high performance liquid chromatography-UV detection (HPLC-UV). It was found that the TiO2-nanosheets coating exhibited high extraction capability and good selectivity for some UV filters frequently used in cosmetic sunscreen formulations. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear in the range of 0.1-400μgL(-1). The limits of detection of the proposed method were between 0.026μgL(-1) and 0.089μgL(-1) (S/N=3). The single fiber repeatability varied from 4.50% to 8.76% and the fiber-to-fiber reproducibility ranged from 7.75% to 9.64% for the extraction of spiked water with 50μgL(-1) UV filters (n=5). The SPME-HPLC-UV method was successfully established for the selective preconcentration and sensitive detection of target UV filters from real environmental water samples. Recovery of UV filters spiked at 10μgL(-1) and 25μgL(-1) ranged from 88.8% to 107% and the relative standard deviations were less than 9.8%. Furthermore the in situ growth of the TiO2-nanosheets coating was performed in a highly reproducible manner and the TiO2-nanosheets coated fiber has high mechanical strength, good stability and long service life. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Investigation on the Oxidation and Reduction of Titanium in Molten Salt with the Soluble TiC Anode

    NASA Astrophysics Data System (ADS)

    Wang, Shulan; Wan, Chaopin; Liu, Xuan; Li, Li

    2015-12-01

    To reveal the oxidation process of titanium from TiC anode and the reduction mechanism of titanium ions in molten NaCl-KCl, the polarization curve of TiC anode in molten NaCl-KCl and cyclic voltammograms of the molten salt after polarization were studied. Investigation on the polarization curve shows that titanium can be oxidized and dissociated from the TiC anode at very low potential. The cyclic voltammograms demonstrated that the reduction reaction of titanium ions in the molten salt is a one-step process. By potentiostatic electrolysis, dendritic titanium is obtained on the steel plate. The work promotes the understanding on the process of electrochemical oxidization/dissociation of titanium from TiC anode and the reduction mechanism of titanium ions in molten salt.

  11. Titanium hydride and hydrogen concentration in acid-etched commercially pure titanium and titanium alloy implants: a comparative analysis of five implant systems.

    PubMed

    Szmukler-Moncler, S; Bischof, M; Nedir, R; Ermrich, M

    2010-09-01

    Acid etching is a popular method to texture the surface of dental implants. During etching, the titanium oxide protective layer is dissolved and small native hydrogen ions diffuse into the unprotected implant surface. They enrich the implant surface with hydrogen and precipitate into titanium hydride (TiH). The aim of this study was to measure the concentration of TiH at the implant surface and the total concentration of Hydrogen at five commercially available implant systems, made of either commercially pure (cp) titanium or titanium alloy. X-Ray diffraction (XRD) was conducted on each implant system to determine the compounds present at the implant surface. Following a TiH(2)/Ti calibration curve, the concentration of TiH was determined. Concentration of hydrogen in the implants was measured by the inert gas fusion thermal conductivity/infrared detection method. XRD data showed that TiH was present on all cp titanium implants but not on the alloyed implants. TiH concentration varied between 5% and 37%. Hydrogen concentration varied between 43 and 108 ppm, no difference in uptake was found between the cp titanium and alloyed implants. Low solubility of hydrogen in alpha-titanium is responsible for precipitation into TiH. Stronger etching conditions led to higher concentration of TiH2-x. High solubility of hydrogen in the beta-phase of the alloy is preventing hydrogen from precipitating into TiH. All implants, even those lacking TiH at the surface, were enriched with hydrogen. In all implants, hydrogen concentration was within the normative limit of 130 ppm.

  12. Formation of Titanium Sulfide from Titanium Oxycarbonitride by CS2 Gas

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Yashima, Yuta; Suzuki, Ryosuke O.; Rezan, Sheikh Abdul

    2018-05-01

    Previously this group reported that a good quality titanium metal powder can be produced from titanium sulfides by electrochemical OS process. In this study, the sulfurization procedure was examined to synthesize titanium sulfide from titanium oxycarbonitride by CS2 gas. The experiments were carried out in the temperature range of 1173 K to 1523 K (900 °C to 1250 °C) in a tube reactor with continuously flowing argon (Ar) as carrier gas of CS2. The formation of titanium sulfide phases from the commercial TiN, TiC, and TiO powders was studied as the initial step. Then, TiO0.02C0.13N0.85 coming from ilmenite was sulfurized to prepare single phase of titanium sulfide. The products were characterized by X-ray diffraction, and the morphology of the sulfides was rigorously investigated, and the sulfur, oxygen, and carbon contents in the products were analyzed. The process was remarkably dependent on the temperature and time. TiN and TiO0.02C0.13N0.85 powders could be fully converted to the single phase of Ti2.45S4 (Ti2+x S4) at 1473 K (1200 °C) in 3.6 ks. The maximum weight gain of TiN sample was 55.3 pct indicating a full conversion of TiN to Ti2S3 phase. The carbon and oxygen contents in this sulfide prepared from the oxycarbonitride were about 1.8 wt pct C and 1.4 wt pct O, respectively. Therefore, the titanium sulfide could be a promising feedstock for the production of commercial grade titanium powder.

  13. Low temperature growth of ZnO nanorods array via solution-immersion on TiO2 seed layer

    NASA Astrophysics Data System (ADS)

    Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.

    2018-05-01

    In this work, TiO2:ZNR thin films were successfully fabricated on glass substrates at low temperatures of 75 to 90°C. The substrates were coated with titanium dioxide (TiO2) using sol-gel spin coating, which act as seed layer to grow zinc oxide nanorods (ZNR) by solution-immersion method. At 90 and 95° C, ZNR with hexagonal tip are well dispersed without any aggregation and exhibit more uniform nanorods array as observed using FESEM. The diffraction peak intensity of the (0 0 2)-plane increased as the temperature increased, indicating improved orientation in the c-axis direction of the ZNR as detected in XRD patterns. From UV-Vis absorbance spectra, it was found that the samples has higher absorption properties at middle range of immersion temperatures; 80, 85 and 90°C.

  14. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  15. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl

    2017-09-01

    The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.

  16. Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium

    DTIC Science & Technology

    2011-09-01

    nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3

  17. The formation of titanium dioxide crystallite nanoparticles during activation of PAN nanofibers containing titanium isopropoxide

    NASA Astrophysics Data System (ADS)

    Mehrpouya, Fahimeh; Tavanai, Hossein; Morshed, Mohammad; Ghiaci, Mehran

    2012-08-01

    Activated carbon (AC) can act as an important carrier for TiO2 nanoparticles. TiO2 nanoparticle can be fabricated by the hydrolysis and condensation of titanium alkoxides like titanium isopropoxide. This study showed that the formation of titanium dioxide crystallite nanoparticle during activation of PAN nanofibers containing titanium isopropoxide leads to the formation of mainly anatase crystal TiO2 nanoparticle in AC nanofibers, with a good dispersion in both the longitude and cross section of nanofibers. The TiO2 crystallite size lies in the range of 7.3-11.3 nm. The dispersion of TiO2 nanoparticles in the matrix of AC nanofibers is far superior to the direct mixing of TiO2 nanoparticles in the original electrospinning solution.

  18. Performance analysis of flexible DSSC with binder addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com

    2016-04-19

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyzemore » morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.« less

  19. In situ reactive multi-material Ti6Al4V-calcium phosphate-nitride coatings for bio-tribological applications.

    PubMed

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2018-05-24

    To reduce the wear related damage of medical grade Ti-6Al-4V alloy, laser engineered net shaping (LENS™) based in situ reactive multi-material additive manufacturing was employed to process a mixed coating of Ti-6Al-4V powder and calcium phosphate (CaP) in an oxygen free, nitrogen-argon environment. The resultant coatings were composite materials of titanium nitrides and calcium titanate in an α-Ti matrix. Hardness was increased by up to ~148% to 868 ± 9 HV as compared to the untreated Ti-6Al-4V substrate. Similarly, when tribological properties were evaluated in deionized (DI) water medium against alumina counter material, the wear damage was reduced by ~91% as compared to the untreated Ti-6Al-4V substrate. Furthermore, the untreated Ti-6Al-4V substrate released Ti ions of ~12.45 ppm concentration during wear whereas the Ti6Al4V-5%CaP coating processed in an argon-nitrogen environment released ions of ~3.17 ppm concentration under similar testing conditions. The overall coefficient of friction was also found to decrease due to the addition of CaP and processing the Ti6Al4V-CaP mixture in an argon-nitrogen environment. Our results indicate that this reactive multi-material additive manufacturing of metal-ceramic composites is an effective way of enhancing the tribological performance of metallic materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Tunable growth of TiO2 nanostructures on Ti substrates

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng

    2005-10-01

    A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.

  1. Assessment of nickel titanium and beta titanium corrosion resistance behavior in fluoride and chloride environments.

    PubMed

    Kassab, Elisa J; Gomes, José Ponciano

    2013-09-01

    To assess the influence of fluoride concentration on the corrosion behavior of nickel titanium (NiTi) superelastic wire and to compare the corrosion resistance of NiTi with that of beta titanium alloy in physiological solution with and without addition of fluoride. NiTi corrosion resistance was investigated through electrochemical impedance spectroscopy and anodic polarization in sodium chloride (NaCl 0.15 M) with and without addition of 0.02 M sodium fluoride (NaF), and the results were compared with those associated with beta titanium. The influence of fluoride concentration on NiTi corrosion behavior was assessed in NaCl (0.15 M) with and without 0.02, 0.04, 0.05, 0.07, and 0.12 M NaF solution. Galvanic corrosion between NiTi and beta titanium were investigated. All samples were characterized by scanning electron microscopy. Polarization resistance decreased when NaF concentration was increased, and, depending on NaF concentration, NiTi can suffer localized or generalized corrosion. In NaCl solution with 0.02 M NaF, NiTi suffer localized corrosion, while beta titanium alloys remained passive. Current values near zero were observed by galvanic coupling of NiTi and beta titanium. There is a decrease in NiTi corrosion resistance in the presence of fluoride. The corrosion behavior of NiTi alloy depends on fluoride concentration. When 0.02 and 0.04 M of NaF were added to the NaCl solution, NiTi presented localized corrosion. When NaF concentration increased to 0.05, 0.07, and 0.12 M, the alloy presented general corrosion. NiTi corrosion resistance behavior is lower than that of beta titanium. Galvanic coupling of these alloys does not increase corrosion rates.

  2. Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application

    PubMed Central

    Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi

    2016-01-01

    Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry. PMID:26846687

  3. Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application.

    PubMed

    Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi

    2016-02-05

    Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry.

  4. Titanium Surface Chemical Composition Interferes in the Pseudomonas aeruginosa Biofilm Formation.

    PubMed

    Nunes Filho, Antonio; Aires, Michelle de Medeiros; Braz, Danilo Cavalcante; Hinrichs, Ruth; Macedo, Alexandre José; Alves, Clodomiro

    2018-02-01

    Bacterial adhesion on three different surfaces: untreated Ti, plasma nitriding, and plasma carbonitriding Ti substrates were investigated. The samples were placed in bacterial cultures of Pseudomonas aeruginosa to assess biofilm formation. The correlation between the amount of bacteria attached to the surface after a lapse of time with nanotopography and physicochemical properties was performed. TiN showed the highest capacity to avoid bacterial adhesion, while presenting intermediate roughness and wettability. Although the surface of TiCN had the highest surface roughness and low contact angle (high wettability), bacterial adhesion was intermediate on this sample. Untreated Ti, even though presenting a smooth surface and low wettability, had the highest tendency to form biofilms. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells

    PubMed Central

    2012-01-01

    The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon titanium tetrachloride (TiCl4) treatment. The efficiency in TNA-based DSSCs was improved by both TnB and TiCl4 treatment presumably due to the increase of dye adsorption. PMID:22353282

  6. Growth and Stability of Titanium Dioxide Nanoclusters on Graphene/Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Ryan T.; Novotny, Zbynek; Netzer, Falko P.

    Titanium dioxide/graphene composites have recently been demonstrated to improve the photocatalytic activity of TiO2 in visible light. To better understand the interactions of TiO2 with graphene we have investigated the growth of TiO2 nanoclusters on single-layer graphene/Ru(0001) using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Deposition of Ti in the O2 background at 300 K resulted in the formation of nanoclusters nucleating on intrinsic defects in the graphene (Gr) layer. The saturation nanocluster density decreased as the substrate temperature was increased from 300 to 650 K, while deposition at 700 K resulted in the significant etching of themore » Gr layer. We have also prepared nanoclusters with Ti2O3 stoichiometry using lower O2 pressures at 650 K. Thermal stability of the TiO2 nanoclusters prepared at 300 K was evaluated with AES and STM. No change in oxidation state for the TiO2 nanoclusters or etching of the Gr layer was observed up to ~900 K. Annealing studies characterized using STM revealed that cluster ripening proceeds via a Smoluchowski mechanism below 800 K and that Ostwald ripening dominates above 800 K. At even higher temperatures, the nanoclusters undergo reduction to TiOx (x ≈ 1 - 1.5) which is accompanied by oxidation and etching of the Gr. Our studies demonstrate that highly thermally stable TiOx nanoclusters of controlled composition and morphology can be prepared on Gr supports.« less

  7. Manipulating the assembly of perovskites onto soft nanoimprinted titanium dioxide templates.

    PubMed

    Baca, Alfred J; Roberts, M Joseph; Stenger-Smith, John; Baldwin, Lawrence

    2018-06-22

    Soft nanoimprinted titanium dioxide (TiO 2 ) substrates decorated with methylammonium lead halide perovskite (MAPbI 3 ) crystals were fabricated by controlling the perovskite precursor concentration and volume during spin coat processing combined with the use of hydrophobic TiO 2 templates. The patterned growth was demonstrated with different perovskite crystallization methods. We investigated and successfully demonstrated the controlled assembly of two MAPbI 3 nanomaterials, one a nanocomposite formed between the perovskite and a hole conducting polymer poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAMPPV), and a second formed from perovskite crystals using common solution based MAPbI 3 growth methods (1-step and 2-step processing). Both types of MAPbI 3 crystals were fabricated on hydrophobic TiO 2 nanotemplates composed of nanowells or grating patterns. Patterned areas as large as 100 μm × 100 μm were achieved. We examined and characterized the substrates using atomic force microscopy, scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy. We present the optical properties (i.e. fluorescence and transmission) of soft nanoimprinted nanowells decorated with perovskites demonstrating the successful synthesis of MAPbI 3 perovskite nanocrystals. As an example of their use, we demonstrate a two terminal device and show photocurrent response of a perovskite patterned micro-grating. Our method is a nondestructive approach to nanopatterning perovskites, and produces patterned arrays that maintain their photo-electric properties. The results presented herein suggests an attractive route to developing nanopatterned and small area perovskite substrates for applications in photovoltaics, x-ray sensing/detection, image sensor arrays, and others.

  8. Manipulating the assembly of perovskites onto soft nanoimprinted titanium dioxide templates

    NASA Astrophysics Data System (ADS)

    Baca, Alfred J.; Roberts, M. Joseph; Stenger-Smith, John; Baldwin, Lawrence

    2018-06-01

    Soft nanoimprinted titanium dioxide (TiO2) substrates decorated with methylammonium lead halide perovskite (MAPbI3) crystals were fabricated by controlling the perovskite precursor concentration and volume during spin coat processing combined with the use of hydrophobic TiO2 templates. The patterned growth was demonstrated with different perovskite crystallization methods. We investigated and successfully demonstrated the controlled assembly of two MAPbI3 nanomaterials, one a nanocomposite formed between the perovskite and a hole conducting polymer poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAMPPV), and a second formed from perovskite crystals using common solution based MAPbI3 growth methods (1-step and 2-step processing). Both types of MAPbI3 crystals were fabricated on hydrophobic TiO2 nanotemplates composed of nanowells or grating patterns. Patterned areas as large as 100 μm × 100 μm were achieved. We examined and characterized the substrates using atomic force microscopy, scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy. We present the optical properties (i.e. fluorescence and transmission) of soft nanoimprinted nanowells decorated with perovskites demonstrating the successful synthesis of MAPbI3 perovskite nanocrystals. As an example of their use, we demonstrate a two terminal device and show photocurrent response of a perovskite patterned micro-grating. Our method is a nondestructive approach to nanopatterning perovskites, and produces patterned arrays that maintain their photo-electric properties. The results presented herein suggests an attractive route to developing nanopatterned and small area perovskite substrates for applications in photovoltaics, x-ray sensing/detection, image sensor arrays, and others.

  9. Transition rate diagrams and excitation of titanium in a glow discharge in argon and neon

    NASA Astrophysics Data System (ADS)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2018-06-01

    Emission spectra of titanium in a Grimm-type glow discharge in argon and neon were studied using the formalism of transition rate diagrams. Ti I spectra in argon and neon discharges are similar, without signs of selective excitation, and populations of Ti I levels exhibit a decreasing trend as function of energy, except for some scatter. A major excitation process of Ti II in argon discharge is charge transfer from argon ions to neutral titanium. In neon discharge, a strong selective excitation was observed of Ti II levels at ≈13.3-13.4 eV relative to the Ti I ground state. It was attributed to charge transfer from doubly charged titanium ions to neutral titanium, while the Ti++ ions are produced by charge transfer and ionization of neutral titanium by neon ions. Cascade excitation is important for Ti II levels up to an energy of ≈13 eV relative to the Ti I ground state, both in argon and neon discharges.

  10. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF).

    PubMed

    Rakngarm Nimkerdphol, Achariya; Otsuka, Yuichi; Mutoh, Yoshiharu

    2014-08-01

    The residual stress distributions in hydroxyapatite (HAp) coating with and without mixed hydroxyapatite/titanium (HAp/Ti) bond coating on commercially pure Titanium substrate (cp-Ti) were evaluated by Raman piezo-spectroscopy analysis. The Raman shifted position 962cm(-1), which is the symmetrical stretching of surrounded oxygen atoms with phosphorous atom ( [Formula: see text] ), was referred to analyses of stress dependency. The piezo-spectroscopic coefficient, which is a Raman shift value per stress (cm(-1)/GPa), was fitted from the result of four-points bending test of rectangular HAp bar and as-sprayed HAp on Zn plate. The calculated values were 3.89cm(-1)/GPa for the former and 7.11cm(-1)/GPa for the latter. By using these calibrations, the compressive residual stress in HAp coating with HAp/Ti bond coating (HA-B) has been found to be distributed in the range of -137MPa to -75MPa. For the heat-treated HAp coating (HA-B-HT) specimen, the compressive residual stresses placed in the range of -40--22MPa. The changes in the values of residual stress of the HAp coating after immersion in SBF were also evaluated. The residual stress in HA-WB specimens tend to change from compressive to tensile after 30 days immersion. The HA-B-HT specimens exhibited similar behavior and reached to zero stress after the immersion. The mechanism of the changes in residual stress would be the effect of stress redistribution around melted calcium phosphate particles to remained HAp splats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microstructure and Corrosion Behavior of Laser Synthesized Cobalt Based Powder on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Adesina, O. S.; Popoola, A. P. I.; Pityana, S. L.; Oloruntoba, D. T.

    2018-05-01

    The corrosion behavior of titanium alloys when used for various dynamic offshore components has been a major concern of titanium drilling risers in deepwater energy extraction. A way of achieving specified requirement is the development of coatings suitable to protect the base material against corrosion. In this work, laser cladding technique which is known as a leading edge due to its distinctive properties and outcomes was used in synthesizing Co-based powder on titanium alloy. The processing parameters used were laser power of 900W; scan speed of 0.6 to 1.2 m/min; powderfeedrate1.0g/min;beamspotsize3mm;gasflowrate1.2L/min.The effects of cobalt addition and laser parameters on corrosion behavior of laser clad Ti6AL4V coating in 0.5M sulfuric medium were investigated using linear potentiodynamic polarization. The changes in microstructure and corrosion behavior were analyzed using scanning electron microscopy (SEM) while the X –ray diffraction (XRD) indicates the intermetallics in the coatings. Results showed that the coatings displayed good metallurgical bonding with dendritic formations between the coatings and the substrate. The anodic current density increased with lower scan speed. However, the corrosion current densities of laser-clad samples were lower than Ti6Al4V alloy.

  12. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications.

    PubMed

    Gordin, D M; Busardo, D; Cimpean, A; Vasilescu, C; Höche, D; Drob, S I; Mitran, V; Cornen, M; Gloriant, T

    2013-10-01

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Additive Manufacturing of Metastable Beta Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Yannetta, Christopher J.

    Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.

  14. Initial oral biofilm formation on titanium implants with different surface treatments: An in vivo study.

    PubMed

    Ferreira Ribeiro, Cyntia; Cogo-Müller, Karina; Franco, Gilson Cesar; Silva-Concílio, Laís Regiane; Sampaio Campos, Márcia; de Mello Rode, Sigmar; Claro Neves, Ana Christina

    2016-09-01

    The aim of this study was to examine in vivo the initial bacterial adhesion on titanium implants with different surface treatments. Ten subjects wore oral splints containing machined pure titanium disks (Ti-M), acid-etched titanium (Ti-AE) and anodized and laser irradiated disks (Ti-AL) for 24h. After this period, disks were removed from the splints and adherent bacteria were quantified by an enzymatic assay to assess total viable bacteria and by Real Time PCR to evaluate total bacteria and Streptococcus oralis levels. Additionally, the initial adherent microorganisms were visualized by scanning electron microscopy (SEM). Titanium surface morphology was verified using SEM, and roughness was evaluated by profilometer analysis. Regarding titanium surface roughness, Ti-AL (1.423±0.397) showed significantly higher Ra values than did Ti-M (0.771±0.182) and Ti-AE (0.735±0.196) (p<0.05, ANOVA - Tahame). Ti-AE and Ti-AL presented roughened micro-structure surfaces characterized by open pores, whereas Ti-M showed long grooves alternating with planed areas. Comparing the Ti-M, Ti-AE and Ti-AL groups for viable bacteria (MTT assay), total bacteria and S. oralis quantification (qPCR), no significant differences were observed among these three groups (p>0.05, ANOVA - Tahame). SEM images showed similar bacterial adhesion on the three titanium surfaces, predominantly characterized by cocci and several bacilli, indicating an initial colonization of the oral biofilm. In conclusion, roughness and microtopography did not stimulate initial biofilm formation on titanium surfaces with different surface treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synergistic effects of fibronectin and bone morphogenetic protein on the bioactivity of titanium metal.

    PubMed

    Biao, M N; Chen, Y M; Xiong, S B; Wu, B Y; Yang, B C

    2017-09-01

    To improve the biological properties of bioactive titanium metal, recombinant human bone morphogenetic protein 2(rhBMP-2) and fibronectin (Fn) were adsorbed on its surface solely or contiguously to modify the anodic oxidized titanium (AO-Ti), acid-alkali-treated titanium (AA-Ti), and polished titanium (P-Ti). It is found that the different bioactive titanium surface structures had great influence on protein adsorption. The adsorption amounts of BMP adsorbed solely and Fn/BMP adsorbed contiguously were AA-Ti > P-Ti > AO-Ti, and that for Fn adsorbed solely was AA-Ti ≈ P-Ti > AO-Ti. The conformation of proteins was changed remarkably after the adsorption. For BMP, the α-helix decreased on AA-Ti and stabilized on P-Ti and AO-Ti. For Fn, the β-sheet on PT-Ti and AA-Ti increased significantly. For Fn/BMP, the percentage of β-sheet on AA-Ti increased, and that of α-helix on all samples was stable. MSCs showed greater adhesion and spreading on Fn/BMP groups. MTT and Elisa tests showed that the synergistic effects of proteins made the cells proliferate and differentiate faster. It indicated both the surface structure and the synergistic effects of proteins could influence the biological properties of titanium metals. It provides research foundation for improving the biological properties of bioactive titanium metals by simultaneous application of several proteins. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2485-2498, 2017. © 2017 Wiley Periodicals, Inc.

  16. Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang

    2018-03-01

    In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.

  17. Interaction of sulfur dioxide with titanium-carbide nanoparticles and surfaces: A density functional study

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Rodriguez, José A.

    2003-11-01

    In the control of environmental pollution, metal carbides are potentially useful for trapping and destroying sulfur dioxide (SO2). In the present study, the density functional theory was employed to study the surface structures and electronic properties of the adsorbed SO2 on titanium carbides: metcar Ti8C12, nanocrystal Ti14C13, and a bulk TiC(001) surface. The geometries and orientations of SO2 were fully optimized on all these substrates. Our calculations show that, in spite of the high C/Ti ratio and C2 groups, metcar Ti8C12 exhibits extremely high activity towards SO2. The S-O bonds of SO2 spontaneously break on Ti8C12. The products of the decomposition reaction (S, O) interact simultaneously with Ti and C sites. The C atoms are not simple spectators, and their participation in the dissociation of SO2 is a key element for the energetics of this process. Nanocrystal Ti14C13 also displays a strong interaction with SO2. Although the dissociation of SO2 on Ti14C13 cannot proceed as easily as that on Ti8C12, it could occur by thermal activation even at very low temperature. SO2 is weakly bonded with the bulk TiC(001) surface. By thermal activation the dissociation of SO2 on a TiC(001) surface may also take place but it should be much more difficult than that on Ti14C13. Therefore, we suggest that the carbide nanoparticles (Ti8C12 and Ti14C13) should have special chemical activity towards SO2 removal associated with their "magic" structures.

  18. Bioinspired Au/TiO2 photocatalyst derived from butterfly wing (Papilio Paris).

    PubMed

    Chen, Jianjun; Su, Huilan; Song, Fang; Moon, Won-Jin; Kim, Yang-Soo; Zhang, Di

    2012-03-15

    The reticular hierarchical structure of butterfly wings (Papilio Paris) is introduced as template for Au/TiO(2) photocatalyst by depositing the Au nanoparticles on TiO(2) matrix, which is carried out by a water-ethanol sol-gel procedure combined with subsequent calcination. The obtained Au/TiO(2) nanocomposites present the reticular hierarchical structure of butterfly wings, and Au nanoparticles with an average size of 7 nm are homogeneously dispersed in TiO(2) substrate. Benefiting from such unique reticular hierarchical structure and composition, the biomorphic Au/TiO(2) exhibits high-harvesting capability and presents superior photocatalytic activity. Especially, the biomorphic Au/TiO(2) at the nominal content of gold to titanium of 8 wt% shows the highest photocatalytic activity and can completely decompose methyl orange within 80 min, which is obviously higher than that of commercial Degussa P25 powders. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.

    PubMed

    Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix

    2015-02-01

    Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.

  20. Raman Microspectroscopic Mapping with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to the High-Pressure Polymorph of Titanium Dioxide, TiO2-II.

    PubMed

    Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S

    2017-08-01

    The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution and optimizing spectral acquisition parameters. Using the resolved spectra of TiO 2 -II generated from MCR-ALS analysis, a Raman spectrum for pure TiO 2 -II was estimated to further facilitate its identification.

  1. Free Form Low Cost Fabrication Using Titanium

    DTIC Science & Technology

    2007-06-29

    Compaction Metals) "* CP Ti (International Titanium Powders, LLC) "* Gas Atomized Ti-6AI- 4V (Carpenter Powder Products, Bridgeville, PA) "* Gas Atomized CP...analytical data for the titanium alloys represented in this report Alloy Al C Fe H Mo N2 02 al V TI CP-Ti Grade II 0.1 0.3 0.015 0.03 025 Balance TI-6AI- 4V ...Ti-6A1- 4V is titanium alloyed with 6% Aluminum and 4% Vanadium. This alloy has a melting point range of 1604-1660’C, which is not suitable for

  2. Titanium Brazing for Structures and Survivability

    DTIC Science & Technology

    2007-05-01

    materials, such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of...such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of processing...Suzumura, and Onzawa, reported the joining of Ti- 6Al - 4V and CP titanium alloys with zirconium-rich braze alloys.5 They found that these alloys could

  3. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less

  4. Mechanical and Functional Properties of Nickel Titanium Adhesively Bonded Joints

    NASA Astrophysics Data System (ADS)

    Niccoli, F.; Alfano, M.; Bruno, L.; Furgiuele, F.; Maletta, C.

    2014-07-01

    In this study, adhesive joints made up of commercial NiTi sheets with shape memory capabilities are analyzed. Suitable surface pre-treatments, i.e., degreasing, sandblasting, and chemical etching, are preliminary compared in terms of surface roughness, surface energy, and substrate thinning. Results indicate that chemical etching induces marked substrate thinning without substantial gains in terms of surface roughness and free energy. Therefore, adhesive joints with degreased and sandblasted substrates are prepared and tested under both static and cyclic conditions, and damage development within the adhesive layer is monitored in situ using a CCD camera. Sandblasted specimens have a significantly higher mechanical static strength with respect to degreased ones, although they essentially fail in similar fashion, i.e., formation of microcracks followed by decohesion along the adhesive/substrate interface. In addition, the joints show a good functional response with almost complete shape memory recovery after thermo-mechanical cycling, i.e., a small accumulation of residual deformations occurs. The present results show that adhesive bonding is a viable joining technique for NiTi alloys.

  5. An Investigation into the Effects of Process Conditions on the Tribological Performance of Pack Carburized Titanium with Limited Oxygen Diffusion

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Sun, Y.

    2018-04-01

    In the present study, a new pack carburization technique for titanium has been investigated. The aim of this treatment is to produce a titanium carbide/oxycarbide layer atop of an extended oxygen diffusion zone [α-Ti(O)]. The effects of treatment temperature and pack composition have been investigated in order to determine the optimal conditions required to grant the best tribological response. The resulting structural features were investigated with particular interest in the carbon and oxygen concentrations across the samples cross section. The optimization showed that a temperature of 925 °C with a pack composition of 1 part carbon to 1 part energizer produced surface capable of withstanding a contact pressure of ≈ 1.5 GPa for 1 h. The process resulted in TiC surface structure which offers enhanced hardness (2100 HV) and generates a low friction coefficient (μ ≈ 0.2) when in dry sliding contact with an alumina (Al2O3) ball. The process also produced an extended oxygen diffusion zone that helps to improve the load bearing capacity of the substrate.

  6. Preparation and study of Titanium Nitride films by reactive sputtering and an investigation of target poisoning during the process

    NASA Astrophysics Data System (ADS)

    Aziz, Tareque; Rumaiz, Abdul

    Titanium Nitride (TiNx) thin films were prepared by reactive dc sputtering in presence of Ar-N2 plasma. The thin films were grown on Quartz and pure Si surfaces. The Ar-N2 content ratio was gradually varied while the substrate and the Titanium target were kept at room temperature. Structural properties, optical and electrical properties of the thin films were studied by using X-ray Photoelectron Spectroscopy (XPS) and XRD and 4 probe resistivity measurement. Target poisoning of the Ti target was also studied by varying reactive gas concentration and measuring the target current. A study of target current vs growth rate of the films was performed to investigate the onset of ``poison'' mode.Although there was an insignificant drop in plasma current, we noticed a drop in the deposition rate. This result was tested against Monte Carlo simulations using SRIM simulations. Effects of annealing on the crystallinity and the sheet resistance will also be discussed. The work has been supported by BSA,DOE.

  7. Machinability of an experimental Ti-Ag alloy in terms of tool life in a dental CAD/CAM system.

    PubMed

    Inagaki, Ryoichi; Kikuchi, Masafumi; Takahashi, Masatoshi; Takada, Yukyo; Sasaki, Keiichi

    2015-01-01

    Titanium is difficult to machine because of its intrinsic properties. In a previous study, the machinability of titanium was improved by alloying with silver. This study aimed to evaluate the durability of tungsten carbide burs after the fabrication of frameworks using a Ti-20%Ag alloy and titanium with a computer-aided design and computer-aided manufacturing system. There was a significant difference in attrition area ratio between the two metals. Compared with titanium, the ratio of the area of attrition of machining burs was significantly lower for the experimental Ti-20%Ag alloy. The difference in the area of attrition for titanium and Ti-20%Ag became remarkable with increasing number of machining operations. The results show that the same burs can be used for a longer time with Ti-20%Ag than with pure titanium. Therefore, in terms of tool life, the machinability of the Ti-20%Ag alloy is superior to that of titanium.

  8. Surface modification of an aluminum alloy by electron beam introducing TiCN nanoparticles

    NASA Astrophysics Data System (ADS)

    Kolev, M.; Dimitrova, R.; Parshorov, St.; Valkov, St.; Lazarova, R.; Petrov, P.

    2018-03-01

    TiCN nanopowder deposited in an appropriate way on the surface of an AlSi12Cu2NiMg substrate was incorporated in the matrix using an electron beam technology. The samples were studied by means of light microscopy, SEM, and EDX; their microhardness was also determined. The formation was found of a uniform and dense coating with a thickness of 7 – 10 μgm with a good adherence to the substrate. A modified zone appeared under the coating with a thickness of 100 – 150 μgm containing dendrites of an α-solid solution and a fine eutectic between them, as well as primary silicon crystals. The microhardness of this modified zone was up to 2.4 times higher than that of the matrix. The results of SEM and EDX studies revealed unambiguously the presence of titanium in the coating and in the zones below it. Obviously, the electron beam treatment resulted in the TiCN nanoparticles penetrating into the coating and the substrate immediately below the coating.

  9. Fabrication and Characterization of Diffusion Bonds for Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Halbig, Michael; Singh, Mrityunjay; Martin, Richard E.; Cosgriff, Laura M.

    2007-01-01

    Diffusion bonds of silicon carbide (SiC) were fabricated using several different types of titanium (Ti) based interlayers between the SiC substrates. The interlayers were an alloyed Ti foil, a pure Ti foil, and a physically vapor deposited (PVD) Ti coating. Microscopy was conducted to evaluate the cross-sections of the resulting bonds. Microprobe analysis identified reaction formed phases in the diffusion bonded region. Uniform and well adhered bonds were formed between the SiC substrates. In the case where the alloyed Ti foil or a thick Ti coating (i.e. 20 micron) was used as the interlayer, microcracks and several phases were present in the diffusion bonds. When a thinner interlayer was used (i.e. 10 micron PVD Ti), no microcracks were observed and only two reaction formed phases were present. The two phases were preferred and fully reacted phases that did not introduce thermal stresses or microcracks during the cool-down stage after processing. Diffusion bonded samples were evaluated with the non-destructive evaluation (NDE) methods of pulsed thermography and immersion ultrasonic testing. Joined SiC substrates that were fully bonded and that had simulated bond flaws in the interlayer were also evaluated using immersion ultrasound. Pull testing was conducted on the bonds to determine the tensile strength. To demonstrate the joining approach for a complex multilayered component for a low NOx injector application, the diffusion bonding approach was used to join three 4" diameter SiC discs that contained complex fuel and air flow channels.

  10. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    PubMed

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  11. Growth of TiO2 nanofibers on FTO substrates and their application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Rahmawati, L. R.; Triyana, K.

    2016-11-01

    Growth of TiO2 nanofibers on fluorine-doped tin oxide (FTO) substrates have been performed using electrospinning method. Homogenous TiO2 solution as nanofibers material was prepared with titanium tetraisopropoxide (TTIP), ethanol, acetic acid and polyvinyl pyrrolidone (PVP) which was stirred for 24 h. TiO2 solution was loaded into the syringe pump. Electrospun voltage was operated under 15 kV with optimum distance between syringe tip and collector was 15 cm. FTO substrates were attached on the collector surface. Electrospinning coating time was varied at 15 min, 30 min, 45 min, and 60 min. Then TiO2 nanofibers layer was annealed at temperature of 450° C for 3 h. X-ray diffraction spectrum of TiO2 nanofibers showed major anatase peaks at 25.3°, 48.0° and 37.8° correlating crystal orientation of (101), (200), and (004), respectively while only one rutile peak at 27.5°(110). TiO2 nanofibers diameter was measured using atomic force microscopy (AFM). TiO2 nanofibers have diameter in range of 100-1000 nm. The obtained-TiO2 nanofibers were applied in dye-sensitized solar cell (DSSC) with beta-carotene as dye, carbon as catalyst, and I-/I3- redox couple as electrolyte. DSSC performance was analyzed from I-V characterization. Growth of TiO2 nanofibers at electrospinning time for 45 min has highest efficiency that is 0.016%. It is considered that TiO2 nanofibers at electrospinning time for 45 min can produce optimum thickness so that it is speculated many dyes adsorb on the nanofiber surfaces and many electrons diffuse toward the electrodes.

  12. 47,49Ti NMR: hyperfine interactions in oxides and metals.

    PubMed

    Bastow, T J; Gibson, M A; Forwood, C T

    1998-10-01

    A 47,49Ti NMR characterisation is given of various polymorphs of TiO2 (anatase, rutile and brookite), Ti2O3, perovskites CaTiO3 and BaTiO3, FeTiO3, TiB2, titanium metal, the titanium aluminides Ti3Al, TiAl, TiAl2, TiAl3, and TiAg. Values of chemical or Knight shift, nuclear quadrupole coupling constant and asymmetry parameter were derived from the (1/2, -1/2) powder lineshapes. For TiB2, titanium metal, TiAl, and TiAl3, where +/- (1/2, 3/2), and higher satellite transitions were observed, a value for the axial component of the Knight shift was obtained.

  13. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-05-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  14. Nickel titanium alloy: Cytotoxicity evaluation on microorganism culture

    NASA Astrophysics Data System (ADS)

    Dinca, V. C.; Soare, S.; Barbalat, A.; Dinu, C. Z.; Moldovan, A.; Stoica, I.; Vassu, T.; Purice, A.; Scarisoareanu, N.; Birjega, R.; Craciun, V.; DeStefano, V. Ferrari; Dinescu, M.

    2006-04-01

    High purity nickel (Ni) and titanium (Ti) targets have been used to form well-defined thin films of nitinol on Ti substrate by pulsed laser deposition (PLD) technique. Their chemical composition, crystalline structure and surface properties have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). We have shown that by varying the deposition parameters such as laser fluence and number of laser pulses, we are able to control the film thickness as well as film's uniformity and roughness. Cytocompatibility tests have been performed through in vitro assays using microorganisms culture cells such as yeasts ( Saccharomyces cerevisiae) and bacteria ( Escherichia coli), in order to determine the thin film's toxic potential at the in vitro cellular level. Microorganism's adhesion on the nitinol surface was observed and the biofilm formation has been analyzed and quantified. Our results have shown no reactivity detected in cell culture exposed to NiTi films in comparison with the negative controls and a low adherence of the microorganisms on the nitinol surface that is an important factor for biofilm prevention. We can, therefore, conclude that NiTi is a good candidate material to be used for implants and medical devices.

  15. Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis.

    PubMed

    Sun, Wei; Guo, Yaqing; Ju, Xiaomei; Zhang, Yuanyuan; Wang, Xiuzhen; Sun, Zhenfan

    2013-04-15

    A biocompatible sensing platform based on graphene (GR) and titanium dioxide (TiO₂) nanorods for the immobilization of hemoglobin (Hb) was adopted in this paper. The GR-TiO₂-Hb composite-modified carbon ionic liquid electrode was constructed through a simple casting method with Nafion as the film forming material. UV-Vis and FT-IR spectra confirmed that Hb retained its native structure in the composite film. Direct electron transfer of Hb incorporated into the composite was realized with a pair of quasi-reversible redox waves appeared, indicating that the presence of GR-TiO₂ nanocomposite on the electrode surface could facilitate the electron transfer rate between the electroactive center of Hb and the substrate electrode. Hb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.6 to 21.0 mmol L⁻¹. These results indicated that GR-TiO₂ nanocomposite could be a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Structural changes of anodic layer on titanium in sulfate solution as a function of anodization duration in constant current mode

    NASA Astrophysics Data System (ADS)

    Komiya, Shinji; Sakamoto, Kouta; Ohtsu, Naofumi

    2014-03-01

    The present study investigated the effect of anodization time, in constant current mode, on the anodic oxide layer formed on titanium (Ti). Anodization of the Ti substrate was carried out in a 0.1 M (NH4)2SO4 aqueous solution with reaction times of various durations, after which the characteristics and photocatalytic activity were investigated in detail. The TiO2 layer fabricated in a short duration exhibited comparatively flat surface morphology and an anatase-type crystal structure. This layer acted as a photocatalyst only under ultraviolet light (UV) illumination. Upon prolonging the anodization, the layer structure changed drastically. The surface morphology became rough, and the crystal structure changed to rutile-type TiO2. Furthermore, the layer showed photocatalytic activity both under UV and visible light illumination. Further anodization increased the amount of methylene blue (MB) adsorbed on the surface, but did not cause additional change to the structure of the anodic layer. The surface morphology and crystal structure of the anodic layer were predominantly controlled by the anodization time; thus, the anodization time is an important parameter for controlling the characteristics of the anodic layer.

  17. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying.

    PubMed

    Janicki, Damian

    2018-01-05

    TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent.

  18. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying

    PubMed Central

    Janicki, Damian

    2018-01-01

    TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent. PMID:29304001

  19. TiOx thin films grown on Pd(100) and Pd(111) by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Farstad, M. H.; Ragazzon, D.; Grönbeck, H.; Strømsheim, M. D.; Stavrakas, C.; Gustafson, J.; Sandell, A.; Borg, A.

    2016-07-01

    The growth of ultrathin TiOx (0≤x≤2) films on Pd(100) and Pd(111) surfaces by chemical vapor deposition (CVD), using Titanium(IV)isopropoxide (TTIP) as precursor, has been investigated by high resolution photoelectron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. Three different TiOx phases and one Pd-Ti alloy phase have been identified for both surfaces. The Pd-Ti alloy phase is observed at the initial stages of film growth. Density functional theory (DFT) calculations for Pd(100) and Pd(111) suggest that Ti is alloyed into the second layer of the substrate. Increasing the TTIP dose yields a wetting layer comprising Ti2 + species (TiOx, x ∼0.75). On Pd(100), this phase exhibits a mixture of structures with (3 × 5) and (4 × 5) periodicity with respect to the Pd(100) substrate, while an incommensurate structure is formed on Pd(111). Most importantly, on both surfaces this phase consists of a zigzag pattern similar to observations on other reactive metal surfaces. Further increase in coverage results in growth of a fully oxidized (TiO2) phase on top of the partially oxidized layer. Preliminary investigations indicate that the fully oxidized phase on both Pd(100) and Pd(111) may be the TiO2(B) phase.

  20. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  1. Fabrication and Physical Properties of Titanium Nitride/Hydroxyapatite Composites on Polyether Ether Ketone by RF Magnetron Sputtering Technique

    NASA Astrophysics Data System (ADS)

    Nupangtha, W.; Boonyawan, D.

    2017-09-01

    Titanium nitride (TiN) coatings have been used very successfully in a variety of applications because of their excellent properties, such as the high hardness meaning good wear resistance and also used for covering medical implants. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. This paper aims to explain how to optimize deposition conditions for films synthesis on PEEK by varying sputtering parameters such as nitrogen flow rate and direction, deposition time, d-s (target-to-substrate distance) and 13.56 MHz RF power. The plasma conditions used to deposit films were monitored by the optical emission spectroscopy (OES). Titanium nitride/Hydroxyapatite composite films were performed by gas mixture with nitrogen and argon ratio of 1:3 and target-to-substrate distance at 8 cm. The gold colour, as-deposited film was found on PEEK with high hardness and higher surface energy than uncoated PEEK. X-ray diffraction characterization study was carried to study the crystal structural properties of these composites.

  2. Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures

    DTIC Science & Technology

    2005-03-01

    size of the interphase [22-24]. Yang and Jeng [45], in a study of the titanium aluminides Ti-24-11 and Ti-25-10, and a metastable beta titanium Ti-15-3... Titanium Aluminide Matrix Composites," Workshop proceedings on Titanium Matrix Components, P.R. Smith and W.C. Revelos, eds., Wright-Patterson AFB...Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures Final Report

  3. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  4. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    NASA Astrophysics Data System (ADS)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  5. Sol-gel modification of wood substrates to retard weathering

    Treesearch

    Mandla A Tshabalala; Sam Williams

    2008-01-01

    Wood specimens were treated with sol-gel systems based on metalorganic precursors of silicon (Si), iron (Fe), zirconium (Zr), and titanium (Ti). The effect of these sol-gel systems on weathering properties of wood was investigated. These sol-gel systems were found to have a positive effect on surface color stability and water vapor resistance of the specimens. Under...

  6. Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.

    PubMed

    Park, Ju-Young; Lee, In-Hwa

    2010-05-01

    Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.

  7. Formation of Equiaxed Alpha and Titanium Nitride Precipitates in Spark Plasma Sintered TiB/Ti-6Al-4V Composites (Preprint)

    DTIC Science & Technology

    2012-08-01

    AFRL-RX-WP-TP-2012-0372 FORMATION OF EQUIAXED ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES...ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES (PREPRINT) 5a. CONTRACT NUMBER FA8650-08-C-5226 5b...distribution of TiN precipitates, as revealed by TEM studies. 15. SUBJECT TERMS Ti-6Al-4V; TiB; TiN; Spark Plasma Sintering ; Composite; α/β phase

  8. MAO-derived hydroxyapatite/TiO2 nanostructured multi-layer coatings on titanium substrate

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Golestani-Fard, F.; Rezaie, H. R.; Mirhosseini, S. M. M.

    2012-11-01

    In this study, titanium substrates which previously oxidized through Micro arc oxidation method, was coated by Hydroxyapatite (HAp) coating once more by means of the same method. Morphology, topography and chemical properties as well as phase composition and thickness of layers were studied to reveal the effect of the electrolyte concentration on coating features. According to results, the obtained coatings are consisted of HAp and titania as the major phases along with minor amounts of calcium titanate and α-tri calcium phosphate. Ca and P are present on surface of obtained layers as well as predictable Ti and O based on the XPS results. Thickness profile of coatings figured out that by increasing the electrolyte concentration, especially by addition of more Calcium Acetate (CA) to electrolyte, the thickness of HAp layer would rise, consequently. However, the influence of coating time on thickness of obtained coatings would be more considerable than electrolyte concentration. High specific area coatings with nest morphology were obtained in Electrolyte containing 5 g/L β-Glycero Phosphate (β-GP) and 5 g/L CA. Increasing coating duration time in this kind of coatings would cause deduction of the nesting in their structure.

  9. Enhancement of bioactivity of titanium carbonitride nanocomposite thin films on steels with biosynthesized hydroxyapatite

    PubMed Central

    Thampi, VV Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B

    2015-01-01

    Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating. PMID:26491312

  10. Enhancement of bioactivity of titanium carbonitride nanocomposite thin films on steels with biosynthesized hydroxyapatite.

    PubMed

    Thampi, V V Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B

    2015-01-01

    Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating.

  11. Optical properties of dip coated titanium-di-oxide (TiO2) thin films annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Biswas, Sayari; Kar, Asit Kumar

    2018-02-01

    Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.

  12. Fabrication of the Ti5Si3/Ti composite inoculants and its refining mechanism on pure titanium

    NASA Astrophysics Data System (ADS)

    Li, Nuo; Cui, Chunxiang; Liu, Shaungjin; Zhao, Long; Liu, Shuiqing

    2017-03-01

    The in situ Ti5Si3/Ti inoculants were successfully prepared by vacuum arc-melting and melt-spinning method. An efficient route by adding a small quantity of Ti5Si3/Ti inoculants to Ti melt has been first proposed to modify the coarse grains of as cast microstructure of pure titanium in this paper. It was found that the microstructure of ribbon inoculants was cellular structure that composed of Ti5Si3 and α-Ti phases. The grain refining effect of the inoculants was significantly improved with the adding ratio range from 0.2% to 0.5% in weight. With the increase of addition amount of inoculants on Ti melt, the tensile strength, yield strength and microhardness of pure titanium are significantly improved except elongation. The excellent grain refining effect can be attributed to the heterogeneous nucleation of the titanium grain on the precipitated Ti5Si3 phases in the Si-rich regions and the constitutional supercooling of Si in the Si-poverty regions. It is suggested that the in situ Ti5Si3/Ti inoculants is a promising inoculants for titanium alloys.

  13. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study.

    PubMed

    Stanec, Zlatko; Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-03-01

    The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested.

  14. Characterization of screen-printed dye-sensitized nanocrystalline TiO2 solar cells

    NASA Astrophysics Data System (ADS)

    Gupta, Tapan K.; Cirignano, Leonard J.; Shah, Kanai S.; Moy, Larry P.; Kelly, David J.; Squillante, Michael R.; Entine, Gerald; Smestad, Greg P.

    1999-10-01

    Titanium dioxide (TiO2) films have been deposited on SnO2 coated glass substrates by screen-printing. Film morphology and structure have been characterized by scanning electron microscopy, x-ray diffraction and BET analysis. Dye-sensitized TiO2 photoelectrochemical cells have been assembled and characterized. Cells sensitized with anthocyanin and a ruthenium complex have been investigated. A 0.77 cm2 ruthenium dye sensitized cell with 6.1% power conversion efficiency under Air Mass (AM1.5) conditions was obtained. Results obtained with a pure anthocyanin dye and dye extracted from blackberries were compared. Finally, a natural gel was found to improve the stability of anthocyanin sensitized cells.

  15. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi

    2014-12-01

    Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.

  16. The role of surface oxides on hydrogen sorption kinetics in titanium thin films

    NASA Astrophysics Data System (ADS)

    Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido

    2018-05-01

    Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.

  17. Novel Bio-functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In vitro and In vivo Study

    PubMed Central

    Li, Xiaokang; Gao, Peng; Wan, Peng; Pei, Yifeng; Shi, Lei; Fan, Bo; Shen, Chao; Xiao, Xin; Yang, Ke; Guo, Zheng

    2017-01-01

    Titanium and its alloys with various porous structures are one of the most important metals used in orthopaedic implants due to favourable properties as replacement for hard tissues. However, surface modification is critical to improve the osteointegration of titanium and its alloys. In this study, a bioactive magnesium coating was successfully fabricated on porous Ti6Al4V by means of arc ion plating, which was proved with fine grain size and high film/substrate adhesion. The surface composition and morphology were characterized by X-ray diffraction and SEM equipped with energy dispersive spectroscopy. Furthermore, the in vitro study of cytotoxicity and proliferation of MC3T3-E1 cells showed that magnesium coated porous Ti6Al4V had suitable degradation and biocompatibility. Moreover, the in vivo studies including fluorescent labelling, micro-computed tomography analysis scan and Van-Gieson staining of histological sections indicated that magnesium coated porous Ti6Al4V could significantly promote bone regeneration in rabbit femoral condylar defects after implantation for 4 and 8 weeks, and has better osteogenesis and osteointegration than the bare porous Ti6Al4V. Therefore, it is expected that this bioactive magnesium coating on porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions can be used for orthopedic applications. PMID:28102294

  18. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan

    2017-07-01

    Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.

  19. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    NASA Astrophysics Data System (ADS)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2018-01-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  20. Understanding bactericidal performance on ambient light activated TiO2-InVO4 nanostructured films.

    PubMed

    He, Ziming; Xu, Qingchi; Tan, Timothy Thatt Yang

    2011-12-01

    TiO(2)-InVO(4) nanostructured films were coated onto glass substrates and systematically investigated for their bactericidal activities using Escherichia coli (E. coli) as the model bacterium under ambient light illumination. The uniform TiO(2)-InVO(4) nanostructured films were prepared using titanium isopropoxide (TTIP) as the precursor via a simple sol-gel approach. Polyethylenimine (PEI) was used as a surfactant to ensure uniform dispersion of InVO(4) and a sacrificial pore-inducing agent, generating nanostructured films. Compared to unmodified TiO(2) film, the current TiO(2)-InVO(4) films exhibited enhanced bactericidal activities under ambient light illumination. Bacterial cell "photo-fixation" was demonstrated to be crucial in enhancing the bactericidal activity. A bacterial-nanostructured surface interaction mechanism was proposed for the current ambient-light activated nanostructured film.

  1. Thermo-stable carbon nanotube-TiO₂ nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process.

    PubMed

    Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-07-17

    We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.

  2. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    PubMed Central

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  3. Thermo-stable carbon nanotube-TiO2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process

    NASA Astrophysics Data System (ADS)

    Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-07-01

    We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.

  4. Potentiodynamic Polarization Studies and Surface Chemical Composition of Bismuth Titanate (Bi x Ti y O z ) Films Produced through Radiofrequency Magnetron Sputtering.

    PubMed

    Alfonso, José E; Olaya, Jhon J; Pinzón, Manuel J; Marco, José F

    2013-10-08

    The applications of Bismuth Titanate (Bi x Ti y O z ) materials have been focused on their electronic and optical properties, but with respect to the use of these compounds in applications like corrosion resistance, have been very few or nonexistent. For this reason, in the present investigation Bi x Ti y O z thin films were deposited using RF magnetron sputtering onto silicon wafers, stainless steel 316L, and titanium alloy (Ti₆Al₄V) substrates, in order to carry out a study of the corrosion behavior of this compound. The structural properties of the coatings were studied through X-ray diffraction (XRD), the morphology was determined using Scanning Electron Microscopy (SEM), the corrosion resistance behavior of the coated and uncoated substrates was evaluated via the Potentiodynamic Polarization technique, and surface chemical composition was evaluated through X-ray photoelectron spectroscopy (XPS). The XRD results indicated that the films were amorphous. The SEM micrographs showed that the deposited films were homogeneous, but in some cases there were cracks. The potentiodynamic polarization technique showed that the corrosion current in the coated substrates decreased by an order of two magnitudes with respect to the uncoated substrates, but in both cases the corrosion mechanism was pitting due to the pores in the film. The XPS analysis shows that the deposited films contain both Bi 3+ and Ti 4+ .

  5. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    PubMed

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  6. Effect of titanium nitride/titanium coatings on the stress corrosion of nickel-titanium orthodontic archwires in artificial saliva

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Kuang; Liu, I.-Hua; Liu, Cheng; Chang, Chen-Jung; Kung, Kuan-Chen; Liu, Yen-Ting; Lee, Tzer-Min; Jou, Jin-Long

    2014-10-01

    The purpose of this investigation was to develop titanium nitride (TiN)/titanium (Ti) coating on orthodontic nickel-titanium (NiTi) wires and to study the stress corrosion of specimens in vitro, simulating the intra-oral environment in as realistic a manner as possible. TiN/Ti coatings were formed on orthodontic NiTi wires by physical vapor deposition (PVD). The characteristics of untreated and TiN/Ti-coated NiTi wires were evaluated by measurement of corrosion potential (Ecorr), corrosion current densities (Icorr), breakdown potential (Eb), and surface morphology in artificial saliva with different pH and three-point bending conditions. From the potentiodynamic polarization and SEM results, the untreated NiTi wires showed localized corrosion compared with the uniform corrosion observed in the TiN/Ti-coated specimen under both unstressed and stressed conditions. The bending stress influenced the corrosion current density and breakdown potential of untreated specimens at both pH 2 and pH 5.3. Although the bending stress influenced the corrosion current of the TiN/Ti-coated specimens, stable and passive corrosion behavior of the stressed specimen was observed even at 2.0 V (Ag/AgCl). It should be noted that the surface properties of the NiTi alloy could determine clinical performance. For orthodontic application, the mechanical damage destroys the protective oxide film of NiTi; however, the self-repairing capacity of the passive film of NiTi alloys is inferior to Ti in chloride-containing solutions. In this study, the TiN coating was found able to provide protection against mechanical damage, while the Ti interlayer improved the corrosion properties in an aggressive environment.

  7. Titanium: light, strong, and white

    USGS Publications Warehouse

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  8. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high titanium content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of titanium and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of titanium alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is studied.

  9. Calcification of MC3T3-E1 cells on titanium and zirconium.

    PubMed

    Umezawa, Takayuki; Chen, Peng; Tsutsumi, Yusuke; Doi, Hisashi; Ashida, Maki; Suzuki, Shoichi; Moriyama, Keiji; Hanawa, Takao

    2015-01-01

    To confirm similarity of hard tissue compatibility between titanium and zirconium, calcification of MC3T3-E1 cells on titanium and zirconium was evaluated in this study. Mirror-polished titanium (Ti) and zirconium (Zr) disks and zirconium-sputter deposited titanium (Zr/Ti) were employed in this study. The surface of specimens were characterized using scanning electron microscopy and X-ray diffraction. Then, the cellular proliferation, differentiation and calcification of MC3T3-E1 cells on specimens were investigated. The surface of Zr/Ti was much smoother and cleaner than those of Ti and Zr. The proliferation of the cell was the same among three specimens, while the differentiation and calcification on Zr/Ti were faster than those on Ti and Zr. Therefore, Ti and Zr showed the identical hard tissue compatibility according to the evaluation with MC3T3-E1 cells. Sputter deposition may improve cytocompatibility.

  10. On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods

    NASA Astrophysics Data System (ADS)

    Etminanfar, M. R.; Khalil-Allafi, J.

    2016-02-01

    In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.

  11. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  12. The crevice corrosion of cathodically modified titanium in chloride solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingen, E. van der

    1995-12-01

    The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less

  13. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity

    PubMed Central

    Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J

    2015-01-01

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo. PMID:25634122

  14. Analyzing the Deposition of Titanium Dioxide Nanoparticles at Model Rough Mineral Surfaces Using a Quartz Crystal Microbalance with Dissipation Monitoring

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kananizadeh, N.; Rodenhausen, K. B.; Schubert, M.; Bartelt-Hunt, S.

    2015-12-01

    Titanium dioxide nanoparticles (nTiO2) is the most extensively manufactured engineered materials. nTiO2 from sunscreens was found to enter sediments after released into a lake. nTiO2 may also enter the subsurface via irrigation using effluents from wastewater treatment plants. Interaction of nTiO2 with soils and sediments will largely influence their fate, transport, and ecotoxicity. Measuring the interaction between nTiO2 and natural substrates (e.g. such as sands) is particularly challenging due to highly heterogeneous and rough natural sand surfaces. In this study, an engineered controllable rough surface known as three dimensional nanostructured sculptured columnar thin films (SCTFs) has been used to mimic surface roughness. SCTFs were fabricated by glancing angle deposition (GLAD), a physical vapor deposition technique facilitated by electron beam evaporation. Interaction between nTiO2 and SCTF coated surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). In parallel, a Generalized Ellipsometry (GE) was coupled with the QCM-D to measure the deposition of nTiO2. We found that the typical QCM-D modeling approach, e.g. viscoelastic model, would largely overestimate the mass of deposited nTiO2, because the frequency drops due to particle deposition or water entrapment in rough areas were not differentiated. Here, we demonstrate a new approach to model QCM-D data for nTiO2 deposition on rough surfaces, which couples the viscoelastic model with a model of flow on the non-uniform surface.

  15. Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.

    PubMed

    Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong

    2016-02-01

    In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment.

  16. Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement

    NASA Astrophysics Data System (ADS)

    Bootkul, D.; Saenphinit, N.; Supsermpol, B.; Aramwit, C.; Intarasiri, S.

    2014-08-01

    Currently, stainless steels are widely used in various industrial applications due to their excellence in toughness and corrosion resistance. But their resistance to wear needs to be improved for appropriate use in tribological applications. The Filtered Cathodic Vacuum Arc (FCVA) is a superior technique for forming a high-density film structure of amorphous carbon, especially for a tetrahedral amorphous carbon (ta-C) type, because it can produce a plasma of highly energetic ions that can penetrate into a growing coating, resulting in densification of the film. However, this technique tends to generate high internal stress, due to serious accumulation of energy in the film structure that then leads to film delamination. In general, there are numerous solutions that have been used to reduce the internal stress. DLC with various additive elements such as Ti, Cr or W as strong-carbide-forming (SCF) metals is one of the popular methods to provide attractive combinations of properties of wear resistance and film adhesion as well as reducing the internal stress. The present study was focused on investigation of titanium-doped DLC coating on SS304 steel, mainly for adhesion improvement in optimizing for tribological applications. The synthesized films were formed by the FCVA technique at normal substrate temperature. In the experimental set-up, the films were produced by mixing the titanium and carbon ions generated by dual cathode plasma source operating in synchronous pulsed mode. Their compositions were adjusted by varying the relative duration of the pulse length from each cathode. Titanium doping concentration was varied from pure DLC deposition as the control group to titanium and graphite trigger pulses ratios of 1:16, 1:12, 1:10, 1:8 and 1:4, as the Ti-doped DLC group. The results showed that by increasing titanium trigger pulses ratio from 1:16, 1:12, 1:10 and 1:8, respectively, the film adhesion was increased while the wear rate did not change significantly as measured by scratch test measurement while adjusted more titanium trigger pulses at 1:4 ratio, the wear rate raised rapidly up to be beyond 50%. In summary, the optimized range of Ti doping in DLC structure to maintain both acceptable wear rate and good adhesion properties of FCVA-synthesized Ti-doped DLC was considered to not over 1:8 of titanium and graphite trigger pulses ratio. Mechanism involved in the phenomenon was discussed.

  17. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    PubMed

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  18. Electrical properties of spin coated ultrathin titanium oxide films on GaAs

    NASA Astrophysics Data System (ADS)

    Dutta, Shankar; Pal, Ramjay; Chatterjee, Ratnamala

    2015-04-01

    In recent years, ultrathin (<50 nm) metal oxide films have been being extensively studied as high-k dielectrics for future metal oxide semiconductor (MOS) technology. This paper discusses deposition of ultrathin TiO2 films (˜10 nm) on GaAs substrates (one sulfur-passivated, another unpassivated) by spin coating technique. The sulfur passivation is done to reduce the surface states of GaAs substrate. After annealing at 400 °C in a nitrogen environment, the TiO2 films are found to be polycrystalline in nature with rutile phase. The TiO2 films exhibit consistent grain size of 10-20 nm with thickness around 10-12 nm. Dielectric constants of the films are found to be 65.4 and 47.1 corresponding to S-passivated and unpassivated substrates, respectively. Corresponding threshold voltages of the MOS structures are measured to be -0.1 V to -0.3 V for the S-passivated and unpassivated samples, respectively. The S-passivated TiO2 film showed improved (lower) leakage current density (5.3 × 10-4 A cm-2 at 3 V) compared to the unpassivated film (1.8 × 10-3 A/cm2 at 3 V). Dielectric breakdown-field of the TiO2 films on S-passivated and unpassivated GaAs samples are found to be 8.4 MV cm-1 and 7.2 MV cm-1 respectively.

  19. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    NASA Astrophysics Data System (ADS)

    Gadea, C.; Marani, D.; Esposito, V.

    2017-02-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolamine (MDEA) used as nucleophilic ligand. The function of the ligand is to control the fast hydrolysis/condensation reactions in water for the metal alkoxide before deposition, leading to formation of the TiO2 only after the jet process. The evolution of the titanium-ligand interactions at increasing amount of MDEA is here elucidated in terms of long term stability. The ink printability parameter (Z) is optimized, resulting in a reactive solution with printability, Z, >1, and chemical stability up to 600 h. Thin titanium oxide films (<500 nm) are proved on different substrates. Pure anatase phase is obtained after annealing at low temperature (ca. 400 °C).

  20. Characteristics of hydroxyapatite coated titanium porous coatings on Ti-6Al-4V substrates by plasma sprayed method.

    PubMed

    Yang, C Y; Chen, C R; Chang, E; Lee, T M

    2007-08-01

    A porous metal coating applied to solid substrate implants has been shown, in vivo, to anchor implants by bone ingrowth. Calcium phosphate ceramics, in particular hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2), HA], are bioactive ceramics, which are known to be biocompatible and osteoconductive, and these ceramics deposited on to porous-coated devices may enhance bone ingrowth and implant fixation. In this study, bi-feedstock of the titanium powder and composite (Na(2)CO(3)/HA) powder were simultaneously deposited on a Ti-6Al-4V substrate by a plasma sprayed method. At high temperature of plasma torch, the solid state of Na(2)CO(3) would decompose to release CO(2) gas and then eject the molten Ti powder to induce the interconnected pores in the coatings. After cleaning and soaking in deionized water, the residual Na(2)CO(3) in the coating would dissolve to form the open pores, and the HA would exist at the surface of pores in the inner coatings. By varying the particle size of the composite powder, the porosity of porous coating could be varied from 25.0 to 34.0%, and the average pore size of the porous coating could be varied to range between 158.5 and 202.0 microm. Using a standard adhesive test (ASTM C-633), the bonding strength of the coating is between 27.3 and 38.2 MPa. By SEM, the HA was observed at the surface of inner pore in the porous coating. These results suggest that the method exhibits the potential to manufacture the bioactive ceramics on to porous-coated specimen to achieve bone ingrowth fixation for biomedical applications.

  1. Silica-polyethylene glycol hybrids synthesized by sol-gel: Biocompatibility improvement of titanium implants by coating.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Ferrara, C; Mustarelli, P

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol-gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol-gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO2/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. Copyright © 2015. Published by Elsevier B.V.

  2. PEM Anchorage on Titanium Using Catechol Grafting

    PubMed Central

    Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence

    2012-01-01

    Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262

  3. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study

    PubMed Central

    Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-01-01

    Background The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Material and methods Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. Results The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. Conclusion In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested. PMID:27688425

  4. Effect of applied bias voltage on corrosion-resistance for TiC 1- xN x and Ti 1- xNb xC 1- yN y coatings

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Amaya, C.; Yate, L.; Aperador, W.; Zambrano, G.; Gómez, M. E.; Alvarado-Rivera, J.; Muñoz-Saldaña, J.; Prieto, P.

    2010-02-01

    Corrosion-resistance behavior of titanium carbon nitride (Ti-C-N) and titanium niobium carbon nitride (Ti-Nb-C-N) coatings deposited onto Si(1 0 0) and AISI 4140 steel substrates via r.f. magnetron sputtering process was analyzed. The coatings in contact with a solution of sodium chloride at 3.5% were studied by Tafel polarization curves and impedance spectroscopy methods (EIS). Variations of the bias voltage were carried out for each series of deposition to observe the influence of this parameter upon the electrochemical properties of the coatings. The introduction of Nb in the ternary Ti-C-N film was evaluated via X-ray diffraction (XRD) analysis. The structure was characterized by using Raman spectroscopy to identify ternary and quaternary compounds. Surface corrosion processes were characterized using optical microscopy and scanning electron microscopy (SEM). XRD results show conformation of the quaternary phase, change in the strain of the film, and lattice parameter as the effect of the Nb inclusion. The main Raman bands were assigned to interstitial phases and "impurities" of the coatings. Changes in Raman intensities were attributed to the incorporation of niobium in the Ti-C-N structure and possibly to resonance enhancement. Finally, the corrosion data obtained for Ti-C-N were compared with the results of corrosion tests of Ti-Nb-C-N coating. The results obtained showed that the incorporation of niobium to Ti-C-N coatings led to an increase in the corrosion-resistance. On another hand, an increase in the bias voltage led to a decrease in the corrosion-resistance for both Ti-C-N and Ti-Nb-C-N coatings.

  5. Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium.

    PubMed

    J, Balaji; M G, Sethuraman

    2017-11-01

    The study outlines the role of chitosan, a biopolymer on corrosion behavior of Hy/nano-TiO 2 based sol-gel coating over aluminum metal. In this study organic-inorganic hybrid sols were synthesized through hydrolysis and condensation of 3-glycidoxypropyltrimethoxy silane (GPTMS), tetraethoxysilane (TEOS) and titanium (IV) isopropoxide (TIP) in acidic solution. Chitosan was doped into sol-gel matrix and self-assembled over aluminum substrate. The resultant chitosan-doped-Hy/nano-TiO 2 sol-gel coating was characterized by Fourier Transform Infrared (FT-IR) spectra, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Energy-Dispersive X-ray Spectroscopy (EDX) analyses. The as-tailored aluminum substrate was evaluated for corrosion resistance in neutral medium. The protection ability of these coatings was evaluated by electrochemical impedance studies (EIS) and potentiodynamic polarization (PP) measurements in 3.5% NaCl medium. The EIS and PP results showed that chitosan-doped- Hy/nano-TiO 2 sol-gel coating exhibited better protection from corrosion than the undoped Hy/TiO 2 nanocomposite coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Conservation of Monuments by a Three-Layered Compatible Treatment of TEOS-Nano-Calcium Oxalate Consolidant and TEOS-PDMS-TiO₂ Hydrophobic/Photoactive Hybrid Nanomaterials.

    PubMed

    Kapridaki, Chrysi; Verganelaki, Anastasia; Dimitriadou, Pipina; Maravelaki-Kalaitzaki, Pagona

    2018-04-27

    In the conservation of monuments, research on innovative nanocomposites with strengthening, hydrophobic and self-cleaning properties have attracted the interest of the scientific community and promising results have been obtained as a result. In this study, stemming from the need for the compatibility of treatments in terms of nanocomposite/substrate, a three-layered compatible treatment providing strengthening, hydrophobic, and self-cleaning properties is proposed. This conservation approach was implemented treating lithotypes and mortars of different porosity and petrographic characteristics with a three-layered treatment comprising: (a) a consolidant, tetraethoxysilane (TEOS)-nano-Calcium Oxalate; (b) a hydrophobic layer of TEOS-polydimethylsiloxane (PDMS); and (c) a self-cleaning layer of TiO₂ nanoparticles from titanium tetra-isopropoxide with oxalic acid as hole-scavenger. After the three-layered treatment, the surface hydrophobicity was improved due to PDMS and nano-TiO₂ in the interface substrate/atmosphere, as proven by the homogeneity and the Si⁻O⁻Ti hetero-linkages of the blend protective/self-cleaning layers observed by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The aesthetic, microstructural, mechanical and permeabile compatibility of the majority of treated substrates ranged within acceptability limits. The improved photocatalytic activity, as proven by the total discoloration of methylene blue in the majority of cases, was attributed to the anchorage of TiO₂, through the Si⁻O⁻Ti bonds to SiO₂, in the interface with the atmosphere, thus enhancing photoactivation.

  7. Interfacial band alignment and structural properties of nanoscale TiO2 thin films for integration with epitaxial crystallographic oriented germanium

    NASA Astrophysics Data System (ADS)

    Jain, N.; Zhu, Y.; Maurya, D.; Varghese, R.; Priya, S.; Hudait, M. K.

    2014-01-01

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO2) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO2 thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO2 thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO2/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO2 thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO2/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO2/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔEV(100) > ΔEV(111) > ΔEV(110) and a conduction band-offset relation of ΔEC(110) > ΔEC(111) > ΔEC(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO2 for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  8. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  9. Analysis of morphological, structural and electrical properties of annealed TiO2 nanowires deposited by GLAD technique

    NASA Astrophysics Data System (ADS)

    Shougaijam, B.; Swain, R.; Ngangbam, C.; Lenka, T. R.

    2017-06-01

    The effect of annealing on vertically aligned TiO2 NWs deposited by glancing angle deposition (GLAD) method on Si substrate using pressed and sintered TiO2 pellets as source material is studied. The FE-SEM images reveal the retention of vertically aligned NWs on Si substrate after annealing process. The EDS analysis of TiO2 NWs sample annealed at 600 °C in air for 1 h shows the higher weight percentage ratio of ˜2.6 (i.e., 72.27% oxygen and 27.73% titanium). The XRD pattern reveals that the polycrystalline nature of anatase TiO2 dominates the annealed NWs sample. The electrical characteristics of Al/TiO2-NWs/TiO2-TF/p-Si (NW device) and Al/TiO2-TF/p-Si (TF device) based on annealed samples are compared. It is riveting to observe a lower leakage current of ˜1.32 × 10-7 A/cm2 at +1 V with interface trap density of ˜6.71 × 1011 eV-1 cm-2 in NW device compared to ˜2.23 × 10-7 A/cm2 in TF device. The dominant leakage mechanism is investigated to be generally Schottky emission; however Poole-Frenkel emission also takes place during high reverse bias beyond 4 V for NWs and 3 V for TF device.

  10. Study of Crystallographic Texture During Thermo-Mechanical Processing of Boron Modified Ti-Alloys

    DTIC Science & Technology

    2009-07-15

    project developed a processing strategy for boron-modified titanium alloy Ti- 6Al - 4V , and developed an understanding of the deformation and...develop the processing strategy for boron modified titanium alloy Ti- 6Al - 4V 2. To understand the deformation and transformation mechanisms as a function...strength-to-weight ratio, excellent mechanical properties and corrosion resistance, titanium (Ti) and its alloys, especially (α+β) alloys like Ti- 6Al - 4V

  11. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2013-01-01

    The overall aim of this work was to examine the degradation of trimethoprim (TMP), which is an antibacterial agent, during the application of two advanced oxidation process (AOP) systems in secondary treated domestic effluents. The homogeneous solar Fenton process (hv/Fe(2+)/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were tested. It was found that the degradation of TMP depends on several parameters such as the amount of iron salt and H2O2, concentration of TiO2, pH of solution, solar irradiation, temperature and initial substrate concentration. The optimum dosages of Fe(2+) and H2O2 for homogeneous ([Fe(2+)] = 5 mg L(-1), [H2O2] = 3.062 mmol L(-1)) and TiO2 ([TiO2] = 3 g L(-1)) for heterogeneous photocatalysis were established. The study indicated that the degradation of TMP during the solar Fenton process is described by a pseudo-first-order reaction and the substrate degradation during the heterogeneous photocatalysis by the Langmuir-Hinshelwood kinetics. The toxicity of the treated samples was evaluated using a Daphnia magna bioassay and was finally decreased by both processes. The results indicated that solar Fenton is more effective than the solar TiO2 process, yielding complete degradation of the examined substrate within 30 min of illumination and dissolved organic carbon (DOC) reduction of about 44% whereas the respective values for the TiO2 process were ∼70% degradation of TMP within 120 min of treatment and 13% DOC removal.

  12. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate material can have a significant effect on adhesion and the mechanical response between the coating and substrate. Depending on deposition parameters and the selected material MPPMS and DOMS are promising alternatives to DCMS, PMS, and CAD.

  13. A study of TiB2/TiB gradient coating by laser cladding on titanium alloy

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Lei, Yongping; Li, Xueqiao; Zhi, Xiaohui; Fu, Hanguang

    2016-07-01

    TiB2/TiB gradient coating has been fabricated by a laser cladding technique on the surface of a Ti-6Al-4V substrate using TiB2 powder as the cladding material. The microstructure and mechanical properties of the gradient coating were analyzed by SEM, EPMA, XRD, TEM and an instrument to measure hardness. With the increasing distance from the coating surface, the content of TiB2 particles gradually decreased, but the content of TiB short fibers gradually increased. Meanwhile, the micro-hardness and the elastic modulus of the TiB2/TiB coating showed a gradient decreasing trend, but the fracture toughness showed a gradient increasing trend. The fracture toughness of the TiB2/TiB coating between the center and the bottom was improved, primarily due to the debonding of TiB2 particles and the high fracture of TiB short fibers, and the fracture position of TiB short fiber can be moved to an adjacent position. However, the debonding of TiB2 particles was difficult to achieve at the surface of the TiB2/TiB coating.

  14. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold.

    PubMed

    Han, Yong; Zhou, Jianhong; Zhang, Lan; Xu, Kewei

    2011-07-08

    We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2+, Sr2+ and PO4(3-) ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2+, Sr2+ and PO4(3-) ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.

  15. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  16. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers

    NASA Astrophysics Data System (ADS)

    Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.

    2016-03-01

    Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.

  17. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold

    NASA Astrophysics Data System (ADS)

    Han, Yong; Zhou, Jianhong; Zhang, Lan; Xu, Kewei

    2011-07-01

    We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2 + , Sr2 + and PO43 - ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2 + , Sr2 + and PO43 - ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.

  18. Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique.

    PubMed

    Nie, X; Leyland, A; Matthews, A; Jiang, J C; Meletis, E I

    2001-12-15

    Hydroxyapatite (HA) coatings can be deposited using a hybrid process of plasma electrolysis and electrophoresis, called plasma-assisted electrophoretic deposition (PEPD). HA aqueous suspensions with various pH values were prepared using a modified ultrasonic cleaning bath as an agitator/stirrer. Both DC and unbalanced AC power supplies were used to bias the titanium alloy substrate materials employed in this work. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to observe and analyze coating morphology and microstructure. It was shown that the morphology and composition of the calcium phosphate coatings were significantly influenced by solution pH values; the level of "pure" HA in the coatings' composition corresponded to both solution pH and the type of power supply employed. Loss of hydroxyl radials (i.e., dehydroxylation), which degrades the performance of the hydroxyapatite coating in terms of long-term chemical and mechanical stability, can be virtually eliminated by a combination of high pH and unbalanced AC plasma power. In addition, the underlying TiO2 coatings used to support the HA layer (preproduced by plasma electrolysis process) have a nanoscaled (10-20 nm) polycrystalline structure. TEM studies also revealed a dense, continuous amorphous titania layer (10 nm in thickness) at the interface between the Ti alloy substrate and the TiO2 layer, which may play a role in improving the corrosion resistance of the substrate. Such a nanophase TiO2 layer (if used as a coating alone) may also provide a further improvement in osteoinductive properties, compared to a conventional TiO2 coating on the Ti alloy substrate. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 612-618, 2001

  19. A thin porous substrate using bonded particles for reverse-emulsion electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Ahumada, M.; Bryning, M.; Cromer, R.; Hartono, M.; Lee, S. J.

    2012-03-01

    A thin porous layer of bonded ceramic microparticles has been developed to provide structural integrity and a stationary matrix for use in reflective-mode reverse-emulsion electrophoretic displays (REED), based on self-assembled nanodroplets dispersed in a non-polar liquid. REED ink uses low-cost materials and manufacturing processes, yet is capable of video speed and low voltage operation below 10 V. Porous layers of titanium dioxide (TiO2) are prepared as thin as 10 microns by fluidizing the particles in a water-based slurry with polymeric adhesive. The slurry is distributed between glass shear plates, one of which serves as the substrate for the working device. Particle morphology is examined using scanning electron microscopy and layer uniformity is characterized by opacity measurements using a throughbeam fiber optic sensor. Performance of the bonded matrix with REED ink is compared to baseline performance of a paste mixture, comprised of the same ink and unbonded TiO2 particles. Results show that at 25% volume fraction, the bonded substrate improves image bistability and is better able to maintain both light and dark intensity after extensive switching. The same bonded substrate also improves image bistability when power is disconnected, even compared to a paste with 40% volume fraction of TiO2.

  20. Laser cladding of bioactive glass coatings.

    PubMed

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. On the influence of DC electric fields on the aerosol assisted chemical vapor deposition growth of photoactive titanium dioxide thin films.

    PubMed

    Romero, Luz; Binions, Russell

    2013-11-05

    Titanium dioxide thin films were deposited on fluorine doped tin oxide glass substrate from the electric field assisted aerosol chemical vapor deposition (EACVD) reaction of titanium isopropoxide (TTIP, Ti(OC3H7)4) in toluene on glass substrates at a temperature of 450 °C. DC electric fields were generated by applying a potential difference between the electrodes of the transparent coated oxide coated glass substrates during the deposition. The deposited films were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and UV-vis spectroscopy. The photoactivity and hydrophilicity of the deposited films were also analyzed using a dye-ink test and water-contact angle measurements. The characterization work revealed that the incorporation of DC electric fields produced significant reproducible changes in the film microstructure, preferred crystallographic orientation, roughness, and film thickness. Photocatalytic activity was calculated from the half-time (t1/2) or time taken to degrade 50% of the initial resazurin dye concentration. A large improvement in photocatalytic activity was observed for films deposited using an electric field with a strong orientation in the (004) direction (t1/2 17 min) as compared to a film deposited with no electric field (t1/2 40 min).

  2. Chemical Vapor Synthesis of Titanium Aluminides by Reaction of Aluminum Subchloride and Titanium Tetrachloride

    NASA Astrophysics Data System (ADS)

    Zakirov, Roman A.; Parfenov, Oleg G.; Solovyov, Leonid A.

    2018-02-01

    A new process for developing titanium aluminides (TiAls) using chemical vapor synthesis was investigated in a laboratory experiment. Aluminum subchloride (AlCl) was used as the reducing agent in the reaction with TiCl4 and the source of aluminum for Ti-Al alloy. Two types of products, with large crystals and fine particles, were fabricated. The large crystals were determined to be TiAl, with small amounts of Ti and Ti3Al phases. The composition of fine particles, on the other hand, varied in wide range.

  3. Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer.

    PubMed

    Luo, Yong; Ge, Shirong; Liu, Hongtao; Jin, Zhongmin

    2009-12-11

    Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.

  4. Platinum metallization for MEMS application

    PubMed Central

    Guarnieri, Vittorio; Biazi, Leonardo; Marchiori, Roberto; Lago, Alexandre

    2014-01-01

    The adherence of Platinum thin film on Si/SiO2 wafer was studies using Chromium, Titanium or Alumina (Cr, Ti, Al2O3) as interlayer. The adhesion of Pt is a fundamental property in different areas, for example in MEMS devices, which operate at high temperature conditions, as well as in biomedical applications, where the problem of adhesion of a Pt film to the substrate is known as a major challenge in several industrial applications health and in biomedical devices, such as for example in the stents.1-4 We investigated the properties of Chromium, Titanium, and Alumina (Cr, Ti, and Al2O3) used as adhesion layers of Platinum (Pt) electrode. Thin films of Chromium, Titanium and Alumina were deposited on Silicon/Silicon dioxide (Si/SiO2) wafer by electron beam. We introduced Al2O3 as a new adhesion layer to test the behavior of the Pt film at higher temperature using a ceramic adhesion thin film. Electric behaviors were measured for different annealing temperatures to know the performance for Cr/Pt, Ti/Pt, and Al2O3/Pt metallic film in the gas sensor application. All these metal layers showed a good adhesion onto Si/SiO2 and also good Au wire bondability at room temperature, but for higher temperature than 400 °C the thin Cr/Pt and Ti/Pt films showed poor adhesion due to the atomic inter-diffusion between Platinum and the metal adhesion layers.5 The proposed Al2O3/Pt ceramic-metal layers confirmed a better adherence for the higher temperatures tested. PMID:24743057

  5. High efficiency organic-electrolyte DSSC based on hydrothermally deposited titanium carbide-carbon counter electrodes

    NASA Astrophysics Data System (ADS)

    Towannang, Madsakorn; Kumlangwan, Pantiwa; Maiaugree, Wasan; Ratchaphonsaenwong, Kunthaya; Harnchana, Viyada; Jarenboon, Wirat; Pimanpang, Samuk; Amornkitbamrung, Vittaya

    2015-07-01

    Pt-free TiC based electrodes were hydrothermally deposited onto FTO/glass substrates and used as dye-sensitized solar cell (DSSC) counter electrodes. A promising efficiency of 3.07% was obtained from the annealed hydrothermal TiC DSSCs based on a disulfide/thiolate electrolyte. A pronounced improvement in performance of 3.59% was achieved by compositing TiC with carbon, compared to that of a Pt DSSC, 3.84%. TEM analysis detected that the TiC particle surfaces were coated by thin carbon layer (7 nm). The SAED pattern and Raman spectrum of TiC-carbon films suggested that the carbon layer was composed of amorphous and graphite carbon. The formation of graphite on the TiC nanoparticles plays a crucial role in enhancing the film's reduction current to 10.12 mA/cm2 and in reducing the film impedance to 237.63 Ω, resulting in a high efficiency of the TiC-carbon DSSC. [Figure not available: see fulltext.

  6. Asymmetric reduction of ketones with catecholborane using 2,6-BODOL complexes of titanium(IV) as catalysts.

    PubMed

    Sarvary, I; Almqvist, F; Frejd, T

    2001-05-18

    Reductions performed with Ti(IV) complexes of ligands based on bicyclo[2.2.2]octane diols 5 and 6 are effective catalysts in the reduction of prochiral ketones to optically active alcohols, with catecholborane as the reducing agent. Methyl ketones are favored and enantiomeric excesses (ee) of < or =98% have been achieved with acetophenone as the substrate. Several other substrates were tested, among them 2-octanone, which gave 2-octanol in 87% ee. Further details of the method were examined, for example, temperature, solvent composition, amount of molecular sieves (4 A), and catecholborane quality, as well as the sensitivity of the ligands towards acids. NMR spectroscopic methods were used to gain some insight into the complexes formed between the ligands and [Ti(OiPr)4]. A dimeric structure is proposed for the pre-catalyst.

  7. Titanium distribution in swimming pool water is dominated by dissolved species.

    PubMed

    David Holbrook, R; Motabar, Donna; Quiñones, Oscar; Stanford, Benjamin; Vanderford, Brett; Moss, Donna

    2013-10-01

    The increased use of titanium dioxide nanoparticles (nano-TiO2) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (<1 kDa), with only a minor fraction of total [Ti] being considered either particulate or microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal. Published by Elsevier Ltd.

  8. Thermal Diffusivity and Specific Heat Measurements of Titanium Potassium Perchlorate Titanium Subhydride Potassium Perchlorate 9013 Glass 7052 Glass SB-14 Glass and C-4000 Muscovite Mica Using the Flash Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Paul Elliott; Cooper, Marcia A.

    The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25°C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052more » glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300° C.« less

  9. TiCN thin films grown by reactive crossed beam pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Escobar-Alarcón, L.; Camps, E.; Romero, S.; Muhl, S.; Camps, I.; Haro-Poniatowski, E.

    2010-12-01

    In this work, we used a crossed plasma configuration where the ablation of two different targets in a reactive atmosphere was performed to prepare nanocrystalline thin films of ternary compounds. In order to assess this alternative deposition configuration, titanium carbonitride (TiCN) thin films were deposited. Two crossed plasmas were produced by simultaneously ablating titanium and graphite targets in an Ar/N2 atmosphere. Films were deposited at room temperature onto Si (100) and AISI 4140 steel substrates whilst keeping the ablation conditions of the Ti target constant. By varying the laser fluence on the carbon target it was possible to study the effect of the carbon plasma on the characteristics of the deposited TiCN films. The structure and composition of the films were analyzed by X-ray Diffraction, Raman Spectroscopy and non-Rutherford Backscattering Spectroscopy. The hardness and elastic modulus of the films was also measured by nanoindentation. In general, the experimental results showed that the TiCN thin films were highly oriented in the (111) crystallographic direction with crystallite sizes as small as 6.0 nm. It was found that the hardness increased as the laser fluence was increased, reaching a maximum value of about 33 GPa and an elastic modulus of 244 GPa. With the proposed configuration, the carbon content could be easily varied from 42 to 5 at.% by changing the laser fluence on the carbon target.

  10. The effects of pulsed electromagnetic field (PEMF) on osteoblast-like cells cultured on titanium and titanium-zirconium surfaces.

    PubMed

    Atalay, Belir; Aybar, Buket; Ergüven, Mine; Emes, Yusuf; Bultan, Özgür; Akça, Kivanç; Yalçin, Serhat; Baysal, Uğur; Işsever, Halim; Çehreli, Murat Cavit; Bilir, Ayhan

    2013-11-01

    Commercially pure Ti, together with Ti Ni, Ti-6Al-4V, and Ti-6Al-7Nb alloys, are among the materials currently being used for this purpose. Titanium-zirconium (TiZr) has been developed that allows SLActive surface modification and that has comparable or better mechanical strength and improved biocompatibility compared with existing Ti alloys. Furthermore, approaches have targeted making the implant surface more hydrophilic, as with the Straumann SLActive surface, a modification of the SLA surface. The aim of this study is to evaluate the effects of pulsed electromagnetic field (PEMF) to the behavior of neonatal rat calvarial osteoblast-like cells cultured on commercially pure titanium (cpTi) and titanium-zirconium alloy (TiZr) discs with hydrophilic surface properties. Osteoblast cells were cultured on titanium and TiZr discs, and PEMF was applied. Cell proliferation rates, cell numbers, cell viability rates, alkaline phosphatase, and midkine (MK) levels were measured at 24 and 72 hours. At 24 hours, the number of cells was significantly higher in the TiZr group. At 72 hours, TiZr had a significantly higher number of cells when compared to SLActive, SLActive + PEMF, and machine surface + PEMF groups. At 24 hours, cell proliferation was significantly higher in the TiZr group than SLActive and TiZr + PEMF group. At 72 hours, TiZr group had higher proliferation rate than machine surface and TiZr + PEMF. Cell proliferation in the machine surface group was lower than both SLActive + PEMF and machine surface + PEMF. MK levels of PEMF-treated groups were lower than untreated groups for 72 hours. Our findings conclude that TiZr surfaces are similar to cpTi surfaces in terms of biocompatibility. However, PEMF application has a higher stimulative effect on cells cultured on cpTi surfaces when compared to TiZr.

  11. Characterizations of the TiO2-x films synthesized by e-beam evaporation for endovascular applications

    NASA Astrophysics Data System (ADS)

    Lin, Zeng; Lee, In-Seop; Choi, Yoon-Jeong; Noh, In-Sup; Chung, Sung-Min

    2009-02-01

    Different chemical states of titanium oxide films were deposited on commercially pure Ti (CP Ti) by electron-beam evaporation at different oxygen flow rates to examine a possibility of their applications to endovascular stents. The surface morphology, chemical composition and crystal structure of the obtained titanium oxide films were analyzed by FE-SEM, XPS and XRD, respectively. As a function of the deposition parameters employed, the obtained titanium oxide films demonstrated different mixtures of anatase phase, Ti2O3 and TiO. By the formation of titanium oxide film on the CP Ti plate, the contact angle was decreased and the cellular activity of porcine aortic smooth muscle cells was increased. Post-deposition annealing was also found to be an important factor to achieve advantageous biocompatibility. When haemocompatibility was investigated by observing adhesion of blood platelets from platelet-rich plasma, less platelet adhesion was observed on titanium oxide films. These results indicated that titanium oxide film synthesized by e-beam evaporation could be applicable to coronary stents.

  12. Synthesis of As-Cast Ti-Al-V Alloy from Titanium-Rich Material by Thermite Reduction

    NASA Astrophysics Data System (ADS)

    Cheng, Chu; Dou, Zhi He; Zhang, Ting An; Zhang, Hui Jie; Yi, Xin; Su, Jian Ming

    2017-10-01

    We present a novel methodology for preparing as-cast Ti-Al-V alloy directly from titanium-rich material through a thermite reduction. The new method is shown to be feasible through a thermodynamics and dynamics analysis. The as-cast Ti-Al-V alloys synthesized from titanium dioxide, rutile, and high-titanium slag were analyzed by an x-ray diffractometer, a scanning electron microscope, an inductively coupled plasma emission spectrometer, and an oxygen/nitrogen/hydrogen analyzer. The results indicate that the alloy is composed of a Ti-Al-V matrix and Al2O3 inclusions. The Al and V contents in the matrix are close to the mass ratio of Ti-6Al-4V (Al: 5.5-6.8 wt.%, V: 3.5-4.5 wt.%). The Si and Fe in the alloys synthesized from rutile and high-titanium slag can be used as alloying elements in low-cost titanium alloys. The present method is expected to be useful for preparing Ti-Al-V alloys at a low production cost.

  13. Interfacial Phenomena in Fe/Stainless Steel-TiC Systems and the Effect of Mo

    NASA Astrophysics Data System (ADS)

    Kiviö, Miia; Holappa, Lauri; Yoshikawa, Takeshi; Tanaka, Toshihiro

    2014-12-01

    Titanium carbide is used as reinforcement particles in composites due to its hardness, wear resistance and stability. This work is a part of the study in which titanium carbides are formed in stainless steel castings in the mold to improve the wear resistance of a certain surface of the casting. Such local reinforcement is a very potential method but it is a quite demanding task requiring profound knowledge of interfacial phenomena in the system, wettability, stability, dissolution and precipitation of new phases in production of these materials. Good wetting between different constituents in the material is a key factor to attain maximal positive effects. Mo is used with TiC or Ti(C,N) reinforcement in composites to improve wettability. In this work the effect of Mo on the phenomena in Fe/stainless steel-TiC systems was examined by wetting experiments between the substrate and the alloy. Wetting was not significantly improved by adding Mo to the systems. Core-rim type carbides as well as more homogenous carbide particles were observed. Overall the carbide particles are very complex regarding to their chemistry, size and shape which aspects have to be taken into account in the development of these materials and manufacturing processes.

  14. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  15. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    NASA Astrophysics Data System (ADS)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.

    2015-11-01

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.

  16. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides

    NASA Astrophysics Data System (ADS)

    Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  17. Effect of laser parameters on the microstructure of bonding porcelain layer fused on titanium

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyuan; Guo, Litong; Liu, Xuemei; Feng, Wei; Li, Baoe; Tao, Xueyu; Qiang, Yinghuai

    2017-09-01

    Bonding porcelain layer was fused on Ti surface by laser cladding process using a 400 W pulse CO2 laser. The specimens were studied by field-emission scanning electron microscopy, X-ray diffraction and bonding tests. During the laser fusion process, the porcelain powders were heated by laser energy and melted on Ti to form a chemical bond with the substrate. When the laser scanning speed decreased, the sintering temperature and the extent of the oxidation of Ti surface increased accordingly. When the laser scanning speed is 12.5 mm/s, the bonding porcelain layers were still incomplete sintered and there were some micro-cracks in the porcelain. When the laser scanning speed decreased to 7.5 mm/s, vitrified bonding porcelain layers with few pores were synthesized on Ti.

  18. Oxynitrides decorated 316L SS for potential bioimplant application

    NASA Astrophysics Data System (ADS)

    Saravanan Kaliaraj, Gobi; Kumar, N.

    2018-03-01

    Titanium oxynitride (TiON) and zirconium oxynitride (ZrON) were deposited onto 316L stainless steel (316L SS) using reactive magnetron sputtering technique. The monoclinic and cubic phase of TiON and ZrON were obtained by x-ray diffraction (XRD). Nanoindentation and wear test analysis exhibited the better mechanical properties of TiON and ZrON films. Wettability studies showed hydrophilic nature on coated films; whereas bare 316L SS substrate was least hydrophilic. Drastic reduction of bacterial adhesion (Pseudomonas aeruginosa), as well as biofilm formation, was observed in both the films at different time duration. TiON and ZrON films were exhibited excellent hemocompatibility by preventing the platelet activation. Furthermore, the coated films exhibited corrosion protection in presence and absence of hydrogen peroxide (H2O2) in artificial blood plasma (ABP) solution.

  19. Process for preparing titanium nitride powder

    DOEpatents

    Bamberger, C.E.

    1988-06-17

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  20. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C disk and on a titanium-6 wt % aluminum-4 wt% vanadium (Ti-6Al-4V) flat, both in contact with a 9.4-mm-diameter, hemispherical Ti-6Al-4V pin. The resistance to fretting wear and damage of the a-DLC/Ti-6Al-4V materials pair was superior to that of the Ti-6Al-4V/Ti-6AI-4V materials pair.

  1. Investigation of boundary conditions for biomimetic HA deposition on titanium oxide surfaces.

    PubMed

    Lindgren, M; Astrand, M; Wiklund, U; Engqvist, H

    2009-07-01

    To improve the clinical outcome of metal implants, i.e. earlier loading and reduction of the incidence of revision surgery, better bone bonding ability is wanted. One method to achieve this is to change the surface chemistry to give a surface that facilitates bone bonding in vivo, i.e. a bioactive surface. Crystalline titanium oxide has recently been proven to be bioactive in vitro and is an interesting option to the more common hydroxylapatite (HA) coatings on implants. A materials possible in vitro bioactivity is tested through soaking in simulated body fluid and studies of possible HA formation on the surface. For bioactive materials, the formed HA layer can also be used as a coating. The aim of the current paper is to investigate some boundary conditions for HA formation on crystalline titanium oxide surfaces regarding influence from coating thickness, soaking time and soaking temperature. The influence from soaking time and temperature on the HA growth were investigated on oxidised Ti samples, (24 h at 800 degrees C) resulting in a rutile surface structure. The oxidised samples were tested at three temperatures (4, 37 and 65 degrees C) and four times (1 h, 1 day, 1 week and 4 weeks). The influence from titanium coating thickness on the HA growth was investigated via depositing thin films of crystalline titanium dioxide on Ti plates using a reactive magnetron sputtering process. Four different PVD runs with coating thicknesses between 19 and 74 nm were tested. The soaking temperature had an effect on the HA formation and growth on both rutile surfaces and native oxide on Ti substrates. Higher temperatures lead to easier formation of HA. It was even possible, at 65 degrees C, to grow HA on native titanium oxide from soaking in PBS. The coating quality was better for HA formed at 65 degrees C compared to 37 degrees C. All PVD-coatings showed HA growth after 1 week in PBS at 37 degrees C, thus even very thin coatings of crystalline titanium oxide coatings are bioactive.

  2. Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions

    NASA Astrophysics Data System (ADS)

    Celardo, G. L.; Archetti, D.; Ferrini, G.; Gavioli, L.; Pingue, P.; Cavaliere, E.

    2017-01-01

    The specific mechanisms which lead to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We compare a theoretical model of fractal formation with experimental data. The comparison of theory and experiment confirms that fractal aggregates are formed after landing of the ablated material on the substrate surface by a simple diffusive mechanism. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: TiO2 nanoparticles arrive already formed on the substrate, then they diffuse in a size/mass independent way and stick irreversibly upon touching, thus forming fractal clusters. Despite its simplicity, our model explains the main features of the fractal structures arising from the complex interaction of large TiO2 nanoparticles with different substrates. Indeed our model is able to reproduce both the fractal dimensions and the area distributions of the nanostructures for different densities of the ablated material. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.

  3. Surface Acidity and Properties of TiO2/SiO2 Catalysts Prepared by Atomic Layer Deposition: UV-visible Diffuse Reflectance, DRIFTS, and Visible Raman Spectroscopy Studies

    DTIC Science & Technology

    2009-06-15

    titanium isopropoxide (TTIP) as metal precursors. The deposition rate of titania films from TiCl4 was found to be stable in the 150-300 °C...tetrachloride (TiCl4) and titanium isopropoxide (TTIP) are widely used as metal precursors and water or hydrogen peroxide are used as oxygen precursors.29-36... titanium dioxide supported on high surface area silica gel have been synthesized by atomic layer deposition (ALD) using titanium tetrachloride (TiCl4) and

  4. Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films

    NASA Astrophysics Data System (ADS)

    Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2018-02-01

    The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.

  5. Resistance switching mode transformation in SrRuO3/Cr-doped SrZrO3/Pt frameworks via a thermally activated Ti out-diffusion process

    PubMed Central

    Jo, Yongcheol; Jung, Kyooho; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Hong, Jinpyo; Lee, Jeon-Kook; Im, Hyunsik

    2014-01-01

    This work reports on a mechanism for irreversible resistive switching (RS) transformation from bipolar to unipolar RS behavior in SrRuO3 (SRO)/Cr-doped SrZrO3 (SZO:Cr)/Pt capacitor structures prepared on a Ti/SiO2/Si substrate. Counter-clockwise bipolar RS memory current-voltage (I–V) characteristics are observed within the RS voltage window of −2.5 to +1.9 V, with good endurance and retention properties. As the bias voltage increases further beyond 4 V under a forward bias, a forming process occurs resulting in irreversible RS mode transformation from bipolar to unipolar mode. This switching mode transformation is a direct consequence of thermally activated Ti out-diffusion from a Ti adhesion layer. Transition metal Ti effectively out-diffuses through the loose Pt electrode layer at high substrate temperatures, leading to the unintended formation of a thin titanium oxide (TiOx where x < 2) layer between the Pt electrode and the SZO:Cr layer as well as additional Ti atoms in the SZO:Cr layer. Cross-sectional scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy depth-profile measurements provided apparent evidence of the Ti out-diffusion phenomenon. We propose that the out-diffusion-induced additional Ti atoms in the SZO:Cr layer contributes to the creation of the metallic filamentary channels. PMID:25483325

  6. Titanium Dioxide Nanoparticles in Food and Personal Care Products

    PubMed Central

    Weir, Alex; Westerhoff, Paul; Fabricius, Lars

    2012-01-01

    Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system, and subsequently enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO2, and discusses the impact of the nanoscale fraction of TiO2 entering the environment. The foods with the highest content of TiO2 included candies, sweets and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (<0.01 μg/mg). For several high-consumption pharmaceuticals, the titanium content ranged from below the instrument detection limit (0.0001 μg Ti/mg) to a high of 0.014 μg Ti/mg. Electron microscopy and stability testing of food-grade TiO2 (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to WWTPs deserves attention. A Monte Carlo human exposure analysis to TiO2 through foods identified children as having the highest exposures because TiO2 content of sweets is higher than other food products, and that a typical exposure for a US adult may be on the order of 1 mg Ti per kilogram body weight per day. Thus, because of the millions of tons of titanium based white pigment used annually, testing should focus on food-grade TiO2 (E171) rather than that adopted in many environmental health and safety tests (i.e., P25), which is used in much lower amounts in products less likely to enter the environment (e.g., catalyst supports, photocatalytic coatings). PMID:22260395

  7. Comparative Corrosion Behavior of Two Palladium Containing Titanium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, T; Yashiki, T; Nakayama, T

    2006-02-05

    The ASTM standard B 265 provides the requirements for the chemical composition of titanium (Ti) alloys. It is planned to use corrosion resistant and high strength titanium alloys to fabricate the drip shield at the proposed Yucca Mountain Repository. Titanium grade (Gr) 7 (R52400) and other Ti alloys are currently being characterized for this application. Ti Gr 7 contains 0.15% Palladium (Pd) to increase its corrosion performance. In this article we report results on the comparative short term corrosion behavior of Ti Gr 7 and a Ruthenium (Ru) containing alloy (Ti Gr 33). Ti Gr 33 also contains a smallmore » amount of Pd. Limited electrochemical testing such as polarization resistance and cyclic potentiodynamic curves showed that both alloys have a similar corrosion behavior in the tested environments.« less

  8. COMPARATIVE CORROSION BEHAVIOR OF TWO PALLADIUM CONTAINING TITANIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Lian, T. Yashiki, T. Nakayama, T. Nakanishi, R. B. Rebak

    2006-07-23

    The ASTM standard B 265 provides the requirements for the chemical composition of titanium (Ti) alloys. It is planned to use corrosion resistant and high strength titanium alloys to fabricate the drip shield at the proposed Yucca Mountain Repository. Titanium grade (Gr) 7 (R52400) and other Ti alloys are currently being characterized for this application. Ti Gr 7 contains 0.15% Palladium (Pd) to increase its corrosion performance. In this article we report results on the comparative short term corrosion behavior of Ti Gr 7 and a Ruthenium (Ru) containing alloy (Ti Gr 33). Ti Gr 33 also contains a smallmore » amount of Pd. Limited electrochemical testing such as polarization resistance and cyclic potentiodynamic curves showed that both alloys have a similar corrosion behavior in the tested environments.« less

  9. Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application.

    PubMed

    Zhang, Yifei; Zheng, Yunfei; Li, Yongliang; Wang, Lixin; Bai, Yanjie; Zhao, Qiang; Xiong, Xiaoling; Cheng, Yan; Tang, Zhihui; Deng, Yi; Wei, Shicheng

    2015-01-01

    Microbiologically induced corrosion (MIC) of metallic devices/implants in the oral region is one major cause of implant failure and metal allergy in patients. Therefore, it is crucial to develop practical approaches which can effectively prevent MIC for broad clinical applications of these materials. In the present work, tantalum nitride (TaN)-decorated titanium with promoted bio-corrosion and mechanical property was firstly developed via depositing TaN layer onto pure Ti using magnetron sputtering. The microstructure and chemical constituent of TaN coatings were characterized, and were found to consist of a hard fcc-TaN outer layer. Besides, the addition of TaN coatings greatly increased the hardness and modulus of pristine Ti from 2.54 ± 0.20 to 29.88 ± 2.59 GPa, and from 107.19 ± 6.98 to 295.46 ± 19.36 GPa, respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that TaN coating exhibited higher MIC resistance in comparison to bare Ti and TiN-coated coating in two bacteria-containing artificial saliva solutions. Moreover, the biofilm experiment showed that the TaN-decorated Ti sample possessed good antibacterial performance. The SEM and XPS results after biofilm removal demonstrated that TaN film remained its integrity and stability, while TiN layer detached from Ti surface in the bio-corrosion tests, demonstrating the anti-MIC behavior and the strong binding property of TaN coating to Ti substrate. Considering all these results, TaN-decorated Ti material exhibits the optimal comprehensive performance and holds great potential as implant material for dental applications.

  10. Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application

    PubMed Central

    Li, Yongliang; Wang, Lixin; Bai, Yanjie; Zhao, Qiang; Xiong, Xiaoling; Cheng, Yan; Tang, Zhihui; Deng, Yi; Wei, Shicheng

    2015-01-01

    Microbiologically induced corrosion (MIC) of metallic devices/implants in the oral region is one major cause of implant failure and metal allergy in patients. Therefore, it is crucial to develop practical approaches which can effectively prevent MIC for broad clinical applications of these materials. In the present work, tantalum nitride (TaN)-decorated titanium with promoted bio-corrosion and mechanical property was firstly developed via depositing TaN layer onto pure Ti using magnetron sputtering. The microstructure and chemical constituent of TaN coatings were characterized, and were found to consist of a hard fcc-TaN outer layer. Besides, the addition of TaN coatings greatly increased the hardness and modulus of pristine Ti from 2.54 ± 0.20 to 29.88 ± 2.59 GPa, and from 107.19 ± 6.98 to 295.46 ± 19.36 GPa, respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that TaN coating exhibited higher MIC resistance in comparison to bare Ti and TiN-coated coating in two bacteria-containing artificial saliva solutions. Moreover, the biofilm experiment showed that the TaN-decorated Ti sample possessed good antibacterial performance. The SEM and XPS results after biofilm removal demonstrated that TaN film remained its integrity and stability, while TiN layer detached from Ti surface in the bio-corrosion tests, demonstrating the anti-MIC behavior and the strong binding property of TaN coating to Ti substrate. Considering all these results, TaN-decorated Ti material exhibits the optimal comprehensive performance and holds great potential as implant material for dental applications. PMID:26107177

  11. Wear and Corrosion Interactions at the Titanium/Zirconia Interface: Dental Implant Application.

    PubMed

    Sikora, Craig L; Alfaro, Maria F; Yuan, Judy Chia-Chun; Barao, Valentim A; Sukotjo, Cortino; Mathew, Mathew T

    2018-03-09

    Dental implants have been shown to have predictable success, but esthetic complications often arise. To reduce tissue shadowing from titanium, zirconia abutments may be used; however, the literature suggests that the use of zirconia leads to greater destruction of the implant interface that may result in biological complications such as titanium tattoos and heavy metal toxicity. Previous studies have examined the mechanical aspects of this implant/abutment relationship, but they have not accounted for the corrosive degradation that also takes place in the dynamic environment of the oral cavity. This study investigated the combined effect of both wear and corrosion on the materials at the implant and abutment interface. Using a simulated oral tribocorrosive environment, titanium (Ti) and zirconia (Zr) abutment materials were slid against titanium and Roxolid implant alloys. The four couplings (Ti/Ti, Ti/Rox, Zr/Ti, Zr/Rox) were selected for the tribocorrosion tests (N = 3). The testing was conducted for 25K cycles, and the coefficient of friction (CoF) and voltage evolution were recorded simultaneously. Following the tribocorrosion assays, the wear volume loss was calculated, and surface characterization was performed. Statistical analysis was completed using a one-way ANOVA followed by post-hoc Bonferroni comparisons. Zr/Ti groups had the highest CoF (1.1647), and Ti/Ti had the lowest (0.5033). The Zr/Ti coupling generated significantly more mechanical damage than the Ti/Ti group (p = 0.021). From the corrosion aspect, the Ti/Ti groups had the highest voltage drop (0.802 V), indicating greater corrosion susceptibility. In comparison, the Zr/Roxolid group had the lowest voltage drop (0.628 V) and significantly less electrochemical degradation (p = 0.019). Overall, the Ti/Ti group had the largest wear volume loss (15.1 × 10 7 μm 3 ), while the Zr/Ti group had the least volume loss (2.26 × 10 7 μm 3 ). Both zirconia couplings had significantly less wear volume than the titanium couplings (p < 0.001). This study highlights the synergistic interaction between wear and corrosion, which occurs when masticatory forces combine with the salivary environment of the oral cavity. Overall, the zirconia groups outperformed the titanium groups. In fact, the titanium groups generated 5 to 6 times more wear to the implant alloys as compared with the zirconia counterparts. The best performing group was Zr/Ti, and the worst performing group was Ti/Ti. © 2018 by the American College of Prosthodontists.

  12. Metal-Intermetallic Laminate Ti-Al3Ti Composites Produced by Spark Plasma Sintering of Titanium and Aluminum Foils Enclosed in Titanium Shells

    NASA Astrophysics Data System (ADS)

    Lazurenko, Daria V.; Mali, Vyacheslav I.; Bataev, Ivan A.; Thoemmes, Alexander; Bataev, Anatoly A.; Popelukh, Albert I.; Anisimov, Alexander G.; Belousova, Natalia S.

    2015-09-01

    Metal-intermetallic laminate composites are considered as promising materials for application in the aerospace industry. In this study, Ti-Al3Ti composites enclosed in titanium cases were produced by reactive spark plasma sintering. Sintering was carried out at 1103 K and 1323 K (830 °C and 1050 °C) for 10 minutes. In both cases, high-quality Ti-Al3Ti composites containing thin transition layers at the interfaces were obtained. Al2Ti, AlTi, and AlTi3 intermetallic phases and a solid solution of aluminum in titanium were observed in the transition layers by scanning and transmission electron microscopy. The material sintered at 1323 K (1050 °C) had higher strength in comparison with the composite obtained at 1103 K (830 °C). However, the hardness of the intermetallic component in the sample sintered at higher temperature decreased due to the grain growth. The impact toughness values of both materials were approximately identical.

  13. Joining characteristics of titanium-based orthodontic wires connected by laser and electrical welding methods.

    PubMed

    Matsunaga, Junko; Watanabe, Ikuya; Nakao, Noriko; Watanabe, Etsuko; Elshahawy, Waleed; Yoshida, Noriaki

    2015-01-01

    This study investigated the possibility of electrical and laser welding to connect titanium-based alloy (beta-titanium and nickel-titanium) wires and stainless-steel or cobalt-chromium alloy wires for fabrication of combination arch-wires. Four kinds of straight orthodontic rectangular wires (0.017 × 0.025 inch) were used: stainless-steel (S-S), cobalt-chromium (Co-Cr), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (15 mm long each) were made by electrical welding and laser welding. Non-welded wires (30 mm long) were also used as a control. Maximum loads at fracture (N) and elongation (%) were measured by conducting tensile test. The data (n = 10) were statistically analyzed using analysis of variance/Tukey test (P < 0.05).The S-S/S-S and Co-Cr/Co-Cr specimens showed significantly higher values of the maximum load (ML) at fracture and elongation (EL) than those of the Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens for electrical welding and those of the S-S/S-S and Co-Cr/Co-Cr specimens welded by laser. On the other hand, the laser-welded Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens exhibited higher values of the ML and EL compared to those of the corresponding specimens welded by electrical method. In the heterogeneously welded combinations, the electrically welded Ni-Ti/S-S, β-Ti/S-S and β-Ti/Co-Cr specimens showed significantly (P < 0.05) higher ML and EL than those of the corresponding specimens welded by laser. Electrical welding exhibited the higher values of maximum load at fracture and elongation for heterogeneously welded combinations than laser-welding.

  14. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    PubMed

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of surface reaction layer on grindability of cast titanium alloys.

    PubMed

    Ohkubo, Chikahiro; Hosoi, Toshio; Ford, J Phillip; Watanabe, Ikuya

    2006-03-01

    The purpose of this study was to investigate the effect of the cast surface reaction layer on the grindability of titanium alloys, including free-machining titanium alloy (DT2F), and to compare the results with the grindability of two dental casting alloys (gold and Co-Cr). All titanium specimens (pure Ti, Ti-6Al-4V and DT2F) were cast using a centrifugal casting machine in magnesia-based investment molds. Two specimen sizes were used to cast the titanium metals so that the larger castings would be the same size as the smaller gold and Co-Cr alloy specimens after removal of the surface reaction layer (alpha-case). Grindability was measured as volume loss ground from a specimen for 1 min using a handpiece engine with a SiC abrasive wheel at 0.1 kgf and four circumferential wheel speeds. For the titanium and gold alloys, grindability increased as the rotational speed increased. There was no statistical difference (p>0.05) in grindability for all titanium specimens either with or without the alpha-case. Of the titanium metals tested, Ti-6 Al-4V had the greatest grindability at higher speeds, followed by DT2F and CP Ti. The grindability of the gold alloy was similar to that of Ti-6 Al-4V, whereas the Co-Cr alloy had the lowest grindability. The results of this study indicated that the alpha-case did not significantly affect the grindability of the titanium alloys. The free-machining titanium alloy had improved grindability compared to CP Ti.

  16. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications.

    PubMed

    Sultana, T; Georgiev, G L; Baird, R J; Auner, G W; Newaz, G; Patwa, R; Herfurth, H J

    2009-07-01

    Biomedical devices and implants require precision joining for hermetic sealing which can be achieved with low power lasers. The effect of two different thin metal film coating methods was studied in transmission laser micro-joints of titanium-coated glass and polyimide. The coating methods were cathodic arc physical vapor deposition (CA-PVD) and electron beam evaporation (EB-PVD). Titanium-coated glass joined to polyimide film can have neural electrode application. The improvement of the joint quality will be essential for robust performance of the device. Low power fiber laser (wave length = 1100 nm) was used for transmission laser micro-joining of thin titanium (Ti) film (approximately 200 nm) coated Pyrex borosilicate 7740 glass wafer (0.5 mm thick) and polyimide (Imidex) film (0.2 mm thick). Ti film acts as the coupling agent in the joining process. The Ti film deposition rate in the CA-PVD was 5-10 A/s and in the EB-PVD 1.5 A/s. The laser joint strength was measured by a lap shear test, the Ti film surfaces were analyzed by atomic force microscopy (AFM) and the lap shear tested joints were analyzed by optical microscopy and scanning electron microscopy (SEM). The film properties and the failure modes of the joints were correlated to joint strength. The CA-PVD produced around 4 times stronger laser joints than EB-PVD. The adhesion of the Ti film on glass by CA-PVD is better than that of the EB-PVD method. This is likely to be due to a higher film deposition rate and consequently higher adhesion or sticking coefficient for the CA-PVD particles arriving on the substrate compared to that of the EB-PVD film. EB-PVD shows poor laser bonding properties due to the development of thermal hotspots which occurs from film decohesion.

  17. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2005-08-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.

  18. Dilute electrodeposition of TiO2 and ZnO thin film memristors on Cu substrate

    NASA Astrophysics Data System (ADS)

    Fauzi, F. B.; Ani, M. H.; Herman, S. H.; Mohamed, M. A.

    2018-03-01

    Memristor has become one of the alternatives to replace the current memory technologies. Fabrication of titanium dioxide, TiO2 memristor has been extensively studied by using various deposition methods. However, recently more researches have been done to explore the compatibility of other transition metal oxide, TMO such as zinc oxide, ZnO to be used as the active layer of the memristor. This paper highlights the simple and easy-control electrodeposition to deposit titanium, Ti and zinc, Zn thin film at room temperature and subsequent thermal oxidation at 600 °C. Gold, Au was then sputtered as top electrode to create metal-insulator-metal, MIM sandwich of Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors. The structural, morphological and memristive properties were characterized using Field Emission Scanning Electron Microscopy, FESEM, X-Ray Diffraction, XRD and current-voltage, I-V measurement. Both Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristivity were identified by the pinched hysteresis loop with resistive ratio of 1.2 and 1.08 respectively. Empirical study on diffusivity of Ti4+, Zn2+ and O2‑ ions in both metal oxides show that the metal vacancies were formed, thus giving rise to its memristivity. The electrodeposited Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors demonstrate comparable performances to previous studies using other methods.

  19. In Situ Hydrothermally Grown TiO2@C Core-Shell Nanowire Coating for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Wang, Fuxin; Zheng, Juan; Qiu, Junlang; Liu, Shuqin; Chen, Guosheng; Tong, Yexiang; Zhu, Fang; Ouyang, Gangfeng

    2017-01-18

    Nanostructured materials have great potential for solid phase microextraction (SPME) on account of their tiny size, distinct architectures and superior physical and chemical properties. Herein, a core-shell TiO 2 @C fiber for SPME was successfully fabricated by the simple hydrothermal reaction of a titanium wire and subsequent amorphous carbon coating. The readily hydrothermal procedure afforded in situ synthesis of TiO 2 nanowires on a titanium wire and provided a desirable substrate for further coating of amorphous carbon. Benefiting from the much larger surface area of subsequent TiO 2 and good adsorption property of the amorphous carbon coating, the core-shell TiO 2 @C fiber was utilized for the SPME device for the first time and proved to have better performance in extraction of polycyclic aromatic hydrocarbons. In comparison to the polydimethylsiloxane (PDMS) and PDMS/divinylbenzene (DVB) fiber for commercial use, the TiO 2 @C fiber obtained gas chromatography responses 3-8 times higher than those obtained by the commercial 100 μm PDMS and 1-9 times higher than those obtained by the 65 μm PDMS/DVB fiber. Under the optimized extraction conditions, the low detection limits were obtained in the range of 0.4-7.1 ng L -1 with wider linearity in the range of 10-2000 ng L -1 . Moreover, the fiber was successfully used for the determination of polycyclic aromatic hydrocarbons in Pearl River water, which demonstrated the applicability of the core-shell TiO 2 @C fiber.

  20. Enhanced photoelectrocatalytic performance of heterostructured TiO2-based nanoparticles decorated nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Liangpeng; Yang, Xu; Huang, Yanqin; Li, Xinjun

    2017-06-01

    Titanium oxide nanotubes were prepared by hydrothermal treatment of TiO2 powder in NaOH aqueous solution and subsequently calcined. Titanium oxide nanotubes were further decorated by TiO2 nanoparticles through in situ hydrolysis of titanium isopropoxide containing alcohol and ammonia in an aqueous medium to form the composite catalyst (TNP/TiO2NTs). The morphology and structure of TNP/TiO2NTs were characterized by scanning and transmission electron microscopy, X-ray diffraction, UV-Vis, and Raman spectra. The separation efficiency of photo-excited carriers was investigated by photoluminescence technique and photoelectrochemical behavior. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange. Due to the synergy effect caused by the interaction of titanium oxide nanotubes and TiO2 nanoparticles, the TNP/TiO2NTs composite shows efficient photogenerated carriers' separation and the increased light absorption. The photocatalytic activity was enhanced.

  1. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  2. Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure.

    PubMed

    Jarupatrakorn, Jonggol; Don Tilley, T

    2002-07-17

    A molecular precursor approach involving simple grafting procedures was used to produce site-isolated titanium-supported epoxidation catalysts of high activity and selectivity. The tris(tert-butoxy)siloxy titanium complexes Ti[OSi(O(t)Bu)(3)](4) (TiSi4), ((i)PrO)Ti[OSi(O(t)Bu)(3)](3) (TiSi3), and ((t)BuO)(3)TiOSi(O(t)Bu)(3) (TiSi) react with the hydroxyl groups of amorphous Aerosil, mesoporous MCM-41, and SBA-15 via loss of HO(t)Bu and/or HOSi(O(t)Bu)(3) and introduction of titanium species onto the silica surface. Powder X-ray diffraction, nitrogen adsorption/desorption, infrared, and diffuse reflectance ultraviolet spectroscopies were used to investigate the structures and chemical natures of the surface-bound titanium species. The titanium species exist mainly in isolated, tetrahedral coordination environments. Increasing the number of siloxide ligands in the molecular precursor decreases the amount of titanium that can be introduced this way, but also enhances the catalytic activity and selectivity for the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. In addition, the high surface area mesoporous silicas (MCM-41 and SBA-15) are more effective than amorphous silica as supports for these catalysts. Supporting TiSi3 on the SBA-15 affords highly active cyclohexene epoxidation catalysts (0.25-1.77 wt % Ti loading) that provide turnover frequencies (TOFs) of 500-1500 h(-1) after 1 h (TOFs are reduced by about half after calcination). These results demonstrate that oxygen-rich siloxide complexes of titanium are useful as precursors to supported epoxidation catalysts.

  3. Preparation of TiO(2) layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization.

    PubMed

    Velten, D; Biehl, V; Aubertin, F; Valeske, B; Possart, W; Breme, J

    2002-01-01

    The excellent biocompatibility of titanium and its alloys used, for example, for medical devices, is associated with the properties of their surface oxide. For a better understanding of the tissue reaction in contact with the oxide layer, knowledge of the chemical and physical properties of this layer is of increasing interest. In this study, titania films were produced on cp-Ti and Ti6Al4V substrates by thermal oxidation, anodic oxidation, and by the sol-gel process. The thickness and structure of the films produced under different conditions were determined by ellipsometry, infrared spectroscopy, and X-ray diffraction measurements. The corrosion properties of these layers were investigated by current density-potential curves under physiological conditions. The oxide layers produced on cp-Ti and Ti6Al4V by thermal oxidation consist of TiO(2) in the rutile structure. For the anodized samples the structure of TiO(2) is a mixture of amorphous phase and anatase. The structure of the coatings produced by the sol-gel process for a constant annealing time depends on the annealing temperature, and with increasing temperature successively amorphous, anatase, and rutile structure is observed. Compared to the uncoated, polished substrate with a natural oxide layer, the corrosion resistance of cp-Ti and Ti6Al4V is increased for the samples with an oxide layer thickness of about 100 nm, independent of the oxidation procedure. Copyright 2001 John Wiley & Sons, Inc.

  4. Characterization of Fatigue Crack-Inititation Facets in Relation to Lifetime Variablility in Ti-6Al-4V (Preprint)

    DTIC Science & Technology

    2011-07-01

    in evaluation and design of materials for fracture critical applications. The material of interest in the present study was Ti-6Al-4V (Ti- 6 - 4 ...distribution unlimited. pertinent to fatigue crack-initiation in + titanium alloys and titanium alloys in general. The + titanium alloys, in particular Ti- 6 ...et al. [16] observed that subsurface crack initiation inTi- 6 -2- 4 - 6 occurred within a microtextured region in which the  phase was suitably oriented

  5. Real-time assessment of surface interactions with titanium passivation layer by surface plasmon resonance

    PubMed Central

    Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki

    2011-01-01

    The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862

  6. Taking into Account Interelement Interference in X-Ray Fluorescence Analysis of Thin Two-Layer Ti/V Systems

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Razuvaev, A. G.; Cherniaeva, E. A.; Gafarova, L. M.; Ershov, A. V.

    2018-03-01

    We propose a new method for determining the thickness of layers in x-ray fluorescence analysis of two-layer Ti/V systems, using easily fabricated standardized film layers obtained by sputter deposition of titanium on a polymer film substrate. We have calculated correction factors taking into account the level of attenuation for the intensity of the primary emission from the x-ray tube and the analytical line for the element of the bottom layer in the top layer, and the enhancement of the fluorescence intensity for the top layer by the emission of atoms in the bottom layer.

  7. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.

    2015-10-01

    Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.

  8. Determination of surface morphology of TiO2 nanostructure using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.

    2017-05-01

    Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.

  9. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  10. Evolution of plastic deformation and its effect on mechanical properties of laser additive repaired Ti64ELI titanium alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuang; Chen, Jing; Tan, Hua; Lin, Xin; Huang, Weidong

    2017-07-01

    In this paper, laser additive manufacturing (LAM) technology with powder feeding has been employed to fabricate 50%LAMed specimens (i.e. the volume fraction of the laser deposited zone was set to 50%). With aid of the 3D-DIC technique, the tensile deformation behavior of 50%LAMed Ti64ELI titanium alloy was investigated. The 50%LAMed specimen exhibits a significant characteristic of strength mismatch due to the heterogeneous microstructure. The tensile fracture of 50%LAMed specimen occurs in WSZ (wrought substrate zone), but the tensile strength is slightly higher and the plastic elongation is significantly lower than that of the wrought specimen. The 3D-DIC results shows that the 50%LAMed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and the maximal strain is invariably concentrated in WSZ. The ABAQUS simulation indicates that, the LDZ (laser deposited zone) can constrain the plastic deformation of the WSZ and biaxial stresses develop at the interface after yielding.

  11. The bonding of protective films of amorphic diamond to titanium

    NASA Astrophysics Data System (ADS)

    Collins, C. B.; Davanloo, F.; Lee, T. J.; Jander, D. R.; You, J. H.; Park, H.; Pivin, J. C.

    1992-04-01

    Films of amorphic diamond can be deposited from laser plasma ions without the use of catalysts such as hydrogen or fluorine. Prepared without columnar patterns of growth, the layers of this material have been reported to have ``bulk'' values of mechanical properties that have suggested their usage as protective coatings for metals. Described here is a study of the bonding and properties realized in one such example, the deposition of amorphic diamond on titanium. Measurements with Rutherford backscattering spectrometry and transmission electron microscopy showed that the diamond coatings deposited from laser plasmas were chemically bonded to Ti substrates in 100-200-Å-thick interfacial layers containing some crystalline precipitates of TiC. Resistance to wear was estimated with a modified sand blaster and in all cases the coating was worn away without any rupture or deterioration of the bonding layer. Such wear was greatly reduced and lifetimes of the coated samples were increased by a factor of better than 300 with only 2.7 μm of amorphic diamond.

  12. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments.

    PubMed

    Sittig, C; Textor, M; Spencer, N D; Wieland, M; Vallotton, P H

    1999-01-01

    The biocompatibility of commercially pure titanium and its alloys is closely related to their surface properties, with both the composition of the protecting oxide film and the surface topography playing an important role. Surfaces of commercially pure titanium and of the two alloys Ti-6Al-7Nb and Ti-6Al-4V (wt %) have been investigated following three different pretreatments: polishing, nitric acid passivation and pickling in nitric acid-hydrogen fluoride. Nitric acid treatment is found to substantially reduce the concentration of surface contaminants present after polishing. The natural 4-6 nm thick oxide layer on commercially pure titanium is composed of titanium oxide in different oxidation states (TiO2, Ti2O3 and TiO), while for the alloys, aluminium and niobium or vanadium are additionally present in oxidized form (Al2O3, Nb2O5 or V-oxides). The concentrations of the alloying elements at the surface are shown to be strongly dependent on the pretreatment process. While pickling increases the surface roughness of both commercially pure titanium and the alloys, different mechanisms appear to be involved. In the case of commercially pure titanium, the dissolution rate depends on grain orientation, whereas in the case of the two alloys, selective alpha-phase dissolution and enrichment of the beta-phase appears to occur. Copyright 1999 Kluwer Academic Publishers

  13. Relating Chemical and Topographical Modification of Materials to Macroscopic Adhesion

    DTIC Science & Technology

    2011-11-14

    CFRP, T800H/3900-2) and titanium alloy (Ti- 6Al - 4V ) surfaces are presented, before and after surface treatment, using a number of surface...Experimental: Titanium alloy (Ti- 6Al - 4V , an alloy consisting of 90% titanium , 6% aluminum and 4% vanadium, 0.063" thick) was purchased from...spectrum indicates a dramatic decrease in oxygen content and a concomitant increase in titanium metal alloy (Ti- 6Al - 4V ) at the surface. This

  14. Simulating Macrosegregation in Var Ingots of Titanium Alloy During Solidification

    DTIC Science & Technology

    2006-06-01

    spacings in Ti- 6Al - 4V were estimated. A summary-status of the use of software by VAR titanium -ingot producers in the USA is also given. In its...Ti- 6Al - 4V with a melting condition provided by RMI Titanium Company (Proposed Case 11). Two ingots are simulated; one is simulated assuming a...revealed a more intense band. Since primary arm spacings in titanium alloys are not available, primary dendrite arm spacings in Ti-6A1- 4V were

  15. [Effect of sandblasting particle sizes on bonding strength between porcelain and titanium fabricated by rapid laser forming].

    PubMed

    Zhang, Li-jun; Wang, Zhong-yi; Gao, Bo; Gao, Yang; Zhang, Chun-bao

    2009-11-01

    To evaluate the effect of sandblasting particle sizes of Al2O3 on the bonding strength between porcelain and titanium fabricated by laser rapid forming (LRF). The thermal expansion coefficient, roughness (Ra), contact angle, surface morphology of titanium surface and the bonding strength between titanium and porcelain were evaluated after the titanium surface being sandblasted using different sizes of Al2O3 (50 microm, 120 microm, 250 microm) at a pressure of 0.5 MPa. The cast titanium specimens were used as control, and were sandblasted with 50 microm Al2O3 at the same pressure. The thermal expansion coefficient of cast titanium [(9.84 +/- 0.42) x 10(-6)/ degrees C] and LRF Ti [(9.79 +/- 0.31) x 10(-6)/ degrees C) matched that of Noritake Ti-22 dentin porcelain [(8.93 +/- 0.36) x 10(-6)/ degrees C). When larger size of Al2O3 was used, the value of Ra and contact angle increased as well. There was no significant difference in bonding strength between the LRF Ti-50 microm [(25.91 +/- 1.02) MPa] and cast titanium [(26.42 +/- 1.65) MPa]. Significantly lower bonding strength was found in LRF Ti-120 microm [(21.86 +/- 1.64) MPa] and LRF Ti-250 microm [(19.96 +/- 1.03) MPa]. The bond strength between LRF Ti and Noritake Ti-22 dentin porcelain was above the lower limit value in the ISO 9693 (25 MPa) after using 50 microm Al2O3 sandblasting in 0.5MPa air pressure.

  16. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    PubMed

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO 2 ) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO 2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO 2 -coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive strategy using colloidal lithography.

    PubMed

    Singh, Ajay Vikram; Vyas, Varun; Salve, Tushar S; Cortelli, Daniele; Dellasega, David; Podestà, Alessandro; Milani, Paolo; Gade, W N

    2012-06-01

    The contamination of implant devices as a result of biofilm formation through bacterial infection has instigated major research in this area, particularly to understand the mechanism of bacterial cell/implant surface interactions and their preventions. In this paper, we demonstrate a controlled method of nanostructured titanium oxide surface synthesis using supersonic cluster beam depositions. The nanoscale surface characterization using atomic force microscopy and a profilometer display a regulated evolution in nanomorphology and physical properties. X-ray photoelectron spectroscopy analyses display a stoichiometric nanostructured TiO(2) film. Measurement of the water contact angle shows a nominal increase in the hydrophilic nature of ns-TiO(2) films, whereas the surface energy increases with decreasing contact angle. Bacterial species Staphylococcus aureus and Escherichia coli interaction with nanostructured surfaces shows an increase in adhesion and biofilm formation with increasing nanoscale morphological properties. Conversely, limiting ns-TiO(2) film distribution to micro/nanopatterned designed substrates integrated with bovine serum albumin functionalization leads to a reduction in biofilm formations due to a globally decreased bacterial cell-surface interaction area. The results have potential implications in inhibiting bacterial colonization and promoting mammalian cell-implant interactions.

  18. Investigation of the SERS Spectra of Hydroquinone Molecule Adsorbed on Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Polubotko, A. M.; Chelibanov, V. P.

    2018-01-01

    The paper analyzes the SERS spectrum of hydroquinone adsorbed on nanoparticles of titanium dioxide (TiO2). It is seen that the enhancement is stronger for a larger mean size of nanoparticles that is in agreement with an electrostatic approximation. In addition, it is found that there are the lines, which are forbidden in usual Raman spectra. There is also an enhancement caused both by the normal and tangential components of the electric field. This result is in agreement with the theory of SERS on semiconductor and dielectric substrates. The discovery of the forbidden lines indicates on the sufficiently large role of the strong quadrupole light-molecule interaction in such a system.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samoylenko, Vitaliy V., E-mail: samoylenko.vitaliy@mail.ru; Lenivtseva, Olga G., E-mail: lenivtseva-olga@mail.ru; Polyakov, Igor A., E-mail: status9@mail.ru

    In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of claddedmore » layers to the substrate, which exceeded cp-titanium strength characteristics.« less

  20. 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium Metal

    DTIC Science & Technology

    2007-01-01

    The alumina was used as received. Anatase, rutile, aluminum, and titania metal powders, titanium (IV) isopropoxide , and pinacolyl methylphosphonate...Synthesis. Titanophosphonate synthesis was adapted from Mutin et al.4 using titanium (IV) isopropoxide (TIP) and pinacolyl methylphosphonate (PMPA...REPORT 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium

  1. Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.

    PubMed

    Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho

    2013-04-01

    Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Severe Plastic Deformation of Commercial Pure Titanium (CP-Ti) for Biomedical Applications: A Brief Review

    NASA Astrophysics Data System (ADS)

    Mahmoodian, Reza; Annuar, N. Syahira M.; Faraji, Ghader; Bahar, Nadia Dayana; Razak, Bushroa Abd; Sparham, Mahdi

    2017-11-01

    This paper reviews severe plastic deformation (SPD) techniques for producing ultrafine-grained (UFG) and nanostructured commercial pure titanium (CP-Ti) for biomedical applications as the best alternative to titanium alloys. SPD processes, effective parameters, and advantages of nanostructured CP-Ti over coarse-grained (CG) material and Ti alloys are briefly reviewed. It is reported that nanostructured CP-Ti processed via SPD exhibits higher mechanical strength comparable to Ti alloys but better biological response and superior biocompatibility. Also, different surface modification techniques offer different results on UFG and CG CP-Ti, leading to nanoscale surface topography in UFG samples. Overall, it is reported that nanostructured CP-Ti processed by SPD could be considered to be the best candidate for biomedical implants.

  3. Quantitative analysis of interfacial chemistry in TiC/Ti composite using electron-energy-loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, M.; Jiang, W.; Zhang, G.

    Due to titanium carbide`s physical and elastic properties, titanium carbide particles are widely used as a reinforcement in titanium-alloy-based composites. Previous studies have shown that no obvious reaction products were detected on the interface region in TiC/Ti alloy systems; instead, a nonstoichiometric region in the TiC particle between the Ti{sub 6}Al{sub 4}V alloy and the stoichiometric TiC was found. However, the nature and the extent of the nonstoichiometric zone have not been quantitatively described. The present communication reports some results of a parallel electron-energy-loss spectroscopy (PEELS) study on a 10 vol pct TiC-particle-reinforced IMI-829 metal-matrix composite.

  4. Photoinduced Charge Transfer from Titania to Surface Doping Site

    PubMed Central

    Inerbaev, Talgat; Hoefelmeyer, James D.; Kilin, Dmitri S.

    2013-01-01

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  5. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    PubMed

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO 2 . Charge transfer from the photo-excited TiO 2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO 2 nanorod and catalytic site. A slab of TiO 2 represents a fragment of TiO 2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO 2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO 2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting.

  6. Relationship Between Crystalline Structure and Hardness of Ti-Si-N-O Coatings Fabricated by dc Sputtering

    NASA Astrophysics Data System (ADS)

    García-González, Leandro; Hernández-Torres, Julián; Mendoza-Barrera, Claudia; Meléndez-Lira, Miguel; García-Ramírez, Pedro J.; Martínez-Castillo, Jaime; Sauceda, Ángel; Herrera-May, Agustin L.; Muñoz Saldaña, Juan; Espinoza-Beltrán, Francisco J.

    2008-08-01

    Ti-Si-N-O coatings were deposited on AISI D2 tool steel and silicon substrates by dc reactive magnetron co-sputtering using a target of Ti-Si with a constant area ratio of 0.2. The substrate temperature was 400 °C and reactive atmosphere of nitrogen and argon. For all samples, argon flow was maintained constant at 25 sccm, while the flow of the nitrogen was varied to analyze the structural changes related to chemical composition and resistivity. According to results obtained by x-ray diffraction and stoichiometry calculations by x-ray energy dispersive spectroscopy the Ti-Si-N-O coatings contain two solid solutions. The higher crystalline part corresponds to titanium oxynitrure. Hardness tests on the coatings were carried out using the indentation work model and the hardness value was determined. Finally, the values of hardness were corroborated by nanoindentation test, and values of Young’s modulus and elastic recovery were discussed. We concluded that F2TSN sample ( F Ar = 25 sccm, F N = 5 sccm, P = 200 W, and P W = 8.9 × 10-3 mbar) presented the greatest hardness and the lowest resistivity values, due to its preferential crystalline orientation.

  7. Influence of corrosion on lipopolysaccharide affinity for two different titanium materials.

    PubMed

    Barão, Valentim Adelino Ricardo; Mathew, Mathew T; Yuan, Judy Chia-Chun; Knoernschild, Kent L; Assunção, Wirley Gonçalves; Wimmer, Markus A; Sukotjo, Cortino

    2013-12-01

    Titanium is subject to corrosion in the oral cavity, which could contribute to periimplantitis. However, the effect of corrosion on the lipopolysaccharide affinity for titanium remains unknown. This study evaluated the role of corrosion (in artificial saliva at pHs 3, 6.5, and 9) on the lipopolysaccharide (LPS) affinity for commercially pure titanium (cp-Ti) and Ti-6Al-4V alloy. Seventy-two titanium disks were anodically polarized in a controlled environment (n=9). Control specimens were not corroded. Deionized water with different concentrations of LPS (1.5, 15, and 150 μg/mL) were used to treat the disks for 24 hours to investigate LPS adherence (n=3). Then specimens were immersed in LPS-free water to evaluate LPS elution at 24, 48, and 72 hours. Data were analyzed by the 2-way, 3-way, and 3-way repeated measures ANOVA, t tests, and the Tukey honestly significant difference (HSD) tests (α=.05). A greater corrosion rate of cp-Ti and Ti-6Al-4V alloy and a higher LPS adherence to titanium surfaces (P<.05) were noted at acidic pH. The LPS affinity was higher for the Ti-6Al-4V alloy than for cp-Ti (P<.05). More LPS was eluted from titanium surfaces after a 24-hour interval. Lipopolysaccharide affinity for cp-Ti and Ti-6Al-4V alloy is influenced by the corrosion process. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  8. Nanotubular topography enhances the bioactivity of titanium implants.

    PubMed

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Environmental protection to 922K (1200 F) for titanium alloys

    NASA Technical Reports Server (NTRS)

    Groves, M. T.

    1973-01-01

    Evaluations are presented of potential coating systems for protection of titanium alloys from hot-salt stress-corrosion up to temperatures of 755 K (900 F) and from oxidation embrittlement up to temperature of 922 K (1200 F). Diffusion type coatings containing Si, Al, Cr, Ni or Fe as single coating elements or in various combinations were evaluated for oxidation protection, hot-salt stress-corrosion (HSSC) resistance, effects on tensile properties, fatigue properties, erosion resistance and ballistic impact resistance on an alpha and beta phase titanium alloy (Ti-6Al-2Sn-4Zr-2Mo). All of the coatings investigated demonstrated excellent oxidation protectiveness, but none of the coatings provided protection from hot-salt stress-corrosion. Experimental results indicated that both the aluminide and silicide types of coatings actually decreased the HSSC resistance of the substrate alloy. The types of coatings which have typically been used for oxidation protection of refractory metals and nickel base superalloys are not suitable for titanium alloys because they increase the susceptibility to hot-salt stress-corrosion, and that entirely new coating concepts must be developed for titanium alloy protection in advanced turbine engines.

  10. Microstructural Evolution in Friction Stir Welding of Ti-5111

    DTIC Science & Technology

    2010-08-01

    titanium and titanium aluminide alloys—an overview.” Materials Science and Engineering A243 (1998) 1-24 [Semiatin 1999] S.L. Semiatin, V...ABSTRACT Titanium and titanium alloys have shown excellent mechanical, physical, and corrosion properties. To address the needs of future naval...Texture; Phase Transformation Ti-5111 Titanium 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 174 19a

  11. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    NASA Astrophysics Data System (ADS)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  12. Surface Modification of C17200 Copper-Beryllium Alloy by Plasma Nitriding of Cu-Ti Gradient Film

    NASA Astrophysics Data System (ADS)

    Zhu, Y. D.; Yan, M. F.; Zhang, Y. X.; Zhang, C. S.

    2018-03-01

    In the present work, a copper-titanium film of gradient composition was firstly fabricated by the dual magnetron sputtering through power control and plasma nitriding of the film was then conducted to modify C17200 Cu alloy. The results showed that the prepared gradient Cu-Ti film by magnetron sputtering was amorphous. After plasma nitriding at 650 °C, crystalline Cu-Ti intermetallics appeared in the multi-phase coating, including CuTi2, Cu3Ti, Cu3Ti2 and CuTi. Moreover, even though the plasma nitriding duration of the gradient Cu-Ti film was only 0.5 h, the mechanical properties of the modified Cu surface were obviously improved, with the surface hardness enhanced to be 417 HV0.01, the wear rate to be 0.32 × 10-14 m3/Nm and the friction coefficient to be 0.075 at the load of 10 N, which are all more excellent than the C17200 Cu alloy. In addition, the wear mechanism also changed from adhesion wear for C17200 Cu substrate to abrasive wear for the modified surface.

  13. Microstructure and properties of Ti-Fe-Y alloy fabricated by laser-aided direct metal deposition

    NASA Astrophysics Data System (ADS)

    Wang, Cunshan; Han, Liying

    2018-04-01

    Ti-Fe-Y alloys were designed using a "cluster-plus-glue-atom" model and then were prepared by laser-aided direct metal deposition (LDMD) on a pure titanium substrate. The influence of the Y addition on the microstructure and properties of the alloys were investigated. The results show that the alloys are composed of β-Ti solid solution and FeTi compound. The addition of Y not only suppresses the formation of Ti4Fe2O oxide but also increases the supercooling degree of the melt, leading to the grain refinement and the increase in the solid solution of the β-Ti. Meanwhile, the microstructure changes sequentially from eutectic to hypereutectic to hypoeutectic with the increasing of the Y addition. The strengest Ti-Fe-Y alloy has a dispersed eutectic structure and exhibits a good combination of mechanical, tribological, and forming properties, which is superior to that obtained for the binary Ti70.6Fe29.4 eutectic alloy. This makes the alloy a promising candidate as a LDMD material.

  14. Fabrication and characterization of anisotype heterojunctions n-TiN/p-CdTe

    NASA Astrophysics Data System (ADS)

    Solovan, M. M.; Brus, V. V.; Maryanchuk, P. D.; Ilashchuk, M. I.; Rappich, J.; Nickel, N.; Abashin, S. L.

    2014-01-01

    Photosensitive heterojunctions n-TiN/p-CdTe were fabricated for the first time by means of titanium nitride thin film deposition (n-type conductivity) by the reactive magnetron sputtering onto freshly etched single crystal substrates CdTe (1 1 0) of p-type conductivity. The temperature dependences of the height of the potential barrier and series resistance of the n-TiN/p-CdTe heterojunction were investigated. The dominating current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage Voc = 0.35 V, short-circuit current Isc = 1.88 mA см-2 and fill factor FF = 0.51 under illumination 80 mW сm-2.

  15. Hydrothermally grown and self-assembled modified titanium and nickel oxide composite nanosheets on Nitinol-based fibers for efficient solid phase microextraction.

    PubMed

    Wang, Huiju; Song, Wenlan; Zhang, Min; Zhen, Qi; Guo, Mei; Zhang, Yida; Du, Xinzhen

    2016-10-14

    A novel titanium and nickel oxide composite nanosheets (TiO 2 /NiOCNSs) coating was in situ grown on a Nitinol (NiTi) wire by direct hydrothermal treatment and modified by self-assembly of trichlorophenylsilane for solid phase microextraction (SPME). TiO 2 /NiOCNSs were radially oriented and chemically bonded to the NiTi substrate with double-faced open access sites. Moreover the phenyl modified TiO 2 /NiOCNSs (TiO 2 /NiOCNSs-Ph) coating exhibited original surface supporting framework favorable for effective SPME. The extraction performance of TiO 2 /NiOCNSs-Ph coated NiTi (NiTi-TiO 2 /NiOCNSs-Ph) fiber was investigated for the concentration and detection of ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters and polychlorinated biphenyls coupled to HPLC with UV detection. The novel fiber exhibited better selectivity for UV filters and PAHs and presented greater extraction capability compared to commercial polydimethylsiloxane and polyacrylate fibers. Under the optimized conditions for SPME of UV filters, the proposed method presented linear ranges from 0.1 to 300μg/L with correlation coefficients of higher than 0.999 and limits of detection from 0.030μg/L to 0.064μg/L. Relative standard deviations (RSDs) were below 7.16% and 8.42% for intra-day and inter-day measurements with the single fiber, respectively. Furthermore RSDs for fiber-to-fiber reproducibility from 6.57% to 8.93% were achieved. The NiTi-TiO 2 /NiOCNSs-Ph fiber can be used up to 200 times. The proposed method was successfully applied to the preconcentration and determination of trace target UV filters in different environmental water samples. The relative recoveries from 87.3% to 104% were obtained with RSDs less than 8.7%. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses.

    PubMed

    Li, Jing; Shi, Ling-ling; Zhu, Zhen-dong; He, Qiang; Ai, Hong-jun; Xu, Jian

    2013-05-01

    In comparison with titanium and its alloys, Zr61Ti2Cu25Al12 (ZT1) bulk metallic glass (BMG) manifests a good combination of high strength, high fracture toughness and lower Young's modulus. To examine its biocompatibility required for potential use in dental implants, this BMG was used as a cell growth subtract for three types of cell lines, L929 fibroblasts, human umbilical vein endothelial cells (HUVEC), and osteoblast-like MG63 cells. For a comparison, these cell lines were in parallel cultured and grown also on commercially pure titanium (CP-Ti) and Ti6-Al4-V alloy (Ti64). Cellular responses on the three metals, including adhesion, morphology and viability, were characterized using the SEM visualization and CCK-8 assay. Furthermore, real-time RT-PCR was used to measure the activity of integrin β, alkaline phosphatase (ALP) and type I collagen (COL I) in adherent MG63 cells. As indicated, in all cases of three cell lines, no significant differences in the initial attachment and viability/proliferation were found between ZT1, CP-Ti, and Ti64 until 5d of incubation period. It means that the biocompatibility in cellular response for ZT1 BMG is comparable to Ti and its alloys. For gene expression of integrin β, ALP and COL I, mRNA level from osteoblast cells grown on ZT1 substrates is significantly higher than that on the CP-Ti and Ti64. It suggests that the adhesion and differentiation of osteoblasts grown on ZT1 are even superior to those on the CP-Ti and Ti64 alloy, then promoting bone formation. The good biocompatibility of ZT1 BMG is associated with the formation of zirconium oxide layer on the surface and good corrosion-resistance in physiological environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Ho-Jin; Yun, Young-Pil; Han, Choong-Wan

    2011-09-23

    Highlights: {yields} We examine bone metabolism of engineered alendronate attached to Ti surfaces. {yields} Alendronate-immobilized Ti enhances activation of osteoblast differentiation. {yields} Alendronate-immobilized Ti inhibits osteoclast differentiation. {yields} Alendronate-immobilized Ti may be a bioactive implant with dual functions. -- Abstract: The failure of orthopedic and dental implants has been attributed mainly to loosening of the implant from host bone, which may be due to weak bonding of the implant material to bone tissue. Titanium (Ti) is used in the field of orthopedic and dental implants because of its excellent biocompatibility and outstanding mechanical properties. Therefore, in the field of materialsmore » science and tissue engineering, there has been extensive research to immobilize bioactive molecules on the surface of implant materials in order to provide the implants with improved adhesion to the host bone tissue. In this study, chemically active functional groups were introduced on the surface of Ti by a grafting reaction with heparin and then the Ti was functionalized by immobilizing alendronate onto the heparin-grafted surface. In the MC3T3-E1 cell osteogenic differentiation study, the alendronate-immobilized Ti substrates significantly enhanced alkaline phosphatase activity (ALP) and calcium content. Additionally, nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation of RAW264.7 cells was inhibited with the alendronate-immobilized Ti as confirmed by TRAP analysis. Real time PCR analysis showed that mRNA expressions of osteocalcin and osteopontin, which are markers for osteogenesis, were upregulated in MC3T3-E1 cells cultured on alendronate-immobilized Ti. The mRNA expressions of TRAP and Cathepsin K, markers for osteoclastogenesis, in RAW264.7 cells cultured on alendronate-immobilized Ti were down-regulated. Our study suggests that alendronate-immobilized Ti may be a bioactive implant with dual functions to enhance osteoblast differentiation and to inhibit osteoclast differentiation simultaneously.« less

  18. Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates

    NASA Astrophysics Data System (ADS)

    Sun, Yuyang; Yang, Lulu; Liao, Fan; Dang, Qian; Shao, Mingwang

    2018-06-01

    The Ag-coated titanium dioxide nanotube arrays (Ag-coated TNTs) are obtained via the deposition of Ag nanoparticles on the two-step anodized TNTs. The wall thickness of TNTs is modulated via finite difference time domain simulation to get the favorable electromagnetic field for surface enhanced Raman scattering (SERS). Ag-coated TNTs with optimal wall thickness of 20 nm were employed as the SERS substrates to detect 2-mercaptobenzoxazole, which show superior detection sensitivity and uniformity. In addition, due to the photocatalysis of TNTs, the SERS substrates could clean themselves and be repeatedly used by photo-degradation of target molecules under the ultra-violet irradiation. The Ag-coated TNTs are a kind of bifunctional SERS substrates which can produce high-quality SERS signals and reuse to reduce the cost.

  19. Titanium: Industrial Base, Price Trends, and Technology Initiatives

    DTIC Science & Technology

    2009-01-01

    respectively.3 All titanium metal production begins with rutile (titanium oxide, or TiO2). High-titania slag , produced by ilmen- ite smelting, is the first...Ilmenite ores are used in iron production. They leave a TiO2-rich slag , which is usually upgraded to be used in titanium production. 4 According to the...and least expensive process for producing titanium sponge, has four major steps. First, rutile con- centrate or synthetic rutile (titanium slag ) is

  20. Investigations into the structure of PEO-layers for understanding of layer formation

    NASA Astrophysics Data System (ADS)

    Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.

    2018-06-01

    Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.

  1. Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants.

    PubMed

    Romero-Gavilan, F; Araújo-Gomes, N; Sánchez-Pérez, A M; García-Arnáez, I; Elortza, F; Azkargorta, M; de Llano, J J Martín; Carda, C; Gurruchaga, M; Suay, J; Goñi, I

    2018-02-01

    There is an ever-increasing need to develop dental implants with ideal characteristics to achieve specific and desired biological response in the scope of improve the healing process post-implantation. Following that premise, enhancing and optimizing titanium implants through superficial treatments, like silica sol-gel hybrid coatings, are regarded as a route of future research in this area. These coatings change the physicochemical properties of the implant, ultimately affecting its biological characteristics. Sandblasted acid-etched titanium (SAE-Ti) and a silica hybrid sol-gel coating (35M35G30T) applied onto the Ti substrate were examined. The results of in vitro and in vivo tests and the analysis of the protein layer adsorbed to each surface were compared and discussed. In vitro analysis with MC3T3-E1 osteoblastic cells, showed that the sol-gel coating raised the osteogenic activity potential of the implants (the expression of osteogenic markers, the alkaline phosphatase (ALP) and IL-6 mRNAs, increased). In the in vivo experiments using as model rabbit tibiae, both types of surfaces promoted osseointegration. However, the coated implants demonstrated a clear increase in the inflammatory activity in comparison with SAE-Ti. Mass spectrometry (LC-MS/MS) analysis showed differences in the composition of protein layers formed on the two tested surfaces. Large quantities of apolipoproteins were found attached predominantly to SAE-Ti. The 35M35G30T coating adsorbed a significant quantity of complement proteins, which might be related to the material intrinsic bioactivity, following an associated, natural and controlled immune response. The correlation between the proteomic data and the in vitro and in vivo outcomes is discussed on this experimental work. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response.

    PubMed

    de Tacconi, N R; Chenthamarakshan, C R; Yogeeswaran, G; Watcharenwong, A; de Zoysa, R S; Basit, N A; Rajeshwar, K

    2006-12-21

    The photoelectrochemical response of nanoporous films, obtained by anodization of Ti and W substrates in a variety of corrosive media and at preselected voltages in the range from 10 to 60 V, was studied. The as-deposited films were subjected to thermal anneal and characterized by scanning electron microscopy and X-ray diffraction. Along with the anodization media developed by previous authors, the effect of poly(ethylene glycol) (PEG 400) or D-mannitol as a modifier to the NH4F electrolyte and glycerol addition to the oxalic acid electrolyte was studied for TiO2 and WO3, respectively. In general, intermediate anodization voltages and film growth times yielded excellent-quality photoelectrochemical response for both TiO2 and WO3 as assessed by linear-sweep photovoltammetry and photoaction spectra. The photooxidation of water and formate species was used as reaction probes to assess the photoresponse quality of the nanoporous oxide semiconductor films. In the presence of formate as an electron donor, the incident photon to electron conversion efficiency (IPCE) ranged from approximately 130% to approximately 200% for both TiO2 and WO3 depending on the film preparation protocol. The best photoactive films were obtained from poly(ethylene glycol) (PEG 400) containing NH4F for TiO2 and from aqueous NaF for WO3.

  3. Titanium induced polarity inversion in ordered (In,Ga)N/GaN nanocolumns.

    PubMed

    Kong, X; Li, H; Albert, S; Bengoechea-Encabo, A; Sanchez-Garcia, M A; Calleja, E; Draxl, C; Trampert, A

    2016-02-12

    We report on the formation of polarity inversion in ordered (In,Ga)N/GaN nanocolumns grown on a Ti-masked GaN-buffered sapphire substrate by plasma assisted molecular beam epitaxy. High-resolution transmission electron microscopy and electron energy-loss spectroscopy reveal a stacking fault-like planar defect at the homoepitaxial GaN interface due to Ti incorporation, triggering the generation of N-polar domains in Ga-polar nanocolumns. Density functional theory calculations are applied to clarify the atomic configurations of a Ti monolayer occupation on the GaN (0002) plane and to prove the inversion effect. The polarity inversion leads to an enhanced indium incorporation in the subsequent (In,Ga)N segment of the nanocolumn. This study provides a deeper understanding of the effects of Ti mask in the well-controlled selective area growth of (In,Ga)N/GaN nanocolumns.

  4. Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water

    NASA Astrophysics Data System (ADS)

    Szkoda, Mariusz; Siuzdak, Katarzyna; Lisowska-Oleksiak, Anna

    2016-10-01

    Titanium dioxide is a well-known photoactive semiconductor with a variety of possible applications. The procedure of pollutant degradation is mainly performed using TiO2 powder suspension. It can also be exploited an immobilized catalyst on a solid support. Morphology and chemical doping have a great influence on TiO2 activity under illumination. Here we compare photoactivity of titania nanotube arrays doped with non-metal atoms: nitrogen, iodine and boron applied for photodegradation of organic dye - methylene blue and terephtalic acid. The doped samples act as a much better photocatalyst in the degradation process of methylene blue and lead to the formation of much higher amount of hydroxyl radicals (•OH) than undoped TiO2 nanotube arrays. The use of a catalyst active under solar light illumination in the form of thin films on a stable substrate can be scaled up for an industrial application.

  5. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods.

    PubMed

    Nam, Sang-Hun; Ju, Dong-Woo; Boo, Jin-Hyo

    2014-12-01

    In this report, single crystalline rutile TiO2 nanoparticles and nanorods were synthesized via the hydrothermal method using titanium tetra-isopropoxide as a precursor then, these were coated on top of a fluorine-doped tin oxide (FTO) substrate by using a doctor blade and direct deposition, respectively. Consequently, TiO2 nanorods-based dye-sensitized solar cells (DSSC) exhibit a J(sc) of 3.37 mA/cm2, a V(oc) of 0.82 V and fill factor of 60.1% with an overall conversion efficiency of 1.66%. This result shows an increase of around 38% for current density and 35% for conversion efficiency. Also, with respect to the impedance data, TiO2 nanorods-based DSSCs had smaller semicircles than did the nanoparticles-based DSSCs. These results demonstrate that the nanorod structure can have fast electron transport and reduced charge recombination.

  6. Effect of Liquid Feed-Stock Composition on the Morphology of Titanium Dioxide Films Deposited by Thermal Plasma Spray.

    PubMed

    Adán, C; Marugán, J; van Grieken, R; Chien, K; Pershin, L; Coyle, T; Mostaghimi, J

    2015-09-01

    Titanium dioxide coatings were deposited on the surface of titanium foils by Thermal Plasma Spray (TPS) process. Three different TiO2 coatings were prepared using the commercial TiO2-P25 nanopowder and titanium isopropoxide precursor solution as feed-stocks. Structure and morphology of the TiO2-P25 powder and the plasma sprayed coatings were analyzed by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption-desorption isotherms, UV-visible spectroscopy and Scanning Electron Microscopy (SEM). XRD and Raman results indicate that the TiO2 coatings were composed of an anatase/rutile mixture that is conditioned by the suspension composition used to be sprayed. Coatings prepared from TiO2-P25 nanoparticles in water suspension (NW-P25) and titanium isopropoxide solution suspension (NSP-P25) are incorporated into the coatings without phase transformation and their anatase/rutile ratio percentage remains very similar to the starting TiO2-P25 powder. On the contrary, when titanium isopropoxide solution is used for spraying (SP), the amount of rutile increases in the final TiO2 coating. SEM analysis also reveals different microstructure morphology, coating thickness, density and porosity of the three TiO2 films that depend significantly on the type of feed-stock employed. Interestingly, we have observed the role of titanium isopropoxide in the formation of more porous and cohesive layers of TiO2. The NSP-P25 coating, prepared with a mix of titanium isopropoxide solution based on TiO2 nanoparticles, presents higher deposition efficiencies and higher coating thickness than the film prepared with nanoparticles suspended in water (NW-P25) or with titanium isopropoxide solutions (SP). This is due to the precursor solution is acting as the cement between TiO2 nanoparticles, improving the cohesive strength of the coating. In sum, NSP-P25 and NW-P25 coatings display a good photocatalytic potential, based on their light absorption properties and mechanical stability. Band gap of the nanoparticulated coatings displays a light absorption at wavelengths below 379 and 399 nm for NW-P25 and NSP-P25 respectively. On the contrary, the SP coating, despite to present lower band-gap value, has bad cohesive properties with surface crackings that makes it mechanically unstable. Therefore, mixtures of P25 nanoparticles with titanium isopropoxide as feed-stock materials can produce promising photocatalytic coatings.

  7. Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications.

    PubMed

    Guillemot, F; Porté, M C; Labrugère, C; Baquey, Ch

    2002-11-01

    Because of the Ti(3+) defects responsibility for dissociative adsorption of water onto TiO(2) surfaces and due to the hydroxyls influence on the biological behavior of titanium, controlling the Ti(3+) surface defects density by means of low-temperature vacuum annealing is proposed to improve the bone/implant interactions. Experiments have been carried out on Ti-6Al-4V alloys exhibiting a porous surface generated primarily by chemical treatment. XPS investigations have shown that low-temperature vacuum annealing can create a controlled number of Ti(3+) defects (up to 21% Ti(3+)/Ti(4+) at 573 K). High Ti(3+) defect concentration is linked to surface porosity. Such surfaces, exhibiting high hydrophilicity and microporosity, would confer to titanium biomaterials a great ability to interact with surrounding proteins and cells and hence would favor the bone anchorage of as-treated implants.

  8. The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis

    DOE PAGES

    Yan, Danhua; Tao, Jing; Kisslinger, Kim; ...

    2015-10-13

    Here we develop a novel technique for preparing high quality Ti-doped hematite thin films for photoelectrochemical (PEC) water splitting, through sputtering deposition of metallic iron films from an iron target embedded with titanium (dopants) pellets, followed by a thermal oxidation step that turns the metal films into doped hematite. It is found that the hematite domain size can be tuned from ~10 nm to over 100 nm by adjusting the sputtering atmosphere from more oxidative to mostly inert. The better crystallinity at a larger domain size ensures excellent PEC water splitting performance, leading to record high photocurrent from pure planarmore » hematite thin films on FTO substrates. Titanium doping further enhances the PEC performance of hematite photoanodes. The photocurrent is improved by 50%, with a titanium dopant concentration as low as 0.5 atom%. As a result, it is also found that the role of the titanium dopant in improving the PEC performance is not apparently related to the films’ electrical conductivity which had been widely believed, but is more likely due to the passivation of surface defects by the titanium dopants.« less

  9. Infrared spectroscopy and density functional calculations on titanium-dinitrogen complexes

    NASA Astrophysics Data System (ADS)

    Yoo, Hae-Wook; Choi, Changhyeok; Cho, Soo Gyeong; Jung, Yousung; Choi, Myong Yong

    2018-04-01

    Titanium-nitrogen complexes were generated by laser ablated titanium (Ti) atoms and N2 gas molecules in this study. These complexes were isolated on the pre-deposited solid Ar matrix on the pre-cooled KBr window (T ∼ 5.4 K), allowing infrared spectra to be measured. Laser ablation experiments with 15N2 isotope provided distinct isotopic shifts in the infrared spectra that strongly implicated the formation of titanium-nitrogen complexes, Ti(NN)x. Density functional theory (DFT) calculations were employed to investigate the molecular structures, electronic ground state, relative energies, and IR frequencies of the anticipated Ti(NN)x complexes. Based on laser ablation experiments and DFT calculations, we were able to assign multiple Ti(NN)x (x = 1-6) species. Particularly, Ti(NN)5 and Ti(NN)6, which have high nitrogen content, may serve as good precursors in preparing polynitrogens.

  10. Producing High-Quality Titanium Alloy by a Cost-Effective Route Combining Fast Heating and Hot Processing

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Raynova, Stella; Singh, Ajit; Zhao, Qinyang; Romero, Carlos; Bolzoni, Leandro

    2018-02-01

    Powder metallurgy is a very attractive method for producing titanium alloys, which can be near-net-shape formed and have freedom in composition selection. However, applications are still limited due to product affordability. In this paper, we will discuss a possible cost-effective route, combining fast heating and hot processing, to produce titanium alloys with similar or even better mechanical properties than that of ingot metallurgy titanium alloys. Two titanium alloys, Ti-5Al-5V-5Mo-3Cr (Ti-5553) and Ti-5Fe, were successfully produced from HDH titanium powder and other master alloy powders using the proposed processing route. The effect of the processing route on microstructural variation and mechanical properties have been discussed.

  11. Environmental protection of titanium alloys at high temperatures

    NASA Technical Reports Server (NTRS)

    Wright, I. G.; Wood, R. A.; Seltzer, M. S.

    1974-01-01

    Various concepts were evaluated for protecting titanium alloys from oxygen contamination at 922 K (1200 F) and from hot-salt stress-corrosion at 755 K (900 F). It is indicated that oxygen-contamination resistance can be provided by a number of systems, but for hot-salt stress-corrosion resistance, factors such as coating integrity become very important. Titanium aluminides resist oxygen ingress at 922 K through the formation of alumina (on TiAl3) or modified TiO2 (on Ti3Al, TiAl) scales. TiAl has some resistance to attack by hot salt, but has limited ductility. Ductile Ti-Ni and Ti-Nb-Cr-Al alloys provide limited resistance to oxygen ingress, but are not greatly susceptible to hot-salt stress-corrosion cracking.

  12. Sol-gel preparation of silica and titania thin films

    NASA Astrophysics Data System (ADS)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  13. Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaban, Yasser A.; El Sayed, Mohamed A.; El Maradny, Amr A.; Al Farawati, Radwan Kh.; Al Zobidi, Mosa I.; Khan, Shahed U. M.

    2016-03-01

    In this work, the sonicated sol-gel method was used for synthesizing carbon-modified titanium oxide nanoparticles. Carbon incorporation was achieved by using titanium (IV) isopropoxide as a titanium and carbon-containing precursor. The photocatalytic efficiency of the synthesized photocatalyst was assessed by examining the photocatalytic removal of polychlorinated biphenyls (PCBs) from aqueous solution. For comparison, unmodified (regular) titanium dioxide (n-TiO2) was used as a reference catalyst. To confirm the carbon incorporation in CM-n-TiO2 nanoparticles, energy dispersive spectroscopy (EDS) analysis was used. Significantly, the bandgap energy was found to be reduced from 2.99 eV for n-TiO2 to 1.8 eV for CM-n-TiO2, which in turn improved the performance of CM-n-TiO2 toward the photocatalytic removal of PCBs. The effects of CM-n-TiO2 loading, PCBs concentration, and pH of the solution on the photodegradation rate of PCBs were investigated. The highest removal rate was found to be at pH 5 and CM-n-TiO2 loading of 0.5 g L-1. According to Langmuir-Hinshelwood model, the photodegradation of PCBs using CM-n-TiO2 followed a pseudo-first order reaction kinetics.

  14. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  15. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    PubMed

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehmood, Faisal; General Dynamics Information Technology, Inc., Dayton, Ohio 45433; Pachter, Ruth, E-mail: ruth.pachter@us.af.mil

    Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green'smore » (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G{sub 0}W{sub 0}, GW{sub 0} to partially self-consistent sc-GW{sub 0}, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW{sub 0}-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.« less

  17. Machinability evaluation of titanium alloys (Part 2)--Analyses of cutting force and spindle motor current.

    PubMed

    Kikuchi, Masafumi; Okuno, Osamu

    2004-12-01

    To establish a method of determining the machinability of dental materials for CAD/CAM systems, the machinability of titanium, two titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb), and free-cutting brass was evaluated through cutting force and spindle motor current. The metals were slotted using a milling machine and square end mills at four cutting conditions. Both the static and dynamic components of the cutting force represented well the machinability of the metals tested: the machinability of Ti-6Al-4V and Ti-6Al-7Nb was worse than that of titanium, while that of free-cutting brass was better. On the other hand, the results indicated that the spindle motor current was not sensitive enough to detect the material difference among the titanium and its alloys.

  18. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.

    PubMed

    Nicula, R; Lüthen, F; Stir, M; Nebe, B; Burkel, E

    2007-11-01

    The reason for the extended use of titanium and its alloys as implant biomaterials stems from their lower elastic modulus, their superior biocompatibility and improved corrosion resistance compared to the more conventional stainless steel and cobalt-based alloys [Niinomi, M., Hattori, T., Niwa, S., 2004. Material characteristics and biocompatibility of low rigidity titanium alloys for biomedical applications. In: Jaszemski, M.J., Trantolo, D.J., Lewandrowski, K.U., Hasirci, V., Altobelli, D.E., Wise, D.L. (Eds.), Biomaterials in Orthopedics. Marcel Dekker Inc., New York, pp. 41-62]. Nanostructured titanium-based biomaterials with tailored porosity are important for cell-adhesion, viability, differentiation and growth. Newer technologies like foaming or low-density core processing were recently used for the surface modification of titanium alloy implant bodies to stimulate bone in-growth and improve osseointegration and cell-adhesion, which in turn play a key role in the acceptance of the implants. We here report preliminary results concerning the synthesis of mesoporous titanium alloy bodies by spark plasma sintering. Nanocrystalline cp Ti, Ti-6Al-4V, Ti-Al-V-Cr and Ti-Mn-V-Cr-Al alloy powders were prepared by high-energy wet-milling and sintered to either full-density (cp Ti, Ti-Al-V) or uniform porous (Ti-Al-V-Cr, Ti-Mn-V-Cr-Al) bulk specimens by field-assisted spark plasma sintering (FAST/SPS). Cellular interactions with the porous titanium alloy surfaces were tested with osteoblast-like human MG-63 cells. Cell morphology was investigated by scanning electron microscopy (SEM). The SEM analysis results were correlated with the alloy chemistry and the topographic features of the surface, namely porosity and roughness.

  19. Absorption, Distribution and Excretion of Four Forms of Titanium Dioxide Pigment in the Rat.

    PubMed

    Farrell, Thomas P; Magnuson, Berna

    2017-08-01

    Titanium dioxide (TiO 2 ) is a white color additive that has a long history of global approval and use in food. There is, however, considerable confusion regarding the applicability of the biological effects of novel, engineered, nano-sized forms of TiO 2 developed for nonpigmentary applications to the safety of oral exposure to food grade TiO 2 pigment. The objective of this study was to assess the absorption, distribution, and routes of excretion in rats after oral exposure to food grade TiO 2 . Four different grades of TiO 2 (200 ppm) or control (0 ppm) diets were fed to rats for 7 consecutive days, followed by control diet only for 1, 24, or 72 h. Concentrations of titanium in liver, kidney and muscle were mainly below the limit of detection (<0.1 to < 0.2 mg/kg wet weight); tissue concentrations of titanium above the LOD were in the range of 0.1 to 0.3 mg/kg wet weight for all groups. Whole blood concentrations of titanium were <0.04 mg/L for all groups. Urinary excretion of titanium was equivalent to <2% daily dose/L of urine for all groups and was generally below the limit of quantification (<0.04 mg/L). Feces represented the predominant route of excretion. These results demonstrate that there is no accumulation of titanium in tissues following consumption of diets containing 200 ppm food grade TiO 2 . No differences in systemic absorption of the 4 forms of TiO 2 were observed indicating that the bioavailability of TiO 2 is consistently low for the range of particle sizes and morphologies examined in this study. © 2017 Institute of Food Technologists®.

  20. Millimeter/Submillimeter Spectroscopy of TiO (X3Δr): The Rare Titanium Isotopologues

    NASA Astrophysics Data System (ADS)

    Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538 GHz. This study is the first complete spectroscopic characterization of these species in their X 3Δ r ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J + 1 ≤ftrightarrow J were measured for each species, typically in all 3 spin-orbit ladders Ω = 1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I = 5/2 and 7/2, respectively. For the Ω = 1 and 3 components, the hyperfine structure was found to follow a classic Landé pattern, while that for Ω = 2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a 1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis.

Top